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PT symmetry, that is, a combined parity and time-reversal symmetry, is a key milestone for non-Hermitian
systems exhibiting entirely real eigenenergy. In the present work, motivated by a recent experiment, we study PT
symmetry of the time-evolution operator of nonunitary quantum walks. We present the explicit definition of PT
symmetry by employing a concept of symmetry time frames. We provide a necessary and sufficient condition so
that the time-evolution operator of the nonunitary quantum walk retains PT symmetry even when parameters of
the model depend on position. It is also shown that there exist extra symmetries embedded in the time-evolution
operator. Applying these results, we clarify that the nonunitary quantum walk in the experiment does have PT
symmetry.
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I. INTRODUCTION

Quantum mechanics requires that, in a closed system,
physical observables be represented by Hermitian operators.
The Hamiltonian of the system is no exception to this rule.
However, the closed system is an ideal concept and, rigorously
speaking, almost all systems in the real world, except a
whole universe, should have flow of energy and particles
to outer environments, which makes the Hamiltonian of the
inner system non-Hermitian. Furthermore, it is widely ac-
cepted to phenomenologically include non-Hermitian effects
into Hamiltonians when we treat effects of amplification
and dissipation, namely, gain and loss, in open systems.
For example, non-Hermitian Hamiltonians are employed to
describe radioactive decay [1], depinning of flux lines in
type-II superconductors [2], and so on [3]. In general, such a
non-Hermitian Hamiltonian has complex eigenenergy which
makes systematic controls of the dynamics difficult.

In 1998, however, Bender and Boettcher clarified that a
broad class of non-Hermitian Hamiltonians can have en-
tirely real eigenenergy if the system possesses a combined
parity symmetry and time-reversal symmetry (TRS), that
is, PT symmetry [4–7]. If the Hamiltonian possesses PT
symmetry and its eigenstates are also eigenstates of the
PT -symmetry operator, then this is a sufficient condition for
the eigenenergy being real. Applying this property, moreover,
PT symmetry in the non-Hermitian Hamiltonian provides
a procedure to selectively induce complex eigenenergy for
specific eigenstates [8–10]. For systems described by non-
Hermitian Hamiltonians with PT symmetry, a large number
of novel phenomena, which can not be observed in Hermitian
systems, have been predicted theoretically. For example,
systems with PT -symmetric periodic structures can act as
unidirectional invisible media [11,12], edge states having
complex eigenenergy emerge [13,14], Bloch oscillations with
unique features occur [15], and others [16–24]. These results
open a way to engineer non-Hermitian systems to utilize
as novel platforms of applications. The system with PT
symmetry has been realized in optics by using coupled optical
waveguides with fine-tuned complex refractive index [25,26].
It has been also demonstrated that coupled microcavity
resonators realize PT -symmetric systems [27,28]. Recently,
the mode-selective lasing by utilizing PT symmetry has been
realized based on microring resonators [29,30]. However, due

to difficulty in handling gain and loss effects, the experimental
systems are limited to a small number of elements.

In contrast, there is a unique way to experimentally perform
large-scale PT -symmetric systems with high tunability, that
is, the discrete-time quantum walk [31,32]. The discrete-time
quantum walk (quantum walk, in short) is the model recently
attracting attention as a versatile platform for quantum compu-
tations and quantum simulators. The quantum walk describes
quantum dynamics of particles by a time-evolution operator,
instead of a Hamiltonian. Quantum walks have been realized in
various experimental setups, such as cold atoms [33], trapped
ions [34,35], and optical systems [36–40]. Since quantum
walks enable high tunability of the system setup, various
phenomena which require delicate setups have been observed,
such as Anderson localization [41,42], scattering with positive-
and negative-mass pulses [43], emergence of edge states which
stem from topological phases [44], and so on.

Remarkably, in 2012, a quantum walk by optical-fiber
loops, where additional optical amplifiers make it possible
to control the effects of gain and loss, was experimentally
implemented [45]. Due to gain and loss, the time-evolution
operator of this quantum walk becomes nonunitary, which can
be considered that the effective Hamiltonian is non-Hermitian.
Nevertheless, it has been shown that the system has entirely
real (quasi)energy in proper setups. Furthermore, interesting
phenomena peculiar to PT symmetry, such as unidirectional
invisible transport [45], extraordinary Bloch oscillations [45],
and optical solitons [46,47], have been observed. These results
provide convincing evidence that the system possesses PT
symmetry. However, PT symmetry and the PT -symmetry
operator have not yet been directly identified from the time-
evolution operator itself, since the definition of PT symmetry
on the time-evolution operator has not been established so
far. It is an urgent and important task to identify the explicit
definition of PT symmetry for further developments.

In the present work, we provide the explicit definition of the
PT -symmetry operator and identify that the time-evolution
operator of the nonunitary quantum walk in the experiment
has, indeed, PT symmetry. This is archived for the first
time by employing a concept of symmetry time frames [48]
which has been developed in the recent study of topological
phases of quantum walks [48–52]. We also show that the
time-evolution operator of the nonunitary quantum walk has
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extra symmetries. Furthermore, we provide the necessary and
sufficient conditions for PT and other symmetries of the
time-evolution operator even when parameters of the model
are position dependent. Taking account of these results, we
present an inhomogeneous nonunitary quantum walk with
PT symmetry. (We note that, although the argument on
PT symmetry to retain the reality of (quasi)energy has been
generalized in Refs. [53–55], we focus on PT symmetry in
the original sense of Ref. [4] in the present work.)

This paper is organized as follows. We define the time-
evolution operator of the nonunitary quantum walk in Sec. II.
Section III is devoted to presenting how to define and identify
PT symmetry and extra symmetries of the time-evolution
operator of the nonunitary quantum walk. This is our main
result of the present work. In Sec. IV, as applications of
the result obtained in the previous section, we identify PT
symmetry of the time-evolution operator of the nonunitary
quantum walk in the experiment [45] and, further, demonstrate
a PT -symmetric inhomogeneous nonunitary quantum walk.
The summary and discussion are given in Sec. V.

