Kinect driven facial animation

Bachelor’s thesis
June 29, 2016

</ N>
%S\
==y
(TR

e

Author: Guillermo Ojeda Noda
Director: Antonio Susin Sanchez
Bachelor degree: Informatics Engineering
Specialization: ~ Computing

UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

Abstract

Nowadays, facial animation is a core part of the character animation industry. From
movies to video games, facial animation is done by most companies with the help
of expensive equipment that capture real people’s facial expressions as data and
use it to animate their characters.

The Kinect device presents itself as an inexpensive alternative to this kind of
equipment. With it, this project develops a facial animation application that makes
use of the user’s facial expressions to animate a 3D model. There will be a full
specification of the project, track of the development in its different phases and an
analysis on different aspects of the project, such as the limitations of the device, the
development and possible extensions.

Resumen

Actualmente, la animacién facial es una parte clave en la industria de la animacién.
Desde peliculas hasta videojuegos, la animacién facial es realizada por grandes
compafifas a base de usar cimaras y herramientas de alto coste con el fin de capturar
las expresiones faciales de personas de verdad y usarlas como datos para animar a
sus personajes.

Kinect es un dispositivo que se presenta en este &mbito como una alternativa
econdmica. Haciendo uso de él, este proyecto desarrolla una aplicacién de animacién
facial que aplique las expresiones faciales del usuario a un modelo 3D. Habra una
especificacion completa del proyecto, asi como un seguimiento del desarrollo en
sus distintas fases y un analisis de los distintos aspectos del proyecto, como las
limitaciones del dispositivo, el proceso de desarrollo y las posibles ampliaciones.

ii

Contents

[List of Tables

[List of Figures|

[List of Listings|

I Introduction|
2 Scope of the project
2.1 Objectives|
................
2.3 Methodology and rigour|.
2.3.1 Development tools|
[2.3.2 Progress monitoring| . . .
3. lidation of results| . . .
[24 Obstacles and risks of the project|
[2.4.1 Main program|.
2.4 Kinectl
4 Dmodell
.44 Schedulel.
B C Tizati {ref |
BI Contextl.
B.11 Areas ofinterest|
312 Actorsl
8.2 Stateoftheartl.
[3.2.1 Facial motion capture| . .
[3.2.2 Facial recognition|.
323 3D viewersl.
8.2.4 Avatar video conferencel .
[3.3 Use of previous works|

iii

Page
vi
vii

viii

N OO G U aadksNNDNdDN

O O 0 OO0 o @

10

3.3.1 Facial motion capture|
3.3.2 Facial recognition|. 0L
Dwviewers|.

4

Temporal planning]

4.1 Descriptionoftasks/. 00 .
#.1.1 Reading and understanding the problem|
@412 Projectplanningl 000 .
#4.1.3 Initial systemsetup|
414 Maindevelopment| oL
MI5 Finaltaskl

Budget and sustainability|

p.1 Budget estimation|. L.

1.2 ftware r TCES| . e e e e e e e e e

.15 Totalbudget|. o .
[.2 Budgetcontroll. oo oo
0.3 Sustainability]o oo
.3.1 Economic sustainability|
p.3.2 Social sustainability| 000 .
.3.3 Environmental sustainability|

Development of the project

[6.1 Firststeps|
6.2 Kinect’sinterfacel L

[6.2.2 Creating the interface[.
[6.2.3 Upgrading the3D viewer|
[6.3 Model loading and rendering| 000,
[6.4 Adding Face Tracking into Kinect’s interfacel
[6.4.1 Face Tracking SDK|
[6.4.2 Extending the Kinect’s interface|

iv

14
14
14
15
15
15
16
17
17
18
18
18
19

20
20
20
21
21
22
23
23
24
24
25
25

[6.5 Meeting the tirstobstacle] 48

651 FBXSDKI. 49

52 ini fthe EBXSDK] 53

6.6 FBXhelper|. 0 .. 54
[6.6.1 Creation of thehelper{ 54

[6.6.2 Moditying the model’s interface| 56

[6.6.3 Testing the rendering and some deformations| 60

[6.7 Connecting both interfaces and the second obstacle| 60
6.8 Workaround!o oo 64
[6.9 Tweaking the animations|. 65

(7 Analysis and conclusion| 66
[7.1 ~Changes to the initial project| 66
[7.2 Development analysis| 67
[7.3 Technical competences|, 67
74 nclusionl 68
Bibliography; 69

List of Tables

Table Page
4.1 Summary of the time spentoneachtask| 17
[>.1 Hardware resources budget.|. 21
[>.2 Software resources budget.| 000 L. 21
[.3 Human resources budget,| 22
[p.4 General resources budget, o 00000 22
0.5 Totalbudget|. o 23
[6.1 Head pose angles analysis,| 41
[6.2 Animation Units analysis|, 43

vi

List of Figures

Figure Page
2.1 3D head used on this project.|0 0. 3
[2.2 Description of Kinect’s components.| 4

[3.1 Andy Serkis performing the role of Golum in The Lord of the Rings.| 10

4.1 3D rotationsofa3Dhead). L. 17
4.2 Gantt chart of the project,|, 18
[6.1 Basic 3D viewer built at the beginning of the project.| 26
.2 3D reconstruction of 1 ne with th t Kinect Fusion) . . 28
(6.3 Face Tracking SDK inaction.| 29
[6.4 Kinect’s captured image finally showing on our 3D viewer| 34
6.5 In case Kinect is not detected, an error is shown in the window.|. . . 34
[6.6 Rearranged 3D viewer|. 35
6.7 Model rendered in our windowl] 36
[6.8 Coordinate system of the Face Tracking SDK.| 37
[6.9 Tracked points on a successtul face tracking call|. 40
[6.10 Head poseangles.|. 41
[6.11 Mask rendered on top of Kinect’s image when a face is detected.| . . 48
[6.12 Improved rendering with the FBX SDK/|. 59
[6.13 Applying tull weight to the happy BlendShape channel| 60
[6.14 Applying full weight to both the happy and shocked BlendShape |
[channels| 60
[6.15 Jaw not moving properly with thehead|. 63
16.16 Correct head movement and animations) 65
[6.17 Implemented more AUs.|. 65

vii

List of Listings

Listings Page
(6.1 Initialization of the Kinect device| 31
[6.2 Getting the next frame in the image streams into our buffers| 32
[6.3 Initialization of the Face Tracking SDK.| 44
[6.4 Initialization of the Face Tracking SDK.| 46
[6.5 Header of the FBX helper.| 55

6 FBX1 r of the model’s interfacel 57
[6.7 Update function of the model’s intertace| 59
[6.8 Function that saves the original state of the matrices in the pose| . . 61
[6.9 Function that modifies the pose’s matrices with the new head’s pose.| 61
[6.10 Extended update function of the model’s intertace|. 62
[6.11 Extended SetDefaultPose tunction of the model’s interface| 64

viii

1. Introduction

Character animation has evolved throughout the years to the point that there is no
need anymore to do it manually, but with the help of a computer it is possible to
achieve a level of realism that 50 years ago would have been thought impossible.
Movies, video games, TV series and many more have been directly affected by the
breakthroughs on computer animation.

Yet there are things that a computer cannot do alone. One of the obstacles
computer animation faces is when trying to animate the facial expressions of a
human-like character with the highest realism possible. This is solved by taking the
real facial expressions’ data of a person through a set of cameras and giving it to
the computer for treatment and finally animating the character. But here we find
another obstacle: the kind of equipment that is usually used to do this task is quite
expensive and directly decides who can achieve this kind of realism, casting aside
the small producers and developers that can’t afford them.

In this project we aim to develop a facial animation application that reduces the
said expenses by using a cheap device called Kinect that has and overall SDKE| and
a Face Tracking SDK, thus making it easier to extract the real facial expressions data
but adding a new obstacle: the complexity of translating this data into the character
animation in real time. We will also study the limitations of this device and how we
will try to overcome them.

This document has the objective to give the reader a detailed description of the
project. It is divided in several sections, giving details about the scope, the context,
the temporal planning, the budget and sustainability, the actual development and
an overall analysis on the project with a conclusion, respectively.

ISoftware Development Kit.

2. Scope of the project

This sections aims to make a description of our project. We are going to start with
the formulation of the problem that we want to solve. Then, the scope of the project
is going to be defined, describing all the possible obstacles that we may face during
its development. Finally, we are going to describe how are we going to work in the
2.3 Methodology and rigour section.

2.1 Objectives

The main objective of our project is to develop an application that given the data
from Kinect animates a 3D model’s face in real time. With that in mind, we look for
the highest realism possible using this device.

Aside from Kinect’s data, we will need a 3D model to work with. Then, another
objective would be finding a proper 3D model and making it suitable to our needs.

The last objective is to extend this application into something that a user can
apply to his daily life: a video conference application that instead of using the video
feed of a normal camera attached to the computer, uses Kinect’s feed of data to
animate 3D models for each user as an avatar.

2.2 Scope

We will focus on the main objective of creating the initial application, which is
composed by a set of sub-objectives: create a 3D viewer, import and render our
3D model, collect Kinect’s data and render its feed of video, treat the Face Tracking
data and translate it into our model and, finally, improve the facial expressions
until we are satisfied with the results. All of this will imply a huge amount of

work, therefore the last objective of extending the initial application into a video
conference application is treated as an extra.

In order to achieve all of our objectives, we need to find a suitable 3D model
that adjusts properly to what we want to do. As we focus on facial animation, we
will use a 3D head. For an optimum realism, it would be necessary to do a 3D scan
of the user’s head, but since that would increase the expenses of our project and it
would bring complexity as having a different model for every user would bring the
need of some sort of constraints on how the modeling is done, we have decided to
go for a 3D model found on the Internet (See figure [2.1). This model had to be as
humanly as possible, thus making it possible to achieve said optimum realism.

Figure 2.1: 3D head used on this project.

We also need a way to get a feed of data of a person’s face in real time. This
decision is the one that brings down the expenses of our project considerably: we
decide to go for Kinect (See figure [2.2). We will talk more about Kinect in the [3.2]
State of the art section.

Microphone LED Vision camera

array

Microphone
array

R <——— Motorized tilt

3D depth sensor cameras

KINECT

for &

Figure 2.2: Description of Kinect’s components.

2.3 Methodology and rigour

We have planned a rough development schedule that will help us carry out this
project until its completion. That is what is explained in the following lines.

At first, we need to make a mock-up application that on one side shows the
Kinect’s feed of image with the Face Tracking data so we can assure ourselves that
Kinect is working and tracking the face correctly. On the other side, it will show
our 3D head facing the camera. This will allow us test in the following steps of
development the correct translation of facial expression and head movement.

Once we have this initial application, the next step is to treat the data of the
Kinect and translate it onto our 3D head. We will begin by just moving certain
parts of the face and rotating the head. Then trying to smooth the movements with
deformers, tweaking everything and so on. Therefore, it is going to be an iterative
process in which we will work on trying to improve it until we reach the level of
realism we want or are able to achieve.

Lastly, we may extend the application and design the desired video conference
application, exploring ways of implementing it in a user-friendly way.

2.3.1 Development tools

The project will be developed entirely in C++ in a Windows environment, as the
set of drivers for Kinect is made for this operating system. We will also use Visual
Studio to work on the project. Moreover, we will implement everything graphics
related in OpenGL 4.5 with the help of the libraries SFML, GLEW and GLM.

We will make use of the Kinect for Windows SDK that will allow us to read the
data of the Kinect and treat it accordingly in our application. Also we will use the
Face Tracking SDK, that will give us the information about the face of the user.

Lastly, we may use other programs like Git Bash to maintain version control,
Autodesk Maya 2016 or Blender to work with the mesh of the 3D head and Adobe
Photoshop CC 2015 for anything related to graphics or textures needed for the
application.

2.3.2 Progress monitoring

We will use GitHub to keep version control and track the work done alongside the
weekly meetings with the director. This will be initially done in a private repository
that once the project is finished will be made public. We also may do weekly tests
to assess the results achieved, so we can track if we are on the right path towards
our objectives.

2.3.3 Validation of results

The method that we will use to validate the results is pretty straightforward: we will
test the application with different people and a set of different facial expressions.
The people chosen to test could be almost anyone, as to get a wider variety of
results, and the set of facial expressions will be random, thus letting us know if the
application works correctly with any combination of facial expressions and that it
doesn’t restrain itself to the physiognomy of some people.

And, if it comes to that, we also may test the final video conference application
in a local server to see if it works properly with two or more users.

2.4 Obstacles and risks of the project

The development of the project has a set of objectives that are well defined and
achievable, but we may face different problems. The main ones have been listed
and explained in the following sections.

241 Main program

At first, we will develop a simple application where the user will see himself and
the 3D head being animated as he moves his face or changes expressions, which
will be quite the milestone. But as our last objective we want to create a video
conference application, which is going to make us face the challenge of extending
our initial application into a much larger system that is user-friendly.

2.4.2 Kinect

The Kinect for Xbox 360 has a limited frame rate of around 30 FP changing along
the resolution, which is a great handicap. When the user moves the head around
quickly or changes facial expressions constantly, this frame rate may cause a loss of
data which will turn into a poorly animation.

This could be solved by using the Kinect for Xbox One, which has two times
its frame rate. But as we are trying to keep this project almost expenseless, we will
stick with the one we have.

2.4.3 3D model

Trying to imitate the facial expressions with an optimum realism is what could be
the biggest obstacle of the entire project. As the model is a set vertices and faces,
the movements that it can achieve by simply moving them are quite far from being
real expressions. That’s why we will try to implement deformers that will smooth
the movements and bring realism to our project, which is not an easy task.

We are also working on a real time environment, so we fight against the clock
when gathering Kinect’s data and animating in order not to lose frames in our
application. This leads to an essential need of efficiency in our code.

IFrames Per Second

2.4.4 Schedule

This project is to be developed in a matter of 4 months, making it quite difficult not
to meet problems regarding time. Nevertheless, we will define a temporal planning
that, alongside the weekly meetings with the director, hopefully will let us achieve
all of our objectives.

