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Abstract

This paper examines the optimal bundling strategies of a multiproduct monopoly

in markets in which a seller cannot monitor and thereby restrict the purchases of buy-

ers to a single bundle, while buyers have resale opportunities. In such markets, the

standard mechanism through which bundling increases seller profits, based on price

discrimination, is not feasible. The profit-maximizing bundling strategy is charac-

terized, given the restrictions on pricing policies resulting from resale and a lack of

monitoring. The welfare implications of optimal bundling are analyzed.

JEL CLASSIFICATION: D42, L12
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1 Introduction

Bundling is prevalent in many economic settings. By packaging goods, sellers can ex-
tend the domain of the products they offer from goods to bundles. Another instance of
bundling is the selection of product variety by a multiproduct monopoly; here, a “bundle”
is interpreted as a product with multiple continuous characteristics or attributes. Further,
choosing a portfolio of risky assets to offer is a problem of optimal bundling, which is en-
countered by central banks, Treasury Departments and other institutional investors. An
asset is mathematically represented as a bundle of “goods”, each of which gives a mone-
tary payment in a particular state of the world about which buyers of assets are uncertain.
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In the literature, the central motivation for bundling is that it allows sellers to price
discriminate between buyers (Adams and Yellen (1976); McAfee, McMillan and Whin-
ston (1989); Wilson (1993); Armstrong (1996); Rochet and Choné (1998)).1 The literature
recognizes that the applicability of non-linear pricing relies on two key assumptions: (1)
that a seller can monitor the purchases of individual buyers to enforce contracts in which
each buyer obtains precisely one bundle; and (2) that resale markets are limited or absent.
While these assumptions describe many markets well,2 in other environments, including
markets for financial assets or certain durable goods, competition from resale markets is
pervasive, even if the original producer is a monopoly. Moreover, monitoring purchases
is often prohibitively expensive and, even when given access to information on individual
purchases, sellers may be unable (as a practical or legal matter) to prevent buyers from
purchasing additional bundles or reselling the bundles they purchase. Consequently, in
many markets, bundling that is based on discriminating between buyers via non-linear
pricing is either impractical or unfeasible. This paper uncovers and characterizes a novel
mechanism that can make bundling profitable, even in markets in which the assumptions
behind non-linear pricing—namely, monitoring and no resale—are not satisfied. Thus, as
a tool to increase profits, bundling need not rely on price discrimination.

We study the problem of bundling for a multiproduct monopoly without monitoring
purchases and with resale. We examine markets for bundles of perfectly divisible goods
with a continuum of buyers who can choose arbitrary combinations of offered bundles.
Throughout the analysis, we adopt the abstract interpretation of a “bundle” as a collection
of consumption goods from which buyers derive utility. This encompasses the problem
of sales by a multiproduct monopoly, the selection of a variety of products with differ-
ent characteristics, and other economic applications in which agents derive utility from

1The seminal paper by Adams and Yellen (1976) demonstrates in a series of two-good examples that,
even with additive utilities, pure bundling (selling goods in one bundle) and mixed bundling (selling a
bundle as well as individual goods) can each be profit-maximizing, depending on the distribution of buyer
preferences. The early literature on bundling focused largely on markets with additive preferences and
unit demands, in which buyers purchase either one unit of a good or a bundle of two (see also Manelli
and Vincent (2006); Jehiel, Meyer-ter-Vehn and Moldovanu (2007)). More recently, significant advances
in the study of non-linear pricing were made by Wilson (1993), Armstrong (1996) and Rochet and Choné
(1998) for markets of divisible goods. Wilson (1993) derives first-order conditions for optimal pricing and
solves a few multidimensional examples. Armstrong (1996) and Rochet and Choné (1998) develop methods
to solve a class of mechanism design problems with multidimensional types, which are then applied to
characterize optimal non-linear pricing for bundles. The latter two papers derive the profit-maximizing
tariff for several examples. For the question of bundling, the central economic insight from Armstrong’s
paper is that a multiproduct monopoly should always exclude consumers with a low willingness to pay.
Rochet and Choné (1998) establish that bunching, which occurs if groups of agents with different types are
treated identically in the solution, is a robust phenomenon with non-linear tariffs. Armstrong (2006) and
Stole (2008) provide comprehensive surveys.

2For instance, cable TV packets or cellular phone plans, which are often viewed in the literature as
bundles of continuous characteristics.

2



“goods”, while trading in markets for bundles.

First, we identify restrictions on the available pricing policies that arise in the absence
of monitoring. As pointed out by McAfee, McMillan and Whinston (1989), in a model
with unit demands, the inability of a multiproduct monopoly to monitor sales restricts its
available pricing strategies to sub-additive ones.3 In turn, the presence of resale further
imposes that pricing strategies must be super-additive, thereby ruling out price discounts.
As a result, the seller is impeded from charging different prices for different quantities
of the product—payments must be linear in quantity in each bundle market. In fact, if
buyers can trade arbitrary (positive or negative) quantities of bundles, equilibrium will
feature linear bundle pricing in the following stronger sense. For any bundling strategy
used by the monopoly, one can find implicit prices of goods from which the seller can
determine the prices of bundles. Moreover, the implicit prices of goods depend on the
bundling strategy only up to the span of goods trades that it generates. By choosing
bundling strategies, a seller can affect the implicit prices of goods and, hence, his revenue.
Bundling profitability results from a mechanism different from price discrimination via
non-linear pricing. Rather, bundling allows sellers to distort allocation of goods among
buyers, which, under natural assumptions regarding preferences, induces a high willing-
ness to pay and, thereby, implicit prices. The problem of a multiproduct monopoly, as
studied in this paper, is not one of screening, and requires techniques different from those
used to characterize optimal non-linear pricing.4

We characterize the optimal choice of a bundling strategy and the quantity of goods
for sale, given a cost function, for the class of (buyer) quasilinear utilities with arbitrary
complementarities and substitutabilities in goods preferences. We derive conditions un-
der which no bundling is, for sure, revenue-superior or -inferior to any degree of bundling
in a market with many buyers. These conditions are based on the (shape) of the buy-
ers’ marginal utility. For a two-good monopoly, we completely characterize the optimal
bundling strategy: when buyer marginal utility is concave, no bundling (or any bundling
strategy that spans the space of all goods trades) is optimal; whereas, when marginal util-

3Consider a simple example with two goods and unit demands, in which the monopoly sells two goods
separately as well as a bundle of the two goods. If a seller can ensure that each buyer receives either one of
the two goods or (only) a bundle thereof, then he can charge more for a bundle of goods than the sum of
the prices of the individual goods. Such pricing is clearly impossible without monitoring; otherwise, each
buyer could recreate the bundle at a lower cost by purchasing goods separately. The lack of monitoring
has even stronger implications for optimal selling of divisible goods, as buyers have more opportunities to
“create” bundles by purchasing combinations of other bundles.

