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ABSTRACT

Although it is agreed that the Volgenant-Jonker (VJ) algorithm provides a fast way to approximate

graph edit distance (GED), until now nobody has reported how the VJ algorithm can be tuned for this

task. To this end, we revisit VJ and propose a series of refinements that improve both the speed and

memory footprint without sacrificing accuracy in the GED approximation. We quantify the effective-

ness of these optimisations by measuring distortion between control-flow graphs: a problem that arises

in malware matching. We also document an unexpected behavioural property of VJ in which the time

required to find shortest paths to unassigned vertices decreases as graph size increases, and explain

how this phenomenon relates to the birthday paradox.

c© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Attributed graphs have risen in popularity in various sub-

fields of pattern recognition (Conte et al., 2004; Livi and Rizzi,

2013), but one fundamental problem of attributed graphs re-

mains: the problem of how to quantify the similarity of two

such graphs (Bunke and Allermann, 1983). One promising

class of methods is based on the measure of Graph Edit Dis-

tance (GED), (Gao et al., 2010; Sanfeliu and Fu, 1983) which

measures the similarity of two graphs as the minimum number

of edit operations needed to convert one graph to another. More

precisely, suppose G = 〈V, E, ℓ〉 is an attributed directed graph

where E ⊆ V × V and ℓ : V → Σ assigns each vertex to an

attribute (or label) drawn from an alphabet Σ. (In the general

case, edges can also be similarly attributed.) An edit operation

on a graph G1 inserts or deletes an individual vertex, inserts or

deletes an edge, or reassigns a vertex to an attribute, to obtain

a new graph G2. Applying a sequence of n − 1 edit operations

gives a sequence of n graphs G1,G2, . . . ,Gn. Since the cost of

edit operations is not necessarily uniform, in the more general

form, each edit operation has an associated edit cost as defined

by a cost function. The GED between two graphs G and G′ is

the minimum sum of edit operation costs. GED has proven to

be useful (Bourquin et al., 2013; Conte et al., 2004; Myers et al.,

2000; Riesen and Bunke, 2009; Eshera and Fu, 1984) because

it is an error tolerant measure of similarity.

However, computing GED is equivalent to finding an optimal

permutation matrix (Zeng et al., 2009), an NP-hard problem.

Fast but suboptimal approaches have thus risen to prominence

(Riesen and Bunke, 2009), in which GED is approximated by

solving a linear sum assignment problem. Of those algorithms

proposed for solving this problem, the Volgenant-Jonker (VJ)

algorithm (Jonker and Volgenant, 1987) is the most efficient.

This paper takes VJ as the starting point, and explores how

it can be improved for the specific task of GED computation.

Others (Serratosa, 2014; Serratosa and Cortés, 2014), recognis-

ing the need to speed up bipartite graph matching, have rede-

fined the concept of edit distance to make it more amenable

to calculation. Our approach differs from these works because

we exploit the highly regular structure of the cost matrix and

the redundancy that this implies for the VJ algorithm, instead

of using an alternative definition of edit distance. This paper

extends (Jones et al., 2015) by fully explaining how the funda-

mental operations of the VJ algorithm can be improved to take

advantage of a specific structure of the cost matrix. In all, our

paper makes the following contributions:

1. It gives a more detailed description of our workshop paper

Jones et al. (2015);

2. It shows how the VJ algorithm can be tuned to GED com-

putation; It also elucidates details of VJ itself;

3. It quantifies the ensuing speedup and decrease in mem-

ory requirements, demonstrating the efficacy both on ran-

domly generated data and in real world applications;

4. It shows how the speedup can be explained with respect to

cache usage;

5. It reports and discusses an emergent behaviour in which

the time taken on the shortest path calculations decreases



as the problem size increases;

The exposition of the paper is structured as follows: To keep the

paper self-contained, section 2, explains how GED is related

to the linear sum assignment problem, and section 3 describes

the classical VJ algorithm. Section 4 introduces the proposed

optimisations, and Section 5 presents the experimental results,

comparing the improved algorithm with the original. Section 6

discusses how the relation between the VJ and other proposals

for improving bipartite graph matching. Section 7 concludes.

