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Introduction 

We develop a conceptual framework and design methodologies for multichannel im-

age many factor (bilateral, 3-, and 4-lateral) aggregation filters with assessment capability.  

The term “multichannel” (multicomponent, multispectral, hyperspectral) image is used for an 

image with more than one component. They are composed of a series of images in different 

optical bands at wavelengths 1 2, ,..., k   , called spectral channels: 

 
21

( , ) ( , ), ( , ),..., ( , )
K

x y f x y f x y f x y   f ( ) ( ) ( )( )
1 2

, , , ,..., ,
k

f x y f x y f x y  where K  is the number of 

different optical channels, i.e., 2 ,: Kf R R   where KR  is multicolor space. The bold font for 

f  emphasizes the fact that images may be multichannel. Each pixel in ( , )x yf , therefore, rep-

resents the spectrum at the wavelengths 1 2, ,..., K    of the observed scene at point ( , )x yx .  

Let us introduce the observation model and notions used throughout the paper. We 

consider noised image in the form ( ) ( ) ( ),f x s x n x  where ( )s x  is the original grey-level image 

and ( )n x  denotes the noise introduced into ( )s x  to produce the corrupted image ( )f x . The aim 

of image enhancement is to reduce the noise as much as possible or to find a method which, 

given ( )s x , derives an image ˆ( )s x  as close as possible to the original ( )s x , subjected to a suit-

able optimality criterion.  

The standard bilateral filter (BF) (Astola et al., 1990; Tang et al, 1996; Tomasi, Man-

duchi, 1998; Barash, 2001, 2002; Durand, Dorsey, 2002; Elad, 2002a; Elad, 2002b; Fleish-

man et al., 2003) with a square N -cellular window ( )M x  is located at x , the weighted aver-

age of pixels in the moving window replaces the central pixel 

   
( )

( )

1
ˆ( ) , ( ) , ( ),

( )M
M

w w
k



      
p

p
x

x

s x BilMean x p f p x p f p
x

                               (31)  

where ˆ( )s x  is the filtered image and ( )k p  is the normalization factor  

 
( )

( ) , .
M

k w


 
p x

x x p                                                               (32) 

Equation (1) is simply a normalized weighted average of a neighborhood of a N -cellular 

window ( )M x  (i.e., the mask around pixel x , consisting of N  pixels). The scalar-valued 

weights  ,w x p are computed based on the content of the neighborhood. For pixels  
( )

( )
Mp x

f p  
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around the centroid ( )f x , the weights   
( )

,
M

w
p x

x p  are computed by multiplying the following 

two factors:  

     2( , ) ( , ) || || || ( ) ( ) || .Sp Rn Sp Rnw w w w w    x p p x p p f x f p  

The weight includes two factors – spatial  || ||Spw p  and radiometric weights 

 2( , ) || ( ) ( ) ||Rn Rnw w x p f x f p . The first weight measures the geometric distance || ||p  between 

the center pixel ( )f x  and the pixel ( )f p  (note, the centroid x  has the position ( )M0 x  inside 

of the mask ( )M x ). Here the Euclidean metric 2|| ||   || ||p p  is applied. This way, close-by 

pixels influence the final result more than distant ones. The second weight measures the radi-

ometric distance between the values of the center sample ( )f x  and the pixel ( )f p , and again, 

the Euclidean metric 2|| ( ) ( ) ||f x f p  is chosen, too. Therefore, pixels with close-by values tend 

to influence the final result more than those having distant value.  

This paper considers two natural extensions to the bilateral filter. Firstly, instead of the 

center pixel ( )f x  in  || ( ) ( ) ||Rnw f x f p , we use a certain mean or median ( )f x  (for example, the 

Fréchet median ( )optf x  [11,12]) of a neighborhood of a N -cellular window ( )M x  for calculat-

ing of weighs ( , )Rnw x p   2|| ( ) ( ) ||Rnw f x f p .  Secondly, instead of a scale-valued weighs, we 

use a matrix--valued ones 

 
( )

ˆ( ) , ( ) ,
M

   p x
s x BilMean W x p f p

                                                       

(33) 

where  ,W x p  are the matrix--valued weighs.   

The first modification of bilateral filters 

In this modification we use the Fréchet median ( )optf x  for calculating of weighs ( , )Rnw x p  

instead of the center  pixel ( )f x  in Rnw :  || ( ) ( ) ||Rnw  f x f p   || ( ) ( ) ||Rn optw f x f p . 