3. Contextualization and references

This section is divided in two: the first one describes the context of the project, that
is, a brief description of the area of interest that the project is about and the actors
affected, while the second one gives information about the state of the art of the
areas we are going to explore in the project.

3.1 Context

In this section we are going to do a description of the areas of interest that this
project is about and we are going to explain which are the actors that are going to
be affected with its development.

3.1.1 Areas of interest

The main area of interest of this project is technical, which involves aspects like
the creation of the application, which is basically a 3D viewer, the treatment of
3D models and the extension of an initial application onto a functioning video
conference application.

There also is a realism area of interest, as to how good enough is a facial
animation. This is mainly a subjective opinion, as it is almost impossible to imitate
every facial expression of a human being to perfection.

3.1.2 Actors

The development of our project involves several actors, which are listed and de-
scribed in the following lines:

Project developer
This project has only one developer, myself. I will be doing every task that is needed,
which means I will be working on the planning of the project, the documentation,
the information research, the coding, the design and the testing.

Project director
The director of this project is Antonio Susin Sanchez, associate professor from the
Applied Mathematics department of the Polytechnic University of Catalonia. His role is
to supervise the project developer with weekly meetings to assess that the project is
being carried out properly according to the temporal planning and the objectives
are being achieved. He also has to guide him when difficulties are met so that the
project comes to a successful end.

Users
With our project’s first objective we don’t have that much of a user base, as the user
will only be able to watch his expressions on a 3D head. But with our final objective,
we aim at everyone with the video conference application as it could become a part
of their daily life.

Other benefactors
Apart from the users, we can consider the developers as benefactors because they
will have at hand the tools to develop their own facial animation applications.
Moreover, this project will let them develop in a less expensive manner and without
losing that much of realism in comparison to the expensive equipment used by
professional producers or developers.

3.2 State of the art

This section’s goal is to give information about the state of the art of the different
elements that form our project. In the following lines we have listed the different
areas that our project is going to explore, detailing each of them.

3.2.1 Facial motion capture

Facial animation is an essential part of big companies that focus their work on
animation. Nowadays, big animation studios apply a massive set of cameras
and equipment to record the actors” movement and, more specifically, their facial
expressions [12] [4] (See figure .

Figure 3.1: Andy Serkis performing the role of Golum in The Lord of the Rings.

This kind of equipment and cameras turn to be highly expensive and sometimes
exclusive to each studio. Here is where Kinect comes into place, reducing the
expenses substantially.

Kinect [9] is a cheap device that most people think that it only works with its
gaming console: the Xbox 360. Actually, it can be connected to a computer and
used to develop a wide variety of applications. It has a set of cameras that let us
obtain feeds of depth and image through the Kinect for Windows SDK [10], which
we will detail in the [6.2| Kinect’s interface section.

3.2.2 Facial recognition

Facial recognition is the core part of this project, as a method or algorithm to obtain
data regarding a person’s face from some kind of image or video source. There are
algorithms in the computer vision field to detect faces [15] that work really well and
could be implemented into our project, as well as multiple SDKs that are explicitly
made for this purpose, such as Nexa | Face™ [3] and FaceSDK [7].

However, in our particular case, we are already set to make use of Kinect, which
also offers its own powerful tool called Face Tracking SDK [8] that, connected with
the feeds of data from Kinect for Windows SDK, offers plenty of information about
faces detected by Kinect, their facial expressions, the head’s movement and more.
We will also detail its features in the[6.4 Adding Face Tracking into Kinect's interface
section.

10

3.2.3 3D viewers

A 3D viewer can be defined as a program capable of loading 3D models, in order
to show them to the user and ultimately letting the user interact with them. With
that definition, every program with a 3D window includes a 3D viewer, so, all the
programs used in 3D modeling and all the 3D-based video games are examples of
3D viewers. Knowing the huge amount of modelers and video games that exist, we
can say that this field has been deeply explored.

One example of a 3D viewer is libQGLViewer [6], which is a C++ library based
on Qt that eases the creation of OpenGL 3D viewers. And another example is a
video game developed by this project’s developer, myself, in addition to one of my
colleagues: keep running N nobody gets hurt [13]. It is a simple 3D runner game that
includes most of the features of a proper 3D viewer.

Regarding the loading of the 3D model, it depends on its format. We are able to
export our 3D model from Autodesk Maya 2016 (which is the environment where
it was designed) into a wide variety of formats, but the more distinguished and
approachable for this project are the following;:

¢ Wavefront OBJ [17]: It is a geometry definition file format (.obj) first devel-
oped by Wavefront Technologies for its Advanced Visualizer animation package
and is widely adopted by other 3D graphics application vendors. For the
most part it is a universally accepted format. Its main characteristic is that it
has a simple data-format and represents 3D geometry alone — namely, the
position of each vertex, the UV position of each texture coordinate vertex,
vertex normals, and the faces that make each polygon defined as a list of
vertices and texture vertices. This makes this format the easiest to implement
in our project.

¢ Autodesk FBX [16]: It is a proprietary file format (.fbx) developed by Kaydara
and owned by Autodesk since 2006. It is used to provide interoperability
between digital content creation applications. This file format is proprietary;,
however, the format description is exposed in the FBX SDK [2] which provides
header files for the FBX readers and writers. Although it doesn’t seem like an
improvement from the OB]J, after taking a deep look into their documentation
and apart from a geometry definition, the FBX format holds a lot more
information: cameras, lights, animations, poses, constraints, etc. This may be
the optimal file format for our project, but it is the hardest to implement.

11

3.2.4 Avatar video conference

There exists studies on avatar video conferencing on work scenarios [5], but there is
no actual technology yet developed. As stated on the paper:

“Lower ratings for the avatar condition were partly due to users’ frustrations
when the avatar system did not track them perfectly.”

Low budget systems like the one we are trying to build tend to meet problems,
partially caused by the limitations of the hardware or by the fact that the video
conference systems that already exist are too popular and people don’t see the need
to change them.

3.3 Use of previous works

In this section we are going to discuss whether we should use the solutions that we
have presented in the State of the art section or not in each of the areas.

3.3.1 Facial motion capture

As we have stated before, we decide to use a Kinect for Xbox 360 to develop this
project. Clearly, we will be using every aspect of its SDK.

3.3.2 Facial recognition

We obviously are in the need of a way to detect the user’s face, as it will be key
in our project being our main way of animating the 3D head correctly. And as we
decided to use Kinect, the natural choice is to use the Face Tracking SDK tool.

3.3.3 3D viewers

Since I am used to work with the environment I developed for the video game, as
a 3D viewer we are going to use its structure of managing windows, input and
loading and rendering 3D models. This 3D viewer works with the OB]J format, but
if the chance of swapping to the FBX format presents itself, we shall make use of
everything that the FBX SDK offers us.

12

3.3.4 Avatar video conference

Being one of our objectives and the fact that there is no actual work we can take
advantage of, building the video conference application will be taken as a challenge
and built from scratch.

13

4. Temporal planning

This is the temporal planning section, which aims to describe the tasks that are
going to be carried out in order to finish the project. There will also be detailed
an action plan that summarizes the actions that need to be taken so the project is
carried out in the desired time frame. However, there may be adjustments to the
planning depending on the development of the project.

The project was started on February 1st, 2016 and its deadline is June 4th, 2016.
Therefore, the schedule has to be designed given these time constraints.

4.1 Description of tasks

In this section we are going to describe the tasks that we have planned to do in
order to carry out our project. On that note, the PC hardware resource is used in
every task.

4.1.1 Reading and understanding the problem

The project starts with the project’s developer reading the documentation related
to Kinect in order to understand what are we going to do and what do we have
available in terms of software when we decide start planning the project and
implementing. This task is done in a matter of almost a month as the project is
started on holidays, but it should not take more than 15 hours.

14

4.1.2 Project planning

This is the initial documentation, also done by the project’s developer with the
advise of the project’s director. It basically covers everything in the GEP module,
focusing on seven stages: scope of the project, contextualization and references
(state of the art), temporal planning, economic management and sustainability,
initial presentation, specifications on the specialty and oral presentation and final
document.

This task defines what is going to be done in the following tasks and how.
However, as we have a tight schedule and it takes around 125 hours, some of the
development tasks are done at the same time. For this task we make use of the
Owerleaf BTEX software resource.

4.1.3 Initial system set up

In order to begin the development of the project, it is needed to set up the tools that
we will require afterwards. As simple as it seems, it takes time to set up everything
correctly and that is why we list it as an important task in our schedule. This task
is done by the project’s developer and it should take 5 hours.

For this project, we are working on a Windows environment. Therefore, we need
the Visual Studio IDEEI to create the main program, Autodesk Maya 2016 and Blender
to modify 3D models, Adobe Photoshop CC in the case we need to modify textures or
images and Git Bash to keep version control of our project with GitHub. We also
need Kinect for Windows SDK v1.8 as it will install all the desired drivers and tools
that will let us work with Kinect.

After checking that everything works as expected, we can start working on the
most important task of our project.

4.14 Main development

As the main task of the project, it covers all the tasks related with implementation
and testing of the program that achieves the objectives stated in the [2| Scope of the
project section. It is carried out by the project’s developer, it takes approximately
400 hours in total, makes use of almost all of the software resources and it is the
task that starts using Kinect. It can be divided in the following phases or sub-tasks:

1In’cegra’ced Development Environment

15

Viewer set up: In the beginning, we will focus in the essential implementation
of a 3D viewer that works with Kinect. The viewer will take Kinect’s feed of
image and print it on a window. Then, if Kinect detects a face we will print
on top of it a mask with Kinect’s Face Tracking data. This will allow us to
track the face animation in the following phases of development and test that
Kinect is working properly. Time it takes: 50 hours.

Model representation: Once we have our initial viewer, we want to represent
our 3D head. After modifying our model in a way that is easier to work with,
we will extend the viewer by implementing a 3D model importer and renderer.
Afterwards, we will change the design of the application and represent the
model on the left side of the window and Kinect’s feed of image with the
mask on the right. Time it takes: 35 hours.

Basic interactions: With our program finally showing on screen everything
that we need to test results, we will start by translating some basic interactions
of the Face Tracking data into our model. These basic interactions would be
the movement of the head, in other words, the 3D rotations: pitch, roll and
yaw (See figure [£.1). This will be done on a real time basis, thus making us
implement this translation as efficient as possible. Time it takes: 35 hours.

Facial expressions: Now we will dig deeper on the Face Tracking data. We
will try to translate everything that we can onto our model, moving its whole
mesh the same way as the face that Kinect is detecting. This will be an
iterative process: we will keep working on it until a certain degree of realism
is achieved. Time it takes: 80 hours.

Improvements: Having our 3D head expressing itself correctly, we will im-
plement deformers and other ways of making the facial expressions smooth
and more realist. This is the phase where, if done right, we can certainly get
promising results. Time it takes: 120 hours.

Extension: In the case that we achieve the level of realism that we want and
we have time left, we will extend the program and build a video conference
application. Time it takes: 80 hours.

4.1.5 Final task

As the final task, we will test that everything works correctly, finish the documenta-
tion and prepare the delivery of the project and the final presentation. It should not
take more than 35 hours, makes use of Overleaf KTgX and it is done by the project’s
developer.

16

»

|
|

P> "‘7/—
DI
P
o |
,;_:_)/

/T

—L“T__;i‘;’/
vONe
rl_;ut\ /
;‘7"*,‘?\«
’—\IF

Yo N .1'
w (0)
X

. —
f]
em)/

\/ﬂ?\
1
4
n
—_ U]
4

-~

Figure 4.1: 3D rotations of a 3D head.
4.2 Time table

The following table 4.1 summarizes the time spent in each of the tasks described in
the previous section.

H Task H Time spent (hours) H
Reading and understanding the problem 15
Project planning 125
Initial system set up 5
Main development: 400
- Viewer set up 50
- Model representation 35
- Basic interactions 35
- Facial expressions 80
- Improvements 120
- Extension 80
Final task 35
[Total [580 H

Table 4.1: Summary of the time spent on each task.

4.3 Resources used

We can divide the resources that we are going to use in hardware and software
resources. Here are both lists, including in which tasks each resource is used.

17

4.3.1 Hardware resources

¢ PC (with the following specifications: Intel Core 15-4590 @ 3.30GHz, 12 GB
RAM, Gigabyte GeForce GTX 760 OC with 2GB GDDR5 and Samsung SSD
850 PRO 256GB): Used in all tasks of the project.

¢ Kinect: Used in all the development tasks of the project.

4.3.2 Software resources

Windows 10: Used in all tasks of the project.

Visual Studio IDE: Used in all the development and testing tasks of the project.

Autodesk Maya 2016: Used in the main development task when needed.

Blender: Used in the main development task when needed.
Adobe Photoshop CC: Used in some tasks when needed.
Owerleaf BTEX [14]: Used in the documentation related tasks.

Git Bash: Used in all the development tasks of the project.

4.4 Gantt chart

Our schedule is represented by the Gantt chat shown in the figure We have
taken into account the holidays at the beginning of the project as a part of it.

February 2016 March 2016 April 2016 May 2016 June 2016
31| 3| 6| 012|518 21 24| 27| 1| 4| 7[10]13) 16]19] 22 25| 28] 31| 3| 6|0 12] 15[18]21] 24| 27|30 3] 6| 0|12 15| 18]21]|24/27|%]| 25|58
|

Name

Reaing and understanding the problem

-
n and references (state of he ari) —

Temporal planning —

gement and sustainability —

Figure 4.2: Gantt chart of the project.

18

4.5 Action plan and alternatives

The action plan is basically composed by the tasks described in the {4.1| Description
of tasks section and it will be carried out following the schedule detailed in the
Gantt chart section. There will also be weekly meetings with the project director to
monitor the project’s development and give guidance when having difficulties.

On the other side, we may face problems that can affect the said schedule, such
as hardware problems, difficulties when implementing or even extraordinary delays.
If any of these happen, we shall act as we describe on the following lines as to bring
these delays to a minimum:

Hardware delays
There is the possibility of malfunctioning hardware, as the PC or Kinect may break
down. In that case, we shall find replacements or try and repair them, which implies
delays on our schedule. As these hardware resources are an essential part of this
project’s development, we are tied to extend the duration of the project and keep
our action plan as it is.

