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Abstract—This paper assesses the application of Non-Intrusive

Appliance Load Monitoring (NIALM) methods for disaggregat-

ing electricity consumption in office buildings. The focus of the

research is on small power equipment, which can represent

up to 50% of the electricity use in buildings fitted with high

efficiency building services. Research in this field has led to

numerous algorithms being developed for use with NIALM

systems, however, due to the highly variable nature of electrical

appliances no suitable common characteristic has been identified

for disaggregation. This paper presents an analysis of a set of

electrical signatures based on transient and current-voltage phase

shift during steady-state conditions for which subsets of the

signatures are considered for identifying different small power

loads. The ability of this approach to disaggregate appliance

loads is demonstrated with the idea of applying disaggregation

techniques during energy audits of office buildings.

Index Terms—Disaggregation, electrical signature, decision

tree, overall accuracy.

I. INTRODUCTION

As buildings become more energy efficient, small power
loads within those buildings become more significant to total
energy consumption. These loads also represent a significant
source of inaccuracy in energy breakdown audit assessments
[1]. The potential of NIALM technology to enhance residential
electricity audits has been identified as an efficient opportunity
to spot electricity consumption measures in buildings, provid-
ing more accurate estimates of the energy consumption of the
individual loads in a building at a reasonable cost [2].

NIALM methods were first developed by George Hart [3].
More recent developments in non-intrusive monitoring tech-
niques have focused on the diversity in signatures and the dis-
aggregation methods used for identifying appliances [4], [5].
However, a comparative study of the disaggregation capability
of the different signatures has not been demonstrated. This
paper develops a number of characteristic electrical signatures
for a set of small power loads in office buildings and performs
an analysis of the disaggregation obtained with each signature.
The implementation of the presented method is intended to
yield a proper understanding of the electrical signatures that
better characterize small appliance loads in office buildings

and that could be used to create a low-cost monitoring tool to
provide detailed energy consumption information.

II. NIALM FRAMEWORK

All currently used NIALM methods have several common
principles. Firstly, a hardware installation is used to obtain
a signal; then signal processing is used to extract specific
signature characteristics; finally, a disaggregation algorithm is
used to separate individual appliance loads from the overall
signal [6].

A. Hardware considerations
The role of the sensing hardware is to acquire aggregated

load measurement at an adequate sample frequency rate to
capture the key load patterns and characteristics [7]. The
electrical grid in the UK runs at a 50 Hz cycle, therefore,
according to Nyquist-Shannon theorem, a minimum of 100 Hz
sample rate would be required to capture basic wave shape [8].
The noise captured using frequencies higher than 15 kHz is
likely to obscure any gains in signal detection for commercial
buildings [9] and so sets a maximum sample rate. The 1
kHz sample rate range, by contrast, is of particular interest
(although little work has been done in these frequencies),
since it is at this frequency that transient features begin to
be captured, but with no excessive high frequency noise. This
is reflected by the large availability of commercial hardware
capable of getting these sampling frequencies [9]. To coincide
with available hardware for potential site install in energy
audits, sample rates of 1 kHz are presented in this research.

B. Combination of electrical signatures
Using combinations of electrical features or signatures for

load disaggregation, the heterogeneous nature of small ap-
pliances has historically made it difficult to standardize the
parameters of algorithms used for signature identification [9].
In response to this difficulty, specific transient and steady-state
electrical signatures of small power have been identified and
their disaggregation capability analyzed in this study.

C. Machine learning techniques for disaggregation
After identifying electrical signatures of appliances a load-

disaggregation process can be performed to associate pro-
portions of load across time with different appliances. The978-1-4673-8463-6/16/$31.00 c� 2016 IEEE



methodology used can vary with the nature of the signature
analyzed and whether coded rule or automatic disaggregation
by machine learning techniques are applied. For machine
learning, supervised learning techniques have achieved more
accurate results than unsupervised learning techniques [6]. In
order to identifying which class, of a set of predefined classes,
the data belongs to an established classification decision tree
algorithm can be used, [10]. A database of electrical signatures
with associated classifying attribute (appliance type) provides
required training set. The decision tree classifiers resulting
from decision-tree machine learning are used in this study
as they are reported to obtain better accuracy when compared
with other classification methods [11].

