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ABSTRACT

We introduce a methodology for analysing infinite horizon economies with two agents,

one good, and incomplete markets. We provide an example in which an agent’s equilib-

rium consumption is zero eventually with probability one even if she has correct beliefs

and is marginally more patient. We then prove the following general result: if markets

are effectively incomplete forever then on any equilibrium path on which some agent’s

consumption is bounded away from zero eventually, the other agent’s consumption is zero

eventually–so either some agent vanishes, in that she consumes zero eventually, or the

consumption of both agents is arbitrarily close to zero infinitely often. Later we show that

(a) for most economies in which individual endowments are finite state time homogeneous

Markov processes, the consumption of an agent who has a uniformly positive endowment

cannot converge to zero and (b) the possibility that an agent vanishes is a robust out-

come since for a wide class of economies with incomplete markets, there are equilibria in

which an agent’s consumption is zero eventually with probability one even though she has

correct beliefs as in the example. In sharp contrast to the results in the case studied by

Sandroni (2000) and Blume and Easley (2006) where markets are complete, our results

show that when markets are incomplete not only can the more patient agent (or the one

with more accurate beliefs) be eliminated but there are situations in which neither agent

is eliminated.
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1. INTRODUCTION

This paper introduces a methodology for analysing the asymptotic behaviour of indi-

vidual consumption in general equilibrium in economies where the asset market is incom-

plete. The case where markets are dynamically complete and endowments are bounded

has been analysed extensively and the picture that emerges is that the degree of impa-

tience and the accuracy of beliefs are the key elements that determine whether an agent’s

consumption is eventually bounded away from zero, i.e. “survives”, thereby ensuring that

in the long run she matters for asset pricing; attitudes toward risk are irrelevant. This

is significant because it appears to validate the market selection hypothesis (henceforth,

MSH) which, in the weak form due to Alchian (1950) and Friedman (1953), requires that

only agents whose behaviour is consistent with rational and informed maximization of

returns can survive and affect prices in the long run.1 The fact that survival depends only

on discount factors and the accuracy of beliefs could reflect an intrinsic property of com-

petitive markets; it could also be driven by the assumption that markets are dynamically

complete. Very little is known about this and that is the question we address.

We consider an infinite horizon economy with only one good, two agents, a single

short lived inside asset, and dynamically incomplete markets. Our assumptions on the

structure of uncertainty are quite general since we only require that one of a fixed and

finite number of states is realised each period and that the one period ahead conditional

probability of the occurrence of a state is uniformly positive. Our assumptions on beliefs

are also quite general (see Section 2.6). We use a standard notion of equilibrium in which

agents maximise subject to a sequence of budget constraints and the requirement that the

value of debt be uniformly bounded across dates and events.2 Our formulation includes

recursive equilibria that can be represented by a Markov chain (Duffie et al (1994) and

Ljungqvist and Sargent (2004)), a particularly important case in macroeconomics. Our

interest is in the asymptotic behaviour of equilibrium consumption and it is well known

that studying that is equivalent to studying the evolution through time of the ratio of the

values of the derivatives of the Bernoulli functions of the two agents, yt.

For pedagogical reasons, we briefly return to the special case that arises when markets

are dynamically complete and endowments are bounded. In such a framework, equilibrium

allocations are Pareto optimal and so, at an interior allocation, the utility gradients of the

different agents point in the same direction. When preferences are additively separable

across time, the key implication is that the ratio of (the one-period ahead intertemporal)

marginal rates of substitution of the two agents weighted by the discount factors is one

independent of the date and event; equivalently, yt can be written as the product of the

ratio of the discount factors, the ratio of the beliefs, and an initial condition. So if both

the agents have correct beliefs (or even identical incorrect beliefs) and the same discount

factor then consumption of both is uniformly positive eventually, while if agents differ

1Cootner (1967) and Fama (1965) offered a stronger version of the MSH which claims that markets
select for investors with correct beliefs, which can be inferred from long run equilibrium prices.

2For more on the boundedness property see Magill and Quinzii (1994) and Levine and Zame (1996).
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in their degree of impatience, then only the most patient agent has uniformly positive

consumption eventually–a result conjectured by Ramsey (1928 pp. 558-559) and proved

by Becker (1980), Rader (1981) and Bewley (1982). With heterogeneous beliefs, Sandroni

(2000) showed that among agents with the same discount factor, traders who eventually

accurately predict infinite horizon events, and only those traders, have positive wealth

eventually; in the absence of such accurate predictors, the entropy of beliefs determines

survival and investors whose forecasts are persistently wrong vanish in the presence of a

learner. Sandroni considered a Lucas-tree economy, a restriction that is inessential since

Blume and Easley (2006) showed that Pareto optimality of the allocation is the key point;

as we emphasized earlier, none of the results depends on agents’ preferences towards risk.

We initiate our methodological innovation by writing yt as the ratio of two stochastic

processes where each is the product of conditional mean one random variables. Market

incompleteness typically implies that the ratio of marginal rates of substitution of the

two agents is not degenerate so that, with uniformly positive asset returns, yt grows with

positive conditional probability (since otherwise one of the two Euler equations would not

hold with equality). That is the key ingredient in Theorems 1 and 4.

Our general approach suggests a conjecture about the implications of market incom-

pleteness in infinite horizon economies where the Euler equations always hold with equal-

ity: the consumption of some agent comes arbitrarily close to zero infinitely often. That

still allows for an intriguing possibility that an example illustrates. In it agent 1 has

arbitrary CRRA preferences (but not logarithmic) and a positive stochastic endowment

forever, and agent 2 has logarithmic preferences and a positive endowment only at date

zero. We show that even if agents are equally patient and have correct beliefs, one can find

a time invariant asset structure such that the consumption of the agent with logarithmic

preferences converges to zero, i.e. “vanishes”, with probability one in every equilibrium.

A continuity argument shows that the same is true even if agent 2 is marginally more

patient or if she holds correct beliefs and agent 1 does not. The example shows that the

factors determining survival with complete markets have little relevance when markets

are dynamically incomplete. It also suggests the conjecture: the consumption of some

agent is zero eventually. Our theorems refine and strengthen the two conjectures.

Our first result is very intuitive since it is based on the observation that on almost

every path one can have arbitrarily long strings of states where yt keeps rising because

yt grows with positive conditional probability, and because we assume that the likelihood

ratio is eventually uniformly bounded across paths. This fact can be shown to imply that

if a prespecified agent has consumption that is bounded away from zero eventually, then

every prespecified lower bound on the other agent’s consumption is violated eventually;

the technical tool used is Levy’s conditional form of the Second Borel-Cantelli Lemma, see

e.g. Freedman (1973). Theorem 1 shows that either (i) marginal rates of substitution are

equalized in the limit or (ii) the ratio of marginal rates of substitution displays one period

ahead conditional variability forever and then either (a) the equilibrium is complicated

in that the consumption of both agents will be arbitrarily close to zero infinitely often,
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or (b) one of the two agents will cease to consume eventually, as in the example. The

result applies equally regardless of whether beliefs are homogeneous or heterogeneous.3

For Theorem 1 we assume that the asset pays a uniformly positive amount and that the

one period ahead conditional probability of the occurrence of a state is uniformly positive,

assumptions that are standard although they can be weakened.

That one of the two agents’ consumption vanishes is surprising and one would like

to identify situations where such a result cannot be true. In Theorem 2 we consider

the particular case, often considered in the applied general equilibrium literature, where

individual endowments follow a finite state time homogeneous Markov process. We show

that, for most endowment distributions in such economies, if an agent’s endowment is

uniformly positive then the set of paths where her consumption converges to zero has

measure zero. We remark that the result holds for all discount factors and all beliefs that

are compatible with the Markov chain structure of endowments. The intuition for the

result is that the agent who vanishes can face arbitrarily long sequences in which the same

state is realized and in such an event her debt is uniformly bounded only if it is maintained

at a specific constant value that may depend on the state. But only if endowments are

suitably special will debt remain confined to such a finite set of sustainable debt levels.

One may read Theorem 2 as suggesting that an agent vanishes in only rather spe-

cial situations. However, it might be more appropriate to bear in mind the restrictive

assumptions under which Theorem 2 is proved: that debt is uniformly bounded, that

endowments follow a finite Markov chain, and that endowments are uniformly positive.

It is clear that the latter two are assumed for analytical convenience only; also, there are

other notions of equilibrium in the literature in which debt is not uniformly bounded.

Theorem 2 also provides a different route to show that long run equilibrium behaviour

depends on whether markets are complete. The result provides conditions under which an

agent cannot vanish; yet, if the agent with a uniformly positive endowment is less patient

or has incorrect beliefs then she would vanish if markets were to be complete.

Our final result provides sufficient conditions for an agent to vanish in equilibrium. We

say that an agent’s one period ahead marginal valuation of the asset is “predetermined”

if the asset payoff times the value of the derivative of the agent’s Bernoulli function

is constant across immediate successor states. We first show that if beliefs are correct

then, among feasible consumption processes which satisfy the Euler equations, those for

which some agent’s valuation is always predetermined lead to that agent consuming zero

eventually on almost every path. We then propose a method that generates processes

with the stated properties that are uniquely specified for each value of consumption at the

initial date and we provide a condition under which the supporting prices are summable.

To show that there are equilibria with the “predeterminedness” property we proceed

3It also applies to economies with a retradable long lived asset with strictly positive returns–we do
not consider such economies for notational simplicity. Duffie et al (1994) provide an existence theorem
for Lucas-tree economies with incomplete markets in which consumption is uniformly bounded away from
zero. For their result it is crucial that there are no short sales and no one period inside assets either.
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in two stages. First, we provide two sets of sufficient conditions for verifying that given

consumption processes can be supported as equilbria. The conditions include the require-

ments that the allocation is aggregate feasible, that the utility values are well defined,

that the Euler equations are satisfied, that the supporting prices are summable (or a re-

lated weaker condition), and a condition that allows one to verify that the value of debt

is uniformly bounded. That result, Theorem 3, could be of independent interest.4

Finally, Theorem 4 provides sufficient conditions under which there are allocations that

satisfy both the “predeterminedness” property and the conditions of Theorem 3. This

lets us identify a family of “no trade” equilibria that are supported with trivial, hence

uniformly bounded, asset portfolios. We then show that for each such no trade equilibrium

there is a family of endowment perturbations that reallocate the total endowment across

the two agents so that each agent’s endowment is uniformly positive but path dependent

(so that it cannot have finite support) for which the initial allocation continues to be an

equilibrium but now with asset trade. An implication of Theorem 4 is that an economy

in which a real bond is the only asset has many endowment distributions which lead to

equilibria in which a predetermined agent vanishes and this can happen even though her

endowment is uniformly positive; this result is stated as Corollary 2.

Our analysis exposes the ways in which examples of economies like ours that have

appeared in the literature are special (see Section 4.2). It also has implications for the

MSH. Based on an example of an economy like ours in which an agent with correct

beliefs is driven out while the agent who survives has wrong beliefs and a higher saving

rate, Blume and Easley (2006) conclude that savings behaviour driven by beliefs is the

key that explains survival, a point also raised by Sandroni (2005). Our Theorem 4, in

which all agents hold correct beliefs, suggests that, at the margin, market incompleteness

determines the fate of the trader. Theorem 4 and our example make very clear that even

the version of the MSH due to Alchian (1950) and Friedman (1953) does not hold in general

and that, in dynamically incomplete markets economies, no entropy measure that depends

only on the truth, beliefs, and the market structure can be critical to understanding

survival because any properly defined entropy measure must attain its maximum when

beliefs are correct and yet, as per the example, survival is not guaranteed.5

To summarize, for infinite horizon economies with two agents and one short-lived asset

we provide a complete characterization of limiting consumption behaviour when markets

are incomplete, show that to get simple limiting behaviour one agent must be driven out

of the market, and show that such a possibility is a robust outcome. By implication, the

MSH is valid in a robust sense only if the equilibrium allocation is Pareto optimal.6

4The existence result in Magill and Quinzii (1994) imposes a uniform lower bound on individual
endowments precluding its use in situations in which some agent’s consumption approaches zero.

5This answers a question posed by Sandroni (2005).
6There is a literature on the asymptotic behaviour of consumption in a partial equilibrium framework.

Chamberlain andWilson (2000) provide sufficient conditions on discount factors and interest rate paths for
consumption to have an unbounded subsequence with probability one. We show that such combinations
cannot arise in equilibrium in the class of economies considered in this paper.
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In Section 2 we introduce the model, define the relevant notions of survival, and discuss

the scope of the paper. In Section 3 we develop the general approach to study the long

run dynamics of equilibria and then present the leading example. Afterwards, in Section

4 we present Theorem 1 and our discussion of earlier examples in the literature. Section

5 shows that by suitably restricting aggregate and individual endowments one can ensure

that no agent vanishes since otherwise her debt would fail to be uniformly bounded.

Finally, in Section 6 we construct equilibria in which only one agent survives. Concluding

remarks are presented in Section 7. All proofs are gathered in the Appendix.

2. MODEL

2.1 PROBABILITY NOTATION

We consider an infinite horizon with dates t = 0, 1, 2, · · ·. The temporal state space
is S ≡ {1, 2, · · · , S}, S < ∞. St is the t-fold Cartesian product of S and Ω ≡ S∞ with

typical element ω = (s1, s2, · · ·) where st is the realization at date t ≥ 1. In fact, we

shall write ω = (s1(ω), s2(ω), · · ·). Also st ≡ (s1, · · · , st) and if we wish to make the
dependence on ω explicit, we shall use st(ω) ≡ (s1(ω), · · · , st(ω)). Ω(st) ≡ {ω ∈ Ω : ω =

(st, st+1, · · ·), st ∈ St} is a t-cylinder and Ft is the σ-algebra obtained by considering finite

unions of the sets Ω(st) for fixed t. This induces a sequence of σ-algebras on Ω denoted

{Ft}∞t=1 where Ft−1 ⊂ Ft for all t ≥ 1; we set F0 ≡ {∅,Ω}, and we set σ
³
∪t≥0 Ft

´
⊂ F .

That is our filtration with F a σ-algebra on Ω. All statements will be made using (Ω,F).
Any function X : Ω → R that is F-measurable is a random variable. σ(X) is the

σ-algebra generated by X.

For Q : F → [0, 1] a probability measure, let dQt be the Ft measurable function

defined by dQt(ω) ≡ Q(Ω(st(ω))) for t ≥ 1 and dQ0(ω) ≡ 1, i.e. dQt(ω) is the probability

of the cylinder Ω(st(ω)). Define the probability that state st(ω) occurs, conditional on

the occurance of st−1(ω), by Qt(ω) ≡ dQt(ω)
dQt−1(ω)

; when s = st(ω), the one period ahead

conditional probability that the state s occurs is Qt(ω). EQ[X|G] denotes the conditional
expectation of the random variable X taken with respect to the measure Q where the

σ-algebra G satisfies G ⊂ F . EQ[X|G] is a G-measurable random variable.

2.2 THE ECONOMY

There is only one perishable good at each date. An agent is denoted i ∈ I. There are
two agents, so I ≡ {1, 2}, each of whom lives forever.

ω ∈ Ω is chosen according to the objective probability measure P while agent i’s

subjective belief is denoted Pi. (Ω,F , P ) is the objective probability triple. (Ω,F , Pi),

i = 1, 2, are the triples used by the agents for their decisions. We shall assume that the

one period ahead conditional probability that state s occurs is uniformly positive and

agents correctly believe it to be so.7 So, define p ≡ inft≥0 infω∈Ω Pt(ω).

ASSUMPTION A.1: 0 < p ≤ inft≥0 infω∈Ω Pi,t(ω).

7This assumption is standard in the literature (see Sandroni (2000) and Blume and Easley (2006)).
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We have assumed that S is finite and that P satisfies A.1. These are minimal assump-

tions and allow for a very wide range of stochastic behaviour including nonstationarity.

Define Ψt ≡ {f : Ω → R : f isFt −measurable}. An element of ×∞t=0Ψt is a process.

Also define8 Ψ ≡ {(f0, f1, · · ·) ∈ ×∞t=0Ψt : supt≥0 k ft k∞,P< ∞}; since S < ∞ and A.1

taken together imply that supt≥0 k ft k∞,P= supt≥0 k ft k∞,Pi , we have used Ψ to denote

the normed space of processes.9 For the same reason, we define Ψt
+ ≡ Ψt ∩ {f(ω) ≥

0 for all ω ∈ Ω}, and Ψ+ ≡ Ψ ∩
³
×∞t=0 Ψt

+

´
.

EQ[f ] ≡ EQ[f |F0](ω) is the unconditional expectation where Q ∈ {P,P1, P2}.
The aggregate endowment process is denoted Z ≡ {Zt}∞t=0 and its range is [z, z̄] so that

for all t ≥ 0, Zt(ω) ∈ [z, z̄]. i’s endowment process is denoted zi ≡ {zi,t}∞t=0, a nonnegative
process, and z1 + z2 = Z.

ASSUMPTION A.2: [z, z̄] ⊂ R++. zi ∈ Ψ+.

ui is i’s state independent Bernoulli utility function. βi is agent i’s discount factor.

ASSUMPTIONA.3: For i ∈ I (i) ui : R++ → R is strictly increasing, strictly concave, and

C2 with limc→0+u0i(c) =∞, with ui(0) ≡ limc→0+ui(c) ∈ R ∪ {−∞}, and (ii) βi ∈ (0, 1).

There is a single one period asset available in zero net supply. Its return is r, where

r is a process with range [r, r̄] so that for all t ≥ 0, rt(ω) ∈ [r, r̄]. r is assumed to be

uniformly positive so Arrow securities are ruled out; the role of this restriction will be

discussed in Sections 4.1 and 4.2.

ASSUMPTION A.4: [r, r̄] ⊂ R++.

For the result in section 5 we assume that individual endowments and asset returns

follow finite state time homogeneous Markov processes. Formally

ASSUMPTION A.5: The image of Z is S. If st−1(ω) = st0−1(ω0) ≡ s and st(ω) = st0(ω
0) ≡

s0 then Pt (ω) = Pt0 (ω
0) ≡ πs,s0 , and Pi,t (ω) = Pi,t0 (ω

0) ≡ πi,s,s0 , for i = 1, 2. Given

zi : S→ R+ and r : S→ R+, the individual endowment and the asset payoff are also time

homogeneous Markov Processes defined as zi,t (ω) ≡ zi (Zt (ω)) and rt (ω) ≡ r (Zt (ω)).

πs,s0 induces Π, a Markov transition matrix. Πi, i = 1, 2, are similarly obtained.

The next assumption will be used to prove that the consumption processes that we

construct and use in Theorem 4 are supportable as equilibria. Notice that, under A.2-4,

1 < M <∞ where M is specified in A.6.

ASSUMPTION A.6: β2 < 1/M where M ≡ max
½
r̄·u02(z/2)
r·u02(z̄) ;

β1
β2

r̄·u01(z/2)
r·u01(z̄)

¾
.

8For h : Ω→ R an F-measurable function, k h k∞,Q≡ infA∈F,Q(A)=0 supω∈Ω/A |f(ω)| is the essential
supremum of h, with respect to the measure Q.

9S <∞ and A.1 also imply that Ψ coincides with the set of processes with the sup norm defined by
considering the supremum over the range of the process which is at most a countable set.
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We shall impose one further assumption that will be stated and discussed in Section

6.1 and is used to construct equilibria in which some agent necessarily vanishes.

REMARK 1: Assumption A.5 will be used only in the analysis of Section 5 to rule out

the possibility that some agent vanishes. Assumption A.6 will be used only in Section 6.

A weaker versions of A.6 that takes into account specific details of the endowment process

and asset return process suffices for Theorem 4 to go through. It is not stated formally

since the gain in generality is not justified by the notational complication.

An economy is a list (P,Z, P1, P2, β1, β2, u1, u2, r). A private ownership economy is a list

(P, z1, z2, P1, P2, β1, β2, u1, u2, r) and is related to an economy by the relation Z = z1+ z2.

i’s consumption process is denoted ci. We require ci ∈ Ψ+ and for such a ci, the utility

payoff is given by limT→+∞
PT

t=0 β
t
i EPi [ui(ci,t)]. i’s holding of the asset is the portfolio

process denoted θi. θi,−1(ω) = 0 is a convenient convention.
(c1, c2) is feasible if ci ∈ Ψ+ for i ∈ I and, for all (ω, t), c1,t(ω) + c2,t(ω) = Zt(ω).

At each (ω, t) there is a spot market for the good with the price normalized to one and a

market for the asset with prices given by the price process q. A market clearing allocation

consists of (c1, c2, θ1, θ2) such that (c1, c2) is feasible and, for all (ω, t), θ1,t(ω)+θ2,t(ω) = 0.

2.3 IDC EQUILIBRIUM

A notion of equilibrium in our model economy requires the specification of a budget

set subject to which each agent maximizes. Evidently, the budget set will incorporate a

sequence of budget constraints; an additional condition, in the form of a uniform bound

on the value of debt, is imposed to guarantee that a maximizer exists.

i’s IDC (implicit debt constraint) budget set is defined as

BC(q; zi) ≡
n
ci ∈ Ψ+ : there exists θi ∈ ×∞t=0Ψt such that

∀ t ≥ 0, ci,t(ω) + qt(ω) · θi,t(ω) ≤ zi,t(ω) + rt(ω) · θi,t−1(ω) ∀ω ∈ Ω

q · θi ∈ Ψ
o
.

The first set of conditions require that the consumption process be in i’s consumption

set, i.e. {ci,t}+∞t=0 is such that, for all t, ci,t is nonnegative, Ft-measurable and uniformly

bounded, the second that there exists a supporting portfolio process which together with

the consumption process satisfies the sequence of spot market budget constraints, and

the last condition is an implicit debt constraint that requires that the value of debt be

uniformly bounded.

For i, ci is an IDC maximizer given q if (i) ci ∈ BC(q; zi) and (ii) there is no c̃i ∈
BC(q; zi) for which

limT→+∞
PT

t=0 β
t
i EPi [ui(c̃i,t)] > limT→+∞

PT
t=0 β

t
i EPi [ui(ci,t)].

DEFINITION 1: An IDC equilibrium is a tuple (c∗1, c
∗
2, θ

∗
1, θ

∗
2, q

∗) that is a market clearing
allocation and, for i ∈ I, c∗i , with supporting portfolio θ∗i , is an IDC maximizer given q∗.
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Implicit debt constraints have been treated extensively in earlier literature on incom-

plete market economies with an infinite time horizon, e.g. Magill and Quinzii (1994) who

provide conditions such that in any equilibrium where a transversality condition holds at

every date-event, the value of debt is uniformly bounded. The IDC budget set does not

permit Ponzi schemes (see Magill and Quinzii (1994)).

2.4 EQUILIBRIUM–NECESSARY CONDITIONS

In our framework, at any interior solution to the maximization problem, a set of first

order conditions necessarily hold with equality (they also form an important part of the

sufficient conditions for identifying a maximizer). Say that ci is an Euler process at the

price process q if

∀ t ≥ 0, qt(ω) = βi · EPi [rt+1 · u0i(ci,t+1)|Ft](ω)

u0i(ci,t(ω))
∀ω ∈ Ω.

2.5 SURVIVAL

We shall use various notions to describe the asymptotic behaviour of consumption.

We follow the definitions that have been established in the literature.

DEFINITION 2: Fix a path ω.

Agent i dominates on ω if lim inft ci,t(ω) > 0.

Agent i survives on ω if lim inft ci,t(ω) = 0 and lim supt ci,t(ω) > 0.

Agent i vanishes on ω if lim supt ci,t(ω) = 0.

The definitions given are made operational by considering the behaviour of marginal

utility. Given consumption processes for i ∈ I, define

yt(ω) ≡ u02(c2,t(ω))
u01(c1,t(ω))

.

The proof of the following lemma is straightforward hence omitted.

LEMMA 1: Assume A.2 and A.3. Then

agent 2 dominates on ω ⇐⇒ 0 ≤ lim inft yt(ω) ≤ lim supt yt(ω) <∞;
agent 2 survives on ω ⇐⇒ 0 ≤ lim inft yt(ω) < lim supt yt(ω) =∞;
agent 2 vanishes on ω ⇐⇒ limt yt(ω) =∞.

The corresponding results for agent 1 are obtained by studying the behaviour of 1/yt(ω).

Both the agents dominate on ω if and only if 0 < lim inft yt(ω) ≤ lim supt yt(ω) <∞.

2.6 THE SCOPE OF THE PAPER–SUBJECTIVE BELIEFS

Although it might not be evident at first glance, our treatment of subjective beliefs

is very general in that it accomodates several cases considered in the learning literature

(see Blume and Easley (2006) and the references therein). Indeed, as Jackson, Kalai and
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Smorodinsky (1999) show, an agent’s subjective belief can always be represented through

a probability space (Ξ,B, μi), where μi represents “prior beliefs over a parameter”, and
“models” of the stochastic process generating the data specified through a parametric fam-

ily of probability measures P ξ : F → [0, 1], where the mapping ξ → P ξ is B−measurable.
This is because one can define agent i’s subjective belief Pi : F → [0, 1] as

Pi (A) ≡
Z
P ξ (A)μi (dξ) for all A ∈ F .

A well-known example of the procedure is the following. Let Ξ be a subset of the unit

simplex in RS. Any ξ ∈ Ξ generates a probability measure, pξ, on 2S . An agent’s

“prior belief” is a probability measure on B, the Borel subsets of Ξ, and a “model” is the
probability measure, P ξ, generated by the rule P ξ(Ω(st)) ≡ Qt

τ=1 p
ξ(sτ), i.e. one induced

by i.i.d. draws according to the measure pξ.

