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Abstract

Comprehensive gas chromatography - mass spectrometry (GCxGC-MS) provides a different perspective in metabolomics

profiling of samples. However, algorithms for GCxGC-MS data processing are needed in order to automatically pro-

cess the data and extract the purest information about the compounds appearing in complex biological samples. This

study shows the capability of independent component analysis - orthogonal signal deconvolution (ICA-OSD), an al-

gorithm based on blind source separation and distributed in an R package called osd, to extract the spectra of the

compounds appearing in GCxGC-MS chromatograms in an automated manner. We studied the performance of ICA-

OSD by the quantification of 38 metabolites through a set of 20 Jurkat cell samples analyzed by GCxGC-MS. The

quantification by ICA-OSD was compared with a supervised quantification by selective ions, and most of the R2 coef-

ficients of determination were in good agreement (R2>0.90) while up to 24 cases exhibited an excellent linear relation

(R2>0.95). We concluded that ICA-OSD can be used to resolve co-eluted compounds in GCxGC-MS.

Keywords: comprehensive gas chromatography, orthogonal signal deconvolution, multivariate curve resolution,

compound deconvolution, independent component analysis.

1. Introduction1

Metabolomics is the study of low molecular weight compounds in biological systems [1]. Particularly, metabolomics2

focuses on comparing healthy versus metabolomic disease organisms and, therefore, it attempts to discover predic-3

tive biomarkers by detecting early biochemical changes before the appearance of the disease [2]. For that purpose,4

metabolomics experimental designs include non-targeted analysis of the samples as there is no prior knowledge of5

the metabolites that may be involved not only in fully developed metabolomic diseases, but also in pre-symptomatic6

stages.7
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Analytical techniques to identify and quantify metabolites include the best-established gas chromatography-mass8

spectrometry (GC-MS). Gas chromatography separates the compounds contained in a sample while passing through a9

chromatographic column. However, when two or more compounds do not completely separate chromatographically,10

those compounds are known to be co-eluted, and this clearly affects the correct quantification and identification of the11

metabolites. In that sense, comprehensive gas chromatography - mass spectrometry (GCxGC-MS) [3, 4] was devised12

to minimize co-elution. In GCxGC-MS, the sample pass through two chromatographic columns with orthogonal13

polarity properties, which improves the compound separation and it leads to an increased compound detection capacity14

as co-elution is diminished.15

However, compounds in the samples usually appear at trace levels and different sources of noise derived from16

the instrument and the sample biological matrix may interfere with the correct identification of the compounds. In17

the same way, GCxGC-MS generates large quantity of data and its interpretation can not be conducted manually. In18

that sense, GCxGC-MS data processing algorithms are needed to turn the chromatographic signals into interpretable19

biological information. Besides, GCxGC-MS samples are composed by a large amount of data in comparison with20

GC-MS samples, and algorithms for GCxGC-MS data processing should be optimized for a fast data processing.21

As reviewed in [5], some of the existing data processing algorithms that can be applied to resolve mixtures in22

comprehensive gas chromatography include PARAFAC [6] and multivariate curve resolution - alternating least squares23

(MCR-ALS) [7]. Contrarily to MCR, PARAFAC can be only applicable to a three-way data set, i.e., PARAFAC can24

not resolve a single GCxGC-MS sample.25

In the past years, independent component analysis (ICA) [8] has been introduced as an alternative to the traditional26

MCR for GC-MS data analysis [9, 10, 11]. ICA is a blind source separation (BSS) technique used to separate linearly27

mixed sources, i.e., it is capable of separating and retrieve the original compound sources - elution profile or spectra28

- from a mass spectra chromatogram. Whereas MCR–ALS resolves a chromatographic mixture by minimizing the29

residual error between the data and the predicted model, ICA uses another type of measure which is the statistical30

independence, and it estimates the original compound sources by maximizing the independence between components.31

ICA is widely applied in biomedical sciences, including data processing in electroencephalography recordings [12,32

13, 14], and it is also one of the most reported algorithms for resolution of spectroscopy mixtures. More recently, we33

have developed a new method known as independent component analysis - orthogonal signal deconvolution (ICA-34

OSD) [15], embedded in an R package, that uses a combination of ICA and principal component analysis (PCA)35

to identify co-eluted compounds in GC-MS. In ICA-OSD, PCA is proposed as an alternative to the typical use of36

least squares (LS) in MCR-ALS. The application of LS for spectra extraction has different drawbacks, detailed in37