III. METHODOLOGY

Voltage and current have been monitored using a 1 kHz
sample rate for a selection of typical small load appliances. A
series of event detection and signature identification algorithms
were developed for creating a database of appliance signatures,
and a decision tree classification method was used for load
disaggregation/appliance detection.

A. Data collection
A medium size office building has been chosen for the

experimental part of the project. The monitoring equipment
has been installed in two different areas and on two different
classes of appliances:

• Domestic kitchen small appliances: Heater (H), Kettle
(K), Coffee Machine (CM) and microwave (M)

• Workstation small appliances: Heater (H), Fan (F), Per-
sonal Computer (PC), Mobile Charger (MC) and Incan-
descent lamp (IL)

For safety reasons, no direct connections were made to the
electrical circuits. A modified 15 A extension cord housing
a current transformer and voltage probe was utilized. Data
were collected first for individual appliance loads and then for
aggregated loads.

B. Electrical signatures
The electrical signatures identified by algorithms developed

to preprocess raw data have been classified as either transient
or steady-state signatures.

Transient signatures: These signatures are derived from
transitional properties that occur when an appliance is turned
on or off [5].

• Root Mean Square (RMS) increment: the change of
current magnitude during a transient.

– The first step is to calculate the RMS current over a
number of cycles m, using (1):

I
RMS

=

✓
Ip
2

◆

mcycles

(1)

Where I is the raw current value of the sinusoidal
wave in Amperes.

– Secondly, an event i 2 N is defined as followed:
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Where � I
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is the differential between consec-
utive I

RMS

, i is increased by 1 each time (2) is
fulfilled and Thr

inc

is a fix positive differential value
of I

RMS

.
– Finally, the RMS increment for each event i is defined

as followed, for the � I
RMS

accomplishing (2):

Increment
i

= �I
RMS

(3)

• Settle time: the time required for the current to reach
a given threshold, Thr

s

, of the final steady-state value,
after a transient event i occurs.

– The Settle Time I
RMS

segment for each event i is
defined according with (4):
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Where n is the sampling number, t

n,i

is the sample
time in milliseconds after the event i and Thr

s

is a
fix positive differential value of I

RMS

.
– The Settle Time time period in milliseconds is de-

fined, as follow:

Settle T ime
i

=
�
t
nf,i � t
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�
(5)

Where n0,i is the first and n
f,i

the last samples of
the transient event i accomplishing condition (4).

• Peak to Trough: the absolute difference between the
consecutive peak-trough couple in the raw current signal
immediately following the transient event i, calculated by
(6):

Peak to Trough
i

= I
peaki � I

troughi (6)

Where I
peaki is the first current peak and I

troughi the
first current trough after the event i.

Steady-state signatures: These signatures relate to unique
properties of the steady state profile [5].

• Current-Voltage phase shift: To detect the current-voltage
phase lag difference before and after a transient event i
in the raw signals, the algorithm below has been created:

– First, calculate the Discrete Fast Fourier Transform
(DFFT) X

I,V

�
ejw

�
of the different steady-state

wave sequences x
I,V

[n]
s

, delimited by consecutive
transient events n

i

< [n]
s

< n(i+1), 8s 2 N, for the
current and the voltage raw signal using (7):
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Where x
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[n]
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and x
V
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represent a current and
voltage raw signal sequence s respectably, n0 is the
first and n

f

the final samples of sequence s and



X
I,V

�
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�
is a complex function of the angular

frequency w of the signal that can be written as:
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Where
��X

I,V

�
ejw

��� is called the magnitude function
and ✓

I,V

(w) the phase function, with both being real
functions of w.

– Using a filter, determine the 50 Hz phase function
values, with 1% error according with the UK fre-
quency control limits regulation [12], for the differ-
ent current and voltage wave sequences s.