4Analyzing the multiproduct monopoly problem without monitoring and with resale requires a different
approach from the standard mechanism design in which a designer offers a menu of contracts and each
type self-selects by choosing exactly one contract. Here, each buyer can (and will, in equilibrium) select a
combination of contracts from the menu (of bundles), and the seller does not control the allocation.
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ity is convex, pure bundling maximizes revenue. The optimality of no bundling for con-
cave marginal utility extends to an arbitrary number of goods. Although no bundling re-
mains suboptimal with convex marginal utility, seller revenue is not necessary monotone
in span. Thus, pure bundling is not necessarily optimal in markets where the choice not to
use bundling is revenue-inferior. In particular, the optimal bundling strategy may involve
partial bundling (a bundling strategy with a span that is not full) that is richer than pure
bundling. The form of optimal partial bundling depends on the relative convexity of the
marginal utility across the goods, the supply of each good offered by the seller, and the
heterogeneity in buyer endowments.

We further examine how bundling without monitoring sales affects the social appraisal
of a monopoly. The welfare properties of bundling studied in this paper are distinct from
those of price discrimination, as partial bundling necessarily lowers the efficiency of al-
location. Conditional on the quantity produced, deadweight loss is monotone in the (ef-
fective) variety of products offered, as measured by bundle span—unbundling improves
efficiency. However, when the monopoly can choose both the optimal production level
and the bundling strategy, the overall welfare effect is ambiguous. While bundling dis-
torts the allocation for a given quantity, it may increase or decrease the profit-maximizing
level of production (relative to the no-bundling scenario), depending on the seller’s mar-
ginal cost.

A key economic insight is that while arbitrage undermines the profitability of non-
linear pricing, it does not undermine the profitability of bundling. The bundling we
study derives from a simple mechanism that applies to possibly non-separable utility
functions and arbitrary interdependence in endowment distributions. In addition, unlike
non-linear pricing, in the environments studied in this paper, bundling profitability as
such (and, for two-good environments, the optimality of the particular bundling strat-
egy as well) holds in the strong, ex-post sense. Thus, whenever bundling is profitable,
sellers can robustly increase profits through bundling even with little knowledge of the
market. The mechanism that gives rise to bundling profitability is unique to markets with
two or more commodities—this is in contrast to price discrimination based on non-linear
pricing, which extends from single-goods markets. Unlike non-linear pricing, the class of
bundling strategies can be viewed as an instance of—and suggest an explanation for—
the endogenous incompleteness of bundle markets in which agents derive utilities from
goods.

This paper is organized as follows. Section 2 sets forth a model of a multiproduct
monopoly and establishes the restrictions on the available pricing policies that arise in
the absence of monitoring. Section 3 characterizes optimal bundling. Section 4 discusses
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the welfare effects of bundling. Section 5 provides conditions for determining the optimal
bundling strategy in a model with more general preferences.

2 Multiproduct Monopoly with Fixed Inventory

We build a model of a multiproduct monopoly that is similar to Armstrong (1996). To
offer a transparent presentation of our results, we first focus on the problem of a seller
who sells an exogenously given inventory of Q = (Q1, . . . , Qn) of n divisible goods, all
in strictly positive supply. Then, we allow the monopoly to simultaneously choose the
optimal inventory Q in addition to a bundling strategy, given a cost function.

2.1 Market

The seller can choose from a wide variety of alternative selling strategies. One possibility
is to offer each of n goods in a separate market. An alternative is to open only one market,
where agents can buy shares of bundle Q. It is clear that these two extremes to which
we refer as no bundling and pure bundling, can lead to different revenue for the monopoly.
More possibilities exist: in general, the monopoly can package n goods into a collection
of k bundles B = (b1, . . . , bk). If the monopoly chooses a bundling strategy B, k markets
open, one for each bundle and total revenue is given by the sum of revenues from each
bundle market. Since with bundles B, total revenue need not coincide with that generated
by pure or no bundling, a question arises as to which bundling strategy B maximizes the
monopoly’s profits.

Buyers derive utility from consuming n goods and money: if buyer i consumes x =
(x1, . . . , xn) of goods and the money payment to the monopoly is t, then the consumer’s
utility is u(x)� t. We assume that goods can be consumed only in non-negative amounts,
so the utility function u (�) is defined on the non-negative orthant of Rn only. We make the
following standard assumptions on u (�).

(A1) u (�) is continuous, concave and monotone;
(A2) in the strictly positive orthant, u (�) is twice continuously differentiable, differentia-
bility strictly monotone, and differentiable strictly concave; and
(A3) for any sequence (xm)∞m=1 of vectors with strictly positive quantities of all goods that
converges to some vector x in the boundary of Rn

+, we have that limm!∞ jj Du(xm)jj = ∞.

Let us note that we do not impose any restriction on the Hessian of the utility func-
tion, except negative definiteness. In particular, non-separable utilities with substitute
and complement goods are allowed. Utility functions are assumed to be the same across
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buyers, but buyers have heterogeneous preferences for traded bundles: there are m types
of non-atomic buyers indexed by f1, . . . , mg; each type with a mass normalized to one,
and initial holdings of type i are given by qi = (qi

1, . . . , qi
n). Heterogeneity results from

different realizations of initial endowments of goods across agents. The seller does not
know the initial holdings of the buyers, (q1, . . . , qm), and holds probabilistic beliefs over
this profile, represented by a distribution function F, defined over Rnm

+ . We assume that
F is absolutely continuous with respect to the Lebesgue measure and known to the seller.
No other restrictions are placed on F. In particular, the marginal distributions are not
required to be the same across buyers and the joint distribution can feature arbitrary in-
terdependence of endowments, as long as correlations are not perfect, which is the case
given absolute continuity.

The market operates as a standard uniform-price (Walrasian) auction: for any bundling
strategy of the seller, all traders simultaneously submit demands for all bundles for each
profile of prices, and bundles are allocated at a market clearing price, at which aggre-
gate demand equals the seller’s inventory. We analyze a Nash equilibrium in which non-
atomic buyers bid competitively, and hence, their demands coincide with the marginal
utilities from bundles. A large Walrasian auction studied in this paper is equivalent to
the limit of the VCG mechanism for perfectly divisible bundles as the number of agents
increases and payments coincide with the externality imposed on other buyers. Without
asymmetric information or, more generally, with non-stochastic (aggregate) demand, our
model becomes a standard model of a monopoly with posted prices.

We study the problem of a multiproduct monopoly that chooses bundling strategy
B to maximize profits. The problem considered in this paper differs from that of Arm-
strong (1996) and Rochet and Choné (1998) in the following two respects. There, buyers
are offered a continuum menu of bundles in Rn

+ and each buyer chooses one, the most
preferred bundle. In the present paper, the monopoly cannot prevent buyers from trad-
ing arbitrary combinations of offered bundles and the menu of offered bundles is finite,
which in Section 2.3, we argue to be without loss of generality.

