
A

PARSECSs: Evaluating the Impact of Task Parallelism in the PARSEC
Benchmark Suite 1

Dimitrios Chasapis∗,†, Marc Casas∗, Miquel Moretó∗,†, Raul Vidal∗,†, Eduard Ayguadé∗,†,
Jesús Labarta∗,† and Mateo Valero∗,†

∗ Barcelona Supercomputing Center (BSC), Barcelona, Spain
† Universitat Politècnica de Catalunya – BarcelonaTech (UPC), Barcelona, Spain

In this work we show how parallel applications can be efficiently implemented using task parallelism and we
also evaluate the benefits of such parallel paradigm with respect to other approaches. We use the PARSEC
benchmark suite as our test bed, which includes applications representative of a wide range of domains
from HPC to desktop and server applications. We adopt different parallelization techniques, tailored to the
needs of each application, in order to fully exploit the task-based model. Our evaluation shows that task
parallelism achieves better performance than thread-based parallelization models, such as Pthreads. Our
experimental results show that we can obtain scalability improvements up to 42% on a 16-core system and
code size reductions up to 81%. Such reductions are achieved by removing from the source code application
specific schedulers or thread pooling systems and transferring these responsibilities to the runtime system
software.

Categories and Subject Descriptors: D.1.3 [Software]: Concurrent Programming

General Terms: Performance, Measurement, Experimentation

Additional Key Words and Phrases: Parallel Applications, scalable applications, parallel benchmarks, paral-
lel architectures, parallel runtime systems, task-based programming models, concurrency, synchronization

1. INTRODUCTION
In the last few years processor clock frequencies have stagnated, while exploiting
Instruction-Level Parallelism (ILP) has already reached the point of diminishing re-
turns. Multi-core designs arose as a solution to overcome some of the technological
constraints that uniprocessor chips have, but they exacerbated some others as a coun-
terpart. Multi-core architectures can potentially provide the desired performance by
exploiting Thread Level Parallelism (TLP) of large scale parallel workloads on chip.
Such large amount of parallelism is managed by the software, which means that the
programmer needs to implement highly efficient and architecture-aware parallel codes
to achieve the expected performance. This is obviously much harder than programming
a uniprocessor chip, which is commonly referred as the Programmability Wall [Chap-
man 2007]. Moreover, dealing with this wall will be even harder in the near future
with the arrival of many-core systems with tens or hundreds of heterogeneous cores
and accelerators on-chip.

Threading is the most common way to program many-core processors. POSIX
threads (Pthreads) [Butenhof 1997] and OpenMP [Chapman et al. 2007] are two of
the most common programming models to implement threading schemes. Addition-
ally, MPI [Nagle 2005] can be incorporated to threading codes to handle parallelism in
a distributed memory environment. However, to develop efficient threading codes can
be a really hard job due to the increasing amount of concurrency handled by many-core
processors and the current trend towards more heterogeneity within the chip. Syn-
chronization points are often needed in threading codes to control the data flow and
to enforce correctness. However, the cost of these schemes increases with the amount

1This paper is published in the journal ACM Transactions on Architecture and Code Optimization
(TACO), volume 12, number 4, pp. 41:1-41:22, January 2016. The final publication is available at
http://doi.acm.org/10.1145/2829952.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46111762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of parallelism handled on chip, seriously hurting performance due to issues like load
imbalance or NUMA effects. Also, relaxing synchronization costs often involves signif-
icant programming efforts as it requires the deployment of complex and application
specific mechanism like thread pools.

Task parallelism [Fatahalian et al. 2006; Blumofe et al. 1995; Bellens et al. 2006;
Ayguadé et al. 2009; Tzenakis et al. 2012; Jenista et al. 2011; Planas et al. 2009; Du-
ran et al. 2011] is an alternative parallel paradigm where the load is organized into
tasks that can be asynchronously executed. Also, some task-based programming mod-
els allow the programmer to specify data or control dependencies between the different
tasks, which allows synchronization points relaxation by explicitly specifying the data
involved in the operation [Jenista et al. 2011; Ayguadé et al. 2009; Tzenakis et al. 2012;
Duran et al. 2011].

The task-based execution model requires to track the dependencies among tasks,
which can be explicitly specified by the programmer [Jenista et al. 2011; Zuckerman
et al. 2011] or dynamically handled by an underlying runtime system [Duran et al.
2009; Tzenakis et al. 2012; Duran et al. 2011]. When dependencies are detected among
tasks, a deterministic execution order is applied by the runtime system to enforce
correctness. In this way, all the potential parallelism of the code is exposed to the
runtime system, which can exploit it depending on the available hardware. Additional
optimizations like load balancing or work stealing [Blumofe et al. 1995; Duran et al.
2011] can be applied at the runtime system layer without requiring any platform-
specific consideration from the programmer.

The potential of task-based programming models is expected to be significant in
a wide range of areas. The evaluations made so far consider micro-benchmarks [Ap-
peltauer et al. 2009; Podobas and Brorsson 2010], or are limited to specific application
domains like graph analysis codes [Adcock et al. 2013] or High Performance Comput-
ing (HPC) kernels [Ayguadé et al. 2008; Podobas and Brorsson 2010]. In this work,
we aim to evaluate the benefits of task-based parallelism beyond the scope of HPC
applications, focusing on a set of parallel applications representative of a wide range
of domains from HPC to desktop and server applications. To do so, we apply task-
parallelism strategies to the PARSEC benchmark suite [Bienia 2011] and compare
them in terms of programmability and performance with respect to the fork-join ver-
sions contained in the suite. The main contributions of this paper are:

— We apply task-based parallelization strategies to 10 PARSEC applications.
— We fully evaluate them in terms of performance, considering different scenarios

(from 1 to 16 cores) and achieving average improvements of 13%. In some particular
cases, the improvements reach 42%.

— We provide detailed programmability metrics based in lines of code, achieving an
average reduction of 28% and reaching a maximum of 81%.

The remaining of this document is organized as follows: Section 2 offers background
information on the task-based model we chose and the PARSEC benchmark suite.
In Section 3 we discuss how these applications are parallelized in Pthreads/OpenMP
and then explain our task-based approach. Section 4 shares our experience in pro-
gramming these applications: the required effort, the versatility of the task-based
model, and its current limitations. Section 5 evaluates the performance of the Pthread-
s/OpenMP codes and our task-based implementations. Section 6 summarizes the re-
lated work and, finally, in Section 7 we give our closing remarks.

Table I: PARSEC Benchmark Suite
Benchmark Description Native input LOC
blackscholes Intel RMS benchmark. It calculates the prices for a

portfolio of European options analytically with the
Black-Scholes partial differential equation (PDE).

10,000,000 options 404

bodytrack Computer vision application which tracks a 3D pose
of a marker-less human body with multiple cameras
through an image sequence.

4 cameras, 261 frames,
4,000 particles, 5 anneal-
ing layers

6,968

canneal Simulated cache-aware annealing to optimize rout-
ing cost of a chip design.

2,500,000 elements, 6,000
temperature steps

3,040

dedup Compresses a data stream with a combination of
global compression and local compression in order to
achieve high compression ratios.

672 MB data 3,401

facesim Intel RMS workload which takes a model of a human
face and a time sequence of muscle activation and
computes a visually realistic animation of the mod-
eled face.

100 frames, 372,126 tetra-
hedra

34,134

ferret Content-based similarity search of feature-rich data
such as audio, images, video, 3D shapes, etc.

3,500 queries, 59,695 im-
ages database, find top 50
images

10,552

fluidanimate Intel RMS application uses an extension of the
Smoothed Particle Hydrodynamics (SPH) method to
simulate an incompressible fluid for interactive ani-
mation purposes.

500 frames, 500,000 parti-
cles

2,348

freqmine Intel RMS application which employs an array-based
version of the FP-growth (Frequent Pattern-growth)
method for Frequent Itemset Mining (FIMI).