Implementation delays
This project’s development has the same vulnerabilities as any other. We may
find ourselves stuck in some parts of the implementation of the 3D viewer, model
representation and facial expressions or any of the other tasks regarding code
implementation. So we will be on the need of exploring ways to overcome these
obstacles using the guidance of the project’s director.

When facing these delays, we are to prioritize the completion of the main
objective: creating an initial application that reads Kinect’s data and animates the
facial expressions of the user onto a 3D head. Therefore, we will adjust our schedule
and use the time that we assigned to extend the initial application to manage these
delays, even with the outcome of not being able to carry out this extension. And if
this alternative is not enough, we will have to extend the duration of the project.

Extraordinary delays
There may be delays that escape our control, such as any of the project’s human
resources falling ill, bad weather conditions or personal matters. There is no way of
predicting these delays and, if any of these do happen, we will have to extend the
duration of the project as much time as needed.

19

5. Budget and sustainability

This section is about the budget and the sustainability of the project. It contains a
detailed description of the costs of the project, describing both material and human
costs, an analysis on how the different obstacles could affect our budget and an
evaluation of the sustainability of the project. Just like before, the budget described
is subject to modifications depending on the development of the project.

5.1 Budget estimation

We are going to do an estimation of the budget needed in order to develop our
project. The budget is going to be divided in four sections, depending on the kind
of resources that we are taking into account. These are hardware, software, human
and general resources. We will also detail how all of these resources are related
the tasks we described in the {4| Temporal planning section. At the end of the section,
we are going to show the total budget obtained by combining the four sections
together.

To calculate the amortization, we will take into account two factors: the useful
life of the resource and the fact that our project is going to last approximately four
months.

5.1.1 Hardware resources

The table contains the costs of the hardware that we are going to use in the
development of the project.

Out of the two hardware resources, the PC is used in every task of this project,
as we need it from the very beginning until the end. On the other side, Kinect starts
to be used at the main development task until the completion of the project.

20

’ Product H Price ‘ Useful life ‘ Amortization ‘

PC (including all the needed devices) || 1000.00 € 4 years 184.95 €
Kinect 50.00 € 4 years 925 €
| Total | 1050.00 € | - | 19420€ |

Table 5.1: Hardware resources budget.

5.1.2 Software resources

The table summarizes the costs of the software that we are going to need to
develop our project.

’ Product H Price Useful life | Amortization
Windows 10 Pro 279.00 € 3 years 38.90 €
Visual Studio IDE 646.00 € 3 years 89.60 €
Autodesk Maya 2016 || 4800.00 € 1 year 665.74 €
Blender 0.00 € - 0.00 €
Adobe Photoshop CC || 870.84 € 3 years 120.78 €
Overleaf ETEX 0.00 € - 0.00 €
Git Bash 0.00 € - 0.00 €
Total | 1,795.84 € - 915.02€ |

Table 5.2: Software resources budget.

As we stated in the previous section, we use the PC in every task of the project,
so the operating system Windows 10 Pro is used in every task as well. That aside, all
of the other software (except Overleaf ETgX) is used in all of the main development
sub-tasks and in the final task, as we use all of them to implement and test our
application. Finally, Overleaf KTEX is used in the project planning and in the final
task, as we use it to do the GEP related documentation and then we finish it up by
creating the final project’'s documentation, respectively.

5.1.3 Human resources

The table 5.3[shows the costs of the human resources involved in the development
of our project. There are four roles in it, which are actually done by this project’s
developer, myself.

21

Product H Price per hour ‘ Time ‘ Cost

Project manager 50.00 € 125h | 6,250.00 €
Software designer 35.00 € 120 h | 4,200.00 €
Software programmer 35.00 € 275h | 9,625.00 €
Software tester 30.00 € 60h | 1,800.00 €
Total | - | 580 h | 21,875.00 € |

Table 5.3: Human resources budget.

To understand how the hours are given to each role in table we will detail
how the tasks in [4.1| Description of tasks are divided:

¢ The project manager will only be in charge of the project planning.

¢ The software designer and software programmer are going to work on ev-
erything that involves programming, in other words, all of the sub-tasks of
the main development task. They also are assigned the task of reading and
understanding the problem.

* The software tester will participate in the main development sub-tasks in
a lighter way, testing the progress of the project, and the final task, which
involves extensive testing to finally check that everything works.

Knowing the number of hours related to each task and making a rough calcula-
tion of every role’s participation, we end up with table

5.1.4 General resources

The table 5.4/ summarizes the indirect costs of our project.

’ Concept H Price ‘ Quantity ‘ Cost ‘
Electricity || 0.13<€/kWh | 174 kWh | 22.62 €
Paper 29.03 €/pack | 1pack | 29.03 €

| Total | 75.68€/year | - [51.65€]

Table 5.4: General resources budget.

The electricity reflected on table 5.4{is an approximation of the energy consumed
by the hardware used throughout the whole project, which relates to all of its tasks.
There also is the paper used during the project planning and at the final task when
printing the project’s documentation, which is also taken into account.

22

5.1.5 Total budget

Using the data shown in tables and we can detail the total cost of
the project in the following table

’ Concept H Cost ‘
Hardware resources 194.20 €
Software resources 915.02 €
Human resources 21,875.00 €
General resources 51.65 €
Total | 23,035.87 €

Table 5.5: Total budget.

5.2 Budget control

Our budget could need modifications if the development of the project makes it
impossible to follow the original planning, which is likely to happen. This is directly
related to the possible delays observed in the [£.5| Action plan and alternatives section.

If difficulties are met, it is unlikely that we will need more software resources,
as there are plenty of free applications that can act as a substitute of almost any
commercial application. So, the budget sections we have to control are those related
to hardware and human resources.

In case of malfunctioning hardware, we may need to add to our budget the costs
of repairing them or even replacing them. But in an ideal situation, we won’t need
any more hardware resources apart from the resources that we have already listed
in the previous section.

As stated in the 4| Temporal planning section, the task that may take longer is the
implementation and improving of facial expressions. This task involves software
designers, programmers and testers, so we have to take into account that the costs
of these human resources could grow if the problem becomes more difficult than
we expected when setting our planning or if there is any of the delays observed in
the [4.5| Action plan and alternatives section.

In these cases, we are to use the Gantt chart to readjust our schedule in order to
complete our project in time and with the project’s original budget.

23

5.3 Sustainability

In this section we are going to evaluate the sustainability of our project in three
different areas: economic, social and environmental.

5.3.1 Economic sustainability

In this document we already can find an assessment of the costs of our project,
taking into account both material and human resources.

The cost stated in the [5.1| Budget estimation section could be the only cost spent
in the project, as we aim to create a working facial animation application and
then extend it into a video conference application. Therefore, it will not need
maintenance in terms of updates. However, it may need further development if we
want to improve the quality of realism of the facial expressions or extend the video
conference application into a perfectly working commercial application. This will
add more cost to its development.

On the other side, it would be difficult to do a similar project with a significant
lower cost. In terms of human resources, which are the main expenses of this project,
we do not know if the project’s planned time of completion is realistic enough, so
we cannot say that it would be possible to do it in less time and reduce the costs. In
fact, it is possible that they may increase.

Almost the same happens with the hardware and software resources. We need
a computer and a Kinect device, so trying to avoid any of their cost is out of the
question. And we work on a Windows environment, so we need to buy it. However,
we could reduce the cost on software resources by not using Visual Studio IDE and
Adobe Photoshop CC, as there are open-source applications or inexpensive ways of
doing what this project needs from these, and restricting our model modification
to Blender, in other words, not using Autodesk Maya 2016. So, ultimately, we could
reduce our software resources budget in 876.12 € at most, which is almost a
minimum impact on the total budget.

This project is going to be awarded a 9 in the economical viability area, since its
price makes it affordable, but there is some possibility it could change.

24

5.3.2 Social sustainability

We focus on facial animation, which is a part of the 3D animation industry that
is not available to everyone, since the technology that it requires comes with high
expenses. Therefore, as we stated previously, our project tries to make it possible
for small developers to endeavour in this field and, ultimately, deploy a 3D avatar
video conference application that almost everybody can use.

Clearly, it has a positive impact on society, as we give a chance to people with
low income. This promotes the growth of the mentioned sector, innovation on
animation techniques and improvement of the competitiveness of small animation
companies. On the other side, the only negative affected by it would be the big
animation companies, as they would have an increase in competitors.

This project is going to be awarded an 8 in the improvement of the quality of
life area, since it can help small developers widen their possibilities but is not that
much of an improvement on video conference applications as people tend to prefer
those that already exist.

5.3.3 Environmental sustainability

Throughout the development of our project we are going to have a computer
running alongside the Kinect device. This means that these devices, the energy
spent and the paper used to print the documentation are going to be the only
resources used that affect the environment.

In fact, we can estimate the energy spent developing the project. We can suppose
that our computer and Kinect consume an average of 300 W per hour when we are
working on the project. As we need to use the computer in all the development
of the project, which is 580 hours long, the energy we need is 174 kWh, which is
equivalent to 66.98 kg of CO,. It is a high amount of energy, but as we need to
make extensive use of these devices there is no way to reduce it.

This project is going to be awarded a 9 in the resources analysis area, since the
only part of the project that is not environmental friendly is the energy that we
need to use, and it is not an important amount if we compare it to the amount that
an average person uses nowadays.

25

6. Development of the project

This section follows the actual development of the project along the 4 months that
it’s taken. We aim to describe how the temporal planning in the 4| Temporal planning
section was approached, the obstacles that we met and the alternatives that we
decided upon, how this affected the project, the results of each development phase
and, ultimately, the final results.

6.1 First steps

The project started exactly as it was devised in the temporal planning. Research
was done on the different SDKs available to work with Kinect by means of their
documentation on Microsoft’s different websites. And the documentation for the
GEP course was completed and now serves as the foundation of this documentation.

Figure 6.1: Basic 3D viewer built at the beginning of the project.

26

We also took off the development of the project by creating a blank application,
in other words, a 3D viewer with nothing more than a window showing a black
background. As it was mentioned in the |3.3| Use of previous works section, we made
use of an old project called keep running N nobody gets hurt. We removed the code
that we didn’t need and built our own basic 3D viewer with the same code structure,
using C++ and OpenGL 4.5 with the help of the libraries SFML, GLEW and GLM.

(See figure [6.1)).

6.2 Kinect’s interface

After having our 3D viewer implemented, we set to try out Kinect and its SDK
so we familiarize ourselves with its features and start working with it. We decide
to create its own interface that will manage everything related to it: powering up
Kinect, obtaining and analyzing its feeds of data, rendering the image captured
onto our window and, lastly, powering down Kinect in a proper manner. In order
to explain this interface, we will detail first the Kinect for Windows SDK and then
point which features we make use of and how in its implementation. Afterwards,
we will detail how the 3D viewer was upgraded.

6.2.1 Kinect for Windows SDK

The Kinect for Windows SDK enables developers to create applications that support
gesture and voice recognition, using Kinect sensor technology on computers running
Windows 7, Windows 8, Windows 8.1 and Windows Embedded Standard 7. In the
following lines we will describe its main tool, the Natural User Interface, other under-
laying SDKs, APIsEI and tools that empower the use of Kinect as a development tool
and the data structures and functions of importance.

Natural User Interface
The Natural User Interface (NUI) is the core of this SDK. Through it we can access
audio data streamed out by the audio stream and color image data and depth image
data streamed out by the color and depth streams. In addition to the hardware
capabilities, the Kinect software runtime, which is a part of this SDK, implements:

¢ A software pipeline that can recognize and track a human body. The runtime
converts depth information into the skeleton joints in the human body. This
makes it possible to track up to two people in front of the camera.

I Application programming interface.

27

* Integration with the Microsoft Speech APIs so that developers can implement
a speech recognition engine in Kinect-enabled applications. This makes it
possible to add voice commands, such as "Start Tracking" or "Stop Tracking",
to their applications.

¢ A tight integration with the Face Tracking SDK, which makes it possible to
track human faces.

Kinect Fusion
Kinect Fusion provides 3D object scanning and model creation using a Kinect sensor.
The user can paint a scene with the Kinect camera and simultaneously see, and
interact with, a detailed 3D model of the scene (See figure .

Figure 6.2: 3D reconstruction of a static scene with the use of Kinect Fusion.

Kinect Interaction
Kinect Interaction is an API that allows Kinect-enabled applications to incorporate
gesture-based interactivity. It provides the following high-level features:

Identification of up to two users and identification and tracking of their
primary interaction hand.

Detection services for user’s hand location and state.

Grip and grip release detection.

Press detection.

Information on the control targeted by the user.

Kinect Studio
Kinect Studio is a tool that helps record and play back depth and color streams
from Kinect. This tool may be used to read and write data streams to help debug
functionality, create repeatable scenarios for testing, and analyze performance.

28

Background Removal API
The Background Removal API provides green screen capabilities for a single person.
This API uses various image processing techniques to improve the stability and
accuracy of the player mask originally contained in each depth frame. The stream
can be configured to select any single player as the foreground, and remove the rest
of the color pixels from the scene.

Face Tracking SDK
The Face Tracking SDK’s face tracking engine analyzes input from a Kinect camera,
deduces the head pose and facial expressions, and makes that information available
to an application in real time (See figure[6.3). For example, this information can be
used to render a tracked person’s head position and facial expression on an avatar
in a game or a communication application or to drive a natural user interface (NUI).
This SDK will be explained in depth in the [6.4.7) Face Tracking SDK section.

Figure 6.3: Face Tracking SDK in action.

Data structures and functions
This SDK, like any other, has its own data structures and functions that are used
throughout its whole implementation. Therefore, we need to explain them as to
understand what are they used for and, more importantly, how can we use them.
But, as there are a great number of them, we will limit ourselves to the most relevant
for our project at this point:

e INuiSensor: This is an interface that holds a reference to a Kinect sensor and
let us work with it. It has relevant functions such as Nuilnitialize, that allows

29

the initialization of the Kinect sensor with specific flags; NuilmageStreamOpen,
which opens an image stream with a handler that we specify and specific set-
tings, such as the resolution and the type of image stream; NuilmageStreamGet-
NextFrame, which gets the next frame of data of an image stream specifying
its handler and a NUI_IMAGE_FRAME structure; NuilmageStreamReleaseFrame,
which releases the frame of data from an image stream specifying its handler
and a NUI IMAGE_FRAME structure; and NuiShutdown, which turns the
sensor off, although no action is taken if the sensor is already off.