Let ,K
R   be a metric spaces, where   is a distance function (i.e, : K K 

 R R R ). Let 

1 2, ,..., Nw w w  be N  weights summing to 1 and let  1 2, ,..., N K f f f D R  be N  pixels in the N -

cellular window ( )M x  

Definition 1 (Fréchet, 1948; Ostheimer et al., 2015). The optimal Fréchet point associated 

with the metric ,  is the point, K

opt f R , that minimizes the Fréchet cost function (FCF)  

 
1

,
N

i

i

i

w


 f f  (the weighted sum distances from an arbitrary point f  to each point 

21 2, ,..., N Kf f f R ). It is formally defined as:  

   1 2

1

| , ,..., , .
K

N
N i

opt i

i

w



  

f R
f FrechMed f f f argmin f f = =                              (34)  

Note that argmin means the argument, for which the sum is minimized. This generalizes the 

ordinary median, which has the property of minimizing the sum of distances for one-

dimensional data, and provides a central tendency higher dimensions.  

In computation point of view, it is better to restrict the search domain from  KR  until the set 

 1 2, ,..., N K D f f f R . In this case, we obtain definition of the suboptimal Fréchet point or the 

optimal vector Fréchet median. 

Definition 2 [10,11]. The suboptimal weighted Fréchet point or optimal Fréchet median as-

sociated with the metric   is the point,  1 2, ,..., N K

opt  f f f f R , that minimizes the FCF over 

the the restrict search domain KD R : 

   
2

1 2

1

| , ,..., , .
N

N i

opt i

i

w 
 

  
f D

f FrechMed f f f argmin f f=                              (35)  
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Example 1. If observation data are real numbers, i.e., 1 2, ,..., Nf f f R  and distance function is 

the city distance 1( , ) ( , ) ,f g f g f g     then the optimal Fréchet point (4) and optimal Fré-

chet medians (5) for grey-level pixels 1 2, ,..., Nf f f R  to be the classical Fréchet point and me-

dian, respectively, i.e.,  

 
21 2

1

1

| , ,..., ,
N

N i

opt

i
f

f f f f f



  

R
f FrechPt argmin                            (36)  

 

 

1 2

1

1

1 2

| , ,...,

, ,..., .

N
N i

opt

i

N

f
f f f f f

f f f





   




D

f FrechMed argmin

Med

                             (37)  

Example 2. If observation data are vectors, i.e.,  1 2, ,..., N Kf f f R , and distance function is the 

city distance 1( , ) ( , ), f g f g  then the optimal Fréchet point (4) and optimal Fréchet medians 

(5) for vectors 1 2, ,..., N Kf f f R  to be the Fréchet point and the Fréchet vector median, associ-

ated with the same metric 1( , ) f g ,  

   
 1 2

1 1

1

| , ,..., || || ,
K

N
N i

opt

i


 

 
   

 


f R

f FrechPt f f f argmin f f                              (38)  

 

 

1 2

1 1

1

1 2

1

| , ,..., || ||

| , ,..., .

N
N i

opt

i

N

f







 
    

 




D

f FrechMed f f f argmin f f

VecMed f f f

                     (39)  

Now we use Fréchet median optf  for calculating radiometric weights: 

 2( , ) || ( ) ( ) ||Rn Rn optw w x p f x f p . The modified bilateral filter is given as 

 

 
( )

ˆ( ) , ( )
M

w


    p x
s x BilMean x p f p  

   2

( )

1
|| || || ( ) ( ) || ( ),

( )
Sp Rn opt

M

w w
k 

   
p x

p f x f p f x
x

                           (40)  

where ˆ( )s x  is the filtered image. 

4-Factor MIMO-filters 

In the case of the multichannel images, processed data are vector-valued 
2( ) : :Kf x R R   1 2 1( ) ( ), ( ),..., ( ) [ ( )] .K

K c cf f f f  f x x x x x

 

By this reason, we must use matrix-valued 

weights   
( )

,
Mp x

W x p , where  ,W x p  is a  K K -matrix, and  K  is the number of different 

channels in 2

.( ) : Kf x R R  The 4-factor MIMO-filter suggests a weighted average of pixels in 

the given image  

 

   

 

 
 

( )

( )1 2

,

ˆ( ) , ( )

1
, ( )

( ), ( ),..., ( )K

M

Mk k k





    

 

4

p

p

x

x

s x MIMO FactMean W x p f p

W x p f p
diag x x x

                                         (41)  