2. The Linear Assignment Problem and GED

The linear assignment problem is one of fundamental prob-

lems of combinatorial optimisation, that is, the problem of as-

signing n unique agents to n unique tasks such that the total

summed cost of these assignments is minimal. More exactly,

given two sets |A| = n = |B| and an associated n × n cost matrix

C in which Ci j corresponds to the cost of assigning the i-th ele-

ment of A to the j-th element of B. Then the linear assignment

problem is that of finding a bijection f : {1, . . . , n} → {1, . . . , n}

which assigns a column f (i) to each row i in a way that min-

imises
∑n

i=1 Ci, f (i). Identically, we can also view the problem

as finding a permutation p1, p2, . . . , pn on 1, 2, . . . , n that min-

imises
∑n

i=0 Ci,pi
(Munkres, 1957; Burkard and Cela, 1999).

Any algorithm capable of finding an optimal solution to the

assignment problem, such as the Hungarian algorithm (Kuhn,

1955), can be used in the derivation of a (suboptimal) solution

to the GED problem (Riesen et al., 2007). Consider graphs de-

fined similar to before. When |V1| = n = |V2| the GED between

G1 = 〈V1, E1, ℓ1〉 and G2 = 〈V2, E2, ℓ2〉 can be approximated

by solving a linear assignment problem using an n × n matrix

C where Ci, j denotes the cost of substituting vertex i for ver-

tex j. However, an optimal minimal solution to the assignment

problem does not guarantee an optimal solution to the GED

problem; every vertex operation described by this solution also

entails edge operations that are not accounted for in this cal-

culation. Another limitation of this particular model is that it

can only be easily applied when |V1| = |V2|. A more general

approach (Riesen and Bunke, 2009) addresses both these prob-

lems by working on an extended cost matrix defined as follows:

C =
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where n = |V1| and m = |V2|. The top left quadrant of ci, j

describes the cost of substituting vertex i with vertex j. The top

right hand corner ci,ε the cost of deleting vertex i. The bottom

left quadrant cε, j denotes the cost of inserting vertex j.

It is convenient to augment the set of attributes Σ, henceforth

referred to as the set of real attributes, with a virtual attribute,

denoted ǫ. The virtual attribute is introduced to mark those ver-

tices that do not participate in the graphs. These are called the

virtual vertices; all other vertices are considered real. Deletion

is then assigning a virtual attribute to a real vertex. Conversely,

insertion is assigning a real attribute to a virtual vertex. Substi-

tution is seen as simply assigning a real attribute to a real vertex.

However, in order to complete the cost matrix, we must quan-

tify the cost of assigning a virtual vertex to the virtual attribute,

an action that is vacuous. This naturally has a cost of 0, thus the

bottom right quadrant that completes the matrix is uniformly 0.

Note that even with this extension (Riesen and Bunke, 2009)

the cost matrix only considers vertex information. A further

refinement that uses local edge information to generate a more

accurate approximation to GED can be defined as follows: For

a given graph Gk we use Ek and ℓk to compute a lower bound

on GED by considering attributes on the incoming neighbours

of a given vertex. To be precise, let

Ink( j) = {ℓk(i) | 〈i, j〉 ∈ Ek}

be the set of attributes on the incoming neighbours of a given

vertex j. For a given vertex i in G1 and a given vertex j in

G2, let S 1 be those attributes on the incoming neighbours of

i which are not assigned to incoming neighbours of j. S 2 is

defined conversely, so that:

S 1 = {σ ∈ In1(i) | σ < In2( j)}

S 2 = {σ ∈ In2( j) | σ < In1(i)}

The maximal cardinality of S 1 and S 2 then quantifies how many

attributes the incoming neighbours vertices i and j differ by:

ei, j = max(|S 1|, |S 2|)

The cost matrix is then defined ci, j = di, j + ei, j where

di, j =

{

1 if ℓ1(i) , ℓ2( j)

0 otherwise

Then the di, j component of ci, j accounts for any difference in at-

tribution between vertex i and vertex j, and the ei, j component

accounts for reassigning their incoming neighbours. The diag-

onals ci,ǫ and cǫ,i are degenerative and defined as above with

Ink(ǫ) = ∅.

