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Abstract. Dynamic fracture phenomena are studied employing low cost computational tools

based on Finite Elements with Embedded strong discontinuities (E-FEM). Fracture nucleation

and propagation are accounted for through the injection of discontinuous strain and displace-

ment modes inside the finite elements. The Crack Path Field technique is employed to compute

the trace of the strong discontinuity during fracture propagation.

Unstable crack propagation and crack branching are observed upon increasing loading

rates. The variation in terms of crack pattern and energy dissipation is studied and a good cor-

relation is found between the maximum experimental crack speed and maximum dissipation at

the onset of branching. Comparable results are obtained against simulations employing supra-

elemental techniques, such as phase-field and gradient damage models, considering coarser

discretizations which can differ by two orders of magnitude.
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1 INTRODUCTION

Dynamic fracture processes are challenging phenomena to be studied experimentally. Ex-

pensive equipment needs to be employed in order to accurately capture crack growth in a small

time frame and dynamic loading conditions are not always straightforward to reproduce in a

laboratory.

For this reason, numerical techniques such as Finite element (FE) methods are regarded as

valuable alternatives for solving general dynamic fracture problems. However, they show some

limitations mainly related with the objectivity, computational cost and the overall ability to pre-

dict experimental tests [36]. Different alternatives have been adopted to model crack nucleation

and propagation in a dynamic setting. For instance works involving fracture in dynamic prob-

lems have been addressed by Falk et al. [7], Pandolfi et al. [26], Song and Belytschko [35] and

Linder and Armero [16], where cracks are inserted between FE (inter-elemental) and inside the

FE support (intra-elemental). Other techniques tackle the strain localization phenomena by con-

sidering supra-elemental bands such as phase-field modeling [2, 11, 19] and gradient damage

models [15]. Such techniques led to impressive 2D and 3D results but at the cost of extremely

fine FE discretizations which can be regarded prohibitive in a dynamic context where a large

amount of time steps need to be resolved in order to capture crack growth with a sufficient time

resolution. Softening visco-elastic visco-plastic damage continuum model has been employed

for dynamic fracture of concrete up to intermediate loading rates in [27, 28]. At high loading

rates, where fragmentation and spalling take place, erosion or element deletion models pro-

posed by Camacho and Ortiz [3], Li et al. [14] have proven to be competitive methods. Other

alternative numerical methodologies have been addressed with some success, e.g. peridynamics

[10, 32], discrete methodologies such as lattice models [13] and mesh-free methodologies [1],

to mention a few.

One of the main objectives of such numerical approaches is to help understanding dynamic

fracture phenomena mainly driven by inertial forces which play a dominant role over possible

viscous behaviors at high loading rates, e.g. crack curving and branching phenomena detected

experimentally when a critical crack tip velocity is exceeded [9, 29–31]. In this scenario, com-

putationally affordable intra-element techniques need to be ready to account for complex frac-

ture patterns in which the dominant crack paths may involve branching and sudden changes of

the crack propagation direction.

The present contribution introduces and assesses a finite element method for modeling crack

propagation problems with the presence of a dominant crack in brittle or quasi-brittle materi-

als. Problems involving fragmentation or spalling are left outside the scope of this work. Our

approach is based on the Embedded Finite Element technology (cf. [4, 23]) which has already

been utilized for the study of fracture in quasi-brittle materials and successfully applied to the

study of tensile crack growth in gravity dams (cf. [5, 6]). The specific formulation developed

by Oliver et al. [24] and assessed for quasi-static multiscale fracture problems has been adopted

and tailored for dynamic fracture propagation problems. One of the main advantages of the

present approach is that cracks, represented by strong discontinuities embedded into the finite

elements, may propagate through the mesh in arbitrary directions reproducing complex fail-

ure patterns and, therefore, significantly coarser meshes can be employed compared to other

supra-elemental techniques such as phase-field or gradient models.
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Figure 1: IVBP at solid B with evolving crack. The disjoint domains of B generated by S are denoted B+ and B−.

