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Abstract

Satellite development is moving from big and expensive satellites to small and low price nano-satellites based
on commercial off the shelf components. These nano-satellites have allowed new universities, companies
and hobbyists to access the space.

In this context, the Android Beyond the Stratosphere project pretends to develop a hardware and software
platform for nano-satellites that is open-source, standardized, modular and low cost, based on commercial
components and open standards. The project is based on an Android mobile phone, connected to an Arduino
board for experiment deployment.

The aim of this thesis is to design and implement part of the software architecture for the Android Beyond
the Stratosphere project. On one side, the Android Real Time Operating System, which will allow to run
the software architecture reliably. On the other side, the System Data Bus, a flexible, modular and robust
message distributor that is core to the rest of the software architecture.
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Resumen

El desarrollo de satélites está cambiando de satélites grandes y de alto coste a nano-satélites, pequeños y de
bajo coste, y basados en componentes comerciales. Estos nano-satélites han permitido el acceso al espacio
a nuevas universidades, empresas y aficionados.

En este contexto, el proyecto Android Beyond the Stratosphere pretende desarrollar una plataforma software
y hardware para nano-satélites que sea abierta, estándar, modular y de bajo coste, basada en componentes
comerciales y estándares abiertos. El proyecto se basa en un teléfono móvil con Android, conectado a una
placa Arduino, donde se colocan los experimentos.

El objetivo de este trabajo es diseñar e implementar parte de la arquitectura de software para el proyecto
Android Beyond the Stratosphere. Por un lado, un sistema operativo en tiempo real basado en Android, que
permitirá el funcionamiento de la arquitectura de software de forma fiable. Por otro lado, el System Data
Bus, un repartidor de mensajes flexible, modular y robusto que sirva como núcleo del resto de la arquitectura
de software.

iv



Resum

El desenvolupament de satèl·lits està canviant de satèl·lits grans i d’alt cost a nano-satèl·lits, petits i de
baix cost, i basats en components comercials. Aquests nano-satèl·lits han permès l’accés a l’espai a noves
universitats, empreses i aficionats.

En aquest context, el projecte Android Beyond the Stratosphere pretèn desenvolupar una plataforma software
i hardware per a nano-satèl·lits que sigui oberta, estàndard, modular i de baix cost, basada en components
comercials i estàndards oberts. El projecte es basa en un telèfon mòbil amb Android, connectat a una placa
Arduino, a on es col·loquen els experiments.

L’objectiu d’aquest treball és dissenyar i implementar part de l’arquitectura de software per al projecte
Android Beyond the Stratosphere. Per un costat, un sistema operatiu en temps real basat en Android, que
permetrà el funcionament de l’arquitectura de software de forma fiable. Per altre costat, el System Data Bus,
un repartidor de missatges flexible, modular i robust que serveixi com a nucli de la resta de l’arquitectura de
software.
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1. Android Beyond the Stratosphere project

1.1 Introduction

Computing systems have evolved from very big and monolithic systems in the past, to small and standardized
systems in the present. And they are currently moving towards distributed systems with many cores. Satellite
missions have evolved in a very similar way. Traditionally, satellites were big and only available to big
corporations, but nowadays, trends are moving towards small and standardized systems that can be deployed
into multi-node architectures.

Like in computing, these satellite nodes have become more and more affordable, and have introduced new
actors in the aerospace industry, such as universities, small companies, or even hobbyists. This evolution
represents a democratization of the space.

These satellite nodes are usually nano-satellites. A nano-satellite is a small satellite of little more than 1 kg.

Mini-satellite 100 kg to 500 kg

Micro-satellite 10 kg to 100 kg

Nano-satellite 1 kg to 10 kg

Pico-satellite 100 g to 1 kg

Femto-satellite 10 g to 100 g

Table 1.1: Miniature satellite classification

In 1999, California Polytechnic State University and Stanford University developed a miniature satellite
specification: the CubeSat program. This standard defines a 1U CubeSat as a cube-shaped nano-satellite,
with 10 cm per side and no more than 1.33 kg [1, p. 5]. Since then, hundreds of universities throughout
the world, such as UPC [2], Aalborg University [3] or EPFL [4] have developed satellites following this
specification, ultimately becoming a de facto standard for low-cost small spacecraft. But not only universities
have adopted this standard. There is an increasing number of companies whose activities are focused on
the development of nano-satellite platforms and technologies, such as Planet Labs [5], Tyvak [6] or ISIS [7].

The popularization of nano-satellites have come hand-to-hand with the evolution in commercial off the shelf
components (COTS). These components have become smaller, more power efficient, more generic, more
standardized, and cheaper.

Traditionally, satellites were developed and launched by large corporations or space agencies. This was
caused by the long development cycles and, more importantly, the high cost. Missions like GOCE, from
ESA, had a total cost of e350 million [8], or TDRS-K, from NASA, had a cost of $450 million [9]. On the
other hand, nano-satellite missions such as the ones at University of Surrey had a cost of just around e2
million [10].

There are two other important aspects of nano-satellites that are very important. On one side, they are
usually launched in the spare capacity of larger missions, reducing even more the cost and risk. On the other
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side, they are payload-oriented, which means, the main purpose of the mission is the payloads or experiments
in the nano-satellite, which may be an infrared camera, a geiger sensor, or an spectrometer, just to mention
a few examples.

But, due to their smaller size, nano-satellites have some inherent problems, as stated in [11]. The most
important one is the limitation in power, which has an effect specially in the communication link. This is
why more and more nano-satellite missions have on-board Mission Planning Systems (MPS) to manage on-
board resources such as power more efficiently. These MPS can also handle contingencies quicker and more
intelligently to increase the robustness and resiliency of the mission to unexpected faults. This autonomy
may even increase the performance of the system if the MPS can also detect experiment opportunities.

The low cost and low risk of nano-satellites, combined with the shorter development cycles due to its smaller
size, makes nano-satellites ideal candidates for distributed space missions. These distributed missions usually
fall in one of three categories [12]:

• Fractionated satellites: These are satellites whose systems are located in different modules, so it is
required to share resources (power, data processing, communication link...) to operate.

• Satellite swarms or constellations: The nodes in the infrastructure are independent satellites that do
not exchange resources or collaborate.

• Federated Satellite Systems: Independent satellites use their underutilized resources for a distributed
mission [13].

Several corporations have started to offer and plan product lines based on satellite constellations, such as
O3B [14], which is using a constellation of 12 satellites for communication purposes, OneWeb [15], using
micro-satellites to provide worldwide Internet access, or Flock [16], with 28 nano-satellites for Earth imaging.

1.2 The Phonesat concept

Current smartphones share a lot of characteristics with what is expected on a nano-satellite. All the com-
ponents on a smartphone are designed to be small and low power, while staying in a reasonable price.

Nano-satellites Smartphones

On-Board Computer System on Chip (SoC)

Data storage Flash memory

Batteries Batteries

Satellite health sensors
Temperature, voltage, state of charge

and other sensors

Attitude determination system
Magnetometer (compass), gyroscope

and accelerometer

Earth observation Integrated camera

Table 1.2: Comparison of nano-satellite and smartphone components

For these reasons, the concept of reusing a smartphone to develop a nano-satellite is not a novel approach.
In that sense, the STRaND-1 cubesat [17] demonstrated the use of a Nexus One smartphone as a payload
of the nano-satellite. The Phonesat project [18] in its version 1.0 used a Nexus One smartphone as the
on-board computer, and in the version 2.0 a Nexus S was used as a core processor as well as using of some
of its sensors such as gyroscopes. These projects show the feasibility of operating an smartphone in the
harsh conditions of space.
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CHAPTER 1. ANDROID BEYOND THE STRATOSPHERE PROJECT

1.3 The Android Beyond the Stratosphere vision

The ABS project, performed at the Nano-Satellite and Payload Laboratory of the Technical University of
Catalonia - UPC BarcelonaTech, is aimed to develop an open-source, standardized, modular and low-cost
hardware and software nano-satellite platform based on commercial components and open standards.

This platform is based on two commercial systems: on one side, an Android smartphone, used as a processing
core and as a sensing and communication subsystem. On the other hand, an Arduino board, an open hardware
platform where payloads and experiments can be deployed. These commercial systems contain miniaturized
and low-power components, and they are accessible and standardized.

The ABS platform is payload-oriented, being able to host any number of payloads of any kind and for any
purpose. All these payloads are hosted on the Arduino board, following the Arduino standards of size or
pinout, among others.

All these efforts are oriented towards creating an standard software and hardware platform, that anyone can
use or modify to fit their needs. This standard platform, with commercial components reduces the cost to
access space even further, allowing the access to new universities, hobbyists or companies, and moving an
step further on the democratization of space.

The final goal of the ABS project is to have an Open Space Station (OSS), a distributed system where
multiple satellites collaborate and share resources. Anyone can add a satellite to this OSS, or just upload a
software experiment that benefits from the hardware of that constellation.

The current version of the ABS project is based on a Nexus 5 mobile phone [19], running Android 4.4
(codename KitKat) with an Arduino board connected through the built-in Micro USB port of the phone.

1.4 Software Architecture

This thesis is focused on the software aspects of this platform. The ABS project requires a modular software
platform that can adapt to satellites of any size and also to distributed systems such as the OSS. To follow
with the ABS vision, this platform must be ready to use for any kind of satellite, and must be open source
and available to any developer that wishes to modify it.

The software architecture for the ABS project is based on the 3Cat-1 software architecture documented in
[11] and shown in figure 1.1. Unlike common flight software approaches, it aims for autonomy and reusability.
This architecture was designed with 4 layers in mind: the System Core, the Process Manager, the System
Data Bus and the Hardware Modules.

This design allows for modular addition of hardware components to the software architecture. To add a new
hardware payload it would only be necessary to develop a Hardware Module and define the high level tasks
and actions so it can be managed by the high-level scheduler.

The different layers are:

• The System Core (SysCore) is the top-level administrator of the system. Unlike the other layers,
it is developed in the Prolog language. It is responsible for the task scheduling from a high-level
perspective.

• The Process Manager (ProcMan) is the executor of the system. It translates the high level orders of
the System Core into actions for the Hardware Modules. It is also in charge of monitoring and reacting
to unexpected events.

• The System Data Bus (SDB) is the message deliverer. It distributes the actions generated by the
Process Manager to the lower level, and the answers and events from the Hardware Modules back to
the Process Manager.
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Figure 1.1: Software Architecture for the 3Cat-1 project

• A Hardware Module (HWMod) is the layer between the software architecture and the real hardware.
There can be as many as necessary, and each of them translates the System Data Bus messages into
actions to the real hardware. This part is hardware specific and would need to be modified when the
underlying hardware changes.

This design, oriented to modularity and extensibility, tries to improve system robustness by isolating failures
and precluding their propagation through the architectural layers. It is also a very light architecture, having
in mind the few components needed to ensure flexibility.

This software architecture for the 3Cat-1 satellite was implemented by Carles Araguz (SysCore and Proc-
Man), Marc Maŕı, author of this thesis (SDB and ProcMan telemetry management), and other developers
(HWmods). This implementation had some issues that need to be addressed:

• The commands that are used to interact with the SDB were changed during implementation phase,
which produced very messy code in the SDB. This makes the addition of new commands very difficult.

• The SDB was not designed with testability in mind. This produced a very opaque layer, which made
the debugging of the interaction between ProcMan and HWMods a very arduous job.

