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13 Abstract

14 Reactive transport modelling involves solving several nonlinear coupled phenomena, among
15  them, the flow of fluid phases, the transport of chemical species and energy, and chemical
16 reactions.. There are different ways to account this coupling that might be more or less
17  suitable depending on the nature of the problem to be solved. In this paper we acknowledge
18 the importance of flexibility on reactive transport codes and how object oriented programming
19  can facilitate this feature. We present PROOST, an object oriented code that allows solving
20 reactive transport problems considering different coupling approaches. The code main classes
21 and their interactions are presented. PROOST performance is illustrated by the resolution of a

22 multiphase reactive transport problem where geochemistry affects hydrodynamic processes.

23

24 1. Introduction

25 Reactive transport models are tools that help to understand the hydraulic and chemical

26 behavior of natural and artificial porous media. It has been used to solve a broad range of
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problems like groundwater remediation (Loomer et al. 2010), nuclear waste disposal
(MacQuarrie and Mayer 2005) and CO2 sequestration (Zhang et al. 2012) among others, from
micro scale (Trebotich et al. 2014) to field scale problems (Sassen et al. 2012).

Modeling reactive transport in porous media involves simulating several coupled phenomena:
phase flow, solute transport, and reactions. It may also involve multiphase flow, heat transport
and porous media deformation (Steefel et al. 2014,). These phenomena may be complex to
model individually, and modeling together brings on new difficulties associated with coupled
effects (Lichtner 1996). Which coupled effects have to be considered and the optimal solution
strategy for the coupled equations depend on the nature of the problem to be solved and may
vary significantly from case to case (Zhang et al. 2012).

The ideal reactive transport code would have to use an accurate, robust and efficient
numerical approach. However, it is difficult to obtain these goals with a single numerical
approach. Therefore, concessions have to be made and different coupling alternatives have to
be chosen at different levels. Numerical accuracy is generally preferred on other issues when
solving modeling research applications. On the other hand, when solving field scale problems,
efficiency and robustness have priority while accuracy remains within the bounds of the
uncertainty associated with model parameters (Yeh et al. 2012).

Two big family of methods were addressed to account for the coupling between solute
transport and chemical reaction processes: (1) the Operator Splitting (or Sequential Iterative
(or NON-iterative) Approach, and (2) the Global Implicit or Direct Substitution Approach
(Saaltink et al. 2001). As regards the first one (i.e., the sequential methods), whether iterative
(SIA) or not (SNIA) adopt operator splitting techniques that effectively decouple component
transport equations. As regards the last one, direct substitution approaches (DSA) solve both
transport and chemical reactions simultaneously. A number of authors have studied the
numerical performance of these methods (Steefel and MacQuarrie, 1996), and they conclude

that in spite of the fact that the DSA is more accurate and robust, there are cases where the
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SIA is more convenient from an efficiency-accuracy point of view. In addition, SNIA may be
appropriated for scenario with Courant number smaller than 1 (Xu et al. 2012). Some reactive
transport codes are able to work with both of these approaches (CRUNCHFLOW, Steefel 2009;
DUMUYX, Flemisch et al. 2011; HYDROGEOCHEM, Yeh et al, 2010; PFLOTRAN, Lichtner et al.
2013; RETRASOCODEBRIGHT et al. Saaltink et al. 2004.), while others use the fully implicit
approach (NUFT, Hao et al. 2012; MIN3P, Mayer et al. 2012), or different variants of operator
splitting techniques (CORE, Samper et al 2009; HYDRUS-PHREEQC (HP1), Jacques et al. 2011;
HYTEC, Lagneau and Van Der Lee 2010; IPARS, Wheeler et al. 2012; OPENGEOSYS, Li et al. 2014;
ORCHESTRA, Meeussen 2003; PHAST, Parkhurst et al. 2010; PHREEQC, Parkhurst and Appelo
2013; PHT3D, Prommer and Post 2010; RT3D, Johnson and Truex 2006; STOMP, White and
McGrail 2005; TOUGHREACT, Xu et al. 2011).

On a more complex level is the coupling between phase conservation and reactive solute
transport. Most reactive transport codes decouple phase conservation (i.e. flow equation)
from reactive transport calculations (RT3D, MIN3P, PFLOTRAN , PHAST, RETRASOCODEBRIGHT,

HYTEC, TOUGHREACT).

This approach is convenient in most cases, but a numerically coupled solution will generally be
more suitable when the phenomena involved are highly physically coupled. One example of
this could be found in problems related with the CO, sequestration in brine aquifers, which has
prompted the development of codes that solve coupled multiphase flow and reactive
transport (Fan et al. 2012) and even mechanical deformation (Zhang et al. 2012). Likewise,
Wissmeier and Barry (2008) showed that the consumption of water due to hydrated mineral
precipitation can have impacts on flow and solute transport for unsaturated flow problems.
These impacts can be even more important if gas transport is also considered because water
activity, which controls vapor pressure, is affected by capillary and osmotic effects. Moreover,
certain mineral paragenesis can fix water activity (producing an invariant point), causing the

geochemistry to control vapor pressure, which is the key variable for vapor flow (Risacher and
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Clement, 2001). In such cases, decoupling is not appropriated. Formulations that are able to
represent these effects are complex to implement since they should consider all coupled
phenomenon and a variable number of components in space and time.

While most reactive transport codes consider a single technic for the resolution of the partial
differential equation some codes can adopt more than one. In Table 1 the supported
discretization method and coupling strategies for different reactive transport codes are

detailed.