2 MODEL DESCRIPTION

The governing equations of the dynamic fracture Initial Boundary Value Problem (IBVP) at

time t ∈ [0,T ] of the solid B (cf. Figure 1) can be stated as: find u, εεε and σσσ , satisfying:

∇∇∇ ·σσσ +b = ρü ; ∀x ∈ B\S ; t ∈ [0,T ] ; Momentum equation (1)

εεε = ∇∇∇
s
u ; ∀x ∈ B\S ; t ∈ [0,T ] ; Compatibility equation (2)

σσσ = ΣΣΣ(εεε,r) ; ∀x ∈ B ; t ∈ [0,T ] ; Constitutive equation (3)

u = u∗(x, t) ; ∀x ∈ ∂Bu ; t ∈ [0,T ] ; Displ. boundary conditions (4)

σσσ ·n = t∗(x, t) ; ∀x ∈ ∂Bt ; t ∈ [0,T ] ; Traction boundary conditions(5)

u(x,0) = 0 ; ∀x ∈ B ; Initial displ. condition (6)

u̇(x,0) = u̇0(x) ; ∀x ∈ B ; Initial velocity condition (7)

σσσ
+ ·n = σσσ S ·n = σσσ

− ·n ; ∀xS ∈ S ; t ∈ [τ,T ] ; Traction continuity across S (8)

where u, εεε and σσσ correspond to the displacement, strain and stress fields and b, ρ and ΣΣΣ denote

the volumetric forces, the density and the constitutive relation, respectively. The instant when

the discontinuity surface S is introduced at xS is denoted by τ and σσσS , σσσ+, σσσ− and n stand for

the stress at an interface point of S, the stresses at each side of this interface and the normal to

the discontinuity S.

According to the the Continuum Strong Discontinuity Approach (CSDA) introduced in [21]

and [22], the stresses σσσS are determined through the constitutive model ΣΣΣ selected for the bulk

material accounting for regularization issues.

The strong form of the fracture propagation problem stated in (1) to (8) is recast in a varia-

tional format following the methodology presented in [33] and by Oliver et al. [22] where both

displacement and strain fields are defined as the addition of a smooth and an enhanced part rep-

resenting the corresponding singularity in the kinematics. The equivalent variational statement

reads:
∫

B

σσσ : ∇∇∇
s
ηηηdB+

∫

B

(b−ρü) ·ηηη dB+

∫

∂Bt

t∗ ·ηηη dΓ = 0 ; ∀ ηηη ∈ V̂u, (9)

where u and ηηη stand for the displacements and displacement variations belonging to the spaces

of kinematically admissible displacements Vu and displacement variations V̂u, respectively.
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2.1 Finite element discretization with different kinematic descriptions

The finite element technology employed in this study is designed to account for different

kinematic descriptions which are found optimal to reproduce different stages of fracture nucle-

ation and propagation. Strain localization is considered at the surface S (cf. Figure 1) which is

k−regularized in the finite element model, i.e S is represented by a band of finite thickness k

across which the displacements are assumed to be continuous.

Quadrilateral finite elements are employed in all considered discretizations and the resulting

mesh is basically divided in two disjoint domains: Bstd(t) and Binj(t) (B = Bstd(t)∪Binj(t))
accounting for the standard and injected enhanced kinematics, respectively. These vary with

time throughout the evolution of the fracture process as depicted in Figure 2. Domains with

injected kinematics Binj(t) are, in turn, composed by the union of the disjoint domains Bwd, i.e.

with weak discontinuity kinematics, and Bsd, i.e. with strong discontinuity kinematics satisfying

Binj(t) = Bwd(t)∪Bsd(t). Therefore, three types of domains with different kinematics can be

identified in the partitions of B:

1. The domain Bstd corresponds to the union of those finite elements with standard kinemat-

ics, i.e. continuous displacements. The finite element formulation employed in Bstd is

also termed irreducible formulation since displacements are the only components of the

solution field. Bilinear polynomials are used to interpolate the displacement field through-

out the quadrilateral elements. The standard kinematics is employed in all FE (belonging

to Bstd) that are found far away from the main fracture process and, for this reason, no

localization phenomena is detected. Due to the standard character of its implementation

no further details concerning the formulation of standard kinematics FE are given in this

manuscript.

