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Abstract
Escola Tècnica d’Enginyeria de Telecomunicació de Barcelona

Bachelor Degree of Engineering Physics

Real-Time MIMO receiver for mode-division multiplexing over coupled-mode
optical fibers

by Jie LUAN

Today’s demand for increasing information transmission capacity has led us to de-
velop new technologies to beat the theoretical capacity limit. Among these, advances
in digital fiber-optic communication have been a especially promising approach to
achieve such target because of the high speed of light and its multiple physical di-
mensions to take advantage of.

This project aims to apply and expand our knowledge acquired in the first introduc-
tory course in signal theory to understand how real world digital communication sys-
tems work. In particular, we will focus on the multiple-input multiple-output (MIMO)
digital signal processing (DSP) part of the digital fiber-optic communication.
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Chapter 1

Introduction

Just imagine we want to send a text message from the US to somebody in China. First
you punch into your smartphone and then it goes to the nearest cell phone tower which
receives the signal where electromagnetic wave is converted to light and goes to the
nearest central office, where it is multiplexed and combined with millions of other text
messages. Lots of these signals will terminate in American cities, but ours need to go
into a fiber that goes across the Pacific Ocean. Then the signal reaches China, our text
message is identified, it experiences the reverse process to what happened in the US
until it reaches our friend. The trip takes 1/20-th of a second, that is the time it takes
light to traverse 10000 km. This is happening millions and millions of times every hour
across the globe and all of that is carried by the fiber-optic network that none of us can
see but all of us will use.

So optical fibers have often been considered to offer large capacity to support the
rapid traffic growth essential to our information society. However, as long-haul single-
mode fiber (SMF) systems is approaching its capacity limit1 (Fig. 1.1), new techniques
must be developed to satisfy the increasing demand.

FIGURE 1.1: The capacity increase trend of approximately ×10 bit/s
every 4 years, as evidenced by different experiments using novel tech-

niques over the last three decades.

1Such limit is derived from the Shannon information capacity limit as an extension for a nonlinear fiber
channel, under quite broad assumptions. For more details see [7].
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2 Chapter 1. Introduction

Fortunately there are still dimensions of lights to explore, as for instance the spatial,
and research are being carried out across the globe. Chapter 3 will give us an idea of
two of the schemes to manage parallel channels at the same time, the mode-division
multiplexing and the space-division multiplexing.

In Chapter 2 we will walk through some concepts on digital communication theory
which will help us gain a better understanding of our ultimate experiment, explained in
Chapter 5, which is already an important step in opening more possibilities for optical
transmission.

As for the MIMO DSP part, we will also need to study some of the adaptive filters
algorithms. This will be done in Chapter 4



Chapter 2

Notions on Digital Communication

2.1 Description of the general problem

The general scheme for digital communication is shown as follows:

FIGURE 2.1: In fiber-optic communication, complex modulation is usu-
ally applied at the transmitter’s terminal.

Maybe it seems obvious, but still it is worth saying that, as we live in a physical
world, all signals with which we make communication possible are real. They are
carried by real physical media such as copper cables and optical fibers in the form of
current and light or, in general, a wave. Complex signals are just for making easy to
understand the mathematics behind them, to carry out simple calculations.

2.2 Complex modulation for coherent communications

2.2.1 Complex envelope

Suppose we want to send and receive a real signal in time domain using a physical
carrier over long distances. We know that real signals in time domain have hermitian
symmetry in its frequency counterpart through Fourier transform. In other words, if
s(t) ∈ R, then S(−ω) = S∗(ω). Therefore, without losing information, we may only
work with the positive spectrum of s(t), splitting it from the negative spectrum. Then,
if the signal contains high-frequency components but concentrated around a certain
frequency fc, we may bring it down to around zero frequency by applying a frequency
shift 1. After performing these two steps, known as downconversion, let us call this new
signal s̃(t) or the complex envelope of s(t).

s̃(t) =
1√
2

(
s(t) + jŝ(t)

)
e−j2πfct (2.1)

1Remember that zero frequency yields a DC signal, much more easier to work with.

3



4 Chapter 2. Notions on Digital Communication

where ŝ(t) is called the Hilbert transform of s̃(t), defined as the output of s̃(t)
through a filter with transfer functionH(f) = −jsign(f) 2. It results from the even-odd
parts decomposition of the filters transfer function, which is nothing but the Heaviside
step function defined in the frequency domain:

U(f) =
1

2
(1 + jH(f)) =

{
0, f < 0

1, f ≥ 0
(2.2)

The action becomes more clear if written in frequency domain:

S̃(f) =
√
2u(f + fc)S(f + fc) (2.3)

It is clear from the definition of s̃(t) that our original signal s(t) can be retrieved by
upconverting its complex envelope:

s(t) =
√
2Re{s̃(t)ej2πfct} (2.4)

Detection of complex modulated signals

Things become easier to understand by thinking complex signals as two parallel real
signals carried by a physical medium using two of its independent properties. Usually
such properties used are the amplitude, the frequency or the phase of a physical wave.
First we couple the two real signals into one, thus forming a complex signal, or equiva-
lently, a complex envelope. The information traveling through the medium is precisely
the complex envelope, which is later decoded in the receiver’s terminal to retrieve its
two components, namely in-phase and quadrature, or I and Q.

In fact, mathematically speaking, the I − Q components been sent are the real and
the imaginary parts of the complex envelope , i.e.,

s̃(t) = sI(t) + jsQ(t) (2.5)

Therefore,

s(t) =
√
2Re{(sI(t) + jsQ(t))e

j2πfct} (2.6)

=
√
2sI(t) cos(2πfct)−

√
2sQ(t) sin(2πfct) (2.7)

Likewise, to obtain the I − Q components in the transmitter’s terminal, a similar
scheme is implemented, plus the use of two LPF (low-pass filter), as we saw in the
downconverting process.

A similar approach can be followed by taking the polar coordinates of the complex
envelope. In this case, we can write

s̃(t) = e(t)ejθ(t) (2.8)

being e(t) and θ(t) the envelope and the phase. Thus,

s(t) =
√
2Re{(e(t)ejθ(t)ej2πfct} (2.9)

= e(t) cos(2πfct+ θ(t)) (2.10)
2The Hilbert transform performs a −π phase shift at all frequencies for the input. Note that it is also

real valued for real valued inputs because of its complex-conjugate symmetry.
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2.2.2 Constellation diagram and Gray coding

A constellation diagram represents the possible symbols that may be selected by a
given modulation scheme as points in the complex plane. Measured constellation di-
agrams can be used to recognize the type of distortions the signal may have suffered
while propagating through the channel. Such distortions can be additive white Gaus-
sian noise, phase noise, interference, or crosstalk in the case of coupled-core fibers, as
we will see in Chapter 3. The MIMO DSP step carries out the recovery of the signals by
selecting the most probable signal been transmitted, based on the Euclidean distance
between the corrupted version of the received symbol and all the symbols of the con-
stellation. The symbol closest to it will be the decision. Therefore, this is maximum
likelihood detection, there is always a certain probability of wrong decision.

Oftentimes we can observe the effects that different types of distortions cause to the
signals. For example, if the constellation points show a fuzzy pattern, then we can tell
that Gaussian noise has been added, or a rotationally spreading points pattern on the
diagram is a sign of phase noise, etc.
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FIGURE 2.2: Effects on the received constellation diagram caused by (A)
Gaussian noise, (B) phase noise, and (C) Gaussian plus phase noise.

Depending on the performance requirements of the transmission, whether more ca-
pacity for the channel or more robustness for the transmission’s quality, one can choose
among a large variety of modulating constellation schemes. Fig. 2.3 and 2.4 represent
the mostly used ones in nowadays digital communication.

The symbols are coded with the so-called Gray coding scheme. A binary Gray code
of length 2N assigns to each of a contiguous set of 2N symbols a binary string of length
N such that two strings assigned to two adjacent symbols differ by exactly one bit. Gray
codes are also known as single-distance codes, meaning that the Hamming distance3

between adjacent symbols is always 1. Fig. 2.5 shows some Gray-coded constellation
diagrams. Note that such code is not unique. In the case of QPSK, for instance, we can
deduce that in case that the received symbol was corrupted, it would be more likely
that it happened to be one of its reflections over the coordinate axis (one bit wrong)
than its reflection over the origin of coordinates (both bits are wrong).

3The Hamming distance between two strings of equal length is the number of positions at which the
corresponding symbols are different. In another words, it measures the minimum number of substitu-
tions required to change one string into the other, or the minimum number of errors that could have
transformed one string into the other.
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FIGURE 2.3: Examples of constellations using only one quadrature of the
field (here the real part). The number of bits/symbol is given by log2M
whereM is the total number of symbols. The number log2M of symbols

is used as the first digit of the format label.

FIGURE 2.4: Examples of constellations that use both quadratures of the
field.