Our theorems will be proved under three rather different restrictions on beliefs. The

result in Theorem 1 (i) does not require us to constrain beliefs. The result in Theorem 1(ii)

applies whenever the family of subjective beliefs is such that, with positive probability

according to P , for each labelling of agents the likelihood ratio dPi,t
dPj,t

does not have zero

as an accumulation point. In particular, it applies to a case in which agents’ subjective

beliefs are as in the example above and, in addition, the objective measure is a model

in the same class, i.e. a P ξ∗ , where ξ∗ ∈ Ξ, and ξ∗ is in the support of each agent i’s
prior belief μi. This set up is considered in Blume and Easley (2006) and it can be shown

that in such a situation the likelihood ratio has a positive limit P − a.s.10 Importantly,

Theorem 1(ii) does not require the likelihood ratio to converge although it does impose a

restriction on the set of limit points of the likelihood ratio.

Theorem 2, on the other hand, imposes A.5, the condition that both the objective

probability measure as well as the agents’ subjective beliefs are generated by the Markov

matrices Π and Πi respectively. This condition is equivalent to requiring that the agent’s

prior places point mass on one matrix in a set of transition matrices.

Theorem 4 requires that agents’ beliefs agree with the objective probability P .

3. WHAT HAPPENS IN THE LONG-RUN?–A METHODOLOGY

In this section we show that the dynamics of equilibrium consumption with incom-

plete markets when Euler equations hold with equality can be analysed systematically by

studying the solution to an appropriate equation that generalizes the earlier method used

in Sandroni (2000) and Blume and Easley (2006) in the case where markets are complete.

We then turn to an example that illustrates the drastic change in the asymptotic behav-

iour of the system when markets fail to be complete. The section ends with a summary

of what one might expect to obtain as general results with incomplete markets.

10Phillips and Ploberger (1996) provide much more general conditions on the family of subjective
priors and true probability measures such that the likelihood ratio converges. It can be checked that
those conditions are satisfied not only in the case where the draws are i.i.d. but also when the draws are
from a Markov process.
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3.1 FIRST ORDER CONDITIONS AND THEIR IMPLICATIONS

Since i’s marginal utility at (t, ω) is given by the expression βti ·dPi,t(ω) ·u0i(ci,t(ω)), the
first order necessary conditions at an interior Pareto optimal allocation can be summarized

in the form

βt2 · dP2,t(ω) · u02(c2,t(ω))
βt1 · dP1,t(ω) · u01(c1,t(ω))

=
u02(c2,0(ω))
u01(c1,0(ω))

⇔ (β2/β1)
t · dP2,t(ω)

dP1,t(ω)
· yt(ω) = y0(ω).

That equation determines the behaviour of the variable yt as a function of the ratio of

the discount factors, the ratio of the beliefs of agents (the likelihood ratio), and an initial

condition. Lemma 1 implies that in the case where markets are complete, and so the first

welfare theorem holds, an agent’s survival prospects are identified by the equation. In

the case where beliefs are homogeneous one obtains the result that both agents dominate

if and only if β1 = β2 while i dominates and −i vanishes if and only if βi > β−i. This
turnpike result for complete market economies is well known (Becker (1980), Rader (1981),

and Bewley (1982)). When beliefs are heterogeneous and β1 = β2 both agents dominate

on a path if and only if 0 < lim inf dP2,t(ω)
dP1,t(ω)

and lim sup dP2,t(ω)
dP1,t(ω)

< ∞, sufficient conditions
for which can be found in Phillips and Ploberger (1996) and Sandroni (2000). Notice that

the equation can also be written in the form

(β2/β1) · P2,t(ω)
P1,t(ω)

· yt(ω) = yt−1(ω).

We now show that, more generally, the behaviour of yt can be captured succinctly using

the ratio of two processes where each is the product of random variables with conditional

mean one (taken with respect to the subjectively held belief) in addition to the ratio of

the discount factors and an initial condition. That is the content of Proposition 2 (ii);

the generalization permits the analysis of the case where markets are incomplete.

Given consumption processes for i ∈ I, define
r̂i,t(ω) ≡ rt(ω) · u0i(ci,t(ω))

EPi [rt · u0i(ci,t)|Ft−1](ω)
.

Our first result notes that r̂i,t has conditional mean one, is positive, and is uniformly

bounded. It also shows that
QT

t=1 r̂i,t almost surely converges since it is a martingale.

Define b̄ri ≡ supt≥0 supω∈Ω r̂i,t(ω).
PROPOSITION 1: Assume A.1, A.2, A.3 and A.4. Then EPi [r̂i,t|Ft−1](ω) = 1, 0 <bri,t(ω), and b̄ri < ∞. Also, there is a random variable R∗i that is nonnegative and a.s.
finite with EPi [R

∗
i ] ≤ 1 such that R∗i (ω) = limT→∞

QT
t=1 r̂i,t(ω) Pi−a.s.

The next result encapsulates our methodological innovation.

PROPOSITION 2: Assume A.2, A.3, and A.4, and consider consumption processes ci
that are Euler processes at the price process q. Then

(i)
T+1Y
t=1

r̂i,t(ω) = βT+1i · u
0
i(ci,1+T (ω))

u0i(ci,0(ω))
·
TY
t=0

Ã
r1+t(ω)

qt(ω)

!
,

11



(ii)
r̂2,t(ω)

r̂1,t(ω)
=

β2
β1
· yt(ω)
yt−1(ω)

and yT (ω) =
µ
β1
β2

¶T
·
QT

t=1 r̂2,t(ω)QT
t=1 r̂1,t(ω)

·y0(ω),

(iii) yt−1(ω) =
β2
β1
·EP2 [r̂1,t·yt|Ft−1](ω),

1

yt−1(ω)
=

β1
β2
·EP1

"
r̂2,t· 1

yt

¯̄̄̄
¯Ft−1

#
(ω).

REMARK 2: Proposition 2 applies even when the allocation is Pareto optimal; in partic-

ular, Proposition 2 (ii) implies that in such a case r̂2,t(ω)
r̂1,t(ω)

= P1,t(ω)
P2,t(ω)

.

Proposition 2 can be used to characterize the behaviour of asset prices, analyse survival

and construct equilibria. In the rest of this subsection we discuss each of these issues.

Proposition 2 (i) shows that
QT

t=1 r̂i,t is exactly the discounted marginal value of the

“reinvesting” strategy where the entire payoff from the asset is reinvested for T periods.

It follows that if
QT

t=1 r̂i,t(ω) → 0 P − a.s., then the perpetual “reinvesting” strategy
induces a discounted return that converges to zero,

QT
t=0

βi·rt+1(ω)
qt(ω)

→ 0 P − a.s.
When beliefs are correct and agents are equally patient, Proposition 2 can be used

to show that
QT

t=0
βi·rt+1(ω)

qt(ω)
→ 0 P − a.s., thus characterizing the behaviour of asset

prices when markets are incomplete for an important class of economies. To see this,

suppose that yt has either zero or infinity or both as limit points. In such a situation,

since Proposition 1 shows that
QT

t=1 r̂i,t almost surely converges to a finite value, by

Proposition 2 (ii)
QT

t=1 r̂i,t converges to zero for some i. But then, by Proposition 2 (i),QT
t=0

βi·rt+1(ω)
qt(ω)

→ 0 P − a.s. To complete the argument note that our characterisation
result, Theorem 1 in Section 4.1, shows that when agents are equally patient and markets

are incomplete forever, yt does have zero and/or infinity as limit points as assumed above.

This result on asset prices is stated as Corollary 1 in Section 4.1.

Let us now consider the analysis of survival. With homogeneous beliefs, market incom-

pleteness can be expected to imply that β2
β1
·yt(ω) 6= yt−1(ω) so that, by the first equation

in Proposition 2 (ii), r̂2,t
r̂1,t
6= 1. Since r̂i,t has conditional mean one, r̂2,t

r̂1,t
fluctuates around

the value one and
QT

t=1
r̂2,tQT

t=1
r̂1,t

can be expected to fluctuate so much that it might even have

either zero or infinity or both as limit points. By Proposition 2 (ii) fluctuations in
QT

t=1
r̂2,tQT

t=1
r̂1,t

are equivalent to fluctuations in yt
y0
, allowing the use of Lemma 1 to make inferences about

survival. For the formal analysis characterising the dynamics when β1 = β2, it turns out

to be easier to use a different approach which includes the case of heterogeneous beliefs–

Theorem 1 shows that market incompleteness implies that P2,t
P1,t
· yt
yt−1

fluctuates forever by

at least a little and that in turn implies that dP2,t
dP1,t

· yt
y0
fluctuates a lot. Since Theorem 1

applies to those paths on which the ratio dP2,t
dP1,t

stays away from zero and infinity, it shows

that market incompleteness implies that yt
y0
, equivalently

QT

t=1
r̂2,tQT

t=1
r̂1,t
, fluctuates a lot.

An alternative approach to survival, an approach that is better suited to the construc-

tion of equilibria with prespecified asymptotic behaviour, is based on studying the limit

12



behaviour of each of the product processes separately, providing conditions so that the

individual results can be combined, and then using Proposition 2 (ii). By Proposition 1,

each of these processes converges; by Jensen’s inequality, if there is enough variability in

the tail of the process then the limit must be zero. Indeed

1

T

TX
t=1

log r̂i,t(ω)→ 1

T

TX
t=1

EPi [log r̂i,t|Ft−1](ω) <
1

T

TX
t=1

logEPi [r̂i,t|Ft−1](ω) = 0 Pi − a.s.

where the first result, with a.s. convergence, follows from a suitable Strong Law of Large

Numbers, the second uses Jensen’s inequality (which guarantees a weak inequality in

the limit), and the third uses the defining property EPi [r̂i,t|Ft−1](ω) = 1. Proposition

5 in Section 6.1 provides conditions that ensure that the inequality is strict so thatQT
t=1 r̂i,t(ω) → 0 Pi−a.s. Yet, determining the P−a.s. behaviour of yt(ω) is tricky

(Proposition 5 is limited to a statement made using the subjective belief Pi); we now

identify a class of paths on which, nonetheless, an answer can be given. If the rate of

convergence to zero of the two processes is comparable, then one would expect
³
β2
β1

´t · yt
y0
to

fluctuate a lot unless the processes are very finely tuned, e.g. the case of a Pareto optimal

allocation when agents have homogeneous beliefs since in that case the two processes are

actually colinear and so, as pointed out in Remark 2, their ratio is always equal to one.

When beliefs coincide with the objective probability and one process converges to zero at

a smaller rate than the other, or it converges to a positive number, then
³
β2
β1

´t · yt
y0
must

converge either to zero or infinity implying that when discount rates are homogeneous

then only one agent survives. One particular case where this might happen is when r̂2 is a

degenerate process. Indeed, in such a case if β1 = β2 then to show that 2 vanishes a.s. it

suffices to show that
QT

t=1 r̂1,t converges to zero. An example of this possibility is provided

in Section 3.2. In Section 6 we provide a general constructive approach to equilibria in

which the behaviour of consumption is prespecified so that an agent vanishes. We believe

that this methodology, in which one specifies processes for r̂i,t and then identifies those

processes that are compatible with all the equilibrium restrictions, can also be used to

construct equilibria in which no agent vanishes.

3.2 A LEADING EXAMPLE

We turn to our example which has five salient features. (i) u1(x) = (1/(1 − a))x1−a

with a > 0 and a 6= 1, and u2(x) = log x. (ii) z2,0(ω) = Z0(ω) and z2,t(ω) = 0 otherwise.

(iii) The uncertainty in the model comes from 1’s endowment which follows an i.i.d.

process with two points in its support: Zt ∈ {z, z̄} with probability p ∈ (0, 1) and (1− p)

respectively. (iv) The asset payoff is perfectly correlated with the aggregate endowment,

rt(ω) = Zt(ω). (v) The beliefs of each agent are (pi, (1 − pi)) with pi ∈ (0, 1) and both
could hold incorrect beliefs.

It is known that 2’s optimal decision rule is

c2,t(ω) = (1− β2) · w2,t(ω) and θ2,t(ω) = β2 · [w2,t(ω)/qt(ω)],

13



where w2,t(ω) = rt(ω) · θ2,t−1(ω) = Zt(ω) · θ2,t−1(ω), which is independent of p2. We have

r̂2,t(ω) =
rt(ω) ·

³
c2,t(ω)

´−1
EP2[rt · (c2,t)−1|Ft−1]

=

³
(1− β2) · θ2,t−1(ω)

´−1
EP2

h³
(1− β2) · θ2,t−1(ω)

´−1 ¯̄̄Ft−1
i = 1,

the key point being that rt(ω) · u02(c2,t(ω)) is an Ft−1−measurable quantity.
As for 1, when agent 2 optimizes and the allocation is feasible, we must have

c1,t(ω) = Zt(ω)− c2,t(ω) = Zt(ω)− (1− β2) · w2,t(ω) = Zt(ω)[1− (1− β2) · θ2,t−1(ω)].
It follows that

r̂1,t(ω) =
rt(ω) ·

³
c1,t(ω)

´−a
EP1[rt · (c1,t)−a|Ft−1]

=
Zt(ω) ·

³
Zt(ω)[(1− β2) · θ2,t−1(ω)]

´−a
EP1

h
Zt ·

³
Zt[(1− β2) · θ2,t−1]

´−a ¯̄̄Ft−1
i = [Zt(ω)]

1−a

EP1 [Z
1−a
t ]

.

The first order conditions for 1 and 2 are

qt−1(ω) = β1
EP1

h
rt · (c1,t)−a

¯̄̄
Ft−1

i
(ω)³

c1,t−1(ω)
´−a qt−1(ω) = β2 ·

EP2

h
rt · (c2,t)−1

¯̄̄
Ft−1

i
(ω)³

c2,t−1(ω)
´−1

which can be simplified using the fact that rt(ω) = Zt(ω) and the fact that rt(ω)·u02(c2,t(ω))
is an Ft−1−measurable quantity, and then equated to obtain

β1
EP1

h
Zt · (c1,t)−a

¯̄̄
Ft−1

i
(ω)³

c1,t−1(ω)
´−a = β2 · Zt(ω) · (c2,t(ω))−1

(c2,t−1(ω))−1
,

which, using the definition of r̂1,t, may be rewritten as

(c2,t−1(ω))−1

(c2,t(ω))−1
=

β2
β1
· r̂1,t(ω) · (c1,t−1(ω))

−a

(c1,t(ω))−a
⇐⇒ (c1,t(ω))

a

c2,t(ω)
=

β1
β2
· 1

r̂1,t(ω)
· (c1,t−1(ω))

a

c2,t−1(ω)
.

We have obtained the equation in Proposition 2 (ii). c1,t and c2,t must satisfy the

equation whenever an allocation is feasible, is maximizing for 2, and satisfies the first

order conditions for 1; therefore, the equation must hold in every equilibrium.11

By iterating we see that

(c1,T (ω))
a

c2,T (ω)
=
µ
β1
β2

¶T
· 1QT

t=1 r̂1,t(ω)
· (c1,0(ω))

a

c2,0(ω)
.

We now show that
QT

t=1 r̂1,t(ω) → 0 P − a.s. for p1 sufficiently close to p, for

which it suffices to show that LimT→∞ 1
T

PT
t=1 logr̂1,t(ω) < 0 P − a.s. Since r̂1,t(ω) =

[Zt(ω)]
1−a/EP1[Z

1−a
t ], it suffices to show thatµ

limT→∞
1

T

TX
t=1

log [Zt(ω)]
1−a

¶
− log

³
EP1[Z

1−a
t ]

´
< 0 P − a.s.

11Any feasible values of c1,t−1(ω) and c2,t−1(ω) induce a positive value for yt−1(ω). Since r̂1,t(ω) =
[Zt(ω)]

1−a

EP1 [Z
1−a
t ]

, the equation above induces a positive value for yt(ω) which in turn induces feasible values of

c1,t(ω) and c2,t(ω). This shows that the equation always has a real valued solution.
For a > 1, existence of an IDC equilibrium follows from our Theorem 4.
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Since Zt is an i.i.d. process, by the Strong Law of Large Numbers

1

T

TX
t=1

log [Zt(ω)]
1−a → EP [logZ

1−a
t ] P − a.s.,

and so, by Jensen’s inequality and the fact that var
∙
[Zt]1−a

EP [Z
1−a
t ]

¸
> 0, there exists > 0 such

that µ
limT→∞

1

T

TX
t=1

log [Zt(ω)]
1−a

¶
− log

³
EP [Z

1−a
t ]

´
< − P − a.s.,

where, by continuity, the result is also true when log
³
EP [Z

1−a
t ]

´
is replaced by log

³
EP1 [Z

1−a
t ]

´
for p1 sufficiently close to p.

Under A.3 and feasibility, (c1,T (ω))
a is bounded above. Also, as shown above, for p1

sufficiently close to p,
QT

t=1 r̂1,t(ω) → 0 P − a.s. So when p1 = p, so that 1’s beliefs

are correct, and β1 = β2 = β, so that both the agents are equally impatient, c2,T (ω) →
0 P − a.s., i.e. in every equilibrium of the example, agent 2 vanishes with probability

one.

As noted above, since the application of Jensen’s inequality is strict, agent 2 could

have correct beliefs and agent 1 could have incorrect ones in an open set around p and

yet 2 vanishes almost surely in every equilibrium. The same reason lets us conclude that

even if 1 is marginally more impatient than 2, and allowing for the possibility that 1 also

has marginally incorrect beliefs, 2 vanishes almost surely in every equilibrium.

The example shows very clearly that no entropy measure that depends only on the

truth, beliefs, and the market structure, can be critical to understanding survival because

any properly defined entropy measure must attain its maximum when beliefs are correct.

The phenomenon in the example illustrates the crucial elements highlighted in Section

3.1: market incompleteness forever ensures that
QT

t=1 r̂1,t(ω) → 0 P − a.s. and so the
“reinvesting” strategy induces a discounted return that converges to zero, and the fact

that agent 2’s marginal valuation of the asset at date t is Ft−1−measurable, i.e. r̂2,t is

degenerate, implies that her marginal utility diverges.

REMARK 3: We note the following features of the example. Since c2,t(ω) = (1 − β2) ·
w2,t(ω) and θ2,t(ω) = β2 · [w2,t(ω)/qt(ω)], qt(ω)·θ2,t(ω) = β2 ·w2,t(ω) = β2 ·(c2,t(ω)/(1−β2))
so debt is uniformly bounded in any equilibrium since consumption is nonnegative and

bounded by the uniform upper bound on the aggregate endowment.

Also, since r̂1,t(ω) = [Zt(ω)]
1−a/EP1[Z

1−a
t ] and, by A.1, var

∙
[Zt]1−a

EP [Z
1−a
t ]

¯̄̄̄
Ft−1

¸
(ω) =

var
∙
[Zt]1−a

EP [Z
1−a
t ]

¸
> 0, we have var

h
r̂1,t

¯̄̄
Ft−1

i
(ω) > 0. So assumption A.7, introduced in

Section 6.1, holds in the example.

The analysis in this section depends heavily on the endowment structure where 2 has

no endowment except in period 0. Theorem 4 will show that, in fact, the property we

identify is robust to changes in the endowment process, preferences, and asset structure.
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3.3 THE GENERAL LESSON

The analysis thus far is indicative of two very interesting phenomena that appear to

be driven by the fact that markets are incomplete. They lead to the following conjectures

about the implications of market incompleteness: a first conjecture, based on Proposition

2 (ii) together with the possibility that r̂2,t
r̂1,t

6= 1 so that
QT

t=1
r̂2,tQT

t=1
r̂1,t

fluctuates a lot, is the

statement (a) that the consumption of some agent is arbitrarily close to zero infinitely

often, and a second conjecture, based on the example in Section 3.2, is the statement

(b) that the consumption of some agent stays close to zero eventually. We would like

to pin down the extent to which these results are a general property of economies with

dynamically incomplete markets. We will say that markets are effectively incomplete

forever on a path if the ratio of the one period ahead marginal rates of substitution,
P2,t
P1,t

· yt
yt−1

, displays variability, i.e. r̂2,t
r̂1,t

displays variability. Theorem 1 (ii) shows that

in an equilibrium of such an economy if some agent’s consumption is uniformly positive

eventually, the other agent’s consumption is zero eventually. This shows that either (a)

holds for both agents or (b) holds. Theorem 2 in Section 5 shows that if endowments and

asset returns follow finite state Markov processes then (b) can be ruled out. Theorem 4

in Section 6.5 shows that, in a robust class of economies, there are equilibria in which the

consumption of an agent stays close to zero eventually on every path. We remark that

Theorem 1 holds regardless of whether beliefs are homogeneous or heterogeneous. Also,

one expects a version of Theorem 1 to hold in specifications of infinite horizon economies

with incomplete markets that are not covered by our analysis so long as the Euler equation

holds with equality always; in particular, the asset could be retradable and long lived.

4. RULING OUT DOMINANCE

In this section we prove our first main result: if agents are equally impatient and

markets are incomplete, then, on paths on which an agent’s consumption is uniformly

positive eventually, the other agent’s consumption is zero eventually. So, in contrast to

the case where markets are complete, both agents cannot consume uniformly positive

quantities eventually when market are incomplete. To be able to prove the result, (a)

we use an implication of the fact that the Euler equations hold with equality, namely,

that if the ratio of one period ahead marginal rates of substitution, P2,t
P1,t

· yt
yt−1

, displays

conditional variability, then it increases with positive conditional probability, and (b) we

restrict attention to those paths on which the accumulation points of the ratio dP2,t
dP1,t

do not

include zero and infinity. The transformation introduced in Section 3.1 leads to Theorem

1 which is stated and discussed in Section 4.1. Theorem 1 also characterizes asset prices

when markets are incomplete–this result is stated as Corollary 1. Section 4.2 relates

our result to examples of infinite horizon economies with incomplete markets that have

appeared in the literature.

4.1 THE RESULT

In this section we study the asymptotic behavior of agents’ consumption processes on
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paths where the ratio of marginal rates of substitution (a) does not display one period

ahead conditional variability in the limit, and (b) does display such variability infinitely

often, i.e. markets are effectively incomplete forever.

To be more precise, we define

V0 ≡
½
ω : limt var

∙
P2,t
P1,t

· yt
yt−1

¯̄̄̄
Ft−1

¸
(ω) = 0

¾
,

and, for > 0, we define

V ≡
½
ω : lim supt var

∙
P2,t
P1,t

· yt
yt−1

¯̄̄̄
Ft−1

¸
(ω) ≥

¾
.

Also, for ω ∈ V , we define

∆t(ω) ≡ inf
½
k ≥ 1 : var

∙
P2,t+k
P1,t+k

yt+k
yt+k−1

¯̄̄̄
Ft+k−1

¸
(ω) ≥

¾
.

Finally, for T ∈ {1, 2, 3, · · ·}, we define

VT, ≡
½
ω : lim supt var

∙
P2,t
P1,t

yt
yt−1

¯̄̄̄
Ft−1

¸
(ω) ≥ and supt∆t(ω) = T

¾
.

∪ >0 V = Ω/V0 is the set of paths where the ratio of marginal rates of substitution displays

one period ahead variability infinitely often. ∪ >0 V can be further partitioned into two

sets, one containing those paths where the ratio of one period ahead marginal rates of

substitution displays variability on some bounded interval of time of length T < ∞,
∪T, >0 VT, , and its complement, the set V∞, on which, although the ratio of marginal
rates of substitution displays one period ahead variability infinitely often, yet, for some

subsequence of dates, the maximal length of the time interval until it displays variability

again diverges on each path, i.e. supt∆t(ω) = +∞ where ∆t(ω) is the minimum number

of periods it takes for the ratio of marginal rates of substitution to display one period

ahead variability after date t.12 The interest of studying paths in the set V∞ is not evident
and Theorem 1 does not apply to them.13

Let us also define

Lλ,λ ≡
½
ω : λ < lim inf

dPj,t(ω)

dPi,t(ω)
≤ lim sup dPj,t(ω)

dPi,t(ω)
< λ

¾
,

where λ > 0 and λ < ∞ are positive constants. Paths in the set Ω/ ∪λ>0, λ<∞ Lλ,λ

have the property that the ratio of the probability assigned to a cylinder by agent 2 to

that assigned by agent 1, dPj,t(ω)

dPi,t(ω)
, contains a subsequence that either converges to zero or

diverges to infinity. Theorem 1 (ii) does not apply to such paths. As we noted in Section

12Clearly, ∆t(ω) is finite for every , t and ω ∈ V ; however, it may have a divergent subsequence.
13Results on the lack of collinearity of marginal utility vectors in generic finite horizon incomplete

market economies suggest that the set V∞ might even be null for generic economies.
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2.6, although this does rule out some subjective beliefs, it is a very weak restriction. An

important case where the restriction is violated is when the true process is i.i.d. and

agents only consider i.i.d. models but their “prior beliefs” (as defined in Section 2.6) have

disjoint supports, as in our example in Section 3.2. Our constructive approach in Section

6, extended through a continuity argument (see Remark 9), shows a different route by

which limiting consumption behaviour can be studied in such economies.

We can now state our main result.

THEOREM 1: Consider an IDC equilibrium. Assume that β1 = β2, that A.1, A.2, A.3,

and A.4 hold. Then,

(i) limt

³
P2,t(ω)
P1,t(ω)

· yt(ω)
yt−1(ω)

´
= 1 P -a.s. ω ∈ V0.

(ii) For every T ∈ {1, 2, 3, · · ·}, > 0, n, λ > 0 and λ <∞,
lim supt ci,t(ω) ≤ 1/n P -a.s. ω ∈ VT, ∩ Lλ,λ ∩ {ω : lim inft cj,t(ω) > 1/n}.

Theorem 1 (i) shows that when one restricts attention to paths in V0, marginal rates of

substitution are equalized in the limit, limt

³
P2,t(ω)
P1,t(ω)

· yt(ω)
yt−1(ω)

´
= 1.14 Theorem 1 (ii) shows

that when one restricts attention to paths that are in ∪T, >0 VT, as well as in ∪λ>0, λ<∞Lλ,λ,

if the consumption of some agent is uniformly positive eventually then the consumption

of the other agent is zero eventually. Equivalently, if no agent vanishes then every positive

lower bound on consumption is violated infinitely often for both agents. Theorem 1 (ii)

can be read as showing that when markets are effectively incomplete forever, the only

equilibria with asymptotically simple behaviour are the ones in which only one agent

consumes in the limit as in the example and in Theorem 4.