II. DEFINITION OF TIME-EVOLUTION OPERATORS
OF NONUNITARY QUANTUM WALKS

Figure 1 shows the schematic view of the experimental
setup of the nonunitary quantum walk implemented by the two
optical-fiber loops in Ref. [45]. As explained in the caption,
the system is interpreted as one-dimensional (1D) two-step
quantum walks. Motivated by the experiment, we define a
time-evolution operator of the nonunitary quantum walk with
gain and loss so that one can flexibly tune various parameters
of the system, while the basic setup of the system should not
be altered. At first, we introduce the time-evolution operator
of the 1D two-step unitary quantum walk, and then extend it

FIG. 1. (a) Experimental setup. Optical pulses corresponding
to walkers go around in two optical-fiber loops with different
circumferences, and they are split into two at the connected point
(shown by a rectangle) corresponding to coin operators. After a single
cycle, pulses are delayed or advanced in time due to the difference
of lengths of two fiber loops, corresponding to shift operators. The
time evolution of the single time step is composed of the following
two substeps. At the former half of the step, amplitudes of pulses
passing through the long (short) loop are amplified (dumped) and,
at the latter half of the step, vice versa. (b) Translation from the
above description to the standard schematic view of the 1D two-step
quantum walk. When a pulse passes the long (short) loop and it
is delayed (advanced) in time, this is interpreted as that the walker
“shifts to the right (left).” In both (a) and (b), loops or arrows with
gain (loss) are depicted in solid (dashed) lines.

to the nonunitary one. We introduce the basis of the walker’s
1D position space |n〉 and internal states |L〉 = (1,0)T ,|R〉 =
(0,1)T , where the superscript T denotes the transpose. The
symbols L,R represent the walker’s internal states, say, left
mover and right mover components, respectively. The time-
evolution operator of the two-step unitary quantum walk Uu is
defined as

Uu = S C(θ2) S C(θ1).

Here, the coin operator C(θi), where the subscript i = 1 or
2 distinguishes the parameter for the first or second coin
operators, respectively, and the shift operator S are standard
elemental operators of quantum walks defined as

C(θi) =
∑

n

|n〉〈n| ⊗ C̃(θi,n), (1a)

C̃(θi,n) =
(

cos[θi(n)] i sin[θi(n)]
i sin[θi(n)] cos[θi(n)]

)
, (1b)

and

S =
∑

n

(|n − 1〉〈n| 0
0 |n + 1〉〈n|

)
. (2)

Since C̃(θi,n) acts on the internal states of walkers at the
position n, the coin operator C(θi) mixes the walker’s internal
states, where the value of θi(n) determines how strongly to mix
at each position n. The shift operator S changes the position
of walkers depending on the internal states. Note that, in the
present work, we follow a rule that an operator with a tilde on
the top acts on the space of internal states of walkers.

With an initial state |ψ(0)〉, the wave function after the t

time step is described as

|ψ(t)〉 = Ut |ψ(0)〉 =
∑

n,σ=L,R

ψn,σ (t) |n〉 ⊗ |σ 〉.

From the eigenvalue equation, we define the quasienergy ε as

U |�λ〉 = λ|�λ〉, λ = e−iε,

where |�λ〉 is the eigenvector with the eigenvalue λ. For the
unitary quantum walk, λ should satisfy |λ| = 1 and then ε

should be real with 2π periodicity.
The unitary quantum walk described by Uu can be extended

to the nonunitary one described by

U = S G2 	2 C(θ2) S G1 	1 C(θ1), (3)

which is consistent with the basic experimental setup in
Ref. [45]. Here, we introduce additional elemental operators:
the gain and/or loss (gain-loss) operator Gi and the phase
operator 	i defined as

Gi =
∑

n

|n〉〈n| ⊗ G̃i,n, G̃i,n =
(

gi,L(n) 0
0 gi,R(n)

)
, (4)

	i =
∑

n

|n〉〈n| ⊗ 	̃i,n, 	̃i,n =
(

eiφi,L(n) 0
0 eiφi,R (n)

)
, (5)

respectively. The gain-loss operator Gi multiplies the wave
function amplitude ψn,σ (t) by the factor gi,σ (n). If gi,σ (n) �= 1,
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FIG. 2. An example of the one time step of time evolution
described by the time-evolution operator U with the initial state
|ψ(0)〉 = |0,L〉. The left (right) mover components are depicted as
waves in dashed (solid) curves. At each time step, on a site n,
the left (right) mover component ψn,L(R)(t) is varied to the linear
combination of ψn,L(t) and ψn,R(t) by the coin operator C(θi). Then,
left mover components ψn,L(t) move to the left and right mover
components ψn,R(t) move to the right by the shift operator S. During
walkers changing their positions, they are affected by gain or loss
of the amplitude and phase modulation; that is, ψn,σ (t) increases or
decreases by the factor gi,σ (n) by the gain-loss operator Gi , and earns
the phase φi,σ (n) by the phase operator 	i .

then Gi and U become nonunitary operators. The phase
operator 	i adds the phase φi,σ (n) to that of the wave
function amplitude ψn,σ (t). The time evolution of a walker
described by U is schematically explained in Fig. 2. Thereby,
the time-evolution operator of the nonunitary quantum walk
contains three kinds of n-dependent parameters, θi(n),gi,σ (n),
and φi,σ (n). The setup in the experiment in Ref. [45] is
realized with the parameters in Eq. (39), as we discuss in
Sec. IV.

III. PT AND EXTRA SYMMETRIES OF THE
NONUNITARY QUANTUM WALK

In this section, we identify various symmetries embedded
in the time-evolution operator of the nonunitary quantum walk
in Eq. (3). Among them, our main target is PT symmetry,
which can restrict the quasienergy of the nonunitary quantum
walk to real numbers. To begin with, let us summarize the
argument on the PT symmetry of Hamiltonians [4]. In order
to define PT symmetry, we consider parity symmetry and
TRS at first. For a system described by a (Hermitian or non-
Hermitian) Hamiltonian H , it is required that the Hamiltonian
satisfies the following relations to retain parity symmetry
and TRS:

PHP−1 = H, (6)

T HT −1 = H, (7)

respectively. Here, the parity-symmetry operator P , which
flips the sign of position from n to −n, is a unitary operator and
does not include complex conjugation K. The TRS operator
T , which inverts the direction of time from t to −t , is an
antiunitary operator including K. By combing Eqs. (6) and (7),
PT symmetry of the Hamiltonian is defined as

(PT )H (PT )−1 = H, (8)

where the combined symmetry operator PT is the antiunitary
operator.