– Current-voltage lag is given by the difference be-
tween the current and the voltage 50Hz phase func-
tion for each sequence s:

Lag
s

= ✓
I

(w)
s

� ✓
V

(w)
s

(10)

Where Lag
s

is measured in milliseconds.
– And finally, define the current-voltage phase lag dif-

ference before and after a transient event i expressed
in degrees as follow:

�Phase shift
i

=
��Lag

s

� Lag(s+1)

�� · 180
⇡

(11)

C. Disaggregation
A decision tree classification algorithm has been used for

disaggregation of the signal into corresponding appliance
loads. The algorithm performs classification in two phases and
is evaluated in a third stage, in accordance with [13]:

1) The tree building phase: or growth phase, in which the
tree is built by recursively spliting the data into two
branches. The value of a split point depends upon how
well it separates the different load types. To evaluate the
quality of the split, the Gini index is used. The advantage
of this index is that its calculation requires only the
distribution of the load type in each of the partitions.
For a data set S containing samples from n appliances,
Gini(S) is defined by (12).

Gini
Split

(S) = 1�
X

p2
j

(12)

Where p
j

is the relative frequency of appliance j in S.
When a split divides S into two branches S1and S2, the
index of the divided data Gini

Split

(S), is given by (13)

Gini
Split

(S) =
n1

n
Gini (S1) +

n2

n
Gini (S2) (13)

To find the best split point for a node, each of the node’s
attribute lists is scanned and splits are evaluated based
on that signature. The signature containing the split point
with the lowest value for the Gini index is then used to
split the node.

2) The tree pruning phase: Once the tree is fully grown, it
is pruned by removing dependence on statistical noise

or variation that may be particular only to the training
set, selecting the branches with the least estimated error
rate. A simple pruning method was used to cut the tree:
starting at the leaves, each node is replaced with its most
popular class, but only if the prediction accuracy doesn’t
decrease. This reduced error pruning has the advantage
of simplicity and speed.

3) The performance evaluation stage: Two validation meth-
ods have been used during this study to evaluate the
performance of the algorithm: The K-fold validation
method that realizes a partition of the original data set
into 10 disjoint subsets, taking one of those 10 folder
partitions for testing purposes and using the rest for the
learning process. And the Hold-out-validation method,
in which the original data set is partitioned into two
disjoint sets using the Partitioning node, splitting the
input table into two separate independent partitions.

D. The code

The disaggregation method has been developed using two
Discrete Software tools:

1) MATLAB section: Import and processing of raw data;
event detection or transient analysis; extraction of elec-
trical signatures.

2) KNIME section: Disaggregation and validation using
decision tree algorithms (Fig.1)

Fig. 2 below, presents the work flow of the whole disaggre-
gation code.

IV. RESULTS ANALYSIS AND DISCUSSION

This section presents a number of tabled results, with the
aim of showing the importance of the different signatures for
each appliance in the overall disaggregation process.

The original data set, created by the MATLAB code pro-
cessing of the raw data, contains ten events samples for
each appliance. Table 1 presents the average magnitude for
each signature and appliance over the ten samples and their
corresponding standard deviation, �. Signatures such as the
On-Off Current Increments and the Peak to Trough, can clearly
be used to distinguish between the appliances, whilst others (as
Phase Shift) that we term ‘impure’ signatures due to imprecise
identification metrics and large standard deviation, offer little
capacity for disaggregation.

To evaluate the overall accuracy of the method, the con-
fusion matrix produced by the decision tree predictor node
(see fig. 1) is analyzed. The matrix contains true and false
predictions, classified according with the matrix terminology
given bellow:

• True positive: with hit.
• True negative: with correct rejection.
• False positive: with false alarm.
• False negative: with miss.
And the overall accuracy was calculated using (14).



Fig. 1. Decision Tree code in KNIME

TABLE I
SIGNATURES AVERAGES AND STANDARD DEVIATION FOR EACH APPLIANCE

Appliances �IOn (A) � (A) �IOff (A) � (A) Set. Time (ms) � (ms) Peak (A) � (A) Phase Shift �(o)

K 11.52 0.06 -11.52 0.06 22.00 6.63 21.40 0.25 — —
CM 3.91 0.03 -3.91 0.03 0 0 7.20 0.12 — —
M 6.33 -0.17 -6.34 0.18 3441.10 221.51 16.30 2.79 23.34 0.95
H 3.18 0.06 -3.16 0.07 0 0 6.04 0.12 -1.59 0.08
F 0.10 0.01 -0.10 0.01 556 91.15 0.41 0.04 0 0.01
PC 0.51 0.01 -0.49 0.01 0 0 1.89 0.05 2.66 1.44
MC 0.03 0.01 -0.03 0.01 0 0 0.46 0.02 0.02 0.02
IL 0.14 0.01 -0.15 0.01 0 0 1.18 0.12 0 0.4