Table 1 — Supported discretization method and coupling strategies for different reactive transport codes

Transport and reaction  Phase conservation and

Code PDE discretization’ . N
coupling transport coupling
CORE FEM 0s SEQ
CRUNCHFLOW FVM oS, DS cou
DUMUX FEM, FVM, MEDM 0s, DS Cou, SEQ
HYDROGEOCHEM FEM, MMC 0s, DS ITER
HYDRUS-PHREEQC (HP1) FEM 0S SEQ
HYTEC FVM oS SEQ
IPARS MFEM, DGM oS INDP
NUFT FVM DS SEQ
MIN3P FVM DS SEQ
OPENGEOQOSYS FEM 0s SEQ
ORCHESTRA MC 0s INDP
PFLOTRAN FVM 0s, DS SEQ
PHAST FDM oS INDP
PHREEQC MC 05 INDP
PHT3D FVM, MMC 0s INDP
RETRASOCODEBRIGHT FEM 0s, DS SEQ, ITER
RT3D FDM 0s INDP
STOMP FEM oS SEQ
TOUGHREACT FVM 0s SEQ

1 DGM Discontinuous Galerkin Method, FDM Finite Difference Method, FEM Finite Elements Method, FVM Finite Volume
Method, MC Mixing Cell, MFDM Mimetic Finite Difference Method, MFEM Mixed Finite Element Method, MMC Modified
Method of Characteristic

2 DS Direct Substitution, OS Operator Split

3 COU Coupled, INDP Independent, ITER iterative, SEQ sequentially

Reactive transport modeling in fractured media might also require flexibility regarding the way
the medium is considered. Important changes in fluid pressures and solute concentrations will

propagate rapidly through the fracture system, while exchanges with the matrix blocks will
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occur slowly. To account this, some reactive transport codes have included Multiple
Interacting Continua modeling (TOUGHREACT, PFLOTRAN).

In short, for reactive transport modeling the adopted coupling techniques, the partial
differential equation discretization method and the way as the domain is considered, may be
problem dependent. Therefore, a reactive transport code should include several solution
approaches to be used in a broad range of problems. Moreover, in order to ensure its use for
present and future problems, it must have an extensible design. A number of authors have
pointed out that object oriented (00) programming facilitates the implementation of these

features (Commend and Zimmermann 2001, Filho and Devloo 1991).

The scientific community has been adopting OO techniques for problem solving since the end
of the last century (Forde et al. 1990, Slooten et al. 2010, Wang and Kolditz 2007). But only in
the last decade have OO codes been developed for reactive transport modeling. Meysman et
al. (2003) developed an OO reactive transport code for a single fluid phase. Gandy and
Younger (2007) developed an OO multiphase reactive transport code for pyrite oxidation and
pollutant transport in tailing ponds. Shao et al. (2009) include reactive transport calculations
into a Thermo-Hydro-Mechanic OO framework adopting a sequential non iterative approach
(SNIA). Bea et al. (2009) developed an OO module capable of solving reactive transport for a
single phase considering the SNIA, SIA or DSA approach. However, all of these codes, and most
of the procedural reactive transport codes, have a predefined strategy for dealing with
coupling effects. Particularly, they do not allow for changing number and definitions of
chemical components when solving flow and reactive transport in a coupled way.

The objective of this paper is to present an OO structure for reactive transport that can
accommodate different level of physical and chemical processes coupling. The structure
presented here is capable to model from single-phase SIA problems to fully coupled
multiphase reactive transport problems. In addition, the best of our knowledge, it is the first

OO0 tool capable to account the occurrence of invariant points (e.g., for reference see Risacher
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and Clement) in a reactive transport problem. This is an extreme case where geochemical
processes significantly affect fluid flow and the number and definitions of chemical
components may vary significantly in space and time. This structure has been implemented in
PROOST which was programmed in FORTRAN 95 following the OO paradigm, and until now
could solve single phase reactive transport by the SIA method and a fully coupled multi-phase

reactive transport by the DSA method.

2. Equations to solve

Reactive transport modeling implies establishing several conservation principles, like mass or
energy conservation, expressed as partial differential equations (PDE), and several constitutive
and thermodynamic laws (such as retention curve or mass actions laws) expressed as algebraic
equations (AE). Darcy’s law is used to represent momentum conservation. In this section we
present a generic conservation equation to represent conservation principles in reactive
transport problems. We consider in detail the species and component conservation and we

briefly present the constitutive and thermodynamic laws.
2.1.General conservation equation
Conservation of a physical entity & can be expressed as

oA :
gz—EV +F 1
ot > Je T @)

Where A‘9 is the amount of & per unit volume of medium, j_ is the flux of ¢ due to the

driving force v (e.g. advection or diffusion), and Fg is a sink source term. Since time and spatial

derivatives are involved, conservation equations usually take the form of a partial differential

equation (PDE).

2.2.Species and component conservation equation

6
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The conservation of a species | belonging to phase &, which is a particular case of equation

(1) has the following expression:

g(eaci,a)z L, (ci,a)+§“8ej]i e, +i_k:Skj]i 1k, + (2)
j=1 j=1

Where 6, is the volumetric content of phase &, C, ,is the species i concentration in &
phase,sej'i is the stoichiometric coefficient of the equilibrium reaction j for the specie I,
re, is the reaction rate of the equilibrium reaction j, and Ne is the number of equilibrium
reactions.Skj'i , rk,— and NK are analogous to Se;;, re, and Ne but for kinetic reactions. fi is
an external sink-source term, and La( ) is the linear transport operator for the mobile phase
@ involving advective and diffusive-dispersive processes:
L, (Ci,a):_v'(ci,aqa)_v'(joa,i) (3)
Mobile phase fluxes (, are calculated according to Darcy’s law:
q, =K, (-Vp, +1,9) (4)
where Ka, P,and p, are the conductivity tensor, pressure and density of the phase «

respectively. Diffusive-dispersive fluxes jD ; are calculated according to Fick’s law:
Jo,i =D, V(c,,)=—{D{"g,7+D*)- V(c,,) (5)

where ngﬁ and D™ are the diffusion and dispersion tensor for phase o respectively and 7 is

the tortuosity.
Note that the general sink source term of equation (1) F. involves several different terms in

&

equation (2):

Ne Nk
F. :.21186” -Te, +Z;Skj’i -k, + f, (6)
j= j=
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There is no explicit expression for the equilibrium reaction rates re;, their value has to be such
that the corresponding mass action law is satisfied. Therefore, re, values can be written as a

function of both transport and chemical processes (De Simoni et al. 2005). A common
approach to avoid dealing with these terms is to formulate the conservation of components as
a linear combination of species that remain unaffected by equilibrium reactions. As such,
equilibrium reactive rates disappear from the conservation equations of components (Steefel
and MacQuarrie 1996). However, components may involve species belonging to different

phases, therefore conservation equation for components have to be written:

Z%(Haui,a)_l_zg(eﬁui,ﬁ)zgll‘a (ui,a)+kui + 1, (7)

a B

Where U, , and U, ;are the I component concentration in mobile phases ¢ and immobile
phases [ respectively, and k, is a linear combination of the kinetic terms that affect the

species composing the component. We consider as immobile phases minerals and fluid-solid
interface, despite the fact an interphase is not a phase from a thermodynamic point of view.