250,000 HTML docu-
ments, minimum support
11,000

2,231

raytrace Intel RMS workload which renders an animated 3D
scene.

200 frames, 1,920×1,080
pixels, 10 million polygons

13,751

streamcluster Solves the online clustering problem. 200,000 points per block, 5
block

1,769

swaptions Intel RMS workload which uses the Heath-Jarrow-
Morton (HJM) framework to price a portfolio of swap-
tions.

128 swaptions, 1,000,000
simulations

1,225

vips VASARI Image Processing System (VIPS), which in-
cludes fundamental image processing operations.

18,000×18,000 pixels 127,957

x264 H.264/AVC (Advanced Video Coding) video encoder. 512 frames, 1,920×1,080
pixels

29,329

2. BACKGROUND
2.1. The PARSEC Benchmark Suite
With the prevalence of many-core processors and the increasing relevance of applica-
tion domains that do not belong to the traditional HPC field, comes the need for pro-
grams representative of current and future parallel workloads. The PARSEC [Bienia
2011] features state-of-the art, computationally intensive algorithms and very diverse
workloads from different areas of computing. PARSEC is comprised of 13 benchmark
programs. The original suite makes use of the Pthreads parallelization model for all
these benchmarks, except for freqmine, which is only available in OpenMP. The suite
includes input sets for native machine execution, which are real input sets. Table I
describes the different benchmarks included in the suite along with their respective
native input and the lines of code (LOC) of each application. We apply tasking paral-
lelization strategies to 11 out of its 13 applications: blackscholes, bodytrack, canneal,
dedup, facesim, ferret, fluidanimate, freqmine, streamcluster and swaptions and
x264. We leave 2 applications out of this study: raytrace and vips. Vips is a domain
specific runtime system for image manipulation. Since vips is a runtime itself, it is
not reasonable to implement it on top of another runtime system. Therefore we do
not include this code in our evaluations. Raytrace code has the same extension as
ferret, facesim and bodytrack and the same parallel model as blackscholes [Cook
et al. 2013]. Therefore, since it does not offer any new insight, we do not consider the
Raytrace code in the paper.

We have a preliminary task-based implementation of the x264 encoder, which scales
up to 14x on a 16-core machine, the same as the Pthreads version. Since we just em-
ulate the same parallel model as the original Pthreads version and obtain the same
performance, we do not include this code in the results section as it provides no in-
sight.

2.2. Asynchronous Tasks and Dataflow Model
Tasks offer an easy and abstract way to express parallelism. The OpenMP 4.0 [?], a
widely used programming standard for shared memory machines, allows the user to
annotate functions that can be run asynchronously. It also supports dataflow annota-
tions that describe data dependencies among tasks. This information can be used by
the runtime system to synchronize task execution. Standard synchronization schemes
are also available (locks, atomics, barriers, etc). In this work we chose to use the
OmpSs [Duran et al. 2011] programming model, which is a forerunner of the OpenMP
4.0 tasks. Despite the fact that OmpSs offers advanced features like socket aware
scheduling for NUMA architectures or pragma annotations to handle multiple depen-
dence scenarios, in this paper we only use features already available in the OpenMP
4.0 standard. The two models have virtually the same syntax, thus porting OpenMP
code to OmpSs and vice versa is straightforward.

void load () {
int i = 0 ;
while (load image (image [i])) {

#pragma omp task in (image [i])
out (seg images [i])

seg images [i] = t seg (image [i]) ;
#pragma omp task in (seg images [i])

out (extract data [i])
extract data [i] = t ex t rac t (seg images [i]) ;
#pragma omp task in (extract data [i])

out (vector iz data [i])
vector iz data [i] = t vec (extract data [i]) ;
#pragma omp task in (vector iz data [i])

out (rank results [i])
rank results [i] = t rank (vector iz data [i]) ;
#pragma omp task in (rank data [i])

out (outstream)
t out (rank data [i] , outstream) ;
i ++;

}
#pragma omp taskwait

}%

Fig. 1: Ferret implementation in OmpSs

Figure 1 shows a simplified version of the ferret benchmark implemented in
OmpSs, an application that is parallelized with a pipeline model. The programmer
can use pragma directives to identify functions that should run asynchronously. These
task pragmas can have dataflow relations expressed with the use of in, out and inout
annotations. These declare whether a variable is going to be read, written or both by
the task. An underlying runtime system is responsible for scheduling tasks, track de-
pendencies, balance the load among available threads and ensure correct order of ex-
ecution, as dictated by the dataflow relations. In our example data dependencies will
force tasks spawned in the same iteration to run in sequential order, while tasks from

different iterations can run concurrently. An exception is t out which shares a common
output between all instances, outstream, to store the final results of ferret.

3. APPLICATION PARALLELIZATION
In this section we discuss how the PARSEC applications are parallelized in Pthread-
s/OpenMP2.0 and how they can be implemented efficiently using a task-based ap-
proach. When possible, we exploit dataflow relations in order to take advantage of
implicit synchronization (as described in Section 2.2). If it is not possible we use con-
ventional synchronization primitives such as locks, atomics and barriers.

Blackscholes. This application solves a Black-Scholes Partial Differential Equa-
tion [Black and Scholes 1973] to calculate the prices for a portfolio of ten million Euro-
pean options.

Pthreads. This version simply divides the portfolio into work units by the number of
available threads, and stores them into the numOptions array. Each thread calculates
the prices for its corresponding options and waits in a barrier until all the threads have
finished executing. The algorithm is run multiple times to obtain the final estimation
of the portfolio.

Task-based. In the case of the task-based version, we divide the work into units
of a predefined block size. This block size allows having much more task instances
than threads, which implies a much better load balance, as this is an embarrassingly
parallel application with no dependencies among tasks in the same run.

Bodytrack. Computer vision application that tracks a marker-less human body us-
ing multiple cameras through an image sequence. The application employs an an-
nealed particle filter to track the body using edges and the foreground silhouette as
features of interest.

Pthreads. Bodytrack applies the same algorithm on each frame of the image se-
quence to track the different poses of the body. The human body is modeled as a tree-
based structure, consisting of 7 conic cylinders. It reads 4 images taken from several
cameras to capture a scene from 4 different angles, thus each frame consists of these 4
images. These images are read and encoded to a single data structure. For each frame,
bodytrack extracts the edges and silhouette features for each of these 4 images. In this
feature extraction stage we have 3 different kernels.

(1) Edge detection: Gradient based edge detection.
(2) Edge smoothing (phase 1): Gaussian filter used to smooth edges applied on array

rows.
(3) Edge smoothing (phase 2): Gaussian filter used to smooth edges applied on array

columns.

Afterwards, bodytrack goes through an annealed particle filter stage, which consists
of M annealing layers over a set of N particles. The particles are multi-variate config-
urations of the state and location of the tracked body. Given the image features, the
particles are assigned weights, which increase or decrease the chance that a particle
represents a body part. N particles are then chosen, depending on the probability dic-
tated by their weights. Random noise is added to this set of particles, creating a new
set. This process is repeated for all annealing layers. Bodytrack then picks one of the
M configurations, the one which has the highest weighted average. This process has
two parallel kernels.

(4) Calculate particle weights: Computes weights for the particles, using the edges
and silhouette produced from the previous stages.

(a) Trivial Task-based Strategy

(b) Optimal Task-based Strategy

Fig. 2: Parallel execution of Pthreads and task-based versions of bodytrack on an 8-
core machine and native input size. Different parallel regions correspond to different
colors. White gaps in the figure, represent idle time.

(5) Particle Resampling: Adds Gaussian random noise to the particles, thus creating
a new set of particles.