FIGURE 2.5: Gray-coded constellation diagram for QPSK, 8-PSK, and
rectangular 16-QAM.
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2.3 SNR in AWGN channels

Recall that an AWGN channel is a channel that is affect by a noise which is

• Additive: it is added to any noise that might be intrinsic to the channel.

• White: it has uniform power across the frequency band for the channel.

• Gaussian: it has a normal distribution in the time domain with an average time
domain value of zero, i.e., ∼ N(0, σ2).

Given the outputs of our adaptive filter algorithm, we want to estimate the SNR.

Formulation of the problem

The output can be modeled with the following random variable:

YYY = (
√
PSe

jφφφ +

√
PN
2
nnn0 + j

√
PN
2
nnn1) · ejθθθ (2.11)

where
√

PN
2 nnn0 + j

√
PN
2 nnn1 and ejθθθ are the modulus and phase noises, respectively.

For convenience, we reexpress YYY as the following, by defining α =
√
PS and β =√

PN/2:
YYY = (αejφφφ + βnnn0 + jβnnn1) · ejθθθ (2.12)

We assume the random variables φφφ, ninini and θθθ have the following values, all uniformly
distributed within their intervals.

φφφ ∈ {φ0, φ1, φ2, φ3} (In general it can be any finite set {φi}0≤i<N )
nininii=0,1 ∼ N(0, 1)
θθθ ∈ [0, 2π)

Let us define ZZZ to be |YYY |2, hence

ZZZ = |YYY |2 = YYY † · YYY (2.13)

= (αejφφφ + β(nnn0 + jnnn1)) · (αe−jφφφ + β(nnn0 − jnnn1)) (2.14)

= α2 + αβ

[
ejφφφ(nnn0 − jnnn1) + e−jφφφ(nnn0 + jnnn1)

]
+ β2(nnn20 +nnn21) (2.15)

= α2 + αβ

[
nnn0(e

jφφφ + e−jφφφ)− jnnn1(ejφφφ − e−jφφφ)
]
+ β2 (2.16)

= α2 + 2αβnnn0 cosφφφ− 2αβnnn1 sinφφφ+ β2nnn20 + β2nnn21 (2.17)

In the case that {φ0, φ1, φ2, φ3} = {0, π/2, π, 3π/4}, we will have four different pos-
sible values for ZZZ:

Z0Z0Z0 = α2 + 2αβnnn0 + β2nnn20 + β2nnn21 = (α+ βnnn0)
2 + (βnnn1)

2 (2.18)

Z1Z1Z1 = α2 − 2αβnnn1 + β2nnn20 + β2nnn21 = (α− βnnn1)2 + (βnnn0)
2 (2.19)

Z2Z2Z2 = α2 − 2αβnnn0 + β2nnn20 + β2nnn21 = (α− βnnn0)2 + (βnnn1)
2 (2.20)

Z3Z3Z3 = α2 + 2αβnnn1 + β2nnn20 + β2nnn21 = (α+ βnnn1)
2 + (βnnn0)

2 (2.21)
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We notice that indeed all the random variables in the parenthesis are normally dis-
tributed, and therefore ZZZ can be compactly written as

ZZZ =
1∑
p=0

mmm2
p (2.22)

wheremmm0 ∼ N(α, β2) andmmm1 ∼ N(0, β2). This is the same as saying that

ZZZ/β2 =

1∑
p=0

mmm2
p (2.23)

wheremmm0 ∼ N(α/β, 1) andmmm1 ∼ N(0, 1)
So ZZZ/β2 follows a noncentral χ2 distribution with two degrees of freedom (r = 2)

with noncentrality parameter λ = α2/β2. Then,

µZZZ/β2 = λ+ r = α2/β2 + 2 (2.24)

σ2ZZZ/β2 = 2(2λ+ r) = 4(α2/β2 + 1) (2.25)

which implies
µZZZ = β2 · µZZZ/β2 = α2 + 2β2 = PS + PN (2.26)

σ2ZZZ = (β2)2 · σ2ZZZ/β2 = 2β2(2α2 + 2β2) = (2PS + PN )PN (2.27)

Estimation of the SNR

In our formulation the signal and the noise are:

SSS =
√
PSe

jφφφ · ejθθθ (2.28)

NNN =

(√
PN
2
nnn0 + j

√
PN
2
nnn1

)
· ejθθθ (2.29)

Their power are obtained as:

Pow(SSS) = |SSS|2 = SSS† ·SSS = PS (2.30)

Pow(NNN) = |NNN |2 =NNN † ·NNN =
PN
2

(nnn20 +nnn21) = PN (2.31)

So the SNR can be estimated as the ratio between these two values, i.e., PS/PN . So
far we have the system formed by equations 2.26 and 2.27:{

µZZZ = PS + PN

σ2ZZZ = (2PS + PN )PN

which has a unique solution, considering PS and PN to be positive:PS =
√
µ2ZZZ − σ2ZZZ

PN = µZZZ −
√
µ2ZZZ − σ2ZZZ

Hence,
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SNR =
PS
PN

(2.32)

=

√
µ2ZZZ − σ2ZZZ

µZZZ −
√
µ2ZZZ − σ2ZZZ

(2.33)

=
1√
1

1−
σ2
ZZZ
µ2
ZZZ

− 1
(2.34)

(2.35)

which can be estimated using the statistical mean and variance for the theoretical ones.





Chapter 3

Multiplexing Techniques for
Fiber-Optic Communication

Optical communication technology has been advancing rapidly for several decades,
supporting our increasingly information-driven society and economy. Much of this
progress has been in finding innovative ways to increase the data-carrying capacity of a
single optical fiber [5]. However, as demand has grown and technology has developed,
we have begun to realize that there is a fundamental limit to fiber capacity of about 100
Tb/s per fiber for systems based on conventional single-core single-mode optical fiber
as the transmission medium.

Nevertheless, as light wave is defined by more parameters than just amplitude,
we have more possibilities to encode information by using all of the light wave’s de-
grees of freedom. Fig. 3.1 shows the mathematical description of the electric field
of an electromagnetic wave with two polarization components Ex and Ey. These or-
thogonal components are used in polarization-division multiplexing (PDM) as two dif-
ferent channels to transfer independent signals. In wavelength-division multiplexing
(WDM), different frequencies ω are applied as different channels for independent data
transfer at these frequencies/wavelengths. For complex modulation schemes both the
amplitude E and the phase φ of a light wave can be modulated for defining the above
described symbols.

FIGURE 3.1: Mathematical description of an electromagnetic wave (elec-
tric field), where we see the I-Q components of each polarization.

Thus each of these dimensions can be used as parallel channels for transmitting
independent signals, which constitutes the idea of multiplexing1. In this chapter we are
going to introduce some of the basic multiplexing schemes.

1Sometimes it is shortened as muxing, which explains the origin of the MUX symbol that appears in
block diagrams. The inverse process, i.e., the separation of a single channel into multiple parallel ones, is
thus called demultiplexing.

11
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3.1 Mode-division multiplexing (MDM)

An important concept and also a problem to deal with in MDM is called mode cou-
pling. Although ideally the normal modes2 of light propagation are independent of
each other, in real systems such as the one inside the multi-mode fiber (MMF) there
is some perturbation that causes different modes to interact between them, which is
translated into a energy transfer and therefore mixture of information. Also there is
a phenomenon called differential mode group delay (DMGD), which exhibits the dif-
ferent propagation speeds of different modes. The MIMO DSP part of our experiment
precisely has to uncouple the received information and solve the DMGD issue.

Multi-mode fibers

MDM in MMFs was already proposed in 1982 [16], but subsequent experimental re-
sults were limited in bit rate and transmission distance, mainly because of the large
number of supported modes and the large DMGD present in the fibers under study.
Moreover, in MMFs, the distinguishable light paths have significant spatial overlap,
and consequently signals are susceptible to couple randomly among the modes during
propagation. Crosstalk occurs when light is coupled from one mode to another and
remains in that mode on detection. To mitigate these impairments, MIMO equalization
has to be implemented at the receiver, the complexity of which scales quadratically
with the number of modes, making this approach unsuitable for long-haul transmis-
sion.

Recent advances have led to the development of fibers supporting a small number
of modes, the so-called few-mode fibers (FMFs, Fig. 3.5 (c)), that have a low DMGD.
The most significant demonstrations have so far concentrated on the simplest FMF,
which supports a total of six polarization- and spatial modes. The three spatial modes
are approximated by the linearly polarized (LP3) and the twofold degenerate pseudo-
mode (Fig. 3.2).

FIGURE 3.2: Theoretical and realistic intensity profiles of some linear
combinations of LP01 and LP11 modes. The realistic ones are measured

after 96-km and 33-km 6-mode FMF.

2Sometimes also known as eigenmodes, hence the name of eigenlight that appears in our experiment
setup (see Sec. 5.1).