2. The domain Bwd corresponds to the union of those finite elements in Binj where a weak

displacement discontinuity is considered in the kinematics. Such kinematic enrichment is

also referred to as constant stress-discontinuous strain mode (CS-DSM) in Section 2.1.1

where further formulation details are provided. The weak discontinuity kinematics is

employed at regions susceptible of undergoing strain-localization phenomena, i.e. where

strains exceed a certain critical threshold. These domains are typically found at a vicinity

of the crack tip or in those locations where stress concentration may lead to the nucleation

of fracture phenomena. The enhanced deformation of the elements belonging to Bwd,

amenable to carry a non-directional discontinuity, renders a flexible element which is

particularly useful to determine the correct propagation of the crack and to accommodate

the strain states at crack branching regions.

3. The domain Bsd corresponds to the union of those finite elements in Binj in which a strong

displacement discontinuity is considered in the kinematics. Such kinematic enrichment

is also referred to as discontinuous displacement mode (DDM) in Section 2.1.2 where

further formulation details are provided. The strong discontinuity kinematics is employed

throughout the trace of the crack and the elements belonging to Bsd must exceed a certain

strain threshold and, additionally, fulfill a number of conditions, detailed in Section 2.1.2.

The domain Binj is, therefore, modeled with finite elements equipped with strain injections,

including CS-DSM and DDM modes introduced in [18, 24]. Strain injections are included in

finite elements through the concept of assumed enhanced strains [34] considering a three-field

Petrov-Galerkin mixed formulation by assuming that displacements u and strains εεε in (9) are
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t1 t2 t3

Intra-elemental strain injection during fracture propagation

Bwd

Bstd: Standard kinematics

Bwd: Weak discontinuity (CS-DSM)

Bsd: Strong discontinuity (DDM)

Bsd(t2)

B = Bstd(t)∪Binj(t)

Binj(t) = Bwd(t)∪Bsd(t)

Bstd(t1) Bstd(t2) Bstd(t3)

Binj(t1) = Bwd(t1)
Bsd(t3)

Figure 2: Subdomain categories of the discrete body along different times (t1, t2 and t3) of the analysis.

independent fields. In both CS-DSM and DDM modes the strain field is partitioned in two

terms: εεε = ξξξ +γγγ denoting a compatible (and smooth) strain field ξξξ and an enhanced strain field

γγγ which tackles possible singularities in the failure propagation kinematics.

The resulting Embedded Finite Element method (E-FEM) has been already presented in [23]

and [24] and assessed for the case of quasi-static failure propagation. In the following sub-

sections a brief description of its formulation is given but the reader is referred to the works

in [18, 23, 24] for complete implementation details.

2.1.1 Weak discontinuity injection in Bwd. Constant Stress-Discontinuous Strain Mode

(CS-DSM)

The weak discontinuity kinematics is injected when a user defined strain threshold is ex-

ceeded (cf. [18]). Such critical strain threshold is determined based on a strain-like internal

variable of the damage model, r, which records the maximum historical value of the equivalent

strain, τε , accounting for the positive strain counterpart, i.e. only tensile stress states contribute

to the strain norm. For complete details on the k-regularized damage model employed in this

study the reader is referred to the works in [8, 18, 20].

Considering the strain field decomposition into a compatible and enhanced strain, the result-

ing variational three-field problem can be stated as: Find u ∈ Vwd
u and εεε = ξξξ + γγγ with ξξξ ∈ Vwd

ε

and γγγ ∈ Vwd
γ , satisfying:

∫

B

σσσ(εεε) : ∇∇∇ηηη dB−

∫

B

(b−ρü) ·ηηη dB−

∫

∂Bt

t∗ ·ηηη dΓ

︸ ︷︷ ︸

Wext
η (ηηη,b,ü,t∗)

= 0; ∀ηηη ∈ V̂wd
u , (10)

∫

Be

φ
e
ξ̂ξξ

e
:
(

φ
e
ξξξ

e
−

ne
node∑

i=1

(∇∇∇s
Ne

i ⊗de
i )
)

dB = 0; ∀ξ̂ξξ
e
∈ V̂wd

ε , (11)