The proof of Theorem 1 (i) is a relatively straightforward consequence of the fact

that the ratio of marginal rates of substitution is at least one with positive conditional

probability and on V0 its conditional variance converges to zero. We turn to the proof of

Theorem 1 (ii). In what follows, λ and λ are specified in the statement of Theorem 1 (ii)

and are used to isolate the set of paths Lλ,λ, and yn, yn, and Tn(γ) are defined in the proof.

First, Lemma 4 uses the fact that the Euler equations hold with equality and that markets

are incomplete to conclude that whenever P2,t
P1,t

yt displays sufficient variability conditional

on the realization of yt−1, captured by > 0, P2,t
P1,t

yt
yt−1

increases by a factor γ with uniformly

positive conditional probability. It follows that, because in at most T periods P2,t
P1,t

yt must

display sufficient variability, the ratio of marginal rates of substitution must increase by

the factor γ with positive conditional probability in any span of T dates. We use this

result to show that, with positive conditional probability, starting from a consumption

14Since in a Pareto optimal allocation where both the agents have positive wealth (so that marginal
rates of substitution are equalized at every date-event) and beliefs are homogeneous and correct, each
agent’s consumption is bounded away from zero, one is tempted to conclude that Theorem 1 (i) has a
similar implication for the behaviour of consumption in such economies. However, this is not obvious.
Although we do not have an example, we believe that on V0 an agent might have consumption that is
arbitrarily close to zero infinitely often or even zero eventually as in Theorem 1 (ii).
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distribution where agent 1’s consumption is bounded away from zero, c1,t0 > 1/n, so that
P2,t0
P1,t0

yt0 is also bounded away from zero (
P2,t0
P1,t0

yt0 ≥ λy
n
in formal terms), in a finite number

of periods P2,t
P1,t

yt becomes large enough (
P2,t
P1,t

yt ≥ λyn) to let us conclude that yt exceeds

yn so that agent 2’s consumption falls below a pre-fixed threshold level, c2,t ≤ 1/n. To
clinch the result we need to verify that such a possibility occurs infinitely often. Lemma

EBC, which is a version of the Second Borel-Cantelli Lemma that does not require

independence and appears in Freedman (1973), lets us prove that in fact on paths on

which c1,t0 is above 1/n infinitely often, c2,t must fall below 1/n infinitely often. It follows

that if c2,t exceeds 1/n on every subsequence then c1,t0 is below 1/n on every subsequence,

as stated in Theorem 1 (ii). The difficult part of the proof is in specifying an appropriate

sequence of events; we consider the events Ω1,t wherein, starting from a date t0 at which 1’s

consumption is above the threshold, the variable P2,t
P1,t

yt never decreases strictly, increases

by the factor γ a fixed number of times τ (where τ is arbitrarily large and so larger than

Tn(γ) which identifies the number of periods required to make the transition from λy
n
to

λyn when
P2,t
P1,t

yt grows by the factor γ in every span of T periods) and increases by that

amount at the date that indexes the event. The analysis of such events suffices for our

purposes.

Theorem 1 (ii) allows us to characterize the behaviour of asset prices when markets

are incomplete since
QbT

t=0
βi·rt+1(ω)

qt(ω)
→ 0 P −a.s. (the argument was given in Section 3.1).

In contrast, when markets are complete, asset prices might behave differently, e.g. when

there is no aggregate risk and one considers the price of a riskless real bond, rt(ω) = r,

we must have βi·rt+1(ω)
qt(ω)

= 1. We state the result as a corollary to the theorem.

COROLLARY 1: Consider an IDC equilibrium. Assume that P1 = P2 = P , β1 = β2, and

that A.1, A.2, A.3, and A.4 hold. For every T <∞ and > 0, asset prices satisfy:

bTY
t=0

βi · rt+1(ω)
qt(ω)

→ 0 P − a.s. ω ∈ VT, .

REMARK 4: We would like to draw the reader’s attention to four facts about Theorem 1

and Corollary 1. (i) The results hold regardless of whether preferences exhibit “prudence”

since they are proved under assumptions on preferences summarised in A.3 which do not

make any reference to the behaviour of u000. (ii) Since the results hold whenever yt has
zero or infinity as accumulation points, they also hold in the construction we propose in

Section 6 where one of the agents vanishes. (iii) Although Corollary 1 shows that when

the asset is a real bond, rt(ω) = 1 for all t ≥ 0 and ω ∈ Ω,
QT

t=0
βi

qt(ω)
→ 0 P − a.s., this

clearly does not require that βi
qt(ω)

< 1 for all t ≥ 0 and P−a.s. ω; the latter is generally
not true although it does hold in special cases, e.g. with prudence and no aggregate risk as

shown by Levine and Zame (2002). (iv) Theorem 1 does not fully exploit the structure of

an IDC equilibrium and holds for any consumption processes that are aggregate feasible

Euler processes.
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Theorem 1 (ii) holds even if the asset return is positive in only two states as that

ensures the required variability. With a single Arrow security that pays in state s the

only restrictions that the Euler equations impose is that yt(ω) = yt+1(ω) if st+1(ω) = s;

as Remark 5 shows, this implies that the support of the equilibrium consumption process

is typically finite in economies where individual endowments depend only on the current

state.

REMARK 5: Consider an economy with a single Arrow security that pays in state s. So

r̂1,t(ω) = r̂2,t(ω) 6= 0 if st(ω) = s, and r̂i,t(ω) is not defined otherwise. By Proposition 2 (ii),

the only restrictions that the Euler equations impose is that yt(ω) = yt+1(ω) if st+1(ω) = s

(where we assume that β1 = β2). Consider a pair (ω, t) such that st(ω) = s̃ ∈ S/{s} and
st+τ(ω) = s for all τ ≥ 1, and let yt(ω) = ȳ. Then, zt+τ(ω) = zs and so yt+τ(ω) = ȳ

implies that ci,t+τ(ω) = ci(ȳ) and, therefore, qt+τ(ω) = q̄. One can verify that there is

a supporting portfolio θi,t+τ(ω) that is constant, θi(ȳ). Since s̃ 6= s, yt(ω) = ȳ and zs̃

determine ci,t(ω) = cs̃i (ȳ) and hence qt(ω) = qs̃(ȳ). The portfolio θi,t(ω) must satisfy

the budget equations (where, for s̃ ∈ S/{s} the agents’ wealth is their endowment)
cs̃i (ȳ) + qs̃(ȳ) · θi,t(ω) = zs̃i and ci(ȳ) + q̄ · θi(ȳ) = zsi + θi,t(ω). For each value of s̃ ∈ S/{s},
these equations have a unique solution ȳs̃ if qs̃(ȳ) is either strictly monotone in ȳ or is

constant, which it must be if all risk is idiosyncratic; more generally, one expects the

set of solutions to be finite typically. Evidently, for any (ω, t0) either st(ω) = s for all

t ∈ {0, 1, · · · , t0} and ȳs can be obtained by an analogous argument since θi,−1(ω) = 0, or
there exists t ∈ {1, 2, · · · , t0 − 1} such that st 6= s and so yt0(ω) = ȳst.

4.2 RELATING TO EARLIER EXAMPLES

Blume and Easley (2006) provide an example that, to the best of our knowledge, is the

only one in the literature that addresses the question of survival in economies like ours.

Their example has three agents where agents one and two are identical except for the

fact that agent one correctly believes that the economy is deterministic while agent two

mistakenly believes it to be stochastic. Agent three also has correct beliefs and is the most

patient of the three. Their approach is to construct the endowment process of the third

agent so as to support prespecified prices for the asset and rules for consumption for all

three agents. They show that their example economy has an equilibrium in which agent

one, who has correct beliefs, is driven out and the other two agents, one with correct beliefs

and the other with incorrect beliefs, survive. Clearly, if also agent two had correct beliefs

then all agents would correctly believe that the economy is deterministic, markets would

be complete, and the behaviour of consumption would be determined only by the rates of

impatience. So their example does not yield any additional insight about the behaviour

of consumption under incomplete markets when beliefs are homogeneous and this is in

sharp contrast to our leading example; moreover, it is not obvious that their technique

permits unequivocal conclusions in more general settings where, for example, saving rates
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across agents are not unambiguously ordered along a path as in their example.15

Krebs (2004a) considers a two agent economy with idiosyncratic risk and homogeneous

beliefs, and shows that the range of the equilibrium consumption process cannot be a

compact set with a strictly positive lower bound (the possibility that the lower bound is

zero is ruled out by his assumption that the Bernoulli utility function is unbounded below);

from his analysis one cannot conclude whether zero is or is not approached on a given

path. Like us, he considers equilibria in which the Euler equations hold with equality; the

only asset that he allows for is a Lucas-tree with uniformly positive dividends. By our

result, very generally, not only is zero approached for some agent but infinitely often so.

Coury and Sciubba (2005) provide an example where both agents dominate. They

start with a Pareto optimal allocation supportable with incomplete markets and then

change beliefs in a manner that leaves demand unchanged. Market incompleteness makes

this possible; however, the construction is clearly degenerate. The method they use to

construct their example implies that for some labelling of agents, lim dPj,t(ω)

dPi,t(ω)
= 0 on each

path and so Lλ,λ has zero measure for all prespecified λ > 0 and ∞ > λ.

Levine and Zame (2002) provide an example in which both agents survive. They use

a random selection from a static economy with multiple equilibria to construct a sunspot

equilibrium in the infinite horizon economy. The sunspot realization is fixed once and for

all at the first date so markets are effectively complete from then onwards.

Kubler and Schmedders (2002) provide examples of economies in which both agents

survive. This is possible because they restrict attention to Arrow securities, which violates

Assumption A.4, and individual endowments that depend only on the current state.

Constantinides and Duffie (1996) and Krebs (2004b) consider economies like ours but

with a dividend paying asset. Since they allow endowments to grow without any upper

bound, it is not clear that an analogue of Theorem 1 can be proved in their framework.

Becker and Foias (1987) consider a deterministic Ramsey economy with productive

capital which must be held in nonnegative quantities, i.e. “short” sales are not permitted.

Agents have heterogeneous discount rates. They show that the borrowing constraint bites

in the following sense: if an impatient agent holds capital at every subsequence of dates

then her Euler equation holds as an equality and she vanishes and yet she is not optimizing

since her labour income remains unspent (labour income is uniformly positive because,

eventually, capital is uniformly positive as otherwise its return is too high even for the

least patient agent to not hold any of it.) It follows that in any Ramsey equilibrium, all

but the most patient agent must hold zero capital at some subsequence of dates. They also

show that if capital income is increasing in the amount of capital then in every Ramsey

equilibrium, eventually, only the most patient agent holds capital. In their framework, no

15Furthermore, completing the market in their example leads to nonexistence, a fact that they note
while in our leading example doing so leads to an equilibrium where the allocation is Pareto optimal and,
by the result in Blume and Easley (2006), both the agents survive.
These authors present a second example that shows that there are situations in which relative entropy

is simply the wrong measure of belief accuracy because it does not match well with the asset structure.
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agent’s consumption can approach zero since labour income is, eventually, positive and

there are no other assets.

Becker and Zilcha (1997) provide an example of a Ramsey economy with production

uncertainty and two agents with distinct discount factors in which both agents must hold

capital in any stationary equilibrium. This negates the possibility of extending Becker’s

(1980) result on Ramsey’s conjecture in the deterministic framework to a stochastic one.

5. SUFFICIENT CONDITIONS SO THAT NO ONE VANISHES

In this section we present our second main result. We show that in an important

class of economies, a subset of those that are often considered in the applied general

equilibrium literature, no agent vanishes even though markets are incomplete and so,

by Theorem 1 (ii), the dynamics must be complicated in the sense that both agents’

consumption approaches zero infinitely often. Theorem 2 reinforces the stark contrast in

the behaviour of equilibrium consumption in the two market structures since the class of

economies encompasses ones where some agent would vanish were markets complete.

We consider economies where the aggregate endowment follows a finite state time

homogeneous Markov process, and both individual endowments and asset returns are

functions of the current realization of the aggregate endowment. Agents may have in-

correct and heterogeneous beliefs and may have different discount rates. In Theorem 2

we show that, for most endowment distributions, if an agent’s endowment is uniformly

positive then the set of paths where her consumption converges to zero has measure zero.

The intuition is that, when some agent vanishes, the dynamics of debt become rather spe-

cial in that for each state there is only one level of debt for which the resulting dynamics

prevent debt from violating the uniform bound after a sufficiently long string in which

that state is always realized. However, when successor states are not identical, debt will

remain within this set of stable levels only for very special configurations of endowments.

It is important to be aware that the conclusion in Theorem 2 depends heavily on all

three hypotheses: that the equilibrium concept considered imposes a uniform bound on

debt although other alternatives have been considered in the literature, that endowment

processes are finite state time homogeneous Markov processes, and that individual endow-

ments are uniformly positive. The following three observations provide the reasons for

caution: (a) for a robust class of economies that include those where individual endow-

ments follow finite state Markov processes, the construction that we propose in Section

6 leads to equilibria in which debt although bounded is not uniformly bounded across

all paths,16 (b) as we show in Theorem 4 (ii), the constructive approach to no trade

equilibria in which an agent vanishes can be extended to endowments obtained through

perturbations that are not restricted to have finite support and by doing so one con-

tinues to obtain the same equilibrium consumption processes and trade with uniformly

bounded debt and endowments uniformly bounded away from zero, and (c) as our exam-

16The result appeared in an earlier version of the paper and is available from the authors.
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ple showed, individual endowments that are not uniformly positive are compatible with

an agent vanishing.

To sketch the formal argument, let us define the set A as A ≡ {ω : ci,t (ω)→ 0}, the
set of paths where agent i’s consumption converges to zero. Throughout the section we

will assume A.5 so that Zt is a time homogeneous finite state Markov process and the

probability measures P , P1 and P2 are generated by the transition matrices Π, Π1 and

Π2, respectively. Let us define

qj (z) ≡ βj · EPj

Ã
u0j (Zt+1) · r (Zt+1)

u0j (z)

¯̄̄̄
¯Zt = z

!
,

where, for notational convenience, we condition directly on the realization of Zt instead of

on the σ−algebra generated by realizations of Zt. qj is the asset price process that would

prevail in an economy in which only j consumes; qj and qi will be different unless agents

have identical beliefs, discount rates and Bernoulli utilities.

Proposition 3 shows that for almost every path in A, the asset price converges to the

asset price of an otherwise identical economy where agent j consumes all the endowment.

PROPOSITION 3: Consider an IDC equilibrium. Assume A.1, A.2, A.3, A.4 and A.5

hold. Then, qt (ω)→ qj (Zt (ω)) P−a.s. ω ∈ A.

Next, Proposition 4 uses the assumption that i’s endowment is uniformly positive,

where the lower bound is denoted zi, to show that on almost every path in A, the value

of i’s debt must be negative infinitely often.

PROPOSITION 4: Consider an IDC equilibrium. Assume A.1, A.2, A.3, A.4 and A.5

hold and zi > 0. Let Bi,t (ω) ≡ qt (ω) · θi,t (ω). Then lim inf Bi,t (ω) < 0 P − a.s. ω ∈ A.

The result follows because, in an IDC equilibrium, the value of debt at date t equals

the sum of (i) the present discounted value of the sums of the excess demand up to date t

on each path, which must be negative for t large enough since i’s excess demand must be

negative eventually on paths where his consumption is zero eventually since his endowment

is uniformly bounded away from zero, and (ii) the present discounted value of future debt,

which is arbitrarily close to zero infinitely often since debt is uniformly bounded and the

compounded rate of return is unbounded above. The fact that the compounded rate of

return is unbounded follows from a no arbitrage argument in an economy where only j

consumes, as reflected in the fact that the state price process for j converges uniformly

to zero, and is proved separately as Lemma 5 and Lemma 6 in the Appendix.

Theorem 2 provides a set of equations that must hold if, on the set of paths in A, debt

is to remain bounded. These equations capture the requirement that the value of i’s debt

move among points in the collection defined by the values B(z, z) as z varies. One expects

those equations to hold only for a very special configuration of individual endowments.
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THEOREM 2: Consider an IDC equilibrium. Assume A.1, A.2, A.3, A.4 and A.5 hold,

and that zi > 0. Suppose that for every z
0 ∈ S there exists z ∈ S such that

r (z)

qj (z0)
·B [z0, z0] + zi (z) 6= B (z, z) where B (z, z0) ≡ − zi (z

0)
r(z0)
qj(z)
− 1 .

Then, the set A has P−measure zero.

The argument to prove Theorem 2 is based on the result in Proposition 3, whereby

it suffices to look directly at the limit where only j consumes. It also depends on the

assumption that i’s individual endowment is uniformly positive. The relation between

the true dynamics and the dynamics in the limit economy can be seen in the fact that

the values B(z, z), defined below, which correspond to the limit economy, are actually the

only accumulation points of debt in the true dynamics. That is the content of Lemma 8.

Lemma 7, stated and proved in the Appendix, shows that there is a B < 0 such

that, on almost every path in A, if the value of i’s debt exceeds B then it becomes

nonnegative eventually and remains nonnegative. Since that contradicts Proposition 4,

Lemma 7 concludes that on almost every path in A, i’s debt cannot exceed B. With a

similar argument Lemma 7 also shows that, necessarily, on almost every path in A the

asset’s rate of return after two dates in which the same state is realized, r(z)/q(z), must

be sufficiently larger than one–otherwise, after a sufficiently long string in which the

same state is always realized, i will have fully repaid her debt which would then become

positive and remain so, once again contradicting Proposition 4.

Lemma 8, also stated and proved in the Appendix, draws out the following strong

implication of Lemma 7: given a state, except for an initial condition that is a single

point, B(z, z) < 0 where B (z, z0) ≡ −zi (z0) /
³
r(z0)
qj(z)
− 1

´
, if the given state is realized

repeatedly then either debt becomes positive or it violates the uniform lower bound. This

is because, given that r(z)/q(z) > 1, either the outstanding debt exceeds B(z, z), in which

case it would be repaid in the event that a sufficiently long finite string of repetitions of

the state z were to occur, or the outstanding debt is lower than B(z, z), in which case,

since the agent’s endowment is bounded, i would not be able to repay the interest and

therefore the debt would explode towards −∞.

REMARK 6: Theorem 2 is proved under a condition on beliefs that is equivalent to

requiring that the agent places point mass on one matrix in a set of transition matrices.

It can be shown that the result holds more generally when the one period ahead conditional

probabilities induced by Pj, where i vanishes, converge to an S ×S transition matrix Π̃j.

Theorem 2 reinforces the contrast between complete and incomplete markets. Consider

the case where agent i is less patient or has inaccurate beliefs while agent j’s beliefs are

accurate. In such a situation, Pareto optimality dictates that i should vanish in every

complete market equilibrium. This happens even though i has an endowment that is

uniformly positive. Yet, by Theorem 2, when markets are incomplete, i cannot vanish.
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6. EQUILIBRIA WHERE SOMEONE VANISHES

In this section we turn to our third main result. We will show that the property that

the example displays, namely, that some agent vanishes with probability one, is a robust

implication of market incompleteness. We do so by combining the following two results:

(i) for equilibria where r̂2 is a degenerate process, agent 2 vanishes almost surely, and (ii)

there exist endowment distributions for which one can construct equilibrium consumption

processes with the property that r̂2 is degenerate as in the example.

Section 6.1 develops the first result which uses the Strong Law of Large Numbers

for uncorrelated random variables with uniformly bounded second moments. Section

6.2 shows that it is possible to construct aggregate feasible consumption processes that

satisfy the Euler equations, that have summable supporting prices, and that induce a

degenerate process r̂2. Theorem 3 in Section 6.3 provides conditions that let us identify

IDC equilibria. Finally, in Section 6.4 we provide our result. In Theorem 4 we show

that for a continuum of endowment distributions, the processes that we construct are

the equilibrium consumption processes in a no trade IDC equilibrium; we also provide

a perturbation that leads to uniformly positive endowments but that is path dependent

and yet supports the no-trade consumption process obtained earlier but now as an IDC

equilibrium with asset trade.17 Corollary 2 summarises our findings by showing that in

an economy with a real bond in which the aggregate endowment has uniformly positive

conditional variance, there are IDC equilibria with uniformly positive endowments in

which agent 2 vanishes almost surely.

For the main results in this section we shall assume that beliefs are correct so P1 =

P2 = P ; when some result holds more generally, we make the more general statement.

6.1 THE STRONG LAW ARGUMENT

As discussed in Section 3.1, for the analysis of survival it helps to know the behaviour

of the process
QT

t=1 r̂i,t. By Proposition 1 we know that limT→∞
QT

t=1 r̂i,t(ω) exists Pi−a.s.
We would like to provide a condition that guarantees that limT→∞

QT
t=1 r̂i,t(ω) = 0 Pi−a.s.

Assumption A.7 is the appropriate condition–it imposes the requirement that there is

variability in the tail of the process {EPi [log r̂i,t|Ft−1](ω)}.
It is important to note that A.7 is used only in Proposition 5; Corollary 2 provides

conditions on fundamentals that ensure that A.7 holds.

ASSUMPTION A.7: P{ω : limsup 1
T

PT
t=1EPi [log r̂i,t|Ft−1](ω) < 0} = 1.

17It is possible to show that around each no-trade equilibrium there is an open set of endowment
distributions that leads to an equilibrium that is weaker in that there may be no uniform bound across
paths on debt. This equilibrium concept requires maximization subject to a sequence of budget constraints
and a single transversality condition at date zero, and market clearing. It can be shown that such an
equilibrium concept does not permit Ponzi schemes. Santos and Woodford (1997) propose a notion of
equilibrium without uniform bounds for a much more general set-up. Blume and Easley (2006) provide an
example in which the equilibrium value of an agent’s debt diverges according to the agent’s subjectively
held belief.
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When r̂j, j 6= i, is a degenerate process, A.7 amounts to the requirement that on

almost all paths, markets never become effectively complete so that complete risk sharing

remains impossible. Jensen’s inequality and EPi [r̂i,t|Ft−1](ω) = 1 lead to the weaker

property where the set that appears in A.7 is defined with a weak inequality.

A.7 holds if the time average is uniformly below zero, a strong sufficient condition.

As we noted in Remark 2, A.7 holds in our leading example for i = 1. With A.7 we

are able to obtain the desired result by applying the Strong Law of Large Numbers for

uncorrelated random variables with uniformly bounded second moments. Define the set

Ai ≡ {ω ∈ Ω : liminf r̂i,t(ω) = 0}. We have

PROPOSITION 5: Assume A.1, A.2, A.3, A.4 and A.7. Then
QT

t=1 r̂i,t(ω) → 0 Pi −
a.s. ω ∈ Ω/Ai. Furthermore, given β−i and > 0, there exists δ ∈ (0, 1) such that

βi ∈ (δ·β−i, β−i) ⇒ Pi

Ã(
ω : log(β−i/βi)+limT→∞

1

T

TX
t=1

log r̂i,t(ω) < 0

)!
= Pi(Ω/Ai)− .

REMARK 7: In the case where A.7 is strengthened to require

P

(
ω : limsup

1

T

TX
t=1

EPi [log r̂i,t|Ft−1](ω) ≤ < 0

)
= 1,

the statement in the second part of Proposition 5 can be strengthened to:

given β−i, there exists δ ∈ (0, 1) such that

βi ∈ (δ·β−i, β−i) ⇒ Pi

Ã(
ω : log(β−i/βi)+limT→∞

1

T

TX
t=1

log r̂i,t(ω) < 0

)!
= Pi(Ω/Ai).

The second part of Proposition 5 can be used to show that, at the margin, the turnpike

property fails when markets are incomplete since the less patient agent can survive as in

our leading example. However, we shall not proceed further with a formal analysis of that

case since we shall assume that β2 ≤ β1 as that lets us show that, when P1 = P2 = P ,

P (A1) = 0.

6.2 A CONSTRUCTIVE APPROACH TO EQUILIBRIUM

In this section we propose a methodology for constructing feasible consumption processes

that satisfy r̂2,t(ω) = 1 for every t ≥ 0 and all ω ∈ Ω in addition to satisfying the Euler

equations and having summable supporting prices.

Consider the function

ft−1,ω,y(λ) ≡ (β1/β2) · EP

"
rt · u01

Ã
Zt − (u02)−1

Ã
y · λ
rt

!!¯̄̄̄
¯Ft−1

#
(ω)

in the variable λ. Lemma 11 shows that, for each value of the parameters (t − 1, ω, y),
the function has a unique interior fixed point. For λ = rt · u02(c2,t)/yt−1 the fixed point
condition is

rt(ω) · u02(c2,t(ω))
yt−1(ω)

= (β1/β2) · EP [rt · u01(c1,t)|Ft−1](ω).
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It is obvious that rt(ω) · u02(c2,t(ω)) is Ft−1−measurable, so that r̂2,t(ω) = 1 for all ω ∈ Ω,

and that the Euler equation holds for both agents. This is done in Lemma 12. A recursive

argument lets us construct consumption processes. Proposition 6 summarises the basic

properties of our construction.

PROPOSITION 6: Assume A.2, A.3, and A.4, and that P1 = P2 = P . For Z an aggregate

endowment process, consider c ∈ (0, Z0(ω)). Then there exists a unique pair of feasible
consumption processes, denoted {Ci,t(ω)}t≥0,18 defined for all ω ∈ Ω and with C1,0(ω) = c

such that the following statements are true for t ≥ 1 and all ω ∈ Ω:

(i) r̂2,t(ω) = 1;

(ii) yt−1(ω) = (β2/β1) · r̂1,t(ω) · yt(ω).
REMARK 8: It is possible to show that the construction satisfies the following additional

properties: it is monotone increasing and continuous in the initial condition, and it has

nice boundary behaviour with respect to the initial condition. These properties follow

since further analysis of the fixed point map allows us to show that if yt−1(ω) > y0t−1(ω)
then the induced values satisfy yt(ω) > y0t(ω), and that yt(ω) is a continuous function
of yt−1(ω). These additional properties are useful in constructing consumption processes
that are equilibria when the notion of equilibrium is one other than IDC.