[15], which can be summarized in the fact that no correlation or covariance information is taken into account when38

applying LS, and therefore LS may find difficulties in distinguishing noise and the different compound fragments. This39

may lead to introducing a bias into the LS regressors specially in situations of co-elution or under undue biological40

matrix interference. Besides, whereas the current ICA-based methods consider the spectra as the independent source41

in the chromatograms, in ICA-OSD we implemented a different approach where we assumed that the elution profile42

2



was the independent source, as opposite to the spectra. In that sense, we used ICA to extract the elution profiles and43

then determine the spectra by means of OSD. Finally, ICA-OSD shown itself as a computationally faster alternative44

to MCR-ALS. Up to the date, the capability of independent component analysis - orthogonal signal deconvolution for45

compound quantification in chromatographic signals has not been studied.46

In this paper we propose an automated method to deconvolve compounds appearing in GCxGC-MS samples by47

independent component analysis - orthogonal signal deconvolution.48

2. Materials and methods49

2.1. Materials50

The performance of ICA-OSD was evaluated through a set of 38 metabolites appearing in 20 Jurkat cell samples51

extracted from human acute T cell lymphoblastic leukemia cell line Jurkat. The samples of this experiment were pre-52

viously used to report the intersection of phosphoethanolamine with menaquinone-triggered apoptosis by Styczynski53

et al. [16]. More details on the dataset, sample preparation and methods can be found in the original study.54

2.2. Data analysis and pre-processing55

ICA-OSD was used to automatically extract and deconvolve the compounds concentration profiles and spectra.56

The GCxGC-MS chromatograms were processed by analyzing each modulation cycle separately. Each modulation57

cycle was first divided in chromatographic peak features (CPFs) using the same criteria as in [17]. The different CPFs58

contained several compounds, so the algorithm had to deconvolve them in case of co-elution. The number of factors59

or components for ICA was determined by evaluation of residual sum of squares (described in Section 3.2).60

The chromatograms were automatically processed by ICA-OSD. From the ICA-OSD output we only took into61

account those metabolites appearing in at least 15 of the 20 samples, so a total of 38 compounds with KEGG number62

(Kyoto Encyclopedia of Genes and Genomes) were identified. Metabolite identities were curated by spectral similarity63

with the reference spectra and retention index error by retention time standardization using fatty acid methyl esters64

(FAME) standards. However, the identity was not confirmed with the analysis of reference standards and therefore,65

the list of identified metabolites is putative, and a name is assigned to facilitate the interpretation of the results. For66

this sub-set of 38 compounds, reference relative compound concentration - relative across samples - was determined67

by the area of a selective ion. The most selective ion was manually determined for each compound.68

The spectra determined by ICA–OSD were compared using the dot product [18] against the Golm Metabolome69

Database (GMD) [19] MS spectra library. The masses 73, 74, 75, 147, 148, and 149 m/z were excluded before70

processing the sample, since they are ubiquitous mass fragments typically generated from compounds carrying a71

trimethylsilyl moiety [19]. They were also excluded in the identification. Only the fragments from m/z 70 to 60072

were taken into account when comparing reference and empirical spectra, since this is the m/z range included in the73

downloadable GOLM database. Also, chromatographic signals were filtered using a Savitzky–Golay filter [20]. The74

ICA algorithm used was the joint approximate diagonalization of eigenvalues (JADE) [21].75
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3. Computational methods and theory76

This section describes the ICA-OSD algorithm together with the methodology to determine the number of com-77

pounds.78

3.1. Resolution of GCxGC-MS mixtures by independent component analysis – orthogonal signal deconvolution79

Orthogonal signal deconvolution (OSD) is a multivariate method which purpose is to extract and deconvolve the80

spectrum of a given compound only with the information relative to the compound elution profile. OSD is based on81

principal component analysis, avoiding thus, the use of least squares used in multivariate curve resolution - alternating82

least squares (MCR-ALS). Here, the elution profiles are determined by ICA to later determine the spectra using OSD,83

and in this manner we will refer the complete approach as ICA-OSD.84

ICA is mathematically expressed as:85

X = AZT (1)

where X (N×M) is the matrix containing the mixture of compounds, A (N×k) is the mixing matrix and ZT (k×M)86

is the source matrix. N and M are the number of rows and columns of the data matrix X, and k denotes the number of87

components or compounds in the model. Each row in X holds a m/z channel whereas each column holds the retention88

time scans. ICA decomposes the data matrix by finding the independent sources contained in X.89