IFTImage: It is a helper interface that can wrap various image buffers. Its
relevant functions are Allocate, which allocates memory for the image of passed
width, height and format; CopyTo, which is a non-allocating copy method;
GetBuffer, which gets the buffer of the image; GetBufferSize, which gets the size
of the buffer; GetHeight, which gets the height of the image; GetWidth, which
gets the width of the image; and Release, which releases the interface.

INuiFrameTexture: Represents an object containing image frame data that
is similar to a Direct3D texture, but has only one level (does not support
mipmapping). Its relevant functions are LockRect, which locks the buffer for
read and write access and has a parameter called pLockedRect, that is a pointer
to a NUI_LOCKED_RECT structure that receives information about the locked
region; BufferLen, which ; and UnlockRect, which

NUI_LOCKED_RECT: Structure that defines the surface for a locked rectan-
gle. Its relevant members are pBits, which is a pointer to the upper-left corner
of the rectangle; and Pitch, which is the number of bytes of data in a row.

NUI_IMAGE_FRAME: Structure that contains information about a depth or
color image frame. Its relevant member is pFrameTexture, which is a pointer
to an INuiFrameTexture object that can be used to access or manipulate frame
data as a texture resource.

NuiGetSensorCount: Function that gets the number of Kinect sensors on the
machine, including disconnected ones.

NuiCreateSensorByIndex: Function that creates an instance of the Kinect
sensor with the specified index so that an application can open and use it.

FTCreateImage: Function that creates an image object instance and returns
its IFTImage interface.

30

1
5
3
4

6.2.2 Creating the interface

Using our 3D viewer’s interface code structure, we will explain in the following
lines how we, making use of the Natural User Interface, initialize the Kinect device,
obtain its data each frame and render it.

Initializing Kinect

As seen in the listing we power up the device in a safe manner, in other
words, we test that it is connected to the PC, create its INuiSensor and initialize
it, deciding which hardware and runtime features we wish to use. In our case,
we select the color camera (NUI_INITIALIZE_FLAG_USES_COLOR), the depth
camera (NUI_INITIALIZE_FLAG_USES_DEPTH) and the skeletons (NUI_INITIALI-
ZE_FLAG_USES_SKELETON), even though we don’t use the depth camera and
the skeletons at this point, but will later on. After making sure that there weren’t
any errors, we open both data streams specifying their settings (resolution of 640 x
480 for the color camera and 620 x 240 for the depth camera) and then we create
and allocate the I[FTImage interfaces for each stream specifying their resolutions
and image formats (FTIMAGEFORMAT_UINT8_B8G8R8X8 for the video buffer and
FTIMAGEFORMAT _UINT16_D13P3 for the depth buffer), as to where we will store
their data at each frame. And at each step, we check that there were no errors given
by Kinect.

bool Kinect::initKinect () {
// Get a working kinect sensor
int numSensors;
if (NuiGetSensorCount(&numSensors) < 0 || numSensors < 1) return
false;
if (NuiCreateSensorBylndex (0, &sensor) < 0) return false;

// Initialize sensor

HRESULT hr = sensor—>Nuilnitialize (NUIL_INITIALIZE_FLAG_USES_SKELETON
| NUIL_INITIALIZE_FLAG_USES_DEPTH | NUI_INITIALIZE_FLAG_USES_COLOR) ;
if (FAILED(hr)) return false;

m_bNuilnitialized = true;

// Open the image streams
sensor —>NuilmageStreamOpen (

NUIL_IMAGE_TYPE_COLOR, // RGB camera?
NUI_IMAGE_RESOLUTION_640x480, // Image resolution

0, // Image stream flags

2, // Number of frames to buffer
NULL, // Event handle

&rgbStream) ;

31

29

sensor —>NuilmageStreamOpen (

NUI_IMAGE_TYPE_DEPTH, // Depth camera
NUI_IMAGE_RESOLUTION_320x240, // Image resolution

0, // Image stream flags

2, // Number of frames to buffer
NULL, // Event handle

&depthStream) ;

// Create the IFTImage interfaces that will hold the image stream’s
buffers

m_VideoBuffer = FTCreateImage () ;

if (!m_VideoBuffer) return false;

hr = m_VideoBuffer—>Allocate (640, 480, FTIMAGEFORMAT_ UINT8 B8G8R8X8) ;
if (FAILED(hr)) return false;

m_DepthBuffer = FTCreatelmage () ;
if (!m_DepthBuffer) return false;

hr = m_DepthBuffer—Allocate (320, 240, FIIMAGEFORMAT UINT16_D13P3) ;
if (FAILED(hr)) return false;

return true;

Listing 6.1: Initialization of the Kinect device.

Obtaining the data

In terms of obtaining the data from the image streams, as seen in the listing we
do the same process on both streams. We obtain the next frame from the stream and
store it into a NUI_IMAGE_FRAME structure, checking that if there is no next frame
it means we don’t have to update the buffer. Then, we obtain the INuiFrameTexture
object from the previous NUI_IMAGE_FRAME and from it we get the data that we
need, which we store into a NUI_LOCKED_RECT. Checking that data obtained is
not bogus, we copy it into our buffers. This way we have available Kinect’s data
every frame.

void Kinect:: getKinectVideo () {
NULIMAGE_FRAME imageFrame ;
NUI_LOCKED_RECT LockedRect;
if (sensor—>NuilmageStreamGetNextFrame (rgbStream , 0, &imageFrame) <
0) return;
INuiFrameTexture+ texture = imageFrame.pFrameTexture;
texture —>LockRect (0, &LockedRect, NULL, 0);
if (LockedRect.Pitch != 0)
{ // Copy image frame
memcpy (m_VideoBuffer—>GetBuffer () , PBYTE(LockedRect. pBits),
std :: min(m_VideoBuffer—>GetBufferSize () , UINT(texture —>BufferLen())));

32

18}

}

else

{

std :: cout << "Buffer length of received image texture is bogus"
<< std::endl;

}

texture —>UnlockRect (0) ;
sensor —>NuilmageStreamReleaseFrame (rgbStream , &imageFrame);

20 void Kinect:: getKinectDepth () {

The rendering of this interface differs from the other interfaces in our 3D viewer, as
we don’t render a 3D model or anything of the like. Instead, we have a buffer that
holds the color camera’s data with the resolution that we specified when opening
its image stream, so in order to properly view it in our 3D viewer, we have to render
it as a 2D billboard. We do this by using our buffer as a texture and then in the
rendering our specific fragment shader does the work (See figure We should
also say that, if the Kinect device is not connected to the computer, the interface
uses an image with the message "Kinect device is not detected" as the 2D billboard

NULIMAGE_FRAME pImageFrame;
NUL LOCKED_RECT LockedRect;
if (sensor—>NuilmageStreamGetNextFrame (depthStream, 0, &plmageFrame)
< 0) return;
INuiFrameTexture+* pTexture = plmageFrame.pFrameTexture;
pTexture—>LockRect(0, &LockedRect, NULL, 0);
if (LockedRect.Pitch != 0)
{ // Copy depth frame
memcpy (m_DepthBuffer—>GetBuffer () , PBYTE(LockedRect. pBits),
std :: min(m_DepthBuffer—>GetBufferSize (),
UINT (pTexture—>BufferLen())));
}
else
{
std :: cout << "Buffer length of received depth texture is bogus"
<< std ::endl;

}

pTexture—>UnlockRect (0) ;
sensor —>NuilmageStreamReleaseFrame (depthStream , &plmageFrame) ;

Listing 6.2: Getting the next frame in the image streams into our buffers.

Rendering

(See figure [6.5).

33

8" Kinect driven face simulation — X

Figure 6.4: Kinect’s captured image finally showing on our 3D viewer.

B Kinect driven face simulation — *

Figure 6.5: In case Kinect is not detected, an error is shown in the window.

34

6.2.3 Upgrading the 3D viewer

Once the Kinect’s interface was implemented, we decided to rearrange the window
of the 3D viewer as to show on the right side Kinect’s captured images and on
the left side a black background where our 3D model will be placed. This meant
modifying the rendering of the Kinect’s interface to place the 2D billboard on the
right and doubling the width of our 3D viewer’s window, especifically, changing its
resolution from 640 x 480 to 1280 x 480 (See figure [6.6).

B Kinect driven face simulation

Figure 6.6: Rearranged 3D viewer.

6.3 Model loading and rendering

As we had Kinect’s images showing on our window, at this point we wanted to
render our model on the left side. Taking into account that our 3D viewer worked
with the OBJ format and we decided that we would go with it, we exported the
model triangulated in this format from Autodesk Maya 2016.

In order to load the 3D model, we only had to slightly adapt the OBJ loader
that we had. However, in the rendering we had to change the camera’s position
and apply a translation and scaling to our model as to have it well placed in our
window (See figure . This was done in the model’s own interface, which was
part of the original 3D viewer.

35

Figure 6.7: Model rendered in our window.

6.4 Adding Face Tracking into Kinect’s interface

Having our window with its final design, it was time to try and detect faces and
also print a mask on top of Kinect’s images as a way of knowing if a face is being
detected and how, so we are able to test the accuracy of the animations and the
quality of the facial recognition in later stages of the project. Therefore, we will detail
first the Face Tracking SDK, then explain how we extended the Kinect’s interface
with it and, finally, how the mask was rendered.

6.4.1 Face Tracking SDK

The Face Tracking SDK, together with the Kinect for Windows SDK, enables developers
to create applications that can track human faces in real time. In the following
lines we will describe how the SDK works, which are the new interfaces that it
introduces, the outputs that it emits and some data structures of importance.

Coordinate system
The Face Tracking SDK uses the Kinect coordinate system to output its 3D tracking
results. The origin is located at the camera’s optical center (sensor), Z axis is
pointing towards a user, Y axis is pointing up. The measurement units are meters
for translation and degrees for rotation angles.

The computed 3D mask has coordinates that place it over the user’s face (in the
camera’s coordinate frame) as shown in figure

36

L J
Sy
R

Camera space z

Figure 6.8: Coordinate system of the Face Tracking SDK.

Input images
The Face Tracking SDK accepts Kinect color and depth images as input. The tracking
quality may be affected by the image quality of these input frames (that is, darker
or fuzzier frames track worse than brighter or sharp frames). Also, larger or closer
faces are tracked better than smaller faces.

IFTFaceTracker interface
The main interface is IFTFaceTracker, and its instance may be created by calling FTCre-
ateFaceTracker. After initialization, it allows tracking a face synchronously by passing
color and depth images as input (see [FTImage as part of FT_SENSOR_DATA); the
results are returned via an IFTResult instance. It is assumed that both color and
depth input images are coming from a Kinect sensor. There also is an initialization
method that allows configuring the Face Tracking SDK for the system it is used in.

IFTFaceTracker provides a method CreateFTResult to create an instance of IFTRe-
sult for holding face tracking results specific for the model the instance of IFaceTracker
is using. An application will need to create an instance of IFTResult before it can
start tracking faces. An application can use the IFTFaceTracker method to get an
array of potential head areas for the image data (FT_SENSOR_DATA) provided by
the application. It is up to the developer to interpret the results and decide which
faces to track.

To start tracking a face, the developer needs to call StartTracking. StartTracking is
an expensive method that searches in the provided image for a face, determines its
orientation and initiates the face tracking. It can also be provided a hint regarding
where to look for a face or pass NULL to search the entire image — the first face
found will be tracked. Another hint is the orientation of the head. The head

37

orientation may be derived from the Kinect skeleton data. Without providing a hint
for the head orientation, the Face Tracking SDK will still try to track the face but
initial results might be suboptimal.

Once StartTracking successfully started tracking a face as indicated by the re-
turned pFTResult, an application should continue face tracking by subsequently
calling ContinueTracking. ContinueTracking uses information from the previous calls
of StartTracking or ContinueTracking. The developer should continue calling Continue-
Tracking until it is desired to stop face tracking or face tracking failed, for example,
because the person whose face is tracked steps outside the camera frame. A failure
of face tracking is indicated by a pFTResult status. To re-start face tracking, an
application calls StartTracking again and subsequently calls ContinueTracking.

ContinueTracking is a relatively fast function that uses state information about
a tracked face. It is much cheaper than StartTracking. In some rare occasions, the
developer might call only StartTracking if the application frame rate is very low or
if the face is moving very fast between frames (so that continuous tracking is not
possible). For tracking multiple users, determine the faces desired to track, e.g.
by instancing IFTFaceTracker and calling DetectFaces. Creating additional instances
of IFTFaceTracker for each extra face that it is desired to track should be done
afterwards.

It is also possible to retrieve (GetShapelnits) and set (SetShapellnits) Shape Units
(SUs). By providing SUs for known users, face tracking returns better results in the
beginning as it does not have to “learn” the SUs for a tracked face. It takes about
approximately 2 minutes to learn SUs in real-time for a given user. The current SUs
can be retrieved from IFTFaceTracker (for example, for persisting the SU between
runs of the application).

Typically, IFTFaceTracker keeps computing the SUs to improve them. If this
is undesirable for an application, the developer can choose to not compute SUs
by passing False to SetShapeComputationState. An application might want to not
compute SUs if SUs for a user have been previously created by other tools other
than Face Tracking SDK that are more suited for the application and it wants to save
its computations cost. However, the developer can use GetShapeComputationState
and SetShapeComputationState to fully control when to compute SUs.

IFTResult interface
The IFTResult interface provides access to the result from face tracking calls (IFTFace-
Tracker.StartTracking, IFTFaceTracker.ContinueTracking). IFTResult is created by calling
IFTFaceTracker.CreateFTResult. IFTFaceTracker provides CreateFTResult as results are
related to the underlying model that IFTFaceTracker has been initialized with.