• The SDB, as its name says, should be used system-wide, not only between ProcMan and HWMods.
This design flaw means that the SysCore lacks a direct communication channel with the HWMods,
which could be needed to obtain sensor data for the scheduling process.

• The interface between the HWMods and the SDB was implemented using software interrupts to notify
pending actions. This led to having nested interrupts handlers in a single process. When it was decided
to rewrite these libraries, the communication protocol was too dependent on that model to make an
efficient alternative.

This software architecture has been extended and improved taking into account the issues detected while
implementing the system for the 3Cat-1 satellite, and also the particularities of the ABS system (figure 1.2).
But it also tries to benefit as much as possible from the Android stack, which is extensively documented
[20] and is supported by a large community of developers.

The following modifications from the 3Cat-1 software architecture are applied:

• The System Core has to be updated to allow for new scheduling policies, as explained in [21].

• The Process Manager has to be slightly adapted for the new communication layers, but the functionality
remains the same.
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Figure 1.2: Software Architecture for the ABS project

• The System Data Bus has to be completely rebuilt. It is necessary to introduce modular command
definitions that enable expansion and contraction of the system capabilities with ease and simplicity
to fit any kind of satellite. Moreover, it has to be used between all system layers, including the
USB subsection, to communicate with the Arduino board, and the Distributed System Layer, to
communicate with other satellites in a constellation.

• The Hardware Modules follow the same structure and are supported both as a regular user-space
process and as an Android app managed from the software architecture. They can perform operations
and actions on the mobile phone, or on the Arduino platform.

1.4.1 Android Real-Time Operating System

As it can be seen in figure 1.2, the kernel underneath Android has been modified to enable real-time
capabilites.

A real-time operating system (RTOS) is an OS that has a deterministic scheduling policy that guarantees a
maximum latency, this is, the delay between the expected and the real start of an application. It is usually
achieved by using priority based scheduling and preemption of low-priority tasks [22].

This OSs are essential in control systems such as in industry, medicine, or aerospace. In satellites, there
are mission critical tasks such as flight control and sensor and environment control that must be run with
deterministic latency and deterministic scheduling policy to prevent mission failure.

Most of currently running satellite missions have either a PIC microcontroller as an on-board computer, or
a more powerful processor like a 32-bit ARM running a RTOS. The most common RTOSs for satellites are
FreeRTOS [23], or a Linux distribution extended with Preempt RT [24] or Xenomai [25].

For example, the AAUSAT3 cubesat [26] is running an AT90CAN128 at 12 MHz and an ARM7 microcon-
troller at 60 MHz both with FreeRTOS. The 3Cat-1 cubesat [11] is running an AT91SAM9G20 at 400 MHz
with a Linux-based distribution extended with Xenomai for running mission-critical tasks.

Linux usage has been growing in the area of nano-satellites hand-to-hand with the increase on the number
of COTS components used in those. Linux is already a mature development platform with millions of users
around the world, in systems so different as high performance computers [27] or embedded systems [28].
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This versatility is partially due to the high number of drivers for commercial systems of any kind. A major
issue, though, is the lack of built-in real-time capabilities.

Due to its open-source nature, there are a number of projects developing RT extensions for the Linux kernel.
The most important ones are Preempt RT [24] and Xenomai [25].

Android is also an operating system that has grown in popularity [29]. This OS is based on the Linux kernel,
with several modifications oriented to be more power efficient and integrate better with mobile devices and
the rest of the software components. The user space is developed in Java, on top of a special Java Virtual
Machine called ART (the successor of Dalvik) [30]. The use of Java as a programming language has enabled
the development of millions of programs or “apps” by developers all around the world.

Android is specifically designed for embedded devices, being mobile phones or tablets, or other devices such
as TVs [31] or cars [32]. It is also open source, which makes easier to modify and adapt Android for all
these projects. This flexibility has made it ideal for projects in all kinds of areas, such as robotics [33]. In
[34], it is explained how a Nexus 5 smartphone running Android has been used in an environment usually
reserved for RTOSs: unmanned aircraft systems (UAS). The results obtained in that project show that it is
feasible to use the internal sensors of a Nexus 5 to control the the attitude of the system. But the latency
uncertainties mentioned in the article are a sign of the necessity of transforming Android into a RTOS.

Introducing real-time capabilities in the Linux kernel below Android would result in an Android Real-Time
Operating System (ARTOS), that can be used by anyone in areas where it is not possible to use Android
yet, because of its lack of RT capabilities. And, of course, it would allow the ABS project to use an open
and standardized platform with a huge community behind.

It is important to note that it would not be possible to reach this goal with other mobile platforms. For
example, iOS [35] or Windows Phone [36] are not open source and would not allow for these kind of
modifications.

(a) (b) (c) (d)

Figure 1.3: Directions to extend Android with real-time capabilities1

There are up to four different ways to enable a real-time environment in Android:

• The figure 1.3a: Extend Linux with real-time capabilities and add a real-time Java virtual machine
next to Dalvik (Android-specific Java virtual machine).

• The figure 1.3b: Extend Linux with real-time capabilities and extend Dalvik with real-time capabilities.

• The figure 1.3c: Extend Linux with real-time capabilities and run real-time applications directly on
top of the kernel.

• The figure 1.3d: Introduce a hypervisor and a real-time kernel to run next to the Linux kernel.

In the context of the ABS project, the first two options have been discarded because all the control software
is developed in C directly on top of the kernel, so it can run faster and consume less resources. The other
two options are analyzed in chapter 4.

1Extracted from [37]
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Testing is a crucial part of the development of ARTOS, because it is the only way to check the real-time
behaviour of a RTOS. [38] runs latency tests with different system loads on a Zoom Mobile Development
Kit with Android. The results show inconsistent latency in every test performed, which means Android as-is
is not prepared to run real-time applications.

[39] runs several tests to determine the real-time behaviour of a standard Android OS on a Beagleboard-
XM development board. Different tests were performed, and the results showed important problems in
the Android OS to behave as a RTOS without any modification. For the ARTOS that is explained in the
following chapters, this test methodology is not ideal because using a highly documented development board
instead of a real Android smartphone allows for better test methodologies. Furthermore, the first goal of
the ARTOS implemented in the context of the ABS project is to have a contained latency, which is not
analyzed in the article.

In [40] some improvements towards real-time were applied to the Android stack. This implementation
corresponds to the implementation in figure 1.3b. The Linux kernel was extended using Preempt RT, and
modifications in Dalvik are focused in memory management and garbage collection. These changes were
tested on a HTC Dream smartphone. Latency tests show a significant improvement in time execution
determinism. But these modifications were done on an Android 2 system, whereas this thesis is based on a
more modern Android 4.4 system.

On the other hand, [41] uses an approach very similar to the one decided for the ABS project. It extends
Linux with real-time capabilities using the Preempt RT patch, and runs the real-time applications directly
on top of the kernel. The Android version in this case is 3.1, and the testing platform is a Motorola Xoom
tablet. This work shows some problems that may appear while working on Android 4.4, such as version
mismatches. The tests performed are mainly based on hardware interrupt latency, which is not the main
goal for the ABS project.

1.4.2 System Data Bus

The System Data Bus (SDB) is the message distributor of the whole ABS software architecture, and therefore
it has to be modular and flexible, so it can adapt to any nano-satellite and purpose, and it has to be open,
so other developers can contribute and share their vision.

The Core Flight Executive (cFE) [42] by NASA is a complete framework that allows deployment of complex
architectures, and which already has some predesigned components and services, including high-level appli-
cation scheduling. The SDB, as the cFE, would allow the easy deployment of the ABS platform adapted
with the particularities of each mission.

Given that the proposed SDB is envisioned as the core component of a modular software platform for
nano-satellites it should pursue the system-wide qualities stated in [11]:

• Modifiability: The ABS projects aims to develop a generic platform suitable for any kind of mission.
The SDB must be able to adapt to new commands and new rules that are mission-specific.

• Portability: This aspect is not as critical as the other ones, because the SDB runs on top of a Linux
kernel which, by its nature, is already portable.

• Robustness: The SDB must be able to detect and recover from its own errors. But, as the component
that delivers messages throughout the system, it should also ensure the correctness of the messages
that pass through it. This avoids the propagation of errors from one component to another.

• Computational efficiency: It is very important to remember the environment where the SDB runs.
All the resources in a nano-satellite are scarce and must be used rationally.

• Autonomy: The SDB is not the component responsible for the system autonomy. But the SDB is
the responsible for sending data to and from the SysCore (the high level scheduler), so it is essential
that it works as expected.
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1.5 Scope and objectives

The scope of this thesis is the analysis and development of an Android real-time operating system, and
the design and implementation of a system-wide communication layer, oriented to nano-satellites and nano-
satellite constellations and based on the 3Cat-1 System Data Bus.

Therefore, the objectives of this thesis are twofold:

• Implement an Android real-time operating system that is both stable as an OS, and with RT capabil-
ities, the most important one being contained latency.

• Design and implement the System Data Bus, and the necessary libraries to interact with it. This SDB
must be modifiable, robust and efficient.
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2. Methodology

2.1 Android Real-Time Operating System

Different approaches are tested when developing the ARTOS, but all of them share the same methodology:

1. Apply patches to the base code. The patch mismatches are analyzed and corrected.

2. Compile. Solve any compilations errors and warnings, produced by the differences introduced from
the patch.

3. Boot. Flash the resulting kernel on the mobile phone and boot. Solve the errors and warnings that
appear, until a kernel that can boot the Android user space is obtained. This process is the most time
consuming.

It is also very important to define a methodology to test the different results of the process. A valid ARTOS
version that is able to load the user space must be tested both in stability and real-time behaviour. Stability
of the system is tested with stress tests such as [43]. A working OS must support similar system loads
without crashing or hanging.

On the other side, as it can be seen in [38] and in [40], real-time tests are based on calculating the latency
of a real-time task (the already implemented cyclictest software [44] is used) over different conditions of
periodicity, and load on the system.

If a system with a stable latency is achieved, other aspects of the real-time system should be tested as
explained in [39], such as thread switching latency, semaphore timing and mutex behaviour.

When developing the ARTOS, there are multiple limitations and risks that can appear:

• Kernel debugging is a very difficult task because of its low-level nature. This will make this process
long and difficult.

• The patches that are applied are complex patches that modify many aspects of the kernel and can
introduce bugs that may pass undetected or may trigger an error far from the point where kernel is
modified. This may make debugging very difficult.

• Android contains device-specific drivers that are not in the usual Linux kernel. These devices may or
may not perform properly in real-time, and may need further modification and work.

• Android devices usually have closed-source binaries to control proprietary features such as CPU fre-
quency, WiFi protocol, or others. These closed-source binaries may or may not perform properly in
real-time, but there is no way to adapt them.

2.2 System Data Bus

The SDB specifications and implementations are shared with and reviewed by the rest of the ABS software
team through public and collaborative software repositories such as GitHub.
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The SDB, like any other component of the ABS software architecture has a set of minimal tests that are
capable of testing little parts of it. Thus, the developers can ensure that their changes are not breaking
any part of the system. This also helps in the debugging process, and increases the reliability of the final
product. The tests developed check that every possible valid packet can be created and transmitted, and
also check that system components can connect to the SDB and share messages.

This component also contains an internal Quality Of Service (QoS) logging and reporting interface. This
allows all the packets in the system to be tracked for timing purposes and to detect and debug packet
collisions. With this internal QoS reporting, the performance of the system can be tracked. The two single
most important numbers for the SDB are obtained through this set of tools. These metrics are:

• Packet processing time: Time between a packet entering the SDB and the same packet or an answer
to that packet exiting the SDB. This metric should be a time as small as possible.