3A simple way to remember the shape of a LP mode is that a LPxy mode has x diagonal cuts and y
rings.
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3.2 Space-division multiplexing (SDM)

Continued traffic growth has motivated the exploration of the last degree of freedom
of light which we did not mention before: the spatial domain. Central to this effort has
been the development of brand new fibers for space-division multiplexing (SDM) and
mode-division multiplexing (MDM) [11].

The general scheme for realizing SDM transmission in optical fibers with N par-
allel paths is depicted in Fig. 3.3. In it we can distinguish four main steps, namely
the generation of the signals by N parallel transmitters, the transmission through fiber
of the multiplexed signal, the detection of the N parallel demultiplexed signals by N
coherent receivers, and MIMO DSP of the received signals. We have to bear in mind
that, whatever the type of fibers used, SDM always have to overcome the problem of
crosstalk, which is any phenomenon by which a signal transmitted on one channel cre-
ates an undesired effect in another channel. The reason is simply the close proximity
of the paths, which is inevitable if we want to achieve high core densities. Therefore
the MIMO DSP part is designed to compensate any crosstalk that may have been intro-
duced by the optical transmission system. This way, a capacity gain of a factor N can
be ultimately achieved.

FIGURE 3.3: N ×N SDM transmission system based on coherent MIMO
DSP.

Next we are going to explore some of the approaches to realize SDM in a feasible
way, by using different types of fibers.

Multicore fibers

A direct way of establishing distinguishable light paths would be through bundles of
single-mode fibers (Fig. 3.5 (a)). However, it cannot achieve higher core densities,
which makes them undesireble in order to use space efficiently.

A multicore fiber (MCF, Fig. 3.5 (b)), however, has distinct single-mode cores em-
bedded directly into it, and therefore use them as independent light paths, at the same
time achieving a higher core density. To limit crosstalk, one has to ensure that the fiber
cores are well separated.

Nevertheless, these fibers are susceptible to fracture, meaning that MCF diameters
greater than 2̃00 µm are not considered practical, which imposes a fairly rigid limit on
the number of cores that can be incorporated in MCFs for long-haul transmission. Most
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fibers to date have a hexagonal arrangement of seven cores. In this configuration, the
central core has the highest level of crosstalk as it has six nearest neighbors, whereas
the outer cores have only three nearest neighbors.

Coupled-core fibers

Although it may sound contradictory, studies have shown that strong mode coupling
can potentially reduce the MIMO DSP complexity [15]. Even more surprising is the
fact that mode coupling can be beneficial when applied to MCFs, by bringing the cores
closer together to ensure strong linear mode coupling (Fig. 3.5 (d)), all establishing
some supermodes4 (Fig. 3.4) defined by the array of cores, which can then be used to
provide spatial information channels for MDM to which MIMO can be applied. This
enables higher spatial channel densities for MCFs than can be obtained using isolated
cores designs. Indeed, in this case the MCF is essentially equivalent to a MMF.

FIGURE 3.4: Linearly polarized super-modes and corresponding far-
fields of the 3-core CCF.

4The presence of such strong coupling between cores suggests that the modes of the fiber can no longer
be considered simple superpositions of the individual core modes, but the modes of the whole structure,
the supermodes, have to be considered.

FIGURE 3.5: Different approaches for realizing MDM/SDM. Here are
shown the cross section of (a) fiber bundles, (b) multicore fibers, (c) few-
mode fibers, (d) coupled-core fibers, and (e) photonic bandgap fibers.
But still, reducing cost and power consumption are formidable chal-

lenges.
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3.3 Combining different techniques

As long as we exploit orthogonality in one or more of the physical dimensions shown
in Fig. 3.6, multiplexing can be performed, i.e., independent bit streams can share a
common transmission medium. Remember that two signals are orthogonal if mes-
sages sent in these two dimensions can be uniquely separated from one another at the
receiver without impacting each other’s detection performance. The amount of indi-
vidual bit streams that can be packed onto a single transmission medium determines a
system’s aggregate capacity.

FIGURE 3.6: Different modulation and multiplexing schemes depending
on the dimension used to convey parallel information signals.

So far we have seen that we can combine MDM and SDM by transmitting light
waves of different modes while at the same time using the spatial dimension, that was
the case of CCFs. But there are many other possible combination schemes. Fig. 3.7 gives
another example of wavelength-division multiplexing combined with polarization-
division multiplexing. We see that now each independent wavelength channel is ex-
tended in the polarization dimension, which is orthogonal to the wavelength dimen-
sion.

FIGURE 3.7: WDM can be combined with PDM.





Chapter 4

Adaptive Filters Algorithms

4.1 State of the problem

Consider the following scheme:

The target of our problem is to design a filter (a function g(x)) that minimizes a
certain function of the error. A complete description of the variables for our problem is
provided as follows.

• x[n]: Input to the system. For the sake of the analysis that follow, we define the
input signal vector x[n] := (x[n], x[n− 1], ..., x[n−N + 1])T .

• y[n]: Output of the system, estimation of d[n].

• d[n]: Desired signal, also called reference.

• e[n]: Estimation error.

• ξ(g(x[n])): Cost function we want to minimize.

In case that x and d are jointly distributed Gaussian processes, it can be shown that
the optimum function g(x) is linear. Therefore, the previous scheme is reduced to the
following:

In other words, what we want to implement now is a linear filter h := (h[0], h[1], ..., h[N−
1])T ) and the problem is reduced to find the N coefficients of h. Note that y can be ex-
pressed as y = hHx.

17
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4.2 The least mean-square (LMS) algorithm

Given the filter (or estimator) h, the mean square error (MSE) of h with respect to the
reference d is defined as

ξ(h) : = E
[
|e|2
]
= E

[
|d− y|2

]
= E

[
|d− hHx|2

]
(4.1)

= E
[
|(d− hHx)H(d− hHx)|2

]
(4.2)

= E
[
|d|2
]
− E

[
d∗hHx

]
− E

[
d(hHx)H

]
+ E

[
|hHx|2

]
(4.3)

= E
[
|d|2
]
− hHE

[
d∗x
]
− E

[
dxH

]
h + hHE

[
xxH

]
h (4.4)

The least mean-square (LMS) algorithm aims at finding the coefficients of the filter
h that minimizes the MSE. However, this requires full knowledge of the expectation
values in the expression we have just derived, for instance, the auto-correlation ma-
trix E

[
xxH

]
. Therefore we propose to minimize a slightly modified MSE, without the

expectation operator:

ξ̃(h) : = |e|2 = |d− hHx|2 = |(d− hHx)H(d− hHx)|2 (4.5)

= |d|2 − d∗hHx− d(hHx)H + |hHx|2 (4.6)

= |d|2 − d∗hHx− dxHh + xHhhHx (4.7)

which is the same expression just without the expectation operator, because the
operator is linear.

Now, applying the rules of complex multivariate derivation, the gradient with re-
spect to h∗ is

∇h∗ ξ̃(h) = 0− d∗x− 0 + xHhx (4.8)

= (−d∗ + xHh)x = (−d∗ + y∗)x = −e∗x (4.9)

Therefore, using the steepest gradient approach to find the optimum h, the filter
would be updated according to

hn+1 = hn − µ∇h∗ ξ̃(hn) = hn + µe∗x (4.10)

4.3 Blind adaptation techniques

The design of the adaptive optimal Wiener filter using the LMS algorithm requires
training a previously known sequence of signals before each adaptation. Although
being accurate in case of convergence, this algorithm makes the adaptation slow if the
channel is highly varying. An alternative would be a class of algorithms that do not
require such a training set, however by losing accuracy due to the no availability of
reference signals to train, so to assure the filter’s optimality. Hence there is a trade off
between high speed adaptation and degree of its accuracy.
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4.3.1 The constant-modulus algorithm (CMA)

Among this class of algorithms, the so-called blind adaptations, there is the constant
modulus algorithm (CMA), whose cost function to be minimized is defined as

JCMA := E[(R2 − |y|2)2], R2 =
E[|x[n]|2]
E[|x[n]|]

(4.11)

The name of the algorithm comes from the fact that given a real number R2, which
is the modulus to be compared with, the cost function penalizes any values y that are
far from R2, bringing them closer to it when the algorithm is reaching to the minimum
through steepest gradient approach. Thus, at convergence, the distance between the
y’s and the modulus remains more or less constant.