38

GetStatus should be called to determine if face tracking is successful (in which
case S_OK is returned). Upon a successful face tracking call, IFTResult provides
access to the following information:

¢ GetFaceRect: The rectangle in video frame coordinates of the bounding box
around the tracked face.

¢ Get2DShapePoints: 2D (X,Y) coordinates of the key points on the aligned
face in video frame coordinates. It tracks the 87 2D points indicated in the
tigure 6.9| (as well as 13 others that aren’t represented there).

Each time StartTracking or ContinueTracking is called, FTResult will be updated,
which contains the following information about a tracked user: tracking status, 2D
points, 3D head pose and AUs.

IFTModel interface
The IFTModel interface provides a way to convert tracking results to a mesh of 3D
vertices in the camera space. Its instance is returned by IFTFaceTracker::GetFaceModel
method. The interface provides several methods to get various model properties:

* GetSUCount: Returns number of shape units (SU) used in the 3D linear
model

¢ GetAUCount: Returns number of animation units (AU) used in the 3D linear
model.

¢ GetTriangles: Returns 3D model mesh triangles (indexes of vertices). Each
triangle has 3 vertex indexes listed in the clockwise fashion.

o GetVertexCount: Returns number of vertices in the 3D model mesh.

Also, IFTModel provides two methods to get a 3D face model in either the video
camera space or projected onto the video camera image plane. These methods are:

¢ Get3DShape: Returns the 3D face model vertices transformed by the passed
Shape Units, Animation Units, scale stretch, rotation and translation.

¢ GetProjectedShape: Returns the 3D face model vertices transformed by the
passed Shape Units, Animation Units, scale stretch, rotation and translation and
projected to the video frame.

39

Face Tracking outputs: 2D Mesh and Points
The Face Tracking SDK tracks the 87 2D points indicated in the following figure (in
addition to 13 points that aren’t shown in it):

Figure 6.9: Tracked points on a successful face tracking call.

These points are returned in an array, and are defined in the coordinate space
of the RGB image (in 640 x 480 resolution) returned from the Kinect sensor. The
additional 13 points include: the center of the eye, the corners of the mouth, the
center of the nose and a bounding box around the head.

Face Tracking outputs: 3D Head Pose

The X,Y and Z position of the user’s head are reported based on a right-handed
coordinate system (with the origin at the sensor, Z pointed towards the user and Y
pointed UP — this is the same as the Kinect’s skeleton coordinate frame). Translations
are in meters and the user’s head pose is captured by three angles: pitch, roll and
yaw (See figure[6.10). The angles are expressed in degrees, with values ranging from
-180 degrees to +180 degrees. In the table 6.1 we show a more in depth analysis on
the angles.

40

! Roll
I Pitch
1
\
S - o aw ="
Figure 6.10: Head pose angles.
Angle H Value

-90 = looking down towards the floor

Pitch angle || 0 = neutral

+90 = looking up towards the ceiling

-90 = horizontal parallel with right shoulder of subject
Roll angle || 0 = neutral

+90 = horizontal parallel with left shoulder of the subject
-90 = turned towards the right shoulder of the subject
Yaw angle || 0 = neutral

+90 = turned towards the left shoulder of the subject

Table 6.1: Head pose angles analysis.

The SDK tracks when the head pitch is less than 20 degrees, the head roll is less
than 90 degrees and the head yaw is less than 45 degrees, but works best when they
are less than 10 degrees, 45 degrees and 45 degrees, respectively.

Face Tracking outputs: Animation Units
The Face Tracking SDK results are also expressed in terms of weights of six AUs and
11 SUs, which are a subset of what is defined in the Candide-3 model|1]]. The SUs
estimate the particular shape of the user’s head: the neutral position of their mouth,
brows, eyes and so on. The AUs are deltas from the neutral shape that can be used

41

to morph targets on animated avatar models so that the avatar acts as the tracked
user does. The Face Tracking SDK tracks the AUs shown in table [6.2] (each AU is
expressed as a numeric weight varying between -1 and +1).

Face Tracking outputs: Shape Units
The Face Tracking SDK tracks the following 11 SUs in IFTFaceTracker. They are
discussed here because of their logical relation to the Candide-3 model. Each SU
specifies the vertices it affects and the displacement (x,y,z) per affected vertex.

The SUs are head height (SU 0 in Candide-3), eyebrows vertical position (SU
1 in Candide-3), eyes vertical position (SU 2 in Candide-3), eyes width (SU 3 in
Candide-3), eyes height (SU 4 in Candide-3), eye separation distance (SU 5 in
Candide-3), nose vertical position (SU 8 in Candide-3), mouth vertical position
(SU 10 in Candide-3), mouth width (SU 11 in Candide-3), eyes vertical difference
and chin width. The last two are SUs not contemplated by Candide-3 that this
SDK supports. However, it does not support cheeks z (SU 6 in Candide-3), nose
z-extension (SU 7 in Candide-3) and nose pointing up (SU 9 in Candide-3).

Face Tracking outputs: 3D Face Model
The Face Tracking SDK also tries to fit a 3D mask to the user’s face and it is also
based on the Candide-3 model. Even though it is not returned directly at each call
to the SDK, it can be computed from the AUs and SUs with the function Get3DShape
of the IFTModel.

Other data structures
The following are the most relevant data structures from this SDK that we have not
explained in the previous lines but are used in our project:

¢ FT_SENSOR_DATA: Structure that contains all input data for a face tracking
operation.

¢ FT_CAMERA_CONFIG: Structure that contains the configuration of the
video or depth sensor which frames are being tracked.

¢ FT_VECTORS3D: Structure that contains the points of a 3D vector.

42

AU name and value

Avatar illustration

AU value interpretation

Neutral Face

AUO - Upper Lip Raiser

All AUs are 0

1 = Showing teeth fully

0 = Neutral, covering teeth

-1 = Maximal possible pushed
down lip

AU1 - Jaw Lowerer

1 = Fully open
0 = Closed
-1 = Closed, like 0

AU2 - Lip Stretcher

1 = Fully stretched (Joker’s
smile)

0 = Neutral

-0.5 = Rounded (Pout)

-1 = Fully rounded (Kissing
mouth)

AU3 — Brow Lowerer

1 = Fully lowered, to the limit
of the eyes

0 = Neutral

-1 = Raised almost all the way

AU4 - Lip Corner Depressor

1 = Very sad frown
0 = Neutral
-1 = Very happy smile

AUS5 - QOuter Brow Raiser

1 = Raised as in an expression
of deep surprise

0 = Neutral

-1 = Fully lowered as a very
sad face

Table 6.2: Anima4{dn Units analysis.

w N

6.4.2 Extending the Kinect’s interface

After knowing how the Face Tracking SDK works, we decided to extend the Kinect’s
interface and add its functionalities. First, we will explain how we initialize the
proper data structures and the SDK, and then how we do the Face Tracking, treat its
results and render the mask.

Initializing the Face Tracking
Like we did when we initialized Kinect and checking always that there has been no
errors, we create our IFTFaceTracker interface with the FTCreateFaceTracker function
and initialize it with its Initialize function and the configurations that we already
set for the Kinect sensor (we make use of the functions GetVideoConfiguration and
GetDepthConfiguration that check the Kinect’s sensor configurations for each camera).

Then we create the IFTResult interface with the CreateFTResult function of the
IFTFaceTracker and two more buffers of video and depth data with the FTCreatelmage
function. We decided to do this as to maintain separated the buffers that belong to
the Kinect sensor and the buffers that belong to the Face Tracking (we will explain
later on how we transfer the data). So, it is needed again to use the Allocate function
on both buffers as to define their format, which is the same as Kinect’s buffers.
After this, we assign them to our FT_SENSOR_DATA structure that will hold all
our data when giving it to the IFTFaceTracker later on.

Lastly, we set a lot of initial data about the skeletons as we then use the NuiSkele-
tonTrackingEnable function of the Kinect sensor to enable the skeleton tracking with
some flags (NUI_SKELETON_TRACKING_FLAG_ENABLE_IN_NEAR_RANGE and
NUI_SKELETON_TRACKING_FLAG_ENABLE_SEATED_SUPPORT), because we
will use this skeletons data in some point to try and get a hint of where the user is
and accelerate the tracking of the face.

bool Kinect::initFaceTrack () {
// Create an instance of a face tracker
pFT = FTCreateFaceTracker () ;
if (!pFT) return false;
// Video camera config with width, height, focal length in pixels
FT_CAMERA_CONHG videoCameraConfig ;
GetVideoConfiguration(&videoCameraConfig) ;

// Depth camera config with width, height, focal length in pixels
FT_CAMERA_CONHG depthCameraConfig;
GetDepthConfiguration(&depthCameraConfig) ;

// Initialize the face tracker

HRESULT hr = pFT—>Initialize (&videoCameraConfig, &depthCameraConfig,

44

NULL, NULL);
if (FAILED(hr)) return false;

// Create a face tracking result interface
pFTResult = NULL;

hr = pFT—>CreateFTResult(&pFTResult);

if (FAILED(hr)) return false;

// Prepare image interfaces that hold RGB and depth data
pColorFrame = FTCreatelmage();
pDepthFrame = FTCreatelmage () ;
if (!pColorFrame || FAILED(hr =
FTIMAGEFORMAT_UINT8_B8G8R8X8))) return false;
if (!pDepthFrame || FAILED(hr =
FTIMAGEFORMAT UINT16_D13P3))) return false;

sensorData .pVideoFrame = pColorFrame;
sensorData . pDepthFrame = pDepthFrame;

sensorData . ZoomFactor = 1.0f; // Not used, must be 1.0
sensorData . ViewOffset = POINT{0, 0}; // Not used, must be (0,0)

isTracked = false;
SetCenterOfImage (NULL) ;

m_hint3D[0] = m_hint3D[1] = FI_VECTOR3D(0, 0, 0);

for (int i = 0; i < NULSKELETON_COUNT; ++i)
{

m_HeadPoint[i] = m_NeckPoint[i] = FT_VECTOR3D(0, 0, 0);

m_SkeletonTracked[i] = false;
}

DWORD dwSkeletonFlags =
NUI_SKELETON_TRACKING_FLAG_ENABLE_IN_NEAR_RANGE |
NUI_SKELETON_TRACKING_FLAG_ENABLE_SEATED_SUPPORT;

hr = sensor—>NuiSkeletonTrackingEnable (NULL, dwSkeletonFlags) ;

if (FAILED(hr)) return false;

return true;

Listing 6.3: Initialization of the Face Tracking SDK.

Doing the Face Tracking

pColorFrame—>Allocate (640, 480,

pDepthFrame—>Allocate (320, 240,

Finally, we were able to start tracking faces. This had to be done each frame, so we
decided to implement it in the update function of the interface (See listing [6.4).

We start by keeping the updates of Kinect’s video and depth buffers (getKinectVideo
and getKinevtDepth) and adding to it a new function that obtains the skeleton data

45

w N

for the hint in a similar manner (getSkeleton). Then, if Kinect is present and its video
buffer as well (GetVideoBuffer), we copy this buffer onto Face Tracking’s video buffer.
We do the same with the depth buffers if Kinect’s depth buffer is present (GetDepth-
Buffer). And we also compute the hint with the use of the function GetClosestHint,
that analyzes the skeleton data received from the Kinect sensor.

Now we have our data available, so if we are not already tracking a face, we
use the StartTracking function of our IFTFaceTracker interface; otherwise, we use the
ContinueTracking function. Both functions receive the hint and our data through the
sensorData, which is a FT_SENSOR_DATA structure that holds our video and depth
data, and output their results into the IFTResult interface.

Afterwards, we check if the tracking has been successful. If we haven’t detected
a face, we finish and wait for the next frame. But if we have detected it, we obtain
all of the output data: the SUs with the use of the GetShapellnits function and the
IFTModel with the GetFaceModel function. Moreover, if we obtain the IFTModel, we
are able to obtain the head pose with the Get3DPose function and the AUs with the
GetAUCoefficients function, which we will use later on to animate our 3D model.
But for now, we are able to paint the mask (2D mesh points) on top of the image
that holds the video buffer with the use of the VisualizeFaceModel function, which
will let the user and us know when a face is being detected and how accurately.

void Kinect::update() {
getKinectVideo () ;
getKinectDepth () ;
getSkeleton () ;

HRESULT hrFT = E_FAIL;

if (kinect && GetVideoBuffer()) ({
HRESULT hrCopy = m_VideoBuffer >CopyTo(pColorFrame, NULL, 0, 0);

if (SUCCEEDED(hrCopy) && GetDepthBuffer ()) {
hrCopy = m_DepthBuffer—>CopyTo (pDepthFrame, NULL, 0, 0);

}

if (SUCCEEDED(hrCopy)) {
FT_VECTOR3D+ hint = NULL;
if (SUCCEEDED(GetClosestHint(m_hint3D)))
{
hint = m_hint3D;
}

if (!isTracked) {

hrFT = pFT—>StartTracking(&sensorData, NULL, hint,
pFTResult) ;

46

48

1
else |{
hrFT = pFT—>ContinueTracking(&sensorData, hint,
pFTResult) ;
}
}
}

isTracked = SUCCEEDED(hrFT) && SUCCEEDED(pFTResult—>GetStatus ()) ;
SetCenterOflmage (pFTResult) ;

// Do something with pFTResult.

if (isTracked) {
BOOL suConverged;
pFT—>GetShapeUnits (NULL, &pSU, &umSU, &suConverged);
POINT viewOffset = { 0, 0 };
FI_CAMERA_CONHG cameraConfig;
GetVideoConfiguration(&cameraConfig) ;

IFTModel* ftModel;
HRESULT hr = pFT-—>GetFaceModel(&ftModel) ;
if (SUCCEEDED(hr))
{
// Register the results
HRESULT hrRes = pFTResult—>Get3DPose(&scale , rotation,
translation);
if (!SUCCEEDED(hrRes)) std::cout << "Couldn’t get the 3D pose
of the Face Model" << std::endl;

hrRes = pFTResult—>GetAUCoefficients(&pAU, &wumAU) ;
if (!SUCCEEDED(hrRes)) std::cout << "Couldn’t get the
Animation Units of the Face Model" << std::endl;

hr = VisualizeFaceModel (pColorFrame, ftModel, &cameraConfig,
pSU, 1.0, viewOffset, pFTResult, 0xO00FFFFO0O0);

ftModel—>Release () ;
} else {
std :: cout << "Could not get the Face Model" << std::endl;

}

if (!SUCCEEDED(hr)) {
std :: cout << "Could not draw the Face Model" << std::endl;

}

Listing 6.4: Initialization of the Face Tracking SDK.