To apply Proposition 5 to conclude that in our solution agent 2 vanishes a.s. we need

to show that P (A1) = 0 where Ai ≡ {ω ∈ Ω : liminf r̂i,t(ω) = 0}. This is done by showing
that since the induced process y does not have zero as a limit point, neither does C1 have

zero as a limit point which implies that zero cannot be a limit point of r̂1.

PROPOSITION 7: Assume A.2, A.3, and A.4, and that β2 ≤ β1 and P1 = P2 = P . Then,

in the proposed solution P (A1) = 0.
By combining Propositions 5 and 7 we can conclude that, when β2 ≤ β1 and P =

P1 = P2,
PT

t=0 logr̂1,t(ω)→ −∞.
We need to verify that the personalized prices (marginal utility valuations) that sup-

port the proposed allocation are summable. To do so we show that the one period undis-

counted intertemporal rate of substitution for agent 2 is uniformly bounded by M , the

number specified in A.6. Imposing A.6, β2M < 1, completes the proof. We also show

that, under similar conditions, the consumption paths that we construct produce finite

lifetime discounted utility when u(c) = c1−a
1−a , a > 1, or u(c) = log c as in our example.

PROPOSITION 8: Assume A.2, A.3, A.4, and A.6, and P1 = P2 = P . Then

(i) 0 ≤ limT→∞
TX
t=0

βti ·EP

"
u0i(Ci,t)

u0i(Ci,0)

#
≤ 1/(1−β2·M) and limT→∞ βTi ·EP

hu0i(Ci,T )

u0i(Ci,0)

i
= 0,

(ii) limT→∞
PT

t=0 β
t
iEP [ui (Ci,t)] > −∞ if ui (c) ≡ log c or ui (c) ≡ c1−a

1−a , where a > 1.

18Although the construction is parameterised by the initial value c, we do not make that dependence
explicit in the notation.
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6.3 IDENTIFYING EQUILIBRIA

We turn to a result that lets us identify allocations as IDC equilibria. We provide

two sets of sufficient conditions which we shall refer to as Theorem 3A and Theorem 3B;

in order to avoid repetition a composite result is presented, Theorem 3, within which a

distinction is drawn between the assumptions that change across the two sets of conditions.

With a single good and a single asset, given q and zi, each ci determines one and

only one θi that satisfies every spot market budget constraint. Formally, given ci, θi is a

supporting portfolio process at the prices q and endowment process zi if

(i) θi,t ∈ Ψt ∀ t ≥ 0 and
(ii) ∀ t ≥ 0, ci,t(ω) + qt(ω) · θi,t(ω) = zi,t(ω) + rt(ω) · θi,t−1(ω) for all ω ∈ Ω.

THEOREM 3:19 Assume A.2, A.3 and that beliefs are correct, P1 = P2 = P . Consider

consumption processes bci, i ∈ I, and a price process bq such that (i) (bc1, bc2) are feasible,
and, for each i ∈ I, (ii) limT→+∞

PT
t=0 β

t
i EP [ui(bci,t)] > −∞, (iii) bci is supported by the

portfolio bθi at (bq, bzi), and (iv) bci is an Euler process at prices bq. Then (bc1, bc2, bθ1, bθ2, bq)
constitute an IDC equilibrium if either of the following conditions also hold:

(v A) limT→+∞ βTi EP

h
u0i(bci,T )i = 0 and (vi A) bq · bθi ∈ Ψ,

or

(v B) limT→∞
PT

t=0 β
t
i · EP

h
u0i(bci,t)i <∞ and

(vi B) limT→+∞ βTi ·EP

h
u0i(bci,T ) · bqT · bθi,T |Ft

i
(ω) = 0 for all t ≥ 0 and for all ω ∈ Ω.

Theorem 3A is proved by first showing that (ii) and the first order conditions, (iv),

together with an appropriate transversality condition are sufficient to identify a maximiser,

Lemma 19. It is then shown that conditions (v A) and (vi A) together imply that the

required transversality condition holds. By (i) and (iii) the consumption processes are

budget feasible. (v A) is implied by the fact that marginal valuations are summable.

Theorem 3B is proved by showing that (ii) and the first order conditions, (iv), together

with summability, (v B), and a transversality condition at date 0, (vi B) at date 0,

are sufficient to identify a maximiser on an appropriate budget set, Lemma 20, 21, and

22. That and (i) and (iii) allow us to conclude that we have an equilibrium with a

transversality condition at each node, as defined in Magill and Quinzii (1994). The proof

is concluded by invoking Theorem 5.2 in Magill and Quinzii (1994) to show that any such

equilibrium is also an IDC equilibrium.

Condition (ii) in Theorem 3 is implied by strengthening A.3 to include the condition

that ui is bounded below. There are cases in which condition (ii) can verified and our

results hold even when ui is unbounded below–Proposition 8 provided some examples.

6.4 THE RESULT

We turn to our third main result which restricts attention to the case where both agents

have correct beliefs and shows that the phenomenon exhibited in the leading example and

19Theorem 3 can be generalized to the case with nonhomogeneous beliefs.
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identified in Theorem 1 (ii), wherein an agent vanishes almost surely, occurs robustly.

Theorem 4 invokes Theorem 3 to conclude that quite generally an economy has an

IDC equilibrium with consumption specified as in our construction. The conditions in

Theorem 4 (i) include the special case where agent 2 has a logarithmic Bernoulli function

and an endowment at only date 0. The element that is new in Theorem 4 (i) is a proof

of the fact that under the conditions specified, a transversality condition can be shown

to hold at every date and event, Lemma 23 and Lemma 24. Theorem 4 (ii) shows that

there are a continuum of endowment distributions that are no trade IDC equilibria with

consumption specified as in our construction (footnote 18 noted that the construction

is parameterised by an initial value). Theorem 4 (iii) provides a mild condition (which

must hold if 2 vanishes) under which each endowment distribution identified in Theorem

4 (ii) can be perturbed to produce uniformly positive endowments while maintaining

consumption at (C1, C2) to induce an IDC equilibrium with trade.

THEOREM 4: Assume A.1-4, A.6, β2 ≤ β1, and P1 = P2 = P . Also assume that

limT→∞
PT

t=0 β
t
iEP [ui (Ci,t)] > −∞. In each of the following cases an IDC equilibrium

exists with (C1, C2) as equilibrium consumption processes:

(i) the economy is such that, ∀ t ≥ 1, u02(C2,t(ω))·
³
z2,t(ω)−C2,t(ω)

´
= c̄2,t for allω ∈

Ω and u02(C2,0(ω)) ·
³
z2,0(ω)− C2,0(ω)

´
= −LimT→+∞

PT
τ=1 β

τ
2 · c̄2,τ ,

(ii) (z1, z2) = (C1, C2) so that there is no trade in equilibrium,

(iii) there exists eτ (ω) such that 0 < C2,t (ω) ≤ Zt(ω)
2

for all t ≥ eτ (ω), in which case
the endowment could be any one of a continuum of perturbations of (C1, C2).

We remind the reader that Proposition 8 (ii) provides sufficient conditions on para-

metric Bernoulli functions that guarantee the condition in Theorem 4 and Corollary 2

which requires that the utility from Ci, limT→∞
PT

t=0 β
t
iEP [ui (Ci,t)], is bounded below.

The condition in case (i) holds if u2(x) = log x and z2,t(ω) = 0 for t ≥ 1. So the leading
example generalizes to arbitrary nonnegative asset payoffs and arbitrary characteristics for

agent 1. Case (ii) guarantees that our construction is not vacuous. Case (iii) clearly shows

that our construction can go through even though endowments are uniformly positive;

however, the date beyond which the endowment is pertubed is path dependent. The

perturbation is easy to construct: for ¯> 0, decrease agent 2’s endowment at date T̃ (ω)

by ¯> 0 and increase it at each subsequent date by
h̄³
rt(ω)/q

∗
t−1(ω)

´
− 1

i
(agent 1 faces

the symmetric change). This ensures that there is a portfolio, θ2,t(ω), that costs ¯ at each

t ≥ T̃ (ω), i.e. 2 borrows the initial decrease in her endowment and then repays only the

interest. The “predeterminedness” property, Proposition 6 (i), and the mild hypothesis

on the tail behaviour of C2,t(ω), suffice to identify an open subset of possible values for .̄

Corollary 2 summarises our findings. It shows that in an economy with a real bond

and uniformly positive endowments, there are IDC equilibria in which agent 2 vanishes

almost surely if the aggregate endowment has uniformly positive conditional variance.
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COROLLARY 2: Assume A.1-3, A.6, rt(ω) = 1 for all t ≥ 0 and ω ∈ Ω, var [Zt|Ft−1](ω) >
> 0 for all t ≥ 0 and P−a.s. ω ∈ Ω, β2 ≤ β1, and P1 = P2 = P . Also assume that

limT→∞
PT

t=0 β
t
iEP [ui (Ci,t)] > −∞. Then there exists an IDC equilibrium where agent 2

vanishes P−a.s. ω ∈ Ω.

The result follows from the fact that when the asset is a real bond, r̂2,t(ω) = 1 implies

that c2,t is Ft−1−measurable so that conditional variability in the endowment guarantees
that rt · u01(Zt − c2,t) is nondegenerate, i.e. A.7 holds. By Theorem 4 we have an IDC

equilibrium in which r̂2,t(ω) = 1. Since A.7 holds, by Propositions 5 and 7, 2 must vanish

on almost every path.

REMARK 9: One expects that a continuity argument can be used to provide an analogue

of Theorem 4 in the case where β1 < β2 but sufficiently close; this generalizes a property

that the example in Section 3 displayed.20

7. CONCLUDING REMARKS

We showed that, asymptotically, equilibrium consumption in an infinite horizon econ-

omy with incomplete markets with two agents and one good must exhibit very special

behaviour: either one of the two agents will eventually cease to consume, or the equilib-

rium is complicated in the sense that the consumption of both the agents is arbitrarily

close to zero infinitely often. We also provided two robustness checks: for most economies

where individual endowments follow a finite state time homogeneous Markov process and

an agent’s endowment is uniformly positive, her consumption can converge to zero only

on a set of paths that has measure zero, and for a distinct robust class of economies there

are equilibria in which an agent’s consumption is zero eventually with probability one

even though she has correct beliefs and uniformly positive endowments.

Our results help to disentangle the role played by the heterogeneity of beliefs from

that played by the market structure in determining the fate of an agent since we show

that even when beliefs are homogeneous, the fact that markets are incomplete could imply

that an agent vanishes. Evidently, the MSH and the Ramsey conjecture can hold in a

robust sense only if the equilibrium allocation is Pareto optimal.

When utility is unbounded below, Theorem 1 (ii) implies that the continuation utility

is arbitrarily low infinitely often. This can be interpreted as showing that the implicit

punishment required to ensure that an agent continues to participate in the market is the

confiscation of her entire endowment, i.e. the maximal possible punishment.21

We believe that Theorem 1 holds in a wide class of models where markets are in-

complete and the Euler equation always holds with equality. Since the result is based

on pairwise comparisons of the agents’ marginal rates of substitution, we conjecture that

with any finite number of agents and goods, and numeraire assets, such that some asset

has strictly positive returns in at least two states, at most one agent’s consumption can

20We face a technical diffculty when β1 < β2 since in that case Proposition 7 does not go through.
21We are indebted to Emilio Espino for this observation.
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be uniformly bounded away from zero eventually. Generalizations of Theorems 2 and 4

will require a different approach since the current proofs use the fact that there are only

two agents.

Our approach does not cover models where the Euler condition holds as an inequality.

Given the prevalence of such models in the literature on computational general equilibrium

and macroeconomics, it would be useful to characterize the asymptotic properties of

consumption in such models; perhaps our techniques can be adapted to such situations.
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APPENDIX

PROOF OF PROPOSITION 1

That EPi [r̂i,t|Ft−1](ω) = 1 follows from the definition of the process r̂i. The rest of the
proof follows from Lemma 2 and 3. Lemma 2 shows that if the asset’s return is positive

and the one period ahead conditional probability that state s occurs is uniformly positive,

A.1, then r̂i,t(ω) is positive and uniformly bounded above. Lemma 3 uses the martingale

convergence theorem to show that limT→∞
QT

t=1 r̂i,t(ω) is Pi−a.s. finite.

LEMMA 2: Assume A.2, A.3 and r > 0. Then 0 < r̂i,t(ω) ≤ 1/Pi,t(ω). Hence, under A.1,

A.2, A.3, and A.4, b̄ri <∞.
PROOF: Under A.2 and A.3 u0i(ci,t(ω)) is uniformly positive. So r > 0 implies that

r̂i,t(ω) > 0. It follows that

Pi,t(ω) ≤ Pi,t(ω) +

P
ω̃∈Ω((st−1(ω))/Ω(st(ω)) Pi,t(ω̃)·rt(ω̃)·u0i(ci,t)(ω̃)

rt(ω)·u0i(ci,t(ω)) =
EPi [rt·u0i(ci,t)|Ft−1](ω)

rt(ω)·u0i(ci,t(ω)) = 1
r̂i,t(ω)

.

The proof is completed by invoking A.1.

LEMMA 3: Assume A.3 and r > 0. Then there is a random variable R∗i that is nonneg-
ative and a.s. finite with EPi [R

∗
i ] ≤ 1 such that R∗i (ω) = limT→∞

QT
t=1 r̂i,t(ω) Pi−a.s.

PROOF: Under the stated condition, {QT
t=1 r̂i,t} is a positive martingale sinceEPi [r̂i,t|Ft−1] =

1. Since supT≥1EPi [
QT

t=1 r̂i,t] = 1 < +∞, the Martingale Convergence Theorem applies.

PROOF OF PROPOSITION 2

(i) Since, by hypothesis, ci satisfies the Euler equations for i at q, we have

qt−1(ω) = βi · EPi [rt · u0i(ci,t)|Ft−1](ω)
u0i(ci,t−1(ω))

⇔ r̂i,t(ω) =
βi · rt(ω) · u0i(ci,t(ω))
qt−1(ω) · u0i(ci,t−1(ω))

⇒
T+1Y
t=1

r̂i,t(ω) = βT+1i · u
0
i(ci,1+T (ω))

u0i(ci,0(ω))
·

TY
t=0

Ã
r1+t(ω)

qt(ω)

!
.

(ii) By Proposition 1, under A.2, A.3, and A.4, we have r̂i,t(ω) > 0. Since

r̂1,t(ω)

r̂2,t(ω)
=

β1·rt(ω)·u01(c1,t(ω))
qt−1(ω)·u01(c1,t−1(ω))
β2·rt(ω)·u02(c2,t(ω))
qt−1(ω)·u02(c2,t−1(ω))

=
β1
β2
·

u01(c1,t(ω))
u02(c2,t(ω))

u01(c1,t−1(ω))
u02(c2,t−1(ω))

=
β1
β2
· yt−1(ω)
yt(ω)

.

It follows that

⇒ yT (ω) =

³
β1
β2

´T
QT

t=1

³
r̂1,t(ω)
r̂2,t(ω)

´ · y0(ω) = µ
β1
β2

¶T
·
QT

t=1 r̂2,t(ω)QT
t=1 r̂1,t(ω)

· y0(ω).

(iii) Finally, by rewriting the first property in (ii) we have

r̂2,t(ω)·yt−1(ω) = β2
β1
·r̂1,t(ω)·yt(ω) ⇔ EP2 [r̂2,t·yt−1|Ft−1](ω) =

β2
β1
·EP2 [r̂1,t·yt|Ft−1](ω)
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and the first result in (iii) follows by using the fact, noted in Proposition 1, thatEPi [r̂i,t|Ft−1](ω) =
1. The second result in (iii) is proved in a similar manner.

LEMMA EBC

For E ∈ F an event, let 1E denote the indicator function. Recall that if {Ωt}∞t=0 is a
sequence of events, then

n
Ωt i.o.

o
=
n
ω :

P∞
t=1 1Ωt(ω) = +∞

o
.

LEMMA EBC: Let {Ωt}∞t=0 be adapted to the filtration {Ft}∞t=0. Then,

∀N ≥ 1
∞X
t=1

1Ωt(eω) = +∞ P − a.s. eω ∈ (ω : ∞X
t=N

P (Ωt| Ft−N) (ω) = +∞
)
.

PROOF: For {Ωt}∞t=0 a sequence of events adapted to the filtration {Ft}∞t=0, and N ≥ 1,
define ΩN as

ΩN ≡
(
ω :

∞X
t=N

P (Ωt| Ft−N) (ω) = +∞
)
.

We proceed inductively. For N = 1 the result is Levy’s conditional form of the

Borel-Cantelli Lemma and this follows from a more general result due to Freedman (1973

Proposition 39). Suppose that the result holds for n, that is
∞X
t=1

1Ωt(eω) = +∞ P − a.s. eω ∈ Ωn.

To show that it also holds for n+ 1, that is
∞X
t=1

1Ωt(eω) = +∞ P − a.s. eω ∈ Ωn+1,

it suffices to show that eω ∈ Ωn P − a.s. eω ∈ Ωn+1

and, as we show at the end of the proof, for that it is sufficient that

P (Ωt| Ft−n) (eω) ≥ pn i.o. P − a.s. eω ∈ Ωn+1,

a claim that we now prove.

If eω ∈ Ωn+1 then there exists a subsequence {tk}∞k=1 such that
P
³
Ωtk | Ftk−(n+1)

´
(eω) > 0

and it follows by assumption A.1 that

P
³
Ωtk | Ftk−(n+1)

´
(eω) ≥ pn+1.

Therefore,

E
h
P (Ωtk | Ftk−n)| Ftk−(n+1)

i
(eω) = E

h
E
³
1Ωtk

¯̄̄
Ftk−n

´¯̄̄
Ftk−(n+1)

i
(eω)

= E
³
1Ωtk

¯̄̄
Ftk−(n+1)

´
(eω)

= P
³
Ωtk | Ftk−(n+1)

´
(eω) ≥ pn+1,
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where the first equality uses P (Ωtk | Ftk−n) (eω) = E
³
1Ωtk

¯̄̄
Ftk−n

´
(eω) and the second one

uses the law of iterated expectations. It follows that

P
h
P (Ωtk | Ftk−n) ≥ pn+1

¯̄̄
Ftk−(n+1)

i
(eω) > 0

and so, by assumption A.1,

P
h
P (Ωtk | Ftk−n) > pn+1

¯̄̄
Ftk−(n+1)

i
(eω) ≥ p,

and, since P (Ωtk | Ftk−n) (eω) > pn+1 > 0, it follows, once again by assumption A.1, thatn
ω : P (Ωtk | Ftk−n) (ω) > pn+1

o
=
n
ω : P (Ωtk | Ftk−n) (ω) > pn

o
.

Thus,

P
h
P (Ωtk | Ftk−n) > pn

¯̄̄
Ftk−(n+1)

i
(eω) ≥ p. (1)

Now consider the event ΩP
t ≡

n
ω : P (Ωt+n| Ft) (ω) > pn

o
. Let t0k = tk − n. It follows

from (1) that

P
³
ΩP
t0
k

¯̄̄
Ft0

k
−1
´
(eω) ≥ p

and ∞X
t=1

P
³
ΩP
t

¯̄̄
Ft−1

´
(eω) ≥ ∞X

k=1

P
³
ΩP
t0k

¯̄̄
Ft0k−1

´
(eω) = +∞ ∀ eω ∈ Ωn+1.

We can invoke Lemma EBC with n = 1 to conclude that

∞X
t=1

1ΩPt (
eω) = +∞ P − a.s. eω ∈ Ωn+1.

By the definition of ΩP
t it follows that

P (Ωt| Ft−n) (eω) > pn i.o. P − a.s. eω ∈ Ωn+1.

It remains to show that the last statement implies that eω ∈ Ωn. For P−a.s. eω ∈ Ωn+1,

there exists a subsequence {t00k}∞k=1 such that P
³
Ωt00

k

¯̄̄
Ft00

k
−n
´
(eω) > pn. Then,

∞X
t=1

P (Ωt| Ft−n) (eω) ≥ ∞X
k=1

P
³
Ωt00k

¯̄̄
Ft00k−n

´
(eω) = +∞ P − a.s. eω ∈ Ωn+1,

which is the desired conclusion.

PROOF OF THEOREM 1

(i) By definition, on the set V0

limt

∙
P2,t(ω)

P1,t(ω)
· yt(ω)

yt−1(ω)
−EP

∙
P2,t
P1,t

· yt
yt−1

¯̄̄̄
Ft−1

¸
(ω)

¸
= 0.
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Equivalently, using Proposition 2 (ii),

limt

∙
P2,t(ω)

P1,t(ω)
· r̂2,t(ω)
r̂1,t(ω)

−EP

∙
P2,t
P1,t

· r̂2,t
r̂1,t

¯̄̄̄
Ft−1

¸
(ω)

¸
= 0.

So there exists a process {λt}t≥0 such that λt is Ft−measurable and for every > 0 there

exists t( , ω) such that t > t( , ω) implies
¯̄̄
P2,t(ω)
P1,t(ω)

· r̂2,t(ω)
r̂1,t(ω)

− λt−1(ω)
¯̄̄
< . It follows that

t > t( , ω)⇒ (λt−1(ω)− )·P1,t(ω)·r̂1,t(ω) < P2,t(ω)·r̂2,t(ω) < (λt−1(ω)+ )·P1,t(ω)·r̂1,t(ω).
Since λt−1 is Ft−1−measurable, we have t > t( , ω) implies

(λt−1(ω)− ) · EP1 [r̂1,t|Ft−1](ω) < EP2 [r̂2,t|Ft−1](ω) < (λt−1(ω) + ) · EP1 [r̂1,t|Ft−1](ω).
Since EPi [r̂i,t|Ft−1](ω) = 1 and > 0 is arbitrary, we have limtλt−1 = 1 P−a.s. ω ∈ V0.

It follows from an application of Proposition 2 (ii) that limt

³
P2,t(ω)
P1,t(ω)

· yt(ω)
yt−1(ω)

´
= 1.

(ii) We first put bounds on the conditional probability with which there is variability in
P2,t
P1,t

· yt
yt−1

.

LEMMA 4: Assume A.1. Then

(i) ∀ t ≥ 1, P
∙
P2,t
P1,t

· yt
yt−1
≥ 1

¯̄̄̄
Ft−1

¸
(ω) ≥ p > 0 and P

∙
P2,t
P1,t

· yt
yt−1
≤ 1

¯̄̄̄
Ft−1

¸
(ω) ≥ p > 0,

∀ ω ∈ Ω.

(ii) var
∙
P2,t
P1,t

· yt
yt−1

¯̄̄̄
Ft−1

¸
(ω) ≥ > 0 implies that

P
∙
1−
√
2
≥ P2,t

P1,t
· yt
yt−1

¯̄̄̄
Ft−1

¸
(ω) ≥ p > 0 OR P

∙
P2,t
P1,t

· yt
yt−1

≥ 1+
√
2

¯̄̄̄
Ft−1

¸
(ω) ≥ p > 0.

(iii) Assume A.2. If var
∙
P2,t
P1,t

· yt
yt−1

¯̄̄̄
Ft−1

¸
(ω) ≥ > 0 and yt−1(ω) > y, there exists γ > 0

such that

P
∙
1−γ ≥ P2,t

P1,t
· yt
yt−1

¯̄̄̄
Ft−1

¸
(ω) ≥ p > 0 AND P

∙
P2,t
P1,t

· yt
yt−1

≥ 1+γ
¯̄̄̄
Ft−1

¸
(ω) ≥ p > 0.

PROOF: (i) Suppose P
∙
P2,t
P1,t

· yt
yt−1
≥ 1

¯̄̄̄
Ft−1

¸
(ω) < p for some ω on a subset of Ω with

positive measure. Then, it follows by A.1 that
P2,t(eω)
P1,t(eω) · yt(eω)

yt−1(eω) < 1 for all eω ∈ Ω (st−1 (ω)).

By Proposition 2 (ii),
³
yt(eω)/yt−1(eω)´ = ³

r̂2,t(eω)/r̂1,t(eω)´. Hence, EP2 [r̂2,t|Ft−1](ω) <
EP1 [r̂1,t|Ft−1](ω) = 1. Since for all t ≥ 1 and for all ω ∈ Ω, EPi [r̂i,t|Ft−1](ω) = 1 for all
i = 1, 2, a contradiction is reached.

An analogous argument shows that P
∙
P2,t
P1,t

· yt
yt−1
≤ 1

¯̄̄̄
Ft−1

¸
(ω) ≥ p > 0 for all ω ∈ Ω.

(ii) Suppose

P
∙
1−
√
2

<
P2,t
P1,t

· yt
yt−1

< 1 +

√
2

¯̄̄̄
Ft−1

¸
(ω) = 1.

Then,

1−
√
2

< EP

"
P2,t
P1,t

· yt
yt−1

¯̄̄̄
¯Ft−1

#
(ω) < 1 +

√
2
,
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and so "
P2,t
P1,t

· yt
yt−1
−EP

"
P2,t
P1,t

· yt
yt−1

¯̄̄̄
¯Ft−1

#
(ω)

#2
<

Ã
1 +

√
2
−
Ã
1−
√
2

!!2
= ,

implying that

var
∙
P2,t
P1,t

· yt
yt−1

¯̄̄̄
Ft−1

¸
(ω) < .

a contradiction.

(iii) By (ii)

P
∙
1−
√
2
≥ P2,t

P1,t
· yt
yt−1

¯̄̄̄
Ft−1

¸
(ω) ≥ p > 0 OR P

∙
P2,t
P1,t

· yt
yt−1

≥ 1+
√
2

¯̄̄̄
Ft−1

¸
(ω) ≥ p > 0.