When the Hamiltonian satisfies both Eqs. (6) and (7),
the relation for PT symmetry (8) is automatically satisfied.
However, even when the Hamiltonian has neither parity
symmetry [Eq. (6)] nor TRS [Eq. (7)], it can satisfy Eq. (8)
to establish PT symmetry. This recovering of PT symmetry
becomes much important in the case of non-Hermitian Hamil-
tonians, since one of the standard ways to phenomenologically
include the effects of gain and loss is adding non-Hermitian
imaginary potential terms into a Hermitian Hamiltonian, which
prevents retaining TRS in Eq. (7) due to complex conjugation
K. In addition to the presence of PT symmetry of the
non-Hermitian Hamiltonian, we demand that eigenvectors of
the non-Hermitian Hamiltonian are also eigenvectors of the
PT -symmetry operator,

H |�λ〉 = Eλ|�λ〉, PT |�λ〉 = eiδ|�λ〉, (9)

where the phase δ is a real number. Satisfying both conditions
Eqs. (8) and (9) establishes the sufficient condition that
the eigenenergy Eλ is kept to be a real number even for
the non-Hermitian Hamiltonian. Hereafter, we apply the
above argument to the time-evolution operator of nonunitary
quantum walks.

A. Symmetries in homogeneous systems

For simplicity, at first, we assume the homogeneous
nonunitary quantum walk in which all parameters have no
position n dependencies, so that we can treat operators in
momentum space by applying the Fourier transformation.

In the homogeneous systems, the operators C(θi),Gi , and
	i are diagonal in the momentum representation, and we can
drop the subscript n from C̃(θi,n),G̃i,n, and 	̃i,n. For further
simplification, we assume

G̃2 = G̃−1
1 = G̃ =

(
eγ 0
0 e−γ

)
= eγσ3 , (10)

	̃2 = 	̃1 = 	̃ =
(

eiφ 0
0 e−iφ

)
= eiφσ3 , (11)

where σj=1,2,3 are Pauli matrices. [The peculiar choice of G̃2 =
G̃−1

1 is motivated by the setup of the experiment [45] as shown
in Eqs. (39b) and (39c).] By using the Pauli matrix σ1, the coin
operator is also written as

C̃(θi) =
(

cos[θi] i sin[θi]
i sin[θi] cos[θi]

)
= eiθiσ1 . (12)
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With the Fourier transformation, the shift operator in Eq. (2)
can be rewritten as

S =
∑

k

|k〉〈k| ⊗ S̃(k), S̃(k) =
(

e+ik 0
0 e−ik

)
= eikσ3 ,

(13)

where k stands for the wave number. Accordingly, the
time-evolution operator U in Eq. (3) in the momentum
representation is written down as

U =
∑

k

|k〉〈k| ⊗ Ũ (k), (14a)

Ũ (k) = S̃(k) G̃ 	̃ C̃(θ2) S̃(k) G̃−1 	̃ C̃(θ1). (14b)

Since determinants of all the above elemental operators are
one, the determinant of the time-evolution operator Ũ (k) is
also one, while the operator is nonunitary when γ �= 0.

By solving the eigenvalue problem, the quasienergy of the
time-evolution operator in Eq. (14b) is derived as
cos(±ε) = cos θ1 cos θ2 cos 2(k + φ) − sin θ1 sin θ2 cosh(2γ ),

(15)
and the corresponding eigenvector is

|�k,±〉 = e−i
θ1
2 σ1

e−iηk

2
√

cos 2ξk

(
eiα ± e−iα

−i[eiα ∓ e−iα]

)
, (16)

α = ηk ± ξk,

where ηk and ξk are defined as

tan(2ηk) = d1/d3,

cos(2ξk) =
√

1 − (d2/|dk|)2, sin(2ξk) = d2/|dk|,
|dk| = |d3 + id1|,
d1 = sin θ1 cos θ2 cos 2(k + φ) + cos θ1 sin θ2 cosh(2γ ),

d2 = − sin θ2 sinh(±2γ ),

d3 = − cos θ2 sin 2(k + φ).

We remark that, while ηk is always real, ξk becomes imaginary
when d2

2 > d2
1 + d2

3 . Figure 3 shows the quasienergy as a
function of k with several values of γ : (a) eγ = 1, (b) eγ = 1.1,
(c) eγ = 1.34 . . . , and (d) eγ = 1.5 (see the caption of Fig. 3
for other parameters). Comparing with the case of the unitary
quantum walk in Fig. 3(a), we see from Fig. 3(b) that,
while the quasienergy gap around ε = 0 becomes narrow,
the quasienergy remains entirely real even for the finite γ

(nonunitary quantum walks). This keeps holding as long as
the absolute value of the right-hand side in Eq. (15) does
not exceed one, which is consistent with the condition to
keep ξk real. The value of γ used for Fig. 3(c) corresponds
to this limit and the quasienergy gap closes at ε = 0, the
so-called exceptional point [5]. When γ exceeds this value,
part of the quasienergy whose components of real number
are zero exhibits finite values of imaginary number, as shown
in Fig. 3(d). These observations suggest the presence of PT
symmetry or more generalized symmetries in Refs. [53–55].
Henceforth, we show that there exists PT symmetry, as
Ref. [45] has stated. In addition, from Eq. (15), we also
understand that the quasienergy becomes symmetric with
respect to ε = 0. Indeed, these properties can be understood
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FIG. 3. The quasienergy in Eq. (15) with various gain-loss
parameters when θ1 = π/4, θ2 = −π/7, and φ = 0. The left column
shows the quasienergy as a function of k where the solid (dashed)
curves represent the real (imaginary) part of the quasienergy, while
the right column shows the eigenvalue on a unit circle indicating
|λ| = 1 on a complex plain. (a) In the case of eγ = 1, all of the
quasienergies are real as the time-evolution operator is unitary.
(b) In the case of eγ = 1.3, the quasienergy is entirely
real although the time-evolution operator is nonunitary, and
quasienergy gaps around ε = 0,π open. (c) In the case of eγ =
exp{cosh−1[(cos θ1 cos θ2 − 1)/(sin θ1 sin θ2)]/2} = 1.34 . . . , while
the quasienergy is entirely real, the quasienergy gap around ε = 0
closes. (d) In the case of eγ = 1.5, the quasienergy becomes complex
for |k|/π � 0.1, and the gap closes.

from symmetries embedded in the nonunitary time-evolution
operator in Eq. (14), which is also shown in the following
subsections.