    

or in component-wise form  

   
   

( ) 1 ( ) 1

1
ˆ ( ) , ( ) , ( ),

( )

K K
ab ab

a b b

b ba M M

s w f w f
k    

      
p px x

x x p p x p p
x

                          (42)  
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where ˆ( )s x  is the filtered multichannel image, ˆ ( )as x  is its  ath channel, /ab ab

aw w k , 

     1 1 1

1 2, ( ), ( ),..., ( ) ,Kk k k   W x p diag x x x W x p  ( )ak p  is the normalization factor  in the ath chan-

nel: 

 
( ) 1

( ) ,
K

ab

a

bM

k w
 

  
p x

x x p                                                              (43) 

and  1 2( ), ( ),..., ( )Kk k kdiag x x x  is diagonal matrix with channel normalization factors. Note, that 

 
   

     

     

     

1 2

11 12 11
11

21 22 21
22

1 21

1
, ( ) , ( )

( ), ( ),..., ( )

( ), , ,( )

( ), , ,( )
.

( ), , ,( )

K

K

K

K K KK

KK

k k k

fw w wk

fw w wk

fw w wk







   

    
    
    
    
    

        

W x p f p W x p f p
diag x x x

px p x p x px

px p x p x px

px p x p x px

 

The normalized matrix-valued weights  ,W x p  are computed based on the content of 

the neighborhood. For pixels ( ),  ( )Mf p p x  around the Fréchet centroid ( )optf x , the scalar-

valued weights ( , )cdw x p  of the matrices  , , ( )MW x p p x  are computed by multiplying the fol-

lowing four factors: 

       2 ,

( , )

|| || || ( )) ( ) || ( ) ( ) .

cd

Sp Ch Rn opt Rn c opt d

w

w w c d w w f f



      

x p

p f x f p x p
 

The weight includes four factors: spatial  || ||Spw p , inter-channels   Chw c d , global 

radiometric  2|| ( )) ( ) ||Rn optw f x f p , and radiometric inter-channels weights  , ( ) ( ) .Rn c opt dw f fx p   

The first factor  || ||Spw p  measures the geometric distance between the center pixel ( )optf x  and 

the neighborhood pixel ( ),  ( )Mf p p x . The second factor  Chw c d  measures the spectral (in-

ter-channel) distance. The third factor  2|| ( ) ( ) ||Rn optw f x f p  measures the global radiometric 

distance between the values of the Fréchet center ( )optf x  and the pixels ( ),  ( )Mf p p x . The 

fourth factor  , ( ) ( )Rn c opt dw f fx p  measures the radiometric distance between the values of the 

center sample 
, ( )c optf x  of the c -channel and the pixel ( ),  ( )df Mp p x  of the d -channel.  

All weights    ,, ( ) ( )cd

Rn Rn c opt dw w f f x p x p  form N  radiometric inter-channel  K K -

matrices 

        ,( ) , 1 , 1( ) ( )

, , ( ) ( ) .
KK

cd

Rn Rn Rn c opt dM c d c dM M

w w f f
   

       p x
p x p x

W x p x p x p  

if  N -cellular window is used.  

If is used three ingredient, for example, 

     2 ,( , ) || || || ( ) ( ) || ( ) ( )cd

Sp Rn opt Rn c opt dw w w w f f    x p p f x f p x p  

or 

     ,( , ) || || ( ) ( )cd

Sp Ch Rn c opt dw w w c d w f f    x p p x p  

then we obtain 3-factor MIMO-filters. 

Simulation Experiments 

Some variants of the proposed filters are tested. They are compared on real image 

“LENA”.  Noise is added Fig. 1) with different the Peak Signal to Noise Ratios (PSNRs). The 

noised  images has 1% noised pixels (PSNR =  25.36 dB), 5% noised pixels (PSNR = 18.34 
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dB), 10% noised pixels (PSNR = 15.41 dB), 20%  noised pixels (PSNR =  12.64 dB), 50% 

noised pixels (PSNR =  9.22 dB). 