In a more general way, we could have defined our cost function to be1

J(h) := J(y(h)) = E[|Rp − |y|p|q] (4.12)

Sometimes, because of lack of knowledge about the expectations, we replace expec-
tation by instantaneous value, just as we did with the LMS algorithm, by defining a
modified MSE. Then the gradient is

∇h∗J(h) = ∇h∗
[
(Rp − |y|p)2

]q/2 (4.13)

=
q

2
·
[
(Rp − |y|p)2

]q/2−1 · 2(Rp − |y|p) · ∇h∗(−|y|p) (4.14)

(4.15)

As
|y|p = (y∗y)p/2 (4.16)

and

∇h∗(y∗y) = ∇h∗(xHhhHx) = xHhx = y∗x (4.17)

the previous calculation yields

∇h∗J(h) =
q

2
·
[
(Rp − |y|p)2

]q/2−1 · 2(Rp − |y|p) · −p
2
|y|2(p/2−1) · y∗x (4.18)

= −pq
2
· (Rp − |y|p)q−1 · |y|p−2 · y∗x (4.19)

Taking p = 2 and q = 2 which reduces to the case of constant modulus algorithm,
the gradient is

∇h∗J(h) = −2(R− |y|) · y∗ · x (4.20)

and therefore the adaptation scheme for our filter is

hn+1 = hn − µ∇h∗ ξ̃(hn) = hn + µ(R− |y|) · y∗ · x (4.21)

where we have absorbed the factor 2 in µ.
1The case for q = 2 is referred as Godard algorithm in the literature.
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4.4 Frequency-domain adaptive filters (FDAF)

4.4.1 Block adaptive filtering

So far we have seen that in order to converge to the optimum linear filter its N coef-
ficients are updated every time a new input is inserted, because the gradients depend
explicitly on the input vector x. What if such update occurs only after a block of data
has been accumulated? This is the essence of the so-called block adaptive filtering al-
gorithms, which reduce the complexity of their corresponding non-block counterparts
by a factor proportional to the block’s size.

Recall the LMS algorithm, with the coefficients update given by 4.21:

hn+1 = hn + µe∗[n]x[n] (4.22)

Each time a new input x[n] is received, it causes the input vector x[n] to change and
the recursion to be done. This is why before we did not write out explicitly indexes for
e and x indicating the number of iteration, it was clear that the recursion uses the most
recent updated e and x. But now we can also perform the recursion, i.e., update the
coefficients, after L input samples x[n], x[n+ 1], ..., x[n+ L− 1] are received:

hn+L = hn+L−1 + µe∗[n+ L− 1]x[n+ L− 1] (4.23)

From 4.21 we know the expression of hn+L−1, then

hn+L = hn+L−2 + µe∗[n+ L− 2]x[n+ L− 2] + µe∗[n+ L− 1]x[n+ L− 1] (4.24)

We keep substituting until we reach the last updated value we know, which is hn.
The result is

hn+L = hn + µ

L−1∑
m=0

e∗[n+m]x[n+m] (4.25)

Note that for the output y[n], it is updated using the same hn until L data samples
are accumulated, according to

y[n+m] = hHn x[n+m] (4.26)

Since 4.25 is a block update that operates at a lower sampling rate than that of the
incoming data, it will be convenient to define a new time index k where one increment
corresponds to L increments of the original index n. Without loss of generality, we can
substitute n = kLwhere n is an integer multiple of k. By factoring the argument kL+L
as (k+1)L on the left-hand side of the equation and dropping the explicit dependence
of h on L, we have the following equivalent block update:

hk+1 = hk + µ

L−1∑
m=0

e∗[n+m]x[n+m] (4.27)

which can also be rewritten as
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FIGURE 4.1: The averaged gradient estimate is a more accurate estimate
of the true block gradient. We also see a smoother convergence.

hk+1 = hk + µL

(
1

L

L−1∑
m=0

e∗[n+m]x[n+m]

)
(4.28)

= hk + µL
1

L
∇̂k (4.29)

Sometimes the summation term
∑L−1

m=0 e
∗[n +m]x[n +m], denoted with the nabla

symbol (as for gradient) with a hat (as for estimations), is called the block gradient
estimate because it takes the place where before was the gradient. In the rewritten form,
1/L · ∇̂k is therefore called the averaged gradient estimate, which is a more accurate
estimate of the true block gradient, as shown in Fig. 4.1. However, because now the
effective step size µL is µ divided by L, its range of convergence is shrunk by a factor
of L, meaning that the convergence rate is slower. Moreover, in order to achieve a
similar convergence time compared to the non-block approach, in terms of number of
iterations, the block LMS requires more data because of the lower convergence rate.

It is reported that L = N is the most efficient value for the FFT algorithms.
Note that 4.28 is a linear correlation2, hence it can be efficiently computed using

FFT algorithms presented in Sec. 5.2.1, similarly with when computing a convolution,
which turns out to be a product in frequency domain3.

Furthermore, 4.26 and 4.28 can be compactly written in matrix forms:

y[k + 1] = hHk x
∼
[k] (4.30)

hk+1 = hk + µx
∼
[k] · eH [k] (4.31)

2The linear correlation of two signal vectors x[n] and y[n] is defined as zcorr[n] =
∑N
m=0 x[m]y[n+m],

analogous to the convolution zconv[n] =
∑N
m=0 x[n]y[n−m].

3The procedure for computation of a convolution is therefore by first performing DFT, then a product
of the signal vectors in frequency domain, and finally convert the result back to time domain by inverse
DFT.
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where we have defined the vectors

y[k] =
(
y[kL] y[kL+ 1] · · · y[(k + 1)L− 1]

)
e[k] =

(
e[kL] e[kL+ 1] · · · e[(k + 1)L− 1]

)
and the matrix

x
∼
[k] =


...

...
...

x[kL] x[kL+ 1] · · · x[(k + 1)L− 1]
...

...
...


Also bear in mind that

hk =
(
hk[0] hk[1] · · · hk[L− 1]

)T
4.4.2 The overlap-save algorithm

For convenience, in this section let us introduce another set of notations for our signals.
As before, we will use bold letter to denote vectors. Brackets will be used to numerate
samples, while parenthesis will specify the number of iteration. Therefore, the output
can be expressed as4

y(n) = x(n)Tw(n) (4.32)

= [x[n], x[n− 1], ..., x[n−N + 1] · [w0(n), w1(n), ..., wN−1(n)]
T (4.33)

=

N−1∑
m=0

wm(n)x[n−m] (4.34)

This means that the output vector y is a convolution between x and the filter w. As we
know, this operation can be done faster in frequency domain by simply multiplying
the transformed signals, according to the circular convolution theorem:

yk(n) = DFT−1(DFT(xk(n)) ·DFT(w(n)) (4.35)

where we have defined xk(n) with its components

xk[n]
def
=

{
x[n+ kL] 1 ≤ n ≤ L+M − 1

0 otherwise.
(4.36)

and

yk(n)
def
= xk(n) ∗w(n) (4.37)

Hence, what we have recovered is the circular convolution, not the linear convo-
lution which is the one we are interested in. Fortunately, the latter can be performed
using the overlap-save algorithm5. In order to understand how this algorithm works,

4Just to be consistent with our implementation, in which we use the letterw instead of h for the impulse
response of the filter, and there is no transpose conjugate.

5In fact there is another algorithm for computing the linear convolution. It is called overlap-add. But
due to its not so high usage, we are not going to present it in this work.
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let us first illustrate the difference between linear and circular convolutions with the
example in Fig. 4.2, with the two finite length discrete time signals been convoluted
x1[n] = [−1, 2, 3,−2, 0, 1] and x2 = [5, 4, 3, 2, 1]. Recall the definitions of the two types
of convolutions, where N is the maximum of the lengths of the signals and M ≥ N :

yconv[n] = x1[n] ∗ x2[n] =
N−1∑
m=0

x1[m]x2[n−m] (4.38)

ycirc[n] = x1[n]~ x2[n] =
M−1∑
m=0

x1[m]x2[(n−m) mod M ] (4.39)

Thus, graphically yconv[n] can be performed by reflecting x2 and right shifting it n
times, then lining it up vertically with the samples of x1, multiplying sample by sample
and summing the products together. On the other hand, ycirc[n] can be performed
graphically in a very similar manner, by using circular reflection and shifts of x26. The
result is

yconv[n] = {−5 6 20 6 4 7 3 1 2 1} (4.40)
ycirc[n]M=6 = {−2 7 22 7 4 7} (4.41)
ycirc[n]M=7 = {−4 8 21 6 4 7 3} (4.42)
ycirc[n]M=8 = {−3 7 20 6 4 7 3 1} (4.43)
ycirc[n]M=9 = {−4 6 20 6 4 7 3 1 2} (4.44)

ycirc[n]M=10 = {−5 6 20 6 4 7 3 1 2 1} = yconv[n] (4.45)
(4.46)

For M > 10, ycirc[n] is just yconv[n] padded with M − 10 zeros to the right. We
marked in red the subsets that match part of the linear convolution.

In general, the circular convolution will be the same as linear convolution (disre-
garding the padded zeros) if M ≥ L1+L2−1, i.e., the sum of the input signals’ lengths
minus 1. Otherwise only a portion of it will correspond to a subset of the linear convo-
lution, as shown in the previous example. It is also true that if the circular convolution
size isL2 (5 in our example), then the lastL1−L2+1 samples of the circular convolution
correspond to a linear convolution, that is 2 samples in our case.