1. PT symmetry

We introduce the parity symmetry and TRS operators,
P and T , in the position and momentum representations as
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follows;

P =
∑

n

|−n〉〈n| ⊗ P̃ =
∑

k

|−k〉〈k| ⊗ P̃, (17)

T =
∑

n

|n〉〈n| ⊗ T̃ =
∑

k

|−k〉〈k| ⊗ T̃ , (18)

where P̃ and T̃ act on the internal space of the time-evolution
operator. We understand that the parity-symmetry operator P
flips the sign of momentum k because the operator P changes
the position n to −n and the TRS operator T also flips the sign
of k since the operator T is an antiunitary operator including
a complex conjugation K.

Then, we convert Eqs. (6)–(8) for the Hamiltonian into
those for the time-evolution operator in Eq. (14). By using
the relation between the time-evolution operator and the
effective Hamiltonian U = e−iH , we derive relations for parity
symmetry, TRS, and PT symmetry as

PUP−1 = U,

T UT −1 = U−1,

(PT )U (PT )−1 = U−1.

By substituting Eqs. (17) and (18) into the above relations, we
obtain

P̃Ũ (k)P̃−1 = Ũ (−k), (19)

T̃ Ũ (k)T̃ −1 = Ũ−1(−k), (20)

(P̃T̃ )Ũ (k)(P̃T̃ )−1 = Ũ−1(+k), (21)

respectively.
In order to identify symmetries, we need to examine

whether the time-evolution operator of the nonunitary quantum
walk in Eq. (14b) satisfies the above relations. For parity sym-
metry in Eq. (19), on one hand, we can straightforwardly obtain
relations for the same elemental operators by comparing the
left and right hand sides of Eq. (19) by substituting Eq. (14b),
e.g., P̃ S̃(k)P̃−1 = S̃(−k),P̃G̃P̃−1 = G̃, and etc. On the other
hand, for TRS and PT symmetry, there appear the inverse
operators of the time-evolution operator on the right-hand side
of Eqs. (20) and (21), which invert the time order of elemental
operators and then prevent us from deriving the one to one
correspondence for the same elemental operators. Indeed,
according to recent work on symmetries which are important
to topological phases of quantum walks, it has become clear
that the presence of the inverse of time-evolution operators
in symmetry relations prevents us from straightforwardly
identifying the symmetries. To overcome this difficulty, the
concept of symmetry time frame has been introduced [48].
The symmetry time frame requires a redefinition of the
time-evolution operator by shifting the origin of time so
that the time-evolution operator exhibits symmetric order of
elemental operators in the time direction. In the case of Ũ (k)
in Eq. (14b), the redefined time-evolution operator Ũ ′(k) fitted
in the symmetric time frame is written down as

Ũ ′(k) = C̃(θ1/2) S̃(k) 	̃ G̃ C̃(θ2) G̃−1 	̃ S̃(k) C̃(θ1/2), (22)

which we can obtain by the unitary transformation Ũ ′(k) =
ei

θ1
2 σ1Ũ (k)e−i

θ1
2 σ1 . Here, we use the commutative property

between operators G̃,S̃(k), and 	̃ as they are described by
exponentials of σ3. By substituting Ũ ′(k) in Eq. (22) into
Eqs. (19)–(21), we obtain conditions for elemental operators
C̃(θi),G̃,S̃(k), and 	̃ to retain each symmetry. For example,
in the case of TRS, we obtain the following two equations
from the left and right hand sides of Eq. (20) by substituting
Eq. (22):

LHS = [T̃ C̃(θ1/2)T̃ −1][T̃ S̃(k)T̃ −1][T̃ 	̃T̃ −1][T̃ G̃T̃ −1] · · · ,

RHS = [C̃−1(θ1/2)][S̃−1(−k)][	̃−1][G̃] · · · .

Comparing the two equations, we obtain conditions for the
elemental operators, such as T̃ C̃(θ1)T̃ −1 = C̃−1(θ1), and so
on. We summarize conditions on all elemental operators for
various symmetries in Table I. Using Table I, we discuss
symmetries of the time-evolution operator by starting from the
unitary case, then including the gain-loss and phase operators
step by step.

The case γ = φ = 0. In this case, the time-evolution
operator Ũ ′(k) describes the unitary quantum walk and we
consider conditions only on C̃(θi) and S̃(k) in Table I. From the
anticommutation relations of Pauli matrices, we identify that
Ũ ′(k) satisfies parity symmetry and TRS with the following
symmetry operators:

P̃ = σ1, T̃ = σ1K. (23)

Therefore, by combing the two symmetry operators in Eq. (23),
the PT -symmetry operator is determined as

P̃T̃ = σ0K, (24)

where σ0 = diag(1,1), and Ũ ′(k) also possesses PT symme-
try.

The case γ �= 0 and φ = 0. The finite γ makes Ũ ′(k) the
nonunitary time-evolution operator and we should consider
the additional condition on the gain-loss operator G̃ as well
as those on C̃(θi) and S̃(k) in Table I. Since conditions on
G̃ for parity symmetry and TRS by symmetry operators in
Eq. (23) are not satisfied, the time-evolution operator Ũ ′(k) has
neither parity symmetry nor TRS. However, when we consider
PT symmetry, the condition (P̃T̃ )G̃(P̃T̃ )−1 = G̃ with P̃T̃
in Eq. (24) is satisfied. Therefore, we identify PT symmetry
and confirm that the nonunitary time-evolution operator Ũ ′(k)
(with φ = 0) preserves PT symmetry.

The case γ �= 0 and φ �= 0. Now, the condition on the phase
operator in Table I is also maintained to retain PT symmetry.
We easily confirm the condition (P̃T̃ )	̃(P̃T̃ )−1 = 	̃∗ with
P̃T̃ in Eq. (24). Thereby, we conclude that, nevertheless,
individual parity symmetry and TRS are broken in the
nonunitary quantum walk with the phase operator in the
homogeneous system; there PT symmetry is present.