2.2 Revenue Function

This section characterizes the monopoly’s objective function and, in particular, shows that
it is well defined for any bundling strategy. The result sheds light on the economic nature
of the problem of optimal bundling, which is characterized in the next section. Bundling
strategy B, described by n � k matrix B = (b1, . . . , bk) enables the monopoly to sell its
entire inventory of goods Q if, and only if, Q is in the (column) span of B, a linear subspace
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of Rn defined as
hBi � fx 2 RnjBz = x for some z 2 Rkg. (1)

Span hBi gives the set of all goods transfers that can result from trades of bundles B. The
collection of all bundling strategies, for k = 1, 2, ..., satisfying Q 2 hBi, is denoted by BQ.
We say that a bundling strategy B is partial if the rank of B is strictly less than n (and,
hence, hBi � Rn). For any B 2 BQ and the corresponding k, a vector z̄ = (z̄1, . . . , z̄k)

exists such that
z̄1b1 + . . .+ z̄kbk = Q. (2)

z̄ gives the seller’s effective inventory of bundles B through which Q can be sold. Im-
portantly, correspondence z̄(B) that assigns effective inventory, and therefore satisfies
Bz̄(B) = Q for any B 2 BQ, is non-empty. In the case of no bundling, B is an n � n
identity matrix, In�n, and the effective inventory coincides with Q. With pure bundling,
a bundling strategy is given by one vector, Q, and the effective inventory of this bundle
is z̄ = 1. In both examples, inventory z̄ is uniquely defined. More generally, bundles
need not be linearly independent and effective supply z̄(B) is not necessarily a singleton
(a unique vector).

A large Walrasian auction gives each type i incentive to submit a competitive demand
that reveals i’s marginal utility of each bundle and is given by

zi(p; B) � arg max
z2Rk

u(qi + Bz)� p � z. (3)

The monopoly faces aggregate demand z(p; B) � ∑i zi(p; B). In a Walrasian auction,
effective inventory z̄ 2 z̄(B) is sold at prices p such that markets for bundles clear, z̄ 2
z(p; B). Let p̄(z̄) give all vectors of prices for which markets clear given supply z̄. For any
B 2 BQ, revenue correspondence is defined as

R (B) � fp � z̄ jz̄ 2 z̄(B) and p 2 p̄(z̄)g . (4)

Next, we show that, despite effective inventory being a correspondence, the revenue
of the seller is uniquely defined for each B 2 BQ.

Proposition 1. (REVENUE) Correspondence defined in (4) is a function R : BQ ! R.

The proof of Proposition 1 offers a characterization of equilibrium allocation of commodi-
ties and prices of bundles that will be useful in subsequent analysis and, therefore, is
presented in the text. Specifically, we show that for any given choice of B, the allocation of
goods resulting from a Walrasian auction of bundles, which is determined through mar-
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ket clearing and optimization by each buyer, is the same as the allocation chosen by a
benevolent social planner whose objective is to maximize the sum of buyers’ utilities, but
whose choices of goods transfers across buyers are restricted to those in the span hBi. In
certain respects, characterizing the solution to a planner optimization problem is simpler
than characterizing equilibrium in a Walrasian auction. The former also reveals a num-
ber of equilibrium properties in the latter: equilibrium allocation of goods is constrained
efficient and independent from how the monopoly distributes inventory Q among bun-
dles, z̄ 2 z̄(B); prices of bundles, which correspond to the shadow prices in the planner
program,5 are unique and independent from the monopoly’s effective inventory z̄ 2 z̄(B).

Proof: We prove Proposition 1 via two lemmas. Lemma 1 characterizes the equilibrium
allocation of goods in a Walrasian auction as constrained efficient allocation in a plan-
ner’s problem. Lemma 2 demonstrates the existence and uniqueness of prices, and hence
revenue, for any bundling strategy B 2 BQ. Define a set of allocations of goods that are
feasible given B,

X(B) �
(
(x1, . . . , xm) 2 Rnm

+

�����∑i
xi = ∑

i
qi +Q and (xi � qi) 2 hBi for all i

)
. (5)

Lemma 1. (ALLOCATION EQUIVALENCE) Fix B 2 BQ and corresponding effective inventory
z̄. Bundle allocation (z̃1, . . . , z̃m) such that ∑i z̃i = z̄ is an equilibrium allocation of bundles in a
Walrasian auction if, and only if, the implied allocation of goods (x̃1, . . . , x̃m), where x̃i = qi+ Bz̃i,
solves the planner problem,

max
(x1,...,xm)

∑
i

u(xi) : (x1, . . . , xm) 2 X (B) . (6)

Proof: (Only if) Let p̃ and (z̃1, . . . , z̃m) be equilibrium prices and an equilibrium bundle
allocation in a Walrasian auction, respectively. Since x̃i � qi = Bz̃i, transfers of goods are
in the span hBi and ∑i x̃i = ∑i qi +∑i Bz̃i = ∑i qi +Q. It follows that (x̃1, . . . , x̃m) 2 X(B).
In addition, by optimality of each buyer’s choice,

u(qi + Bzi)� p̃ � zi � u(qi + Bz̃i)� p̃ � z̃i, (7)

for all zi 2 Rk. Summing (7) over all i gives

∑
i

u(qi + Bzi) � ∑
i

u(x̃i), (8)

5In an alternative interpretation of the allocation mechanism, shadow prices correspond to the external-
ity imposed in the VCG mechanism by each buyer on other buyers.

8



for all (z1, . . . , zm) such that ∑i Bzi = Q, where we used that, in a Walrasian equilibrium,
p̃ = BTDu(x̃1) and, hence,

p̃ �∑
i

zi =
�

BTDu(x̃1)
�
�∑

i
zi = Du(x̃1)T∑

i
Bzi

| {z }
Q

= p̃ �∑
i

z̃i. (9)

Thus, (x̃1, . . . , x̃m) solves the planner problem.
(If) Since set X(B) can be alternatively written as

X(B) =

(�
q1 + Bz1, ..., qm + Bzm

�
2 Rnm

+

������z1, ..., zm
�
2 Rkm and ∑

i
zi = z̄

)
, (10)

problem (6) is equivalent to

max
(z1,...,zm)

∑
i

u(qi + Bzi) : ∑
i

zi = z̄, (11)

and, by assumption, z̃i is a solution to it. By interiority (A3) and using that Q is strictly
positive in all components and lies in hBi, x̃i is strictly positive in all components for
all individuals. By the Kühn-Tucker Theorem, then, multipliers p̃ must exist such that
BTDu(ei + Bz̃i) = p̃ for every i. Since the utility function u (�) is strictly concave in the
interior of the domain, we have that z̃i = zi( p̃; B) and, by assumption, bundle markets
clear. Therefore (z̃1, . . . , z̃m) and p̃ constitute an equilibrium in a Walrasian auction.Q.E.D.

We turn to characterization of equilibrium prices and revenue.

Lemma 2. (EXISTENCE AND UNIQUENESS OF PRICES) For any bundling strategy B 2 BQ,
(i) for any effective inventory z̄ 2 z̄(B), there exists p such that z̄ 2 ∑i zi(p; B); and
(ii) for any z̄, z̄0 2 z̄(B) and p and p0 such that z̄ 2 ∑i zi(p; B) and z̄0 2 ∑i zi(p0; B), p = p0

holds; and
(iii) revenue R (B) is a singleton.

Proof: For claim (i), observe first that, for any B, set X(B) defined in (5) is non-empty
convex and compact, so planner program (6) has a unique solution, as utility function
u (�) is continuous and strictly concave. Moreover, this solution is interior by A3. Since
the solution satisfies (x̃i � qi) 2 hBi, vector (z̃1, . . . , z̃m) exists such that that x̃i � qi = Bz̃i

and ∑i z̃i = z̄. By Lemma 1, (z̃1, . . . , z̃m) is an equilibrium allocation of bundles in a
Walrasian auction, where equilibrium prices are given by shadow prices from program
(11).
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Claim (ii) follows from Lemma 1, and the fact that set X (B) in (6) does not depend on
effective inventory, hence the (unique) allocation of commodities (x̃1, . . . , x̃m) is the same
for z̄ and z̄0. By interiority A3, in equilibrium of a Walrasian auction, p = BTDu(x1) = p0;
that is, bundle prices are the same.