Without loss of generality suppose

P
∙
P2,t
P1,t

· yt
yt−1

≥ 1 +
√
2

¯̄̄̄
Ft−1

¸
(ω) ≥ p > 0 (2)

and let c ( , y) be the unique solution (by A.2) to

u02 (z − c)

u01 (c)
=

Ã
1−
√
2

!
· p

1− p
· y

Suppose there exists ω0 ∈ Ω (st−1 (ω)) such that c1,t (ω0) ≤ c
³
, y
´
. Then

P2,t (ω
0)

P1,t (ω0)
· yt (ω

0)
yt−1 (ω0)

≤ 1− p

p
· yt (ω

0)
y

=
1− p

p
· 1
y
· u

0
2 (Zt (ω

0)− c1,t (ω
0))

u01 (c1,t (ω0))
≤ 1−

√
2

where the first inequality follows by A.1 and the last inequality follows by A.2 and the

assumption that c1,t (ω
0) ≤ c

³
, y
´
.

Suppose c1,t (eω) > c
³
, y
´
for all eω ∈ Ω (st−1 (ω)). By Proposition 2 (ii),

³
yt(eω)/yt−1(eω)´ =³

r̂2,t(eω)/r̂1,t(eω)´ for all eω ∈ Ω. By (2) there exists ω0 ∈ Ω (st−1 (ω)) such that

P2,t (ω
0)

P1,t (ω0)
· r̂2,t (ω

0)
r̂1,t (ω0)

≥ 1 +
√
2
.

Let S1 =
½eω ∈ Ω (st−1 (ω)) :

P2,t(eω)
P1,t(eω) r̂2,t(eω)r̂1,t(eω) ≤ 1

¾
. Note that S1 6= ∅ by (i). Then,

X
eω∈S1 P2,t (eω) · r̂2,t (eω) = 1− X

eω∈Ω\S1 P2,t (eω) · r̂2,t (eω)
< 1− X

eω∈Ω\S1,eω 6=ω0 P1,t (eω) · r̂1,t (eω)−
Ã
1 +

√
2

!
· P1,t (ω0) · r̂1,t (ω0)

=
X
eω∈S1 P1,t (eω) · r̂1,t (eω)−

√
2
· P1,t (ω0) · r̂1,t (ω0)

36



where the first and third lines use the fact that EPi [r̂i,t |Ft−1 ] (ω) = 1. It follows that

X
eω∈S1 P2,t (eω) · r̂2,t (eω)−

X
eω∈S1 P1,t (eω) · r̂1,t (eω) < −

√
2
· P1,t (ω0) · r̂1,t (ω0)

and so there exists ω00 ∈ Ω (st (ω)) such that

P2,t (ω
00)·r̂2,t (ω00)−P1,t (ω00)·r̂1,t (ω00) < −

√
2 ·#S1 ·P1,t (ω

0)·r̂1,t (ω0) ≤ −
√
2 · S ·P1,t (ω

0)·r̂1,t (ω0)

and then

P2,t (ω
00)

P1,t (ω00)
· r̂2,t (ω

00)
r̂1,t (ω00)

< 1−
√
2 · S ·

P1,t (ω
0)

P1,t (ω00)
· r̂1,t (ω

0)
r̂1,t (ω00)

≤ 1−
√
2 · S ·

p

1− p
· u

0
1 (c1,t (ω

0))
u01 (c1,t (ω00))

< 1−
√
2 · S ·

p

1− p
· u01 (z)

u01
³
c
³
, y
´´

where the second inequality follows by the definiton of r̂1,t while the third follows by A.2

and the assumption that c1,t (eω) > c
³
, y
´
for all eω ∈ Ω (st−1 (ω)).

Now let γ = min
½√
2
,
√
2·S ·

p

1−p · u01(z)
u01(c( ,y))

¾
. The desired result follows by A.1.

The gist of the argument underlying the proof of Theorem 1 (ii) was given in Section

4.2. We present the formal details.

Fix the values of , T , n, λ, and λ. Without loss of generality we identify agent 2 as

j. We need to prove that

lim supt c1,t(ω) ≤ 1/n P − a.s. ω ∈ VT, ∩ Lλ,λ ∩ {ω : lim inft c2,t(ω) > 1/n}

⇐⇒ P
³
{ω : lim supt c1,t(ω) > 1/n} ∩ VT, ∩ Lλ,λ ∩ {ω : lim inft c2,t(ω) > 1/n}

´
= 0

⇐⇒ lim inft c2,t(ω) ≤ 1/n P − a.s. ω ∈ VT, ∩ Lλ,λ ∩ {ω : lim supt c1,t(ω) > 1/n}.
We will prove the last statement.

Set y
n
≡
³
u02(z − 1/n)/u01(1/n)

´
and yn ≡

³
u02(1/n)/u

0
1(z − 1/n)

´
. Also fix the value

of γ > 0, identified in Lemma 4 (iii) and induced by and y ≡
³
λ/λ

´
· y

n
> 0. Let Tn(γ)

satisfy λ · y
n
· (1 + γ)Tn(γ) > λ · yn. Note that for ω ∈ Lλ,λ, there exists T

λ,λ(ω) such that

λ < dP2,t(ω)
dP1,t(ω)

< λ for all t ≥ T λ,λ(ω).

For τ ≥ 1 and t > τ · T , where T ≥ 1, define the event

Ωτ
1,t ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
ω :

c1,t0(ω) ≥ 1/n, P2,t0(ω)P1,t0(ω)
· yt0(ω)
yt0−1(ω)

≥ 1 ∀ t0 = t0 + 1, · · · , t,
P2,t(ω)
P1,t(ω)

· yt(ω)
yt−1(ω)

≥ 1 + γ,

#
½
P2,t0(ω)
P1,t0(ω)

· yt0(ω)
yt0−1(ω)

≥ 1 + γ, t0 = t0 + 1, · · · , t− 1
¾
= τ − 1,

where t− 1 ≥ t0 ≥ t− τ · T

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.
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For ω ∈ Ωτ
1,t, yt0(ω) ≥ y

n
and

dP2,t (ω)

dP1,t (ω)
· yt(ω) · 1

dP2,t0(ω)

dP1,t0(ω)
· yt0(ω)

=
tY

k=t0+1

P2,k (ω)

P1,k (ω)
· yk(ω)

yk−1(ω)
≥ (1 + γ)τ .

Also, ω ∈ Lλ,λ and t0 ≥ T λ,λ(ω) implies that
dP2,t0 (ω)

dP1,t0 (ω)
> λ. Combining the above, we have

ω ∈ Ω
Tn(γ)
1,t ∩ Lλ,λ and t0 ≥ T λ,λ(ω) ⇒ dP2,t (ω)

dP1,t (ω)
· yt(ω) > λ · y

n
· (1 + γ)Tn(γ),

where, using the definition of Tn(γ), the last term exceeds λ · yn. But then, since t ≥ t0,

we have

ω ∈ Ω
Tn(γ)
1,t ∩ Lλ,λ and t0 ≥ T λ,λ(ω) ⇒ yt(ω) > yn,

i.e. for ω ∈ Ω
Tn(γ)
1,t ∩ Lλ,λ and t0 ≥ T λ,λ(ω) we must have c2,t(ω) ≤ 1/n.

It follows that n
Ω
Tn(γ)
1,t i.o.

o
∩ Lλ,λ ⊂ {ω : lim inft c2,t(ω) ≤ 1/n}.

We will show thatn
Ω
Tn(γ)
1,t i.o.

o
∩ Lλ,λ occurs P − a.s. eω ∈ VT, ∩ Lλ,λ ∩ {ω : lim supt c1,t(ω) > 1/n}

so that

lim inft c2,t(ω) ≤ 1/n P − a.s. eω ∈ VT, ∩ Lλ,λ ∩ {ω : lim supt c1,t(ω) > 1/n}

as required.

The proof will be by induction on τ . To ease the burden of notation, define C1,n
t ≡

{ω : c1,t(ω) > 1/n} so that
n
C1,n
t i.o.

o
⊇ {ω : lim supt c1,t(ω) > 1/n}. Also define

ΩN
2,t ≡

n
ω :

P2,t0(ω)
P1,t0(ω)

· yt0(ω)
yt0−1(ω)

≥ 1, ∀ t0 = t+ 1−N, · · · , t
o
.

The following two facts are used. Fact 1 says that if we consider a path eω ∈ ΩT
2,t0

k
∩VT, ,

so that P2,t
P1,t
· yt
yt−1

is at least one on exactly T dates starting with t = t0k+1−T and ending
with t = t0k, then there is some date tk between t

0
k +1−T and t0k such that

P2,t
P1,t
· yt
yt−1

is at

least one for tk − (t0k +1− T ) = tk − 1− (t0k − T ) periods followed by a date, tk, at which

the conditional variance of
P2,tk
P1,tk

· ytk
ytk−1

at tk − 1 exceeds . The proof follows directly from
the fact that, in any span of T periods, the conditional variance must exceed at least

once and that P2,t
P1,t

· yt
yt−1

is at least one at every date in that span of T periods.

FACT 1: If eω ∈ ΩT
2,t0k
∩ VT, then, necessarily, eω ∈ Ω

tk−1−(t0k−T)
2,tk−1 ∩

n
ω : var

h
P2,tk
P1,tk

·
ytk

ytk−1

¯̄̄
Ftk−1

i
(ω) ≥

o
for some tk ∈ {t0k−(T−1), · · · , t0k}. This can be proved by noting that

(i) by the definition of T , for every t0k there necessarily exists tk ∈ {t0k − (T − 1), · · · , t0k}
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such that eω ∈ n
ω : var

h
P2,tk
P1,tk

· ytk
ytk−1

¯̄̄
Ftk−1

i
(ω) ≥

o
, and (ii) eω ∈ ΩT

2,t0
k
implies that

eω ∈ Ω
tk−1−(t0k−T)
2,tk−1 also for t0k − (T − 1) ≤ tk ≤ t0k.

Fact 2 uses Fact 1 to note that if we consider a path eω ∈ Ωτ
1,t0

k
−T ∩ΩT

2,t0
k
∩ VT, ∩ Lλ,λ,

so that τ upward moves of dP2,t
dP1,t

· yt with no downward moves are followed by T periods

where P2,t
P1,t

· yt
yt−1

is at least one and in at least one of those periods there is one period

ahead variability, then there is a date tk, that satisfies the conditions in Fact 1, such that
P2,t
P1,t

· yt
yt−1

is at least 1 + γ with conditional probability at tk − 1 that is at least p.
FACT 2: By convention, Ω01,t = C1,n

t and Ω02,t = Ω. For eω ∈ Ωτ
1,t0

k−T∩Ω
T
2,t0

k
∩VT, ∩Lλ,λ, there

is tk > t0k such that eω ∈ Ωτ
1,t0

k−T ∩Ω
tk−1−(t0k−T )
2,tk−1 ∩

n
ω : var

h
P2,tk
P1,tk

· ytk
ytk−1

¯̄̄
Ftk−1

i
(ω) ≥

o
∩Lλ,λ,

and if t0k ≥ T λ,λ(eω) then, by Lemma 4 (i),
λ·ytk−1(eω) > dP2,tk−1(eω)

dP1,tk−1(eω) ·ytk−1(eω) ≥
dP2,t0−1(eω)
dP1,t0−1(eω) ·yt0−1(eω) ≥ λ·y

n
⇔ ytk−1(eω) > ³

λ/λ
´
·y

n
≡ y

and so, by Lemma 4 (iii),

P
∙
P2,tk
P1,tk

· ytk
ytk−1

≥ 1 + γ
¯̄̄̄
Ftk−1

¸
(eω) ≥ p > 0.

So in particular, on any ω ∈
n
Ωτ
1,t i.o.

o
∩ Lλ,λ, there is a subsequence of dates beyond

which the hypothesis of Lemma 4 (iii) is satisfied.

We turn to the first step in the proof by induction. Consider ω̃ ∈
n
C1,n
t i.o.

o
. By

Lemma 4 (i), there exists a sequence {tk}∞k=1 such that P
h
C1,n
tk−T ∩ΩT

2,tk

¯̄̄
Ftk−T

i
(eω) ≥ ³

p
´T
,

and so, by Lemma EBC,

∞X
t=1

1C1,nt−T∩ΩT2,t(
eω) = +∞ P − a.s. eω ∈ nC1,n

t i.o.
o
.

Therefore, for P -a.s. eω ∈ n
C1,n
t i.o.

o
, there exists a sequence {t0k}∞k=1 such that eω ∈

C1,n
t0k−T ∩ Ω

T
2,t0k
. So, for P -a.s. eω ∈ VT, ∩ Lλ,λ ∩

n
C1,n
t i.o.

o
there exists a sequence {t0k}∞k=1

such that eω ∈ C1,n
t0k−T ∩ ΩT

2,t0
k
∩ VT, ∩ Lλ,λ. It follows from Fact 2 that for P -a.s. eω ∈

VT, ∩ Lλ,λ ∩
n
C1,n
t i.o.

o
, there exists a γ > 0 and a subsequence {tk}∞k=1 such thateω ∈ C1,n

t0k−T ∩ Ωτ
1,t0

k−T ∩ Ω
tk−1−(t0k−T )
2,tk−1 ∩ Lλ,λ and P

∙
P2,tk
P1,tk

· ytk
ytk−1

≥ 1 + γ
¯̄̄̄
Ftk−1

¸
(eω) ≥ p.

Therefore,
P∞

t=1 P
h
Ω11,t

¯̄̄
Ft−1

i
(eω) ≥ P∞

k=1 P
h
Ω11,tk

¯̄̄
Ftk−1

i
(eω) = +∞ and, therefore, by

Lemma EBC,
P∞

t=1 1Ω11,t(
eω) = +∞ P -a.s. eω ∈ VT, ∩ Lλ,λ ∩

n
C1,n
t i.o.

o
. Finally, sinceeω ∈ Lλ,λ, we haven

Ω11,t i.o.
o
∩ Lλ,λ occurs P − a.s. eω ∈ VT, ∩ Lλ,λ ∩

n
C1,n
t i.o.

o
.
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We turn to the second step. So suppose it is true that for some τn
Ωτ
1,t i.o.

o
∩ Lλ,λ occurs P − a.s. eω ∈ VT, ∩ Lλ,λ ∩

n
C1,n
t i.o.

o
.

Then, using Lemma 4 (i), there exists a subsequence
n etko∞

k=1
such that P

h
Ωτ
1,etk−T ∩

ΩT
2,etk ¯̄̄Fetk−T i (eω) ≥ ³

p
´T
for all k ≥ 1. By Lemma EBC,

∞X
t=1

1Ωτ1,t−T∩ΩT2,t(eω) = +∞ P − a.s. eω ∈ VT, ∩ Lλ,λ ∩
n
C1,n
t i.o.

o
.

Therefore, for P -a.s. eω ∈ VT, ∩Lλ,λ∩
n
C1,n
t i.o.

o
there exists a sequence {t0k}∞k=1 such thateω ∈ Ωτ

1,t0k−T ∩Ω
T
2,t0k

and so there exists a sequence {t0k}∞k=1 such that eω ∈ Ωτ
1,t0k−T ∩Ω

T
2,t0k
∩

VT, ∩Lλ,λ. It follows from Fact 2 that for P -a.s. eω ∈ VT, ∩Lλ,λ∩
n
C1,n
t i.o.

o
, there exists

a γ > 0 and a subsequence {tk}∞k=1 such that eω ∈ C1,n
t0k−T ∩ Ωτ

1,t0k−T ∩ Ω
tk−1−(t0k−T )
2,tk−1 ∩ Lλ,λ

and P
∙
P2,tk
P1,tk

· ytk
ytk−1

≥ 1 + γ
¯̄̄̄
Ftk−1

¸
(eω) ≥ p. Therefore,

∞X
t=1

P
h
Ωτ+1
1,t

¯̄̄
Ft−1

i
(eω) ≥ ∞X

k=1

P
h
Ωτ+1
1,tk

¯̄̄
Ftk−1

i
(eω) = ∞X

k=1

P
∙
P2,tk
P1,tk

· ytk
ytk−1

≥ 1+γ
¯̄̄̄
Ftk−1

¸
(eω) = +∞

and it follows from Lemma EBC that
P∞

t=1 1Ωτ+11,t
(eω) = +∞ P -a.s. eω ∈ VT, ∩ Lλ,λ ∩n

C1,n
t i.o.

o
. Finally, since eω ∈ Lλ,λ, we haven

Ωτ+1
1,t i.o.

o
∩ Lλ,λ occurs P − a.s. eω ∈ VT, ∩ Lλ,λ ∩

n
C1,n
t i.o.

o
.

This completes the induction on τ .

Hence, for every τ ≥ 0,n
Ωτ+1
1,t i.o.

o
∩ Lλ,λ occurs P − a.s. eω ∈ VT, ∩ Lλ,λ ∩

n
C1,n
t i.o.

o
;

in particular,n
Ω
Tn(γ)
1,t i.o.

o
∩ Lλ,λ occurs P − a.s. eω ∈ VT, ∩ Lλ,λ ∩ {ω : lim supt c1,t(ω) > 1/n}

as required since, as already noted,
n
C1,n
t i.o.

o
⊇ {ω : lim supt c1,t(ω) > 1/n}.

PROOF OF COROLLARY 1

Since P1 = P2 = P and β1 = β2, Theorem 1 implies that for P − a.s. ω ∈ VT, , where

T < ∞ and > 0, yt(ω) has zero and/or infinity as limit points. Also, by Proposition 1QbT
t=1 r̂i,t(ω)→ R∗i (ω) P−a.s., since Pi = P . Therefore, by Proposition 2 (ii) and β1 = β2,

we must have R∗i (ω) = 0 P − a.s. ω ∈ VT, for some i. The argument is completed by
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noting that under A.2 and A.3, u0i(c) is bounded below and so, by Proposition 2 (i),QbT
t=0

βi·rt+1(ω)
qt(ω)

→ 0 P − a.s. ω ∈ VT, .

PROOF OF PROPOSITION 3

For ε > 0, define the set

Aε ≡
n
{ω : |qt (ω)− qj (Zt (ω))| > ε} i.o.

o
∩A. (3)

On ω ∈ A, cj,t (ω)→ Zt (ω) and so there exists T (ω) such that if t ≥ T (ω) then

1− 1
2
· ε
βjr
· u0j(z)
u0j(z)

1− ε
βjr
· u0j(z)
u0j(z)

≥ u0j (cj,t (ω))
u0j (Zt (ω))

≥ 1. (4)

Notice that

qt (ω)− qj (Zt (ω)) = βj ·EPj

"Ã
u0j (cj,t+1)
u0j (cj,t)

− u0j (Zt+1)

u0j (Zt)

!
· rt+1

¯̄̄̄
¯Ft

#
(ω)

and so (3) and assumption A.1 imply that there is a subsequence {tk}∞k=1 with t1 ≥ T (ω)

such that

Pj

"Ã
u0j (cj,tk+1)
u0j (cj,tk)

− u0j (Ztk+1)

u0j (Ztk)

!
· rtk+1 >

ε

βj

¯̄̄̄
¯Ftk

#
(ω) > p for all k ≥ 1

or

Pj

"Ã
u0j (cj,tk+1)
u0j (cj,tk)

− u0j (Ztk+1)

u0j (Ztk)

!
· rtk+1 < −

ε

βj

¯̄̄̄
¯Ftk

#
(ω) > p for all k ≥ 1.

Suppose P
∙µ

u0j(cj,tk+1)
u0j(cj,tk)

− u0j(Ztk+1)
u0j(Ztk)

¶
· rtk+1 > ε

βj

¯̄̄̄
Ftk

¸
(ω) > p for all k ≥ 1. Then there is

ω0 ∈ Ω (stk (ω)),
u0j (cj,tk+1 (ω

0))
u0j (cj,tk (ω0))

− u0j (Ztk+1 (ω
0))

u0j (Ztk (ω
0))

>
ε

βjrtk+1 (ω
0)

⇔ u0j (cj,tk+1 (ω
0))

u0j (cj,tk (ω0))
>

ε

βjrtk+1 (ω
0)
+

u0j (Ztk+1 (ω
0))

u0j (Ztk (ω
0))

⇔ u0j (cj,tk+1 (ω
0))

u0j (cj,tk (ω0))
>

u0j (Ztk+1 (ω
0))

u0j (Ztk (ω
0))

·
Ã

ε

βjrtk+1 (ω
0)
· u0j (Ztk (ω

0))
u0j (Ztk+1 (ω

0))
+ 1

!

⇔ u0j (cj,tk+1 (ω
0))

u0j (Ztk+1 (ω
0))

>
u0j (cj,tk (ω

0))
u0j (Ztk (ω

0))
·
Ã

ε

βjrtk+1 (ω
0)
· u0j (Ztk (ω

0))
u0j (Ztk+1 (ω

0))
+ 1

!

and since t1 ≥ T (ω), it follows from (4) that there is ω0 ∈ Ω (stk (ω)) such that,

u0j (cj,tk+1 (ω
0))

u0j (Ztk+1 (ω
0))

> 1 +
ε

βjr
· u

0
j (z)

u0j (z)
.
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Defining ε0 ≡ 1
2
· ε
βjr
· u0j(z)
u0j(z)

> 0 one concludes that

P

"
u0j (cj,tk+1)
u0j (Ztk+1)

> 1 + ε0
¯̄̄̄
¯Ftk

#
(ω) > p for every k ≥ 1 on ω ∈ Aε. (5)

Suppose P
∙µ

u0j(cj,tk+1)
u0j(cj,tk)

− u0j(Ztk+1)
u0j(Ztk)

¶
· rtk+1 < −ε

βj

¯̄̄̄
Ftk

¸
(ω) > p for all k ≥ 1. Then there is

ω0 ∈ Ω (stk (ω)),
u0j (cj,tk+1 (ω

0))
u0j (cj,tk (ω0))

− u0j (Ztk+1 (ω
0))

u0j (Ztk (ω
0))

<
−ε

βjrtk+1 (ω
0)

⇔ u0j (cj,tk+1 (ω
0))

u0j (cj,tk (ω0))
<

−ε
βjrtk+1 (ω

0)
+

u0j (Ztk+1 (ω
0))

u0j (Ztk (ω
0))

⇔ u0j (cj,tk+1 (ω
0))

u0j (cj,tk (ω0))
<

u0j (Ztk+1 (ω
0))

u0j (Ztk (ω
0))

·
Ã −ε
βjrtk+1 (ω

0)
· u0j (Ztk (ω

0))
u0j (Ztk+1 (ω

0))
+ 1

!

⇔ u0j (cj,tk+1 (ω
0))

u0j (Ztk+1 (ω
0))

<
u0j (cj,tk (ω

0))
u0j (Ztk (ω

0))
·
Ã
1− ε

βjrtk+1 (ω
0)
· u0j (Ztk (ω

0))
u0j (Ztk+1 (ω

0))

!

⇔ u0j (cj,tk+1 (ω
0))

u0j (Ztk+1 (ω
0))

<
u0j (cj,tk (ω

0))
u0j (Ztk (ω

0))
·
Ã
1− ε

βjr
· u

0
j (z)

u0j (z)

!

and since t1 ≥ T (ω), it follows from (4) that there is ω0 ∈ Ω (stk (ω)) such that

u0j (cj,tk+1 (ω
0))

u0j (Ztk+1 (ω
0))

< 1− 1
2
· ε

βjr
· u

0
j (z)

u0j (z)
.

One concludes that

P

"
u0j (cj,tk+1)
u0j (Ztk+1)

< 1− ε0
¯̄̄̄
¯Ftk

#
(ω) > p for every k ≥ 1 on ω ∈ Aε. (6)

Conditions (5) and (6) imply that for each ω ∈ Aε either

∞X
t=0

P

"
u0j (cj,t+1)
u0j (Zt+1)

> 1 + ε0
¯̄̄̄
¯Ft

#
(ω) ≥

∞X
k=1

P

"
u0j (cj,tk+1)
u0j (Ztk+1)

> 1 + ε0
¯̄̄̄
¯Ftk

#
(ω) = +∞

or

∞X
t=0

P

"
u0j (cj,t+1)
u0j (Zt+1)

< 1− ε0
¯̄̄̄
¯Ft

#
(ω) ≥

∞X
k=1

P

"
u0j (cj,tk+1)
u0j (Ztk+1)

< 1− ε0
¯̄̄̄
¯Ftk

#
(ω) = +∞

By Lemma EBC, for P − a.s. ω ∈ Aε we have

ω ∈
((

ω̃ :
u0j (cj,t (ω̃))
u0j (Zt (ω̃))

≥ 1 + ε0
)

i.o.

)
∪
((

ω̃ :
u0j (cj,t (ω̃))
u0j (Zt (ω̃))

≤ 1− ε0
)

i.o.

)
. (7)
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Since u0j is continuous (by A.3), (7) implies cj,t (ω) does not converge to Zt (ω) P−a.s.
ω ∈ Aε. Since Aε ⊂ A then P (Aε) = 0, as desired.

PROOF OF PROPOSITION 4

First we show that on paths on which an agent vanishes, the rate of return violates

any prespecified bound. This is done in two steps.

Define the event Ωn
t as

Ωn
t ≡

(
ω :

t−1Y
τ=t−n

r (Zτ+1 (ω))

qj (Zτ (ω))
≥ u0j (z)

u0j (z)
·
Ã
1

βj

!n)
.

LEMMA 5: Assume A.1, A.2 and A.3. Then, P−a.s. ω,

ω ∈ {Ωn
t i.o.} for all n ∈ {1, 2, 3, · · ·}.

PROOF: From the Euler equation of agent j 6= i, in the economy where only j consumes,

and the law of iterated expectations, it follows that

EPj

Ã
u0j (Zt)

u0j (Zt−n)
·

t−1Y
τ=t−n

r (Zτ+1)

qj (Zτ)

¯̄̄̄
¯Zt−n = z

!
(ω) =

Ã
1

βj

!n

for all z ∈ S and n ≥ 1,

and then by A.3

EPj

Ã
t−1Y

τ=t−n

r (Zτ+1)

qj (Zτ )

¯̄̄̄
¯Zt−n = z

!
(ω) ≥ u0j (z)

u0j (z)
·
Ã
1

βj

!n

for all z ∈ S and n ≥ 1.