In the case of Pthreads, the 4 images of a frame are read and processed in parallel
using one thread per image. The Pthreads implantation is limited by the 4 images it
can process concurrently, while there is no other candidate work at this point. A spe-
cific asynchronous I/O implementation is required to read the files in parallel. Then,
the features extraction stage is executed using all the available threads, with a syn-
chronization barrier at the end of each phase. The same structure is followed in the
annealed particle filter stage, with two barriers at the end of each phase. Between the
two stages, serial code has to be executed, which leaves only one thread busy and the
rest idle. Finally, the output results are written sequentially in one file.

Task-based. In the case of the task-based version, we adopt a more coarse grain ap-
proach. We do not parallelize the feature extraction stage, instead we taskify the whole
frame processing, allowing concurrent execution of all frames. The parallel kernels of
the annealed particle filter stage are taskified in our version, and synchronization is
achieved by dataflow annotations. Each frame needs to be written when calculations
are completed. In our version we can do this asynchronously while the threads are busy

with the processing stage of another frame. Thus, output I/O is effectively overlapped
with computation stages.

Figure 2 shows parallel executions of two different task-based implementations:
The first one just mimics the Pthreads behavior (2a) and the second is an opti-
mal task-based implementation (2b). Different colored boxes represent different task
types, as well the duration of that task type on each core. In both cases, the white
gaps denote the time each thread spends idle. Both figures show the same duration
for each execution. In the optimal version, all functionality is implemented within
the frame-processing task, thus execution time for read-frame, edge-detection and
edge-smoothing is represented with blue color (frame-processing). Tasks particle-
resampling and calculate-particle-weights are also implemented as nested tasks. They
are displayed with different colors (green and yellow respectively). We can observe that
the Pthreads-like version suffers from greater idle time compared to its optimal task-
based counterpart. Work is distributed more efficiently in the optimal implementation
by processing different frames concurrently. This allows us to overlap I/O and serial
code segments of one with available work from another one.

Canneal. This kernel uses a cache-aware simulated annealing [Banerjee 1994] to
optimize routing cost of a chip design. Canneal progressively swaps elements that need
to be placed in a large space, eventually converging to an optimal solution. The problem
is stored as a list with routing costs between nodes.

Pthreads. This version compares random element pairs of the graph concurrently
and swaps them until it converges to an optimal solution. No locks are used to pro-
tect the list from concurrent accesses/writes, but swaps are done atomically instead.
However, the evaluation of the elements to be swapped is not atomic. This means that
disadvantageous swaps may occur, which will require the algorithm to eventually swap
them again. This method has provided better results than the alternative algorithm
with locks [Bienia et al. 2008].

Task-based. Our task-based version follows the same paradigm. Several tasks are
spawned without any dependencies between themselves. We use the same atomics as
with the Pthreads version. Since tasks work with an arbitrary number of list elements,
it is not possible to describe which elements of the list a task is going to randomly
access.

We also try an alternative fine grain implementation, where a task is spawned for
each random pair of list elements. This would allow the runtime to know if two tasks
are working on the same list of elements. However this implementation implied fine-
grain tasks. Each task would merely do a single swap between two list elements. The
overhead of the dynamic scheduling is a problem in this scenario. A more complex but
more efficient solution is suggested by Symeonidou et al. [Symeonidou et al. 2013] with
the use of memory regions. Adopting this method in a task-based model would allow
the programmer to describe parts of the list (or other pointer based data structures)
and express dataflow relations as abstract memory regions. This solution also implies
fine-grain tasking and is not evaluated at the Symeonidou’s work.

Dedup. The dedup kernel is used to compress data streams using local and global
compression to achieve higher compression rates. This method is called deduplica-
tion [Quinlan and Dorward 2002].

Pthreads:. Dedup is parallelized using a pipeline model with the following stages:

— Fragment: First, the data-stream is read and partitioned at fixed positions into
coarse grain data chunks. Each chunk can be processed individually by the rest of
the stages. This stage is executed on a single thread.

Fig. 3: Parallel execution of the task-based version of dedup on an 8-core machine and
native input size. Different task types correspond to different colors.

— Fragment Refine: A new data chunk initiates the second pipeline stage, where
it is further partitioned into smaller fine-grain chunks. The portioning is done by
using the Rolling-fingerprint algorithm.

— Deduplication: This stage eliminates duplicate fine-grain chunks. Unique chunks
are stored in a hash-table. Locks are used here to protect each bucket from concur-
rent accesses.

— Compress: At this stage chunks are compressed in parallel. Identical chunks are
compressed only once as duplicates are removed at the deduplication stage.

— Reorder: This stage writes the final compressed output data to a file. It writes only
unique chunks’ compressed data and for the duplicates it stores their hash values.
However this stage needs to reorder the data chunks as they are received to match
the original order of the uncompressed data.

The Pthreads version maintains a queue and a thread pool dedicated to each stage.
When a chunk becomes available at one stage, it is moved to the queue of the next
stage. Each stage polls at its queue for available chunks to process. The reorder stage
is done sequentially with a devoted thread that can be in an idle loop waiting for
previous stages to finish. Each thread pool comprises by a number of threads equal to
the number of available cores. The only exceptions are Fragment and Reorder stages,
which are served by a single thread each.

Task-based. In our implementation we taskify each pipeline stage and express
data dependencies using static arrays and dataflow relations, one for each pipeline
stage. FragmentRefine however partitions the data chunks into very fine grain seg-
ments, ranging from a few hundreds to thousands. For such granularity, our approach
suffers from high overheads due to dynamic schedulnig overhead. The same is ob-
served in [Vandierendonck et al. 2013], where an alternative approach is adopted. In
their approach, two pipelines are identified: The outer pipeline, consisting of stages
Fragment, InnerPipeline and Reorder. The inner pipeline consists of FragmentRefine,
Deduplicate and Compress. To reduce the dynamic scheduling overhead, they merge to-
gether Deduplicate and Compress. By doing so, the available parallelism is limited, but
still there is enough work not to harm performance and scalability. In our approach,
we merge together the inner pipeline, creating one sequential function, exploiting only
the parallelism available in the outer pipeline. Even in this scenario, the available par-
allelism is still abundant, since the application is bound by the writing of the output
file, which is sequential. Figure 3 shows a trace of the task-based version. We can see
that communication stage (in yellow) is effectively overlapped with the computation
stage (in red), however, there is not enough work to keep all the threads finish, until
the end of the execution.

Furthermore, we modify the Reorder stage, by replacing it with a simple stage
where the chunk is simply written to file (WriteOutput). Using dataflow relations and
a shared output resource between the WriteOutput tasks, we ensure that chunk N-1
will be written before chunk N. Thus, we do not need to reorder data chunks in this
task type. Moreover, the scheduler makes sure chunks are written as soon as they be-
come available by the InnerPipeline task, an improvement over the Pthreads version,
where Reorder instances need to idle wait until all previous chunks ones have been
written. Another difference between the two versions, is that Pthreads oversubscribe
threads to cores for each pipeline stage, while in our implementation we only assign
one thread to each core.

Facesim. Computes a visually realistic human face animation by simulating the
underlying physics. As input it uses a 3D model of a human face containing both a
tetrahedra mesh and triangulated surfaces for the flesh and bones, respectively. Addi-
tionally it uses a time sequence of muscle movement [Sifakis et al. 2005].

Pthreads. The application statically decomposes the original tetrahedron mesh into
smaller partitions, equal to the number of available threads. There are three main
parallel kernels:

— Update State: Calculates the steady properties of the mesh, constrains like stress
and stiffness.

— Add Forces: Computes the force contribution between vertices acting on the 3D
model.

— Conjugate Gradient (CG): An iterative method that solves the linear system pro-
duced by the other two previous kernels and find the final displacement of the ver-
tices for the current frame.

Update State and Add Forces kernels consist of one and two parallel loops respec-
tively, while CG has three. Synchronization between loops and kernels is achieved by
barriers. The corresponding force computations from the skeleton are also done in
Update State and Add Forces, but after the parallel computations on the tetrahedra
mesh have been made. In Pthreads a master thread is assigning work to all threads
in a round-robin fashion through a queuing system. Each thread maintains its private
queue, which is protected by locks.