Note that the component conservation equation (7) has the same structure as equation (2).

The main difference is that a component U, may be present in more than one phase, while a

species C; belongs to a single phase. There are several ways of defining components and

therefore some freedom in the choice of components. This has led to formulations that try
defining components that do not affect each other, such as those proposed by Molins et al.
(2004), Krautle and Knabner (2005) and Hoffmann et al. (2010). Saaltink et al. (1998)
introduced a definition that eliminates species whose activities are known and constant. That
is the case of minerals, that are considered as pure phases, so that their activity equals unity.
Also, the activity of water can be assumed unity for the case of diluted solutions. Minerals,
often considered as constant activity species, might appear or disappear from portions of the

domain due to precipitation-dissolution processes. Therefore, under equilibrium assumption,
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the dimension of the component vector, the number of components, may be different at each
discrete point in space and vary in time. This increases the difficulty of solving equation (7)
since the matrix system to be solved has a dynamic size, which significantly affects the code.

Once all component conservation and geochemical equations have been solved, all species

concentrations are known. Equilibrium reaction rates re, are then calculated form species

conservation equation (2). If constant activity species have been eliminated from the

component definition, their concentration must also to be calculated from equation (2).

2.3.Constitutive and thermodynamic laws

The literature provides several models for density, viscosity and diffusion coefficients of mobile
phases. These parameters are usually expressed as an explicit function of phase composition,
pressure and temperature. Several models express saturation and relative permeability as an
explicit function of capillary pressure and surface tension. All these relations lead to a local
system of equations, which is valid at every point of the domain.

Thermodynamic relations also form part of this local system of equations. The most important
of these are the chemical equilibrium reactions, which may be expressed by means of mass
action laws, as often done in reactive transport. Also required are models for the calculation of
activity, such as Debye-Hickel (1923), or Pitzer (1973) and expressions for kinetic rate laws
(such as Monod or Lasaga, Mayer et al. 2002).

Minor changes on the solid matrix, like porosity changes due to mineral dissolution-
precipitation or clogging, may also be expressed as algebraic equations (Soleimani et al. 2009).
More complex mechanical processes, like deformation or consolidation, involve momentum
conservation equation and have to be solved as a PDE (Villar et al. 2008).

Constitutive and thermodynamic relationships define a set of algebraic equations (AE) that

have to be solved together with the conservation equations (PDE).
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2.4. Numerical solution of the equations

Methods such as finite element or finite differences, among others, are normally used to
approximate time or space derivative terms in PDEs. Application of such methods leads to a set
of equations that represent the conservation principle for discrete portions of the domain
(representing nodes or cells). The current version of PROOST supports two methods: the Finite
Elements and the Mixed Finite Elements. Contrary to constitutive or thermodynamic laws,
these equations are not local, that is, equations at a discrete point are function of variables at
other discrete points. As constitutive and thermodynamic models (AEs) involve variables that
appear in the PDE, both AEs and PDEs may have to be solved simultaneously. Generally, the
resulting set of equations is non-linear, which makes their solution more difficult. As
mentioned in the introduction different approaches can be adopted for solving these coupled

sets of equation: independently, sequentially, iteratively or coupled.

3. 0O analysis of reactive transport modeling and PROOST class organization

According to the OO philosophy, the numerical solution of reactive transport can be
represented by a group of interacting objects. These objects belong to classes which define
common types of data and functionality. According to Filho and Devloo (1991), defining

suitable classes is the first and perhaps the most important step in software design under OO.

Our analysis was based on the following abstraction: reactive transport modeling is considered
as a set of equations (PDEs and AEs), representing the conservation of chemical species, that
need to be solved in a certain domain. These equations involve several variables or fields (such
as concentrations, density or porosity) which are also defined over portions of the same
domain. The domain is discretized and fields are defined over the discretized space (nodes or
cells). Using discretization techniques (such as finite element or finite differences methods)

PDEs are converted into a set of algebraic equations which represent a discrete version of the

10
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PDE. For each discretized time interval, this set of equations can simultaneously be solved with

the AE or using an operator splitting technique.

The above description points to a natural class structure for our problems. The PDEs share
attributes such as terms in the equation, state variables or domain definitions, and also share
functionalities such as computing the balance or the matrices for the discretized PDE.
Therefore, we find it natural to define a class, termed Phenomenon, to identify PDEs. In the
same fashion, we define Process as the class whose instances will be specific terms in the PDE
(e.g. advection, dispersion, etc.). The class Meshfields defines objects representing various
properties defined over space (and time). To deal the geochemical processes we use the class
CHEPROO (CHEmical PRocesses Object Oriented, Bea et al. 2009). All these objects produce the
terms for the (non-linear) discretized PDEs, which are solved with the functions of the class
Solver. The class organization described above is shown in Figure 1 and its detailed description

is given below.

11
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Figure 1 — Organization of main classes in PROOST. Each box represents a class with its attributes and methods. A

paradigm is show below each class.

3.1.Phenomenon class
PDEs are a central ingredient of reactive transport modeling. All PDEs represent a conservation
principle. All of them consist of different terms, like storage, flux divergence or source terms
and are subject to initial and boundary conditions. Therefore, we define a class for
representing PDEs. We term this class Phenomenon. Note that a number of authors have also
defined similar classes in their analysis (Boivin and Ollivier-Gooch 2004, Kolditz and Bauer 2004,
Meysman et al. 2003). But the main difference here is that in our case, the Phenomenon

object is composed by several objects of the class Process which represent the different terms

12
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of the PDE. This is a key aspect that facilitates code reuse, as will be shown below in the
Process class description.

Beside the Processes that define the PDE, the initial and boundary conditions are also the main
attributes of the Phenomenon class. Methods include the computations of balances or the
contribution to matrices comprising the discrete version of the PDEs. The values of the solution
variables or unknowns will be obtained from the solution of this matrix system.