As mentioned above, generally ICA-based approaches are based on extracting first the spectra using ICA - the90

spectra are considered the independent sources - to later estimate the elution profile using different approaches. In91

our ICA-OSD implementation, the elution profiles of the compounds are considered the independent sources and thus92

ZT holds the elution profile for each compound. Since the elution profiles determined by ICA may be affected by93

the ICA ambiguity of negativity, the sources in ZT that express more negative variance than positive are negatively94

rotated. Moreover, all the components in ZT are submitted to unimodality constraint to force one local maxima per95

source. ICA has a second ambiguity related to variance (energy) indetermination, which means that the energy of96

the recovered compound profiles do not correspond to the real energy of that component. To overcome that, a least97

squares regression is performed with the estimated sources hold in ZT against the base ion chromatogram of the matrix98

X. The base ion chromatogram or BIC is determined by representing the maximum m/z value for each point in the99

chromatogram.100

Once the elution profiles are determined, OSD is applied to extract each corresponding spectra. In OSD, an X′j101

sub-data matrix is determined for each compound j in ZT . This sub-data matrix comprises only the data from X in102

which the compound profile in ZT
j is non-zero - the elution profile in ZT is used as a mask to suppress the surrounding103

data non-related to the compound -. A PCA is performed over the sub-data matrix to determine the spectra associated104

to each compound. PCA can be mathematically expressed as:105

X′j = YWT (2)
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where X′(N×M) is the sub-data matrix to decompose, Y(N×M) is the score matrix and W(M×M) is the loading106

or eigenvectors matrix. For each compound profile, the PCA decorrelates the information of the sub-data matrix and107

decomposes it into a matrix WT (Eq. 3) which is a set of orthogonal spectra and a matrix Y which is associated to108

the retention time covariance response for each spectrum in WT . The matrix WT holds the spectra of the compound109

of interest together with the spectra of the different sources of noise - such as co-eluted substances or biological110

matrix interference -. To determine which spectrum is related to the compound of interest we compute the correlation111

between the profile of the compound in ZT
j and the information of the covariance responses determined by the PCA112

in Y. The component with the highest absolute correlation is the candidate spectra for the compound of interest.113

OSD can be summarized in the following steps:114

1. Given a ZT
j compound elution profile, determine a X j sub-data matrix comprised only of the data of the115

retention time in which the compound is eluting.116

2. Apply a PCA over X j. The result is a score matrix Y and loading matrix W.117

3. Determine the correlation coefficient between ZT
j and each component in Y and select the component h with118

the highest absolute correlation value.119

4. Select the component h in W, rotate Wh according to the sign of the previous determined correlation coeffi-120

cient, and clip to zero all the negative values. Wh is now considered to be the spectrum of ZT
j .121

After the spectra are determined, the elution profiles are refined by the application of a NNLS regression of all the122

spectra against the data matrix X.123

3.2. Determination of number of components124

To define the ICA model, it requires a fixed number of components. The number of components is closely related125

to the number of compounds present in the mixture, as usually the model to define the data is not only constructed126

by pure compounds but also by baseline, noise, or other interferences. An iterative residual sum of squares (RSS)127

approach was used to automatically determine the number of components for the ICA model. The RSS can be128

expressed as:129

RS S (k) =

N∑
i=1

(X − X∗(k))2 (3)

where, X is the original mixture matrix, X∗(k) is the resolved matrix by ICA-OSD using k components, and N is the130

total length of the unfolded X matrix. For each k in k = 1, 2, ...,N, ICA-OSD resolves the X data with k components131

and it determines the RSS. This method yields a decreasing RSS curve that tends to a minimum. The proper number132

of factors is determined when the addition of more components does not significantly decrease the explained variance,133

i.e., when the RSS error reaches a certain threshold.134

5



4. Results and discussion135

The chromatographic data was automatically processed with our proposed method ICA-OSD. Metabolites eluting136

in more than one modulation cycle were associated based on their identity and quantified together (sum of concentra-137

tions). The metabolites across samples were aligned also based on their identity. Table 1 shows the list of the identified138

compounds along with their 1st and 2nd retention times and the identification match factor (MF). The identification139

match factor is determined by dot product between the averaged compound spectra across samples and the reference140

spectra (Golm Metabolome Database GMD). The closer the score to one hundred, the more exact and pure the spectra141

extracted. The table also shows the linear regression coefficient of determination (R2) between our empirical method142

ICA-OSD and the selective ion area (reference model). In order to demonstrate the ICA-OSD quantification capability143

along a wide dynamic range of metabolite concentration, we determined the relative compound concentration (Rel.144