47

Rendering the tracked mask

As we explained in the lines before, in the case that we detected a face, we overwrote
our video buffer with the 2D mesh points of the tracked face as a mask. Therefore,
as we modify a data structure that is identical to the one that is being used to render
in our window, there is no need to do further changes to the rendering pipeline
of the interface except changing which buffer is rendered, that is, changing it for
the Face Tracking’s video buffer. Nevertheless, the figure shows the result of
implementing this interface when a face is detected.

Figure 6.11: Mask rendered on top of Kinect’s image when a face is detected.

6.5 Meeting the first obstacle

It was at this point that we faced our first obstacle. We had Kinect tracking the
user’s face and all the data regarding the Animation Units and 3D head pose ready
to use and animate our 3D model. However, we did not have an actual way of
animating the 3D model, as it was just statically being rendered in our window. It
all came down to the fact that we needed a pipeline that would allow us apply the
AUs and head poses that we are tracking to the 3D model and do it in a way that
the 3D model deforms its skin correctly and still maintain some coherence with real
circumstances. For example, we shouldn’t allow for the 3D model to rotate entirely,
but instead apply some weight to the neck and make it stay in its position, as to
maintain some realism.

After trying to come up with ideas to approach this problem, we decided that
we should make use of what the FBX format offers us. In the 3.3| Use of previous works
section, we explained that implementing a FBX pipeline of loading and rendering
was the most difficult in comparison to what we had already implemented with the

48

OBJ format, but reaching such an obstacle in the development, it was the obvious
decision. This implied some minor changes on the temporal planning, which will
be detailed in the [7.1| Changes to the initial project section.

In order to explain how we overcame this obstacle, we will detail the FBX SDK in
the following lines and afterwards we will gather the main ideas that we extracted
from our research on said SDK in a way that it will be easier to understand how we
implemented the FBX helper and modified the model’s interface, which is explained
in the[6.6| FBX helper section.

6.5.1 FBX SDK

The Autodesk FBX SDK is a free, easy-to-use, C++ software development platform
and API toolkit that allows application and content vendors to transfer existing
content into and from the FBX format with minimal effort. In the following lines we
will describe some of the most important interfaces and classes that we use in our
project, and also some of the samples that made it possible for us to understand
this SDK.

FbxManager
SDK object manager. It is in charge of scene element allocation, scene element
deallocation and scene element search and access. Upon destruction, all objects
allocated by the SDK manager and not explicitly destroyed are destroyed as well.

FbxScene
Description of a 3D scene. It contains the nodes (including the root node), materials,
textures, videos, gobos (filters placed over spots light to project light patterns
through fog on a surface), poses, characters, character poses, control set plugs,
generic nodes, scene information, global settings and a global evaluator. The nodes
are structured in a tree under the scene’s root node.

When an object is created using the FBX SDK, a scene is usually passed as
argument to the object creation function to specify that the object belongs to this
scene. At this point, a connection is made with the object as source and the scene as
destination.

All objects in the scene can be queried by connection index. In addition, generic
nodes, materials, and textures can also be queried by name. In this latter case, the
first object with the queried name will be returned.

49

FbxDocument
Base class for the FbxScene class. It is a collection of objects, called the root member
objects. This is because these objects each form the root of an object graph. The
manager FbxManager has access to all documents, scenes and libraries. It can be
contained in another document, thus, a hierarchy of documents can be built. The
root of all documents is simply called the root document. And a document manages
animation stacks and provides access to animation stack information.

FbxNode
Represents an element in the scene graph. The tree management services are
self contained in this class. Besides the tree management, this class defines all
the properties required to describe the position of the object in the scene. This
information include the basic translation, rotation and scaling properties and the
more advanced options for pivots, limits and IK joints attributes such the stiffness
and dampening.

When it is first created, the FbxNode object is "empty" (i.e: it is an object without
any graphical representation that only contains the position information). In this
state, it can be used to represent parents in the node tree structure but not much
more. The normal use of this type of objects is to add them an attribute that will
specialize the node.

The node attribute is an object in itself and is connected to the the FbxNode.
This also means that the same node attribute can be shared among multiple nodes.
FbxCamera, FbxLight, FbxMesh, etc... are all node attributes and they all derive from
the base class FbxNodeAttribute.

FbxMesh
A mesh is a geometry made of polygons. The class can define a geometry with as
many n-sided polygons as needed. Users can freely mix triangles, quadrilaterals
and other polygons. Since the mesh-related terminology of the FBX SDK differs a
little from the known standards, here are their definitions:

¢ A control point is an XYZ coordinate, it is synonym of vertex.

¢ A polygon vertex is an index to a control point (the same control point can be
referenced by multiple polygon vertices).

* A polygon is a group of polygon vertices. The minimum valid number of
polygon vertices to define a polygon is 3.

50

FbxCluster

A cluster, or link, is an entity acting on a geometry. More precisely, the cluster
acts on a subset of the geometry’s control points. For each control point that the
cluster acts on, the intensity of the cluster’s action is modulated by a weight. The
link mode specifies how the weights are taken into account. The cluster’s link node
specifies the node (FbxNode) that influences the control points of the cluster. If the
node is animated, the control points will move accordingly. Usually, a cluster is part
of a skin.

FbxAnimLayer
The animation layer is a collection of animation curve nodes. Its purpose is to store
a variable number of FbxAnimCurveNode. The class provides different states flags,
an animatable weight and the blending mode flag to indicate how the data on this
layer is interacting with the data of the other layers during the evaluation.

FbxPose
This class contains the description of a Pose and provide some methods to access
pose info in one FBX scene. The FbxPose object can be setup to hold Bind Pose data
or Rest Pose data.

The Bind Pose holds the transformation (translation, rotation and scaling) matrix
of all the nodes implied in a link deformation. This includes the geometry being
deformed, the links deforming the geometry and recursively all the ancestors nodes
of the link. The Bind Pose gives the transformation of the nodes at the moment of
the binding operation when no deformation occurs.

The Rest Pose is a snapshot of a node transformation. A Rest Pose can be used
to store the position of every node of a character at a certain point in time. This
pose can then be used as a reference position for animation tasks, like editing walk
cycles.

One difference between the two modes is in the validation performed before
adding an item and the kind of matrix stored. In Bind Pose mode, the matrix is
assumed to be defined in the global space, while in Rest Pose the type of the matrix
may be specified by the caller, so local system matrices can be used. Actually,
because there is one such flag for each entry (FbxPoselnfo), it is possible to have
mixed types in a FbxPose element. It is therefore the responsibility of the caller to
check for the type of the retrieved matrix and to do the appropriate conversions if
required.

FbxTime
Class to encapsulate time units. FbxTime can measure time in hour, minute, second,
frame, field, residual and also combination of these units. It is recommended to use

51

FbxTime for all time related operations. For example, currently it is used in all curve
filters and all animation-related classes. FbxTime is just used to represent a moment;
to represent a period of time, FbxTimeSpan should be used.

FbxBlendShape
A blend shape deformer takes a base shape (polygonal surface, curve, or surface)
and blends it with other target shapes based on weight values. Blend shape deformer
organize all target shapes via blend shape channel. One blend shape deformer can
contain multiple blend shape channels, then each channel can organize multiple
target shapes.

The blend effect of each blend shape channel is additive, so the final blend effect
of a blend shape deformer is the sum of blend effect of all blend shape channels it
contains, the blend effect of each blend shape channel is controlled by its property
DeformPercent.

FbxMatrix
Basic 4x4 double matrix class. It has a lot of functionalities that makes its use
advantageous.

FbxAMatrix
Affine matrix class. Matrices are defined using the Column Major scheme. When
a FbxAMatrix represents a transformation (translation, rotation and scale), the last
row of the matrix represents the translation part of the transformation. It also has
great functionalities.

FbxVector4
A four double mathematic vector class.

Samples
This SDK offers a few samples that helps understand it better. The most relevant
are the following;:

¢ ImportScene: This example illustrates how to detect if a scene is password
protected, import and browse the scene to access node and animation informa-
tion. It displays the content of the FBX file which name is passed as program
argument.

* ViewScene: This example illustrates how to display the content of a FBX or a
OB] file in a graphical window. This program is based on the OpenGL Utility
Toolkit (GLUT). A menu is provided to select the current camera and the
current animation stack.

52

6.5.2 Main ideas of the FBX SDK

Out of everything that we read on the FBX SDK, the samples were the ones that
helped us understand it. In the following lines we will describe in what way each
sample helped us and how much of it we will use in our project. It is necessary to
note that at this point we had already exported our 3D model from Autodesk Maya
2016 in the FBX format, as we wanted to also test it with the samples.

ImportScene
This sample taught us how to load and close a FBX file: initializing the SDK objetcs,
such as the FbxManager and the FbxScene, and destroying the SDK objects when we
have finished our work with them. Moreover, upon execution, this sample prints
all kinds of information regarding the FBX file it loads. This is how we learnt the
actual hierarchy of our 3D model and how it is composed.

Analyzing the thousands of lines of information, we discovered that the 3D
model had already defined clusters of vertices, each one with its respective weight,
throughout the different meshes of the whole model. It also had a BlendShape with
several channels that imitated facial gestures such as a happy or shocked face and
poses that defined the poses of the meshes. These pieces of information were key to
understanding the next sample.

ViewScene

Now this sample had a way more complicated implementation. It loaded a FBX
file responsively, that is, if it had animations it would let the user play them and, if
it didn’t, it would just render the model. Looking through its code we learnt how
this pipeline worked: for a selected pose, a selected animation layer and a time,
the pipeline would recursively navigate through the nodes of the scene analyzing
the pose of each mesh for that moment in time and compute the skin and shape
deformations with complicated algorithms that applied several deformations to
specific clusters of vertices, adding up through the whole navigation and finally
obtaining a resulting set of vertices that defined the model for that moment in time
in the animation and rendering it.

It is important to note that, for testing purposes, we created some animations
in Autodesk Maya 2016 that made us able to understand how this animation layers
worked: basically, for a moment in time, the animation layer defines a weight for
the BlendShape channels that affect the model during the animation and, if there are,
modifications to the poses of the meshes.

All of these facts made us realize that these BlendShape channels worked like the
AUs from the Face Tracking and that we would be able to make use of this pipeline.

53

Instead of incrementing the time and playing the whole animation, we could always
compute the resulting model for a fixed time in the animation, such as the first
frame in the animation, and also instead of looking for the BlendShape weights in the
animation layer, we could define these weights ourselves each time with the AUs
data that we receive from Kinect. Moreover, the meshes’” poses are defined by what
FbxPose we select when using the pipeline. And from that FbxPose the deformations
are computed, so if we modify the head’s mesh pose with the angles we receive
from Kinect before computing the resulting model, we will be able to also apply
the angles without any further work.

6.6 FBX helper

With enough insight on the FBX SDXK, in the following lines we will explain how
we created the FBX helper, which is a collection of functions that implement the
FBX pipeline that our project needs, how we applied it to our model’s interface and
improved its rendering, and also we will show a few tests on the pipeline as to see
that it works properly.

6.6.1 Creation of the helper

As we stated in the[6.5.2) Main ideas of the FBX SDK, we understood that we could
make use of the pipeline in the ViewScene sample and the loading and closing of
the FBX file functions in the ImportScene sample. Therefore, we gathered all the
functions necessary into this helper, which can be seen in the listing We will
describe them in the following lines but not in that much detail as they are quite
large and technical.

We have at first the InitializeSdkObjects, which initializes the FbxManager and
the FbxScene and let us make use of the SDK; the LoadScene function, which loads
the FBX file into our scene; the DestroySdkObjects that should be used when exiting
the application or if at some point the manager and scene are not used anymore,
destroying all the objects; and the PreparePointCacheData function, which prepares
the data in case there are vertex cache deformers.

Then we have some functions that are used along the pipeline: GetGlobalPosition,
which gets the global position for a node, i.e. the global position of a mesh;
GetPoseMatrix, which gets the matrix of a node in a specific pose; GetGeometry,
which gets the geometry offset to a node (it is never inherited by the children);
; ReadVertexCacheData, which reads the vertex cache data of a mesh; MatrixScale,

54

2
3

1

6
8

9

0
11

o

3

4

15

6

which scales all the elements of a matrix with the passed value; MatrixAddToDiagonal,
which adds a value to all the elements in the diagonal of the matrix; and MatrixAdd,
which sums two matrices element by element.

The pipeline starts with the DrawNodeRecursive function, which navigates
through the nodes in the scene recursively and calls the DrawNode function for a
node and for all its children. Then, the DrawNode checks which type of node are we
working with and we encounter a mesh, it calls the DrawMesh function, which calls
the ReadVertexCacheData if the mesh has a vertex cache deformer, the ComputeSha-
peDeformation if it has a shape and ComputeSkinDeformation if it has skins associated
with it. All of these calls to deform the mesh populate a temporal vertex array, which
at the end has its vertices translated into global space by multiplying them with the
pGlobalPosition matrix and then copied to our vertex array that holds the resulting
deformed model. Both ComputeShapeDeformation and ComputeSkinDeformation make
several calls to the functions ComputeLinearDeformation, ComputeCluster Deformation
and ComputeDualQuaternionDeformation, which are algorithms that compute our
desired deformations. However, it is in the ComputeShapeDeformation function where
we make use of our own weights in the BlendShape channels, by means of calling
the evaluateChannel function.

Finally, we have our evaluateChannel function that basically checks which channel
is being consulted and translates our AUs values into its weight, and the DisplayHier-
archy function that prints the hierarchy of the FBX file in the console for debugging
purposes.