Claim (iii) follows from Lemma 2 and claims (i) and (ii). From claim (i), for any z̄ 2
z̄(B), a unique vector of equilibrium prices exists that clears the market. Therefore, R (B)
is nonempty. By claim (ii), for any z̄, z̄0 2 z̄(B), the allocation of goods (x̃1, . . . , x̃m) is the
same and we have that

R = p � z̄ = BTDu(x̃1) � z̄ = Du(x1)TBz̄ = Du(x1)TBz̄0 = p0 � z̄0, (12)

since Bz̄ = Bz̄0 = Q. It follows that R(B) exists and is unique. Q.E.D.

Hereafter, we use the function R(B) to represent the seller revenue over bundling
strategies B 2 BQ and function p(B) � p̄(z̄(B)) to represent prices for bundles with-
out any qualification.6 Lemma 2 asserts that the price of each bundle B can be determined
uniquely and—by constrained efficiency of allocation of goods—in a manner that is inde-
pendent of effective inventory z̄ (B). The next section offers a (constructive) characteriza-
tion of equilibrium prices in terms of market primitives.

2.3 Linear Pricing and Equivalent Bundling

A central lesson from the literature on optimal bundling for a two-good monopoly selling
to buyers with unit demands (Adams and Yellen (1976); McAfee, McMillan and Whinston
(1989)) is that non-linear pricing may allow the monopoly to better discriminate among
buyers and increase revenue. Such price discrimination is not feasible when buyers can
trade arbitrary combinations of bundles, as is demonstrated next.

In the absence of monitoring and with resale, the equivalent characterization of the
allocation of goods in the seller and planner problems (Lemma 1) implies that the equi-
librium allocation of goods depends on bundle strategy B solely through its span: Let
two bundling strategies B, B0 2 BQ span the same space of goods trades, i.e., hBi = hB0i.
Since in the planner problem (6), a set of feasible allocations of goods given B, X (B),
depends on the bundling strategy only through the span of B (see (5)), the allocations of
goods that solve the planner problem coincide for B and B0. By Lemma 1, the equilib-
rium holdings of goods and money in a Walrasian auction are the same under the two
bundling strategies. More generally, let L be a linear subspace of Rn, and with a slight

6The dimensionality of price vector p depends on the rank of B. Thus, formally, p̄ (B) is as a collection of
functions f p̄k (B)gk=1,2,..., where p̄k : Bk

Q ! Rk maps a set of matrices that have rank k, Bk
Q � BQ, into Rk.
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abuse of notation, let x (L) denote an allocation that results from any bundling strategy B
with span hBi = L. Let LQ be a collection of all linear subspaces of Rn

+ that contain Q, and
let function κ : LQ ! Rn

+ be defined as the average marginal revenue at the equilibrium
allocation of goods,

κ (L) � 1
m ∑

i
Du(xi(L)). (13)

Lemma 3 demonstrates that κ (�) defines implicit prices of goods which, importantly, since
characterized in terms of primitive marginal utility, allow us to price bundles and inven-
tory Q.

Lemma 3. (LINEAR PRICING) For any bundling strategy B, the equilibrium prices of bundles p
are given by

pT = κ (hBi) � B (14)

and revenue of the multiproduct monopoly is equal to

R (B) = κ (hBi) �Q. (15)

Proof: By Lemma 1, x(L) is the unique allocation of goods in a Walrasian auction for any
bundling strategy B satisfying hBi = L. Since, in the equilibrium of a Walrasian auction

p (B) = BTDu(xi(hBi)), (16)

for all B and i, taking the average of (16) across all buyers gives (14). In addition, for each
i,

R(B) = p(B) � z̄(B) = Du(xi(hBi))TBz̄(B) = Du(xi(hBi)) �Q, (17)

where revenue p(B) � z̄(B) � p(B) � z̄ for some z̄ 2 z̄(B) is unambiguously defined by
Proposition 1. Again, taking the average of (17) across buyers gives the result. Q.E.D.

Lemma 3 does not require that the utility function be separable and, hence, holds for
markets with complement or substitute goods. Let us emphasize that the lemma holds
beyond the environment described in Section 2.1. In particular, none of the arguments in
the proof require symmetry of the utility function across buyers. Thus, the results apply
directly to environments with type-dependent utilities ui (�) (from consumption and not
just trade) that satisfy A1-A3.

Two implications for the monopoly’s bundling problem are immediate from Lemma
3. First, because the implicit goods prices depend on bundling strategy B only through
span hBi, any bundling strategies with the same span bring the same revenue given the
realization of initial holdings. Thus, the lemma defines equivalence classes for bundles
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with respect to revenue and choosing optimal bundling can be recast as choosing the span.
In addition, equilibrium must involve linear bundle pricing. It is not surprising that linear
pricing obtains in our setting given that competitive buyers can trade arbitrary quantities
of bundles. The usefulness of Lemma 3 lies in characterizing implicit goods prices as
the average marginal utility:7 although with partial bundling, buyer marginal utilities
Du
�
xi (L)

�
are (typically) not equalized among buyers and do not coincide with implicit

goods prices (13), implicit prices equal the average marginal utility. The intuition behind
this result is as follows: all buyers trade at the same bundle prices and, hence, in optimum
orthogonal projections of marginal utilities Du

�
xi (L)

�
onto a bundle span hBi are the

same for all buyers. Any differences in Du
�
xi (L)

�
across i must then be orthogonal to

hBi, but since all bundles, as well as inventory Q, are contained in hBi, such differences
cannot be traded away and, thus, do not have any effect on bundle prices.8

The feature that bundling strategies with the same span bring the same revenue and
the linear pricing prediction from the present paper differ markedly from the results
obtained in the literature on bundling in markets with unit demands. In a two-good
model, Adams and Yellen (1976) and McAfee, McMillan and Whinston (1989) demon-
strate that non-linear pricing is optimal, and no bundling (B = I2�2) and mixed bundling
(B0 = [I2�2j1], where 1 is a unit vector) differ in revenue terms, even with additive
buyer preferences. Since hBi = hB0i = R2, strategies B and B0 are revenue equivalent
in our model, even in markets with complementarities or substitutabilities among goods.
That mixed bundling does not bring about strict improvement in revenue in the mar-
kets studied in this paper—an implication of Lemma 3—holds for any number of goods.
The qualitative difference in the bundling strategies and prices thereof between models
with monitoring and no resale (both unit demands and divisible goods, such as Arm-
strong (1996) and Rochet and Choné (1998)) and ours stems from restrictions imposed on
trades. Since there, by assumption, buyer decisions are restricted to the choice as to which
bundle to buy, buyers are not able to arbitrage price differentials across bundle markets,
which makes non-linear pricing consistent with equilibrium. The present paper analyzes
markets in which buyers can trade arbitrary combinations of bundles, and price discrimi-
nation through mixed bundling with non-linear pricing is not feasible. Linear pricing is a
constraint on the pricing policy of the monopoly that results from the monopoly’s inabil-
ity to enforce one-bundle contracts. Still, in the next section, we shall demonstrate that
bundling can increase revenue, even with linear pricing, through a different mechanism

7No-arbitrage only implies existence—not the structure—of implicit pricing.
8In fact, any vector from the set fκ (L)g+ L? satisfies properties (14) and (15). In particular, each vector

whose average defines κ (L) does so. The characterization of κ (L) as an average is useful, as it allows us to
determine the optimal bundling strategy by the monopoly.
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than price discrimination.
Let us note another implication of equivalent bundling. Unlike Armstrong (1996),

where it is strictly optimal for the monopolist to offer a continuum menu of bundles, in
our model, for an arbitrary collection of bundles, a finite sub-collection of k � n linearly
independent bundles exists that the monopoly can offer without loss in revenue. Thus, a
small number of bundles are sufficient for the monopoly to earn maximum revenue. In
particular, with n = 2, the monopoly has effectively two bundling strategies, namely: no
bundling and pure bundling.