Initial conditions and Dirichlet boundary conditions are defined as a Meshfields and are
handled by the Phenomenon Class. The rest of boundary conditions, as can be expressed as
different terms of the PDE, are represented by instances of the Process class. The Dirichlet
boundary conditions has the particularity of imposing the state variable value over different
parts of the domain. For this reason there are handled directly by the Phenomenon.

A Phenomenon object can be used to represent a single conservation principle (such as species
mass or energy) or several conservation principles with similar equations, like components
concentrations. For this latter case, the Phenomenon class makes use of the fact that the same
conservation equation applies to all components, and therefore only one PDE has to be

defined which applies to all components.

3.2.Process class
The terms that compose the PDE (e.g., storage or advection) and the boundary conditions that
constrain it (e.g. leakage) are represented by the Process class. The actual nature of this term is

defined via inheritance by specialization classes (Figure 1).

The main attributes of this class are the time and space where the Process is applied (for
example the location of a pumping well for a sink-source Process) and the fields it involves (the
pumping rate in this example). Methods include the computation of the process contribution
to the system matrix or to the global balance. All these are performed by using methods of the
class Mesh, where all discretization-integration information and methods are encapsulated.

13
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The Processes objects are the terms that constitute the conservation equations. A
Phenomenon can be formulated by combining different Processes. This class facilitates the
extensibility of the code because only the new terms (new specialization of the class Process)
have to be programmed to extend the set of equations that can be solved. It also allows
reusing code, since the same type of Processes can be used for different conservation
equations. For example, a diffusive process for a mass conservation equation and an energy
conservation equation are a different instance of the same class. Another example is the
extension of the component conservation equation from single phase to multiphase (equation
(7)). For this case, all processes have to be replicate for each mobile phase. This can be easily

done by considering new instances of the same Process objects.

There are certain limitations regarding the kind of Processes that can be added to a
Phenomenon, and are related to the numerical method chosen for solving it. The nature of the
considered Process has to be supported by the numerical method. For example, in its current
implementation, advective terms cannot be considered when solving a PDE with the Mixed

Finite Element Method.

Most boundary conditions are represented with objects of the class Process. Imposed fluxes
and variable dependent fluxes are considered through a Sink-Source objects, which are
specialization of the class Process. As mentioned before Dirichlet boundary conditions are

handled by the Phenomenon class.

3.3.Mesh class
There are different techniques to solve PDEs numerically. All these techniques share an
approach for discretizing the spatial domain (such as nodes, elements or cells) and methods to
integrate (or differentiate) the terms (Process) of a PDE (Phenomenon) to produce a matrix

system from which the discrete solution of the PDE can be obtained.

14
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Thus, all the data and functionality regarding spatial discretization and the discretization-
integration methods for solving PDE (such as finite element or finite differences) define a class
that we term Mesh. A number of authors have defined similar classes in their analysis.
However, most of them separate the domain discretization from the integration methods in
different classes (Commend and Zimmermann 2001, Wang and Kolditz 2007). This integration
was made because, despite of the fact that both methods can share a mesh (elements and
nodes), the mesh topological data required might be different. For example, Mixed Finite
Elements and Finite Elements can both use the same mesh, but Mixed Finite Elements needs
extra information about edges for 2D problems or sides for 3D. Another difference between
these two methods is that while Finite Elements gives a continuum scalar field for the solution
over the mesh, Mixed Finite Elements gives a vector field. Therefore, some aspects of the
spatial discretization are related to the integration method, and that is why both are consider
in a single object in PROOST.

The main attributes of the Mesh class are the domain discretization information (such as nodes
or cell coordinates and connectivity between these discrete elements). Methods include
yielding information of space discretization (such as the number of discrete elements and their
geometrical information), integrating the different terms of the conservation equation
(Processes) over the domain, and evaluating spatial properties of variables such as gradients.
The Mesh class allows incorporating new discretization-integration numerical methods by
adding new specializations of the class. Two specializations of the class Mesh are currently

implemented in PROOST: the Finite Elements and the Mixed Finite Elements.

3.4.Meshfield class
Another important element of reactive transport modeling is the AEs that represent
constitutive and thermodynamic laws. Constitutive laws express one field as a function of

others. Thus a class termed Meshfield is defined to represent the projection of different scalar,

15
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vector or tensor fields (such as pressure, flux or conductivity) in the discrete domain. The main
attributes of this class are the values and derivatives of a field for the discrete entities (nodes,
elements or cells) and the parameters of the function or constitutive laws they represent. The
main methods of the class are to calculate its values and derivatives, and to interpolate its
values over any point of the domain. Among others, Meshfield is used to represent retention
curves, relative permeability curves and dispersion coefficients.

For example a flux Meshfield object defined as =—TVh, can calculate its values and its

derivatives to transmissivity 1 and head h fields. When a Meshfield represents one of the
solution variables of the problems, like head in the previous example, its values are set by the
solver class.

The Meshfield class facilitates code extension since new constitutive laws can be easily added

to the code by creating new specializations.

3.5.CHEPROO class

Geochemical calculations for the component concentrations and kinetic rate laws of equation
(4) are in fact constitutive laws. Hence, we treat them as a specialization of a Meshfield, which
we term Chemical Meshfield. Many geochemical variables affect the evolution of the system
but do not appear explicitly in any PDE (e.g. the activity of aqueous species). For this reason
and also because of the complexity of some geochemical calculations, all geochemical models
and computations are encapsulated into a single object of a class termed CHEPROO. Only the
chemical variables that appear in PDE (such as component concentration or density) are stored
in a Chemical Meshfield.

The CHEPROO class uses a module with the same name, with an internal class hierarchy
including classes like species, phase and reaction (Bea et al.2009). CHEPROO attributes include
the geochemical models, such as those for activity coefficients, density or kinetic rates laws,

and the chemical data associated to each discrete point of the problem, such as concentrations
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or components definition. CHEPROO includes methods for calculating the values and
derivatives of chemical variables (like component concentration) with respect to the solution
variables of the PDE, and to dump them into Chemical Meshfield objects.