#pragma once

#include "Globals.hpp"
#include "Model.hpp"

void InitializeSdkObjects (FbxManager+& pManager, FbxScenex& pScene);

7 void DestroySdkObjects (FbxManager* pManager, bool pExitStatus);

bool LoadScene(FbxManager* pManager, FbxDocument* pScene, const char=
pFilename) ;
void DisplayHierarchy (FbxNode* pNode, int pDepth);

FbxAMatrix GetGlobalPosition (FbxNode* pNode, const FbxTime& pTime,
FbxPosex pPose = NULL, FbxAMatrix+ pParentGlobalPosition = NULL);

FbxAMatrix GetPoseMatrix (FbxPose* pPose, int pNodelndex);

FbxAMatrix GetGeometry (FbxNode+ pNode) ;

void PreparePointCacheData (FbxScenex pScene, FbxTime &pCache_Start,
FbxTime &pCache_Stop) ;

void ReadVertexCacheData (FbxMesh* pMesh, FbxTime& pTime, FbxVector4 s
pVertexArray) ;

55

N

NN

23

N

27

28

29

1

W W

void DrawNodeRecursive (FbxNode* pNode, FbxTime& pTime, FbxAnimLayer*
pAnimLayer, FbxAMatrix& pParentGlobalPosition, FbxPose* pPose,
std :: vector<glm::vec3>+ vertices, std::vector<double>* weights);

void DrawNode(FbxNode* pNode, FbxTime& pTime, FbxAnimLayer* pAnimLayer,
FbxAMatrix& pParentGlobalPosition , FbxAMatrix& pGlobalPosition,
FbxPosex pPose, std::vector<glm::vec3>+ vertices,
std :: vector <double>* weights) ;

void DrawMesh(FbxNode* pNode, FbxTime& pTime, FbxAnimLayer* pAnimLayer,
FbxAMatrix& pGlobalPosition, FbxPoses pPose, std::vector<glm::vec3>»
vertices , std::vector<double>+ weights);

void ComputeShapeDeformation (FbxMesh+ pMesh, FbxTime& pTime,
FbxAnimLayer+ pAnimLayer, FbxVector4s pVertexArray,
std :: vector <double>* weights);

void ComputeSkinDeformation (FbxAMatrix& pGlobalPosition, FbxMesh* pMesh,
FbxTime& pTime, FbxVector4: pVertexArray, FbxPosex pPose);

void ComputeLinearDeformation (FbxAMatrix& pGlobalPosition , FbxMeshx
pMesh, FbxTime& pTime, FbxVector4x pVertexArray, FbxPosex pPose);

5 void ComputeClusterDeformation (FbxAMatrix& pGlobalPosition , FbxMeshx

pMesh, FbxClusters pCluster, FbxAMatrix& pVertexTransformMatrix,
FbxTime pTime, FbxPose* pPose);

void ComputeDualQuaternionDeformation (FbxAMatrix& pGlobalPosition ,
FbxMesh* pMesh, FbxTime& pTime, FbxVector4* pVertexArray, FbxPosex
pPose) ;

void MatrixScale (FbxAMatrix& pMatrix, double pValue);
void MatrixAddToDiagonal (FbxAMatrix& pMatrix, double pValue);
void MatrixAdd (FbxAMatrix& pDstMatrix, FbxAMatrix& pSrcMatrix);

double evaluateChannel(std :: vector<double>+ weights, FbxString name);

Listing 6.5: Header of the FBX helper.

6.6.2 Modifying the model’s interface

At this point in time, we finally had the pipeline implemented, so we just needed to
add it to the model’s interface. Basically, we changed the loader into using the FBX
helper, as seen in the listing and then the updating and rendering.

We start by initializing the FbxManager and FbxScene, so we then load into the
scene out FBX file. We do an initial loading of the model without using the pipeline
as to set correctly OpenGL’s data structures with the use of the getFBXData function,
which navigates through the scene recursively taking the necessary information
about vertices, normals and materials.

56

Then we triangulate all of the geometry with the use of a FbxGeometryConuverter,
that allows the conversion of geometry, and its Triangulate function. We also get the
animation layers in the scene, prepare the point cache data with the PreparePoint-
CacheData function and set our current animation layer and current time, which we
will use in the pipeline to access the Blendshape channels properly.

Finally, we set some structures that will hold our AUs information (shocked, happy,
jawLow, upperLip, lipStr and outBrow), the pose that we will use in the pipeline,
we call the setDefaultPose function, which we will explain in the @ Connecting
both interfaces and the second obstacle section, and we print the hierarchy with the
DisplayHierarchy function if we are debugging.

bool Model::loadFBX (std :: string filename) ({

2 bool 1Result = true;
4 // Prepare the FBX SDK.
5 InitializeSdkObjects (1SdkManager, 1Scene);

7 // Load the scene
8 FbxString 1FilePath (filename.c_str());
9 IResult = LoadScene(ISdkManager, 1Scene, 1FilePath.Buffer());

11 // Load the model
12 FbxNode* INode = 1Scene —>GetRootNode () ;
this —>getFBXData (INode) ;

&
1
1 // Convert mesh, NURBS and patch into triangle mesh
16 FbxGeometryConverter 1GeomConverter (1ISdkManager) ;
17 lGeomConverter. Triangulate (1Scene , /:replacex/true);
18
19 FbxArray<FbxString+> mAnimStackNameArray ;
20 1Scene —>FillAnimStackNameArray (mAnimStackNameArray) ;
21
2 // Prepare the Point Cache data
23 mCache_Start = FBXSDK_TIME_INFINITE ;
24 mCache_Stop = FBXSDK_TIME_MINUS_INFINITE ;
25 PreparePointCacheData (1Scene, mCache_Start, mCache_Stop);
26
27 // Initialize the frame period.
28 mFrameTime. SetTime (0, 0, 0, 1, O,
IScene —>GetGlobalSettings () . GetTimeMode ()) ;
29
30 int pIndex = 0;
31
32 FbxAnimStack » 1CurrentAnimationStack =
IScene —>FindMember<FbxAnimStack >(mAnimStackNameArray [pIndex]—>Buffer ()) ;
33 mCurrentAnimLayer = 1CurrentAnimationStack —>GetMember<FbxAnimLayer >() ;
34 IScene —>SetCurrentAnimationStack (1CurrentAnimationStack) ;

57

FbxTakeInfo* 1CurrentTakelnfo =
IScene —>GetTakelnfo (* (mAnimStackNameArray[pIndex])) ;
if (ICurrentTakelnfo)
{
mStart = 1CurrentTakeInfo—>mLocalTimeSpan. GetStart () ;
mStop = 1CurrentTakelnfo —>mLocalTimeSpan . GetStop () ;
}
else
{
// Take the time line value
FbxTimeSpan ITimeLineTimeSpan;

IScene —>GetGlobalSettings () . GetTimelineDefaultTimeSpan (1TimeLineTimeSpan) ;

mStart = 1TimeLineTimeSpan. GetStart () ;
mStop = 1TimeLineTimeSpan . GetStop () ;
}

// check for smallest start with cache start
if (mCache_Start < mStart)
mStart = mCache_Start;

// check for biggest stop with cache stop
if (mCache_Stop > mStop)
mStop = mCache_Stop;

mCurrentTime = mStart;

shocked = happy = jawLow = upperLip = lipStr = outBrow = 0;
newResult = false;

// Get the pose to work with
IPose = IScene—>GetPose(0);

setDefaultPose () ;
// Display hierarchy
if (DEBUGMODE) {
FBXSDK_printf ("\n\n——\nHierarchy\n——\n\n") ;

DisplayHierarchy (INode, 0);
}

return 1Result;

Listing 6.6: FBX loader of the model’s interface.

After having the FBX SDK working, we set to use the pipeline at each frame,

so we modified the update function of the interface, as seen in the listing We

58

2

just clear our vertices array, set the weights array with the weights (even though right
now we are not setting any), call the DrawNodeRecursive function and finally rebind
the vertices’s data into our OpenGL bulffer.

void Model:: update() {
FbxAMatrix 1DummyGlobalPosition;

// We will transform here the AUs into weights later on

// Reset the vertices array
vertices.clear ();

// Set our own weights

std :: vector <double> weights;
weights . push_back (shocked) ;
weights . push_back (happy) ;
weights . push_back (jawLow) ;
weights . push_back(lipStr);
weights . push_back (upperLip) ;
weights . push_back (outBrow) ;

// Obtain the new deformed model

DrawNodeRecursive (1Scene —>GetRootNode () , mCurrentTime,
mCurrentAnimLayer, 1DummyGlobalPosition, 1Pose, getVerticesArray(),
&weights) ;

glBindBuffer (GL_ARRAY BUFFER, vertexbuffer_triangles);
glBufferData (GL_ARRAY BUFFER, vertices.size() * sizeof(glm::vec3),
&vertices [0], GL_STATIC DRAW) ;

Listing 6.7: Update function of the model’s interface.

Lastly, we modified the rendering by changing the light’s position and its
intensity and doing some minor changes to the OpenGL shaders (See figure 6.12).

7 Kinect driven face simulation

Figure 6.12: Improved rendering with the FBX SDK.

59

6.6.3 Testing the rendering and some deformations

Also, just for testing purposes, we manually applied weights to certain BlendShape
channels to see the outcome. In the figure we apply full weight to the happy
channel and it is visible that the deformation works correctly. On top of it, we
also applied full weight to the shocked channel and both deformations applied and
added themselves properly, as seen in the figure [6.14}

B Kinect driven face simulation - s

Figure 6.13: Applying full weight to the happy BlendShape channel.

B Kinect driven face simulation - X

Figure 6.14: Applying full weight to both the happy and shocked BlendShape channels.

6.7 Connecting both interfaces and the second obstacle

Having the Kinect’s and the model’s interfaces already implemented, there was
only one step left, which was connecting both properly. For this purpose, we will

60

1

2

explain in the following lines how we transferred the data from one interface into
the other, how we interpreted it in the model’s interface and how we encountered
our second obstacle.

Transfer of data

Whenever we are tracking a face, we obtain in the Kinect’s interface all of the results
necessary, that is, the AUs, SUs and the head pose. Therefore, the transfer was just
a matter of checking at each frame in our 3D viewer’s main function (after updating
the Kinect interface) if there was a tracked face. If we are, we obtained all of these
results and posted them into our model’s interface; if not, we told the model’s
interface to stop using any results data, stop the animation and we just continued
with the execution. After doing this check, we updated the model’s interface, so it
was up to the model’s interface to interpret these results.

Data interpretation
Once we had the results available in our model’s interface, we converted them into
values that would work with our implementation. We started by adding the head
pose’s data onto our model, which meant that we had to modify the pose that we
were using. That’s why we implemented the functions SetDefaultPose, which made
a copy of the original matrices of the head’s mesh in the pose into our own matrices,
as seen in the listing and the modifyHead, which modified the pose of the head
mesh matrix with the incoming data (we applied it to the second matrix because of
how the model is built).

void Model:: setDefaultPose () {
// Index of the head matrices are 0 and 3, because of how the model
is built
FbxNode * node;
FbxMatrix matrixJaw ;
lPose —>SetlsBindPose (false);
int index = 0;
matrixHeadO = 1Pose —>GetMatrix (index) ;
index = 3;
matrixHead = 1Pose —>GetMatrix(index);

IRotation[0] = lRotation[1] = 1Rotation[2] = 0.0f;

Listing 6.8: Function that saves the original state of the matrices in the pose.

void Model:: modifyHead (FbxVector4 T, FbxVector4 R, FbxVector4 S) ({
FbxNode % node;
FbxMatrix matrix;
FbxVector4 pTranslation, pRotation, pShearing, pScaling;
double pSign;
int index;

61

W N

bool isLocalMatrix = false;

// Translate the head and rotate the head
index = IPose—>Find("head");

node = 1Pose —>GetNode(index) ;

IPose —>Remove (index) ;

IPose —>Add(node, matrixHeadO, isLocalMatrix);

index = lPose—>Find ("head");

node = 1Pose —>GetNode(index) ;

matrix = lPose—>GetMatrix (index);
isLocalMatrix = 1Pose—>IsLocalMatrix (index);

matrixHead . GetElements (pTranslation , pRotation, pShearing, pScaling,
pSign) ;

matrix .SetTRS(pTranslation + T, pRotation + R, pScaling=S);

1Pose —>Remove (index) ;

IPose —>Add(node, matrix, isLocalMatrix);

Listing 6.9: Function that modifies the pose’s matrices with the new head’s pose.

Then, as seen in the listing we extended the update function to perform
this modifications on the head with a call to the modifyHead function (with a slight
change of reference frames) if there were new results, and if not, we just reestab-
lished the head to its original state. Also, if there were new results we did the
transformation of the AUs into weights with some adjustments (at that point we
only worked with the happy (AU4) and shocked (AU3) channels).

void Model:: update() {
FbxAMatrix 1DummyGlobalPosition;

if (newResult) {

modifyHead (FbxVector4 (0, 0, 0, 0),
FbxVector4 ((double)—1Rotation[1], (double)lRotation[0],
(double)1Rotation [2], 1), FbxVector4d(1, 1, 1, 0));

if (IAU != NULL) {
shocked = —(1AU[3] = 100) = 4 + 100;
happy = —(lAU[4] = 100) = 3 + 20;
}
newResult = false;
} else if (stopAnim) {
modifyHead (FbxVector4(0, 0, 0, 0), FbxVector4(0, 0, 0, 1),
FbxVector4(1, 1, 1, 0));
shocked = 50;
stopAnim = false;

62

18 // Reset the vertices array
19 vertices.clear();

21 // Set our own weights

2 std :: vector <double> weights;

23 weights . push_back (shocked) ;

24 weights . push_back (happy) ;

25 weights . push_back (jawLow) ;

26 weights . push_back(lipStr);

27 weights . push_back (upperLip) ;

28 weights . push_back (outBrow) ;

29

30 // Obtain the new deformed model
31 DrawNodeRecursive (1Scene —>GetRootNode () , mCurrentTime,

mCurrentAnimLayer, 1DummyGlobalPosition, 1Pose, getVerticesArray(),
&weights) ;

3 glBindBuffer (GL_ARRAY_BUFFER, vertexbuffer_triangles);
34 glBufferData (GL_ARRAY_BUFFER, vertices.size() * sizeof(glm::vec3),
&vertices[0], GL_STATIC_DRAW) ;

Listing 6.10: Extended update function of the model’s interface.