3. The classical VJ algorithm

To support the reader, we provide the intuition behind the al-

gorithmic details given in Jonker and Volgenant (1987). By way

of support, we first overview the algorithm at the macroscopic

scale, before drilling into the microscopic detail in subsequent

sections. This overview is designed as a support text and com-

mentary on the original seminal work.

3.1. Overview

The VJ algorithm (Jonker and Volgenant, 1987) is a shortest

path algorithm solved via a dual method. The algorithm con-

sists of two main steps, which are outlined in the sections that

follow:
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Fig. 1. (a) Example cost matrix; (b) After column reduction; (c) After anti-column reduction; (d) After row reduction (reduction transfer)

1. Initialisation in three stages: (a) column reduction; (b) re-

duction transfer; and (c) augmenting row reduction. These

are somewhat akin to the initialisation steps of the Hungar-

ian algorithm (Kuhn, 1955) and serve a similar purpose: to

quickly make an initial set of tentative assignments using

a fast, but potentially incomplete method. These assign-

ments correspond to a bijection f from a subset of the row

indices to a subset of the column indices. In addition to

this, the assignments made in initialisation make changes

to the entries in the cost matrix. This further speeds up

augmentation.

2. The heart of the algorithm is augmentation which incre-

mentally constructs the bijective map f . Each iteration

of augmentation adds one element (a row index) to the

domain of f and another element (a column index) to

codomain of f . Augmentation is repeatedly applied until

f is complete. Each step of augmentation finds an alter-

nating path that starts with a row index outside the domain

of f and ends with a column index outside the codomain

of f . An alternating path is a sequence of row and column

indice pairs where the internal rows and columns in the

sequence appear in the domain and codomain of f . Each

row and column pair is associated with a cost, by virtue

of the cost matrix, and the alternating path is calculated

to minimise the cumulative cost. Each alternating path

that is found acts to increase the size of the domain and

codomain, which is why termination is ultimately assured.

3.2. Initialisation

Column reduction. The first step of initialisation is column re-

duction, in which a positive value is subtracted from each ele-

ment of a column. Starting at the last column, an optimisation

suggested by Jonker and Volgenant (1987), the VJ algorithm re-

duces each column by its minimum element such that each col-

umn contains a zero. Figure 1(b) illustrates the result of column

reduction. As the matrix is scanned right-to-left, each column

is assigned, whenever possible, to a unique row that contains a

zero in that column. Column 3 is assigned to row 2 (and vice

versa), and column 1 is assigned to row 1 (and vice versa), but

column 2 will remain unassigned (as does row 3).

Reduction transfer. The second step of initialisation is reduc-

tion transfer, which is applied to further reduce assigned rows

and in which a positive value is subtracted from each element

of a row. Since any assigned row will, by necessity, contain at

least one zero, row reduction cannot be applied, without intro-

ducing a negative entry (because column reduction has taken

place). Consider for illustration row 1 of Figure 1(b). Thus a

form of inverse column reduction is applied to the column cor-

responding to the minimum of row 1, which is column 1, to

give the matrix depicted in Figure 1(c). Row reduction is then

applied, to decrease row 1 by the least entry greater or equal to

the current minimum (henceforth called the second minimum),

which in the case of Figure 1(c) is the value 3. The result of this

row reduction is illustrated in Figure 1(d), albeit at the expense

of reduction in the selected column. This exchange in reduction

value, by the second minimum 3, between column 1 and row 1,

is called reduction transfer. Aside from the benefits in reducing

assigned rows, this step is particularly beneficial for expedit-

ing augmentation. By decreasing the reduction in the assigned

column, the entries in this column are more likely to higher

than the entries in an unassigned column, making connections

to unassigned columns more favourable.