CHEPROO also controls the number of chemical components. For some formulations, like the
one of Saaltink et al. (1998), the number of components may change in time and space. Thus,
CHEPROO has to provide information about the components in order to establish the

dimension of the final matrix system to be solved.

3.6.Solver class

A coupling strategy (coupled or decoupled) needs to be chosen when solving several PDEs. A

solution technique for non-linear systems (Newton-Raphson or Picard) is also needed. An

object of the Solver class will be in charge of solving a number of PDEs with a chosen solution
strategy:

e Independently, there are no crossed influences between Phenomena (for example changes
on porosity due to chemical changes are not considered when solving fluid phase
conservation)

e Sequentially, influences between Phenomena are considered lagged in time (for the
porosity example, changes due to chemistry in time t are considered for flow in time t +dt)

e lteratively, all Phenomena are alternately solved until no significant changes on linking
variables occurs (for the porosity example, flow and transport are solved alternately until
no significant changes in porosity occurs)

Coupled, all Phenomena are solved at once. Solver attributes include the set of Phenomena,

the coupling strategy, the time discretization parameters or the convergence criteria. Methods

are required for assembling and solving the discretized PDE system, for time integration. To
address these, Solver uses other classes. For instances, matrix systems are handled by a class

termed Matrix that encapsulates matrix data and solution techniques for linear systems.
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Solver is the class that contributes most to the flexibility of the code since it can be used to
solve several conservation equations following different strategies. For example, it might be
used to solve first a steady state phase conservation equation (for phase flow calculation) and
then a transient component conservation. Or it can be used to solve simultaneously the

component and energy conservation.

3.7.Component conservation Phenomenon for the SIA and DSA approach
Despite the fact that the SIA and DSA are two approaches for solving the same Phenomenon,
(the component conservation equation), the way this Phenomenon is formulated in PROOST

depends on the chosen approach.

When solving component conservation equations with the DSA approach the input
Phenomenon for PROOST should be the same as in equation (7). However, for the SIA
approach immobile species storage and kinetic reactions are treated as a sink-source term :

foin, = _Zg(gﬂuiﬁ ) +K, (8)
5

Thus the component conservation equation is written only in terms of mobile component
conservation:

Z%('gaui,a)zzl-a (ui,a)+ fS|Ai + fui (9)

« a
The Proost class organization allowed implementing the SIA method without many
modifications. The SIA sink source term was represented with the preexisting sink-source
Process class. This process evaluates the values of the sink source term, which are given by a

Meshifield, and calculates its contribution to the discretized PDE system. By doing this, all the
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complexity of this term is encapsulated in the class Cheproo, which sets the values of the SIA

source term in a Chemical Meshfield.

4. Solution procedure scheme for a time step

The interaction between PROOST objects can be illustrated by the solution of a time interval
for a reactive transport problem considering the DSA method. The flow diagram is shown in

Figure 2, from which 15 relevant points have been identified.
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Figure 2 — Flow diagram of a time interval resolution for a reactive transport problem in PROOST
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10.

11.

Solver establishes the size of the matrix system to be solved. This size depends on the
number of coupled phenomena and the dimension of each state variable. Recall that
component conservation dimension can be different for each discrete point and may
change among the iterative process.

Solver assembles the matrix system to be solved. To this end, Solver requests each
Phenomenon for its contribution.

Phenomenon requests for the contribution of all its Processes.

Each Proceses request the values of all the Meshfields to which it is related.

Meshfield computes its values.

CHEPROO calculates Chemical Meshfield values.

Mesh computes the contribution of the Process to the matrix system.

Matrix solves the matrix system.

Solver updates the calculated solution variables (concentrations, temperature or
pressures) in CHEPROO.

CHEPROO calculates the concentration of all species from these values (speciation). If
there are significant changes on chemical composition, like complete dissolution of
minerals in equilibrium or precipitation of new ones, geochemical calculation might not
converge. If that is the case, the length of time interval is reduced and the resolution
procedure is restarted. The user sets the ideal time step, but if the resolution of the matrix
system (which goes from step 2 to 11) exceeds a certain number of iterations, also set by
the user, the time step is reduced.

Solver controls the convergence of the PDEs linearization and resolution process. When
convergence is reached all variables involved in the phenomena are known, except
equilibrium reactions rates that were eliminated when solving component conservation
(equation (7)). These rates can be calculated from the species conservation equations

(equation (2)). In order to avoid the formality of formulating both components and species
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Phenomenon, this is done by considering an alternative component definition; each mobile
species is considered a component. Therefore, the result of the balance of the new
component conservation will be the product of the stoichiometric coefficient and the
equilibrium reaction rates. These aspects are illustrated with an example in the next
section.

12. CHEPROO changes component definition (each mobile species is considered a component).
This step allows solving species conservation equations with the same structure used for
component conservation equations. This is one of the advantages of Proost class
organization. More details on this particular aspect will be given in section 6.

13. Phenomenon computes balance (similar to step 3).

14. CHEPROO calculates equilibrium reaction rates from Phenomenon balance. Some reactive
transport formulations, like the one of Saaltink et al. (1998), eliminate constant activity
species, like minerals, from component composition. These species concentration can be
calculated once the equilibrium reaction rates are known.

15. If the formulation considered eliminates constant activity species, the number of
component is affected by the disappearance or appearance of minerals. Therefore,
component definition has to be controlled after the eliminated species were calculated. If
component definition changes the resolution procedure has to be started for the new

definition, if not the resolution procedure for the time step is finished.

5. Code implementation

The code presented results from merging and expanding two existing codes: PROOST and
CHEPROO. The original design of PROOST was already capable of solving different
phenomenona, in a coupled or decoupled way, by considering different techniques for the
resolution of non-linear system (such as Newton-Raphson or Picard). However, such a design
only allowed solving Phenomenon objects that had one scalar field as unknown. Also
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Phenomenon Processes had to be written explicitly as a function of the unknown variable.
These featured clashed with the resolution of component conservation, especially when the
DSA approach is considered.

The solution of component conservation equations involves considering the conservation
equation of several components. As the number of components and its definition might
change in time and space (because of complete dissolution or appearance of new mineral
species), the number of Phenomenon considered would also have to vary. In order to avoid
this difficulty, and as the same Processes affect all component concentrations, only one
Phenomenon is considered which applies to a vector variable: the component concentration
vector. Therefore, Phenomenon and Process classes were expanded to handle a vector variable
whose size may change in time and space.