The same conclusions can be generalized if instead of samples we have blocks.
Imagine that we want to compute the convolutions of the following signals of size
2N − 1 formed by concatenating blocks of size N :

x̃(k) = [x[kN −N ], · · · , x[kN − 1], x[kN ], · · · , x[kN +N − 1]] = [x(k − 1) x(k)]
(4.47)

w̃(k) = [w0[k], · · · , wN−1[k], 0, · · · , 0] = [w(k) 0] (4.48)
(4.49)

Then it is true that the lastL1−L2+1 = 1−1+1 = 1 block of the circular convolution
correspond to the linear convolution, being that precisely the one between the blocks

6As both convolutions are commutative, we could have performed them using the same graphical
scheme just explained but instead by maintaining x2 and reflecting and shifting x1
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FIGURE 4.2: Linear and circular convolutions between two discrete time
signals with M = N = 6.
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FIGURE 4.3: The overlap-save sectioning algorithm.

x(k) and w(k). Notice that now the lengths refer to the number of blocks instead of
samples.

Fig. 4.3 shows the block diagram of the overlap-save algorithm, which is the one
we have implemented. The name of the algorithm comes from the fact that only N
new samples are introduced before the 2N sized FFT is computed, which means a 50%
overlap, while for the output we save7 half of the result.

4.4.3 General scheme of the FDAF algorithms

In order to compute the output y(k) more efficiently, we have seen that we can work
in frequency domain by taking advantage of the circular convolution theorem and the
overlap-save algorithm. Therefore the adaptive filter’s coefficients, W (k), must be up-
dated in frequency domain as well. Let us think now about the error term, which is the
key component that closes our feedback loop. We can say that there are two possible
ways to implement a FDAF, depending on whether the error computation is carried
out in time domain or in frequency domain. Fig. 4.4 shows the block diagrams of the
two approaches.

It turns out that for adaptive algorithms where the error is a linear function of the
data (e.g., the LMS algorithm explained in Sec. 4.2), these two approaches may yield
similar results. However, for algorithms that have linear error functions (e.g., the CMA
algorithm of Sec. 4.3.1), the two structures can lead to very different results and only
one may provide acceptable performance. In our case, we have implemented the CMA
algorithm and it can be shown that it is preferable to use the first scheme. Since our
algorithm is given by8

W(k + 1) = W(k) + µ · X∗(k)(R2 − |y(k)|2) · y∗(k) (4.50)

the error term is

e(k) = (R2 − |y(k)|2) · y∗(k). (4.51)

Hence, after plugging our adaptive algorithm into the scheme, the complete block
diagram is as shown in Fig. 4.5. We use a reference modulus R =

√
2, which ideally

is the modulus of the four undistorted QPSK points. This way we bring the received
symbols close to one of the four points during convergence.

7Sometimes the name overlap-discard is given to the algorithm, for it discards half of the result.
8This result can be obtained by following the same arguments we did in Sec. 4.3.1, but with y(n) =

x(n)Tw(n).
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FIGURE 4.4: Two approaches for implementing a FDAF. In (a), error
computation is performed in time domain, while in (b) it is done in fre-

quency domain.

FIGURE 4.5: The overlap-save FDAF scheme using CMA as adaptive
algorithm.



Chapter 5

The First Real-Time MIMO Receiver
for MDM over CMOF

5.1 Setup of the experiment

The scheme of the coherent optical 6× 6 MIMO experiment is shown in Fig. 5.1.
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FIGURE 5.1: Experimental setup.

Next we are going to describe the different parts of the experiment with more de-
tails.

At the transmitter’s terminal

• An external cavity laser (ECL) with a 1:4 beam splitter: With 100-kHz linewidth, it
generates and split the optical beam into four beams, three to the Mach-Zehnder
modulators and one for monitoring.

• A programmable-pattern generator (PPG): It generates twelve 2.5 Gb/s trans-
mit signals modulated with 1/16-th pattern length delay-decorrelated copies of a
pseudo-random binary sequence of length 231 − 1.

• Three polarization-diversity Lithium-Niobate inphase-quadrature modulators (PD-
IQMs, the Mach-Zehnder modulators): They modulate the signals from the PPG
onto an optical carrier at 1550 nm, generated from the ECL.

27
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FIGURE 5.2: Cross section of the 60-km long CCF, in which we can dis-
tinguish the three cores for space-multiplex the signals.

• Three Erbium-doped fiber amplifiers (EDFAs): They amplify the polarization-
division multiplexed QPSK (PDM-QPSK) signals from the output of the modula-
tors.

• A monitor: 1% of the amplified signal is sent for monitoring, as a way to supervise
the correct functionality of the components.

• Three variable optical attenuators (VOAs, also called eigenlights): They are used
to adjust the desired input power of the signals launched into the PL.

• A photonic lantern (PL): It is used as a space-division multiplexer to orthogonally
launch into the three cores of the CCF with a core pitch of 29 µm and a cross
section shown in Fig. 5.2.

The physical channel through which the light travels is a 60-km CCF.

At the receiver’s terminal

• A photonic lantern (PL): Using this second PL, demultiplexing is performed to
separate the coupled signals from the three cores of the CCF.

• Three Erbium-doped fiber amplifiers (EDFAs): The received signals are strongly
attenuated after been sent through the 60-km fiber, thus the need to amplify them.

• Three variable optical attenuators (VOAs): As before, the VOAs allow us to adjust
the input power for the next detection step.

• A local oscillator ECL (with a 1:4 beam splitter): With the same characteristics
of the ECL at the transmitter’s terminal (100-kHz linewidth), it generates four
beams, three for the ICRs and one for monitoring.

• Three polarization-diversity integrated coherent receivers (ICRs): They detect the
signals using the scheme that will be explained in Sec. 5.1.2.

• The FPGA board (Fig. 5.3): The 28-layer printed circuit board implements the
MIMO DSP in real-time.

Fig. 5.4 shows the block diagram of the FPGA board that performs the overlap-save
algorithm implemented with VHDL.
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FIGURE 5.3: The FPGA board, in which we can see the ADCs arranged
as in the experimental setup (fig 5.1).
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FIGURE 5.4: Real-time DSP block diagram.



30 Chapter 5. The First Real-Time MIMO Receiver for MDM over CMOF

5.1.1 The Mach-Zehnder modulator

It turns out that a constant or varying electric field can induce a change in the refractive
index (birefringence) in an optical medium, proportionally to the strength of the field.
This phenomenon is known as the linear electro-optic effect or Pockels effect in honor
of its discoverer1. Hence, a light wave can be phase modulated, without change in
polarization or intensity, using an electro-optic crystal and an input polarizer in the
proper configuration (Fig. 5.5).

FIGURE 5.5: Only certain crystalline solids show the Pockels effect. The
one employed in our experiment is lithium niobate (LiNbO3).

A Mach-Zehnder modulator (MZM for short) is used for controlling the amplitude
of an optical wave. The input waveguide is split up into two waveguide Mach-Zehnder
interferometer arms. If a difference of voltages is applied across the arms, a phase shift
is induced for the wave passing through the arms, according to the Pockels effect.

Mathematically speaking, if we denoteEin andEout for the input and output waves,
then it satisfies that

Eout = Ein · ((1− α)e
−j V1

Vref + αe
−j V2

Vref ) (5.1)

where α is known as the interferometric splitting ratio, which is 1/2 in the ideal case

(half the power for the arm having the wave e
−j V1

Vref and half for the other). In our case
we have the so-called push-pull configuration (Fig. 5.6), which means that V1 = −V2,
i.e., the applied voltages on the two arms are inverted. In the ideal case (α = 1) this
implies that

Eout = Ein · (
1

2
ejθ +

1

2
e−jθ) = Ein · cos θ (5.2)

where we have defined θ := −V1/Vref . In other words, when the two arms are
recombined, the phase difference between the two waves is converted to an amplitude
modulation of the input wave.

By adjusting V1 and V2 we can phase modulate the two light waves in different
ways and make them interfere through the Mach-Zehnder interferometer, resulting in
the modulation scheme we are interested in. Fig. 5.7 shows that we can modulate with
the QPSK scheme by applying a phase change of π/2.

1In some materials such change is proportional to the square of the field, in which case the phenomenon
is called quadratic electro-optic effect or Kerr effect.
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FIGURE 5.6: The Mach-Zehnder modulator push-pull configuration.

FIGURE 5.7: Transmitter setup for the modulation of a QPSK signal.

All the above analysis applies for one of the two polarizations a single core of the
CCF carries. The output wave carries exactly the I-Q components of the corresponding
polarization. To make the other polarization we need to implement the same scheme
plus another phase rotation. The 10 Gb/s dual parallel nested MZM we use for our ex-
periment is comprised of two matched, high-speed MZMs that are integrated in paral-
lel inside an Mach-Zehnder super structure. Such super structure functions as a phase
modulator.

FIGURE 5.8: 10 Gb/s dual parallel Mach-Zehnder Modulator configura-
tion.
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5.1.2 The local oscillator

Upon reception, the optical signals are detected with a photodiode, which converts the
optical power into an electrical current, sometimes called photocurrent. The photocur-
rent originating in the photodiode is directly proportional to the product of the optical
signal and its complex conjugate, i.e., its modulus or amplitude (or power in a physical
sense).