Augmenting row reduction. In the third phase of initialisation,

an attempt is made to find a set of alternating paths, where each

path, recall, starts in an unassigned row and ends in an unas-

signed column. For a given unassigned row i, VJ finds a col-

umn j1 that contains the minimum entry e1 and another column

j2 that contains the least entry e2 such that e2 ≥ e1. Row i is

then reduced by e2. If e2 > e1 then this incurs a negative value

in column j1, in which case, inverse column reduction is ap-

plied to column j1 to eliminate the negative entry. Row i is then

assigned to column j1 regardless of whether this column is al-

ready assigned or not. If j1 was previously assigned to a row

k, then row k becomes unassigned and the procedure continues

from row k. This repeats until either row k is matched to an

unassigned column, or it becomes impossible to transfer reduc-

tion to the selected row k. Observe that reduction transfer pro-

vides a vehicle for constructing a path that alternates between

rows and columns, hence the name alternating path.

3.3. Augmentation

For each unassigned row, the augmentation phase finds a

shortest alternating path to an unassigned column. VJ modifies

Dijkstra’s algorithm (Dijkstra, 1959) to search for these shortest

paths, where the notion of distance between a row and a column

is the entry in the cost matrix.

The search starts at an unassigned row, say row i, and a short-

est path is found from row i to a column j, and column j is

added to the path. If column j was previously assigned to row

k, then row k is also added to the path (though no changes are

made until a complete path to an unassigned column is found).

The distances from the row i to any given column are updated

and replaced if it is possible to reach this column in a shorter

distance via row k. Unlike classical Dijkstra, the search contin-

ues in this fashion until an unassigned column is found. After

augmentation, the assignments to the cost matrix are updated so

that all assignments in the current solution correspond to mini-

mum entries in each row of the cost matrix.
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Because augmentation uses Dijkstra’s algorithm, VJ implic-

itly assumes that all costs are non-negative.

4. The Improved VJ Algorithm

This section proposes a number of improvements to the clas-

sical VJ algorithm, all of which follow from the regular struc-

ture of the GED cost matrix.

4.1. Representation

Given two graphs G1 and G2 with V1 and V2 vertices respec-

tively, by far the largest data structure in the VJ algorithm is

the cost matrix requiring the storage of (n + m)2 entries where

n = |V1| and m = |V2|. However, nearly three quarters of these

entries are fixed at either zero or infinity, as is illustrated in

Figure 2(a). There are two natural ways to represent the data

more densely without loss of information, namely, a row-by-

row representation depicted in Figure 2(b) and a column-by-

column representation illustrated in Figure 2(c). Both repre-

sentations avoid storing the infinite values in the top-right and

bottom-left quadrant of the cost matrix. The top half of the

row-by-row representation can be combined with the left half

of the column-by-column representation to obtain a denser rep-

resentation still, which avoids explicitly storing the zeros in the

bottom right quadrant of the cost matrix. The combination is

illustrated in Figure 2(d); the net effect is that the cost matrix is

represented with only (n + 1) × (m + 1) − 1 entries.

Although row equality can no longer be checked by com-

paring one entry against another one-by-one, we argue that the

representation does not impede tractability but, in fact, that

the converse is true. Moreover, this matrix representation ho-

mogenises the column-by-column and row-by-row representa-

tions, which means that it simultaneously benefits both row-

and column-based operations. It should be noted that the VJ

algorithm cannot be directly applied to the new representation;

as it stands VJ will not calculate a correct set of assignments

to the original problem because we are not explicitly storing

information relating to the infinite and zero entries.