Fig. 2. Code work flow

Overall Accuracy =
True

positive

+ True
negative

False
positive

+ False
negative

(14)

A. Appliance recognition from individual loads

By applying the K-fold cross-validation method over the
original data set, the accuracy of the dissagregation method at
identifying individual loads was calculated. Table II presents
the overall accuracy obtained for appliance recognition, each
column corresponds to individual signatures and the Total
column to the combination of all of them. In the same way,
each row corresponds to an individual load and the All row to
the total loads aggregation.

The Total column achieves lower level of accuracy for
some appliance than using individual signatures (e.g. coffee
machine 90% with �I and 80% with Total). This is due to
the ”impurity” of some signatures that affect negatively the

learning process of the algorithm. For example, Settle Time is
significantly affected by noise and Phase Shift by the induc-
tive equipment connected to the phase circuit. However, the
Total column contains the higher accuracy for All aggregated
appliance loads, with 96%.

TABLE II
OVERALL ACCURACY FOR INDIVIDUAL LOADS RECOGNITION

Appliance �I Settle Time Peak Phase Shift Total

K 95% 75 % 90 % 75% 99%
CM 90% 30% 80 % 75% 80%
M 92% 100% 80% 100% 92%
H 95% 75% 70% 75 % 95 %
F 77% 75 % 80 % 75% 97 %
PC 77% 30% 50% 65% 97%
MC 75% 30% 60% 70 % 98 %
IL 72 % 70% 80 % 60% 97%
All 92 % 65% 82% 75% 96%

B. Appliance recognition from aggregated loads

To determine the efficacy of the NIALM model over ag-
gregated load, the holdout-validation method is applied over
known aggregated consumption profiles. Due to experimental
set up limitations, kitchen and workstation appliances have
been monitored separately. To demonstrate the dissagregation
capability under real-life ‘messy’ conditions (where the oper-
ation of small appliances could limit the information in the
signal required for signature detection) a set of scenarios for
switching and operational events were designed and tested.



Experimental design for the domestic kitchen appliances
aggregated loads collection (fig. 3) :

• Progressive aggregation of all loads.
• Consecutive individual loads.
• Overlapping loads of similar loads.
• Random load aggregation.
Experimental design for the workstation appliances aggre-

gated loads collection (fig. 4) :
• Progressive aggregation of all loads.
• Consecutive individual loads.
• High vs low loads.
• Random load aggregation.

Fig. 3. RMS aggregated MATLAB profiles for kitchen appliances

Fig. 4. RMS aggregated MATLAB profiles for worksation appliances

Each scenario was implemented twice, with overall accuracy
presented in tables III to VI (kitchen appliances), and VII to
X (workstation appliances).

Comparing table II to tables III to X, the ability to accurately
disaggregate is reduced when dealing with more than one ap-

TABLE III
OVERALL ACCURACY FOR KITCHEN AGGREGATED LOAD RECOGNITION:

LOAD SUPERPOSITION

Appliance �I Settle Time Peak Phase Shift Total

K 100% 75 % 50 % 37 % 100 %
CM 87% 25% 100% 25 % 50 %
M 87% 75% 75% 62% 75 %
H 100% 75 % 75% 75% 75 %
All SP 94% 63% 75% 50% 75 %

TABLE IV
OVERALL ACCURACY FOR KITCHEN AGGREGATED LOAD RECOGNITION:

INDIVIDUAL LOADS

Appliance �I Settle Time Peak Phase Shift Total

K 100% 75 % 25% 75% 100 %
CM 80% 25% 75% 75% 100 %
M 90% 75% 75% 100% 100 %
H 100% 75% 75% 75% 80 %
All SP 90% 63% 63% 81% 95 %

TABLE V
OVERALL ACCURACY FOR KITCHEN AGGREGATED LOAD RECOGNITION:

LOAD OVERLAPPING

Appliance �I Settle Time Peak Phase Shift Total

K 50% 50 % 75% 25 % 75 %
CM 75% 25% 75% 75% 75 %
M 25% 25% 25% 75% 75 %
H 75% 75% 75% 75% 75 %
All SP 56% 44% 63% 63% 75 %