• Reliability: Number of packets successfully processed versus number of packets dropped. This metric
should be a percentage very close to 100%.

These metrics should be tested in a wide variety of system states, including different loads and bandwidths
(number of packets sent to the SDB per unit of time).

Once the SDB is developed and tested in isolation, it is connected to the rest of components of the ABS
software architecture, so it can be tested in nominal situations and in high-load situations, always analyzed
through the QoS information.

Designing and developing the SDB has several risks and limitations:

• Finding a design problem at the end of the development process can require a redesign and reimple-
mentation of a big part of the SDB.

• A design not oriented to debug and test may create a black box that makes the SDB unreliable.

• Inadequate QoS results may require to redesign of a big part of the SDB.
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3. Project management

3.1 Planning

3.1.1 Introduction

The ABS project, including the work described on this thesis, began on September 2013. Work during this
period of time has been irregular depending on the personal circumstances of the team members.

The total amount of work expected is around 1000 hours.

As the amount of work is low compared to the period of time, any delays that may occur in the planning
can be overcome without further planning modification.

3.1.2 Resources

The resources are human and material:

• Human: the ABS project team working on software:

– Software developer for ARTOS and the SDB (also thesis author)

– Software developer for the Procman and Syscore (Carles Araguz)

– Software developer for Android apps and the hardware controlling the payloads (Arnau Prat)

– Other software developers with temporary collaborations in areas such as ARTOS research or the
MCS generator, among others.

• Material: A Nexus 5 mobile phone, laptop, and a Raspberry Pi or other embedded ARM-based
platform.

3.1.3 Tasks

Preliminary work

This group contains all the tasks that need to be done before the project really starts. These tasks are well
documented, so no big delays are expected.

Setup Environment Collect and prepare the hardware and the software. This includes ordering the mobile
phone and the necessary hardware interfaces to interact with it, as well as downloading and installing cross-
compilers, source code repositories, and other utilities necessary to perform all the work.

This task will take around 2 months and the resources needed are the Nexus 5, the laptop, and the ARTOS
developer.
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Mobile phone familiarization When the mobile phone is available, this task will help to learn how to
work with the mobile phone. This means learn how to flash a kernel, how to run applications directly on
the kernel, how to reset the phone in case of a software mistake, how to access debug ports on the mobile
phone...

This will take 1 month, and will start in parallel to the previous task when the Nexus 5 phone is delivered.
The resources needed are a Nexus 5, a laptop, and the ARTOS developer.

ARTOS

This group contains all the tasks related to developing ARTOS, and it cannot start before the preliminary
work is finished.

ARTOS Research Research in the area of real-time operating systems, the Android source code and
Android as a real-time operating system. This includes an analysis of the work already done and the
different possibilities to carry this work forward. This task will be done in combination with the rest of the
ABS software team, in order to share ideas and knowledge.

The time for the task is 1 year and 6 months, because this research will continue even when some kernel is
being implemented, so new ideas can be applied in the process. The resources needed are laptop and the
whole ABS software team.

RTOS analysis Familiarization with the RTOSs that will be used on the next phases. This means to check
differences and deviations from the standard versions of the kernels, and to test these RTOSs on standard
embedded platforms such as Raspberry Pi.

The time allocated for this task is 1 year and 3 months, and this task cannot start if the previous task, the
research, has not started. This task is overlapped with the rest because it may be necessary to check the
correctness of procedures and changes inserted in a kernel in more standard conditions. But also, a new
OS may be checked while performing the other tasks. The resources needed are laptop, embedded ARM
platform and ARTOS developer.

Patch and compile Patch the selected kernel with the selected patch, and work on the modifications until
it compiles without any errors. This process is done following the compiling trace, and comparing the errors
indicated with the modifications introduced by the patch.

The time allocated for this task is 1 year and 2 months, and it cannot start until the previous task, RTOS
analysis, has started. This task is overlapped with the rest because changes in patches in following tasks
may introduce compilation errors. The resources needed are Nexus 5, laptop and ARTOS developer.

Boot and debug When the kernel can compile without any error, it will be flashed on the smartphone
and booted. Any errors that appear in the boot log will be corrected, and the process repeated.

The time allocated for this task is 11 months, and it can only start after some kernel is patched and compiled.
This task overlaps with the rest because kernels will be in debug mode even if the kernel can boot to the
Android userspace, as errors can appear in runtime. The resources needed are Nexus 5, laptop and ARTOS
developer.

Test and benchmark Once the prepared kernel can load the Android userspace, it is necessary to run
stability tests and real-time tests. These tests will give a quantitative look on the performance of this kernel,
in comparison with the original kernels.
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This task will take 3 months, and it cannot start until there is a kernel that can boot, obtained in the
previous task. The resources needed are Nexus 5, laptop and ARTOS developer.

SDB

This group contains all the tasks related to developing the SDB, and it cannot start before the preliminary
work is finished. It could be combined with the development of ARTOS, but it will be implemented
afterwards.

Design Design of the functionalities of the SDB, so it is modifiable, robust and efficient. This task will
be done in collaboration with the rest of the ABS software team, as this component communicates the rest
of the components of the system.

The time allocated for this task is 8 months, and it will overlap with the rest of the tasks because there
are independent sections that can be designed while other sections are being implemented. But it is also
important to revise the design as the implementation moves forward, in case for any design problem. The
resources are laptop and the whole ABS team dedicated to software.

Implement Implementation of the SDB, following the design of the previous point. The difficulties found
in this step will help to finish the design.

The time allocated for this task is 6.5 months, and it cannot start until part of the design is performed.
This task is overlapped with the other tasks, because problems detected in testing will be solved through
implementation, and design problems may be detected in this phase. The resources are laptop and SDB
developer.

Standalone tests Run unit tests on the SDB, and correct the implementation errors.

The time allocated for this task is 2 months, and it cannot start until part of the implementation is performed.
The resources are Nexus 5, laptop and SDB developer.

System tests Combine the SDB with the rest of the components of the system, and test their behaviour
and integration. This task is done in collaboration with the rest of the ABS team dedicated to software, as
these are system-wide tests.

The time allocated for this task is 2 months, and it cannot start until standalone tests are finished, as it
makes no sense to test the whole system before the parts are tested individually. The resources are Nexus
5, laptop and the ABS team working on software.

Documentation

This group contains all the tasks related to writing this thesis. It is important to start after the preliminary
work and research, and it will be carried during spring semester of 2016.

GEP Project management period.

The time for this task is 2 months from the initial to the final presentations. The resources needed are
laptop and thesis author.
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Write final report With all the results from the different parts of the project, and the work from GEP,
the thesis will be written.

The time allocated for this task is 4 months, and this task cannot finish before all the technical work and
GEP are finished. The resources needed are laptop and thesis author.

Defence One week after the thesis has been finished and submitted, the thesis will be defended, marking
an end for the project.

This task takes only one day, and marks the end of the project. The resources needed are laptop and thesis
author.

3.2 Cost evaluation

3.2.1 Introduction

The following table presents the estimated budget for the project. It also includes a 5% contingency margin
for unexpected expenses.

Description Cost (in e)

Human resources 10000

Hardware resources 338.61

Software resources 0

Other 50.68

Contingency 519.46

Total 10908.75

Table 3.1: Total costs

3.2.2 Human resources

The human resources considered for the budget are one junior software developer for the whole project, and
one junior software developer and one PhD student for the team-sharing parts.

As mentioned in the planning, the project consists of 1000 hours. The team-sharing parts consist of 100
hours, because they are composed of periodical meetings.

Description Hours Cost per hour (in e) Total cost (in e)

Junior software developer 1000 8 8000

Junior software developer 100 8 800

PhD student 100 12 1200

Total 10000

Table 3.2: Costs of human resources
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3.2.3 Hardware resources

There are two kinds of hardware resources for this project. On one side, a Nexus 5 mobile phone and
interfacing cables, which are bought specifically for this project. On the other side, a Raspberry Pi and
laptop, which were bought before the beginning of the project, and will be used afterwards.

The Nexus 5 phone has a cost of 400 e, but only 300 e will be detailed in the costs because at the end of
this project, the phone will be used in other projects until the end of its lifespan.

The laptop and Raspberry Pi costs are calculated as a function of its expected lifespan of 4 years.

Description Hours Cost (in e) Total cost (in e)

Nexus 5 400 300

Interface cables 10 10

Raspberry Pi 100 40 0.11

Laptop 1000 1000 28.5

Total 338.61

Table 3.3: Costs of hardware resources

3.2.4 Software resources

The software used in this project is free software that has no associated cost.

3.2.5 General expenses

This section includes other costs not considered in previous sections.

The electricity cost considered for this project, will be of 0.12 e/kWh

Description Hours Power (W) Total cost (in e)

Laptop 1000 374 44.88

Mobile phone 1000 44 5.28

Raspberry Pi 100 44 0.52

Total 50.68

Table 3.4: Costs of general expenses

Both the internet connection and the space to carry this project will be provided by the university free of
charge, so they is not considered in this budget.

3.2.6 Budget control

Budget is basically dependent on the time specified in the Gantt diagram. To ensure budged compliance,
the time planning must be followed. The table 3.5 helps to control the budget by detailing the budget for
each of the tasks in the project.

Hardware failures would not modify the planning because they can be solved in a matter of hours, as the
hardware used can be easily replaced.
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Task Human costs (in e) Hardware costs (in e) Other costs (in e) Total cost (in e)

Preliminary work 727.2 312.59 4.56 1044.35

ARTOS 6105.6 16.53 29.39 6151.52

SDB 2196.8 6.05 10.63 2213.48

Documentation 969.6 3.43 6.08 979.11

Total 10000 338.61 50.68 10389.29

Table 3.5: Total costs per task

3.3 Sustainability

3.3.1 Economic sustainability

The budget described in the previous chapter is the minimum budget for this kind of project. Hardware
components are kept to a minimum, and software is free.

There is a long time of development, which increases human resources costs, and also part of hardware
costs. But the development time described in the planning is a reasonable time to keep budget tight, as
well as giving enough time to get results from the research.

The project described in this document is part of the ABS project. The ABS project funds this project in
exchange for the research results.

3.3.2 Social sustainability

The project described in this document allows lots of different areas to benefit from real-time OSs in a
common embedded device such as a smartphone. This would allow the use of more user-friendly devices in
critical areas, and reduce the learning curve for professionals in those areas.

On the other hand, the area of satellites is currently only available to space agencies or business. Nano-
satellites allowed the access to space to smaller business, universities and very few hobbyists. But the ABS
project makes access to space simpler and cheaper for any individual or organization, by offering an open,
modular and reliable satellite platform. And the project also opens a platform, the Open Space Station,
to run software experiments from anywhere and by anyone in the world. These results make science and
technology more reachable worldwide.

3.3.3 Enviromental sustainability

All the hardware used in this project will be reused. The Nexus 5 phone and cable interfaces will be used
by other members of the ABS team to test software or hardware components, whereas the laptop and
Raspberry Pi will continue to be used in the personal projects of the developers. At the end of the life of
these components, they will be disposed according to its composition.

Adding real-time capabilities to the Android OS can benefit the execution time and resource usage of
applications running on this platform, increasing energy efficiency. This would reduce battery charging and
electricity costs, reducing ecological footprint.
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4. Android Real-Time Operating System

4.1 Platform

Research in the area of Android Real-Time Operating System is done based on the platform chosen for the
ABS project, a Nexus 5 mobile phone.