 

  

b) Original image 
b) Noised  images, PSNR = 

25.36 

  
c) Noised  images, PSNR = 

18.34  

d) Noised  images, PSNR = 

15.41 

  
e) Noised  images, PSNR = 

12.64 
f) Noised  images, PSNR = 9.22 

Fig. 1. Original (a) and noised (b) images; noise: Salt-

Pepper; denoised images (c)-(f). 

  
a) Filtration of “Salt and Pepper” noise with 1% noised pixels 

 
b) Filtration of “Salt and Pepper” noise with 5% noised pixels 

Электронный архив УГЛТУ



ЭКО-ПОТЕНЦИАЛ № 2 (14), 2016    116 
 

 
c) Filtration of “Salt and Pepper” noise with 10% noised pixels 

 
d) Filtration of “Salt and Pepper” noise with 20% noised pixels 

 
e) Filtration of “Salt and Pepper” noise with 50% noised pixels 

Fig. 2. The results for “Salt and Pepper” noise and bilateral filters 

with Laplacian weights for α = 0.035. 

 
a) Filtration of “Salt and Pepper” noise with 1% noised pixels 

 
b) Filtration of “Salt and Pepper” noise with 5% noised pixels 

 
c) Filtration of “Salt and Pepper” noise with 10% noised pixels 
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d) Filtration of “Salt and Pepper” noise with 20% noised pixels 

 
e) Filtration of “Salt and Pepper” noise with 50% noised pixels 

Fig. 3. The results for “Salt and Pepper” noise and bilateral filters 

with Laplacian weights for α = 0.07. 

 

 
a) Filtration of “Salt and Pepper” noise with 1% noised pixels 

 
b) Filtration of “Salt and Pepper” noise with 5% noised pixels 

 
c) Filtration of “Salt and Pepper” noise with 10% noised pixels 

 
d) Filtration of “Salt and Pepper” noise with 20% noised pixels 

 
e) Filtration of “Salt and Pepper” noise with 50% noised pixels 

Fig. 4. The results for “Salt and Pepper” noise and bilateral filters with 

Laplacian weights for α = 0.1. 
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Fig. 2-4 summarize the results for “Salt and Pepper” noise and bilateral filters with La-

placian weights  ( , ) expw f g f g    for different α = 0.035 (Fig. 2), α = 0.07 (Fig. 3), α = 

0.1 (Fig. 4).  Fig. 2-4 show the results obtained by the following bilateral filters with 3( -mask  

 the classical bilateral filter (1)  (BF3x3), 

 modified bilateral filter (10) (BF3x3Med), where ( )f x  is calculating as classical me-

dian in each channel,  

 modified bilateral filter (10)  (BF3x3Fr1), where ( )f x  are calculating as Fréchet me-

dian ( ) ( )optf x f x  with distance 1( , ) ( , ), f g f g  

  modified bilateral filter (10)  (BF3x3Fr2), where ( )f x  are calculating as Fréchet me-

dian ( ) ( )optf x f x  with distance 2( , ) ( , ), f g f g  

 modified bilateral filter (10)  (BF3x3Fr∞), where ( )f x  are calculating as Fréchet me-

dian ( ) ( )optf x f x  with distance ( , ) ( , ). f g f g
 

It is easy to see that results for all modified bilateral filters are better, compared to the classi-

cal bilateral filter BF3x3. 

Conclusion and future work 

 

A new class of nonlinear generalized 2-, 3-, and 4-factor MIMO-filters for multichan-

nel image processing is introduced in this paper. Weights in 4-factor MIMO-filters include 

four components: spatial, radiometric, interchannel and interchannel radiometric weights. The 

fourth weight measures the radiometric distance (for grey-level images) between the inter-

channel values of the center scalar-valued channel pixel and local neighborhood channel pix-

els. Here, the 1D Euclidean metric is used, too. We are going to use in (10) and (11) a gener-

alized average (aggregation) (Kolmogorov, 1930; Mayor, Trillas, 1986; Ovchinnikov, 1998) 

instead of ordinary mean. 

The aggregation problem (Kolmogorov, 1930; Mayor, Trillas, 1986; Ovchinnikov, 

1998)consist in aggregating n-tuples of objects all belonging to a given set S , into a single 

object of the same set S , i.e., : nS SAgg . In the case of mathematical aggregation operator 

the set S  is an interval of the real [0,1]S   R  or integer numbers [0,255]S   Z . In this set-

ting, an AO is simply a function, which assigns a number y  to any N -tuple  1 2, ,..., Nx x x  of 

numbers: 1 2( , ,..., )Ny x x x Aggreg that satisfies:  

 

   

 

     1 2 1 2 1 2

,   

( , ,..., ) . In particular, 0,0,...,0 0 and 1,1,...,1 1,or

255,255,..., 255 255.

  , ,..., , ,..., , ,..., .