∫

Be

γ̂γγ
e

: (χ
(he,ke)
S σσσ) dB =

∫

Se

γ̂γγ
e

: [[σσσ ]] dB = 0; ∀γ̂γγ
e ∈ V̂wd

γ , (12)
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where Vwd
�

and V̂wd
�

denote the trial and test function spaces, respectively. The subindices u, ε

and γ refer to the spaces of displacements u, strains εεε and enhanced strain fields γγγ , respectively

(cf. [18] for a detailed definition of these function spaces). Displacements u and displacement

variations ηηη are element-wise interpolated using standard bilinear shape functions while the

compatible and enhanced strain components are interpolated using the spatially constant func-

tion φ and the dipole function χ , detailed in [18, 24]. The term denoted Wext
η in (10), refers to

the virtual work due to the external and inertial forces.

As described in [18] the non-directional character of the strain enhancement renders the CS-

DSM element an excellent candidate to be employed at regions undergoing complex fracture

phenomena such as crack branching and intersection. It is designed to sense strain localization

phenomena and, therefore, is seen particularly useful to anticipate a strong discontinuity at the

crack tip region in a certain well-captured propagation direction.

2.1.2 Strong discontinuity injection in Bsd. Discontinuous Displacement Mode (DDM)

Upon increasing strain localization in a particular direction, the strong discontinuity kine-

matics is injected after the the injection of the weak discontinuity. The element to be enriched

with the strong discontinuity kinematics belongs to Binj for which the strain threshold referred

in Section 2.1.1 must have been exceeded. Additionally, all elements in Bsd must fulfill the

following conditions (cf. [18] for a more detailed explanation):

1. The constitutive tangent satisfies the bifurcation condition, i.e. the determinant of the

corresponding acoustic tensor must vanish.

2. The local dissipation per unit of surface exceeds a user-defined fraction of the material

fracture energy Gf

3. The trace of one strong discontinuity S (cf. Section 2.2) intersects the element.

When the above mentioned conditions are accomplished, the strong discontinuity kinematics

can be injected with confidence propagating the crack following a correct direction and avoiding

possible stress locking effects arising from any kinematic incompatibilities.

Considering the strain field decomposition into a compatible and enhanced strain field, as

proposed in the assumed enhanced strains methodology, the mixed variational problem in Bsd

can be written as: find u ∈ Vsd
u and εεεsd = ξξξ sd + γγγsd with ξξξ sd ∈ Vsd

ε and γγγ sd ∈ Vsd
γ , satisfying:

∫

B

σσσ(εεε) : ∇∇∇
s
ηηη dB−Wext

η (ηηη ,b, ü, t∗) = 0; ∀ηηη ∈ V̂sd
u , (13)

∫

Be

χ
+
S (x) ([[û]]e ⊗s n : σσσ) dB =

∫

Se

[[û]]e · [[σσσ ·n]] dΓ = 0; ∀[[û]]e ∈ R
ndim , (14)

∫

Be

φ
e
ξ̂ξξ

e

sd :
(

φ
e
ξξξ

e
sd −

[

∇∇∇
s
Ne

i ⊗de
i )−∇∇∇ϕ

e ⊗s [[u]]e
])

dB = 0; ∀ξ̂ξξ
e
∈ S

ndim×ndim , (15)

where Vsd
�

and V̂sd
�

denote the trial and test function spaces, respectively. The subindices u, ε

and γ refer to the spaces of displacements u, strains εεε and enhanced strain fields γγγ , respectively

(The reader is referred to the work in [18] for a detailed definition of these function spaces).
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Displacements variations ηηη are element-wise interpolated using standard bilinear shape func-

tions while the displacements u are interpolated as an addition of a standard interpolation of

the smooth term and a term accounting for the displacement jump [[u]] through the Heaviside

step function and an element auxiliary function described in [18, 24]. The compatible strain

and compatible strain variations are interpolated using the spatially constant function φ . The

enhanced strains are element-wise interpolated employing the dirac delta shifted to S and the

enhanced strain variations are computed through the generalized dipole-like function χ
+
S de-

tailed in [18, 24].