The Nexus 5 mobile phone by LG Electronics contains a system on chip (SoC) Qualcomm Snapdragon 800.
This SoC contains a quad-core 2.26 GHz processor [19]. In the source code for both Android and Linux, the
Nexus 5 is codenamed “Hammerhead” [45], and the SoC is “MSM8974” [46]. This platform is not merged
on the mainline Linux kernel, it is only present in the Android specific tree, in conjunction with the rest of
MSM-based platforms [47].

The Android version used during the development is 4.4 (codename KitKat). For this processor and OS
version, the Linux kernel version available is version 3.4.

As introduced in chapter 2, the methodology to develop this kernel is iterative:

1. Apply patch and analyze and correct mismatches.

2. Compile. Solve compilation errors and warnings and compile again.

3. Boot. Flash the kernel on the phone and boot. Solve runtime errors and boot again.

4.1.1 Patch

The first step is done using the tool patch1. A patch is a file with a list of changes in a file. Each change
is described by a line number, a number of context lines before and after, and the lines that are removed
or added. The output from patch shows where the mismatches are, and these are analyzed manually. A
mismatch is produced, usually, by one these three causes:

• Different line number. If line numbers do not match between the original file and the target file,
patch may still find the region, and apply the changes showing a warning with the line offset.

• Changed context. If there are small differences in the context of the change, patch may still be
able to detect if that is the correct region. In this case, it applies the changes and shows a warning.
Otherwise, the changes are not applied and it shows an error.

• Cannot find section to change. This produces an error, and the changes are not applied. This
problem may be due to non-existing regions in the target file, changes in function parameters, or other
issues.

Errors are reviewed manually, and a decision is taken for each issue. For example, if there is a section that
has similar context, with a difference in indentation or with extra lines in the context, the changes on that
section are applied. Or if the lines changed are function calls that changed parameters, the lines are changed
manually, and the parameters are set to the target file parameters.

1Manual page: http://linux.die.net/man/1/patch.
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4.1.2 Compiler

The Android Open Source Project (AOSP) [48] provides a compiler to build the kernels [49]. This compiler
is a GCC compiler [50] configured for the specific necessities of Android kernels.

Errors in compilation are usually consequence of errors in the application of the patch, or incompatibilities
between modified files and files new in the target. An example could be a driver only present in the target,
that uses a header file that is modified by the patch. Like with patches, these errors are reviewed manually
and corrected.

4.1.3 Flashing and booting

The compilation of a kernel generates a binary file, named zImage-dtb. This file is a compressed kernel
image with a compiled device tree attached. A device tree file is structured file that describes the physical
devices of the system [51].

To generate a bootable image, this kernel image is combined with a ramdisk image2, and a command line
using the mkbootimg script [53] provided by AOSP. The physical offsets for these components (table 4.1),
a valid ramdisk image, and a valid command line can be extracted from an original boot image using the
script split boot [54].

Base address 0x00000000

Kernel offset 0x00000800

Second stage bootloader offset 0x00F00000

Tags offset 0x02700000

Ramdisk offset 0x02900000

Table 4.1: Physical memory offsets of the boot components for the Hammerhead platform

This bootable image can be flashed into the device using fastboot [55] through USB. When this new
image boots, it is necessary to check if it can load the system, or if it contains errors. For this purpose,
the Nexus 5 mobile phone comes with a built-in debug and serial port on the headphone [56]. If a voltage
greater than 3 V is applied on the microphone entrance, left audio and right audio are converted into a
serial debug port (table 4.2). This serial port is essential to modify and debug the kernel, because it is the
only channel that can output the kernel boot traces. The cable used during development can be seen in
figure 4.1.

Headphone Connector3 Serial

Microphone Sleeve 3.3 V

Ground Ring 2 GND

Right audio Ring 1 TX

Left audio Tip RX

Table 4.2: Pin assignments for Hammerhead headphone serial port

Kernels can usually be debugged remotely using the kgdb debugger [58] through a channel (which is usually
a serial port). In the case of the kernel for the Hammerhead platform, it is not possible to enable kgdb.

2A basic filesystem used as a step to boot the whole system [52].
34 pole connector or TRRS connector has 4 sections called (from tip to top) tip, ring 1, ring 2 and sleeve. And hence the
name: Tip Ring Ring Sleeve connector [57]
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Figure 4.1: Headphone to UART cable

Enabling kgdb produces no effect, and enabling kbd (keyboard interface for kgdb) or running kgdb test
suite causes a boot failure.

As the target hardware is not designed for easy debugging, the only way to debug the kernel is through code
analysis and tracing with printk statements.

The different results from the boot stage depend on the kernel used and the patches applied.

4.2 Real-time patch alternatives

As explained in subsection 1.4.1, the two main options to generate an ARTOS considered in the context of
the ABS project are:

• Modify the Linux kernel to enable real-time capabilities. This can be done with Preempt RT [24].

• Introduce a hypervisor and a real-time secondary kernel. The most common option for this kind of
modification is Xenomai [25].

As it is shown in section 4.6, the real-time performance of Xenomai is better than Preempt RT. But
modifying a kernel to enable Xenomai requires expert knowledge of the hardware platform [59]. Moreover,
as it is explained in section 4.4, the interrupt handling in MSM platform is particular to this architecture,
which would imply deep modifications in the Xenomai interrupt propagation.

Starting from version 3, Xenomai also offers a single kernel configuration, relying on the real-time capabilities
of the kernel underneath (which may be modified with Preempt RT). This is not the behaviour expected,
so this option has been discarded.

On the other hand, there is Preempt RT. It is a patch for the Linux kernel that introduces the features
expected in a RTOS in Linux [60]: threaded interrupts, preemptible spinlocks, mutex priority inheritance,
and high resolution timers, among others. To apply a Preempt RT patch, it is only necessary to have a
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Linux kernel with a patch available for that specific version. For example, Linux version 3.4 has available
patches.

If the kernel used is not a mainline Linux kernel, it may be necessary to adjust certain features to the
architecture.

4.3 Kernel alternatives

4.3.1 Direct approach

The most obvious option to generate an ARTOS is to tackle the problem directly: apply the real-time
patches on top of a Hammerhead kernel. This option is not trivial, as there is a big difference between a
kernel for Hammerhead and the mainline Linux kernel:

• Drivers. Most of the hardware components of the Nexus 5 do not have a matching driver on the
mainline Linux kernel. These drivers are only present in the Hammerhead specific kernel. Some
examples are: camera, power subsystem, vibrator, CPU frequency scaling...

• Device tree images. Mainline Linux kernel does not generate kernel images with a compiled device
tree attached (zImage-dtb).

• Architecture-specific changes. Changes in ARM architecture for Android-specific use cases or MSM
platform particularities, such as in memory management.

• General kernel changes. There are several changes in the generic sections of the kernel, probably
oriented towards a lower power consumption, or optimizations for the MSM platform. These changes
include block devices core, memory management, workqueues, and scheduler core, among others.

• Android specific drivers. Android introduces some features in the kernel such as Ashmem4 or the
Binder5 among others [61].

It is also possible to do it the other way around, by using a Hammerhead patch on top of a mainline Linux
with real-time. But the sheer number of differences between Linux and Hammerhead makes this option very
difficult.

4.3.2 Emulator

Because of the lack of debugging capabilities, the Android emulator [62] (codename Goldfish) is an option
to develop ARTOS. This solution is not perfect, because, although Goldfish contains all Android-specific
code, it lacks all machine-specific code, but the easier debugging may help test features and changes.

This option has been discarded because the Android emulator is based on QEMU, and QEMU lacks real-time
emulation in its code translation mode6. If real-time cannot be emulated, it is not possible to test the result.

Nonetheless, a Goldfish kernel could be used as a base kernel to apply the patches, because it is halfway
between an Android device kernel and a mainline Linux kernel. This option has been discarded because it
requires the application of two patches: add real-time on Goldfish, and add all MSM specific code. This
would increase significantly the amount of work needed.

4Android Shared Memory, similar to POSIX shared memory with a simpler file-based interface, and with support for discarding
memory.

5Android-specifing interprocess communication mechanism, and remote procedure call system.
6In translation mode, QEMU translates the guest OS machine code to the host architecture machine code on the fly

21



An Android real-time kernel and system interface for open nano-satellite constellations

4.3.3 Version porting

Another option would be to use a more modern Linux version, instead of version 3.4. This may allow the
use of already merged features, to avoid adding them with patches.

This would require to combine patches for the kernel 3.4 with patches for a more modern kernel, or find
patch alternatives for the chosen version.

Considering the different versions available, porting the kernel to a more modern version creates more
problems than solutions.

4.4 Hammerhead and Preempt RT

As introduced in the previous sections, the alternative that may work better is to use a Hammerhead kernel
and patch it with the Preempt RT patch.

This patch does not apply cleanly, due to the modification in the scheduler core, the workqueue, and the
memory allocation system. With these sections corrected, and other minor changes, the kernel can boot
(without real-time enabled).

If at this point mpdecision is disabled, this kernel can already run in Preempt RT base mode.

mpdecision is the binary responsible for adjusting CPU frequency on runtime. As it is distributed as a
binary file, it cannot be modified. Moreover, CPU scaling is strongly discouraged when running in real-time
environments [63]. For these reasons, mpdecision is left disabled.

Preempt RT has two working modes: RT base mode, and RT full mode [64]. RT base helps to debug RT
full, and has some options disabled.

To obtain full real-time, more modifications are needed. Threaded interrupts introduce two major errors in
Hammerhead drivers:

• The Nexus 5 contains GPIO multiplexers that rise hardware interrupts when there is an event. The
interrupt handler in the kernel reads the GPIO multiplexer information and rises an interrupt with this
new information. This last step is done using the same low-level wrappers that are used to process
hardware interrupts. This is fine when interrupts are processed isolatedly, but, when interrupts run as
a thread, this may cause unexpected behaviours. It is necessary to block external interrupts before
processing this secondary interrupt.

• GPU register access is mutex-protected. If an interrupt needs access to one of these registers, it is
not necessary to lock the mutex, because it is in interrupt mode. In case interrupts are threaded, it is
necessary to lock the mutex before doing the operations.

Another problem related to full real-time is the use of spinlocks in critical areas. In Preempt RT, spinlocks are
preemptible, which means they can sleep, so critical sections must use real spinlocks, called “raw spinlocks”.

With all these changes, the mobile phone is still not able to load the full Android user space, but it is possible
to connect and use the mobile phone through USB.

4.5 Tests

The testing tool used to measure latency is based on the cyclictest test released with the Xenomai source
code [44]. This code has all Xenomai configuration checks removed, and the possibility to use the system
default priority (for testing a standard Linux system).
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Cyclictest measures the difference between the expected wake up time and the real wake up time of the
function clock nanosleep with a given sleep time. This difference is the latency necessary to wake up
the task.

To stress the system, some artificial load is generated. The load is a process performing additions and
subtractions. The number representing the load means the number of simultaneous processes of this type
running in parallel to the test.

The results from the Nexus 5 mobile phone are compared with a more standard ARM embedded board, a
Raspberry Pi model B [65]. This platform has a BCM2835 SoC with a 700 MHz ARMv6 uniprocessor, and
runs a Linux version 3.8.13.