C.) which is the quotient between the mean concentration of each compound and the mean concentration of all the145

compounds listed in the table.146

In this study, we use the coefficient of determination R2 as a metric to describe the relative deviation between147

our proposed method for quantification (ICA-OSD) and our reference model (selective ion). From the given results,148

most of the R2 coefficients are in good agreement (R2>0.90) while up to 24 cases exhibit an excellent linear relation149

(R2>0.95). Overall, ICA-OSD conducted a reliable quantification of compounds even when those occurred at low150

concentration or appeared co-eluted.151

The efficiency of ICA-OSD is directly conditioned by the degree of noise and co-elution with other compounds.152

To illustrate this, and the operation of ICA-OSD for compound deconvolution we shown two different examples of153

co-elution situations in GCxGC-MS. Figure 1 shows the total ion chromatogram (BIC) in dotted grey line, and the154

resolved compound elution profiles by ICA-OSD in color lines, of two selected retention time windows from different155

modulation cycles.156

In Figure 1 (a), three compounds appear under the same chromatographic peak, those three compounds were157

resolved by ICA-OSD and one of them was identified as erythritol (4TMS). Similarly, in Figure 1 (b) three compounds158

appear co-eluted but resolved by ICA-OSD; on of them was identified as myo-inositol (6TMS). The resolved spectra159

for erythritol and myo-inositol are shown in Figure 2 where we can visually compare the empirical (black and positive)160

and the reference (color and negative) spectra. In both cases ICA-OSD successfully extracted the spectra needed to161

properly identify both compounds. In the Figure 1 (a) case, erythritol appears low concentrated and in co-elution162

with a more intense compound. Despite that, ICA-OSD is capable of extracting a sufficient pure spectrum to allow a163

correct identification, with a match score of 98 % - for the given sample case -. In Figure 1 (b), myo-inositol appears164

strongly interfered by another more concentrated compound. As a result, ICA-OSD fails in correctly associate the165

fragments between m/z 100 and 150 (Figure 2 (b)), which appears in the reference spectrum but they do not appear166

in the empirical spectrum. Also, the ions m/z 305 and 318 appears to be interfered, and their relative intensities167

differ from the reference pattern. Consequently, the match score of myo-inositol in this given case is 87 %. This is168
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a clear example of the problems for the correct identification of metabolites that co-elution brings. The identification169

performance can be assessed also in an example of a set of spectra extracted by ICA-OSD shown in Figure 3, where170

we can visually compare the empirical (black and positive) and the reference (color and negative) spectra for each171

compound. The figure shows the spectra extracted for lactic acid (2TMS), phosphoric acid (3TMS), fumaric acid172

(2TMS) and glycerol (3TMS), and this exemplifies the capability of ICA-OSD to successfully extract spectra from173

chromatographic mixtures.174

As mentioned before, one of the most important factors that difficulties the identification is co-elution. In those175

cases, the spectrum of each compound has to be correctly separated - resolved or deconvolved - from co-eluted176

compounds or other noise interferences. Despite that one of the differential characteristics of GCxGC-MS with respect177

to GC-MS is the reduction of the co-elution problem, we still find co-eluted peaks across the second retention time178

dimension. Here we show how ICA-OSD is also an effective method for the resolution of chromatographic signals179

including those generated by GCxGC-MS. Due to noise and other interferences, OSD may fail in correctly classify180

the m/z when deconvolving spectra. This means that OSD would fail in associating a certain m/z to a compound181

where other methods based on least squares, such as MCR-ALS would probably not, as OSD is a more conservative182

approach . On the contrary, OSD brings more accuracy generally in co-eluted situations as attempts to differentiate183

which ions correspond to the compound of interest [15].184

Here we applied ICA-OSD in each modulation cycle separately. We later grouped the compounds appearing in185

different modulation cycles according to their identity. This may also affect the quantification of compounds as the186

same compound can be identified with a different name between or within samples. Automatic alignment or grouping187

of compounds between and within samples after deconvolution is still an important problem that has to be tackled.188

5. Conclusions189

We previously shown that ICA-OSD was able to successfully extract the spectra from co-eluted compounds in190