In order to successfully recover the in-phase and quadrature components of the
signal, a local oscillator is needed at the receivers terminal, as depicted in Fig. 5.9.

FIGURE 5.9: The local oscillator, which generate another signal that in-
teracts with the optical one before being detected with the photodiode.

The interaction between the optical signal ẽs(t) and the LO’s signal ẽLO(t) are per-
formed through the mechanism shown in Fig. 5.10.

FIGURE 5.10: Schematic of the downconverter.

Taking ˜eLO(t) = 1 as a reference for simplicity, we have that the photocurrents
detected by the photodiodes are

i1 = |1/2 · (1 + ẽs)|2 = 1/4 + 1/4 · |ẽs|2 + 1/2 ·Re{ẽs} (5.3)

i1 = |1/2 · (1 + ẽs)|2 = 1/4 + 1/4 · |ẽs|2 − 1/2 ·Re{ẽs} (5.4)

i1 = |1/2 · (1 + ẽs)|2 = 1/4 + 1/4 · |ẽs|2 − 1/2 · Im{ẽs} (5.5)

i1 = |1/2 · (1 + ẽs)|2 = 1/4 + 1/4 · |ẽs|2 + 1/2 · Im{ẽs} (5.6)
(5.7)

Then the I−Q components are obtained by simple substraction of two photocurrent
signals:

I = i1 − i2 = Re{ẽs} (5.8)
Q = i4 − i3 = Im{ẽs} (5.9)

(5.10)



Chapter 5. The First Real-Time MIMO Receiver for MDM over CMOF 33

5.2 The DSP implementation

5.2.1 The fast Fourier transform (FFT) algorithm

As we have seen in Chapter 4, the FFT is a crucial block in our DSP implementation, so
choosing a good scheme will help us build the DSP algorithm more efficient. Therefore
we spent some time implementing and studying the complexity of this so-considered
one of the top 10 algorithms of the twentieth century.

Suppose we want to calculate the discrete Fourier transform (DFT) of a finite-length
sequence x[n] (0 ≤ n ≤ N − 1), defined as

X[k] =

N−1∑
n=0

x[n]e−j
2π
N
nk (5.11)

Sometimes this is rewritten as
∑N−1

n=0 x[n]W
nk
N , where Wn

N = e−j
2π
N
n, 0 ≤ n ≤ N − 1,

are the N−th roots of unity.
Assuming that the factorsWnk

N are precomputed, the direct computation of the DFT
would require O(N2) operations, that is, for each k, O(N) operations for complex mul-
tiplications and additions, and there are N k’s in total.

Nevertheless, it turns out that we can reuse some of the calculated results in order
to lower the computation complexity. Starting with N = 2, the formula for DFT gives

X[0] = x[0] + x[1] (5.12)
X[1] = x[0]− x[1] (5.13)

The signal-flow graph connecting the inputs x[n] to the outputs X[k] can be repre-
sented by a so-called butterfly diagram, for its shape resembles a butterfly:

FIGURE 5.11: The butterfly diagram, in which we can see that x[1] is
multiplied by the weights on the arrows (±1) before being added.

With N = 4 we get

X[0] = x[0] + x[1] + x[2] + x[3] (5.14)
X[1] = x[0]− jx[1]− x[2] + jx[3] (5.15)
X[2] = x[0]− x[1] + x[2]− x[3] (5.16)
X[3] = x[0] + jx[1]− x[2]− jx[3] (5.17)

(5.18)

which can be rearranged into
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X[0] = (x[0] + x[2]) + (x[1] + x[3]) (5.19)
X[1] = (x[0]− x[2])− j(x[1]− x[3]) (5.20)
X[2] = (x[0] + x[2])− (x[1] + x[3]) (5.21)
X[3] = (x[0]− x[2]) + j(x[1]− x[3]) (5.22)

(5.23)

Note that we reduced the number of complex additions and multiplications by
reusing some of the calculated values. In the signal-flow graph we observe a similar
butterfly-like structure.

FIGURE 5.12: The butterfly diagram of a 4-point FFT.

This idea can be extended to any N power of 2. The diagram for N = 16 is shown
in Fig. 5.13.

The radix-2 algorithm

Let us suppose now that N is even. Also let us define two subsequences of x[n],
namely e[n] and o[n] (for even and odd), as the even and odd samples of x[n], i.e.,
e[n] = x[2n], o[n] = x[2n+ 1], 0 ≤ n ≤ N/2− 1.

It turns out that the DFT of the original sequence, X[k], can be calculated with the
DFT’s of the two subsequences, E[k] and O[k]. Here is the proof.

X[k] =

N−1∑
n=0

x[n]e−j
2π
N
nk (5.24)

=

N/2−1∑
m=0

x[2m]e−j
2π
N

2mk +

N/2−1∑
m=0

x[2m+ 1]e−j
2π
N

(2m+1)k (5.25)

=

N/2−1∑
m=0

x[2m]e
−j 2π

N/2
mk

+ e−j
2π
N
k

N/2−1∑
m=0

x[2m+ 1]e
−j 2π

N/2
mk (5.26)

= E[k] + e−j
2π
N
kO[k] (5.27)
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FIGURE 5.13: The butterfly diagram of a 16-point FFT.
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We notice that due to the periodicity of the DFT’s (E[k] and O[k]) and that of the
twiddle factors2, we can write out

X[k +N/2] = E[k +N/2]︸ ︷︷ ︸
=E[k]

+e−j
2π
N

(k+N/2)O[k +N/2]︸ ︷︷ ︸
=O[k]

(5.28)

= E[k]− e−j
2π
N
kO[k] (5.29)

In this way, the last N/2 samples of the DFT X[k] we want to calculate can be ex-
pressed in terms of the same E[k] and O[k], both previously calculated, yielding the
radix-2 algorithm:

For 0 ≤ k ≤ N/2− 1,{
X[k] = E[k] + e−j

2π
N
kO[k],

X[k +N/2] = E[k]− e−j
2π
N
kO[k].

Graphically this is the same scheme as the butterfly diagram we represented before.

FIGURE 5.14: The butterfly diagram for the radix-2 algorithm.

To show the O(N logN) computational complexity of the algorithm, let us assume
that N is a power of 2, i.e., N = 2m. Now, if we define cm as the number of com-
plex multiplications when calculating a 2m-points DFT, then the following recurrence
relation holds:

cm = 2cm−1 + 2m−1 (5.30)
2This term is coined to the root-of-unity complex multiplicative constants in the butterfly operations of

the general Cooley-Tukey FFT algorithm we will see later. The name "twiddle" is because the exponential
actually performs a rotation.
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This is because we need to compute the DFT’s of the even and odd samples, each
requiring cm−1 complex multiplications, plus N/2 = 2m−1 complex multiplications of
the twiddle factors with the DFT of the odd samples3. The base case would be c0 = 0
(just the sample itself, so no complex multiplications).

We are not going to solve this recurrence relation by using the general approach
for solving first-order homogeneous recurrence relations with variable coefficients, but
rather by the following simple derivation:

cm = 2cm−1 + 2m−1 (5.31)

cm − 2cm−1 = 2m−1 (5.32)

cm
2m︸︷︷︸

=:Am

− 2cm−1
2m︸ ︷︷ ︸

=Am−1

=
2m−1

2m︸ ︷︷ ︸
=1/2

(5.33)

m∑
i=1

Ai −Ai−1 =
m∑
i=1

1

2
(5.34)

Am −A0 = m · 1
2

(5.35)

Am = A0 +
m

2
(5.36)

cm
2m

=
c0
20

+
m

2
=
m

2
(5.37)

cm = 2m−1 ·m (5.38)

In other words, cm = 1/2 ·N log2N , which attains the computational complexity we
wanted to show. The table below illustrates how efficient this algorithm can be com-
pared with the traditional DFT computation by definition, in terms of the number of
complex multiplications and with increasing N :

N 16 64 256 1024 4096 220

DFT by definition 256 4096 65536 1.0e6 1.7e7 1.1e12
radix-2 FFT 32 192 1024 5120 24576 1.0e7

The split-radix algorithm

Following the same approach of breaking the DFT into smaller pieces, the computa-
tional complexity of the radix-2 algorithm can even be lowered to 1/3 · N log2N . The
idea is based on the application of a radix-2 index map to the even-indexed samples
and a radix-4 map to the odd-indexed samples. In other words, the algorithm per-
forms three smaller sized DFT’s: one of size N/2 (the even samples, indexes 0 or 2
modulo 4), and two of size N/4 (the "even subsamples" and the "odd subsamples" of
the odd samples, which correspond to indexes 1 and 3 modulo 4, respectively).