N

N N N

x x

a a a a

x x x x x x x x x

 

   



  

Agg

Agg Agg Agg

Agg

min Agg max

 

Here  1 2, ,..., Nx x xmin  and  1 2, ,..., Nx x xmax  are respectively the minimum and the maximum 

values among the elements of  1 2, ,..., Nx x x . 

All other properties may come in addition to this fundamental group. For example, if for 

every permutation N S  of  1, 2,..., N  the AO satisfies: 

   (1) (2) ( ) 1 2, ,..., , ,..., ,N Nx x x x x x   Agg Agg  

then it  is invariant (symmetric) with respect to the permutations of the elements of 

 1 2, ,..., Nx x x . In other words, as far as means are concerned, the order of the elements of 

 1 2, ,..., Nx x x  is - and must be - completely irrelevant.  

     We list below a few particular cases of means: 

5) Arithmetic mean ( ( )K x x ): 1 2

1

1
( , ,..., ) .

N

N i

i

x x x x
N 

 Mean  
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6) Geometric mean ( ( ) log( )K x x ): 1 2

1

1
( , ,..., ) exp ln .

N

N i

i

x x x x
N 

 
  

 
Geo  

7) Harmonic mean ( 1( )K x x ): 

1

1 2

1

1 1
( , ,..., ) .

N

N

i i

x x x
N x





 
  
 
Harm  

8) A very notable particular case corresponds to the function ( ) pK x x . We obtain then a 

quasi arithmetic (power or Hölder) mean of the form:  

1

1 2

1

1
, ,..., .

N p
p

p N i

i

x x x x
N 

 
  
 
Power  

This family is particularly interesting, because it generalizes a group of common means, 

only by changing the value of p . 

A very notable particular cases correspond to the logic functions (min; max; median): 

1 2( , ,..., ),Ny x x x Min 1 2( , ,..., ),Ny x x x Max 1 2( , ,..., ).Ny x x x Med  

In a 2D standard linear and median scalar filters with a square N -cellular window ( )M x  and 

located at x  the mean and median replace the central pixel 

   
   

( ) ( )
( ) ( ) ,    ( ) ( ) ,

M M
s f s f

 
 

p x p x
x Mean p x Med p                               (44)  

where ( )s x  is the filtered grey-level image,  
( )

( )
M

f
p x

p  is an image block of the fixed size N  

extracted from f  by moving N -cellular window ( )M x  at the position x , Mean  and Med  are 

the mean (average) and median operators.   When filters (14) are modified as follows  

 
       ( )

( ) ( ) ,M

M

s f



p x

x Agg p

                                                
(45) 

we get the unique class of nonlinear aggregation SISO-filters proposed in the papers (La-

bunets, 2014; Labunets et al., 2014a,b,c), where M
Agg  is an aggregation operator on the mask 

( )M x . 

For MIMO-filters we have to introduce a vector-valued aggregation. Note, that for ordi-

nary vector-matrix product g Wf  we have in component-wise form 

   
1 1 2 2

1

... .
K

c c c cK K cd d

d

g w f w f w f w f


                                (46)  

Let us introduce vector-matrix aggregation product Aggg W f  in component-wise form by 

the following way 

   
   1 1 2 2 1Agg , ,..., , Agg ,K

c c c cK K d cd dg w f w f w f w f                        (47)  

where Agg  is an aggregation operator. Obviously, we can use different aggregation operators 

in different channels 

   
   1 1 2 2 1 Agg , ,..., , = Agg ,c c K

c c c cK K d cd dg w f w f w f w f                 (48)  

for 1, 2,..., ,c K  where  1 2Agg, Agg,..., AggKAgg  is the a K -element set of aggregation opera-

tors. In this case we write 
Agg

g W f  

When 4factor MIMO-filter (11) is modified as follows  

   
 M

( )

ˆ( ) , ( ) ,g
M

   
4

Ag
p x

s x MIMO Fact Agg W x p f p                     (49)  

or in component-wise form 

   
   1

( )

ˆ ( ) , ( )M c K cd

c d d
M

s w f


 
p x

x Agg Agg x p p                          (50)  

we get the unique class of nonlinear aggregation MIMO-filters that we a going to research in 

future works. They are based on 1K   of aggregation operators AggM  (aggregation on the 

mask ( )M x ) and  1 2Agg, Agg,..., AggKAgg  (inter-channel aggregation), which could be 

changed independently of one another. For each set of aggregation operators, we get the 

unique class of new nonlinear filters 
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