TABLE VI
OVERALL ACCURACY FOR KITCHEN AGGREGATED LOAD RECOGNITION:

RANDOM LOAD

Appliance �I Settle Time Peak Phase Shift Total

K 100% 70% 70% 70 % 100 %
CM 80% 30% 70% 80 % 75%
M 80% 80% 100% 100 % 100%
H 90% 80% 80% 70% 75%
All SP 85% 65% 80% 80 % 88%

TABLE VII
OVERALL ACCURACY FOR WORKSTATION AGGREGATED LOAD

RECOGNITION: LOAD SUPERPOSITION

Appliance �I Peak Phase Shift Total

F 60% 65% 60% 75 %
PC 50% 30% 40% 50 %
IL 40% 30% 40% 50 %
H 75% 40% 60% 80%
All SP 55% 40% 50% 65 %

pliance on the circuit. Signatures such as Settle Time and Phase
Shift, that we term ‘impure’ due to imprecise identification
metrics, negatively affect ability of dissagregation when using
a combination of signatures.

Regarding the two categories of appliances:



TABLE VIII
OVERALL ACCURACY FOR WORKSTATION AGGREGATED LOAD

RECOGNITION: INDIVIDUAL LOADS

Appliance �I Peak Phase Shift Total

F 40% 80% 60% 80%
PC 80 % 60% 60% 60%
IL 60% 80% 60% 50%
H 10 % 70% 60% 80%
All SP 70% 70% 60% 80%

TABLE IX
OVERALL ACCURACY FOR WORKSTATION AGGREGATED LOAD

RECOGNITION: SMALL LOADS

Appliance �I Peak Phase Shift Total

F 50% 60% 70% 70%
IL 75% 50% 40% 50%
All SP 63% 55% 55% 60%

TABLE X
OVERALL ACCURACY FOR WORKSTATION AGGREGATED LOAD

RECOGNITION: RANDOM LOAD

Appliance �I Peak Phase Shift Total

F 70% 65% 40% 70%
PC 50% 30% 60% 60 %
IL 75 % 40% 40% 65 %
H 60% 30% 60% 85%
All SP 60% 40% 50% 75 %

• Kitchen appliances: The higher Total accuracy for the
All row is achieved by the individual loads design, with
95% accuracy, and the worst by the Load overlapping
design, with 75% accuracy. This last low result is due
to the electrical nature of appliances: the microwave has
the largest transient period, of around 0.6 seconds, and
events happening within a 0.6 s window are not identified
as such by the code.

• Workstation appliances: The higher Total accuracy for the
All row is again achieved by the individual loads design,
with 80% accuracy. However, workstation appliances
have a visibly lower accuracy than kitchen appliances; the
main reason for this is the existence of � I

RMS

< 0.2A
and the variable I

RMS

profile of the PC, not compatible
with the thresholds used in conditions (2) and (4). Small
powers are affected by noise (the mobile charger has been
removed from the tables as noise makes it indistinguish-
able). The Small loads design, with lower accuracy, 60%,
corroborate this affirmation. In order to detect the PC
profile, the current signal was averaged over 60 cycles
instead of 2 cycles (as previously used with kitchen
appliances). This new code configuration reduced the
disaggregation capability of the Peak to Trough signature
and makes it very difficult to detect settle times (this last
signature has been removed from the tables).

V. CONCLUSION AND FUTURE WORKS

This paper proposes a NIALM method based on a number
of distinctive electrical signatures and a decision tree classifi-
cation method, presenting and analyzing a collection of results
based on the overall model accuracy relative to each signature.
The negative impact of noise, variable load profiles, loads
overlapping and inductive loads in the disaggregation process
are identified, and the good performance of the NIALM model
for kitchen appliances demonstrated.

In order to improve the proposed disaggregation model,
further work needs to be done, improving the performance of
”impure” signatures. To reduce noise effects on the Settle Time
signature, the implementation of filters to smooth load profiles
need to be analyzed. The effect of power factor correction, as
capacitors, on the Phase Shift needs to be considered in order
to understand the value added by the current-voltage phase lag
to the data set. For more robust signature values and a more
comprehensive coverage of appliance loads, a larger database
incorporating other classes of appliance is necessary.
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