As they are platforms with very different computing power, the plots cannot be compared directly. For this
reason, the Nexus 5 is tested with lower period and higher load than the Raspberry Pi.

4.6 Results

The variables that are explored in these test results are number of load processes, and sleep time (or period)
for the cyclictest measures.

The data is presented in two formats: line plots and histograms. Line plots show the latency tendency and
progression through time, whereas histograms help visualize the mean and extreme values. Each plot is run
for a certain cyclictest period, and several load values, each represented with a different color.

4.6.1 Non-real-time

(a) Raspberry Pi line plot for period 1ms (b) Raspberry Pi histogram for period 1ms

(c) Android line plot for period 0.1 ms (d) Android histogram for period 0.1 ms

Figure 4.2: Latency measurements for a non-real-time system with small period
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The figure 4.2 is a Linux system (without real-time enabled) with very low period. This produces a latency
accumulation in both platforms when the load is high, because the system cannot cope anymore with both
the deadlines and the load. In the line plots, it is not possible to see some of the loads, due to the high
values of the other loads, but the histogram shows that these loads have values of around 70 µs in both
platforms, with a few high latency peaks.

(a) Raspberry Pi line plot for period 100 ms (b) Raspberry Pi histogram for period 100 ms

(c) Android line plot for period 10 ms (d) Android histogram for period 10 ms

Figure 4.3: Latency measurements for a non-real-time system with high period

The figure 4.3 is also a Linux system, but with a higher period. In this case, the latency does not accumulate,
but there are very significant peaks in latency of more than 150 ms in the case of the Raspberry Pi for all
the loads tested. In the case of Android, the system behaves surprisingly well in the test time-frame.
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4.6.2 Preempt RT Base

(a) Raspberry Pi line plot for period 1ms (b) Raspberry Pi histogram for period 1ms

(c) Android line plot for period 0.1 ms (d) Android histogram for period 0.1 ms

Figure 4.4: Latency measurements for a Preempt RT Base system with small period

The figure 4.4 is a Linux system with Preempt RT base enabled and with very low period. In the case of
the Raspberry Pi, there are a number of high peaks (of the order of 2.5 ms), but the system is stable in
general. Android, on the other side, shows a very good and stable behaviour.

The figure 4.5 is a Linux system with Preempt RT base enabled and with a higher period. In the case of
the Raspberry Pi, the number and size of the latency peaks is even higher than in the previous case. This
may be cause of the period, because when the period is low, the test is shorter, and it is more difficult to
catch work peaks in the underlying system. In the case of Android, like with lower period, the performance
is very stable.

It is interesting that without load, the latency is higher than with load. This may be because the system
enters a low-power mode.
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(a) Raspberry Pi line plot for period 100 ms (b) Raspberry Pi histogram for period 100 ms

(c) Android line plot for period 10 ms (d) Android histogram for period 10 ms

Figure 4.5: Latency measurements for a Preempt RT Base system with high period
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4.6.3 Preempt RT full

(a) Raspberry Pi line plot for period 1ms (b) Raspberry Pi histogram for period 1ms

(c) Android line plot for period 0.1 ms (d) Android histogram for period 0.1 ms

Figure 4.6: Latency measurements for a full Preempt RT system with small period

The figure 4.6 is a system with the full Preempt RT patch enabled and with low period. As expected, the
latency is contained and there are no peaks in any of the systems tested.

In Android, the minimum latency is higher than in Preempt RT base. This is perfectly possible, because a
real-time system is not intended to run fast, but to run predictably, and the mechanisms to do so may slow
down the normal operation of the system.

The figure 4.7 is a system with the full Preempt RT patch enabled and with a higher period. Again, the
systems behave as it is expected, and the latency is bounded.
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(a) Raspberry Pi line plot for period 100 ms (b) Raspberry Pi histogram for period 100 ms

(c) Android line plot for period 10 ms (d) Android histogram for period 10 ms

Figure 4.7: Latency measurements for a full Preempt RT system with high period
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4.6.4 Xenomai

(a) Raspberry Pi line plot for period 1 ms (b) Raspberry Pi histogram for period 1 ms

(c) Raspberry Pi line plot for period 10 ms (d) Raspberry Pi histogram for period 10 ms

Figure 4.8: Latency measurements for a Xenomai system

Xenomai in dual-kernel configuration was also tested in the Raspberry Pi. The figure 4.8 shows the perfor-
mance of this configuration. The minimum latency is of just 5 µs in the case with very low period, and of
less than 20 µs in the case with higher period. These results are much lower than the results with Preempt
RT. But this is expected because of the dual-kernel nature of Xenomai.

In conclusion, these results show both the necessity of using a RTOS to ensure latency bounds and scheduling
determinism, and the performance of the different real-time options studied. Due to its higher computing
power, Android generally shows more stability than the Raspberry Pi, even if the testing parameters are
worse (lower period and higher load) than the Raspberry Pi. In the context of the ABS project, the stability
obtained with Preempt RT base is enough for running satellite control software reliably, with a latency of
less than 40 µs in every case. The performance of this kind of system is not the best (Xenomai shows better
latency figures), but the number of changes required to obtain this solution is smaller, which means it can
be adapted to other hardware platforms more easily.
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5. System Data Bus

Figure 5.1: System Data Bus components

5.1 Design

The System Data Bus or SDB is the component of the software architecture responsible for distributing all
the information fast, reliably and transparently through the system.

The SDB is a core component of the software architecture as it interconnects any other modules in the
system. And it must be modular, so it can adapt to any mission.

For all these reasons, the SDB has been designed like a network switch, where multiple devices (in the
case of the SDB, processes) can be connected an can interact between themselves. This is represented in
figure 5.2.

Every process connected to the SDB has its counterpart inside, named “module” in figure 5.2. This module
is the responsible for interacting with the process using the communication channel, and it also stores state
information, including the group of the process. These groups indicate the privileges of a module: what
commands can and cannot be sent, which commands can be received...

The SDB also contains a USB subsection, represented as “USB queue manager” in the figure. It is responsible
for controlling the packets in and out from the payloads board.

To allow for maximum modularity, the Modular Command System or MCS is also designed. In figure 5.2,
this is depicted as “SDB internal data”. The MCS describes the packet structure and allows mechanisms
to modify freely the information contained in the packets.

The specific characteristics of the SDB are the reason why kernel network management is not sufficient. The
SDB is designed for per-packet filtering and routing based on groups and names, while ensuring the isolation
between layers and reducing the amount of system-wide information needed. Kernel network management,
on the other side, would not allow for such a fine-grained filtering, and would require the broadcasting of
the addresses of each software component.
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Figure 5.2: System Data Bus design

Finally, as the SDB needs to adapt for any architecture of any size and shape, it has been designed multi-
threaded. Each module and section of the SDB runs on a separate thread that is usually in sleep mode to
save resources.

5.2 Implementation

5.2.1 SDB components

A part from the main SDB thread, the USB section and the modules introduced in figure 5.2, two other
components are introduced in implementation: the director and the observer.

The database management does not have a dedicated component. It is a set of resources and functions that
can be called from any of the SDB components. More information on the databases can be found in [66].

The diagram of this implementation is shown in figure 5.3

Main thread

This thread is the responsible to create all other threads and initialize the different components. Once the
system is up and running, it blocks for external signals. When a signal is received, this thread wakes all
threads and requests them to exit cleanly.

The first implementation used POSIX pthread cancel1, and a clean-up function in every thread. But
this function is not present in the libc implementation used in Android2. This final implementation uses a
global “exit” variable and two mechanisms:

1Manual page: http://linux.die.net/man/3/pthread_cancel
2http://stackoverflow.com/a/26824177/947194
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Figure 5.3: System Data Bus implementation

• If a thread would normally be blocked waiting for data from a file descriptor (socket or USB), the
thread is also blocked on a pipe3. When the main thread requests a clean exit, data is written to the
pipe to wake up the thread so it observes the global “exit” variable.

• If a thread is normally blocked waiting on a condition variable4, the main thread signals that variable
to wake up the thread. This way, the thread observes the global “exit” variable and exits cleanly.

SDB director

Given the design of the SDB, it is important to know when processes are trying to connect to the SDB.
This is the reason why sockets5 are used to communicate the SDB with the external processes.

The implementation originally used TCP sockets. The first latency tests showed high latency peaks and high
variability due to TCP internal implementation. To achieve a much more consistent and reliable latency, the
final implementation uses UNIX sockets.

The SDB director initializes the SDB socket as a socket server, and monitors incoming connections. The
director is usually blocked in the accept6 function. When there is a new connection, this thread creates a

3Manual page: http://linux.die.net/man/2/pipe
4Manual page: http://linux.die.net/man/3/pthread_cond_wait
5Manual page: http://linux.die.net/man/2/socket
6Manual page: http://linux.die.net/man/2/accept
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new SDB module to handle that new process.

SDB observer

SDB modules are usually blocked waiting for incoming data either from inside the SDB (a shared memory
region protected by a mutex and a condition variable) or from outside the SDB (a socket). To avoid waiting
in busy loops consuming valuable resources, it is necessary to wait blocked for packets in both channels at
the same time. The SDB observer is the necessary component to achieve that goal.

The SDB observer uses the select7 function to block on the sockets of all active modules. When a socket
contains data, the flag that indicates “data from the socket is available” is set in the corresponding module,
and it is woken up by signaling its condition variable.

New modules may be created while the SDB is blocked. For this reason, the observer also blocks on a pipe.
When a new module is ready, it writes to this pipe, in order to wake the SDB observer up. This is the same
mechanism used by the main thread to close the system cleanly but, in this case, the “exit” global variable
is not set.

Because select is level-triggered instead of edge-triggered, the SDB observer would not block again until
the data is read from the socket. To minimize the use of resources, the observer does not block on sockets
whose modules have the flag “data from the socket available” set. When modules have read the data, they
wake up the observer so it can check on their socket again.

SDB modules

The SDB modules are the core of the SDB and its raison d’être. SDB modules are directly connected to an
external process using a socket, and they are connected to every other SDB module with a shared memory
region. These shared memory regions are protected by mutexes, and have condition variables. Therefore,
threads can block until the state of the region changes.

A SDB module is created by the SDB director when a new connection is started. First, all data structures
and variables are initialized. Then, a handshake packet is read from the socket. This handshake packet
contains the name and group of the process being controlled. The name must be unique, because it is
used for routing. When the module is ready, it wakes the SDB observer up, so it can acknowledge the new
module. Finally, the SDB module blocks waiting for packets either from the socket, or from the memory
region.

When a packet arrives to the module, these cases can happen:

• If a packet comes internally (from the memory region), it is registered in the internal module data,
and sent through the socket.

• If a packet with a request comes externally (from the socket), it is registered in the internal module
data and it is processed. This request may be forwarded to another module, or it may be processed
immediately, depending on the request.

• If a packet with an answer comes externally (from the socket), it is sent to the module that generated
the request. This information is stored in the internal data structures of the module.

Processes can request disconnection by sending the “bye” request. This will clear all data structures and
close the thread of the corresponding module.

7Manual page: http://linux.die.net/man/2/select

33

http://linux.die.net/man/2/select


An Android real-time kernel and system interface for open nano-satellite constellations

SDB USB

The SDB USB subsection contains not one but two threads. The writing thread is blocked on a priority
queue waiting for incoming data from a SDB module to the USB. When a packet arrives, it is converted to
the USB packet format and sent through USB using the USB Accessory protocol [67].