Task-based. In the task-based version, the application level queuing system is com-
pletely replaced by the OmpSs runtime. In our initial implementation all parallel
loops are taskified. Additionally, in Update State there is a sequential code segment,
Update Collision Penalty Forces. This code segment operates on the bones, while the
parallel loop of Update State does so on the tetrahedra. By taskifying it and adding
dataflow relations between this section and the following Add Forces kernel, we can
overlap Update Collision Penalty Forces with the rest of Update State.

To improve performance we refactor tasks’ creation in CG by nesting the first task
creation loop inside another task. This enables us to overlap task creation time with
computation, which contributes to increase Facesim’s task-based implementation per-
formance. Although we achieve better scalability than the original code, task creation
still imposed overheads. To address this issue we replace tasks in CG with the OmpSs
parallel loops construct (equivalent to the OpenMP one), which implements loop work-
sharing with a task. Even though this approach limits the available parallelism (bar-
rier synchronization, no dataflow annotations), the overhead associated to task cre-
ation and scheduling is greatly reduced and overall performance improved.

t_seg t_extract t_vec t_rank t_out

Fig. 4: Task-graph of ferret showing the pipelined execution model. Edges show data
dependencies among different tasks.

Ferret. Content similarity search server for feature-rich data [Lv et al. 2006] like
audio, video, images, etc. The benchmark application is configured for image similarity
search.

Pthreads. Ferret is parallelized using a pipeline model. A serial query is broken
down into 6 pipeline stages:

— Load: This stage loads an image that is going to be used as a query.
— Segmentation: At this stage the image is decomposed into the different objects

displayed on it. Different weight vectors are to be assigned on each object to achieve
better results.

— Extract: At this stage a 14-dimensional vector is computed for each object from the
segmentation stage, describing features such as color, area, state, etc.

— Vectorization: This is the indexing stage that tries to find a set of candidate images
in the database.

— Rank: This stage ranks the results found, using the EMD metric for each query-
object’s vector and the database’s image vectors.

— Output: Outputs the result of the ranking stage. Multiple instances of this stage
need to run serially, since they all share the same output stream.

In the Pthreads version every stage is served by a dedicated thread-pool of N threads
each, where N is the number of available cores. The only exceptions are the Load and
Output stages that are executed by a respective single thread. Each stage polls on its
corresponding queue for available work. When a stage finishes, it pushes the results
to the next stage’s queue.

Task-based. In this version, we implement a variation of this pipeline model. As
soon as the first stage, Load, finds a new image, it spawns all stages of a pipeline
for that image, thus reducing the pipeline to five stages. We model the dataflow rela-
tions between different stages as simple one dimension arrays, as shown in Figure 1.
Tasks working on different image queries do not share any dependencies. An excep-
tion is task t out which shares the same output file between all pipelines, thus se-
quential execution is forced between all instances of this task. The pipeline stages
and dependencies are constructed a priori, which is good enough for this application,
but this is not always the case. [Lee et al. 2013] proposes a system that can handle
dynamic pipeline creation by constructing a DAG with the stages using indexes and
the cilk continue and cilk wait keywords. Indexes are used to define the different
pipeline stages, while cilk continue creates a stage that can run once all previous
stages in the same pipeline iteration are done, and cilk wait creates a stage that will
wait for its stage counterpart of the previous iteration to finish. A strategy based on
versioning the dependency objects between the stages has been proposed [Vandieren-

donck et al. 2011]. Output dependencies are renamed and privatized, thus the static
array for privatization is not required.

Figure 4 shows the task-graph of the ferret application. Colored nodes denote the
concurrent tasks (each color matches a specific task type). Tasks that have data de-
pendencies are connected by directed edges. By inspecting the task-graph we can see
a pipeline pattern of execution. Despite the fact that the task-based approach does
not significantly improve the overall performance, as we can see in Section 5, it sig-
nificantly reduces the effort required to express the pipeline parallelism, compared its
Pthreads counterpart, as it is shown in section 4.1 in detail.

Fluidanimate. This application simulates incompressible fluid interactive anima-
tion, using the Smoothed Particle Hydrodynamics (SPH) method [Müller et al. 2003].

Pthreads. Fluidanimate uses five special kernels which are responsible for rebuild-
ing the spatial index, computing fluid densities and forces at given points, handling
fluid collisions with the scene geometry and finally updating particle locations The
fluid surface is partitioned and each thread works on its own grid segment. The ker-
nels are parallelized as do-all loops, separated by barriers. Moreover, there are cases
where these threads need to update values beyond their partition, which are handled
using locks.

Task-based. The task-based implementation follows the same approach, we apply
a loop tiling transformation, for each parallel loop, and taskified each iteration. We
maintain the same barrier and lock synchronization scheme, using the OmpSs syn-
chronization primitives.

Freqmine. Data mining application that makes use of an array-based version of the
Frequent Pattern (FP) growth method for Frequent Itemset Mining [Grahne and Zhu
2003].

Pthreads. The application uses a compact tree data structure, denoted FP-tree [Han
et al. 2000], to store information about frequent patterns of the transaction database.
The FP-tree is coupled with a header table, which is a list of database items, sorted by
decreasing order of occurrences. The FP-growth algorithm traverses the FP-tree struc-
ture recursively, constructing new FP-trees until the complete set of frequent item-
sets is generated. There are three parallel kernels. The Build FP-tree header table
kernel performs a database scan and counts the number of occurrences of each item.
The result is the FP-tree header table. Build Prefix tree kernel performs a second
database scan required to build the prefix tree and the Data Mining kernel obtains the
frequent itemset information by using the previous two structures. It creates an ad-
ditional lookup table, which allows faster traversals on sparse itemsets. The original
PARSEC benchmark uses OpenMP2.0 for loop parallelization inside each kernel.

Task-based. In our implementation we taskify each iteration. We do not use any
dataflow relations in this application, and resolve to adopt the locking and barrier
synchronization used in the original OpenMP version.

Streamcluster. Streamcluster is a kernel that solves the online clustering prob-
lem. It takes a stream of points and then groups them in a predetermined number of
clusters with their respective centers.

Pthreads. Up to 90% of total execution time is spent in function pgain, computing
whether opening a new center is advantageous or not. For every new point, function
pgain calculates the cost of making it a new center by reassigning some points to it and
comparing it to the minimum distance d(x, y) = |x− y|2 between all points x and y. The
result is accepted if found to favor the new center. Data points are statically partitioned

by a given block size, which determines the level of parallelism in the application. In
the Pthreads version this is equal to the number of threads.

Task-based. In our implementation we follow a different decomposition strategy,
making the number of tasks independent of the number of partitions. Barriers are
employed to synchronize accesses to a partition in both Pthreads and the task-based
implementation. In the case of Pthreads, an additional user implemented library is
used for the barriers. This library is not required in the case of the OmpSs implemen-
tation, as the runtime already has a generic barrier implementation.

Swaptions. Economics application that uses the Heath-Jarrow-Morton
(HJM)[Heath et al. 1992] for pricing of a portfolio of swaptions. To calculate
prices it employs the Monte Carlo simulation.

Pthreads. The application stores the portfolio into an array. In the Pthreads version,
this array is divided by the number of available threads, each thread working on its
own part of the array.

Task-based. We use the exact same strategy, where each task works on a part of the
array. No data dependencies exist between the tasks.

4. PROGRAMMABILITY
Different models and languages offer diverse ways to express concepts, such as par-
allelism or asynchrony. In this section we evaluate how successful and easy it is to
express parallelism using task-based models. A good proxy to evaluate how complex a
particular implementation is the number of lines of code it takes. Despite being a met-
ric proposed some decades ago, comparing different programming models in terms of
the total number of code lines is still a valid metric. Indeed, recent publications make
an extensive use of it [Vandierendonck et al. 2011; Dongarra et al. 2008].