Processes where originally designed to represent terms of PDEs that directly involve the
unknowns of the problem (i.e. main state variables of the phenomenon: pressure for flow
equation, concentration for transport equation). For example, all Processes in a conservative
transport problem involve the solute concentration variable, which is also the unknown of this
problem. When solving reactive transport by the DSA method Processes are formulated in
terms of component concentrations, but the unknowns of the problem are the primary species
concentrations. Therefore, Phenomenon and Process classes were expanded so they can be
formulated in terms of any variable and not necessarily the unknown.

Originally, CHEPROO was capable of solving single phase reactive transport problems.
CHEPROO uses a matrix system calculated by another conservative transport code to
formulate and solve the reactive transport problem (Bea et al. 2008). In order to take
advantage of PROOST’s flexibility we choose to formulate and solve the multiphase reactive
transport equations in PROOST instead of CHEPROO. Therefore, CHEPROO was added to the
PROOST structure with the only purpose of performing the chemical calculations (speciation)

and provide geochemical variables values and derivatives.
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Besides adding new services to make chemical variables available outside its module, several
improvements were made in CHEPROO. Phase properties like density, viscosity and enthalpy,
and capillary effect on water activity were added. The PROOST class organization allowed
representing all this chemical variables in the class Chemical meshfield. By doing this all the
work related to the evaluation, update and dependency of these fields to others (like pressure
or temperature) is done by pre existing methods.

Also a new speciation algorithm that uses the Newton-Raphson method had to be
programmed in CHEPROO due to the high nonlinearity of concentrated solutions. CHEPROO
and PROOST were programmed in FORTRAN 95 following the OO paradigm. This language was
chosen for its high popularity among hydrogeologists and its excellent performance reputation.
Even though FORTRAN is not a full object-oriented language it can directly support many of the
important concepts of OO programming. Details about OOP concepts in FORTRAN can be
found in Akin (1999), Carr (1999), Decyk et al. (1998), Gorelik (2004), Maley et al. (1996) and

Norton et al. (1998).

6. Application:
6.1.Application Description

In order to illustrate the classes introduced before, some aspects of the solution procedure
scheme for a time step (generically described in section 4) are shown for a concrete
application. We present the modeling of a 24 cm column of porous gypsum subjected to a
constant source of heat, in which a significant evaporation occurs. We will focus on the
component conservation equation. This synthetic example was designed for illustrating the
interaction between hydrodynamic and geochemical processes and it is described in detail by
Gamazo et al. (2012). Due to this interaction a compositional formulation was adopted and
therefore no phase conservation equations are explicitly solved. The finite element method
was used for the spatial discretization. One of the most interesting aspect of the application is
how the equilibrium reaction rates were calculated. This implies solving a different
conservation equation, species conservation instead of components. The PROOST structure

allowed to calculate the equilibrium reaction rates by using preexisting methods.
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This application example includes gypsum, liquid water and vapor, dissolved and gaseous air,
calcium and sulfate (main components of gypsum besides water) and 2 conservative species
potassium and chloride (see Table 2). It also considers the occurrence of anhydrite, which may
precipitate as a result of gypsum dehydration. Note that the coexistence in equilibrium of
anhydrite and gypsum can fix water activity and therefore produce invariant points (Risacher
and Clement 2001). As was exposed above, to our knowledge, PROOST is the first multiphase

reactive transport capable of modeling this scenario.

Table 2 — Chemical species and reactions considered

h20,,, h20, , air,, air , Ca, So,, K, Cl, gypsum, anhydrite

-5239.7 '\ Pa-Kgho
— 1
H zo(l) < H zo(g) Kvapour —13&)75)(101 exp(27315+_|_)[ I :l
Pa-Kgh,0
. _ ~ .
air,, < air, K., =2.9x10 {TIZ}
Ca** + SO}~ < anhydrite K g =107
Ca*" +S0;™ +2H,0,, < gypsum K ypom =107

6.2.Initial component definition

Pore solution was initially considered in equilibrium with gypsum with a mineral volumetric
content of 0.6. The incoming energy heats the column, which increases evaporation and
reduces saturation degree at the top. This induces an ascending non statured flow of liquid
water. At certain point a descending evaporation front appears followed by an also descending
gypsum dehydration front in which anhydrite precipitates (see Figure 3). Note that this second

front has a significant effect on vapor flow.
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Figure 3 — Liquid saturation, mineral mass, evaporation rate and vapor flux for the upper 8 cm of the column. Note that besides the typical evaporation front associated to the drying front

there is a second evaporation front associated to hydrated mineral dissolution. This second front has a significant effect on vapor flow.
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When the simulation starts the whole domain has the same mineral composition and
therefore the component conservation equations for all nodes are the same (see Table 3 for

component definition):

Cr 0 Cr Cer 0 0 0 ( 1 0)
) Cair, Cair, Cair, Cair, Ca,,w,’ iy fa,,m
% O| Coor ~Csz |+ % Oy 0 |==VOy| G ~Csr |[+V:|DyV| G =Cop ||=V:|0y| O ||+V:IDy-V| 0 ||+ 0
Cor 0 Cor Cor 0 0 0
Chaq, ~ 2c30§ C“Z%J Chaq, ~ 20305 Chzo,, = ZCSQ§ Chaay, C"Z%w fhz%l

This implies that the number of components is the same for the entire domain. This aspect is
controlled by a single object of the Cheproo class, and affects almost all classes: from the
Solver, in charge of calculating the dimension of the system to be solved, to the Meshfiled, in

charge of storing field values and their derivatives to state variables.

Table 3 — Component definition for different mineral combinations (from up to down: only gypsum, gypsum and

anhydrite, only anhydrite) and the “one component per mobile species” component definition Ul.