It follows that

Pj

Ã
t−1Y

τ=t−n

r (Zτ+1)

qj (Zτ)
≥ u0j (z)

u0j (z)
·
Ã
1

βj

!n ¯̄̄̄
¯Zt−n = z

!
(ω) > 0,

and so, assumption A.1 implies that

P

Ã
t−1Y

τ=t−n

r (Zτ+1)

qj (Zτ)
≥ u0j (z)

u0j (z)
·
Ã
1

βj

!n ¯̄̄̄
¯Zt−n = z

!
(ω) >

³
p
´n

.

Therefore,

P (Ωn
t |Zt−n = z) (ω) ≥

³
p
´n

> 0 for all z ∈ S and n ≥ 1,
where the inequality follows by A.1, and it follows by Lemma EBC that ω ∈ {Ωn

t i.o.}
for P−a.s. ω.

LEMMA 6: Consider an IDC equilibrium. Assume A.1, A.2, A.3 and A.5 holds. Then,

P−a.s. ω ∈ A,

ω ∈
((

ω0 :
t−1Y

τ=t−n

rτ+1 (ω
0)

qτ (ω0)
>
1

2
· u

0
j (z)

u0j (z)
·
Ã
1

βj

!n)
i.o.

)
for all n ∈ N+.
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PROOF: By Proposition 2 there exists Tn (ω) such that for all t ≥ Tn (ω),

t−1Y
τ=t−n

rτ+1 (ω)

qτ (ω)
≥ 1
2
·

t−1Y
τ=t−n

r (Zτ+1 (ω))

qj (Zτ (ω))
.

By Lemma 5, P−a.s. ω ∈ A, there exists a subsequence {tk}∞k=1 such that
tk−1Y

τ=tk−n

r (Zτ+1 (ω))

qj (Zτ (ω))
>

u0j (z)
u0j (z)

·
Ã
1

βj

!n

.

Then, there exists k0 such that tk0 ≥ Tn (ω). It follows that for all k ≥ k0

tk−1Y
τ=tk−n

rτ+1 (ω)

qτ (ω)
≥ 1
2
· u

0
j (z)

u0j (z)
·
Ã
1

βj

!n

.

We proceed with the proof of Proposition 4.

From agent i’s sequential budget constraint it follows that

1
rt+1(ω)
qt(ω)

· [ci,t+1 (ω)− zi,t+1 (ω)] +
1

rt+1(ω)
qt(ω)

·Bi,t+1 (ω) = Bi,t (ω) .

Solving forward, we have that

Bi,t (ω) =
ci,t+1 (ω)− zi,t+1 (ω)

rt+1(ω)
qt(ω)

+
TX
s=2

⎛⎜⎜⎜⎝ci,t+s (ω)− zi,t+s (ω)
t+s−1Q
τ=t

rτ+1(ω)
qτ (ω)

⎞⎟⎟⎟⎠+ Bi,t+T (ω)
t+T−1Q
τ=t

rτ+1(ω)
qτ (ω)

. (8)

Let K =
1
2
zi
r

minz qj(z)

. By A.4 and since zi > 0, Proposition 3 implies that, P−a.s. ω ∈ A,

there is T (ω) such that

1
rt+1(ω)
qt(ω)

· [ci,t+1 (ω)− zi,t+1 (ω)] < −1
2
· zi

r
minz qj(z)

= −K for every t ≥ T (ω) . (9)

By the uniform bounds condition, there exists U > 0 such that Bi,t+T (ω) ≤ U for all

T ≥ 1. Since βj < 1, there is n such that 1
2
· u0j(z)
u0j(z)

·
³
1
βj

´n
> 2 · U

K
and by Lemma 6 there

is {t0k}∞k=1 with t01 ≥ T (ω) + n such that

t0k−1Y
τ=t0k−n

rτ+1 (ω)

qτ (ω)
> 2 · U

K
for every k ≥ 1 P − a.s. ω ∈ A. (10)

For each k ∈ {1, 2, ...}, set tk ≡ t0k − n. Then, (8), (9) and (10) imply that

Bi,tk (ω) ≤ −K +
K

2
= −K

2
< 0 P − a.s. ω ∈ A.
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Therefore,

lim inf Bi,t (ω) ≤ −K
2

< 0 P − a.s. ω ∈ A.

PROOF OF THEOREM 2

Before proving Theorem 2, we show that the debt of the agent who vanishes cannot

have a nonnegative accumulation point and that the limiting asset return when a state is

repeated exceeds one for every state (Lemma 7). We then show that these two facts have

the following strong implication: given a state, except for an initial condition that is a

single point, if that state keeps repeating then either debt becomes positive or it violates

the uniform lower bound (Lemma 8).

LEMMA 7: Consider an IDC equilibrium with implicit bound U > 0. Assume A.1, A.2,

A.3, A.4 and A.5 hold and zi > 0. Then,

(i) lim supBi,t (ω) < 0 for P−a.s. ω ∈ A.

(ii) If the set A has positive measure, then r(z)
qj(z)
≥ 1 + 1

2
zi(z)
U
for all z ∈ S.

PROOF: Define Aq ≡ A ∩ {ω : qt (ω)→ qj (Zt (ω))}. By Proposition 3 it suffices to show
that the Lemma holds for P−a.s. ω ∈ Aq. Suppose ω ∈ Aq. Then there is T

∗ (ω) such
that zi,t+1 (ω)− ci,t+1 (ω) > 0 for all t ≥ T ∗ (ω). Therefore, for every t ≥ T ∗ (ω),

Bi,t+1 (ω) =
rt+1 (ω)

qt (ω)
·Bi,t (ω) + zi,t+1 (ω)− ci,t+1 (ω) >

rt+1 (ω)

qt (ω)
·Bi,t (ω) .

It follows that,

Bi,t (ω) ≥ 0 and t ≥ T ∗ (ω) ⇒ Bi,t+k (ω) > 0 for all k ≥ 1. (11)

Recall that B (z, z0) ≡ − zi(z
0)

r(z0)
qj(z)

−1
and define B ≡ maxz,z0∈S {B (z, z0) : B (z, z0) < 0}.

Consider B such that B < B < 0 and z, z0 ∈ S. Suppose first that r(z0)
qj(z)
− 1 ≤ 0. Since

B < 0, then
³
r(z0)
qj(z)
− 1

´
·B + zi (z

0) > 0. Suppose now that r(z0)
qj(z)
− 1 > 0. Since B < B, it

follows from the definitions of B (z, z0) and B that− zi(z0)
r(z0)
qj(z)

−1
< B and we conclude that

B < B < 0 ⇒
Ã
r (z0)
qj (z)

− 1
!
·B + zi (z

0) > 0 for all z, z0 ∈ S. (12)

(12) implies that, for every ω ∈ Aq, there exists ε
0 > 0 and T (ω) ≥ T ∗ (ω) such that

for all t ≥ T (ω)

B < B < 0 ⇒
Ã
rt+1 (ω)

qt (ω)
− 1

!
·B + zi,t+1 (ω)− ci,t+1 (ω) > ε0 > 0. (13)
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Also, for ω ∈ Aq, T (ω) ≥ T ∗(ω) can be chosen so that for all t ≥ T (ω) and z ∈ S,
1

4
· zi (z) ≥ ci,t (ω) , (14)

r (z)

qj (z)
< 1 +

1

2

zi (z)

U
and Zt+1 (ω) = Zt (ω) = z ⇒ rt+1 (ω)

qt (ω)
< 1 +

1

2

zi (z)

U
. (15)

Consider A0 ⊂ Aq. If one were able to show that, P−a.s. ω ∈ A0, there exists a date
t ≥ T (ω) such that Bi,t (ω) ≥ 0 then it would follow from (11) that, P−a.s. ω ∈ A0,
lim inf Bi,t (ω) ≥ 0 and by Proposition 3 one would conclude that A0 has zero measure.
To show (i) we argue that for P−a.s. ω ∈ Aq ∩ {lim supBi,t (ω) ≥ 0}, there exists a date
t ≥ T (ω) such that Bi,t (ω) ≥ 0. To show (ii) we argue that if r(z)

qj(z)
< 1 + 1

2
zi(z)
U
for some

z ∈ S, then for P−a.s. ω ∈ Aq there exists a date t ≥ T (ω) such that Bi,t (ω) ≥ 0.
(i) Suppose ω ∈ Aq ∩ {lim supBi,t (ω) ≥ 0}. Since lim supBi,t (ω) ≥ 0 > B, there

exists τ ≥ T (ω) such that B < Bi,τ (ω). If Bi,τ (ω) ≥ 0 then we are done; so assume that
Bi,τ (ω) < 0. Since

Bi,t+1 (ω)−Bi,t (ω) =

Ã
rt+1 (ω)

qt (ω)
− 1

!
·Bi,t (ω) + zi,t+1 (ω)− ci,t+1 (ω) ,

(13) implies that

Bi,τ+1 (ω)−Bi,τ (ω) ≥ ε0 > 0 and Bi,τ+T (ω) ≥ Bi,τ (ω) + T · ε0.

Since Bi,τ (ω) ≥ B > −∞, there exists t ≥ T (ω) such that Bi,t (ω) > 0 as we wished to

prove.

(ii) Suppose r(z)
qj(z)

< 1 + 1
2
zi(z)
U
for some z ∈ S. Consider an ω ∈ Aq such that for some

t ≥ T (ω), Zt+1 (ω) = Zt (ω) = z and Bi,t (ω) ≤ 0. Then, on ω ∈ Aq, conditions (14) and

(15) imply that

Bi,t+1 (ω)−Bi,t (ω) =

Ã
rt+1 (ω)

qt (ω)
− 1

!
·Bi,t (ω) + zi,t+1 (ω)− ci,t+1 (ω)

≥
Ã
rt+1 (ω)

qt (ω)
− 1

!
·Bi,t (ω) +

3

4
· zi (z)

≥
Ã
rt+1 (ω)

qt (ω)
− 1

!
· (−U) + 3

4
· zi (z)

> −1
2
zi (z) +

3

4
· zi (z) = zi (z)

4
. (16)

For eε > 0, let Nz,eε be the smallest positive integer such that N · zi(z)
4

> U + eε. Define
the event

Ω
N
z,eε

t ≡
n
ω : Zτ (ω) = z for t−Nz,eε ≤ τ ≤ t

o
.
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It follows by A.1 that P
µ
Ω
N
z,eε

t

¯̄̄̄
Ft−N

¶
(ω) ≥

³
p
´N

z,eε and so by Lemma EBC one con-

cludes that, P−a.s. ω ∈ A, ω ∈
½
Ω
N
z,eε

t i.o.
¾
. So, P−a.s. ω ∈ Aq, there is a subsequence

{tk}∞k=1 where t1 ≥ T (ω) + Nz,eε and Zτ (ω) = z for all tk − Nz,eε ≤ τ ≤ tk and for all

k ≥ 1. It follows by (14) and (15) that, P−a.s. ω ∈ Aq, either there exists some τ such

that tk −Nz,eε ≤ τ ≤ tk − 1 and Bi,τ (ω) ≥ 0 or

Bi,tk (ω) = Bi,tk−N
z,eε (ω) +

tk−1X
τ=tk−N

z,eε [Bi,τ+1 (ω)−Bi,τ (ω)]

> −U +
tk−1X

τ=tk−Nz,eε [Bi,τ+1 (ω)−Bi,τ (ω)]

≥ −U +Nz,eε · zi (z)4 > eε > 0,
where the inequality in the last line follows from (16). It follows that, P−a.s. ω ∈ A,

there exists a date t ≥ T (ω) such that Bi,t (ω) ≥ 0.

For z ∈ S, ε > 0, and N ∈ {0, 1, 2, · · ·}, define
Ω+t (z, ε,N) ≡ {ω ∈ A : B (z, z) + ε ≤ Bi,t−N (ω) Zt−N (ω) = · · · = Zt (ω) = z},
Ω−t (z, ε,N) ≡ {ω ∈ A : Bi,t−N (ω) ≤ B (z, z)− ε Zt−N (ω) = · · · = Zt (ω) = z}.

LEMMA 8: Consider an IDC equilibrium. Assume A.1, A.2, A.3, A.4 and A.5, zi > 0

and let z ∈ S be such that r(z)
qj(z)

> 1. Then, for every ε > 0

(a) lim supBi,t (ω) ≥ 0 P−a.s. ω ∈
n
Ω+t (z, ε, 0) i.o.

o
,

(b) lim inf Bi,t (ω) < −U P−a.s. ω ∈
n
Ω−t (z, ε, 0) i.o.

o
.

PROOF: (a) Let Aq ≡ A ∩ {ω̃ : qt (ω̃)→ qj (Zt (ω̃))}. Throughout the proof, z is an
element of S such that r(z)

qj(z)
> 1.

By the definition of B(z, z),
³
r(z)
qj(z)
− 1

´
·B(z, z) + zi(z) = 0. So, for ε > 0, we haveÃ

r(z)

qj(z)
− 1

!
· (B(z, z) + ε) + zi(z) > 0.

Therefore, for ω ∈ Aq, there is T (ω) and ε0 > 0 such that if ω ∈ Ω+t+1(z, ε, 1) for some

t+ 1 ≥ T (ω) then

Bi,t+1 (ω)−Bi,t (ω) =

"
rt+1 (ω)

qt (ω)
− 1

#
·Bi,t(ω) + zi,t+1(ω)− ci,t+1 (ω) ≥ ε0 > 0.

If the initial condition is appropriate and the state z is realized at consecutive dates,

then the argument may be applied repeatedly. Formally, by iterating the argument, if

t+ 1 ≥ T (ω) then, for N = 1, 2, 3, · · ·,
Aq ∩ Ω+t+N(z, ε,N) ⊂ Aq ∩

³
∩Nk=1 Ω+t+k(z, ε, 1)

´
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so that if ω ∈ Aq ∩ Ω+t+N(z, ε,N) and t+ 1 ≥ T (ω), then

Bi,t+N (ω) = Bi,t (ω) +
t+N−1X
τ=t

[Bi,τ+1 (ω)−Bi,τ (ω)] ≥ B (z, z) +N · ε0. (∗)

Let Nz be the smallest positive integer such that B (z, z) + Nz · ε0 > 0. By (*), if

ω ∈ Aq ∩ Ω+t+Nz
(z, ε,Nz) and t+ 1 ≥ T (ω) then Bi,t+Nz (ω) ≥ B (z, z) +Nz · ε0 > 0.

So, to show that lim supBi,t (ω) > 0 for P−a.s. ω ∈
n
Ω+t (z, ε, 0) i.o.

o
, it suffices to

show that for P−a.s. ω ∈
n
Ω+t (z, ε, 0) i.o.

o
, ω ∈ Aq ∩

n
Ω+t (z, ε,Nz) i.o.

o
.

By hypothesis, for each ω ∈
n
Ω+t (z, ε, 0) i.o.

o
, there exists {t0k}∞k=1 such thatB (z, z)+

ε ≤ Bi,t0
k
(ω) and Zt0

k
(ω) = z for all k ≥ 1. Given a positive integer N , define tk = t0k+N .

Therefore, for ω ∈
n
Ω+t (z, ε, 0) i.o.

o
and any positive integer N , there exists {tk}∞k=1

such that
∞X
t=0

P
h
Ω+t (z, ε,N)

¯̄̄
Ft−N

i
(ω) ≥

∞X
k=1

P
h
Ω+tk(z, ε,N)

¯̄̄
Ftk−N

i
(ω)

=
∞X
k=1

P [Ztk+1−N (ω) = ... = Ztk (ω) = z| Ftk−N ] (ω) = +∞

where the last equality follows by A.1. Lemma EBC lets us conclude that for every

positive integer N , P−a.s. ω ∈
n
Ω+t (z, ε, 0) i.o.

o
, ω ∈

n
Ω+t (z, ε,N) i.o.

o
. In par-

ticular, since P (A/Aq) = 0 by Proposition 3, P−a.s. ω ∈
n
Ω+t (z, ε, 0) i.o.

o
, ω ∈

Aq ∩
n
Ω+t (z, ε,Nz) i.o.

o
. That is the desired result.

An analogous argument proves (b).

We proceed with the proof of Theorem 2. By way of contradiction, suppose that

P (A) > 0, where A is the set on which i vanishes. Then, by Lemma 7 (ii), on A, for every

state z, r(z)
qj(z)

> 1. By Lemma 8, when such a state z keeps repeating, the only stable

point is the value B(z, z). We now show that transitions across states do not restore

stability except under the exacting conditions ruled out in the statement of the theorem.

Let A∗ ⊂ A be the set of paths with each of which is associated a z∗(ω) with the property
that the smallest accumulation point of debt on the path coincides with B(z∗(ω), z∗(ω))
(which, by Proposition 4, must be negative). We first show that P (A) = P (A∗) and so
P (A∗) > 0. We then show that if the condition in Theorem 2 is violated, then, on any

path ω such that the value of debt is at or near B(z∗(ω), z∗(ω)) infinitely many times,
there will be infinitely many periods in which both B(z, z) is not hit and z is realized,

where z 6= z∗(ω). On any such path, by Lemma 8, either Bi,t has a positive accumulation

point or the lower bound on debt is violated infinitely often. Since we are at an IDC

equilibrium, and invoking Lemma 7 (i), both are impossible. Since the conditioning event

contains A∗, it follows that A∗ must have zero measure thereby providing a contradiction.
But then A must have zero measure as claimed.

We turn to the details of the proof. Suppose that A has positive measure. By Lemma

7 (ii) we know that r(z)
qj(z)

> 1 for all z ∈ S, equivalently, B(z, z) < 0 for all z ∈ S.
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Step (i) Let

A∗ ≡ {ω ∈ A : lim inf Bi,t (ω) = B [z∗ (ω) , z∗ (ω)] , some z∗ (ω) ∈ S} .
We now show that A\A∗ has P−measure zero. It suffices to show that for every ε > 0,

Aε ≡ {ω ∈ A : |lim inf Bi,t (ω)−B (z̃, z̃)| ≥ ε,∀z̃ ∈ S}
is a P−measure zero subset of A. Consider z ∈ S. By Proposition 4, for P−a.s. ω ∈ Aε,

there exists {t0k}∞k=1 such that zt0k = z and either B (z, z)+ ε ≤ Bi,t0k (ω) < 0 or Bi,t0k (ω) ≤
B (z, z) − ε for all k ≥ 1. Since we know that r(z)

qj(z)
> 1, by Lemma 8 P−a.s. ω ∈ Aε,

either lim supBi,t (ω) ≥ 0 or lim inf Bi,t (ω) < −U . By the uniform bounds condition and
Lemma 7 (i) we conclude that Aε is a P−measure zero subset of A.
So if A has positive P−measure then A∗ must have positive P−measure.

Step (ii) For z ∈ S and n ∈ N , consider the set Az,n defined as

Az,n ≡
(
ω ∈ A∗ :

¯̄̄̄
¯ r (z)

qj (z∗ (ω))
·B [z∗ (ω) , z∗ (ω)] + zi (z)−B (z, z)

¯̄̄̄
¯ > 2

n

)
.

By the hypothesis of Theorem 2, A∗ = ∪n∈N ∪z∈S Az,n. Notice that for each ω ∈ Az,n,

there exists δ > 0 such that, for z 6= z∗(ω),

|B −B (z∗ (ω) , z∗ (ω))| ≤ δ ⇒
¯̄̄̄
¯ r (z)

qj (z∗ (ω))
·B + zi (z)−B (z, z)

¯̄̄̄
¯ > 2

n
. (17)

Consider the event

Ωz,n
t ≡

½
ω : |Bi,t (ω)−B (z, z)| > 1

n
, Zt (ω) = z

¾
.

If for P−a.s. ω ∈ Az,n one could find a subsequence {tk}∞k=1 such that P
³
Ωz,n
tk+1

¯̄̄
Ftk

´
(ω) ≥

p for every k, then it would be the case that

∞X
t=1

P (Ωz,n
t | Ft−1) (ω) ≥

∞X
k=1

P
³
Ωz,n
tk+1

¯̄̄
Ftk

´
(ω) = +∞.

Therefore, one would be able to invoke Lemma EBC to argue that, P−a.s. ω ∈ Az,n,

ω ∈ {Ωz,n
t i.o.}. By Lemma 8, one would conclude that, P−a.s. ω ∈ Az,n, either

lim supBi,t (ω) ≥ 0 or lim inf Bi,t (ω) < −U . Since the latter is a violation of the uniform
bounds condition, we would conclude that, P−a.s. ω ∈ Az,n, lim supBi,t (ω) ≥ 0 which
implies that, P−a.s. ω ∈ A∗, lim supBi,t (ω) ≥ 0. But then Lemma 7 (i) would let us
conclude that A∗ has P−measure zero.
Step (iii) We now show that indeed, P−a.s. ω ∈ Az,n, there is a subsequence {tk}∞k=1
such that P

³
Ωz,n
tk+1

¯̄̄
Ftk

´
(ω) ≥ p for every k.

By Proposition 3 and the uniform bounds on debt, P−a.s. ω ∈ A,Ã
rt+1 (ω)

qt (ω)
− r (Zt+1 (ω))

qj (Zt (ω))

!
·Bi,t (ω)→ 0
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so thatÃ
rt+1 (ω)

qt (ω)
·Bi,t (ω) + zi (Zt+1 (ω))

!
−
Ã
r (Zt+1 (ω))

qj (Zt (ω))
·Bi,t (ω) + zi (Zt+1 (ω))

!
→ 0.

Also, on ω ∈ A,

Bi,t+1 (ω)−
Ã
rt+1 (ω)

qt (ω)
·Bi,t (ω) + zi (Zt+1 (ω))

!
= −ci,t+1(ω)→ 0.

It follows that P−a.s. ω ∈ A, there exists T (ω) such that for every t ≥ T (ω),¯̄̄̄
¯Bi,t+1 (ω)−

Ã
r (Zt+1 (ω))

qj (Zt (ω))
·Bi,t (ω) + zi (Zt+1 (ω))

!¯̄̄̄
¯ ≤ 1

n
. (18)

In particular, since Az,n ⊂ A∗ ⊂ A, (18) holds for P−a.s. ω ∈ Az,n.

A straightforward application of Lemma EBC together with Lemma 8 (b) implies

that, P−a.s. ω ∈ A∗, there is a subsequence {tk}∞k=1 such that Ztk (ω) = z∗ (ω),
|Bi,tk (ω)−B [z∗ (ω) , z∗ (ω)]| ≤ δ, and tk ≥ T (ω) for all k ≥ 1. By the triangular

inequality and (18), P−a.s. ω ∈ Az,n, for every k ≥ 1 it must be the case that

|Bi,tk+1 (ω)−B (z, z)| >

¯̄̄̄
¯
Ã
r (Ztk+1 (ω))

qj (Ztk (ω))
·Bi,tk (ω) + zi (Ztk+1 (ω))

!
−B (z, z)

¯̄̄̄
¯−¯̄̄̄

¯Bi,tk+1 (ω)−
Ã
r (Ztk+1 (ω))

qj (Ztk (ω))
·Bi,tk (ω) + zi (Ztk+1 (ω))

!¯̄̄̄
¯

≥
¯̄̄̄
¯
Ã
r (Ztk+1 (ω))

qj (z∗ (ω))
·Bi,tk (ω) + zi (Ztk+1 (ω))

!
−B (z, z)

¯̄̄̄
¯− 1n,

and since ω ∈ Az,n and |Bi,tk (ω)−B [z∗ (ω) , z∗ (ω)]| ≤ δ, it follows by (17) that, P−a.s.
ω ∈ Az,n, one has

P
³
Ωz,n
tk+1

¯̄̄
Ftk

´
(ω) ≥ P (Ztk+1 (ω) = z| Ftk) (ω) ≥ p

for every k ≥ 1, as desired.
Step (iv) To complete the proof of Theorem 2 note that Steps (ii) and (iii) prove that

A∗ has P− measure zero, while Step (i) proved that if A has positive P−measure then
so does A∗. So our initial hypothesis about A is contradicted and we can conclude that

A must have P− measure zero as asserted in Theorem 2.

PROOF OF PROPOSITION 5

Let i = 1. This is without loss of generality.

Let us define a sequence of truncated processes parameterized by > 0 by setting

g1,t(ω) ≡ log (max {r̂1,t(ω), }) and B1, ≡ {ω : limsup 1
T

PT
t=1EP1[g1,t|Ft−1](ω) < 0}.

Ω can be partitioned into three sets: ∪n≥1B1,1/n, A1, and Ω/(A1∪(∪n≥1B1,1/n)), where
A1 ≡ {ω ∈ Ω : liminf r̂1,t(ω) = 0}. We first show that under A.7 the third set is null.

LEMMA 9: Assume A.7. Then Ω/A1 ⊂ ∪n≥1B1,1/n, where A1 ≡ {ω : liminf r̂1,t(ω) = 0},
so that for all ω ∈ Ω/A1 there exists (ω) such that ω ∈ B1, (ω).
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PROOF: Consider ω̃ ∈ Ω/A1. So liminf r̂1,t(ω̃) = 2 · (ω̃) > 0 and there exists t(ω̃) such
that t ≥ t(ω̃) ⇒ r̂1,t(ω̃) ≥ (ω̃). Since, by A.7,

limsup
µ
1

T

TX
t=1

EP1 [log r̂1,t|Ft−1](ω̃)
¶
< 0,

there exists 0(ω̃) < 0 such that

limsup
µ
1

T

TX
t=1

EP1 [log r̂1,t|Ft−1](ω̃)
¶
< 0(ω̃).

So for every sequence {Tk}∞k=1, there exists k0 such that for all k ≥ k0,

1

Tk

TkX
t=1

EP1 [log r̂1,t|Ft−1](ω̃) < 0(ω̃).