4.1. Lines Of Code
The reduction of the lines of code (LOC) attests to a more compact and readable code.
In some of our PARSEC task-based implementations, a simple pragma directive re-
placed application specific schedulers, scheduling queues, thread pooling mechanisms
and lock synchronization. We do not change the algorithm in any of the task-based par-
allel strategy implemented in the PARSEC suite. Figure 5a shows a normalized com-
parison between the lines of code of our task-based implementations and the original
Pthreads/OpenMP implementations of the PARSEC 3.0 distribution. The PARSEC 3.0
versions we refer to are always the Pthreads versions, except in the case of freqmine
where, since there is no Pthread version available, the OpenMP2.0 version is taken as
reference. We preprocess all source files so that they only contain lines of code relevant
to the respective programming model2. Figure 5b shows the total lines of code compar-
ison when we only consider files that are relevant to the parallel implementation, that
is, files that contain calls to Pthreads or task invocations, asynchronous I/O implemen-
tations, atomic primitives, etc. In this graph we see that the reductions in terms of
lines of code of our task-based strategies are significant. In case of bodytrack, we are
able to remove 81% of the code lines. Since Bodytrack implements its own scheduler
to deal with load balancing, there is much room for code reductions by replacing this
ad-hoc mechanisms for a few pragma annotations.

By using tasks and dataflow relations, it is very easy to implement pipelines. We
adopt this approach for both dedup and ferret, which result in a significant decrease

2PARSEC benchmarks contain mixed serial, Pthreads, OpenMP and TBB source code, and make use of
macros to enable conditional compilation for only one programming model at a time.

 0

 20

 40

 60

 80

 100

blackscholes

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

freqm
ine

stream
cluster

swaptions

N
or

m
al

iz
ed

 L
in

es
 O

f
C

od
e

PARSEC 3.0 (Pthreads | OpenMP)
OmpSs

(a) Comparison between all source files.

 0

 20

 40

 60

 80

 100

blackscholes

bodytrack

canneal

dedup

facesim

ferret

freqm
ine

stream
cluster

swaptions

N
or

m
al

iz
ed

 L
in

es
 O

f
C

od
e

PARSEC 3.0 (Pthreads | OpenMP)
OmpSs

(b) Comparison between only source files con-
taining parallel code.

Fig. 5: Comparison of lines of code between our task-based implementations and the
original Pthreads or OpenMP versions.

in LOC (38% and 46%, respectively). Figure 1 shows the pipeline code for ferret.
All that is required is to taskify the different pipeline stages and make sure that
dataflow relations force in-order execution of tasks in the same pipeline instance. The
Pthreads version requires the implementation of queues between each stage, which
must also be safe to use by multiple threads and concurrent accesses. Streamcluster
and fluidanimate task-based versions also reduce lines of code by 33% and 21% re-
spectively, by removing the need for an additional, user implemented, barrier library.
Blackscholes and swaptions are relatively simple applications, containing only one do-
all parallel loop each. In these cases the LOC difference is minimal (0.5% and 15%, re-
spectively). In the cases of canneal and freqmine we see no difference in LOC. Canneal
is not a data parallel application and in both cases Pthreads and tasks are used merely
as thread launching mechanism, while the synchronization effort is essentially the
same.

It is worth noting that conventional synchronization primitives can still be used
with tasks, without penalizing the programmer. Freqmine is implemented in OpenMP,
which excels at parallelizing loops with very little effort from the programmer and is
the ideal programming model for this application. In our implementation we simply
taskify the loops, essentially not affecting LOC. Facesim also benefits from the tasks-
based approach by 37%, as the queues required to schedule work have been completely
removed. Overall, we see that the task-based model reduces code size and by 28% on
average.

5. PERFORMANCE EVALUATION
In this section we compare our task-based implementations to the original PARSEC
implementations in Pthreads or OpenMP.

5.1. Experimental Setup
The experiments are performed on an IBM System X server iDataPlex dx360 M4,
composed of two 8-core Intel Sandy Bridge processors E5-2.60Hz, 20MB of shared last-
level cache. There are eight 4GB DDR3 DIMM’s running at 1.6GHz (a total of 32GB per

 0
 2
 4
 6
 8

 10
 12
 14
 16

 2 4 6 8 10 12 14 16

sp
ee

du
p

number of threads

blackscholes

PARSEC 3.0 (Pthreads)
OmpSs

 0
 2
 4
 6
 8

 10
 12
 14

 2 4 6 8 10 12 14 16

sp
ee

du
p

number of threads

bodytrack

PARSEC 3.0 (Pthreads)
OmpSs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 2 4 6 8 10 12 14 16

sp
ee

du
p

number of threads

canneal

PARSEC 3.0 (Pthreads)
OmpSs

 0

 1

 2

 3

 4

 5

 6

 2 4 6 8 10 12 14 16

sp
ee

du
p

number of threads

dedup

PARSEC 3.0 (Pthreads)
OmpSs

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16

sp
ee

du
p

number of threads

facesim

PARSEC 3.0 (Pthreads)
OmpSs

 0
 2
 4
 6
 8

 10
 12
 14

 2 4 6 8 10 12 14 16

sp
ee

du
p

number of threads

ferret

PARSEC 3.0 (Pthreads)
OmpSs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 2 4 6 8 10 12 14 16

sp
ee

du
p

number of threads

fluidanimate

PARSEC 3.0 (Pthreads)
OmpSs

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16

sp
ee

du
p

number of threads

freqmine

PARSEC 3.0 (OpenMP)
OmpSs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 2 4 6 8 10 12 14 16

sp
ee

du
p

number of threads

streamcluster

PARSEC 3.0 (Pthreads)
OmpSs

 0
 2
 4
 6
 8

 10
 12
 14

 2 4 6 8 10 12 14 16

sp
ee

du
p

number of threads

swaptions

PARSEC 3.0 (Pthreads)
OmpSs

Fig. 6: Comparison of scalability between the task-based implementations and the orig-
inal (Pthreads/OpenMP) versions.

node and 2GB per core). The hard drive is an IBM 500GB 7.2K 6Gbps NL SATA 3.5.
We make use of the OmpSs programming model [Duran et al. 2011] and its associated
toolflow: nanos++ runtime system (version 0.8a), Mercurium source-to-source compiler
(version 1.99), and gcc 4.7 as the back-end compiler. We run all benchmarks using their
respective native inputs as described in Table I.

5.2. Scalability
Figure 6 shows how the task-based codes scale compared to the PARSEC Pthread-
/OpenMP versions. Results are shown individually per benchmark as we increase the
number of cores assigned to the application and normalized to the execution time of
the serial implementation 3 of the application. Nearly all applications scale linearly up
to 4 cores.

In the case of bodytrack, as described in Section 3, by concurrently executing differ-
ent frames, there is always enough work for all threads, while by taskifying the output
stage of each frame, we overlap this I/O bottleneck with other computation stages. The
speedup when run on 16 cores is 12.1x, while the Pthreads implementation reaches a
poor 6.8x speedup when run on 16 cores. The dedup application has a very expensive
stage that writes the compressed data to the output file. Our task-based implementa-
tion is very effective in overlapping this time with computation from the compression
stage. Also, the task-based version does not have to reorder the data chunks, since
the I/O execution takes place in-order as dictated by dataflow relations. This results
in an impressive 30% performance improvement of the OmpSs version with respect
to Pthreads when run on 16 cores. The Pthreads facesim implementation is burdened
by barriers that limit available parallelism. By using dataflow relations we taskify
sequential segments of significant cost we effectively synchronize them with parallel
sections preceding and following it. The performance improvements comes from the
overlap of sequential computations with parallel sections. The task-based paralleliza-
tion of facesim reaches a speedup of 10.2x when run on 16 cores, while the PARSEC
code only reaches a 6.4x speedup.