We are not going to write down all the calculations, but just show here the final
expressions the algorithm provides:

3We count special cases like when the twiddle factor equals 1 as multiplication by a complex number
as well.
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For 0 ≤ k ≤ N/4− 1,
X[k] = E[k] + (e−j

2π
N
kOe[k] + e−j

2π
N

3kOo[k]),

X[k +N/2] = E[k]− (e−j
2π
N
kOe[k] + e−j

2π
N

3kOo[k]),

X[k +N/4] = E[k +N/4]− j(e−j
2π
N
kOe[k]− e−j

2π
N

3kOo[k]),

X[k + 3N/4] = E[k +N/4] + j(e−j
2π
N
kOe[k]− e−j

2π
N

3kOo[k]).

We observe that the algorithm needs to take as many complex multiplications as it
would need to compute one half-sized and two quarter-sized, plus the multiplications
of the type "twiddle factor times Oe[k] or Oo[k]", N/2 in total4. If now we define cm as
the number of complex multiplications when calculating a 2m-points DFT, the previous
argument leads to the following recurrence relations, with initial conditions c0 = c1 =
0:

cm = cm−1 + 2cm−2 + 2m−1 (5.39)

The solution given by Wolfram Alpha is

cm =
1

9
(2m(3m− 2) + 2 · (−1)m) (5.40)

The leading term 1/9 · 2m · 3m = 1/3 ·N log2N reveals the improved computational
complexity we wanted to verify.

The general Cooley-Tukey FFT algorithm

Throughout this section we have analyzed the different FFT algorithms assuming that
N is a power of two. What if it is not? In general, if we have N = N1N2 (N1 and N2 not
necessarily primes), the general Cooley-Tukey FFT algorithm rearranges the samples
into a N1 by N2 matrix by redefining k = N2k1 + k2 and n = N1n2 +n1, with ka, na run
from 0 to Na − 1, a = 1, 2. Hence the DFT can be written as

X[k] =

N−1∑
n=0

x[n]e−j
2π
N
nk (5.41)

X[N2k1 + k2] =

N1−1∑
n1=0

N2−1∑
n2=0

x[N1n2 + n1]e
−j 2π

N1N2
(N1n2+n1)(N2k1+k2) (5.42)

=

N1−1∑
n1=0

N2−1∑
n2=0

x[N1n2 + n1] e
−j2πn2k1︸ ︷︷ ︸

1

e
−j 2π

N2
n2k2e

−j 2π
N1

n1k1e
−j 2π

N1N2
n1k2

(5.43)

=

N1−1∑
n1=0

[
e−j

2π
N
n1k2

](N2−1∑
n2=0

x[N1n2 + n1]e
−j 2π

N2
n2k2

)
e
−j 2π

N1
n1k1 (5.44)

The formula itself tells us what Cooley-Tukey algorithm does. First it performs N1

DFTs of size N2 using a row of the N1 by N2 matrix, that is the expression inside the
big parenthesis. Then each of the DFTs is multiplied by the corresponding twiddle
factor, delimited with brackets. Finally it performs N2 DFTs of size N1. If either N1 or

4We regard the multiplication by j as simply sign changes on real and imaginary parts.
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N2 can be written as a product of two smaller factors, then the algorithm is run again
recursively.

Typically, either N1 or N2 is a small factor, called the radix. If N1 is the radix, it is
called a decimation in time (DIT) algorithm, whereas if N2 is the radix, it is decimation
in frequency (DIF). Therefore the radix-2 we presented before is a DIT algorithm.

Analysis of the computational complexity

The analysis of computational complexity for a general case is complex, due to the
amount of possibilities the number N can be factored. Nevertheless it is well estab-
lished that the algorithm still runs in O(N logN) time.

Nevertheless, we implemented and made a comparison between three of the com-
monly used schemes: the radix-2, the radix-4, and the split-radix. For each of them,
we derived the recurrent relations for the number of real additions and multiplications
needed, as well as the number of clock cycles (see Sec. 5.2.2) it has to be taken, accord-
ing to our implementation. Then using online recurrence solvers we obtained the exact
closed formulas (#ops are the total number of real operations, i.e., all the multiplica-
tions and additions):

#multsradix2 = 2N log2N − 7N + 12 (5.45)

#multsradix4 =
3

2
N log2N − 5N + 8 (5.46)

#multssradix =
4

3
N log2N −

38

9
N + 6 +

2

9
(−1)log2N (5.47)

#addsradix2 = 3N log2N − 3N + 4 (5.48)

#addsradix4 =
11

4
N log2N −

13

6
N +

8

3
(5.49)

#addssradix =
8

3
N log2N −

16

9
N + 2− 2

9
(−1)log2N (5.50)

#opsradix2 = 5N log2N − 10N + 16 (5.51)

#opsradix4 =
17

4
N log2N −

43

6
N +

32

3
(5.52)

#opssradix = 4N log2N − 6N + 8 (5.53)
#clksradix2 = 7 log2N − 12 (5.54)
#clksradix4 = 4 log2N − 6 (5.55)
#clkssradix = 4 log2N (5.56)

(5.57)

As shown in Fig. 5.15 and 5.16, the split-radix approach is always better than the
other two, and that radix-4 is more efficient than radix-2. Note that the exact formulas
for the number of real multiplications are totally consistent with the rough estimation
of the number of complex multiplications we derived in Eq. 5.38 and 5.40, taking into
account that we use 4 real multiplications for each complex one.
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FIGURE 5.15: The number of operations scales with N log2N .
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FIGURE 5.16: The number of clock cycles needed scales with log2N .
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5.2.2 Matlab vs. VHDL

The tools for DSP implementation and simulation used in the project are Matlab and
ModelSim. The latter simulates systems behavior described by VHDL.

VHDL, which stands for VHSIC (very high speed integrated circuits) hardware de-
scription language, is a hardware description language used in electronic design to
describe digital and mixed-signal systems such as FPGA (field-programmable gate ar-
rays), ASIC (application-specific integrated circuit) and CPLD (complex programmable
logic device). It was the first hardware description language standardized by the IEEE5.
It allows circuit synthesis as well as circuit simulation. The former is the translation
of a source code into a hardware structure that implements the intended functional-
ity, while the latter is a testing procedure to ensure that such functionality is indeed
achieved by the synthesized circuit. Therefore the key advantage of VHDL, when used
for systems design, is that it allows the behavior of the required system to be described
(modeled) and verified (simulated) before synthesis tools translate the design into real
hardware (gates and wires).

VHDL is inherently concurrent, meaning that the commands are not executed step
by step, like procedural computing (sequential) languages such as C, C++, Fortran or
even Matlab. This fact has important consequences in our implementation, one of them
is the introduction of latencies. Consider the following Matlab code that describes a
function that computes a complex multiplication using three real multiplications6:

1 function z = complex_mult(x,y)
2 % initialization
3 a = real(x);
4 b = imag(x);
5 c = real(y);
6 d = imag(y);
7 % define intermediate variables
8 ac = a*c;
9 bd = b*d;

10 mu = (a+b)*(c+d);
11 % calculate result
12 f = ac - bd;
13 g = mu - ac - bd;
14 z = f + 1j*g;
15 end

Knowing the basics of VHDL’s syntax, one would write the following VHDL code
which might yield the same output if VHDL was sequential. Here is a brief explanation
of the code. Lines 1-3 include all the necessary libraries and packages for the implemen-
tation. Next comes the entity (lines 5-14), which describes the inputs and the outputs
of the program, along with their corresponding data type7. Followed by the most im-
portant part, the architecture, which contains all the instructions to be performed. The

5The Institute of Electrical and Electronics Engineers is the world’s largest association of technical pro-
fessionals of electrical and electronic engineering, telecommunications, computer engineering and allied
disciplines.

6This is at the cost of calculating more additions, but with large complex numbers it is always prefer-
able to calculate less real multiplications as its complexity is quadratic with respect to the size of the
multiplicands.

7Unlike Matlab, VHDL does not have a predefined complex number type. Usually we work with other
data types for inputs and outputs, especially one type called standard logic vectors (std_logic_vector
written in VHDL), but for the sake of understanding better the mechanism of the code we prefer to use
real numbers here.



42 Chapter 5. The First Real-Time MIMO Receiver for MDM over CMOF

architecture starts with some signal declarations. The symbol <= denotes assignment
for signal, in contrast with the symbol := for variable assignment (lines 29-31).