2.2 Crack Path Field tracking algorithm

The trace of the strong discontinuity is computed through the crack path field (CPF) tech-

nique introduced by Oliver et al. [23]. Essentially, a directional maximum of a conveniently

chosen localizing field r (cf. [18, 23, 24]) is calculated defining the so-called crack path set Γ,

i. e. predicting the trace of the strong discontinuity S.

The direction in which the maximum of r is identified is taken according to the vector field

ê(x, t) =
∇∇∇ũ(x, t)

||∇∇∇ũ||
(16)

where ũ denotes a scalar value of the displacement field u (cf. [18]). The orientation of the

strong discontinuity n is directly taken from the vector ê. The directional maximum of r, iden-

tifying the crack path set Γ, is computed through the zero-level set of the so called crack path

field µ(x, t), defined as:

µ(x, t) =
∂ r̃

∂e
= ∇∇∇r̃ · ê, (17)

where r̃ is a sufficiently smooth field of r. The zero-level set of µ defines the crack path set Γ as

Γ(t) := {x
∣
∣µ(x, t) =

∂ r̃

∂e
= 0}. (18)

Note that S is contained in the crack path set Γ (cf. Figure 3) and is identified as the portion

of Γ belonging to Bsd. Once the intersections between S and the finite element boundaries are

known, the auxiliary function ϕe can be constructed.

The spirit of the CPF technique is to facilitate the computation of the trace of the strong dis-

continuity specially in those cases in which crack propagation may be biased by mesh alignment

or structured discretizations (cf. [23]).

2.3 Implicit time integration

The enhanced degrees of freedom (ξ̄ξξ
e

and γ̄γγ
e in (10)–(11), or ξ̄ξξ

e
and [[u]]e in (13)–(15)) are

condensed out at the element level and, therefore, the unknowns in the discrete model consist

on the vector of smooth displacements u and accelerations ü. Consequently, the elements with

enhanced kinematics do not lead to an increase of the standard degrees of freedom. Since the

enhanced degrees of freedom do not have an associated mass, their condensation is performed

as done in quasi-static problems.

The resulting global system of equations in terms of u for each time step can be written in a

matrix form as:

Mü(t)+Fint(u(t))−Fext(t) = 0, (19)
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n

S ⊂ Γ(µ = 0)

(c)(b)

(a)
S

Γ

ũ

O(1/k) Bstd

r

Bsd(t)
Bwd(t)

Bwd(t)

Bsd(t)

Γ

Figure 3: Crack Path Field (CPF) strategy for the crack tracking algorithm. Γ denotes the crack path set. (a)

Localized field r around a strong discontinuity band. (b) Associated scalar displacement field ũ. (c) Γ (zero-level

set of the crack path field function µ̃) and the trace of the strong discontinuity S.

where M and Fext represent the mass matrix and external force vector, without the inertial

forces, respectively. The mass matrix is computed in a standard way, i.e. lumping the contri-

butions to a diagonal matrix, and is only associated to the degrees of freedom of the smooth

displacement field. The internal force vector and Fint results from the evaluation of the first

term, on the l.h.s. of (9), (10) or (13), corresponding to Bstd, Bwd and Bsd, respectively.

A standard implicit time integration (Newmark) scheme is employed to find the solution of

(19) at time step t + 1. Considering the solution ut+1 the system of equations in (19) can be

expressed as

R(ut+1) = 0. (20)

Due to the evolution of crack phenomena, the integration domains vary with time, as well as

the spatial integration rules and the residual force vector has to be evaluated in an incremental

way as follows:

R(ut+1) = R(ut)+∆R
(

∆ut+1,Bt
std,B

t
wd,B

t
sd

)

. (21)

The integration rules for the evaluation of the residual force vector, R, are specific for each

domain Bt+1
std , Bt+1

wd and Bt+1
sd . An alternative approach is utilized in our implementation which

consists in redefining the stresses, which take place in the internal force expressions such that

one quadrature rule suffices for evaluating R(ut+1) in the complete domain B (cf. Oliver et al.