Clearly, for each such sequence, there also exists k̄ such that for all k ≥ k̄,

1

Tk

t(ω̃)X
t=1

EP1[log r̂1,t|Ft−1](ω̃) ≥
0(ω̃)
4

.

It follows that, for every sequence {Tk}∞k=1, for all k ≥ max{k0, k̄},

1

Tk

TkX
t=t(ω̃)+1

EP1 [log r̂1,t|Ft−1](ω̃) =
1

Tk

TkX
t=1

EP1[log r̂1,t|Ft−1](ω̃)− 1

Tk

t(ω̃)X
t=1

EP1 [log r̂1,t|Ft−1](ω̃)

<
3

4
0(ω̃).

We conclude that

limsup
µ
1

T

TX
t=t(ω̃)+1

EP1 [log r̂1,t|Ft−1](ω̃)
¶
< 0.

But then we must have

limsup
µ
1

T

TX
t=t(ω̃)+1

EP1 [log (max {r̂1,t, (ω̃)})|Ft−1](ω̃)
¶
< 0.

Since limsup
µ
1
T

Pt(ω̃)
t=1 EP1[log (max {r̂1,t, (ω̃)})|Ft−1](ω̃)

¶
= 0, and, for arbitrary sequences

{an} and {bn}, limsup (an + bn) ≤ (limsup an) + (limsup bn),

limsup
1

T

µ TX
t=1

EP1 [g
(ω̃)
1,t |Ft−1](ω̃)

¶
< 0

so that ω̃ ∈ B1, (ω̃) as required.

We continue with the proof of Proposition 5.
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Since < 0 ⇒ g1,t(ω) ≤ g
0
1,t(ω) ∀ t, ∀ω, it follows that < 0 ⇒

B1, 0 ⊂ B1, . So B1,1/n ⊂ B1,1/(n+1) ⊂ · · ·, and we set B1,0 ≡ ∪n≥1B1,1/n. It follows
that P1(B1,1/n/A1) increases monotonically to P1(B1,0/A1). So for all p > 0, there exists
(p) such that P1(B1, (p)/A1) ≥ P1(B1,0/A1)− p.

For fixed p and corresponding (p), consider the truncated process {g (p)
1,t }+∞t=0 defined

earlier. It is uniformly bounded below and, under A.1, A.2, A.3, and A.4, by Lemma 2,

it is also uniformly bounded above. Hence the process {EP1 [g
(p)
1,t |Ft−1]}+∞t=0 is uniformly

bounded below and above.

Define

ḡ
(p)
1,t (ω) ≡ g

(p)
1,t (ω)−EP1 [g

(p)
1,t |Ft−1](ω).

It follows that the process {ḡ (p)
1,t }+∞t=0 is uniformly bounded above and below. Furthermore,

EP1 [ ḡ
(p)
1,t ḡ

(p)
1,t+k|Ft−1] = 0 for all k ≥ 1, for all t ≥ 0. Therefore, by the Strong Law of Large

Numbers for uncorrelated random variables with uniformly bounded second moments

(Chung 1974, page 103),

limT→+∞
1

T

TX
t=1

ḡ
(p)
1,t (ω) = 0 P1 − a.s.

⇒ limsup
1

T

TX
t=1

g
(p)
1,t (ω) ≤ limsup

1

T

TX
t=1

EP1 [g
(p)
1,t |Ft−1](ω).

Since ω ∈ B1, (p)/A1 implies limsup 1
T

PT
t=1EP1 [g

(p)
1,t |Ft−1](ω) < 0, it follows that ∀ω ∈

B1, (p)/A1, PT
t=1 g

(p)
1,t (ω) → −∞ so that ∀ω ∈ B1, (p)/A1, PT

t=1 log r̂1,t(ω) =→ −∞ sincePT
t=1 log r̂1,t(ω) =

PT
t=1 g

0
1,t(ω) ≤

PT
t=1 g

(p)
1,t (ω) → −∞. The proof of the first part is

completed by noting that as p goes to zero, we approximate the set Bi,0/Ai and, by

Lemma 9, that set coincides with Ω/A1.
For the second part we set C1,δ ≡ {ω ∈ Ω : limsup 1

T

PT
t=1 log r̂1,t(ω) < log δ}∩(Ω/A1).

Clearly, δ0 < δ00 implies that C1,δ0 ⊂ C1,δ00 . It follows that ∪n≥1C1,1−1/n = Ω/A1 and hence
that P1(C1,1−1/n) increases monotonically to P1(Ω/A1) so that for all > 0, there exists

δ = 1− 1/n such that P1(C1,δ) ≥ P1(Ω/A1)− .

PROOF OF PROPOSITION 6

We give an outline of the proof. In Lemma 10 we show that one can work with the

process c1 and the process y interchangeably. Lemma 11 is the crucial step in which we

study the parameterized fixed point of a special one dimensional map. Lemma 12 takes

the fixed point found in Lemma 11 and deduces properties induced by it on consumption,

marginal utility, Euler equations, etc. A recursive application of Lemma 12 going forward

leads us to the properties listed in Proposition 6.

For Z > 0, let the function YZ : (0, Z)→ (0,∞) be defined by YZ(c1) = u02(Z−c1)
u01(c1)

.

LEMMA 10: Assume A.3. YZ is increasing in c1, it is onto, and continuous with a

continuous inverse.
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PROOF: The result is a consequence of A.3; in particular, we use the fact that ui are

strictly concave, continuously differentiable, and satisfy the Inada condition at c = 0.

Given Z and feasible consumption processes, by Lemma 10, for any (t, ω) we have

yt(ω) = YZt(ω)(c1,t(ω)). The inverse of YZ is denoted (YZ)−1(y); by Lemma 10, it is well
defined and continuous.

Proposition 6 is proved by using a recursive construction in the variable yt(ω) which,

by Lemma 10, is equivalent to using the variable c1,t(ω). However, to establish the basic

properties of the construction, it is easier to work with the variable λ ≡ r · u02(c2)/y.
Lemma 11 studies the existence and some properties of the fixed point in λ of a special

function.

LEMMA 11: Assume A.2, A.3, and A.4. For t ≥ 1 and ω ∈ Ω, and y > 0, define

λ(t − 1, ω, y) ≡ maxω0∈Ω(st−1(ω)) rt(ω
0)·u02(Zt(ω0))

y
and consider the function ft−1,ω,y : [λ(t −

1, ω, y),+∞)→ [(β1/β2) · r · u01(z̄),+∞) in the variable λ defined by

ft−1,ω,y(λ) ≡ (β1/β2) ·EP

"
rt · u01

Ã
Zt − (u02)−1

Ã
y · λ
rt

!!¯̄̄̄
¯Ft−1

#
(ω).

Then (i) ft−1,ω,y has a unique fixed point denoted λ∗(t− 1, ω, y),
(ii) λ∗(t− 1, ω, y) > maxω0∈Ω(st−1(ω)) rt(ω

0)·u02(Zt(ω0))
y

and λ∗(t− 1, ω, y) > (β1/β2) · r · u01(z̄).
PROOF: Evidently, the domain of the function ft−1,ω,y and the function are bothFt−1−measurable.
(i) Under A.4, r > 0 so λ(t− 1, ω, y) ≥ 0. It can be verified that ft−1,ω,y(λ(t− 1, ω, y)) ≥
(β1/β2) · p · r · u01(0) = ∞, where we use the Inada condition; furthermore, ft−1,ω,y is
continuous and strictly decreasing. Under A.2 and A.3 (β1/β2) · r̄ · u01(z̄) <∞; therefore,
Limλ→∞ ft−1,ω,y(λ) <∞. It follows that ft−1,ω,y has a unique fixed point.
(ii) As noted at the beginning of the proof, ft−1,ω,y is Ft−1−measurable and, therefore,
also the fixed point λ∗(t− 1, ω, y) is Ft−1−measurable. Since ft−1,ω,y(λ(t− 1, ω, y)) =∞,
we must have λ∗(t− 1, ω, y) > λ(t− 1, ω, y). The second part follows from the fact that

ft−1,ω,y is strictly decreasing.

The next result induces values for consumption at the fixed point identified in Lemma

11 and specifies the implications on intertemporal marginal utilities induced by those

values.

LEMMA 12: Assume A.2, A.3, and A.4, and P = P1 = P2. Let yt−1 : Ω → R+ be an

Ft−1−measurable function. Set

c2,t(ω) ≡ (u02)−1
Ã
yt−1 · λ∗(t− 1, ω, yt−1(ω))

rt

!
, c1,t(ω) ≡ Zt(ω)−c2,t(ω), yt(ω) = YZt(ω)(c1,t(ω)).

Then (i) ci,t(ω) ≥ 0 and isFt−measurable, (ii) rt(ω)·u02(c2,t(ω))
yt−1(ω)

= (β1/β2)·EP [rt·u01(c1,t)|Ft−1](ω)
so rt(ω) · u02(c2,t(ω)) is Ft−1−measurable and r̂2,t(ω) = 1 for all ω ∈ Ω, and (iii) yt(ω) =
β1
β2
· 1
r̂1,t(ω)

· yt−1(ω).
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PROOF: (i) As per the definition in the hypothesis λ∗(t− 1, ω, yt−1(ω)) = rt(ω)·u02(c2,t(ω))
yt−1(ω)

.

So using Lemma 11 (ii) we have λ∗(t− 1, ω, yt−1(ω)) ≥ λ(t− 1, ω, yt−1(ω))

⇔ rt(ω) · u02(c2,t(ω))
yt−1(ω)

≥ rt(ω) · u02(Zt(ω))

yt−1(ω)
⇔ u02(c2,t(ω)) ≥ u02(Zt(ω))

so that using the fact that u2 is concave we can conclude that c2,t(ω) ≤ Zt(ω) so that

c1,t(ω) ≥ 0. The Inada condition guarantees that c2,t(ω) ≥ 0. Since the measurability
property is evident, the proof of (i) is complete.

(ii) Follows from the fixed point property since

rt(ω) · u02(c2,t(ω))
yt−1(ω)

= λ∗(t− 1, ω, yt−1(ω)) = ft−1,ω,yt−1(ω)(λ
∗(t− 1, ω, yt−1(ω)))

= (β1/β2) ·EP [rt · u01(c1,t)|Ft−1](ω).

This shows that rt(ω) · u02(c2,t(ω)) is Ft−1−measurable and so r̂2,t(ω) = 1 for all ω ∈ Ω.

(iii) By manipulating the fixed point condition, we obtain

u02(c2,t(ω))
u01(c1,t(ω))

= yt−1(ω) · β1
β2
· EP [rt · u01(c1,t)|Ft−1](ω)

rt(ω) · u01(c1,t(ω))
⇔ yt(ω) =

β1
β2
· 1

r̂1,t(ω)
· yt−1(ω),

where we invoke P = P1, proving (iii).

Proposition 6 is proved by recursively applying Lemma 12. For existence we assume

that we are given a pair (y, ω) ∈ R++×Ω, we set y0(ω) ≡ y and treat it as a parameter and

apply Lemma 12 (i) to induce a unique process for {yt(ω)}t≥0 and for all ω ∈ Ω. By Lemma

10 this is equivalent to starting with a pair (c, ω) ∈ R++×Ω with the additional condition

that c ∈ (0, Z0(ω)), setting c1,0(ω) ≡ c and treating it as a parameter and generating a

unique pair of processes ci that are feasible and solve the fixed point problem at each date

t ≥ 1 and for all ω ∈ Ω.

The notation {Ci,t(ω)}t≥0, where the process is defined for all ω ∈ Ω, was introduced

in the statement of Proposition 6.

PROOF OF PROPOSITION 7

The proof follows from Lemma 13-15.

LEMMA 13: Assume A.3, r ≥ 0, β2 ≤ β1, and P = P1 = P2. In the proposed solution,

P{ω : liminf yt(ω) = 0} = 0.
PROOF: Since yT (ω) =

µ
β1
β2

¶T
· 1QT

t=1
[r̂1,t(ω)]

· y0(ω) and since, by Lemma 3, we know thatQT
t=1 [r̂1,t(ω̃)] is a.s. bounded, we conclude that liminf yT (ω) > 0 a.s.

LEMMA 14: Assume z > 0, r ≥ 0, A.3, β2 ≤ β1, and P = P1 = P2. In the proposed

solution, P (C1) = 0 where Ci ≡ {ω ∈ Ω : liminf Ci,t(ω) = 0}.
PROOF: Given y0, choose K > 0. For any such K let cK > 0 solve the equation
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u02(z − cK) = u01(cK) · y0(ω̃)/K.
For any ω̃ ∈ C1 and such a K there exists a sequence {tKτ } of periods such that

C1,tKτ ≤ cK so ytKτ (ω̃) ≤ y0(ω̃)/K. Then Lemma 13 implies that P (C1) = 0.

LEMMA 15: Assume A.2, A.3, r ≥ 0, β2 ≤ β1 and P = P1 = P2. In the proposed solution

P (A1) = 0.
PROOF: Since z̄ <∞, if, for some ω̃, liminf r̂1,t(ω̃) = 0 then, since the numerator of r̂i,t
is strictly positive, limsupEP [rt · u01(c1,t)|Ft−1](ω̃) = ∞. We shall argue that if such an
event occurs in the proposed solution, necessarily liminf C1,t(ω̃) = 0 which, by Lemma 14,

is a zero probability event.

So suppose ω̃ is such that limsupE[rt · u01(C1,t)|Ft−1](ω̃) =∞ and liminf C1,t(ω̃) = 2

for some > 0. It follows that there exists t̃ such that for t ≥ t̃, C1,t̃(ω̃) ≥ . Choose δ( )

to satisfy u01(z−δ( )) <
³
u01( )/u

0
2(z̄)

´
·u02(δ( )). Since limsupE[rt ·u01(C1,t)|Ft−1](ω̃) =∞,

necessarily, for some t0 ≥ t̃,

E[rt0 · u01(C1,t0)|Ft0−1](ω̃) > r̄ · u
0
1( )

u02(z̄)
· u02(δ( )), (∗)

and in the solution proposed

rt(ω) · u02(C2,t(ω)) =
β1
β2
· u

0
2(C2,t−1(ω))

u01(C1,t−1(ω))
·E[rt · u01(C1,t)|Ft−1](ω)

so that for (ω̃, t0)

rt0(ω̃) · u02(C2,t0(ω̃)) ≥
β1
β2
· u

0
2(Zt0−1(ω̃)− )

u01( )
· E[rt0 · u01(C1,t0)|Ft0−1](ω̃)

>
β1
β2
· u

0
2(z̄)

u01( )
· r̄ · u

0
1( )

u02(z̄)
· u02(δ( )) =

β1
β2
· r̄ · u02(δ( )) ≥ r̄ · u02(δ( )),

since β2 ≤ β1.

Since rt(ω) · u02(C2,t(ω)) is Ft−1-measurable,

rt0(ω
0) · u02(C2,t0(ω0)) > r̄ · u02(δ( )) ω0 ∈ Ω

³
(st

0−1(ω̃)
´
.

So C2,t0(ω
0) < δ( ) for all ω0 ∈ Ω

³
(st

0−1(ω̃)
´
and therefore, by feasibility, C1,t0(ω

0) >

Zt0(ω
0)− δ( ) for all ω0 ∈ Ω

³
(st

0−1(ω̃)
´
. It follows that

E[rt0 · u01(C1,t0)|Ft0−1](ω̃) ≤ r̄ · u01(z − δ( ))

which, using the definition of δ( ), contradicts (∗). We have shown that liminfr̂1,t(ω̃) = 0
implies that ω̃ ∈ Ci, a set that has measure zero according to Lemma 14.

PROOF OF PROPOSITION 8

The proof follows from Lemma 16-17 and Lemma 18.
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LEMMA 16: Assume A.2, A.3, and A.4. Then, for the solution proposed

supt≥0 supω∈Ω
u02(C2,t+1(ω))
u02(C2,t(ω))

≤M ≡ max
½
r̄ · u02(z/2)
r · u02(z̄)

;
β1
β2

r̄ · u01(z/2)
r · u01(z̄)

¾
.

PROOF: If not then there is a pair (t̃, ω̃), such that

u02(C2,t̃+1(ω̃))
u02(C2,t̃(ω̃))

> M ⇒ u02(C2,t̃+1(ω̃))
u02(C2,t̃(ω̃))

>
r̄ · u02(z/2)
r · u02(z̄)

⇒ rt̃+1(ω̃) · u02(C2,t̃+1(ω̃))
u02(C2,t̃(ω̃))

>
r̄ · u02(z/2)

u02(z̄)
. (∗)

As shown in the proof of Lemma 12 (ii),

rt+1(ω) · u
0
2(C2,t+1(ω))

u02(C2,t(ω))
=

β1
β2
· EP [rt+1 · u01(C1,t+1)|Ft](ω)

u01(C1,t(ω))
,

so we must also have
β1
β2
· EP [rt̃+1 · u01(C1,t̃+1)|Ft̃](ω̃)

rt̃+1(ω̃) · u01(C1,t̃(ω̃))
> M

⇒ β1
β2
· EP [rt̃+1 · u01(C1,t̃+1)|Ft̃](ω̃)

rt̃+1(ω̃) · u01(C1,t̃(ω̃))
>

β1
β2

r̄ · u01(z/2)
r · u01(z̄)

so that, since C1,t̃(ω̃) ≤ z̄ and u001 < 0,

⇒ EP [rt̃+1 · u01(C1,t̃+1)|Ft̃](ω̃)

rt̃+1(ω̃) · u01(z̄)
>

r̄ · u01(z/2)
r · u01(z̄)

⇒ EP [rt̃+1 · u01(C1,t̃+1)|Ft̃](ω̃) > r̄ · u01(z/2)
since r ≤ rt̃+1(ω̃). It follows that for some ω

0 ∈ Ω(st̃(ω̃)),

u01(C1,t̃+1(ω
0)) > u01(z/2) ⇔ C1,t̃+1(ω

0) < z/2 ≤ Zt/2

⇔ C2,t̃+1(ω
0) > Zt/2 ≥ z/2 ⇒ rt̃+1(ω

0) · u02(C2,t̃+1(ω0)) < r̄ · u02(z/2)

⇔ rt̃+1(ω
0) · u02(C2,t̃+1(ω0))

u02(z̄)
<

r̄ · u02(z/2)
u02(z̄)

.

But, using the fact that u02(C2,t̃(ω̃)) > u02(z̄), the last inequality contradicts the fact
that rt(ω) · u02(C2,t(ω)) is always Ft−1-measurable since, according to (*), we must have
rt̃+1(ω̃)·u02(C2,t̃+1(ω̃))

u02(C2,t̃(ω̃))
>

r̄·u02(z/2)
u02(z̄)

.

LEMMA 17: Assume A.2, A.3, A.4, and A.6, and P = P1 = P2. Then, for the solution

proposed

0 ≤ limT→∞
TX
t=0

βti ·EP

∙
u0i(Ci,t)

u0i(Ci,0)

¸
≤ 1/(1− β2 ·M).
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PROOF: We prove the result for i = 1 since it is trivial for i = 2.

Since, by Proposition 6, in the proposed solution

yt(ω) =
µ
β1
β2

¶T
· 1Qt

τ=1 [r̂1,τ (ω)]
·y0(ω) ⇔ u02(C2,t(ω))

u01(C1,t(ω))
=
µ
β1
β2

¶T
· 1Qt

τ=1 [r̂1,τ(ω)]
·u
0
2(C2,0(ω))

u01(C1,0(ω))

⇔ βt1 ·
u01(C1,t(ω))
u01(C1,0(ω))

= βt2 ·
tY

τ=1

[r̂1,τ (ω)] · u
0
2(C2,t(ω))

u02(C2,0(ω))

⇒ 0 ≤
TX
t=0

βt1 · EP

∙
u01(C1,t)
u01(C1,0)

¸
=

TX
t=0

βt2 ·EP

∙ tY
τ=1

[r̂1,τ ] · u
0
2(C2,t)

u02(C2,0)

¸

≤
TX
t=0

βt2 · (M)t · EP

h tY
τ=1

[r̂1,τ ]
i
=

TX
t=0

βt2 · (M)t

where we use the fact that EP [r̂2,t|Ft−1](ω) = 1, that P = P1 = P2 together with the law

of iterated expectations. The result follows by taking the limit.

Finally, we verify that, for the proposed allocation, the payoff is finite if ui is in the

CRRA class of functions with coefficient greater than or equal to one. As the proof makes

clear, the key condition is β2M
a−1
a < 1 which is implied by A.6 when a ≥ 1. Since it is

an open condition, the result is also true for some values of a ∈ (0, 1).

LEMMA 18: Assume ui (c) ≡ log c or ui (c) ≡ c1−a
1−a , where a > 1, and also assume A.2,

A.3, A.4, and A.6. Then limT→∞
PT

t=0 β
t
iEP [ui (Ci,t)] > −∞.

PROOF: First, we consider agent 2. By Lemma 16,

supt≥0 supω∈Ω
u02(C2,t+1(ω))
u02(C2,t(ω))

≤M ⇔ supω∈Ω
u02 (C2,t (ω))
u02 (C2,0(ω))

≤M t

⇒ infω∈Ω

Ã
C2,t (ω)

C2,0(ω)

!a

≥ 1

M t
⇔ infω∈Ω

Ã
C2,t (ω)

C2,0(ω)

!
≥
µ
1

M t

¶ 1
a

, where a > 0.

Then,

TX
t=0

βt2 · u2 (C2,t(ω)) ≥

⎧⎪⎪⎨⎪⎪⎩
(C2,0(ω))

1−a

1−a +
TP
t=1

βt2 ·
³
1
Mt

´ 1−a
a · (C2,0(ω))1−a

1−a if a 6= 1

logC2,0(ω) +
TP
t=1

βt2 · log
³
C2,0(ω) · 1

Mt

´
if a = 1

and it follows that

limT→∞
TX
t=0

βt2EP [u2 (C2,t)] ≥
⎧⎪⎨⎪⎩

(C2,0(ω))
1−a

1−a · 1

1−β2M
a−1
a

if a > 1

logC2,0(ω)
1−β2 + β2

(1−β2)2 · log
³
1
M

´
if a = 1

since for M > 1 and a > 1 we have M
a−1
a ≤M so that, by using A.6, β2M

a−1
a < 1, while

for a = 1 we use
∞P
t=1
(βt2 · t) = β2

(1−β2)2 .
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Now consider agent 1. By construction

βt1 ·
u01(C1,t(ω))
u01(C1,0(ω))

= βt2 ·
tY

τ=1

[r̂1,τ(ω)] · u
0
2(C2,t(ω))

u02(C2,0(ω))

and so, for a > 0,

βt1 ·
Ã
C1,t(ω)

C1,0(ω)

!−a
= βt2 ·

Ã
tY

τ=1

r̂1,τ(ω)

!
· u

0
2(C2,t(ω))

u02(C2,0(ω))
.

It follows from Lemma 16 that, for a > 0,

C1,t(ω) = C1,0(ω)

Ã
βt2
βt1
·

tY
τ=1

r̂1,τ(ω)

!− 1
a

·
Ã
u02(C2,t(ω))
u02(C2,0(ω))

!− 1
a

≥ C1,0(ω)

Ã
β2M

β1

!− t
a

·
Ã

tY
τ=1

r̂1,τ (ω)

!− 1
a

and so

EP [u1 (C1,t)] ≥

⎧⎪⎪⎨⎪⎪⎩
C1,0(ω)

1−a ·
³
β2M
β1

´ (a−1)t
a · EP

∙
1
1−a ·

³Qt
τ=1 r̂1,τ

´ a−1
a

¸
if a 6= 1

logC1,0(ω)− t · log β2M
β1
−EP

∙
tP

τ=1
log r̂1,τ

¸
if a = 1

⇒ EP [u1 (C1,t)] ≥
⎧⎨⎩ C1,0(ω)1−a

1−a ·
³
β2M
β1

´ (a−1)t
a if a 6= 1

logC1,0(ω)− t · log β2M
β1

if a = 1

where the first line uses Jensen’s inequality and the fact that the function x
a−1
a

1−a is convex
for a > 0, and both lines use the conditional mean one property of r̂1,t.

Hence,

βt1 ·EP [u1 (C1,t)] ≥
⎧⎪⎨⎪⎩

C1,0(ω)1−a
1−a ·

µ
β
1
a
1 · (β2 ·M)

a−1
a

¶t
if a 6= 1

βt1 · logC1,0(ω)− βt1 · t · log β2M
β1

if a = 1

and it follows that

limT→∞
TX
t=0

βt1 ·EP [u1 (C1,t)] ≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(C1,0(ω))

1−a

1−a · 1

1−β
1
a
1 ·(β2·M)

a−1
a

if a > 1

logC1,0
1−β1 − log β2M

β1
· β1
(1−β1)2 if a = 1

where we use the facts that β
1
a
1 · (β2 ·M)

a−1
a < 1 whenever β2 ·M < 1 and a > 1, and that

∞P
t=1
(βt0 · t) = β1

(1−β1)2 .
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PROOF OF THEOREM 3A

First we state and prove Lemma 19.

LEMMA 19: Assume A.3. Given prices q, let ci be (i) a budget feasible consumption

process, ci ∈ BC(q; zi), supported by the portfolio process θi at (q, zi), (ii) an Euler

process, so that the first order conditions hold, and (iii) let limT→+∞
PT

t=0 β
t
i EPi [ui(ci,t)] >

−∞ hold. If for every θ̃i that supports a c̃i ∈ BC(q; zi) the transversality condition at

date 0 holds,

limT→+∞ βTi EPi

h
u0i(ci,T ) · qT ·

³
θ̃i,T − θi,T

´i
≥ 0,

then ci is the maximiser on BC(q; zi).