1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;
4
5 entity complex_mult is
6 port(
7 clk : in std_logic;
8 x_real : in real;
9 x_imag : in real;

10 y_real : in real;
11 y_imag : in real;
12 z_real : out real;
13 z_imag : out real);
14 end entity;
15
16 architecture arch of complex_mult is
17 signal a, b, c, d, f, g : real;
18 begin
19 -- initialization
20 a <= x_real;
21 b <= x_imag;
22 c <= y_real;
23 d <= y_imag;
24 process(clk)
25 variable ac, bd, mu : real;
26 begin
27 if rising_edge(clk) then
28 -- define intermediate variables
29 ac := a*c;
30 bd := b*d;
31 mu := (a+b)*(c+d);
32 -- calculate result
33 f <= ac - bd;
34 g <= mu - ac - bd;
35 end if;
36 end process;
37 z_real <= f;
38 z_imag <= g;
39 end architecture;

Since everything we do will be synthesized onto hardware (e.g. FPGA), we must
take into account the time dimension. In other words, the hardware needs some time
to perform operations, whatever the kind is (addition, multiplication, or even a bit
shift)8. Therefore we should give some time to the hardware for carrying out these
operations. Our approach is to let the process be clocked (line 24), so all the additions
and multiplications are done within a clock cycle, from any rising edge of the clock
signal (line 27) depicted in Fig. 5.17 to the end of the corresponding clock’s period,
which is 10 nanoseconds in this case.

Nevertheless, we notice that because of the concurrent nature of VHDL, we do not
obtain the corresponding outputs 37-38 at the same time the inputs are available, but
rather have to wait until the clocked process 24-36 is completed. In this case, we would

8At the end every operation is decomposed by bitwise operations at the hardware level.
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FIGURE 5.17: The clock signal for our clocked process, as simulated us-
ing ModelSim.

observe the corresponding outputs one clock cycle after the inputs have been intro-
duced (Fig. 5.18), that is the concept of latency (or delay) we have to deal with con-
stantly when writing our codes. We do not have this kind of problems with Matlab
because it just carry out the instructions step by step as fast as it can, without having to
worry about hardware limitations.

FIGURE 5.18: As seen in ModelSim, the outputs (e.g. -10+38i) are not
aligned with their corresponding inputs (2+2i and 7+12i) because of the

latency.

We have to take into account the latencies of the subprocesses whenever we have a
feedback loop or we require several data streams to meet at the same time. As an ex-
ample, the following implementation of the recursive split-radix FFT algorithm using
Matlab would not be valid if translated directly into VHDL, because theN/2-sized FFT
takes longer time to be completed than the two N/4-sized ones. Therefore, in VHDL,
a delay has to be applied to the output of the two smaller FFTs so that they wait until
adding to the correct output of the bigger FFT.

1 function [xx_real,xx_imag] = myfft_splitradix(N,isifft,x_real,x_imag)
2 if N == 1
3 xx_real = x_real;
4 xx_imag = x_imag;
5 elseif N == 2
6 xx_real(1,:) = x_real(1,:)+x_real(2,:);
7 xx_real(2,:) = x_real(1,:)-x_real(2,:);
8 xx_imag(1,:) = x_imag(1,:)+x_imag(2,:);
9 xx_imag(2,:) = x_imag(1,:)-x_imag(2,:);

10 else
11 % decimation in time
12 a_real = x_real(1:2:N,:);
13 a_imag = x_imag(1:2:N,:);
14 c_real = x_real(2:4:N,:);
15 c_imag = x_imag(2:4:N,:);
16 d_real = x_real(4:4:N,:);
17 d_imag = x_imag(4:4:N,:);
18 % apply ffts recursively
19 [aa_real,aa_imag] = myfft_splitradix(N/2,isifft,a_real,a_imag);
20 [cc_real,cc_imag] = myfft_splitradix(N/4,isifft,c_real,c_imag);
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21 [dd_real,dd_imag] = myfft_splitradix(N/4,isifft,d_real,d_imag);
22 % apply twiddle factors
23 n = repmat((0:N/4-1)’,1,size(x_real,2));
24 if not(isifft)
25 ee_real = aa_real;
26 ee_imag = aa_imag;
27 gg_real = cc_imag.*sin(2*pi*1*n/N)+cc_real.*cos(2*pi*1*n/N);
28 gg_imag = cc_imag.*cos(2*pi*1*n/N)-cc_real.*sin(2*pi*1*n/N);
29 hh_real = dd_imag.*sin(2*pi*3*n/N)+dd_real.*cos(2*pi*3*n/N);
30 hh_imag = dd_imag.*cos(2*pi*3*n/N)-dd_real.*sin(2*pi*3*n/N);
31 else
32 ee_real = aa_real;
33 ee_imag = aa_imag;
34 gg_real = cc_real.*cos(2*pi*1*n/N)-cc_imag.*sin(2*pi*1*n/N);
35 gg_imag = cc_real.*sin(2*pi*1*n/N)+cc_imag.*cos(2*pi*1*n/N);
36 hh_real = dd_real.*cos(2*pi*3*n/N)-dd_imag.*sin(2*pi*3*n/N);
37 hh_imag = dd_real.*sin(2*pi*3*n/N)+dd_imag.*cos(2*pi*3*n/N);
38 end
39 % addition stage 1
40 if not(isifft)
41 ii_real = ee_real;
42 ii_imag = ee_imag;
43 jj_real = [gg_real; gg_imag]+[hh_real;-hh_imag];
44 jj_imag = [gg_imag;-gg_real]+[hh_imag; hh_real];
45 else
46 ii_real = ee_real;
47 ii_imag = ee_imag;
48 jj_real = [gg_real;-gg_imag]+[hh_real; hh_imag];
49 jj_imag = [gg_imag; gg_real]+[hh_imag;-hh_real];
50 end
51 % addition stage 2
52 xx_real = [ii_real;ii_real]+[jj_real;-jj_real];
53 xx_imag = [ii_imag;ii_imag]+[jj_imag;-jj_imag];
54 end

After synthesis into circuits, our MIMO DSP implementation using VHDL results
in the FPGA layout depicted in Fig. 5.19, where we can see its division into super logic
regions (the vertical stripes). Each tiny dot is a configurable logic block (CLB) which
can implement several types of logic gates and operations.

FIGURE 5.19: The FPGA layout.
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5.3 Results

The results obtained in [19] are extended with the following observations.
Using a 2×1 equalizer implementation that maps two received polarizations onto

one output signal we first characterized our transmitter and receiver performance in
a single-mode polarization-division multiplexed back-to-back experiment. While the
equalizer and the carrier recovery were running in real-time, the error counting was
still carried out offline here. The resulting bit error ratio (BER) is plotted versus the
optical-signal-to-noise ratio (OSNR) in Fig. 5.21 for all three transmitter and receiver
pairs. In each case, we observe an implementation penalty of about 1.5 dB with respect
to theory for differentially decoded PDM-QPSK.

Next we tested the performance of our real-time transmission system by determin-
ing the BER after differential decoding over a time frame of 30 minutes for each of the
six spatial and polarization modes with a launch power into each core of 3 dBm. The
results are shown in Fig. 5.20. We observe that the BERs are drifting between 8× 10−4

and 7× 10−3.
This relatively high error-floor for the BER could be explained by several possible

reasons. First, we observed that if the FPGA is running with a high resource utilization,
glitches in the outputs of the ADCs appear, which we attribute to a clock drift in the
communication between the ADCs and the FPGA. Second, due to the highly parallel
implementation the feedback delay of the adaptive equalizer is in the order of 100 DSP
clock cycles. This reduces the capability of the equalizer to track temporal variations of
the channel.
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FIGURE 5.20: Real-time BER performance over 30 minutes for all six
coupled spatial and polarization modes after 60-km CCF.

These drifts become stronger if the FPGA utilization is high, such as in the case
where the full MIMO-DSP is running, and lead to sparse glitches in the QPSK constel-
lations. If we configure the FPGA with a design that utilizes only a relatively small
portion of its resources, such as if we use the FPGA board like an oscilloscope saving
limited-length waveforms, the glitches disappear.

Finally, we configured the FPGA to demultiplex one out of six coupled spatial and
polarization modes after the 60-km CCF using a 6×1 MIMO equalizer, i.e. one of the
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6 independent equalizer branches of a full 6×6 MIMO-DSP matrix. In other words,
we started convergence of our real-time equalizer based on a single transmit signal
and gradually increased the number of transmit signals until all 6 spatial and polariza-
tion modes were switched on. A typical received constellation is shown in Fig. 5.22,
demonstrating that the transmitted QPSK-signals can be recovered.

FIGURE 5.21: BER(OSNR) for the three transmitter and receiver pairs.

FIGURE 5.22: Received constellations after 6 × 6 MIMO channel (60 km
CCF) and real-time MIMO-DSP.



Chapter 6

Conclusions

With this project the initial proposed goals are achieved: gaining a better understand-
ing on how real world fiber-optic communication works, and testing a real experiment
aimed to demonstrate the capabilities of MIMO DSP algorithms to reliably retrieve in-
formation. The resulting BERs were reasonable low to let us confirm that, using an
adaptive MIMO equalizer, the first real-time transmission experiment do compensate
mode coupling between spatial modes in an optical fiber.

However, we also encountered some results that were out of our expectation, like
the glitches observed in the outputs of the analog-to-digital converters. If our hyothesis
were correct, that it was due to clock drift in the communication between the ADCs and
the FPGAs, further improvements will have to be investigated.

Therefore, we hope that in the future we could keep bettering this experiment, as a
way to get closer to the transmission capacity limit.
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