In the cases of blackscholes, canneal, ferret, fluidanimate, freqmine and
swaptions, the Pthreads/OpenMP versions already achieve good scalability results.
With the exception of ferret, the task-based codes have very close resemblance to their
Pthreads/OpenMP counterparts, and have offered reduced opportunities for OmpSs to
dynamically exploit additional parallelism. The parallel implementation in these ap-
plications, with the exception of ferret, is limited to parallel do-all loops with barrier
synchronization, essentially exploiting the same amount of parallelism among all ver-
sions (OmpSs/Pthreads/OpenMP).

In the case of ferret, although the code is substantially different, both versions
employ the same pipeline model and deliver the same level of parallelism, which is al-
ready high in the Pthread version. We express a bit of extra parallelism by extending
the pipeline with multiple stages, which write to the output file, effectively overlapping
some communication with computation. However, the final impact in the total execu-
tion time is limited as the time needed to write the output file is a very small fraction of
the total execution time. Finally, we observe performance gain (18%) in streamcluster,
which can be partly attributed to the more efficient barrier implementation of OmpSs,
when compared to the user implemented barriers of the Pthreads version. However,
the most important performance drawback that the original Pthreads implementation
suffers from, is the negative NUMA effects. This issue is observed when we run our

3The PARSEC benchmark suite provides a serial implementation for blackscholes, bodytrack, dedup,
ferret, freqmine and swaptions. For the other benchmarks, the original Pthreads parallel implementation
executed on a single core is considered as the baseline.

Fig. 7: Speedup comparison for Pthreads and OmpSs with the same granularity, as
well as our optimized OmpSs version, when run on 16 cores. Results are normalized to
the sequential version of the original code.

experiments on a two socket system. The Pthreads code partitions the working set
by the number of available cores. We employ a different partition scheme to counter
the NUMA effects. Through experimentation we observe that the best results can be
obtained when using 80 blocks.

5.3. Task Granularity Impact
The granularity of individual tasks is an important factor that needs to be considered
when parallelizing an application. Small task granularity can reduce load imbalance
but such performance benefits can be neglected by the overhead of the runtime system,
as it has to create and schedule more tasks. Results in Section 5.2 show how tuning the
task granularity brings performance benefits in some cases (blackscholes, bodytrack,
dedup and streamcluster) while in others it is better to keep the same parallel gran-
ularity as the PARSEC distribution codes (canneal, facesim, ferret, freqmine and
swaptions).

In order to provide a more comprehensive comparison, this section examines the per-
formance of blackscholes, bodytrack, dedup and streamcluster when using exactly
the same granularity as in the PARSEC distribution code. Figure 7 shows the speedup
of these benchmarks when run on 16 cores. The purple bar shows the speedup of the
Pthreads version, the green one shows the speedup of a task-based implementation
that has the same parallel granularity as its Pthreads counterpart. Finally, the light
blue bar shows the speedup of the optimal task-based implementations discussed in
Sections 3 and 5.2.

For the cases of blackscholes and streamcluster the parallelization scheme fol-
lowed in the three codes (Pthreads and the two OmpSs versions) is the same. The
difference between the two OmpSs versions is the granularity of the block sizes that
are processed per task. In case of blackscholes, the OmpSs implementation with the
same granularity as Pthreads does not perform better since the parallelism of this
benchmark follows a fork-join model. In the case of streamcluster, the task-based im-
plementations always improve the Pthreads performance, even if they operate follow-
ing the same parallelization scheme and granularity as the Pthreads version. These
improvements come from the NUMA effects correction that the OmpSs versions carry
out.

In the case of bodytrack the optimal OmpSs implementation follows a quite different
parallelization scheme than the original Pthreads code, as explained in Section 3. We

consider a trivial implementation in OmpSs where we follow the same parallelization
strategy as in Pthreads. As shown in Figure 7, we do not observe any significant dif-
ference in performance among Pthreads and the equivalent OmpSs implementation.
However, the new parallelization scheme is not applicable to Pthreads as it requires
to synchronize the workload by explicit dependencies, which are not available in the
Pthreads API.

In the case of Dedup, the trivial Pthreads-like implementation performs poorly,
achieving a speedup of 2.6x. In this implementation, each pipeline stage is taskified
following the Pthreads approach. Each large chunk is partitioned into smaller chunks,
that will spawn three new tasks (Compress, Deduplicate and WriteOutput). This level
of granularity creates hundreds of thousands of tasks, increasing the runtime’s over-
head significantly. In contrast, the optimized task-based version operates at the gran-
ularity of the large chunks, creating only a few hundreds of tasks, effectively reducing
the runtime overhead.

In some cases, OmpSs can over-perform Pthreads even if the same parallelization
scheme and granularity is followed, like the streamcluster results demonstrate. In
some other cases (dedup and bodytrack), the performance improvements come from an
optimized parallelization scheme. Such new schemes could be hardly implemented in
Pthreads since they require a direct synchronization via explicit dependencies, which
is not available in the Pthreads API. Finally, in case of simple fork-join applications
(i. e. blackscholes) our performance benefits just come from further optimizing the
parallel granularity.

 0%

20%

40%

60%

80%

100%

blackscholes

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

freqm
ine

stream
cluster

swaptions

E
xe

cu
ti

o
n
 T

im
e
 P

e
rc

e
n
ta

g
e

Benchmarks

NOT-RUNNING

STARTUP

SHUTDOWN

ERROR

IDLE

RUNTIME

RUNNING

SYNCHRONIZATION

SCHEDULING

(a) Average time over 8 threads

 0%

20%

40%

60%

80%

100%

blackscholes

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

freqm
ine

stream
cluster

swaptions

E
xe

cu
ti

o
n
 T

im
e
 P

e
rc

e
n
ta

g
e

Benchmarks

NOT-RUNNING

STARTUP

SHUTDOWN

ERROR

IDLE

RUNTIME

RUNNING

SYNCHRONIZATION

SCHEDULING

(b) Main thread runtime breakdowns

Fig. 8: Runtime breakdowns when running on an 8-core configuration.

5.4. Runtime System Overhead
Task creation, scheduling and data dependencies tracking are all handled by the
OmpSs runtime system. In this section, we evaluate the impact of these activities
over the final parallel performance. Figure 8a shows a breakdown of the total execu-
tion time of each application. Each bar shows the breakdown of one application after
averaging the values over eight concurrently executing threads. The red color repre-
sents the portion of time dedicated in running tasks, that is, in running user code. All

Table II: PARSEC parallelization model and properties characterization.
Benchmark Parallel Model I/O Heavy Synchronization LOC Reduction Perf. Impr.
blackscholes data-parallel 7 dataflow 5.4% 0%
bodytrack pipeline 3 dataflow 81% 42%
canneal unstructured 7 locks/atomics 0% -6.2%
dedup pipeline 3 dataflow/locks 38% 30%
facesim pipeline 7 dataflow/barrier 31% 34%
ferret pipeline 7 dataflow 46% 0%
fluidanimate data-parallel 7 dataflow/barrier 21% 5.7%
freqmine data-parallel 7 barrier/locks 0% 2.7%
streamcluster data-parallel 7 dataflow/barrier/atomics 33% 18%
swaptions data-parallel 7 dataflow 15% 6.6%

applications, excluding dedup, spend more than 75% of time doing useful work. The
cyan bar represents idle time, which corresponds to the time a thread is waiting for
some work to become available and is caused by load imbalance and sequential code
phases. In most cases this time is low, except for dedup, where it reaches 60% of the
total execution time. In Figure 8a we also represent the time spent in other activities
like synchronization, scheduling, etc. None of these activities represent more than 5%
of the total execution time.