GC-MS [15], but the capability of ICA-OSD to quantify metabolites was not evaluated. In this study we evaluate a191

method to automatically resolve chromatographic data in GCxGC-MS samples with ICA-OSD. Besides, ICA-OSD192

is an efficient method in terms of speed of execution as previously shown in [15], which is an important advantage193

for GCxGC-MS data processing due to the large amount of data that metabolomics experiments generate with this194

analytical platform. This study concludes that ICA-OSD can be used to resolve co-eluted compounds in GCxGC/MS-195

based metabolomics samples.196
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Figure 1: Two cases of co-elution resolved by ICA–OSD. The dotted grey line represents the BIC whereas the resolved profiles are shown in the
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Figure 2: Representation of the extracted spectra (black) by ICA-OSD and the reference GMD spectra (color), for the cases shown in Figure 1,

erythritol and myo-inositol. Reference spectra are shown negatively rotated in the same axis for a better visual appreciation.
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Figure 3: Representation of a set of extracted average - across samples - spectra (black) by ICA-OSD and the reference GMD spectra (color).

Reference spectra are shown negatively rotated in the same axis for a better visual appreciation.
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Table 1: List of identified compounds in Jurkat cell samples. MF is the match factor, R2 is the linear regression coefficient, and Rel. C is the relative

concentration.
No. Rt1 Rt2 Name MF R2 Rel. C (%)

1 4.5 1.8 Boric acid (3TMS) 92 0.96 137.28

2 4.58 2.9 Alanine (2TMS) 95 0.82 24.87

3 5.33 1.99 Valine (1TMS) 98 0.92 27.06

4 5.58 2.06 Lactic acid (2TMS) 99 0.99 939.18

5 5.75 2.12 Glycolic acid (2TMS) 98 0.90 61.17

6 5.92 1.94 Ethanolamine (3TMS) 87 0.84 16.26

7 6.5 1.9 Isovaleric acid, 2-oxo- (1MEOX) (1TMS) MP 89 0.98 101.7

8 6.67 2.38 Furan-2-carboxylic acid (1TMS) 98 1.00 25.02

9 7.5 2.78 Phosphoric acid (3TMS) 98 0.97 12.84

10 7.6 1.86 Glycerol (3TMS) 90 0.98 1294.11

11 8.1 2.38 Succinic acid (2TMS) 98 0.85 49.99

12 8.6 2.12 Nonanoic acid (1TMS) 91 0.98 105.88

13 9.1 2.04 Threonine, allo- (3TMS) 98 0.90 12.23

14 9.5 2.48 Aspartic acid (2TMS) 95 0.85 20.99

15 9.6 2.06 Malic acid (3TMS) 72 0.99 13.83

16 9.8 2.11 Decanoic acid (1TMS) 96 1.00 11.63

17 10.6 1.86 Erythritol (4TMS) 97 0.99 56.44

18 11.4 2.48 Proline [+CO2] (2TMS) 99 0.98 7.99

19 11.6 2.54 Hypotaurine (3TMS) 97 0.98 74.63

20 11.8 2.26 Glutamic acid (3TMS) 98 0.99 93.16

21 12.23 3.79 Pyroglutamic acid (2TMS) 99 0.89 112.16

22 12.23 3.05 Proline, 4-hydroxy-, cis- (3TMS) 98 0.82 14.45

23 12.82 4.28 Glutamic acid (2TMS) 97 0.97 17.37

24 13.23 3.26 Glutamic acid (3TMS) 98 0.99 80.1

25 13.48 3.01 Dodecanoic acid (1TMS) 98 0.94 25.84

26 13.9 3.65 Pyrophosphate (4TMS) 96 0.99 5.25

27 14.23 3.94 Glucose, 2-amino-2-deoxy- (4TMS) MP 91 0.99 8.38

28 14.57 2.89 Xylitol (5TMS) 98 0.92 24.63

29 14.98 3.41 Glycerol-3-phosphate (4TMS) 98 0.92 93.59

30 15.4 3 Ornithine (4TMS) 97 1.00 3.95

31 15.57 3.02 Tetradecanoic acid (1TMS) 98 0.97 154.25

32 16.07 3.25 Tyrosine (2TMS) 99 0.84 3.84

33 16.15 2.85 Psicose (1MEOX) (5TMS) BP 99 0.96 270.47

34 16.4 2.85 Glucose (1MEOX) (5TMS) MP 97 1.00 149.68

35 16.48 2.83 Mannose (1MEOX) (5TMS) MP 98 1.00 66.15

36 17.65 2.9 Inositol, allo- (6TMS) 94 0.95 19.81

37 18.98 2.98 Octadecenoic acid, 9-(Z)- (1TMS) 91 0.89 30.99

38 22.9 2.8 Sucrose (8TMS) 94 1.00 3.43
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