[23, 24] for details of the effective stress definition and their updating scheme).

3 Representative simulations

The following examples illustrate the performance of the crack path field and strain injection

techniques in dynamic simulations with different loading rates and material brittleness. Plane

strain conditions are assumed in all two-dimensional examples.

3.1 Dynamic simulations of quasi-brittle fracture at different loading rates

Dynamic fracture simulations of a compact tension (CT) test are performed considering a

quasi-brittle material such as concrete (cf. Figure 4). The influence of the loading regime

is studied by varying the pressure rates applied at the loading walls of the CT specimen. The

damage model described in [17, 24] is employed with a linear softening law and an only tension

8
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Figure 4: Geometry and boundary conditions for the dynamic CT test.

σu [N/mm2] E [N/mm2] ν Gf [N/mm] ρ
[
Kg/m3

]

3.5 30.0×103 0.18 0.09 2400

Table 1: Material parameters for the dynamic compact tension (CT) test.

failure criterion. A constant time discretization is considered with ∆t = 10−6 s and the material

parameters are shown in Table 1.

In order to prevent damage nucleation at the vicinity of the wall where the pressure load is

applied, the upper part of the specimen (cf. Figure 4) is kept elastic. The Rayleigh wave speed

vR for a concrete material is considered approximately equal to 2100 m/s (cf. [25]).

Upon increasing loading rate, the failure pattern changes from a vertical mode-I crack to

mixed mode with multiple cracks, i.e. the fracture surface increases (cf. Figure 5). This ten-

dency is also observed in Ožbolt et al. [25] where a similar test is studied. The injection of weak

and strong discontinuities in combination with the Crack Path Field (CPF) tracking algorithm

automatically captures branching phenomena without the need for a special strong discontinu-

ity kinematics at the branched element as proposed in [16]. In the proposed methodology, the

crack path sets cannot intersect itself and, therefore, the elements at the branching region are

injected with the CS-DSM which has no assumed direction of localization.

The total energy dissipation and the dissipation plots are shown for different loading rates ṗ

ranging 1.077×103 to 2.154×104 N/mm2/s in Figure 6. Such dissipated energy WD at time t

is calculated as:

WD(t) =

∫ t

0

Pext(t) dt −Ψ(t)−K(t), (22)

where Pext(t) denote the external mechanical power, performed by the external loads excluding

the inertial forces, Ψ(t) the total internal energy and K(t) the kinetic energy, at time t. Addi-

9
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Crack path set Γ

Standard CS-DSM DDM

Injection patterns

Low loading rate Medium loading rate High loading rate

Figure 5: Injection patterns upon increasing loading rate at the dynamic compact tension test.
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ṗ = 21538N/mm2/s

ṗ = 15000N/mm2/s

ṗ = 13067N/mm2/s

ṗ = 10000N/mm2/s
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Db

Figure 6: Time evolution of the total dissipated energy (left) and dissipation (right) for different loading rates. The

black circles indicate the first observed branching episode. A thickness of 1mm is considered for the energy plots.

tionally, the dissipation D(t) can be computed as the derivative with respect to time of WD(t)
since

WD(t) =

∫ χ=t

0

D(χ) dχ . (23)

The total dissipated energy and crack surface increase upon increasing loading and the cor-

responding dissipation presents a higher peak value (cf. Figure 6). The branching episodes are

indicated in the plots with black circles at each of the curves. It is observed that all dissipa-

tions measured during branching events cluster in a region between 1.35×105 and 1.62×105

N ·mm/s. These limits Db can be estimated as

Db = vbGfk, (24)

where vb refers to the crack velocity at the onset of branching reported in experiments, i.e.

between 500 and 600 m/s for concrete material [25], Gf stands for the material fracture energy

and k denotes the considered bandwidth of the localization zone in the DDM (cf. [18, 23]).

The expression in (24) implicitly sets a maximum dissipation for a single crack considering

that the energy is instantaneously dissipated. In this view, all registered dissipations greater than

the estimated upper limit in (24) necessarily involve more than one crack. In all results shown

in Figure 6 the dissipations registered upon the onset of branching fit reasonably well between

the above mentioned limits computed with the experimental maximum crack velocities 500 and

600 m/s.