H,0, air, Ca* SO; K" CI° H,Q, air, anh ayp |

Uy 0 0 0 0 1 0 0 0 0 0

o | b o 1 0 0 0 0 0 1 0 O
" e O 0 1 -4 0 0 0 0 0 0
U o 0 0 0 0 1 0 0 0 0

oo 1 0 0 =2 0 0 1 0 0 0

i H,Q, air, Ca* SO K' CI" H,O, air, anh gyp]

Uy 0 0 0 0 1 0 0 0 0 0

Umegp=| Uz’ O 1 0O 0O 0 0 0O 1 0 0
oo O O 1 -1 0 0 0 0 0 0

Ug 0 0 0 0 0 1 0 0 0 0 |
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I H,0, aif, Ca* SOf K' CI" HQ, air, anh gyp]
Uy 0 0 0 0 1 0 0 0 0 0
u 0 1 0 0 0 0 0 1 0 0
Datie =/ o 0o 1 -1 0 0 0 0 0 0
Ca-s0,
W 0 O0 0 0 0 L 0 0 0 0
4, 1 0 0O 0 0 0 1 0 0 0
I H,0, air, Ca® SO; K' CI° H,0, air, anh gyp]
e, 1 0 0 0 0 0 0 0 0 0
U, 0 1 0 0 0 0 0 0 0 0
4w, O 0 1 0 0 0 0 0 0 0
U={u, O O 0 1 0 0 0 0 0 0
Uy 0 0 0 0 1 0 0 0 0 0
4 0 0 0 0 0 1 0 0 0 0
e, O O O 0 0 0 1 0 0 0
ly 0 ©0 0 0 0 0 0 1 0 0

Despite of having several components, each with its own conservation equation or
phenomenon, PROOST treats components as entities pertaining to one phenomenon. This
simplifies the code’s internal operability and problem definition, since it allows taking benefit
of the fact that several processes affect species in the same way. For example the storage,
advection and diffusion-dispersion processes in equation (10) affect all species from a phase in
the same way. For these processes the contribution to the system matrix are calculated for all
components together. Encapsulation allows confining to the Process class all the complexity
associated to the fact that processes can be part of one or a set of partial differential equations.

Currently the only process that acts differently over each species is the “sink/source” process.

The Cheproo object also defines which species and variables will be considered as state

variables for Newton-Raphson system. When only gypsum is present in the system, the states

variables associated to component conservation equations are: C+ Cair, Coo Cof P,. The rest

air;) “Ca

of species (Cair(g), Ch20(g)'C50§*) are secondary and its values are calculated by Cheproo by
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considering mass actions laws. Reaction rates and non-mobile species concentrations are

calculated in a subsequent step.

In order to understand the physical meaning of component conservation equations, it is
helpful to associate state variables to specific components. For example, each of the species

and Cor ) can be considered as the constituents of

chosen as state variables (CK+ , Cair“) » Cogor

the four first components of the conservation equations (10). The association of the liquid
pressure ( P,) to a specific component is not straight forward. Liquid pressure is related to

liquid saturation which affects all components. Since the last component in equation (10)
contains all water species and only involves secondary species, liquid pressure can then be
associated to its main variable. However, variables like activity coefficients, density, viscosity,
gas pressure and liquid saturation, depend on all state variables and make the system fully
coupled. Nevertheless, the exercise of defining a main variable for every component provides
a more profound knowledge about variables dependency, which may be relevant for some
cases as will be shown in section 6.3. For that case water species is eliminated from the

component equation and both calcium and sulfate are defined as secondary variables.

As can be seen in Figure 2, matrix system assembling is the core of a time interval resolution. It

involves all the classes shown in Figure 1.

Once the system is solved there are still unknown variables to be calculated: the eliminated

species concentration and the equilibrium reaction rates.

These variables can be calculated by considering the species conservation equation. In order to
avoid formulating a different phenomenon the PROOST class organization allows using the
same structure as used for calculating component conservation for species conservation. This

is one of the advantages of the Proost class organization. The same phenomenon is considered
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and only the component definition is changed. The new component definition considers every

mobile species as a component (see Table 3):

K 0 K K 0 0 0 [0 0 O]
Car 0 Ca Ca, 0 0 0 1|10 o (11)
0 i) 0 0 aig) Cair, airy, 1 0 0 .
0 CCaz+ 0 0 cCaz+ cCaz* 0 0 0 0 0 -1 ar
—0, +—6, =-V-q +V: D,V -V-q +V:| D, -V + + |
a Csuf’ a0 & Csﬁg, « Csm%’ 90 ¢ 0 0 0 0 -1 r ¢
ap
Cor- 0 Co Cy 0 0 0 0 0 O
Chy, 0 Gz, Chza, 0 0 0 0 -1 -2
0 Chz%w 0 0 chzo(m Chz%) fhz%) - 010 -

Note that all the processes in equation (11) are analogous to equation (10), except the last one.

This is the only term in equation (11) that has unknown variables (I, I, ), the other

rgypsum
terms involve known variables. In order to calculate these unknown variables the U,

component definition is considered and a general method of the process class, balance, is used

to calculate all terms at the right hand side of equation (9):

_ra“’ Calr“] O all'“) Call'“] 0 0 0
Vi 0 ca'%) 0 0 cai']gv ca"]gv alg)
r ) - | 0 0 Cet : 0 0 0
I -t I L B L M B | L I 1 A e = I
Too ot sz | ot S0? S0¢
0 Cy 0 Cy il 0 0 0
~Thao _zrgyp ChZ% 0 ChZU“) chZDU] 0 0 0
"hao 0 Chzqy, 0 0 Chzoy, Chzoy, fhz%s
(12)

The result is used by Cheproo to calculate the reaction rates (evaporation, volatilization of
dissolved air and gypsum precipitation). Note that the number of equations exceeds the
number of unknowns (eight and three, respectively). In theory, solution of all equations should
give the same reactions rates. For simplicity we used the least square method for the solution
of equation (9). Once the reaction rates are calculated, the mole variations of mineral species
can be computed (gypsum for this case). If a mineral is completely depleted or if the solution
has become saturated for a new mineral, components should be redefined and calculations for

the time step recalculated.
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6.3.Anhydrite precipitation