4.2. Column Reduction

The new representation simplifies column reduction in two

ways: First, almost half of the costs in the matrix are infinite

and so will never be chosen as a minimum in a column. Second,

nearly a quarter of the costs will be zero, and these zeros dictate

that the column minimum will be zero. Hence only the position

of the minimum need be computed in column reduction (rather

than its position and value). This is because, while we can be

assured that there will be no minimum value smaller than zero,

it is entirely possible for one of our variable entries to be zero.

To take advantage of this, the matrix is considered as two

separate blocks with different operations provided for each, as

illustrated in Figure 3a. The leftmost entries are handled as be-

fore because, barring the loss of infinite values which are irrele-

vant to this operation, the old and new data-structures coincide.

The rightmost entries that are stored in a single column, see Fig-

ure 2(c), correspond to the diagonal of the top-right quadrant.

Recall that we reduce each column by the minimum in that col-

umn. Then these rightmost entries are only ever compared to

infinite values and zero values (because they share a column

with the null quadrant). Hence the reduction value will always

be zero and only the position of the zero need be found. This

can be further simplified in the case that the variable entries in

the cost matrix are uniformly non-zero because this removes the

need for position computation too. This effectively renders the

result of column reduction to be predeterminable for any given

cost matrix.

4.3. Reduction Transfer

Reduction transfer can be simplified in an analogous manner.

As before, we have no need to search for minimum or second

minimum values for column entries containing infinite values.

We can operate a similar algorithmic split to the one used in

column reduction, but since reduction transfer operates row by

row instead of column by column, we use a top-to-bottom divi-

sion instead, as depicted in Figure 3b. Similarly to column re-

duction, any row in the bottom half of the matrix will intersect

the null quadrant, and will have a known minimum and second

minimum values (both of which will be zero). At this point,

we can no longer assume, as we did in column reduction, that

some of our values are non-zero. This is because column reduc-

tion has taken place and costs in the matrix may have changed.

Therefore we cannot, as before, eliminate the need to search for

the position of these minimums, though it is possible to greatly

speed up the search as we only need to check whether our vari-

able entry in this row is non-zero.

4.4. Augmenting Row Reduction

Augmenting row reduction can be optimised in a similar

fashion to the previous two steps. Once again, for each row

being considered there is no point considering infinite costs as

candidates for the minimum. Equally, when operating on the

bottom half of the cost matrix, we can assume that the minima

in a given row are zero. We can make this assumption because

even after reduction transfer has potentially changed the reduc-

tion values of these entries, edit operations from the virtual label

to the virtual label should always have zero cost. (Note that we

could have made this assumption for reduction transfer too, but

chose not employ this refinement as it introduces overhead and

reduction transfer makes up only an extremely small fraction of

total runtime.) This means that we only need to check if the

non-fixed entries in a given row have been reduced to zero.

4.5. Augmentation

Augmentation can be improved due to the new cost matrix,

but cannot be improved to the same degree as the steps of ini-

tialisation. This is because we can never eliminate the overarch-

ing need to iterate over each column for any given row because,

although we should never make a direct path to a given column

via an infinite entry, it is entirely possible that we might up-

date the cost of such a column by finding an indirect path to it.

Despite this, we can make several improvements which follow

from the observation that while we can never rule out an indi-

rect path to such a column, we can certainly rule out a direct

4
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(a) (b) (c) (d)

Fig. 2. (a) Original cost matrix; (b) Row-by-row representation with zeroes; (c) Column-by-column representation with zeroes; (d) Without zeroes.
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Fig. 3. (a) The split between the left- and right-hand block (the left is highlighted). (b) The between the top and bottom blocks (the top is highlighted).

path. Equally, it is possible to replace or skip a large number of

matrix lookups of what would be fixed values in the cost matrix.