The reading thread is blocked reading on the USB. When a packet arrives from the USB, it is converted
to the SDB packet format and sent to the module that made the request. More information on the USB
subsection and the Arduino board can be found in [66].

5.2.2 Built-in quality of service monitoring

The SDB is a complex system with many threads running in parallel. This kind of system is inherently
difficult to debug and test. Moreover, it is important to obtain performance measurements from the SDB
in order to check the fulfillment of its goals. Specifically, there are two metrics that have a huge impact on
the rest of the system:

• Packet error rate. Losing or discarding packets would make the SDB unreliable. As a message
distributor, the SDB must ensure high reliability in all conditions. This is already ensured in the
current implementation as the SDB always returns an answer, even if it has to be an error. Packets
are only discarded when they are malformed, which indicates a bug in the channel (unlikely), the
interface library or the generator. Moreover, a request-answer transmission does not have a timeout,
which means, an unanswered command may produce a block in some software component, but this
also denotes a bug in some library or component.

• Latency. The SDB is the responsible to transmit information and orders through the system. It is
then important that the SDB does not slow down the transmission significantly to avoid any side effect
on the command execution, and, by extension, the mission itself.

For all these reasons, the SDB includes built-in QoS logging that registers every step of every packet inside
the module. This logging can be enabled and disabled per module at runtime, and the data logged is dumped
on request directly to a file.

A sample output from this SDB subsection for an module called “app2” can be seen in listing 5.1

1 in |714931337 |0 |1| |1461886049562450
2 ready|714931337 |0 |1| |1461886049562541
3 in |2082005750|0 |0|app2|1461886049562917
4 out |2082005750|0 |0|app2|1461886049562998
5 in |2082005750|253|0| |1461886049563289
6 out |2082005750|253|0| |1461886049563297
7 ready|2082005750|0 |0|app2|1461886049563307
8 in |1116046432|0 |4| |1461886049602444

Listing 5.1: Output of QoS logging utility8

The columns represent:

• in: event. It could be one of “in” (the packet entered the module), “out” (the packet exited the
module), “ready” (all operations on the packet have finished) or “scrap” (the packet was discarded).

• 714931337: ID of the packet.

• 0: Type of command. More information in section 5.4.

• 1. Command. More information in section 5.4.

• Blank. Destination of the command, which may be implicit in the type of command.

• 1461886049562450. Absolute time in microseconds from UNIX epoch [68].

8This output is padded with extra spaces for readability
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The QoS log serves the purpose mentioned:

• Debugging: Being able to trace where each packet is in every moment inside the SDB, and being
able to trace when a bogus packet is detected helps the process of debugging of both the SDB and
the components connected to the SDB.

• Performance measures: The trace output contains the time of each event of a packet inside the SDB.
This information allows to obtain latency measurements and check the SDB performance. Sections
5.5 and 5.6 are devoted to this purpose.

5.3 SDB Libraries

In order to simplify operations with the SDB, a library has been developed. This library contains wrappers to
common functionalities and adds some extra functionalites for the components of the software architecture
that will interact with the SDB.

An important addition of these libraries are callbacks. Callbacks are functions that are run automatically
when a given command arrives.

5.3.1 Methods

The methods in this library are detailed in table 5.1. Functions with integer return value return 0 when the
function succeeds and a negative error code when it fails.

int sdb_connect(
const char *name,
SDBGroup group)

Connect to the SDB with the given name and group.

int sdb_disconnect(void) Send the “bye” command to the SDB and close the open socket.

int sdb_register_callback(
MCSCommand cmd,
void (*callback)

(MCSPacket *pkt_in,
MCSPacket **pkt_out))

Register a callback for the given command. The callback gets
as input the packet that triggered the callback, and outputs the
answer to that input.

int sdb_unregister_callback(
MCSCommand cmd)

Unregister the callback for the given command.

int sdb_send_sync(
MCSPacket *pkt_in,
MCSPacket **pkt_out)

int sdb_send_sync_and_free(
MCSPacket *pkt_in,
MCSPacket **pkt_out)

Send a packet and block until the answer is received. The
and free version frees the input packet after being sent.
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int sdb_send_async(
MCSPacket *pkt_in,
SDBPendingPacket **pkt_out)

int sdb_send_async_and_free(
MCSPacket *pkt_in,
SDBPendingPacket **pkt_out)

Send a packet and return a handler to check the state of the
transmission. See listing 5.2 for implementation detail. The
and free version frees the input packet after being sent.

int sdb_wait_async(
SDBPendingPacket *pkt)

Block until the asynchronous transmission is completed. Out
packet can be read from pkt->pp pkt.

int sdb_check_async(
SDBPendingPacket *pkt)

Check the state of the asynchronous transmission. It returns 1
if transmission is completed, 0 if transmission is not completed,
or a negative error code in case of error.

void sdb_pending_packet_free(
SDBPendingPacket *pkt)

Free an asynchronous transmission handler.

Table 5.1: Public interface for the SDB library

1 typedef struct SDBPendingPacket {
2 unsigned int pp_id;
3 MCSPacket *pp_pkt;
4 bool pp_valid;
5 pthread_mutex_t pp_lock;
6 pthread_cond_t pp_cond;
7 } SDBPendingPacket;

Listing 5.2: SDBPendingPacket format

5.3.2 Usage

Any process that wants to communicate with the SDB should use these libraries. The usual steps are:

1. Register callbacks using sdb register callback for those commands that can be received at any
moment.

2. Connect to the SDB using sdb connect.

3. Do all necessary operations and communications using sdb send sync and sdb send async.

4. If the process finishes, disconnect from the SDB using sdb disconect before exiting.

An example HWmod using these libraries can be found in appendix A

5.3.3 Implementation

Data structures

The SDB library is implemented based on two lists:

• SDB callback list: this list contains the pairs of command - callback that are registered.

• SDB pending packet list: this list contains all the pending packets. This is, the packets that have
been sent but have not received an answer yet.
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These lists are initialized using a constructor function (called when the library is loaded), and they are freed
using a destructor function (called when the library is unloaded).

A pending packet is defined as in listing 5.2, where each field means:

• pp id: Id of the packet.

• pp pkt: Memory region for the answer packet.

• pp valid: True if pp pkt is valid.

• pp lock: Lock for this pending packet.

• pp cond: Condition variable for this pending packet. It is signaled when pp valid is set to true. It
is used by sdb async wait and sdb send sync.

Connection and disconnection

The function sdb connect opens a socket connection to the SDB and sends the handshake packet. It also
starts a thread responsible for watching the socket for incoming data. When this thread receives a packet,
three cases can happen:

• If a packet is an answer from a previously sent command, the request packet is retrieved from the
internal data, and marked as ready. Any threads locked for this packet are woken up.

• If a packet contains a command that has a callback registered, a new thread is created to run the
callback. The return packet of the callback will be sent as an answer.

• Otherwise, the packet is answered with an error code.

This reading thread can also detect when the socket has been closed unexpectedly because, in this case, a
read on the socket returns no data. When this happens, it will try to reconnect to the SDB automatically.

The function sdb disconnect sends a “bye” packet to the SDB, and requests the reading thread to exit.
This operation is done in the same way the main thread in the SDB notifies the other threads to exit: with
a pipe and a global variable.

It is important to note that a call to sdb disconnect does not unregister callbacks. If a new connection
to the SDB is started afterwards, it will still have the same callbacks.

Sending packets

Packets can be sent to the SDB using the functions sdb send sync and sdb send async. Both
functions add a new element to the pending packet list and send the given packet.

The sync function blocks on the pending packet condition variable until the answer packet is received.

The async function returns the pending packet handler. This handler can be managed with the functions
sdb check async, which returns the current state, or sdb wait async, that blocks at the pending
packet handler until the answer packet is received.

5.4 Modular Command System

5.4.1 Introduction

The keystone for achieving the goals of the SDB, high modularity while ensuring robustness, is the Modular
Command System or MCS. The MCS allows the user to define and customize what commands and packets
are valid inside the SDB.
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The MCS has two main components: the configuration file and the helper library.

5.4.2 Configuration file

The MCS configuration file is a simple JSON [69] formatted file. JSON is used because it allows for simple
reading and modification both manually and automatically. A full example of this configuration file can be
found in appendix B.

The MCS configuration file has the format from listing 5.3.

1 {
2 "command_list" : [
3 command1,
4 command2,
5 ...
6 commandN
7 ]
8 }

Listing 5.3: MCS Configuration File

With each command defined as in listing 5.4

1 {
2 "name" : "string",
3 "description" : "string",
4 "nargs" : integer,
5 "raw_data" : boolean,
6 "type" : "string",
7 "config" : config
8 }

Listing 5.4: MCS Command definition

The fields that define a MCS command are:

• name: Command identifier string. Must be composed just by lowercase letters, numbers (not the first
character) and underscores. It must be unique per each command.

• description: Human readable description, used for creating documentation. Might be null.

• nargs: Fixed number of arguments that this command accepts. Might be zero.

• raw data: This field will be true when the command also has arbitrarily long data attached. In
case there is no raw data, it should be false.

• type: Type of the command. It is one of state, message or payload.

• config: configuration fields dependent on the type of command.

Messages

Commands of type message are simple messages sent from one module of the SDB to another, and each
one of them should be able to understand it. In this case, the field config is defined as in listing 5.5.

1 {
2 "destination" : "string",
3 "origin_groups" : ["string", "string", ...],
4 "destination_groups" : ["string", "string", ...],
5 "response_size" : integer
6 }

Listing 5.5: MCS messages specific configuration
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The configuration fields in listing 5.5 are:

• destination: The destination for this message. It can be static (the value is the name of the
destination), an argument (the value is @arg), or it can be null (the message is for the SDB).

• origin groups: The array of groups that can send this command. Groups not mentioned cannot
send the command. The wildcard any can be used, and all other elements in the array can be ignored.

• destination groups: The array of groups that can receive this command. If the destination is
static or null, it is ignored. Groups not mentioned cannot receive the command. The wildcard any
can be used, and all other elements in the array can be ignored.

• response size: number of bytes expected in the response. It can be 0 if there is no expected data,
or -1 if the size is unknown beforehand.

States

If the command is of type state, it relates with a system state, such as the value of a temperature sensor.
The values requested using these commands are stored in an intermediate database. The field config for
states is defined in listing 5.6.

1 {
2 "destination" : "string",
3 "dimensions" : integer,
4 "return_type" : "string",
5 "unit" : "string",
6 "dimension_name" : "string"
7 }

Listing 5.6: MCS states specific configuration

The configuration fields in listing 5.6 are:

• destination: Destination of this message.

• dimensions: Fixed number of dimensions that this state has. Must be one or bigger.

• return type: Type of each of the dimensions of the state. It is one of int, float or string.

• unit: Human readable unit of the state. Might be null.

• dimension name: Human readable name of the dimensions in the order returned by the update
function. Might be null.

Payloads

Commands of type payload are messages that will be sent through the USB subsystem to the payload
controller (Arduino board). In this case, the field config is defined as in listing 5.7.

1 {
2 "command" : integer,
3 "parameters" : integer,
4 "arguments" : [integer, "string", ...],
5 "data" : "string",
6 "response_size" : integer
7 }

Listing 5.7: MCS payload specific configuration

The configuration fields in listing 5.7 are tightly related to the USB packet specification detailed in [66]:

• command: The cmd field for the command.
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• parameters : The parameters field for the command.

• arguments: Array with the same number of elements as in nargs. Might be the value of an
argument in the command, using @argX, where X is the number of argument, starting by 0.