3 Optimal Bundling

3.1 Existence of an Optimal Bundling Strategy B�

We show that within the menu of all bundling strategies in BQ, a bundling strategy exists
that maximizes the monopoly’s revenue. Existence is not straightforward because of two
features of the bundling problem. First, the space of bundling strategies is not compact.
Second, when the dimension of the bundling span changes, there are discontinuities in
the individual demands of buyers and, hence, in the seller revenue.

Proposition 2. (EXISTENCE OF AN OPTIMAL BUNDLING STRATEGY) A bundling strategy
B� 2 BQ exists, such that E [R (B�)] � E [R (B)] for all B 2 BQ.

Proof of this proposition is based on the following result about linear spaces. By
Lemma 3, we can concentrate on the set of linear subspaces of Rn rather than the set
of bundling strategies themselves, which allows us to deal with the problem of the non-
compactness of BQ. For any k � n, the set of k-dimensional linear subspaces of Rn is
an k(n � k)-dimensional compact manifold. This set, known as the Grassmanian of k-
dimensional linear subspaces of Rn, retains all the topological structure of a compact sub-
set of Rk(n�k) locally, at any point.

Proof: For any 1 � k � n, the space of k-dimensional spaces of trades in goods that con-
tain Q is equivalent to (i.e., it is a rotation of; see Section 5) the set of (k� 1)-dimensional
linear subspaces of Rk�1. This Grassmanian is a compact manifold (of dimension (k �
1)(n � k)). By the Theorem of the Maximum, the allocation function, x(L), is continu-
ous on it. By Lemma 3, the expected revenue function, E (κ (L)) � Q, is continuous on the
Grassmanian too. It follows that a linear space exists that maximizes the seller revenue
on this manifold. Denote by R�k the maximized revenue over the Grassmanian. Since n is
finite, the seller’s program reduces to finding the maximum of fR�1 , . . . , R�ng. Q.E.D.
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Incidentally, the same argument implies that a bundling strategy exists that minimizes
expected revenue.

3.2 Optimal Bundling with Fixed Inventory

This section characterizes the optimal bundling strategy for a monopoly that sells inven-
tory Q of n goods. Lemma 4 asserts that which among the forms of bundling that the
monopoly can employ dominates in terms of revenue depends on the shape of the common
marginal utility function, Du (�). Specifically, any degree of bundling is revenue-superior,
revenue-inferior or revenue-equivalent to no bundling, depending on whether the mar-
ginal utility functions are convex, concave or linear on the relevant part of the domain.
More formally, let X be a convex set that contains all the equilibrium allocations of goods
for initial holdings (given by the image of x (L)) on the support of F. For the purpose
of the lemma, we say that Du (�) is strictly convex (concave) if each component function
∂u/∂xh is strictly convex (concave) in xh and weakly in xh0 , h0 6= h.

Lemma 4. (OPTIMAL BUNDLING STRATEGY) The following describes optimal bundling strate-
gies:
(i) If Du (�) is strictly convex over X , then any partial bundling strategy strictly dominates no
bundling in terms of revenue F�almost surely (and not lower surely).
(ii) If Du (�) is strictly concave over X , then any bundling strategy with full span strictly domi-
nates any partial bundling in terms of revenue F�almost surely (and not lower surely).
(iii) If Du (�) is linear over X , then all bundling strategies are revenue-equivalent.

Since a two-good monopoly chooses effectively between no bundling and pure bundling,
Lemma 4 completely characterizes the optimal bundling strategy in this case, which is
worth highlighting as a corollary.

Corollary 1. (OPTIMAL BUNDLING FOR A TWO-GOOD MONOPOLY) Consider a problem of
a two-good monopoly. If Du (�) is strictly convex (concave) on X , the optimal bundling strategy
involves pure bundling (no bundling).

Before presenting the proof of Lemma 4, we provide a simple example that explains
the key economic intuition.9 Note that the result holds in the strong, ex-post sense. For
transparency of the arguments, in all examples presented in the paper we can, thus, con-
sider deterministic initial holdings that are not Pareto efficient.

9The mechanism behind the result in Lemma 4 is similar to that in Weil (1992) who, in a financial econ-
omy, studies the impact of market incompleteness on asset prices.
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Example 1. Suppose that a two-good monopoly sells inventory Q = (1, 1)T to two buyers whose
utility function is given by

u(x1, x2) = ln(x1) + ln(x2), (18)

and whose initial holdings of goods are given by q1 = (1, 0)T and q2 = (0, 1)T. The two-good
monopoly has effectively two bundling choices: no bundling and pure bundling. If the monopoly
does not bundle, given identical quasilinear utilities, the equilibrium allocation of goods is Pareto
efficient, x1 = x2 = (1, 1); the marginal utility for each good and buyer, given by 1/xi

h, is
the same and equal to 1 at the equilibrium allocation; and the seller revenue is 2. Under pure
bundling, each buyer obtains half of the bundle Q and the equilibrium allocation of goods is given
by x1 =

�
3
2 , 1

2

�
and x2 =

�
1
2 , 3

2

�
. The average marginal utility for each good is 1

2

� 2
3 + 2

�
= 11

3

and revenue equals 22
3 . Hence, pure bundling dominates no bundling in terms of revenue obtained.

It is straightforward to show that when marginal utility is linear, then the two bundle strategies
produce the same revenue and when it is concave, then no bundling maximizes revenue.

In the example, absent bundling, each buyer purchases only the good for which his
initial endowment is zero, and the marginal utilities of buyers coincide for each good in
the Pareto efficient allocation. Under pure bundling, for a buyer to obtain the desired
good, he must purchase the bundle that contains (the same quantity of) the other good.
Thus, by introducing a wedge in consumption, bundling creates a wedge in marginal util-
ity between the two buyers in each market. With a convex Du (�), the wedge increases the
willingness to pay of the buyer with a lower equilibrium consumption above the Pareto
efficient level by more than it reduces the willingness to pay of the buyer who consumes
more. Therefore, bundling induces a higher equilibrium average marginal utility from
goods compared to no bundling (Pareto efficient level). Since the bundle contains a good
for which the average willingness to pay remains high after trade, the equilibrium value
of a bundle also remains high.