Second obstacle
When tested the work done, we found out that, even though our transferring of
data and interpretation was being done correctly, there was something wrong with
the 3D model, as seen in the figure

Figure 6.15: Jaw not moving properly with the head.

After investigating the reason behind this, we came to the conclusion that the
pose that we were using was a Bind Pose, so the jaw and jawEnd meshes were not
receiving the transformation on the head mesh because they weren’t local matrices.

63

6.8 Workaround

We decided to modify the pose directly into a Rest Pose in our SetDefaultPose func-
tion and build their matrices again. As seen in the listing we set the pose as
Rest Pose and computed the local matrices for the jaw and jawEnd with the inverse
matrices of their parents.

N}

29 }

void Model:: setDefaultPose () {

// Index of the head matrices are 0 and 3, because of how the model
is built

FbxNode * node;

FbxMatrix matrixJaw , matrixJawEnd;

IPose —>SetlsBindPose (false);

int index = 0;

matrixHeadO = 1Pose —>GetMatrix (index) ;

index = 3;

matrixHead = 1Pose —>GetMatrix(index);

// In the case of the others, we just look for their indices
// in the pose and rebuild the model with local matrices
matrixJaw = lPose —>GetMatrix (1Pose —>Find ("jaw"));
matrixJawEnd = IPose —>GetMatrix (1Pose —>Find ("jawEnd")) ;

matrixJawEnd = matrixJaw . Inverse () * matrixJawEnd;
index = lPose —>Find("jawEnd");

node = 1Pose —>GetNode(index) ;

IPose —>Remove (index) ;

IPose —>Add(node, matrixJawEnd, true);

matrixJaw = matrixHead . Inverse () * matrixJaw;
index = lPose—>Find ("jaw");

node = 1Pose —>GetNode(index) ;

IPose —>Remove (index) ;

IPose —>Add(node, matrixJaw , true);

IRotation[0] = IRotation[1] = 1Rotation[2] = 0.0f;

Listing 6.11: Extended SetDefaultPose function of the model’s interface.

After we did this, it worked as it was intended to, as shown in the figure

But there were still some glitches on how the Face Tracking is not optimal, which we
will explain in the [/.2| Development analysis section.

64

Figure 6.16: Correct head movement and animations.

6.9 Tweaking the animations

As the last part of the project, we tried to tweak the adjustments on the channels
that we had already transformed into weights in the update function. We also tried
to add some more AUs, the upper lip raiser (AUO) and the jaw lowerer (AU1), with
good and bad results, as seen in figure

Figure 6.17: Implemented more AUs.

We couldn’t get better adjustments and the limitations of the Kinect sensor
started to appear more frequently, not detecting correctly the face and turning the
animation into a poorly one. Nevertheless, the final results are quite satisfying.

65

7. Analysis and conclusion

This section aims to compare this project’s initial milestone with its final milestone,
which implies analyzing all the changes made to the project throughout its develop-
ment, making an analysis on the actual development of the project and its possible
extensions, commenting the level of achievement of the technical competences and
finishing with a conclusion.

7.1 Changes to the initial project

Taking into consideration what we have achieved in the development of the project,
there has been no relevant changes to the scope and context, as we have met all
of our main objectives except the extension. However, as it was stated on the
Meeting the first obstacle section, we actually came to a point in the development of
the project where we had to change our temporal planning.

In order to finish the project by the end of June, we decided not to do the final ex-
tension to the video conference application and to implement the FBX helper between
the time we encountered the obstacle and until three weeks before the project’s
completion date. Then there were left one week and a half to connect Kinect’s data
to the model and another week and a half to do the final documentation.

And as we were able to finish on time, this new work plan ensured that there
were no additional costs, so there was no need to modify the original budget.
Therefore, the sustainability stayed the same as well.

66

7.2 Development analysis

We were able to finish the project in time, but at the cost of some quality in it. We
will analyze in the following lines some aspects of our project’s development.

Our 3D viewer is quite simple, didn’t give any delays in the development and
does its work, but it could still be upgraded into a more user-friendly design, with
functionalities that may appeal the users. Apart from that, the 3D model gave us
some problems, but with the decision of changing into the FBX format, everything
changed. The FBX helper supposed a boost in the quality of this project, but still
needs some refinement, such as making a complete rendering pipeline that works
on GPU and not in CPU and supporting other types of data that the FBX format
offers (like NURBS or patches).

On the other side, the main lose in quality was the Kinect sensor. We could
clearly see moments where a slight change on the light of a room could make the
tracked face’s results be mostly wrong and how the low frame rate and resolutions
of the camera made impossible to track fast movements or even track accurately.

The Face Tracking could be greatly improved if instead of letting Kinect compute
the SUs, we could compute them ourselves, because it normally takes up to two
minutes for Kinect to compute them correctly. Also, a leap on quality would be
changing the device for its upgraded version, the Kinect Sensor for Xbox One, but
that would jeopardize the objective of this project of making it expenseless.

Even though we faced obstacles and limitations on hardware and software and
we couldn’t do the final extension, the results of the project are satisfactory with
what could be achieved with this kind of equipment.

7.3 Technical competences
Here we will describe how the technical competences were achieved in our project.

¢ CCOL1.1: Avaluar la complexitat computacional d’un problema, conéixer estratégies
algorismiques que puguin dur a la seva resolucid, i recomanar, desenvolupar i im-
plementar la que garanteixi el millor rendiment d’acord amb els requisits establerts.
[Bastant]
We were trying to achieve some kind of realism in the facial expressions, so
we were in the need of doing almost everything that this technical competence

67

entails. We analyzed our problem, came up with strategies to solve it in an
efficient way and, finally, decided which one was the best. But as we had a
tight schedule, we were not be able to achieve or explore the finest way of
implementing the facial expressions, so we could say that we achieved this
technical competence with the second highest level of achievement.

* CCO2.6: Dissenyar i implementar aplicacions grafiques, de realitat virtual, de realitat
augmentada i videojocs. [En profunditat]
In this project we have designed and implemented a graphic application in
the form of a 3D viewer, which is this technical competence in its essence.
And we have carried it out completely or, in other words, in depth.

* CCO3.1: Implementar codi critic sequint criteris de temps d’execucid, eficiencia i
seguretat. [En profunditat]
We worked on a real time environment, so all of the code implemented had to
be efficient and secure enough as to not drop frames. Because of the fact that
we did take into account the efficiency of all the code that we implemented,
this technical competence has been achieved in depth.

7.4 Conclusion

There has been success and failures throughout the whole project, making us act
accordingly to asses the situations and overcome the obstacles. There are also many
things that could be improved and extensions that would make it scale in quality.
Nevertheless, it is safe to say that Kinect and its variety of SDKs are powerful tools
that allow anyone with low income do facial animations with decent results, saving
up in money but losing in quality.

Finally, this project’s code implementation is fully available as a repository in
the GitHub website[11]].

68

Bibliography

Jorgen Ahlberg. CANDIDE - a parameterized face. URL: http://www.icg.isy.
liu.se/candide/|(visited on June 20, 2016).

Autodesk. FBX SDK documentation. URL: http://help.autodesk.com/view/
FBX/2016/ENU/| (visited on June 16, 2016).

Aware. Nexa | Face™. URL: http://www.aware.com/biometrics/nexa-face/
(visited on June 16, 2016).

Ashish Sharma, Mukesh Agarwal, Anima Sharma, Pankhuri Dhuria. Motion
capture process, techniques and applications. Vol. 1. 4. International Journal on
Recent, Innovation Trends in Computing, and Communication (IJRITCC),
Apr. 2013, pp. 251-257. URL: https://paginas.fe.up.pt/ prodei/dsiel2/
papers/paper_7 .pdf (visited on Mar. 1, 2016).

To see or not to see: A study comparing four-way avatar, video, and audio conferencing
for work. ACM Conference on Supporting Groupwork, Oct. 2012, pp. 31-34.
URL: http://research.microsoft . com/apps/pubs/default . aspx?id=
178842 (visited on Mar. 2, 2016).

libQGLViewer. URL: http://libgglviewer.com/ (visited on Feb. 29, 2016).

Luxand. FaceSDK. URL: http://www.luxand. com/facesdk/|(visited on June 16,
2016).

Microsoft. Face Tracking SDK. URL: https://msdn.microsoft.com/en-us/
library/jj130970.aspx (visited on Feb. 27, 2016).

Microsoft. Kinect for Windows. URL: http : //www . microsoft . com/en- us/
kinectforwindows/ (visited on Feb. 27, 2016).

Microsoft. Kinect for Windows SDK. URL: https://msdn.microsoft.com/en-
us/library/hh855347 .aspx| (visited on Feb. 27, 2016).

Guillermo Ojeda Noda. Kinect driven facial animation repository. URL: https :
//github.com/KvOthe/Kinect-face-animation|(visited on June 21, 2016).

69

http://www.icg.isy.liu.se/candide/
http://www.icg.isy.liu.se/candide/
http://help.autodesk.com/view/FBX/2016/ENU/
http://help.autodesk.com/view/FBX/2016/ENU/
http://www.aware.com/biometrics/nexa-face/
https://paginas.fe.up.pt/~prodei/dsie12/papers/paper_7.pdf
https://paginas.fe.up.pt/~prodei/dsie12/papers/paper_7.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=178842
http://research.microsoft.com/apps/pubs/default.aspx?id=178842
http://libqglviewer.com/
http://www.luxand.com/facesdk/
https://msdn.microsoft.com/en-us/library/jj130970.aspx
https://msdn.microsoft.com/en-us/library/jj130970.aspx
http://www.microsoft.com/en-us/kinectforwindows/
http://www.microsoft.com/en-us/kinectforwindows/
https://msdn.microsoft.com/en-us/library/hh855347.aspx
https://msdn.microsoft.com/en-us/library/hh855347.aspx
https://github.com/Kv0the/Kinect-face-animation
https://github.com/Kv0the/Kinect-face-animation

Pedro Nogueira. Motion Capture Fundamentals. Nov. 2011. URL: https: //
paginas.fe.up.pt/ prodei/dsiel2/papers/paper_7.pdf (visited on Mar. 1,
2016).

Daniel Otero, Guillermo Ojeda. keep running N nobody gets hurt. URL: https :
//github.com/d-otero/keep-running-n-nobody-gets-hurt (visited on
Feb. 29, 2016).

Owerleaf. URL: https://www.overleaf . com/ (visited on Mar. 11, 2016).

VCL. Face Recognition Algorithms. URL: http://www.face-rec.org/algorithms/
(visited on June 16, 2016).

Wikipedia. FBX. URL: https://en.wikipedia.org/wiki/FBX (visited on
June 16, 2016).

Wikipedia. Wavefront .obj file. URL: https : //en . wikipedia . org/ wiki /
Wavefront_.obj_file|(visited on June 16, 2016).

70

https://paginas.fe.up.pt/~prodei/dsie12/papers/paper_7.pdf
https://paginas.fe.up.pt/~prodei/dsie12/papers/paper_7.pdf
https://github.com/d-otero/keep-running-n-nobody-gets-hurt
https://github.com/d-otero/keep-running-n-nobody-gets-hurt
https://www.overleaf.com/
http://www.face-rec.org/algorithms/
https://en.wikipedia.org/wiki/FBX
https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://en.wikipedia.org/wiki/Wavefront_.obj_file

	Front page
	Contents
	List of Tables
	List of Figures
	List of Listings
	1 Introduction
	2 Scope of the project
	2.1 Objectives
	2.2 Scope
	2.3 Methodology and rigour
	2.3.1 Development tools
	2.3.2 Progress monitoring
	2.3.3 Validation of results

	2.4 Obstacles and risks of the project
	2.4.1 Main program
	2.4.2 Kinect
	2.4.3 3D model
	2.4.4 Schedule

	3 Contextualization and references
	3.1 Context
	3.1.1 Areas of interest
	3.1.2 Actors

	3.2 State of the art
	3.2.1 Facial motion capture
	3.2.2 Facial recognition
	3.2.3 3D viewers
	3.2.4 Avatar video conference

	3.3 Use of previous works
	3.3.1 Facial motion capture
	3.3.2 Facial recognition
	3.3.3 3D viewers
	3.3.4 Avatar video conference

	4 Temporal planning
	4.1 Description of tasks
	4.1.1 Reading and understanding the problem
	4.1.2 Project planning
	4.1.3 Initial system set up
	4.1.4 Main development
	4.1.5 Final task

	4.2 Time table
	4.3 Resources used
	4.3.1 Hardware resources
	4.3.2 Software resources

	4.4 Gantt chart
	4.5 Action plan and alternatives

	5 Budget and sustainability
	5.1 Budget estimation
	5.1.1 Hardware resources
	5.1.2 Software resources
	5.1.3 Human resources
	5.1.4 General resources
	5.1.5 Total budget

	5.2 Budget control
	5.3 Sustainability
	5.3.1 Economic sustainability
	5.3.2 Social sustainability
	5.3.3 Environmental sustainability

	6 Development of the project
	6.1 First steps
	6.2 Kinect's interface
	6.2.1 Kinect for Windows SDK
	6.2.2 Creating the interface
	6.2.3 Upgrading the 3D viewer

	6.3 Model loading and rendering
	6.4 Adding Face Tracking into Kinect's interface
	6.4.1 Face Tracking SDK
	6.4.2 Extending the Kinect's interface

	6.5 Meeting the first obstacle
	6.5.1 FBX SDK
	6.5.2 Main ideas of the FBX SDK

	6.6 FBX helper
	6.6.1 Creation of the helper
	6.6.2 Modifying the model's interface
	6.6.3 Testing the rendering and some deformations

	6.7 Connecting both interfaces and the second obstacle
	6.8 Workaround
	6.9 Tweaking the animations

	7 Analysis and conclusion
	7.1 Changes to the initial project
	7.2 Development analysis
	7.3 Technical competences
	7.4 Conclusion

	Bibliography