PROOF: Using the budget constraints, which may be assumed to hold with equality since,

by A.3, ui is strictly increasing,

c̃i,t(ω)−ci,t(ω) =
³
zi,t(ω)+rt(ω)·θ̃i,t−1(ω)−qt(ω)·θ̃i,t(ω)

´
−
³
zi,t(ω)+rt(ω)·θi,t−1(ω)−qt(ω)·θi,t(ω)

´
we obtain

TX
t=0

βti EPi

h
u0i(ci,t) ·

³
c̃i,t− ci,t

´i
=

TX
t=0

βti EPi

h
u0i(ci,t) ·

³
rt · (θ̃i,t−1− θi,t−1)− qt · (θ̃i,t− θi,t)

´i

= EPi

h
u0i(ci,0) ·

³
r0 · (θ̃i,−1 − θi,−1)

´i
+

TX
t=1

βt−1i EPi

"
EPi

h³
βu0i(ci,t) · rt − u0i(ci,t−1) · qt−1

´¯̄̄
Ft−1

i
·
³
θ̃i,t−1 − θi,t−1

´#

−βTi EPi

h
u0i(ci,T ) · qT ·

³
θ̃i,T − θi,T

´i
which, upon using the condition θ̃i,−1(ω) = θi,−1(ω), and the first order conditions,
becomes

TX
t=0

βti EPi

h
u0i(ci,t) ·

³
c̃i,t − ci,t

´i
= −βTi EPi

h
u0i(ci,T ) · qT ·

³
θ̃i,T − θi,T

´i
.

Since c ∈ BC(q; zi) and c̃ ∈ BC(q; zi), both are uniformly bounded. The same is true of

q · θ and q · θ̃. So if we let T →∞ both the terms have limits.

Since for f a C1 and concave function,

Df(y) · (x− y) ≥ f(x)− f(y), ∀ x, y,

we see that

−βTi EPi

h
u0i(ci,T ) · qT ·

³
θ̃i,T − θi,T

´i
≥

TX
t=0

βti EPi

h
ui(c̃i,t)

i
−

TX
t=0

βti EPi

h
ui(ci,t)

i
.

By A.3 and the fact that ci is uniformly bounded, the second term on the right hand

side either has a limit or diverges to −∞; by limT→+∞
PT

t=0 β
t
i EPi [ui(ci,t)] > −∞ the
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latter is ruled out. By hypothesis, limT→+∞ βTi EPi

h
u0i(ci,T ) · qT ·

³
θ̃i,T − θi,T

´i
≥ 0. So, by

rearranging,

limT→+∞
TX
t=0

βti EPi

h
ui(ci,t)

i
≥ limsupT→+∞

TX
t=0

βti EPi

h
ui(c̃i,t)

i
,

so that ci is a maximiser on BC(q; zi). By strict concavity of ui, it is the unique maximiser.

PROOF OF THEOREM 3A: Recall that bθi is the portfolio that supports bci at the price
process bq and endowment process bzi. Since the consumption processes are aggregate
feasible we have bci ∈ Ψ+ so that, by conditions (iii) and (vi A), bci ∈ BC(bq; bzi). Again,
since the consumption processes are aggregate feasible, (iii) implies that at every t ≥ 0,bθ1,t(ω)+ bθ2,t(ω) = 0 for all ω ∈ Ω where we use the fact that, since ui is strictly increasing,

the spot market budget constraints are satisfied with equality. It remains to verify thatbci is also the maximiser on the budget set BC(bq; bzi). Condition (vi A) implies thatbq · (θ̃i − bθi) ∈ Ψ, so that it is uniformly bounded, where θ̃ is a portfolio that supports the

budget feasible consumption c̃i ∈ BCi(bq; bzi). That, together with condition (v A), implies
that the transversality condition specified in Lemma 19 is satisfied for both the agents,

limT→+∞ βTi EP

h
u0i(bci,T ) · bqT · ³θ̃i,T − bθi,T´i = 0,

and therefore bci are indeed maximizers.
PROOF OF THEOREM 3B

Given ci, define the personalized supporting price process for agent i, denoted pci , by

pci,t(ω) ≡ βti · u0i(ci,t(ω))/u0i(ci,0(ω)).
For p ∈ ×∞t=0Ψt

+ with limT→+∞
PT

t=0 EP

h
pt
i
<∞, and zi ∈ Ψ+, define

BCAD(p; zi) ≡
n
c̃i ∈ Ψ+ : limT→+∞

PT
t=0 EP

h
pt · c̃i,t

i
≤ limT→+∞

PT
t=0 EP

h
pt · zi,t

io
.

LEMMA 20: Assume A.3 and that P1 = P2 = P . Consider a consumption process ci, so

ci ∈ Ψ+, such that limT→+∞
PT

t=0 β
t
i EPi [ui(ci,t)] > −∞, and pci satisfies limT→+∞

PT
t=0 EP

h
pci,t
i
<

∞. If zi ∈ Ψ+ and limT→+∞
PT

t=0 EP

h
pci,t · (ci,t − zi,t)

i
= 0, then ci is a maximizer for i

on the set BCAD(pci ; zi).

PROOF: Since limT→+∞
PT

t=0 EP

h
pci,t
i
<∞ and zi ∈ Ψ+, limT→+∞

PT
t=0 EP

h
pci,t ·zi,t

i
<

∞. Since limT→+∞
PT

t=0 EP

h
pci,t · (ci,t − zi,t)

i
= 0, ci ∈ BCAD(pci ; zi).

Define μi ≡ u0i(ci,0(ω)). μi > 0. Clearly, ci is the unique solution to the system of first
order conditions βti · u0i(ci,t(ω)) = μi · pci,t(ω). Also, the Lagrangean function

limT→+∞

(
TX
t=0

EP

h
βti · ui(c̃i,t)

i
+ μi ·

TX
t=0

EP

h
pci,t · (c̃i,t − zi,t)

i)

is strictly concave in c̃i and is well defined at the point ci. It follows (e.g. Luenberger

(1969) Theorem 1 in Section 8.4 and Lemma 1 in Section 8.7) that the first order conditions
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are sufficient to identify a global maximizer and ci maximizes the Lagrangean function.

Therefore ci solves the constrained optimization problem.

Given a price process q, the set of Arrow price processes is defined as

P(q) ≡
n
p ∈ ×∞t=0Ψt

+ : ∀ t ≥ 0, pt(ω) · qt(ω) = EP [pt+1 · rt+1|Ft](ω) ∀ ω ∈ Ω
o
.

Clearly, if ci is an Euler process at the price process q then pci ∈ P(q). Define
P1(q) ≡

n
p ∈ P(q) : limT→+∞

PT
t=0 EP

h
pt
i
<∞

o
the set of Arrow price processes that are summable.

LEMMA 21: Assume A.3. Given q let p ∈ P1(q). Let zi ∈ Ψ+ and let the portfolio θi
supports ci at (q, zi). Then, given ω, ci satisfies limT→+∞

PT
t=0 EP

h
pt · (ci,t − zi,t)

i
= 0 if

and only if limT→+∞EP

h
pT · qT · θi,T

i
= 0.

PROOF: Since θi supports ci at (q, zi), we can write

limT→+∞
TX
t=0

EP

h
pt · (ci,t − zi,t)

i
= limT→+∞

TX
t=0

EP

h
pt · (rt · θi,t−1 − qt · θi,t)

i
.

Since p is an Arrow price process we may use the argument given in Lemma 19 to reduce

the right hand side to a single term. By doing so we obtain

0 = limT→+∞
PT

t=0 EP

h
pt · (ci,t − zi,t)

i
= limT→+∞EP

h
− pT · qT · θi,T

i
.

Given q and p ∈ P(q), define
BCTC(q, p; zi) ≡

n
ci ∈ Ψ+ : there exists θi, with θi,t ∈ Ψt ∀ t ≥ 0, such that
∀ t ≥ 0, ci,t(ω)+ qt(ω) · θi,t(ω) ≤ zi,t(ω)+ rt(ω) · θi,t−1(ω) ∀ ω ∈ Ω,

lim infT→+∞EP

h
pT · qT · θi,T

i
≥ 0

o
.

LEMMA 22: Assume A.3. Given q and any p ∈ P1(q), if zi ∈ Ψ+ then BCTC(q, p; zi) ⊂
BCAD(p; zi).

PROOF: Consider ci ∈ BCTC(q, p; zi) and let θi denote the supporting portfolio process.

We would like to show that

limT→+∞
TX
t=0

EP

h
pt · ci,t

i
≤ limT→+∞

TX
t=0

EP

h
pt · zi,t

i
.

Using the sequence of budget constraints in the definition of the set BCTC(q, p; zi), we

have
TX
t=0

EP

h
pt · (ci,t − zi,t)

i
≤

TX
t=0

EP

h
pt · (rt · θi,t−1 − qt · θi,t)

i
.

By the argument already used in Lemma 19 and 21 we conclude that for all T ≥ 0 we
have

TX
t=0

EP

h
pt · (ci,t − zi,t)

i
≤ EP

h
− pT · qT · θi,T

i
.
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The right hand side of the inequality is nonpositive since ci ∈ BCTC(q, p; zi) implies that

lim infT→+∞EP

h
pT · qT · θi,T

i
≥ 0. Also the left hand side has a limit since p ∈ P1(q) so

p is summable while ci ∈ Ψ+ and zi ∈ Ψ+ so that (ci− zi) is uniformly bounded. We can

conclude that ci ∈ BCAD
i (p; zi).

PROOF OF THEOREM 3B: We shall use a result from Magill and Quinzii (1994). We

establish that our construction satisfies their definition of an equilibrium with a transver-

sality condition at each node. Then we invoke their Theorem 5.2 to conclude that such

an equilibrium is also an IDC equilibrium.

Magill and Quinzii’s definition of an equilibrium with transversality conditions requires

that, in addition to feasibility, the following five conditions hold (a) bθi supports bci at (bq, bzi),
(b) bpi ∈ P1(bq), (c) bci is a maximizer on BCAD(bpi; bzi), (d) a transversality condition holds
at each node, and (e) bci is also a maximiser on the budget set defined by the first two
conditions. As we now show, all five of thses requirements are met under the hypotheses

of Theorem 3B.

Recall that bθi is the portfolio that supports bci at the price process bq and endowment
process bzi so (a) holds. To simplify the notation we set bpi ≡ pbcii . By hypothesis (iv) of
Theorem 3, bci is an Euler process at bq and so bpi ∈ P(bq); by hypothesis (v B), summability,bpi ∈ P1(bq) so (b) holds. Hypotheses (iii), supportability, (iv) and (v B) let us invoke
Lemma 21 and Lemma 22. By hypotheses (i), feasibility, (ii) and (v B), Lemma 20

holds and so bci is a maximiser on BCAD(bpi; bzi) if zi ∈ Ψ+ and limT→+∞
PT

t=0 EP

hbpi,t ·
(bci,t − bzi,t)i = 0. The latter requirement follows from Lemma 21 and hypothesis (vi

B), transversality conditions, at date t = 0 so (c) holds. Lemma 21 also lets us claim

that bci ∈ BCTC(bq, bpi; bzi) while, by Lemma 22, BCTC(bq, bpi; bci) ⊂ BCAD(bpi; bzi) so that bci
is a maximizer on BCTC

i (bq, bpi; bzi). If, in addition, hypothesis (vi B) holds then bci is a
maximiser on a budget set where a transversality condition holds at each node so (d) and

(e) hold.

Since the consumption processes are aggregate feasible, (iii) implies that at every

t ≥ 0, bθ1,t(ω) + bθ2,t(ω) = 0 for all ω ∈ Ω where we use the fact that, since ui is strictly

increasing, the spot market budget constraints are satisfied with equality. To complete

the proof, notice that preferences with discounted additively separable expected utility

representations satisfy the assumption of uniform impatience and so, by Theorem 5.2 in

Magill and Quinzii (1994), we can conclude that there is a uniform bound on the value of

debt. It follows that bci is a maximizer on BC(bq; bzi) and we have an IDC equilibrium.
PROOF OF THEOREM 4

By Lemma 12 (ii), in the proposed solution, for all t ≥ 1

β1 · EP [rt · u01(C1,t)|Ft−1](ω)
u01(C1,t−1(ω))

= β2 · EP [rt · u02(C2,t)|Ft−1](ω)
u02(C2,t−1(ω))

for all ω ∈ Ω.
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Define an asset price process q

qt−1(ω) ≡ βi · E[rt · u
0
i(Ci,t)|Ft−1](ω)

u0i(Ci,t−1(ω))
.

It follows that the consumption processes satisfy the Euler equations with the price process

q. Also, Proposition 8 holds. Using the spot market budget constraints with asset prices

q and consumption process Ci, we can construct the supporting portfolio θi.

To complete the proof of Theorem 4 we shall apply Theorem 3B for case (i) and

Theorem 3A for cases (ii) and (iii).

For Case (i) we will apply Theorem 3B and so we need to verify (vi B), that a transver-

sality condition is satisfied at each node. Lemma 23 and Lemma 24 provide the required

verification.

LEMMA 23: If ci is an Euler process at q and θi is a supporting portfolio then

βTi · u0i(ci,T (ω)) · qT (ω) · θi,T (ω) = βTi · u0i(ci,T (ω)) ·
³
zi,T (ω)− ci,T (ω)

´

+
T−1X
τ=0

βτi · u0i(ci,τ (ω)) ·
Ã

T−1Y
s=τ

r̂i,s+1(ω)

!
·
³
zi,τ (ω)− ci,τ (ω)

´
where r̂i is the process induced by ci.

PROOF: By Proposition 1 (i),

T−1Y
s=τ

rs+1(ω)

qs(ω)
=

1

βT−τi

·
³ T−1Y
s=τ

r̂i,s+1(ω)
´
· u

0
i(ci,τ (ω))

u0i(ci,T (ω))
.

The spot market budget constraints, which, by ui strictly increasing, hold as equalities,

are

ci,t(ω) + qt(ω) · θi,t(ω) = zi,t(ω) + rt(ω) · θi,t−1(ω).
Iterating on the equation we obtain

qT (ω) · θi,T (ω) = zi,T (ω)− ci,T (ω) +
T−1X
τ=0

Ã
T−1Y
s=τ

rs+1(ω)

qs(ω)

!
·
³
zi,τ (ω)− ci,τ (ω)

´
.

After carrying out the substitution we can evaluate

βTi · u0i(ci,T (ω)) · qT (ω) · θi,T (ω) = βTi · u0i(ci,T (ω)) ·
³
zi,T (ω)− ci,T (ω)

´

+
T−1X
τ=0

βτi · u0i(ci,τ (ω)) ·
Ã

T−1Y
s=τ

r̂i,s+1(ω)

!
·
³
zi,τ (ω)− ci,τ (ω)

´
.

LEMMA 24: Assume that the economy is such that in the proposed solution, ∀ t ≥ 1,
u02(C2,t(ω)) ·

³
z2,t(ω)− C2,t(ω)

´
= c̄2,t for all ω ∈ Ω and C2,0(ω) solves

u02(C2,0(ω)) ·
³
z2,0(ω)− C2,0(ω)

´
= −LimT→+∞

TX
τ=1

βτ2 · c̄2,τ .
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Then, for every t ≥ 0, LimT→+∞E[βTi ·u0i(Ci,T ) · qT · θi,T |Ft](ω) = 0 for all ω ∈ Ω and

the transversality conditions for both the agents are satisfied.

PROOF: Consider i = 2. Since r̂2,t(ω) = 1 ∀ t ≥ 0 P − a.s. ω, the expression obtained
in Lemma 23 takes the form

βT2 · u02(C2,T (ω)) · qT (ω) · θ2,T (ω) =
TX

τ=0

βτ2 · u02(C2,τ (ω)) ·
³
z2,τ (ω)− C2,τ(ω)

´
=

TX
τ=1

βτ2 · c̄2,τ + u02(C2,0(ω)) ·
³
z2,0(ω)− C2,0(ω)

´
.

So βT2 · u02(C2,T ) · qT · θ2,T is a deterministic quantity, and by the hypothesis

LimT→+∞EP [β
T
2 · u02(C2,T ) · qT · θ2,T |Ft](ω) = 0.

Note that βT2 · u02(C2,T ) · qT · θ2,T = −
P∞

τ=T+1 β
τ
2 · c̄2,τ , a deterministic quantity.

We turn to agent 1. In the proposed solution θ1,t(ω) = −θ2,t(ω) for all t ≥ 0 and for
all ω ∈ Ω. Since r̂2,t(ω) = 1, by Proposition 1 (ii),

yT (ω) =
µ
β1
β2

¶T
· 1QT

s=1 r̂1,s(ω)
· y0(ω) ⇔ u01(C1,T (ω))

u02(C2,T (ω))
=
µ
β2
β1

¶T
·

TY
s=1

[r̂1,s(ω)] · u
0
1(C1,0(ω))

u02(C2,0(ω))
.

It follows that

LimT→+∞EP [β
T
1 · u01(C1,T ) · qT · θ1,T |Ft](ω)

= −LimT→+∞EP

"
βT2 ·

TY
s=1

[r̂1,s] · u
0
1(C1,0)

u02(C2,0)
· u02(C2,T ) · qT · θ2,T

¯̄̄̄
¯Ft

#
(ω)

= −LimT→+∞
u01(C1,0)
u02(C2,0)

· βT2 · u02(C2,T ) · qT · θ2,TEP

"
TY
s=1

[r̂1,s]

¯̄̄̄
¯Ft

#
(ω).

Since

βT2 · u02(C2,T ) · qT · θ2,T = −
∞X

τ=T+1

βτ2 · c̄2,τ

⇒ LimT→+∞E[βT1 · u01(C1,T ) · qT · θ1,T |Ft](ω)

= −LimT→+∞
u01(C1,0)
u02(C2,0)

µ
−

∞X
τ=T+1

βτ2 · c̄2,τ
¶
· EP

"
TY
s=1

[r̂1,s]

¯̄̄̄
¯Ft

#
(ω) = 0

where we use the fact that E [r̂i,t|Ft−1](ω) = 1 together with the law of iterated expecta-
tions and the fact that LimT→∞

P∞
τ=T+1 β

τ
2 · c̄2,τ = 0.

That completes the proof of Theorem 4 in case (i).

In case (ii) the asset is not traded and so it suffices to note that, by Proposition 8,

condition (v A) in Theorem 3A is satisfied and that completes the proof of Theorem 4

(ii).

We turn to case (iii), the case with an endowment perturbation. We show that there

is an endowment perturbation for which (C1, C2) and the associated supporting portfolios
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continue to satisfy the conditions in Theorem 3A thus proving that we have an IDC

equilibrium.

For the consumption processes Ci, let the personalized supporting price process for

agent i be

pCi,t(ω) ≡ βti · u0i(Ci,t(ω))/u
0
i(Ci,0(ω)).

For some c ∈ (0, Z0(ω)), consider the economy with endowment distribution (C1, C2).
By (ii) there exists a no-trade IDC equilibrium (c∗1, c

∗
2, θ

∗
1, θ

∗
2, q

∗) such that c∗i = Ci and

θ∗i,t (ω) = 0 for all t ≥ 0 and i = 1, 2. Notice the following three properties of our

construction:

(a) pC2,t+1 (ω) · rt+1(ω)q∗t (ω)
= pC2,t (ω) for all t ≥ 0 and ω ∈ Ω.

(b) rt+1(ω)
q∗t (ω)

=
u02(C2,t(ω))

β2u02(C2,t+1(ω))
> 1

β2M
> 1 for all t ≥ 0 and ω ∈ Ω.

(c) There exists M < +∞ such that rt+1(ω)
q∗t (ω)

≤M for all t ≥ 0 and ω ∈ Ω.

Property (a) restates the Euler equation for 2 using the definitions of pC2 and br2 and
the fact that in our construction br2,t (ω) = 1 always. Property (b) follows by property (a)
and Lemma 16. Finally, property (c) follows from the Euler equations of the agents

β2
u02 (C2,t+1(ω)) · rt+1 (ω)

u01 (C2,t (ω))
= q∗t (ω) = β1

EP [rt+1 · u01 (C1,t+1)| Ft] (ω)

u01 (C1,t(ω))
(19)

and the fact that assumption A.3 implies that the numerator is bounded below by r·u0i (z),
which is bounded away from zero by assumptions A.2 and A.4. Indeed, if property (c)

were not true then one could find a path ω where q∗t (ω) is arbitrarily close to zero. But
then, (19) would imply that both C1,t (ω) as well as C2,t (ω) are arbitrarily close to zero

which would contradict feasibility since Zt (ω) ≥ z > 0 for all t ≥ 0 by assumption A.2.

Now we construct an alternative endowment distribution by perturbing the no trade

endowment distribution (C1, C2). By hypothesis, there exists eτ (ω) such that 0 < C2,t (ω) ≤
Zt(ω)
2
for all t ≥ eτ (ω). Set eT (ω) ≡ max{1, eτ (ω)}. By Lemma 16 one has that

u0
³
C
2,eT (ω) (ω)´ ≤M · u0

³
C
2,eT (ω)−1 (ω)´ ≤M · u0

µ
z

2

¶
and it follows that

C
2,eT (ω) (ω) ≥ (u0)−1

µ
M · u0

µ
z

2

¶¶
Pick 0 < ε < min

n
C2,0, (u

0)−1 (M · u0 (z/2))
o
so that ε ·

³
M − 1

´
≤ z/2. It follows that

0 < ε < C
2,eT (ω) (ω).

Define perturbed individual endowments (ez1, ez2) as follows:
ez1,t (ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C1,t (ω) if t < eT (ω)
C
1,eT (ω) (ω) + ε if t = eT (ω)

C1,t (ω)− ε ·
∙

rt(ω)
q∗t−1(ω)

− 1
¸

otherwise
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ez2,t (ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C2,t (ω) if t < eT (ω)
C
2,eT (ω) (ω)− ε if t = eT (ω)

C2,t (ω) + ε ·
∙

rt(ω)
q∗t−1(ω)

− 1
¸

otherwise

It follows by properties (b) and (c) above, and our choice of ε, that (ez1, ez2) is feasible and
that ezi,t (ω) ∈ (0, Zt (ω)) for all i = 1, 2. Now, consider portfolios (θ1, θ2) where θ1 = −θ2
and

θ2,t (ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if t ≤ eT (ω)− 1
− ε

q∗t (ω)
if t = eT (ω)

ε
q∗t (ω)

·
∙

rt(ω)
q∗t−1(ω)

− 1
¸
+ rt(ω)

q∗t (ω)
· θ2,t−1(ω) otherwise

Then, it is easy to verify that for every agent i = 1, 2, portfolio θi supports consumption

process Ci at prices q
∗ since by construction

ezi,t (ω) + rt (ω) · θi,t−1 (ω)− q∗t (ω) · θi,t (ω) = Ci,t (ω) for all t ≥ 0 and ω ∈ Ω

and that |q∗t (ω) · θi,t (ω)| ≤ ε < z
2
for all t ≥ 0 and ω ∈ Ω.

Since (C1, C2) are feasible consumption processes, (θ1, θ2) supports (C1, C2) at the

price process q∗, |q∗t (ω) · θi,t (ω)| < z
2
for all i = 1, 2. This shows that condition (vi A)

in Theorem 3A is satisfied. By Proposition 8, condition (v A) in Theorem 3A is satisfied

and that completes the proof of Theorem 4 (iii).

PROOF OF COROLLARY 2

By construction r̂2,t(ω) = 1. Since rt(ω) = 1 for all t ≥ 0 and ω ∈ Ω, then A.4

holds and by Lemma 1 and Proposition 2 (ii), agent 2 vanishes on ω if and only ifQT
t=1 r̂1,t(ω)→ 0 on ω. By Propositions 5 and 8,

QT
t=1 r̂1,t(ω)→ 0 P−a.s. ω if A.7 holds.

So it suffices to show that

P

Ã
ω : limsup

1

T

TX
t=1

EP [log r̂1,t|Ft−1](ω) < 0

!
= 1.

Let ∆S−1 =
n
p ∈ RS

+ :
PS

k=1 pk = 1 and pk ≥ p
o
. For any p ∈ ∆S−1, let Zp, be a

subset of [z, z] with S elements satisfying
P

z∈Zp, pz ·
³
z −Pez∈Zp, pez · ez´2 ≥ , i.e. the

variance is at least . Let z∗p, be the smallest element in Zp, . Let

v ≡ maxp∈∆S−1 maxZp, ⊂[z,z]maxc∈[0,z∗p, ]
X

z∈Zp,
pz · log u01(z − c)Pez∈Zp, pez · u01(ez − c)

and let p , Zp , and c be the maximizers.22

22Note that
u01(z−c)P

z̃∈Zp,
pz̃·u01(z̃−c)

is well defined for all c ∈ £0, z∗p, ¤, p ∈ ∆S−1 and Zp, ⊂ [z, z], it is

non-negative, bounded and continuous in its arguments.

66



Note that there exists z1, z2 ∈ Zp , such that z2 > z1 +
q

S
. Note also that

log
u01(z1 − c )P

z∈Zp ,
p ,z · u01(z − c )

− log u01(z2 − c )P
z∈Zp ,

p ,z · u01(z − c )
= log

u01(z1 − c )

u01(z2 − c )

≥ log
u01(z1 − c )

u01(z1 +
q

S
− c )

> 0

and it follows by the strict concavity of the function log x and Jensen’s inequality that

v =
X

z∈Zp,
p ,z · log u01(z − c )Pez∈Zp, p ,ez · u01(ez − c )

< 0.

Notice that since Pt (ω) ∈ ∆S−1, Zt ∈ [z, z], var [Zt|Ft−1](ω) > > 0, c2,t (ω) = c2,t (eω)
for all eω ∈ Ω (st−1 (ω)) and c2,t (ω) ≤ mineω∈Ω(st−1(ω)) {Zt (eω)}, then

EP [log r̂1,t|Ft−1](ω) = EP

"
log

Ã
u01(Zt − c2,t)

EP [u01(Zt − c2,t)|Ft−1]

!¯̄̄̄
¯Ft−1

#
(ω) ≤ v .

It follows that for every T and every ω

1

T

TX
t=1

EP [log r̂1,t|Ft−1](ω) ≤ v < 0.

Therefore, P−a.s., limsup 1
T

PT
t=1EP [log r̂1,t|Ft−1](ω) ≤ v < 0.
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