Unlike the previous steps, where the refinements reduce the

complexity from O(max(n,m)2) to O(nm), the complexity of

augmentation remains the same at O((n + m)3), since it is per-

forming up to n + m iterations of Dijkstra’s algorithm which

resides in O((n + m)2) . As this dominates the complexity of

the whole algorithm, the improvements do not place the algo-

rithm in a new complexity class. Nevertheless, since the ini-

tialisation steps that we improved generally take at least half of

the total runtime is our tests of the algorithm, the proposed im-

provements are truly worthwhile, showing a significant overall

speedup. Furthermore, they do not come at the expense of in-

creased memory consumption rather, work in tandem with the

representation that reduces the memory footprint.

5. Experimental Results

To empirically assess the proposed improvements to VJ, two

versions were implemented: the original version (VJ-ORG) and

an improved version (VJ-IMP). Both were compared against a

version developed by Jonker himself (VJ-CTRL), which was

used as a control. All three versions were implemented in C++,

applying consistent coding patterns throughout.

5.1. Evaluation on Random Data

Initially random square (n = m) cost matrices were used to

provide a large corpus of data for comparing all versions of

VJ. The improvements have least effect on square matrices and

thus, if anything, the setup is biased against VJ-IMP. Costs and

matrix sizes were chosen to approximate what might typically

be encountered in malware matching. In this context a control-

flow graph (CFG) is extracted from a binary for comparison

against a database of CFGs derived from malware. BinSlayer

(Bourquin et al., 2013) was used to derive CFGs from several

medium-sized binaries. These possessed between 465 to 6984

vertices (basic blocks), and produced matrices where the costs

rarely exceeded 2000 and never exceeded 3000. To cover a

range of scenarios, matrices were populated with random values

from cost ranges varying over 1-500 to 1-3000. Matrix sizes

were also varied between 1000 and 14000, again to simulate

CFGs. We also tested the resilience of the improvements over

some much larger cost ranges (1-50000 and 1-109) for the full

range of matrix sizes.

Figure 4 gives a series of plot lines, one for each cost range.

Each data point on a line corresponds to the runtimes for a dif-

ferent matrix size, though the horizontal axis is normalised by

the runtime for solving a 14000 × 14000 matrix. The verti-

cal axis is normalised relative to the unimproved times, so that

the instantaneous gradient quantifies the improvement over a

range of costs and matrix sizes. Note that VJ-IMP is uniformly

faster than both VJ-ORG and the third party implementation

by Jonker, VJ-CTRLẆe find the improved version of algorithm

to be about twice as fast; the difference being more striking at

lower costs and higher sizes. Although not represented by this

data, there is only a very small performance advantage to VJ-

ORG over VJ-CTRL which suggests that our implementations

are consistent and our findings are robust. All three versions

also produce the same output given the same input.

5.2. Evaluation on CFGs

The previous subsection showed how to speed-up the VJ al-

gorithm. In this section we show that the changes to the VJ

algorithm also speed-up graph edit distance computation. Fig-

ure 6 summarises some CFG comparisons for four different bi-

naries, where the CFGs were derived using BinSlayer. Com-

paring CFG1 = 〈V1, E1, ℓ1〉 against CFG2 = 〈V2, E2, ℓ2〉 does

not necessarily take the same time as comparing CFG2 against

CFG1. This is because if |V1| < |V2| then cost matrix will have a

5



Fig. 4. VJ-IMP against of the fastest of VJ-ORG and VJ-CTRL for various cost ranges and matrix sizes

Fig. 5. Runtime of each iteration of augmentation (averaged over all three algorithms).
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CFG 1 CFG 2 Size Ratio VJ-ORG VJ-CTRL VJ-IMP Speedup

bash BinSlayer 0.27 201 205 125 62%

BinSlayer bash 3.75 2944 3164 1820 68%

cmaker BinSlayer 0.11 623 627 264 137%

BinSlayer cmaker 8.83 13221 13729 8905 51%

cmaker bash 0.42 3763 3901 3080 24%

bash cmaker 2.35 54308 58333 43576 29%

gdb BinSlayer 0.07 1862 1656 588 199%

BinSlayer gdb 15.02 34020 35468 22127 57%

gdb bash 0.25 4555 5087 3155 53%

bash gdb 4.00 151457 160074 114091 37%

gdb cmaker 0.59 17987 18495 15291 19%

cmaker gdb 1.70 209562 228467 164442 33%

Fig. 6. Runtimes in milliseconds, where the size ratio is |V1 |/|V2 |.