As the system evolves over time, water activity decreases at the top of the column due to
osmotic and capillary effect, and anhydrite starts to precipitate. When anhydrite and gypsum
coexists a singularity, known as “invariant point”, occurs and water activity remains constant
(Risacher and Clement 2001 and Gamazo et al. 2011). Combining the mass actions law for

anhydrite and gypsum (equation (13)) the fixed water activity value can be obtained:

a‘Ca2+ a‘soff = Kanhydrite

2 —
aCaZ* asoff ah20(|) - Kgypsum

K gypsum

= 8z, = (13)

anhydrite

Under this scenario gypsum dissolves and anhydrite precipitates at a rate that ensures this

fixed water activity:

gypsum < anhydrite + 2H,0 (14)

This implies a singular component definition (see Table 3) which results in the following
component conservation equation:

Ce- 0 Ce: Cer 0 0 0

C. C. C. c c (15)
E@aq ai +ét9 ai) —_v. qaq air) v Daq v an, _v. qg air g V. Dg v aiffy) + airg
Coar ~Cs- | O 0 Coar ~ O Coar ~Coot- 0
Co 0 Co Cy 0 0 0

Note that all forms of water have been eliminated from the components conservation
equation. For all nodes where anhydrite and gypsum coexists these new components have to

be considered, and the states variables associated to conservation equation will be: C, ., Cair“) )

Cor v Py
This conservation equation, and the corresponding states variables, may make it difficult to
associate state variables to specific components. As in the previous system, the state variables

C C C_._ can be associated to the first, second and fourth component respectively.

K+ ’ air(l) 7 CI—
Hence, the remaining variable, liquid pressure, must be associated to the third component of

equation (15). Although this third component only contains Ca®* and SO,* and no H,0, it still
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depends on liquid pressure through volumetric content, 8,4, and retention curve. Hence, there

is no problem in using it for the calculation of liquid pressure. But since neither C.,2 Of

C_, are state variables, it is not straight forward to understand how the system can manage

So2”
balance of these two species, especially when advective and diffusive fluxes are considered. In
nodes where gypsum and anhydrite coexists water activity is fixed. The main mechanism for
this is the sink source term of water produced by the interaction of these two minerals as
shown in equation (14). But this interaction can also affect calcium and sulfate concentration
through differences in precipitation rates. For instance, if the rate of gypsum dissolution is the
same as anhydrite precipitation then only water is released. But any differences between
these rates can release or consume dissolved Ca’* and SO,”". Hence, gypsum-anhydrite
interaction will release the necessary amount of water, calcium and sulfate to keep water
activity constant and to conform these two species conservation equations. This can be seen
by considering the species conservation equation of calcium and sulfate ((16) and (17)), and
the sum of liquid and gaseous water (18):

%0&1 (CCaZ’ ) = _v'(qaq (CCaz* ))+V'(Daq 'V(CCaZ+ ))_ Yoy ~ Lanny (16)

O e LR G R

0 0 18
56’&“ (chz% )+&9g (chzu(g))=—v-(qaq (chz% ))+V~(Daq -V(chzu(” ))—v.(qgchZD(g))+V-(Dg -V(chz%)))+ fhz%) —2.rgyp( )
The most interesting aspect of this is that the precipitation dissolution rates were eliminated
and therefore were not involved in the component conservation equations. This situation
continues as long as the two minerals coexist. If that is not the case, and one mineral is

depleted, the component definition is changed and the time step is recalculated.
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When a mineral content is exhausted during the resolution of a time step , the new
component definition considers that this mineral is no longer present. However it was still
present at the beginning of the time step. In order to keep track of this remaining amount of
mineral, this amount is distributed among the species that forms it and treated as a fixed
source term. In the present application, when gypsum disappears, a new component definition

is considered (U ) and a source term is added for calcium, sulfate and water equal to the

anhydrite
amount of remaining gypsum times the corresponding stoichiometric constant, 1 for calcium
and sulfate and 2 for liquid water.

The resulting component conservation equations are similar to the ones shown in equation

(10).
c.. 0 C.. C.. 0 (19)
i Cair iy Ca Cary, Cairy far,

0 0

aeaq Cea ~Coiz- +a Oyl 0 |=-V:|Uy| Cer ~Csz ||+V| DyV| G ~Csz [[-V+|Qy| O ||+V:|Dy-V| 0 |[|+] O
Ca 0 Ca Cal 0 0 0
Chzq, Chagy, Chao,, Chzg, Chzq, Chaqy, fhz%,

Note that the last component only involves liquid and gaseous water.

7. Summary and conclusions

An object oriented multiphase reactive transport class organization has been presented. It was
designed to ensure extensibility and flexibility. Its main classes are: Mesh (contains all the
discretization information and integration methods, such as finite elements or finite
differences), Meshfield (represent spatial fields and the constitutive laws that relate them, like
saturation or concentrations), Phenomenon (represents the conservation of a physical
magnitude expressed as a partial differential equation (PDE), such as mass or energy
conservation), Process (represents a term of a Phenomenon PDE, like advection or storage, and

non-Dirichlet boundary conditions), Solver (controls the coupling strategy for solving all
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Phenomena and assembles the matrix system to solve) and CHEPROO (encapsulates all
thermodynamic date and perform geochemical calculations).

The flexibility and extensibility of PROOST come from the following particularities of its design.
Several Phenomenon can be formulated by combining the available Process. In order to solve a
new kind of Phenomenon, only new Processes have to be programmed. The Solver class can be
set to solve all Phenomena independently, sequentially or coupled.. New constitutive laws can
be easily added to the code by creating new specialization of the Meshfield class, and new
numerical methods for discretization-integration of PDE can be added by implementing new
specializations of the Mesh class. The main challenging task, for solving reactive transport
problems, was to implement the ability of using changing definitions of components. This
could be achieved by considering the components as entities pertaining to one Phenomenon.
The flexibility of the structure allowed the implementation of the SIA method by mainly
creating a new specialization of the Messfield class.The performance of PROOST is illustrated
by describing the solution procedure for a concrete application: the modeling of a column of
porous gypsum subjected to a constant source of heat. The problem involves important
interaction between hydrodynamic and geochemical processes like the occurrence of invariant
points. The flexibility of the structure is shown in the example. In this regard, it highlights the
fact that a single phenomenon object is considered for representing both component and
species conservation in two different steps of the resolution procedure. This allows the

calculation of the equilibrium reaction rates using pre existing methods.
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