We recall that the sufficient condition for quasienergy
being real requires the other condition, namely, that the
eigenvector of the nonunitary time-evolution operator is also
one of the PT -symmetry operator. To check this, applying the
unitary transformation ei(θ1/2)σ1 to the eigenvector of Ũ (k) in
Eq. (16), the eigenvector of Ũ ′(k) fitted in the symmetry time
frame is described as |� ′

k,±〉 = ei(θ1/2)σ1 |�k,±〉. Then, we can
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TABLE I. A list of conditions for elemental operators so that the time-evolution operator Ũ ′(k) satisfies parity, time-reversal, and PT ,
as well as chiral, particle-hole, and parity-chiral symmetries. The first column indicates each symmetry, the second column represents the
symmetry operators X̃ = P̃, T̃ , P̃T̃ , �̃, �̃, and P̃�̃, and the third column X̃u shows specific forms of symmetry operators which are derived
from the unitary time-evolution operator with γ = φ = 0. The fourth to seventh columns show conditions for the elemental operators to
satisfy each symmetry. This part of the table should be read according to the following example: in order to satisfy parity symmetry
the coin operator should satisfy P̃C̃(θi)P̃−1 = C̃(θi). The [yes] or [no] next to each condition explains whether the condition is satisfied
or not with the symmetry operator X̃u. Note that C̃(θi) = eiθiσ1 , S̃(k) = eikσ3 , G̃ = eγσ3 , and 	̃ = eiφσ3 . We use the following relations:
C̃−1(θi) = C̃(−θi), S̃−1(k) = S̃(−k), S̃−1(−k) = S̃(+k), and 	̃−1 = 	̃∗.

Symmetry X̃ X̃u X̃C̃(θi)X̃−1 X̃S̃(k)X̃−1 X̃G̃X̃−1 X̃	̃X̃−1

Parity symmetry P̃ σ1 C̃(+θi) [yes] S̃(−k) [yes] G̃ [no] 	̃ [no]
Time-reversal symmetry (TRS) T̃ σ1K C̃(−θi) [yes] S̃(+k) [yes] G̃ [no] 	̃∗ [no]
PT symmetry P̃T̃ σ0K C̃(−θi) [yes] S̃(−k) [yes] G̃ [yes] 	̃∗ [yes]

Chiral symmetry �̃ iσ2 C̃(−θi) [yes] S̃(−k) [yes] G̃ [no] 	̃∗ [yes]
Particle-hole symmetry (PHS) �̃ σ3K C̃(+θi) [yes] S̃(−k) [yes] G̃ [yes] 	̃ [no]
Parity-chiral symmetry (PCS) P̃�̃ σ3 C̃(−θi) [yes] S̃(+k) [yes] G̃ [yes] 	̃∗ [no]

straightforwardly confirm the equation

P̃T̃ |� ′
k,±〉 = ±e+i2ηk |� ′

k,±〉,
as long as ξk is real (then ε is also real). Therefore, we confirm
that the entirely real quasienergy in Eq. (15) originates in the
PT symmetry of the nonunitary time-evolution operator.

2. Extra symmetries

The time-evolution operator of the nonunitary quantum
walk in Eq. (22) can possess extra symmetries. Here, we
discuss such symmetries which are intensively studied for
topological phases of the quantum walk [44,48–52]. These
extra symmetries are chiral symmetry and particle-hole sym-
metry (PHS) defined for a Hamiltonian H as

� H �−1 = −H, (25)

� H �−1 = −H, (26)

respectively. The chiral-symmetry operator � is a unitary
operator, while the PHS operator � is an antiunitary one.
These two symmetries guarantee that the system has a pair of
eigenstates with opposite sign of eigenvalues if the eigenvalue
is real. Accordingly, eigenenergy appears symmetric with
respect to zero energy. Following the same procedure as before,
we convert Eqs. (25) and (26) to symmetry relations for the
time-evolution operator:

� U �−1 = U−1,

� U �−1 = U.

Defining the symmetry operators as

� =
∑

n

|n〉〈n| ⊗ �̃ =
∑

k

|k〉〈k| ⊗ �̃,

� =
∑

n

|n〉〈n| ⊗ �̃ =
∑

k

|−k〉〈k| ⊗ �̃,

we derive relations to retain chiral symmetry and PHS:

�̃ Ũ (k) �̃−1 = Ũ−1(+k), (27)

�̃ Ũ (k) �̃−1 = Ũ (−k). (28)

Substituting Eq. (22) into Eqs. (27) and (28), we again obtain
conditions on the elemental operators to retain chiral symmetry
and PHS as shown in Table I. Due to 2π periodicity of the
quasienergy, if the time-evolution operator satisfies Eq. (27)
and/or (28), the quasienergy appears symmetric with respect
to ε = 0 and π .

The case γ = φ = 0. At first, we focus on conditions on
the coin and shift operators in the case of chiral symmetry in
Table I for this unitary quantum walk. We find that, with the
symmetry operator �̃ = iσ2, chiral symmetry is retained. It is
known that if TRS and chiral symmetry are presented, PHS is
simultaneously retained with the symmetry operator �̃ = �̃T̃ .
In summary, by using

�̃ = iσ2, �̃ = σ3K, (29)

the unitary time-evolution operator Ũ ′(k) has extra symme-
tries, chiral symmetry, and PHS.

The case γ �= 0 and φ = 0. In order to retain chiral
symmetry and PHS for this nonunitary quantum walk, the
gain-loss operator G̃ should be unchanged (X̃G̃X̃−1 = G̃)
when X̃ = �̃ or �̃ in Eq. (29) is acted on. We understand that
X̃ = �̃ keeps G̃ as is, while X̃ = �̃ does not. Thereby, only
PHS survives after including gain and loss effects. However,
we can introduce a new symmetry combined with parity and
chiral symmetries,

(P�) U (P�)−1 = U−1,

which we call parity-chiral symmetry (PCS). Taking account
of Eqs. (19) and (27), we derive the symmetry relation for
PCS,

(P̃�̃) Ũ (k) (P̃�̃)−1 = Ũ−1(−k), (30)

and then obtain conditions on each elemental operator as listed
in Table I. We note that PCS also guarantees the symmetric
behavior of the quasienergy with respect to ε = 0 and π . From
Eqs. (23) and (29), the PCS operator becomes

P̃�̃ = σ3, (31)

(we ignore an unimportant minus sign). With the above
symmetry operator P̃�̃, we confirm that Ũ ′(k) possesses PCS,
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and the symmetric property of the quasienergy is guaranteed
by PHS and PCS.

The case γ �= 0 and φ �= 0. Finally, we consider the nonuni-
tary quantum walk with finite phases whose quasienergy
is given in Eq. (15). To retain PHS and PCS, the phase
operator should satisfy �̃	̃�̃−1 = 	̃ and (P̃�̃)	̃(P̃�̃)−1 =
	̃∗, respectively. However, both conditions are not satisfied
with the symmetry operators in Eqs. (29) and (31). Thereby,
the finite γ and φ break all symmetries which guarantee a pair
of eigenstates with the opposite quasienergies.