large top-right (deletion) quadrant and a small bottom-left (ad-

dition) quadrant. It is notable that while all versions of VJ are

faster when |V1| < |V2|, the benefits to VJ-IMP are more sig-

nificant. Excluding augmentation, the runtime of each compo-

nent of each algorithm is almost constant no matter whether

|V1| < |V2|. However, the runtime of augmentation is smaller

when |V1| < |V2|. Since column reduction is faster in VJ-IMP

extra benefits follow from |V1| < |V2| because column reduc-

tion is faster and the cost of augmentation is less dominant. We

have found that the number of iterations in augmentation does

not depend on |V1| < |V2|, and so the decreased time in augmen-

tation is entirely a byproduct of an decrease in the runtime of

each iteration.

5.3. Component Analysis

Figure 7 shows the time proportion spent in each component

of VJ-ORG and VJ-IMP. Column reduction and augmenting

row reduction benefit most from the improvements; augmen-

tation is faster with VJ-IMP (in absolute terms).

Augmentation and column reduction take up the majority of

the runtime followed by augmenting row reduction, with re-

duction transfer being almost insignificant. We notice a sig-

nificant overall speedup with the improved algorithm, but see

a huge difference in the percentage of total runtime that the

dominant augmentation step takes, hence we can conclude the

improvements are most significant over augmenting row reduc-

tion and column reduction. Inspection of the raw data revealed

column reduction and augmenting row reduction exhibiting be-

tween and 2 and 5 fold increase in speed, depending on cost

matrix size and range. This dramatic improvement partially

stems from the way these steps successively access rows in the

cost matrix. Reducing the width of a row in the matrix, as with

the new representation, makes it more likely to have data al-

ready available in the cache and thus avoid having to access

disk storage. The reduction in row size allows more of the rel-

evant portions of the row to be stored in in the data cache (D1)

, speeding up accesses as the algorithm accesses rows one after

the other. Profiling with valgrind, revealed that the new repre-

sentation significantly reduced the number of D1 cache misses

from approximately 139 million to 48 million, which indicates

that the reduction in row width uses the cache more efficiently.

Augmentation does not access rows in succession and therefore

we observe only a modest performance gain.

We also see an interesting behaviour in the runtimes of aug-

mentation and column reduction, especially at low cost ranges.

Column reduction quickly increases as a percentage of total

runtime as cost matrix size increases eventually overtaking aug-

mentation. On closer examination, it is apparent that this is the

result of a reduction in the growth of the runtime of augmen-

tation instead of a sharp increase in the runtime of column re-

duction. Furthermore this happens across all cost ranges (but

is more visible for smaller ranges). This is surprising as aug-

mentation is merely an implementation of Dijkstra’s algorithm.

Figure 5 suggests that this stems from an effect in which the

growth in runtime of each iteration of augmentation actually

tails off as the size of cost matrix increases.

We conjecture that this is because of a statistical property re-

lated to the birthday paradox. During initialisation the column

reduction step works backward (from the highest index to the

lowest), so low index columns have a higher chance of involv-

ing a collision and having a lowest element in the same position

as another column. For a randomly generated matrix of total

size t × t, column index i will have a ( t
t+1

)
t−i

probability of not

having a minimum element in the same row as another column,

and thus low i are very likely to be unassigned. Thus a column

with a given index is more likely to be unassigned as cost matrix

size increases. Consequently not only are low indexed columns

more likely to be unassigned, but across all columns this effect

will increase disproportionately as matrix size increases. Since

Dijkstra’s algorithm scans from low indexed columns to high

indexed ones, it will find assignments for most of its rows more

quickly as cost matrix size increases, even though worse-case

complexity remains in O(n3).