For this reason, the expression in (24) can be seen as a methodology to infer the crack

velocity at the onset of branching knowing the total dissipation assuming that the energy is

instantaneously released during crack propagation. Considering the upper and lower registered

dissipation limits at the onset of branching, the corresponding limiting velocities are 501.82

and 545.58 m/s according to (24). This alternative approach is based on the global dissipation

values field D which is remarkably smoother and reliably evaluated than the crack tip velocity

field.

In [11], crack branching is detected when a critical crack surface rate is reached which is

analogous to the dissipation criteria. However, the advantage of monitoring the rate of dissi-

pated energy is that it can be performed by accounting for a global energy balance instead of
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Figure 7: Geometry and boundary conditions for the Kalthoff experiment.

σu [N/mm2] E [N/mm2] ν Gf [N/mm] ρ
[
Kg/m3

]

844.0 190.0×103 0.3 22.17 8000

Table 2: Material parameters and wave velocities for the Kalthoff experiment.

locally studying crack surface growth. In other words, the total energy dissipation is computed

as the difference between the external loads energy minus the deformation and kinetic energies.

In this way, no additional model-dependent criteria are needed to locate the crack tip position.

3.2 Towards simulations of brittle failure involving complex fracture phenomena

The strain injection and crack path field techniques are employed to reproduce the Kalthoff

experiment [12] (cf. Figure 7) consisting of an edged-cracked plate impacted by a projectile. It

is reported experimentally that, at an impact velocity v0 = 16.5 m/s, a mode I crack propagates

from the notch towards the superior and inferior specimen edges at an angle of proximately 70

degrees.

An applied velocity at the prescribed contour ΓD mimics the boundary condition resulting

from the impact. The test is imposed on a metallic plate with material parameters summarized

in Table 2. Both unstructured and structured meshes have been studied with approximately

15000 elements and a time step discretization ∆t = 10−7 s is adopted.

Injection patterns for both meshes shown in Figure 8 reveal that both results are very much

comparable and in agreement with the experimental results which report crack propagation an-

12



Oriol Lloberas-Valls, Alfredo E. Huespe, J. Oliver and Ivo F. Dias

gles close to 70 degrees. The patterns are remarkably symmetric as expected from the imposed

boundary conditions and are found in agreement with those provided by different numerical

techniques, e.g. phase-field [11] and gradient damage models [15] but at the expense of a mesh

discretization which is around two orders of magnitude finer (cf. Figure 9).

4 Conclusions

A FE formulation is presented which is capable of tackling fracture dynamics problems

through the injection of weak and strong displacement discontinuities. Since the kinematic

enhancement simulating the fracture is performed inside the element (intra-elemental) and not

represented by bandwidth of several elements (supra-elemental), the necessary FE discretization

can be adopted significantly coarser than strategies such as phase field or gradient damage

models.

The crack path field global tracking technique in combination with the strong discontinuity

injection procedure automatically account for complex fracture phenomena encountered upon

increasing loading rates such as branching. Crack branching regions are injected with the non-

directional CS-DSM element while the rest of the trace of discontinuity is modeled with the

strong discontinuity injection.

Assuming that the fracture energy is instantly released, the maximum dissipation for one

propagating crack can be estimated as the product of the fracture energy, the maximum crack tip

velocity and the crack band width. In this view, the crack branching velocities can be estimated

by monitoring the dissipation at the onset of branching Db and have been found to be in good

agreement with crack tip velocities at the onset of branching reported experimentally.

The simulation of the Kalthoff experiment with both structured and unstructured meshes

provides results in agreement with other supra-elemental numerical schemes but employing a

finite element discretization which can be up to two orders of magnitude coarser.
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Crack path set Γ

Unstructured mesh Structured mesh

70◦

70◦

Standard CS-DSM DDM

Figure 8: Injection patterns for the unstructured and structured meshes.
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Figure 9: Equivalent mesh discretizations for the Kalthoff experiment employing different numerical techniques.
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