While the above result implies that the pair of quasienergies
in Eq. (15) does not originate in symmetry, we can still find the
contributions of symmetry by introducing a modified version
of parity symmetry defined below. Because of translation
symmetry in the homogeneous system, we reexpress the
time-evolution operator in Eq. (22) by including the phase
operator into the shift operator as

Ũ ′(k) = C̃(θ1/2) S̃(k + φ) G̃ C̃(θ2) G̃−1 S̃(k + φ) C̃(θ1/2).

(32)

Next, we introduce the modified parity-symmetry operator
with phase modulations defined as

Pφ =
∑

n

e−i2φn|−n〉〈n| ⊗ P̃φ =
∑

k

|−k − 2φ〉〈k| ⊗ P̃φ.

By combing the modified parity-symmetry operator Pφ and
chiral-symmetry operator �, the condition on the shift operator
S̃(k + φ) to retain modified PCS, (P̃φ�̃)Ũ ′(k)(P̃φ�̃)−1 =
Ũ ′−1(−k − 2φ), becomes

(P̃φ�̃)S̃(k + φ)(P̃φ�̃)−1 = S̃(k + φ),

which is satisfied by the symmetry operator P̃φ�̃ = σ3.
Note that conditions for C̃(θi) and G̃ to retain modi-
fied PCS are the same with those of PCS, since both
operators are k independent. Thereby, we identify that
the pair of quasienergies in Eq. (15) originates from
modified PCS.

B. Symmetries in inhomogeneous systems

Next, we consider PT symmetry, PHS, and PCS of the
time-evolution operator of the nonunitary quantum walk in
Eq. (3) with position-dependent parameters. Therefore, we
need to consider the time-evolution operator in the position
representation. Taking the symmetry operators for internal
space in Eqs. (24), (29), and (31) into account, those in the
position representation are described as

PT =
∑

n

|−n + q〉〈n| ⊗ σ0K, (33a)

� =
∑

n

|n〉〈n| ⊗ σ3K, (33b)

P� =
∑

n

|−n + q〉〈n| ⊗ σ3, (33c)

where the index q is introduced to determine the origin of
the space reflection point (see Fig. 4) because we treat lattice
systems. By using the symmetry operators in Eqs. (33a)–(33c),

FIG. 4. The difference of the reflection points of the parity-
symmetry operator. When q = 0, the reflection point is on the site
n = 0. When q = ±1, the reflection point is between sites n = 0 and
n = ±1.

each symmetry defined for the time-evolution operator in the
position representation becomes

(PT )U (PT )−1 = U−1, (34a)

�U�−1 = U, (34b)

(P�)U (P�)−1 = U−1. (34c)

Equations (33) and (34) guarantee that if two of the above
three symmetries are confirmed, there also exists the other
symmetry which is derived by combining the confirmed two
symmetries. Even in the position representation, we need to
use the time-evolution operator fitted into the symmetry time
frame written as

U ′ = C(θ1/2) S G2 	2 C(θ2) S G1 	1 C(θ1/2). (35)

As shown in Sec. III A, when parameters of the coin,
gain-loss, and phase operators are position independent,
conditions to retain each symmetry are reduced to conditions
to the elemental operators as summarized in Table I. This
simplification is based on the fact that all of the operators
G̃,S̃(k), and 	̃ are described by exponentials of σ3, and
then they are commutative. However, when the parameters
depend on position, the shift operator S is not commutative
with gain-loss operator Gi and phase operator 	i . Thus, we
need to consider conditions for operators SGi	i as a whole.
For example, the condition to retain PT symmetry for the
time-evolution operator is derived as follows. By substituting
Eq. (35) into Eq. (34a), the left and right hand sides become

LHS = [(PT ) C(θ1/2) (PT )−1] [(PT ) SG2	2 (PT )−1] · · · ,

RHS = [C−1(θ1/2)] [(SG1	1)−1] · · · ,

respectively. By comparing these two equations, we obtain
the conditions to retain PT symmetry for the time-evolution
operator of the nonunitary quantum walk in inhomogeneous
systems as

(PT )C(θi)(PT )−1 = C−1(θi), (36a)

(PT )(SGi	i)(PT )−1 = (SGj	j )−1, (36b)

where i,j = 1,2 and i �= j . From Eq. (36), we obtain condi-
tions imposed on each position-dependent parameter to retain
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PT symmetry as

θi(n) = θi(−n + q), (37a)

g1,L(n) = [g2,L(−n + q + 1)]−1, (37b)

g1,R(n) = [g2,R(−n + q − 1)]−1, (37c)

φ1,L(n) = φ2,L(−n + q + 1), (37d)

φ1,R(n) = φ2,R(−n + q − 1). (37e)

We find that, on one hand, the parameter θi(n) of the coin
operator is uncorrelated in time direction, which means that
θ1(n) and θ2(n) can be determined independently. On the other
hand, parameters of gain-loss and phase operators have strict
restrictions in time direction as well as in position space. We
note that when conditions in Eqs. (37b) and (37c) are satisfied,
the absolute value of the determinant of the time-evolution
operator U in inhomogeneous systems remains to be one,
even though the determinant of each Gi is not one. We should
also recall that while the conditions Eq. (37) guarantee that
the time-evolution operator has PT symmetry, they do not
guarantee that eigenvectors of the time-evolution operator are
those of the PT -symmetry operator.

In the same way, we can obtain conditions to preserve PCS
and PHS for the time-evolution operator in inhomogeneous
systems. We find that PCS is maintained under the following
conditions:

θi(n) = θi(−n + q), (38a)

g1,L(n) = [g2,L(−n + q + 1)]−1, (38b)

g1,R(n) = [g2,R(−n + q − 1)]−1, (38c)

φ1,L(n) = −φ2,L(−n + q + 1), (38d)

φ1,R(n) = −φ2,R(−n + q − 1). (38e)

Comparing the above conditions, Eq. (38), with those for PT
symmetry in Eq. (37), we understand that while Eqs. (38a)–
(38c) are the same as Eqs. (37a)–(37c), the conditions on
phases φi,σ (n) to retain PT symmetry and PCS cannot be
simultaneously satisfied unless φi,σ (n) = 0. This gives another
conclusion that PHS is retained only if φi,σ (n) = 0 since PHS
can be defined as the combination of PT symmetry and PCS,
� = (PT ) (P�). By combining Eqs. (37) and (38), we also
understand that there is no constraint on θi(n) and gi,σ (n) to
retain PHS.