• data: The data field in the command. It might be null, @arg to indicate the same data as in
the packet, or hexadecimal numbers (to send binary data).

• response size: Number of bytes expected back as the command response. It can be 0 if there is
no expected response, or -1 if the size is unknown beforehand.

Translation

This configuration file is processed automatically when the ABS software architecture is compiled. This
process generates the C header file that guides the decisions of the SDB. Detail on the translation output
can be found in figure 5.4, and an example of a result file in appendix B.

Figure 5.4: MCS translation process

5.4.3 MCS Library

The other important part of the MCS is the library. This library defines MCS packets and helper functions.

The MCS packet format is shown in listing 5.8

1 typedef struct MCSPacket {
2 unsigned int id;
3 enum MCSType type;
4 unsigned short cmd;
5 unsigned short nargs;
6 unsigned char *args;
7 char *dest;
8 unsigned short data_size;
9 unsigned char *data;

10 } MCSPacket;

Listing 5.8: Definition of a MCS packet

The elements for these packets are:

• id: unique ID.

• type: Type of command.

• cmd: Command.

• nargs: Number of arguments.

40



CHAPTER 5. SYSTEM DATA BUS

• args: List of arguments, with size defined by nargs.

• dest: Destination of the packet, if not specified implicitly by the command or the command type.

• data size: Size of raw data.

• data: Raw data, with size defined by data size.

The valid types for MCS packets are messages, states, payload, OK, OK with data or error. A MCS packet
of type message, state or payload is answered with a packet with type OK (command succeeded), OK
with data (command succeeded and generated output data) or error (command failed). These requests and
answers are linked in the system because both share the same packet ID.

To simplify operations with MCS packets, the set of functions in table 5.2 is defined.

MCSPacket *mcs_read_command(
int rfd,
int wfd)

Read a MCS packet from a file descriptor.

int mcs_write_command(
MCSPacket *pkt,
int fd)

int mcs_write_command_and_free(
MCSPacket *pkt,
int fd)

Write a MCS packet to a file descriptor. The and free version frees
the input packet after being sent.

MCSPacket *mcs_ok_packet(
const MCSPacket *from,
void *data,
size_t size)

MCSPacket *mcs_ok_packet_id(
unsigned int id,
void *data,
size_t size)

MCSPacket *mcs_ok_packet_data(
const MCSPacket *from,
void *data,
size_t size)

MCSPacket *mcs_ok_packet_data_id(
unsigned int id,
void *data,
size_t size)

MCSPacket *mcs_err_packet(
const MCSPacket *from,
int err_code)

MCSPacket *mcs_err_packet_id(
unsigned int id,
int err_code)

Create a packet of type OK, OK with data, or error, given the request
packet. In the id version, the packet id is used directly, instead of
the request packet.
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MCSPacket *mcs_create_packet(
MCSCommand cmd,
unsigned short nargs,
unsigned char *args,
unsigned short data_size,
unsigned char *data)

MCSPacket *mcs_create_packet
_with_dest(

MCSCommand cmd,
char *dest,
unsigned short nargs,
unsigned char *args,
unsigned short data_size,
unsigned char *data)

Create a new packet given all necessary fields. If the with dest
version is used, the packet destination can be specified (only in the
case the command allows it).

int mcs_err_code_from_command(
const MCSPacket *pkt)

Extract the error code from an error packet.

const char *mcs_command_to_string(
const MCSPacket *pkt)

Convert an MCS command to a string, for debug purposes.

bool mcs_is_answer_packet(
const MCSPacket *pkt)

Returns true if the packet is of type OK, OK with data, or error.

MCSCommand mcs_command(
MCSPacket *pkt)

Extract the MCS command from the packet.

void mcs_free(MCSPacket *pkt) Free a MCS packet structure.

Table 5.2: Public methods in the MCS library

5.5 Testing

As stated in subsection 5.2.2, debugging the SDB is challenging. To simplify this operation, a number of
unit tests has been developed. These tests can run after compilation to verify that changes in code did not
introduce errors in the system. Current tests include:

• Check that all types of MCS commands can be generated, and send and received through a channel,
using the MCS library functions.

• Check that the SDB can be started, and messages can be sent from and to two different modules.

• Check that a connection to the SDB can be established and messages can be sent and received using
the SDB library functions.

The other tests that can be run on the SDB are stress tests, which can also be used to analyze the
performance of the SDB in harsh conditions. As introduced in subsection 5.2.2, the metric that defines the
SDB performance is packet latency. This latency can be studied in the SDB using the output from the QoS
subsystem. Considering all the parameters that can be changed in a packet and all the ways a packet can
be sent, five variables are considered when studying latency in the SDB:

• Packet type. Depending on the packet type, the processing is different. The tests that were run are
focused only on packets of type message.
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• Packet rate or time between packets. This time is between a full connection (request sent and answer
received) and the next.

• Size of the data in the packet.

• Number of modules connected to the SDB.

• Relation between modules. The tests that were run use the two extreme cases: relation all to one
(a2o), where all modules send packets to the same module, and all to all (a2a), where the module N
just send to the module N + 1 (and therefore, it receives from module N - 1).

In order to sweep these variables automatically, a test suite has been developed. This test suite contains a
fully configurable test module and a test controller.

The test controller has the following inputs:

• Number of packets sent per test case per module.

• Packet rate interval (minimum, maximum and step).

• Data size interval (minimum, maximum and step).

• Number of sending modules interval (minimum, maximum and step).

• Relation between modules.

When the test controller is run, all the parameters are read and checked, an output file is created and the
SDB process is started. Next, the intervals for packet rate, data size and number of modules are swept. For
every possible combination of these variables (a test case), the required number of modules are spawned.
These modules are created with the test case configuration, and they are synchronized to start in the same
moment. The test controller then waits until the sender modules finish, and sends a SIGINT signal to the
receiver module (if it is present). Once all test cases are run, a SIGINT signal is sent to the SDB to request
a clean exit, and the test controller exits.

The test module can be configured with the following input parameters:

• Name of the module.

• Type of module, which can be receiver (will only wait for incoming packets, and all the other parameters
are ignored), or sender.

• Destination of the packets.

• UNIX time to start sending packet. It is used to synchronize modules.

• Packet rate.

• Data size.

• Number of packets to send.

When the test module is run, all the parameters are read and checked, and an output and log files are
created. Then, callbacks for the two types of message used (test message and test message with data)
are registered, and the test module connects to the SDB. The next step is to request QoS logging for this
module, and sleep until the test start time. When the test module wakes up, it starts to send packets with
the conditions specified in the input parameters. In the case it does not have to send packets, it waits for
the SIGINT signal. Finally, a request to dump the QoS logging to the output file is sent, and the test
module disconnects from the SDB and exits.

This test suite allows to test the SDB in a wide variety of conditions and scenarios.
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5.6 Results

In the current SDB version, all the tests run without any error, which indicates the SDB in its current state
is perfectly usable.

As introduced in subsection 5.2.2, these tests can also be used to study the performance of the SDB, in
specific, the latency of packets. Using the test suite described in section 5.5, and a Python script to process
automatically the test output, a few latency plots for different cases were generated.

The test results are represented using line plots, with several lines and several dots. Each dot represents 100
packets per module transmitted in the same test case, with the maximum and minimum values indicated
with error bars. Modules are synchronized at the beginning of each test case. Each of the lines represent
an event inside the SDB:

• Time 0: time when the packet entered the sender SDB module.

• Blue ( ): time when the packet left the sender SDB module.

• Green ( ): time when the packet entered the receiver SDB module.

• Red ( ): time when the packet left the receiver SDB module (through the socket).

• Cyan ( ): time when the packet entered the receiver SDB module (through the socket). The
difference between the red line and the cyan line is also the latency of two socket transmissions plus
the processing time in the receiving process.

• Magenta ( ): time when the packet left the receiver SDB module.

• Yellow ( ): time when the packet entered the sender SDB module.

• Black ( ): time when the packet left the sender SDB module. This is also the total latency for the
packet.

All the test results are run on both a reference platform and the target platform. The reference platform is
a laptop with an Intel i5 processor with 2 cores and 4 execution threads, and 4 GB of RAM memory. The
target platform is an LG Nexus 5 [19].

5.6.1 Packet rate

(a) PC (b) Android

Figure 5.5: SDB latency measurements with variable packet rate
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The figure 5.5 is the plot corresponding to a fixed number of modules (1 sending and 1 receiving) with mode
all to one and a fixed data size (0 bytes) for a variable packet rate (from 0 to 100 ms in steps of 10 ms).

This plot shows an average latency for PC of less than 650 µs for any packet rate, except for the case with
0 ms between packets, where the latency drops. This may be caused by scheduling policies. In Android, the
average latency is less than 500 µs, except for the cases with 50 ms and 70 ms between packets. This may
be caused by background processes or some power-saving mechanism.

5.6.2 Data size

(a) PC (b) Android

Figure 5.6: SDB latency measurements with variable data size

The figure 5.6 is the plot corresponding to a fixed number of modules (1 sending and 1 receiving) with
mode all to one and a fixed packet rate (10 ms) for a variable data size (from 0 to 1900 bytes in steps of
100 bytes).

In the PC case, there is a very slight increase in latency with larger data sizes, whereas in Android it is much
more intense. Again, Android shows some variability and peaks due to background processes or low power
mechanisms.

5.6.3 Modules with relation all to all

Figures 5.7 and 5.8 are the plots corresponding to variable number of modules (from 1 to 20 in increments
of 1) with mode all to all. The data size is fixed to 0 bytes. Note that the case of one module in mode all
to all corresponds to one module talking to itself. In this case, the versions with and without error bars are
shown for better clarity because the peaks are higher.

In figure 5.7, packet rate is 10 ms. This packet rate allows the system to process all packets comfortably,
resulting in a more or less constant average latency. As the system load is higher, the maximum latency
values are also higher than previous test cases. In the PC case, the higher load allows the system to devote
more resources in running the SDB and the processes connected, giving a very low latency of less than 150
µs in general. On the other side, the Android system with higher load shows higher latency, of around 1500
µs in average. The case of one module is special, because it represents one module talking to itself. This
case has a higher latency in PC than in Android.

In figure 5.8, packet rate is 0. This means, all modules are trying to send as soon as they receive the previous
answer. In this case, both the PC and Android show an increase in latency. As in the other test cases,
Android shows peaks in the latency values.
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(a) PC with error bars (b) PC without error bars

(c) Android with error bars (d) Android without error bars

Figure 5.7: SDB latency measurements with variable number of modules, relation all to all and packet rate 10 ms
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(a) PC with error bars (b) PC without error bars

(c) Android with error bars (d) Android without error bars

Figure 5.8: SDB latency measurements with variable number of modules, relation all to all and packet rate 0 ms
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5.6.4 Modules with relation all to one

(a) PC with error bars (b) PC without error bars

(c) Android with error bars (d) Android without error bars

Figure 5.9: SDB latency measurements with variable number of modules, relation all to one and packet rate 10 ms

Figures 5.9 and 5.10 are the plots corresponding to a variable number of modules (from 1 to 19 in intervals
of 1, plus a receiving module) in mode all to one. The data size is fixed to 0 bytes. Again, the versions with
and without error bars are shown.

In figure 5.9, packet rate is 10 ms. This case is very similar to figure 5.7, but the Android system copes
with the load much worse. In this case, it seems that one and two modules in PC are less efficient than in
the other cases.