Notice that in Example 1, revenue increases only if equilibrium allocation is ineffi-
cient. In general, even with Pareto inefficient endowments (which occurs F�almost surely
given that F is absolutely continuous with respect to the Lebesgue measure) and partial
bundling, final allocation may still be Pareto efficient. However, for any given partial
bundling strategy, the realizations of endowments that give efficient outcomes are non-
generic—the equilibrium allocation is F�almost surely Pareto inefficient.

Proof: If the seller chooses a bundling strategy for which the column span is the complete
space of goods trades, Rn, then the resulting allocation of goods is efficient and each
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individual consumes 1
n (Q+∑i qi), and the resulting revenue for the seller equals

R(In�n) = Du

 
1
n
(Q+∑

i
qi)

!
�Q. (19)

Now, consider a strategy B whose span is not Rn. It is immediate that hBi is of a
dimension lower than n, so the set of endowment profiles, (q1, . . . , qm), for which

1
n
(Q+∑

i
qi)� q1 2 hBi (20)

has zero Lebesgue measure (as a subset of Rn). Since F is absolutely continuous with
respect to the Lebesgue measure, it follows that, for at least two types of individuals,
xi(hBi) 6= xj(hBi) almost surely.

For claim (i), notice that since function Du (�) is strictly convex and

1
m ∑

i
xi(hBi) = 1

n
(Q+∑

i
qi), (21)

one has that

κ(hBi) = 1
m ∑

i
Du(xi(hBi)) > Du

 
1
n
(Q+∑

i
qi)

!
= κ(Rn). (22)

Then, it follows from Lemma 3 that R(B) = κ(hBi) �Q > κ(Rn) �Q = R(In�n), F�almost
surely. In the (zero F�probability) set where all consumers equate consumption, the two
revenue levels are equal. The arguments for claims (ii) and (iii) can be mimicked. Q.E.D.

More generally, beyond two-good markets, Lemma 4 asserts that with n goods no bundling
is almost always dominated by (dominates) any partial bundling whenever marginal util-
ity is convex (concave). We are led then to ask: Is the seller revenue monotonically increas-
ing when reducing product variety, as measured by a bundle span? That is, for bundling
strategies B and B0 such that hBi � hB0i, does revenue satisfy R (B) � R (B0)? In markets
with n > 2, pure bundling need not be a revenue maximizing partial bundling strategy,
even with a strictly convex marginal utility. This is shown in Example 2.

Example 2. Consider a problem of a three-good monopoly selling inventory Q = (1, 1, 1)T of
goods to two types of buyers whose utility function is given by

u(x) = �1
2
(2� x1)

2 � 1
2
(2� x2)

2 + ln(x3). (23)
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The initial holdings of goods are q1 = (1, 0, 0)T and q2 = (0, 1, 0)T. In the symmetric market,
the equilibrium allocation of goods under pure bundling is given by x1 = (1.5, 0.5, 0.5)T and
x2 = (0.5, 1.5, 0.5)T, the implicit prices of goods are (1, 1, 2) and the seller revenue is 4. Now,
consider the following partial bundling strategy (which is not necessarily revenue-maximizing):

B = (b1, b2) =

0B@ 0 1
1 0
0 1

1CA . (24)

With bundling strategy (24), a market for good 2 (bundle b1) opens and buyers equalize marginal
utility in this market. Bundle b2 is more attractive to buyer 2 as it contains the first and third goods,
and in equilibrium, buyers obtain z1 = (1, 0.4) and z2 = (0, 0.6). The implied allocation of goods
is x1 = (1.4, 1, 0.4)T and x2 = (0.6, 1, 0.6)T, the implicit prices of goods are (1, 1, 2. 08) and the
seller revenue is 4.08. Since the revenue under B is strictly greater than that under pure bundling,
the quadratic components in function (23) can be perturbed so that the marginal utilities of the first
two components are strictly convex while B still yields strictly higher revenue than pure bundling.
Observe that the goods allocations are inefficient under both selling strategies and deadweight
losses are 0.5 and 0.2 under pure bundling and B, respectively. Thus, the partial bundling strategy
B dominates pure bundling, not only in terms of revenue, but also efficiency.

In Example 2, pure bundling introduces a wedge in the final consumption of the first
two goods, whereas the allocation of the third good is Pareto efficient. Given that the util-
ities from the first two goods are quadratic, distortion brings no increase in revenue rel-
ative to no bundling— the average marginal utility remains intact. In contrast, while the
two-bundle strategy (24) improves the efficiency of the allocation of the first two goods,
it introduces a wedge in the allocation of the third good. Given the strict convexity of the
marginal utility of the third good, the wedge increases the implicit price of the third good
and the seller revenue.

As a more general insight, the optimal selling strategy should distort consumption,
relative to the Pareto efficient allocation, (1) in the direction for which the convexity of
marginal utility—and, hence, the potential increase in average willingness to pay—is the
greatest; for goods (2) for which supply is the largest; and (3) the probability of the greatest
heterogeneity in initial endowments is the greatest, ceteris paribus.

Example 2 demonstrates that even for convex marginal utility, revenue need not be
monotone in a bundle span. The next example shows that for CARA utilities, in mod-
els that preserve symmetries in utilities and inventories across markets, seller revenue is
monotone in bundle span and optimal selling involves pure bundling. This allows high-
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lighting the role that heterogeneity plays in breaking the co-monotonicity of the seller
revenue and span.

Example 3. Consider a multiproduct monopoly selling inventory Q = λ(1, ..., 1)T for some λ >

0 to buyers with CARA utilities,

u (x) =
n

∑
h=1

�e�αxh (25)

and F is absolutely continuous. Then, the expected revenue is decreasing in a bundle span. In
particular, pure bundling is revenue-maximizing. CARA utility provides a useful benchmark, for,
in this case, the objective of the seller is the (scaled) negative of that of the social planner (6).
Therefore, restricting the choice of the planner by reducing the span will not reduce revenue.

Let us conclude the characterization of optimal bundling with some final remarks
about Lemma 4. First, note that the result assumes that buyers have common utilities over
holdings of goods; since buyers may differ in their initial goods holdings, they may have
different effective utilities over bundles (or trades of these goods, or trades of bundles),
trade differently, and may end up with different final holdings of goods. Secondly, since
the inequalities are strict with F�probability 1 in claims (i) and (ii) of the lemma, it follows
that the result is robust to sufficiently small asymmetries in buyer utility functions.10 The
assumptions of the three claims are to hold over some convex subset of their domains,
which is large enough to include all the relevant equilibrium allocations of goods; we in-
troduce this qualification, for otherwise, the class of preferences under consideration may
be vacuous.11 If distribution F has bounded support, we can always find a bounded set of
outcomes X to qualify the assumptions on the shape of marginal utilities. Finally, notice
that the first two claims hold true if all marginal utilities weakly satisfy the assumptions of
convexity or concavity, and one of them does so strictly over the set X . However, we can-
not draw any general conclusions for the case when marginal utility functions for some
goods are strictly convex while for others strictly concave, nor for the case when there is
no clear second-order behavior over the relevant set of final goods allocations. Section 5
provides a computation method of finding the optimal bundle that applies to these more
general markets as well.

10This is clearly the case for a given bundling strategy and, by the compactness argument used in the
proof of Proposition 2, extends to all partial bundling strategies.