IV. APPLICATIONS

Finally, we apply results to retain various symmetries
obtained in Sec. III into specific models of nonunitary quantum
walks. At first, we identify symmetries of the nonunitary
quantum walk realized in the experiment [45]. Second, we
show the numerical results of the walker’s time evolution in
the homogeneous system considered in Sec. III A. For the
other example, we demonstrate that, for an inhomogeneous
nonunitary quantum walk where four distinct spatial regions
exist, the time-evolution operator possessesPT symmetry and
the quasienergy becomes entirely real.

A. Symmetries satisfied in the experiment

Here, we directly identify symmetries of the nonunitary
quantum walk realized in the experiment [45] from the
time-evolution operator. The time-evolution operator in the
experiment, Uex, is given by Eq. (3) by assigning the following
parameters:

θ1(n) = θ2(n) = π/4, (39a)

g1,L(n) = [g2,L(n)]−1 = e+γ0 , (39b)

g1,R(n) = [g2,R(n)]−1 = e−γ0 , (39c)

φ1,L(n) = φ2,L(n) = 0, (39d)

φ1,R(n) = φ2,R(n) =
{−φ0 for mod(n + 3,4) = 1, 2,

+φ0 for mod(n + 3,4) = 3, 0.

(39e)

The quasienergy of this time-evolution operator becomes

cos(±ε) = − 1
2 cos φ0 cosh(2γ0) ±

√
fk(γ0,φ0), (40)

where

fk(γ0,φ0)= 1
8 [cosh(4γ0)(cos2 φ0 − 1)−3 cos2 φ0+4+cos k].

Regarding PT symmetry, we can confirm that all parameters
in Eq. (39) satisfy conditions in Eq. (37) to retain PT
symmetry, especially, by choosing q = −1 for φi,L(n) which
only depends on the position. Therefore, we can identify PT
symmetry of the nonunitary time-evolution operator Uex with
the symmetry operator in Eq. (33a).

From Eq. (40) and Fig. 5, we expect that the time-evolution
operator Uex also has PHS and PCS because there appear
pairs with the opposite quasienergies ±ε. However, as shown
in Sec. III B, the finite φi,σ (n) prevents PHS and PCS. This
problem is solved by introducing a modified PHS operator
with a position shift by r as

�r =
∑

n

|n + r〉〈n| ⊗ σ3K. (41)
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FIG. 5. The quasienergy as a function of k in Eq. (40) with
various gain-loss parameters when φ0 = 6π/5. The solid (dashed)
curve represents the real (imaginary) part of the quasienergy. (a)
When eγ = 1.1, the quasienergy is entirely real. (b) When eγ = 1.4,
a part of the quasienergy becomes complex. In both cases, quasienergy
exists being symmetric with respect to ε = 0.
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By using the modified PHS operator �r , the condition on the
phase parameter to satisfy �rU�−1

r = U is derived as

φi,σ (n) = −φi,σ (n + r). (42)

Inputting r = 2, we confirm that the phase parameter in
Eq. (39e) satisfies Eq. (42). Therefore, the time-evolution
operator Uex also preserves modified PHS.

B. Time evolution of probability distributions of homogeneous
nonunitary quantum walks

Next, we numerically demonstrate the time evolution of
probability distributions of nonunitary quantum walks in
homogeneous systems. To this end, we employ the time-
evolution operator in Eq. (14). We note that we define the
probability distribution at a position n at a time t as

|ψn(t)|2 = |ψn,L(t)|2 + |ψn,R(t)|2

even for nonunitary quantum walks although, in non-
Hermitian quantum mechanics, the biorthogonality of eigen-
vectors (of a Hamiltonian or time-evolution operator) should

be taken into account for normalized inner products. Because
of this, the sum of the probability distributions over the position
space

P (t) =
∑

n

|ψn(t)|2

need not be one for the nonunitary quantum walk, while P (t) =
1 for the unitary quantum walk. This choice stems from the
fact that the quantity |ψn(t)|2 calculated numerically agrees
well with the intensity distribution of laser pulses observed
experimentally in the optical-fiber loops with loss as reported
in Ref. [38].

In Fig. 6, we show numerical results on the time evo-
lution for the homogeneous quantum walk in Eq. (14).
The parameters are the same with the parameter set in
Fig. 3, namely, (a) eγ = 1 (the unitary quantum walk),
(b) eγ = 1.1 (the nonunitary quantum walk with entirely
real quasienergy), (c) eγ = 1.34 . . . (the nonunitary quantum
walk at the exceptional point), and (d) eγ = 1.5 (the nonuni-
tary quantum walk with complex quasienergy). Comparing
the probability distributions in Figs. 6(a) and 6(b), when
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FIG. 6. The time evolution for the quantum walk in the homogeneous system with various gain-loss parameters: (a) eγ = 1 (the unitary
quantum walk), (b) eγ = 1.1 (the nonunitary quantum walk with entirely real quasienergy), (c) eγ = 1.34 . . . (the nonunitary quantum walk
at the exceptional point), and (d) eγ = 1.5 (the nonunitary quantum walk with complex quasienergy). The other parameters θ1 = π/4,θ2 =
−π/7,φ = 0, and the initial state |ψ(0)〉 = |0〉 ⊗ |R〉 are used for all cases (a)–(d). Top panels: The contour maps of the logarithm of
the probability distribution ln[|ψn(t)|2] in the position and time plane. Middle panels: The probability distributions after 200 time steps
|ψn(t = 200)|2. Bottom panels: The time step dependence of the sum of the probability distributions P (t).
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FIG. 7. (a) A schematic view of the nonunitary quantum walk with four distinct spatial regions. (b) A schematic view to explain gain-loss
operations in the experiment by the optical-fiber loops.

the nonunitary quantum walk has entirely real quasienergy,
the time evolution is not largely different from that of the
unitary quantum walk. One exception is that the sum of the
probability distribution P (t) exhibits tiny oscillations around
P (t) ≈ 1 with time in the nonunitary case [Fig. 6(b), bottom],
while P (t) = 1 in the unitary quantum walk [Fig. 6(a),
bottom].