Finally, figure 5.10 shows a very extreme case: all modules sending packets to one module as fast as they
can. This test case shows a steady latency slope, as it would be expected.

In conclusion, the SDB shows very good figures of latency, of very few milliseconds for a PC in the worst-case
scenario, and less than 10 ms for an Android in the same scenario. It is important to mention that most
of the contribution and variability on the latency is not in the SDB itself, but the processing of the packets
outside of it: sending through the socket, generating an answer, and sending the answer back to the SDB.
In general, Android shows higher latency and higher variability than the PC, both for the difference in power
and the difference in the operating system.
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(a) PC with error bars (b) PC without error bars

(c) Android with error bars (d) Android without error bars

Figure 5.10: SDB latency measurements with variable number of modules, relation all to one and packet rate 0 ms
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6. Conclusion

This project has been oriented to the design and implementation of an Android real-time kernel and a
message distributor as part of a software platform for open nano-satellite development in the context of the
Android Beyond the Stratosphere project. The software developed is published online as open-source code1

that can be reviewed, used and modified by anyone interested.

This project has been developed in the margins established in the project management section (chapter 3).

6.1 Android Real Time Operating System

The Linux kernel underneath Android has been modified to enable real-time capabilities, and it is now
possible to run native applications with contained latency. Although the resulting system does not have all
real-time features enabled, its latency margins are good enough for the ABS project.

These results are an important step not only for the ABS project, but for many other projects that would
benefit from having a Real Time Operating System on a user-friendly platform such as Android. Examples
could be medicine, where biological signals must be measured with strict latency, or industry, where new
control systems could be implemented on Android devices, and many more.

6.2 System Data Bus

On the other side, the core message distributor for the ABS software architecture, the SDB, has been
developed following nano-satellite software design standards. The result is a very modular and flexible
platform, while still ensuring robustness in its operation. All the tests run on this software component show
a very predictable performance with a very small latency, which indicate that this message distributor does
not affect in any significant way the performance of the components that use it.

The SDB, and by extension, the whole ABS software architecture can be modified for any nano-satellite
mission and can be deployed in a very short period of time. The only steps required are:

1. Download the software architecture from the official sources.

2. Decide on the specific MCS commands required for this nano-satellite mission and introduce them in
the MCS configuration.

3. Develop the necessary Hardware Modules and App Modules to run all the experiments specific to the
mission.

4. Compile and write to the target device, the Android phone.

1The ABS software architecture can be found at https://github.com/abs-platform/abs-software. The ARTOS
can be found at https://github.com/abs-platform/artos-d2, with documentation about the process at http:
//abs-platform.github.io/artos-d2/
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6.3 Future work

The work described in this thesis fulfills the objectives proposed. but there is still a lot of work pending to
improve the results even further.

The current ARTOS implementation uses Preempt RT in its base mode, because the system with Preempt
RT full is still not able to load the Android user space. To achieve a proper ARTOS that can be used in
any kind of application (industrial, medical, aerospace...), it is critical to solve the issues with the current
full version.

The SDB is also functional in its current state, but there are still improvements that can be added, such
as merging the SDB observer and SDB director, which would simplify the SDB implementation. Another
possible improvement is to add functionalities specifically designed for HWmods in the libraries, such as
registering a callback that halts the module. Some functionalities are also still missing in the SDB, such
as the libraries to interact with Java applications, or databases. Moreover, the Distributed System Layer,
which enables inter-satellite communication inside a constellation of nano-satellites, has not been designed
yet.

All these issues must be addressed in the future to obtain a fully functional platform that can be used in
any nano-satellite or nano-satellite constellation project.
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A. SDB Library example

1 #include <mcs.h>
2 #include <sdb.h>
3 #include <sdb_group.h>
4

5 int hardware_start(void)
6 {
7 int ret;
8 unsigned char arguments[2] = {0x6, 1};
9 MCSPacket *pkt_out;

10 /* Set pin 0x6 on the Arduino board */
11 MCSPacket *pkt_in = mcs_create_packet(MCS_PAYLOAD_DIGITAL_WRITE, 2,
12 arguments, 0, NULL);
13 ret = sdb_send_sync(pkt_in, &pkt_out);
14

15 if (ret == 0) {
16 if (pkt_out->type != MCS_TYPE_OK) {
17 ret = mcs_err_code_from_command(pkt_out);
18 }
19 mcs_free(pkt_out);
20 }
21

22 mcs_free(pkt_in);
23

24 return ret;
25 }
26

27 int hardware_stop(void)
28 {
29 /* Stop hardware */
30 }
31

32 int hardware_status(void)
33 {
34 /* Check hardware status */
35 }
36

37 MCSPacket *do_experiments(void)
38 {
39 /* Run experiments */
40 }
41

42 void check(MCSPacket *pkt_in, MCSPacket **pkt_out)
43 {
44 int ret = hardware_status();
45 if (ret == NOERROR) {
46 *pkt_out = mcs_ok_packet(pkt_in);
47 } else {
48 *pkt_out = mcs_err_packet(pkt_in, ret);
49 }
50 }
51

52 void init(MCSPacket *pkt_in, MCSPacket **pkt_out)
53 {
54 int ret = hardware_start();
55 if (ret == NOERROR) {
56 *pkt_out = mcs_ok_packet(pkt_in);
57 } else {
58 *pkt_out = mcs_err_packet(pkt_in, ret);
59 }
60 }
61

62 void run(MCSPacket *pkt_in, MCSPacket **pkt_out)
63 {
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64 *pkt_out = do_experiments();
65 }
66

67 void halt(MCSPacket *pkt_in, MCSPacket **pkt_out)
68 {
69 int ret = hardware_stop();
70 if (ret == NOERROR) {
71 *pkt_out = mcs_ok_packet(pkt_in);
72 } else {
73 *pkt_out = mcs_err_packet(pkt_in, ret);
74 }
75 }
76

77 int main(int argc, char **argv)
78 {
79 sdb_register_callback(MCS_MESSAGE_CHECK, check);
80 sdb_register_callback(MCS_MESSAGE_INIT, init);
81 sdb_register_callback(MCS_MESSAGE_RUN, run);
82 sdb_register_callback(MCS_MESSAGE_HALT, halt);
83

84 sdb_connect("app", SDB_GROUP_HWMOD);
85

86 while (1) {
87 pause();
88 }
89 }

Listing A.1: Example of a HWmod using the SDB Libraries and the MCS Libraries
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B. MCS Library specification details

B.1 JSON full example

1 {
2 "command_list" : [
3 {
4 "name" : "procman_start",
5 "description" : "Start the Process Manager",
6 "nargs" : 0,
7 "raw_data" : false,
8 "type" : "message",
9 "config" : {

10 "destination" : "procman",
11 "origin_groups" : ["syscore"],
12 "destination_groups" : [],
13 "response_size" : 0
14 }
15 },
16 {
17 "name" : "soc",
18 "description" : "Get state of charge of the batteries",
19 "nargs" : 0,
20 "raw_data" : false,
21 "type" : "state",
22 "config" : {
23 "destination" : "eps",
24 "dimensions" : 1,
25 "return_type" : "float",
26 "unit" : "%",
27 "dimension_name" : null
28 }
29 },
30 {
31 "name" : "arduino_get_pin",
32 "description" : "Get the value of the given pin in the Arduino board",
33 "nargs" : 1,
34 "raw_data" : false,
35 "type" : "payload",
36 "config" : {
37 "command" : 1,
38 "parameters" : 6,
39 "arguments" : ["@arg0"],
40 "data" : null,
41 "response_size" : 1
42 }
43 }
44 ]
45 }

Listing B.1: Full example of a MCS configuration file

B.2 C translation output

1 /* AUTOGENERATED. DO NOT MODIFY */
2

3 #ifndef __AUTO_MCS_H
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4 #define __AUTO_MCS_H
5

6 #ifndef __MCS_H
7 #error "This header should not be included directly. Include mcs.h"
8 #endif
9

10 typedef enum MCSCommand {
11

12 } MCSCommand;
13

14 static const struct MCSCommandOptionsMessage mcs_command_message_list[] =
15 {
16

17 };
18

19 #define mcs_command_message_list_size
20

21 static const struct MCSCommandOptionsState mcs_command_state_list[] =
22 {
23

24 };
25

26 #define mcs_command_state_list_size
27

28 static const struct MCSCommandOptionsPayload mcs_command_payload_list[] =
29 {
30

31 };
32

33 #define mcs_command_payload_list_size
34

35 #endif

Listing B.2: Skeleton for the MCS C header file

The definitions of the elements from listing B.2 are specified in listing B.3, where each field name corresponds
to the same field name in the configuration file.

1 /* Datatypes for the autogenerated lists of commands */
2 typedef struct MCSCommandOptionsCommon {
3 const char *name;
4 unsigned short nargs;
5 bool raw_data;
6 int response_size;
7 } MCSCommandOptionsCommon;
8

9 struct MCSCommandOptionsMessage {
10 struct MCSCommandOptionsCommon cmd;
11 const char *destination;
12 SDBGroup origin_groups[SDB_GROUP_MAX];
13 SDBGroup destination_groups[SDB_GROUP_MAX];
14 };
15

16 struct MCSCommandOptionsState {
17 struct MCSCommandOptionsCommon cmd;
18 const char *destination;
19 unsigned int dimensions;
20 };
21

22 struct MCSCommandOptionsPayload {
23 struct MCSCommandOptionsCommon cmd;
24 unsigned char command;
25 unsigned char parameters;
26 const char *arguments[2];
27 const char *data;
28 };

Listing B.3: Structures used for the MCS C translation

1 /* AUTOGENERATED. DO NOT MODIFY */
2

3 #ifndef __AUTO_MCS_H
4 #define __AUTO_MCS_H
5

6 #ifndef __MCS_H
7 #error "This header should not be included directly. Include mcs.h"
8 #endif
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9

10 typedef enum MCSCommand {
11 MCS_MESSAGE_PROCMAN_START = 0,
12 MCS_STATE_TEMPERATURE_ARDUINO = 65536, /* 0x10000 */
13 MCS_PAYLOAD_ARDUINO_GET_PIN = 131072, /* 0x20000 */
14 } MCSCommand;
15

16 static const struct MCSCommandOptionsMessage mcs_command_message_list[] =
17 {
18 {
19 .cmd = {
20 .name = "procman_start",
21 .nargs = 0,
22 .raw_data = false,
23 .response_size = 0,
24 },
25 .destination = "procman",
26 .origin_groups = {SDB_GROUP_SYSCORE},
27 .destination_groups = {},
28 },
29 };
30

31 #define mcs_command_message_list_size 1
32

33 static const struct MCSCommandOptionsState mcs_command_state_list[] =
34 {
35 {
36 .cmd = {
37 .name = "soc",
38 .nargs = 1,
39 .raw_data = false,
40 .response_size = 4,
41 },
42 .destination = "eps",
43 .dimensions = 1,
44 },
45 };
46

47 #define mcs_command_state_list_size 1
48

49 static const struct MCSCommandOptionsPayload mcs_command_payload_list[] =
50 {
51 {
52 .cmd = {
53 .name = "arduino_get_pin",
54 .nargs = 1,
55 .raw_data = false,
56 .response_size = 1,
57 },
58 .command = 1,
59 .parameters = 6,
60 .arguments = {"@arg0"},
61 .data = NULL,
62 },
63 };
64

65 #define mcs_command_payload_list_size 1
66

67 #endif

Listing B.4: Full example of an auto-generated MCS C header
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