11While a global assumption would not be problematic for the claim (i), given assumptions (A1)-(A3),
a strictly concave marginal utility function does not exist wherein the marginal utilities are always strictly
positive and concave or linear.
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3.3 Optimal Bundling with Endogenous Inventory

This section addresses the main question of the paper. We consider the bundling problem
of a multiproduct monopoly that optimally chooses inventory Q along with bundling
strategy B. We endow the monopoly with cost function C (Q). The monopoly’s objective
is to maximize profit

π (Q, B) � R (Q, B)� C (Q) , (26)

where R (Q, B) is the revenue obtained from selling inventory Q using bundling strategy
B. When Q is chosen from a compact set, applying arguments similar to those in Propo-
sition 1, profit function π exists and is uniquely defined. With monotone costs C (Q), the
choice of production-bundling plan (Q�, B�) can be restricted to Q� 2 hB�i without loss
of generality.12 We assume that C (Q) and buyer preferences are such that an optimal plan
exists (Q�, B�), and Q� is unique.13

As with a fixed inventory, when Q� is optimally chosen, bundling strategies with
the same span are revenue equivalent. Theorem 1 characterizes the optimal production-
bundling choice.

Theorem 1. (OPTIMAL PRODUCTION-BUNDLING PLAN) Let (Q�, B�) be an optimal bundling
strategy. If Du (�) is strictly concave, any B� 2 BQ� that has full span is optimal; if Du (�) is
linear, any B� 2 BQ� is optimal; if Du (�) is strictly convex, B� is a partial bundling strategy. For
a two-good monopoly, the optimal bundling strategy is B� = (λQ�), for any λ 6= 0.

Proof: Assume that the marginal utility Du (�) is strictly concave. Then, a plan (Q�, B�)
such that B� does not have full column rank cannot be optimal as, by Lemma 4, any other
plan (Q�, B) with hBi = Rn gives a strictly higher revenue F�almost surely. Given fixed
Q�, any bundling strategy with full span results in the same Pareto efficient allocation and
hence implicit prices and revenue of a monopoly as B� and hence is optimal. If marginal
utility is linear, by Lemma 4, an optimal (Q�, B�) gives the same profit as (Q�, B), for
any B 2 BQ� . With a strictly convex Du (�), by Lemma 4, production-bundling plan
(Q�, B) with any partial B gives strictly higher expected revenue with the same cost and,
thus, (Q�, B�) is not optimal. For a two-good monopoly, the partial bundling that allows
selling Q� is given by λ�Q� for some λ� 6= 0. Given fixed Q�, the allocation in the planner
problem is constrained efficient and hence the same for any λ 6= 0. Thus, implicit prices
of goods and revenue do not depend on the choice of λ 6= 0. Q.E.D.

12Alternatively, one can assume that Q� is arbitrary and the monopoly sells only the part of Q� that is
in the span of B (and disposes freely of the remaining part). If cost is monotone in all goods, then such a
strategy is suboptimal.

13Recall that even in the case of a one-good monopoly, the optimal quantity in the production-bundling
plan may not exist with certain convexity of marginal utility.
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As the next section argues, the joint choice of production levels and bundling strategies
has important implications for welfare.

4 Regulation of a Multiproduct Monopoly

A central concern in policy and market design is that market power distorts quantity
relative to the Pareto efficient outcome. As this paper demonstrates, apart from ineffi-
ciently reducing production levels, a multiproduct monopoly can exercise market power
by bundling goods, which distorts the allocation of Q among market participants. To
restore efficiency, both forms of market power should be regulated. A natural question
arises as to how the additional degrees of freedom in the seller strategy affect welfare. To
better understand the welfare effect of bundling per se, relative to the effect of quantity
reduction, we begin by analyzing a monopoly with a fixed inventory Q.

Our fixed-inventory model has the following implications for the appraisal of mo-
nopolistic bundling practices and regulation of multiproduct companies. In order to im-
prove Pareto efficiency of market outcomes, the optimal regulation of a monopoly should
require the offering of a full-span portfolio of bundles. This recommendation can be
strengthened: introduction of an additional bundle is never detrimental to buyer welfare,
even if it does not fully complete a bundling strategy. Let DWL (B) denote a deadweight
loss that results from bundling strategy B. Since all monetary transfers sum to zero, by
Lemma 1, for any pair B, B0 2 BQ, such that hBi � hB0i,

DWL (B)� DWL
�

B0
�
= max
(x1,...,xm)2X(B0)

∑
i

u(xi)� max
(x1,...,xm)2X(B)

∑
i

u(xi). (27)

Since X (B) � X (B0), it follows that a deadweight loss is (weakly) decreasing in the span
of a bundling strategy, DWL (B) � DWL (B0).

Optimal bundling necessarily distorts efficiency in markets where buyer marginal util-
ity is convex: revenue maximization requires partial bundling, which (F�almost surely)
introduces a wedge in buyer marginal utility and consumption in equilibrium. Indeed,
the very mechanism through which bundling provides an effective means to increasing
seller revenue, in this case, is by introducing inefficiency in the allocation of Q. Neverthe-
less, even for a fixed supply, while the exercise of market power through bundling intro-
duces a revenue-efficiency trade-off, the monopoly revenue is not necessarily monotone
in deadweight loss, and the seller benefit need not be associated with buyer loss (Example
2).14

14With linear marginal utilities, revenue is invariant to bundling—any B 2 BQ is revenue maximizing;
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As we now argue, the apparent recommendation to increase the variety of bundles
should be considered with caution when a multiproduct monopoly chooses optimal in-
ventory Q. In markets where the buyer marginal utility is concave, a competition-enhancing
policy is essentially the same as in the case of a standard single-good monopoly.15 Does
the availability of two instruments amplify the overall negative welfare effect? Exam-
ple 4 demonstrates that the joint welfare effect of the two instruments through which a
monopoly may increase revenue is not unambiguous—the two forms of market power
can offset or reinforce each other, depending on marginal cost and, hence, the optimal
production scale.

Example 4. Consider a two-good monopoly, choosing inventory Q = (Q1, Q2) to maximize
profits given constant marginal cost C (Q) = (Q1 +Q2)� c. The monopoly sells goods to two
buyers whose utility function is

u(x1, x2) = ln(x1) + ln(x2), (28)

and deterministic initial holdings of goods are q1 = (2, 1)T and q2 = (1, 2)T. Since marginal util-
ity (28) is strictly convex, by Corollary 1, the optimal bundling strategy involves pure bundling.
The profit function of a monopoly is strictly concave, symmetric around the 45�-line and attains the
maximum at Q�

1 = Q�
2 = Qh for any value of production. This allows focus on the determination

of quantity in the optimal production-bundling plan on either good market. It can be shown that,
for any level of inventory Q = (Qh, Qh) 2 R2

+, pure bundling yields higher total revenue than no
bundling. However, there is a quantity threshold in each market h such that the marginal revenue
under pure bundling exceeds that of no bundling for quantity Qh below the threshold, whereas
the reverse is true for quantities above the threshold (see Figure 1). Thus, the marginal benefit
from bundling—created by distorting the equilibrium consumption of two traders—decreases more
sharply compared to no bundling. Intuitively, given convex buyer marginal utility, differences in
consumption translate into a gap in marginal utility, but the gap weakens as consumption grows
(with production) to eventually vanish as limQh!∞




Du
�

1
2 Q+ q1

�
� Du

�
1
2 Q+ q2

�


 = 0.
The optimal quantity from bundling or no bundling in each market is determined by equality of
the respective marginal revenue and marginal cost c. In fact, for a range of cost parameters that
are high enough, the possibility of bundling increases production and brings it closer to efficiency.
Thus, with a large marginal cost, the direct adverse effects of bundling on welfare are partially offset

but among all such bundling strategies, only those that have a full span yield the efficient allocation.
15Clearly, the optimal production level for a multi-product monopoly in one market may depend on the

optimal production plan in other markets, unless buyer utility and seller cost functions are separable. In
this case, the equilibrium production level coincides with the level chosen by the monopoly that maximizes
revenue market-by-market.
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by a reduced distortion in the scale of production. In turn, for small marginal costs, not only does
bundling adversely affect welfare by preventing the efficient allocation of a given quantity, but
it also aggravates the inefficient reduction of production beyond that implied by the monopoly’s
standard response to its price impact.