However, as increasing γ further, the time evolution of
the nonunitary quantum walk drastically changes. At the
exceptional point, the sum of the probability distribution
P (t) grows linearly with time as shown in Fig. 6(c), bottom,
and when part of the quasienergies become complex, P (t)
grows exponentially with time as shown in Fig. 6(d), bottom.
Remarkably, in the latter case, the probability distribution
after 200 time steps is well approximated by the Gaussian
distribution [Fig. 6(d), middle], in contrast with other cases
(a)–(c). We note that linear and exponential growths of the
sum of the probability distributions P (t) are observed in
Ref. [45] under a different setup, and the Gaussian distribution
of the probability distribution is also reported in Refs. [24,38].
Therefore, these observations which are available by experi-
ments can be considered as a manifestation of nonunitary time
evolution.

C. Nonunitary quantum walks with four distinct regions

Although we can construct various time-evolution operators
of nonunitary quantum walks in inhomogeneous systems with
PT symmetry by employing the conditions in Eq. (37), keep-
ing a real number of the quasienergy requires the additional
condition that eigenstates of the time-evolution operator are
those of the PT -symmetry operator. Since it is our empirical
fact that the additional condition is often broken in systems
with strongly position-dependent parameters, here we treat a
rather moderate inhomogeneous nonunitary quantum walk as
shown in Fig. 7(a). This system has four distinct spatial regions
with different parameters by combinations of LA/B and L+/−
where the regions are defined as

LA : − L/2 � n � L/2,

LB : n � −L/2 − 1, n � L/2 + 1,

L+ : n � 0,

L− : n � −1.

Taking account of Eq. (37) with q = 0, we choose parameters
of the elemental operators as follows:

θ1(n) =
{+π/4 n ∈ LA,

−π/8 n ∈ LB,
(43a)

θ2(n) =
{−π/3 n ∈ LA,

+π/6 n ∈ LB,
(43b)

g1,L(n) = [g2,L(−n + 1)]−1 =
{

1.1 n ∈ L−,

1.2 n ∈ L+,
(43c)

g1,R(n) = [g2,R(−n + 1)]−1 =
{

1.2 n ∈ L−,

1.1 n ∈ L+,
(43d)

φ1,L(n) = φ2,L(−n + 1) =
{
π/4 n ∈ L−,

π/8 n ∈ L+,
(43e)

φ1,R(n) = φ2,R(−n + 1) =
{−π/3 n ∈ L−,

−π/6 n ∈ L+.
(43f)

We emphasize that θi(n) is symmetric with respect to the origin
of position space, while gi,σ (n) and φi,σ (n) are not. We also
remark that the first (second) gain-loss operator G1(2) only
amplifies (dumps) wave function amplitudes of both left and
right mover components as shown in Fig. 7(b), in contrast to
the experimental setup in Fig. 1(a).
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FIG. 8. The eigenvalue λ (green crossed) of the time-evolution
operator of the nonunitary quantum walk with parameters in Eq. (43)
plotted on a complex plain.
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We numerically calculate eigenvalues of the time-evolution
operator U assigned the above parameters by imposing
periodic boundary conditions to both ends L − 1 and −L with
L = 128. As shown in Fig. 8 we clearly see that all eigenvalues
stay on a unit circle in a complex plane, which indicates
that the quasienergy is entirely real. Furthermore, eigenvalues
are not symmetric with respect to ε = 0,π , because the
position-dependent phase parameters φi,σ (n) break both PHS
and PCS.

V. SUMMARY AND DISCUSSION

We have explicitly defined the PT -symmetry operator
for the time-evolution operator of the nonunitary quantum
walk given in Eq. (3), and identified necessary and sufficient
conditions, Eq. (37), on position-dependent parameters of the
elemental operators to retainPT symmetry. Taking account of
the conditions, we have succeeded in clarifying the presence
of PT symmetry of the nonunitary quantum walk realized
in the experiment by using optical-fiber loops [45] from
the time-evolution operator. This has been accomplished for
the first time by employing the concept of the symmetry
time frame which had been developed in the recent work
on topological phases of quantum walks [44]. At the same
time, we have also studied extra symmetries embedded in
the time-evolution operator of the nonunitary quantum walk,
such as chiral symmetry, PHS, PCS, and so on. In Sec. IV B,
we have numerically demonstrated the time evolution of
probability distributions for the homogeneous nonunitary
quantum walk, and shown that those of the nonunitary quantum
walk with entirely real quasienergy are completely different
from those with complex quasienergy. Besides, we have also
demonstrated in Sec. IV C that the inhomogeneous nonunitary
quantum walk which has PT symmetry and even possesses
entirely real quasienergy is possible.

We believe that the result obtained in the present work
stimulates further developments on PT symmetry of nonuni-
tary time-evolution operators which has not yet been studied

enough, compared with non-Hermitian Hamiltonians. Also,
the conditions Eq. (37) would strongly support the experiment
by using the optical-fiber loops [45] as the versatile platform
for studying phenomena originating in PT symmetry. Besides
this, although we have focused on the optical-fiber setup
in the present work, our result can be straightforwardly
applied to other setups of the quantum walk. Furthermore, we
can easily generalize our theory to the nonunitary quantum
walk only with dissipation, which would be much easier
to realize in various experimental setups. In addition, since
we have shown that the nonunitary quantum walk can retain
important symmetries to establish topological phases, it would
be interesting to study topological phases and corresponding
edge states of the nonunitary quantum walk, which we will
report on elsewhere.

An important open problem is to identify a general-
ized condition to retain real quasienergy of the nonunitary
quantum walk. According to progress on PT symmetry of
non-Hermitian Hamiltonians, it is already known that the
argument on PT symmetry can be generalized as follows:
if a Hamiltonian H satisfies a pseudo-Hermiticity condition
ηHη−1 = H † with a positive operator η which may not
be related to parity symmetry, eigenenergy could become
real [54,55]. Indeed, we observed possibly related phenomena
in our nonunitary quantum walk setup because quasienergy
becomes entirely real even when θ1(n) is completely random
in position space. This suggests the possibility of retaining real
quasienergy of the nonunitary time-evolution operator without
strong constraint on the position space. We leave this issue as
a future work.
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[39] A. Schreiber, A. Gábris, P. R. Rohde, K. Laiho, M. Štefaňăk,
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