Figure 8b shows the same breakdown of execution time but only for the main thread
of execution, which is the one that runs serial parts of the code besides parallel tasks.
Dedup has significantly lower idle time in the main thread, which indicates that there
is not enough parallel work to keep all threads busy. This issue has been previously
reported [Vandierendonck et al. 2013]. In general we see that the overhead of the run-
time system is low, with only a few cases that show some time spent in synchroniza-
tion, scheduling, and miscellaneous runtime overhead (in light yellow). Synchroniza-
tion time can be time spent waiting a barrier or acquiring/releasing locks. Scheduling
includes time needed to resolve dependencies and make scheduling decisions, while
other runtime overheads are related to activity that cannot be associated with task
scheduling and creation. Overall, we have seen that our implementations improve
scalability considerably (by 13% on average), while runtime overhead remains low.

5.5. Characterization of the Applications
In Table II we characterize the considered applications in terms of parallelization
model, I/O intensity and synchronization scheme. The table also shows code reduc-
tions and performance improvements achieved on a 16-core Sandy Bridge system. This
table summarizes the properties of applications that make them good candidates for
adopting a task-based model.

Applications characterized as data-parallel are limited to loop parallelism, where
tasks are merely emulating an OpenMP loop construct. In these cases there is no per-
formance gain, and the programming effort involved either with Pthreads, OpenMP
or tasks, is similar. Pipeline applications are better candidates since they separate
the application into discrete abstract stages. Implementing this paradigm with tasks
implies taskifying the functionality of each stage and describing the data or control de-
pendencies between them. In Pthreads, the programmer has to implement application
specific thread pools and queuing systems to achieve the same performance. Also, task-
based models offer in many cases an opportunity to easily expand the pipeline stages
of the application with sequential and I/O intensive codes (e.g. facesim and bodytrack
respectively). Indeed, by replacing locks and barriers, the runtime can discover addi-
tional dynamic parallelism and eliminate the cost of acquiring locks. Our task-based
parallelization strategies successfully scale up the pipeline applications with a poorly
scaling Pthread version (bodytrack, dedup and facesim) while reducing the code com-

plexity in all of them. In case of ferret, the task based version does not perform better
than the Pthreads counterpart since its scalability is already very good (14x on a 16-
core machine). The reduction in terms of lines of code is however dramatic: 46%. In the
case of unstructured programs, e.g. canneal, task based programming does not offer
any advantage over threading approaches.

Overall, we conclude that task-based parallelism can be effectively used to reduce
the effort required to implement pipeline parallelism, while there are also important
performance benefits to be gained if the application has no specific thread pooling
mechanisms or I/0 intensive serial regions. In this scenario, the pipeline can be easily
expanded to include the I/0 region and overlap it with a computation stage of the
pipeline.

6. RELATED WORK
Few studies exist that examine the performance of task parallelism compared to other
models. [Ayguadé et al. 2008] evaluate OpenMP tasks by implementing a few small
kernel applications using the new OpenMP task construct. Their evaluation tests the
model’s expressiveness and flexibility as well as performance. [Podobas and Brors-
son 2010] compare three models that implement task parallelism, Wool, Cilk++ and
OpenMP. They compare their performance using small kernels, as well as some mi-
crobenchmarks aimed to measure task creation and synchronization costs. They show
that Cilk++ and Wool have similar performance, while they outperform OpenMP tasks
for fine grain workloads. On coarser grain loads, all models have matching perfor-
mance with OpenMP gaining in one case, due to superior task scheduling.

BDDT [Tzenakis et al. 2012] is a task-based parallel model, very similar to OmpSs,
that also uses a runtime to track data dependencies among tasks. BDDT uses block-
level argument dependence tracking, where task arguments are processed into blocks
of arbitrary size, which is defined by the user. BDDT is shown to outperform loop
constructs implemented using OpenMP 2.0.

Other studies exist that compare parallel programming models in the literature.
Although these studies do not focus on task parallelism, they employ benchmarks
and similar methodology to evaluate their target models. [Coarfa et al. 2005] study
and compare the performance of UPC and Co-array Fortran, two PGAS languages.
They use select benchmarks from the NAS benchmark suite. [Appeltauer et al. 2009]
use microbenchmarks to measure and compare the performance of 11 context-oriented
languages. Their study shows that they all often manifest high overheads.

Although all the works we mention try to evaluate various programming models, in
terms of performance, and some times on usability and versatility, they are all limited
to small kernels or even just micro-benchmarks. We find that this approach is not suf-
ficient to give us an insight on how a model will impact actual large-scale applications.
[Karlin et al. 2013] use a proxy application in their work to evaluate a number of dif-
ferent programming models (OpenMP, MPI, MPI+OpenMP, CUDA, Chapel, Charm++,
Liszt, Loci). Their approach however is limited to only one application. Different appli-
cation domains can be very different, and may require different parallelization tech-
niques to get good scalability and performance. A programming model could fail to
even provide a way to express a parallelization scheme, let alone deliver performance.
It is important to have an in depth understanding of a models behavior and limitation
in order to make an educated decision whether research should direct its efforts to
adopt and further expand it.

Pipeline parallelism has been the subject of study in some recent studies. This pro-
gramming idiom is found often in streaming and server applications and goes far be-
yond the HPC domain. [Lee et al. 2013] propose an extension to the Cilk model, for
expressing pipeline parallelism on-the-fly, without constructing the pipeline stages at

their dependencies a priori. It offers a performance comparison between the proposed
model, Pthreads and Thread Building Blocks (TTB) for three PARSEC benchmarks,
ferret, dedup and x264.

7. CONCLUSIONS
In this work we evaluate the benefits of task-based parallelisim by applying it to the
PARSEC benchmark suite. We discuss and compare our implementations to their PAR-
SEC Pthreads/OpenMP counterparts. We show how task parallelism can be applied on
a wide range of applications from different domains. In fact, by comparing the lines of
code between our implementations and the original versions, we make a strong case
that task-based models are actually easier to use. The asynchronous nature of task-
based parallelism, along with data dependence tracking through dataflow annotations,
allows us to overlap computation with I/O phases. The underlying runtime system can
take care of issues like scheduling and load balancing without significant overhead.

Our experimental results demonstrate that the task model can be easily applied on
a wide range of applications beyond the HPC domain. Although, not all applications
can benefit from a task-based approach, there are cases where it can greatly improve
scalability. The programs that benefit most are those that present pipeline execution
model, where different stages of the application can run concurrently. Finally, we plan
to make a public release of our task-based implementations to stimulate research on
these novel programming models.

8. ACKNOWLEDGEMENTS
This work has been partially supported by the European Research Council under the
European Union 7th FP, ERC Grant Agreement number 321253, by the Spanish Min-
istry of Science and Innovation under grant TIN2012-34557, by the Severo Ochoa Pro-
gram, awarded by the Spanish Government, under grant SEV-2011-00067 and by the
HiPEAC Network of Excellence. M. Moreto has been partially supported by the Min-
istry of Economy and Competitiveness under Juan de la Cierva post-doctoral fellow-
ship number JCI-2012-15047, and M. Casas is supported by the Secretary for Univer-
sities and Research of the Ministry of Economy and Knowledge of the Government
of Catalonia and the Co-fund programme of the Marie Curie Actions of the 7th R&D
Framework Programme of the European Union (Contract 2013 BP B 00243). Finally,
the authors are grateful to the reviewers for their valuable comments, to the people
from the Programming Models Group at BSC for their technical support, to the Ro-
MoL team, and to Xavier Teruel, Roger Ferrer and Paul Caheny for their help in this
work.