5 Computation of B�

Since it may be quite challenging to find an optimal bundling strategy with n > 2, in
this section, we show that a seller’s program that finds B� can be simplified using char-
acterization of the bundling choices by linear spaces: any k�dimensional linear subspace
containing Q can be spanned by a basis that comprises Q and k � 1 linearly indepen-
dent n-vectors orthogonal to Q. Technically, this means that we can restrict attention to
bundling strategies

B = (Q, b2, . . . , bk), (29)

where: (i) we have that Q � bj = 0 for every j = 2, . . . , k; and (ii) the n � (k � 1) matrix
(b2, . . . , bk) has a rank of k � 1. For any such bundling strategy, effective inventory is
given by z̄(B) = (1, 0, . . . , 0)T. This observation simplifies computation of the revenue
derivatives with respect to perturbations in the bundling strategy. This means that the
problem of choosing an optimal bundling strategy is equivalent to a problem wherein the
monopoly sells shares of its inventory of goods, Q, while also creating markets for trades
of other bundles that are in zero net supply. In this setting, the seller revenue equals the
price that results in the market for shares of his inventory.

We now study the effects of perturbations on the bundling strategy on revenue, by
computing the derivative of the latter with respect to the former. For this purpose, we
consider only perturbations to the bundling strategy that do not affect the dimension of
the space of goods trades. For the simplicity of notation, we will write the hth canonical
vector in Rk as eh, so that z̄(B) = e1. Define function φ, for bundling strategies of the form
(29), as

φ(z1, . . . , zm, p, B) �

0BBBBB@
...

BTDu(qi + Bzi)� p
...

e1 �∑i zi

1CCCCCA , (30)

defined over bundle trades such that all commodity holdings are strictly positive (that is,
qi + Bzi � 0 for all i). This function is useful in that its roots capture the market-clearing
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prices and individual bundle demands.16 The function is continuously differentiable; and
its partial Jacobian, Dz1,...,zm,pφ(z1, . . . , zm, p, B), is, by direct computation,0BBBBBBB@

BTD2u1B 0 . . . 0 �Ik�k

0 BTD2u2B . . . 0 �Ik�k
...

... . . . ...
...

0 0 . . . BTD2umB �Ik�k

�Ik�k �Ik�k . . . �Ik�k 0

1CCCCCCCA
, (31)

where the arguments in the Hessian matrices have been omitted for simplicity of presen-
tation, so that D2ui denotes the matrix D2u(qi + Bzi).

Importantly, since the bundling strategy B has full column rank, this partial Jacobian
is invertible,17 so it follows that for a perturbation dbh (orthogonal to Q), we have that0BBBBB@

...
dzi

...
dp

1CCCCCA = �(Dz1,...,zm,pφ)�1(Dbh
φ)dbh. (32)

By direct computation, matrix (Dz1,...,zm,pφ)�1 in (32) is 
Γ Θ

ΘT ∆

!
, (33)

16That is, φ(z1, . . . , zm, p, B) = 0 at, and only at, (z1(p(B); B), . . . , zI(p(B); B), p(B), B).
17To see that this is indeed the case, notice that each matrix BTD2uiB is negative definite, since u is strictly

concave and B has full column rank. This implies that the sub-matrix obtained by deleting the last super-
row and the last super-column, being diagonal, is itself negative definite. Then, to verify that the whole
matrix is nonsingular, it suffices to observe that

Dz1,...,zm ,pφ(z1, . . . , zI , p, B)

0BBB@
�(BTD2u1B)�1 ∑i BTD2uiB

...
�(BTD2umB)�1 ∑i BTD2uiB

�∑i BTD2uiB

1CCCA =

0BBB@
0
...
0

Ik�k

1CCCA .
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where ∆ = �(∑i(BTD2uiB)�1)�1, matrix Γ is0BB@
(BTD2u1B)�1(I+ ∆(BTD2u1B)�1) . . . (BTD2u1B)�1∆(BTD2umB)�1

... . . . ...
(BTD2umB)�1∆(BTD2u1B)�1 . . . (BTD2umB)�1(I+ ∆(BTD2umB)�1)

1CCA ,

(34)
and matrix Θ is 0BB@

(BTD2u1B)�1∆
...

(BTD2umB)�1∆

1CCA . (35)

Matrix Dbh
φ in (32) is computed as

Dbh
φ =

0BBBBB@
...

zi
nBTD2u+ en 
 (Dui)T

...
0

1CCCCCA , (36)

where the sign 
 denotes the Kronecker product of the two matrices. By substitution, it
follows from equation (32) that

dp =
1
m
H(fBTD2uiBgm

i=1)∑
i
(BTD2uiB)�1(zi

hBTD2ui + eh 
 (Dui)T)dbh, (37)

where H denotes the harmonic average of the array of matrices.
By construction, revenue is equivalent to the price in the first bundle market, so we can

simply compute dR, with respect to a perturbation dbh such that dbh � Q = 0, by looking
at the first row of matrix

1
m
H(fBTD2uBgm

i=1)∑
i

zi
h(B

TD2uiB)�1BTD2u. (38)

Directions for improvement of revenue are given by perturbations to the vector bh such
that their inner product with the first row of matrix (38) is positive. A critical point of the
revenue function with respect to bundling strategies that contain exactly k linearly inde-
pendent bundles will occur when the first row in matrix (38) is zero in all elements, for
all perturbations (orthogonal to Q) of the hth bundle in the strategy, for each of the k� 1
additional bundles in B. Whether a critical point is a local maximizer or minimizer, or
an inflection point, is not obvious. To begin, it is important to notice that the standard
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tools of convex analysis do not apply here, as the domain of this sub-program (i.e., the
Grassmanian of k� 1 dimensional subspaces of Rn�1), lacks the structure of a convex set.
Moreover, as this manifold has an empty boundary, all of its points are “interior”; hence,
both extrema of the revenue function will satisfy the first-order condition of critical points.
For instance, if there are three goods, the space of two-dimensional linear spaces that con-
tain Q can be identified as the (one-dimensional) unit circle in the two-dimensional plane;
any continuous function defined on that set will attain its maximum and its minimum.
Thus, if it is smooth, the function will have at least two critical points, whose character
cannot be identified from first-order conditions only.
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