6. Discussion

Serratosa (2014) likewise improves bipartite graph matching,

but from the perspective of a refined definition of edit distance.

By assuming the properties which include:

1. 0 ≤ ci, j, 0 ≤ ci,ǫ and 0 ≤ cǫ, j,

7



Fig. 7. Normalised runtime of components, for VJ-ORG (above) and VJ-IMP (below), over range 1-500

2. ci,ǫ = cǫ, j,

3. ci, j ≤ ci,ǫ + cǫ, j,

4. ci, j = 0 if ℓ(i) = ℓ( j), that is, vertices i and j share the same

attribute.

it follows that it is not possible for an optimal edit path to

include both insertion and deletion operations.This simplifies

the calculation of the edit path. It is natural to ask how these

assumptions relate to the VJ algorithm, what potential they

offer to further improve the representation, and whether any

speedups are likely to ensue.

Assumption (1) validates the non-negativity requirement of

VJ algorithm. With assumption (2) it is only necessary to store

one of the two diagonals, making redundant either the (dele-

tion) column or the (insertion) row. In addition, our proposed

representation could be further simplified if the top-left quad-

rant was symmetric, that is, ci, j = c j,i. This would half again the

memory requirements but unfortunately is not always a reason-

able assumption. Compounding assumption (2), assumption (3)

allows us to potentially reduce the number of required calcula-

tions. Where assumption (2) allows us to reduce the representa-

tion of the cost matrix by only storing either insertions or dele-

tions, assumption (3) actually precludes any solution from con-

taining both edit operations. With regards to assumption (4),

while it seems to superficially contradict our proposal in sec-

tions 4.2, 4.3 and 4.4 to expedite some calculations by assuming

non-zero costs, assumption (4) only relates to the top-left (sub-

stitution) quadrant, whereas we only assume non-zero costs for

addition or deletion.

An interesting side effect of the representation is that the

fixed infinite values in the cost matrix are not directly repre-

sented, instead they are introduced on-demand when required

(in augmentation). Because of this, we chose to deploy ex-
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tended arithmetic in which addition or subtraction of any inte-

ger with the symbolic infinite values retained the infinite value.

This, and the improvements that skip over infinite values in cer-

tain operations, potentially benefit the manipulation of matrices

that contain large entries. Extended arithmetic makes it truly

impossible to make nonsensical assignments to these infinite

values, whereas it was previously assumed that representing in-

finite values with sufficiently large numbers would suffice to

prevent this.

Profiling suggests that cache misses determine the perfor-

mance of the VJ algorithm. This suggests that VJ needs to re-

visited, with a view to reformulation its steps so as to minimise

the number of cache misses. Such engineering could enable VJ

to be scaled to significantly larger problems.

Unlike the Hungarian method which relies on an integral du-

ality theorem that does not hold for rational cost matrices in

general (Kuhn, 1955), there are no fundamental problems that

similarly constrain the VJ algorithm. However, there are inher-

ent problems instantiating the VJ representation with floating

point numbers, requiring the introduction of a tolerance to deal

with loss of precision. The introduction of the new representa-

tion can mitigate this by avoiding a large number of unneces-

sary floating point operations.

7. Conclusions

We have examined the VJ algorithm and studied improve-

ments for approximating GED. We have shown that our im-

proved algorithm is uniformly faster than its unimproved coun-

terparts, both across randomly generated matrices and data sets

that arise in call-graph comparison. The speedups, which are

almost 200% in one case, suggest the that refinements are truly

worthwhile. Moreover, the improved version has a smaller

memory footprint, and incurs no loss of accuracy whatsoever.

Finally, we have also documented and explained an anomaly in

the runtime of the Dijkstra’s shortest path search component of

VJ. Future work will, among other things, empirically investi-

gate how the relative sizes of the two graphs under comparison

effect the overall runtime, and also explore the prospects for

parallelisation (Balasn et al., 1991).
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