REFERENCES
Aaron B. Adcock, Blair D. Sullivan, Oscar R. Hernandez, and Michael W. Mahoney. 2013. Evaluating

OpenMP Tasking at Scale for the Computation of Graph Hyperbolicity.. In IWOMP (Lecture Notes in
Computer Science), Vol. 8122. Springer, 71–83. DOI:http://dx.doi.org/10.1007/978-3-642-40698-0 6

Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and Michael Perscheid. 2009. A Com-
parison of Context-oriented Programming Languages. In International Workshop on Context-Oriented
Programming (COP ’09). ACM, Article 6, 6 pages. DOI:http://dx.doi.org/10.1145/1562112.1562118

Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin, Federico Massaioli, Xavier
Teruel, Priya Unnikrishnan, and Guansong Zhang. 2009. The Design of OpenMP Tasks. IEEE Trans.
Parallel Distrib. Syst. 20, 3 (March 2009), 404–418. DOI:http://dx.doi.org/10.1109/TPDS.2008.105

Eduard Ayguadé, Alejandro Duran, Jay Hoeflinger, Federico Massaioli, and Xavier Teruel. 2008. Languages
and Compilers for Parallel Computing. Springer-Verlag, Chapter An Experimental Evaluation of the
New OpenMP Tasking Model, 63–77. DOI:http://dx.doi.org/10.1007/978-3-540-85261-2 5

Prithviraj Banerjee. 1994. Parallel Algorithms for VLSI Computer-aided Design. Prentice-Hall, Inc.

Pieter Bellens, Josep M. Perez, Rosa M. Badia, and Jesus Labarta. 2006. CellSs: a programming model for
the cell BE architecture. In SC. Article 86. http://doi.acm.org/10.1145/1188455.1188546

Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation. Princeton University.
Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The PARSEC Bench-

mark Suite: Characterization and Architectural Implications. In Proceedings of the 17th Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT ’08). ACM, 72–81.
DOI:http://dx.doi.org/10.1145/1454115.1454128

Fischer Black and Myron S Scholes. 1973. The Pricing of Options and Corporate Liabilities. Journal of Politi-
cal Economy 81, 3 (May-June 1973), 637–54. http://ideas.repec.org/a/ucp/jpolec/v81y1973i3p637-54.html

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall, and
Yuli Zhou. 1995. Cilk: An Efficient Multithreaded Runtime System. SIGPLAN Not. 30, 8 (Aug. 1995),
207–216. DOI:http://dx.doi.org/10.1145/209937.209958

David R. Butenhof. 1997. Programming with POSIX Threads. Addison-Wesley Longman Publishing Co.,
Inc.

Barbara Chapman. 2007. The multicore programming challenge. In Advanced Parallel Processing Technolo-
gies. Springer. DOI:http://dx.doi.org/10.1007/978-3-540-76837-1 3

Barbara Chapman, Gabriele Jost, and Ruud van der Pas. 2007. Using OpenMP: Portable Shared Memory
Parallel Programming (Scientific and Engineering Computation). The MIT Press.

Cristian Coarfa, Yuri Dotsenko, John Mellor-Crummey, François Cantonnet, Tarek El-Ghazawi, Ashru-
jit Mohanti, Yiyi Yao, and Daniel Chavarrı́a-Miranda. 2005. An Evaluation of Global Address
Space Languages: Co-array Fortran and Unified Parallel C. In Proceedings of the Tenth ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming (PPoPP ’05). ACM, 36–47.
DOI:http://dx.doi.org/10.1145/1065944.1065950

Henry Cook, Miquel Moreto, Sarah Bird, Khanh Dao, David A. Patterson, and Krste Asanovic.
2013. A Hardware Evaluation of Cache Partitioning to Improve Utilization and Energy-efficiency
While Preserving Responsiveness. SIGARCH Comput. Archit. News 41, 3 (June 2013), 308–319.
DOI:http://dx.doi.org/10.1145/2508148.2485949

Jack Dongarra, Robert Graybill, William Harrod, Robert F. Lucas, Ewing L. Lusk, Piotr Luszczek, Jan-
ice McMahon, Allan Snavely, Jeffrey S. Vetter, Katherine A. Yelick, Sadaf R. Alam, Roy L. Camp-
bell, Laura Carrington, Tzu-Yi Chen, Omid Khalili, Jeremy S. Meredith, and Mustafa M. Tikir. 2008.
DARPA’s HPCS Program- History, Models, Tools, Languages. Advances in Computers 72 (2008), 1–100.
DOI:http://dx.doi.org/10.1016/S0065-2458(08)00001-6

Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesús Labarta, Luis Martinell, Xavier Martorell, and Ju-
dit Planas. 2011. OmpSs: a Proposal for Programming Heterogeneous Multi-Core Architectures. Parall.
Proc. Lett. 21, 2 (2011), 173–193. DOI:http://dx.doi.org/10.1007/978-3-642-37658-0 7

Alejandro Duran, Roger Ferrer, Eduard Ayguadé, RosaM. Badia, and Jesus Labarta. 2009. A Proposal to
Extend the OpenMP Tasking Model with Dependent Tasks. Int. J. Parallel Prog. 37, 3 (2009), 292–305.
DOI:http://dx.doi.org/10.1007/s10766-009-0101-1

Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem, Mike Houston, Ji Young Park,
Mattan Erez, Manman Ren, Alex Aiken, William J. Dally, and Pat Hanrahan. 2006. Sequoia: Program-
ming the Memory Hierarchy. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (SC
’06). ACM, Article 83. DOI:http://dx.doi.org/10.1145/1188455.1188543

Gsta Grahne and Jianfei Zhu. 2003. Efficiently Using Prefix-trees in Mining Frequent Itemsets.. In FIMI
(2004-04-27) (CEUR Workshop Proceedings), Bart Goethals and Mohammed Javeed Zaki (Eds.), Vol. 90.
CEUR-WS.org. http://dblp.uni-trier.de/db/conf/fimi/fimi2003.html#GrahneZ03

Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining Frequent Patterns Without Candidate Generation. SIG-
MOD Rec. 29, 2 (May 2000), 1–12. DOI:http://dx.doi.org/10.1145/335191.335372

David Heath, Robert Jarrow, and Andrew Morton. 1992. Bond Pricing and the Term Structure of Interest
Rates: A New Methodology for Contingent Claims Valuation. Econometrica 60, 1 (January 1992), 77–
105. http://ideas.repec.org/a/ecm/emetrp/v60y1992i1p77-105.html

James Christopher Jenista, Yong hun Eom, and Brian Charles Demsky. 2011. OoO-
Java: Software Out-of-order Execution. SIGPLAN Not. 46, 8 (Feb. 2011), 57–68.
DOI:http://dx.doi.org/10.1145/2038037.1941563

Ian Karlin, Abhinav Bhatele, Jeff Keasler, Bradford L. Chamberlain, Jonathan Cohen, Zachary Devito,
Riyaz Haque, Dan Laney, Edward Luke, Felix Wang, David Richards, Martin Schulz, and Charles H.
Still. 2013. Exploring Traditional and Emerging Parallel Programming Models Using a Proxy Applica-
tion. In Proceedings of the 2013 IEEE 27th International Symposium on Parallel and Distributed Pro-
cessing (IPDPS ’13). IEEE Computer Society, 919–932. DOI:http://dx.doi.org/10.1109/IPDPS.2013.115

I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Jim Sukha, and Zhunping Zhang. 2013. On-the-
fly Pipeline Parallelism. In Proceedings of the Twenty-fifth Annual ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA ’13). ACM, New York, NY, USA, 140–151. http://doi.acm.org/10.
1145/2486159.2486174

Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2006. Ferret: A Toolkit for Content-
based Similarity Search of Feature-rich Data. SIGOPS Oper. Syst. Rev. 40, 4 (April 2006), 317–330.
DOI:http://dx.doi.org/10.1145/1218063.1217966

Matthias Müller, David Charypar, and Markus Gross. 2003. Particle-based Fluid Simulation for Interactive
Applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation (SCA ’03). Eurographics Association, 154–159. http://dl.acm.org/citation.cfm?id=846276.846298

Dan Nagle. 2005. MPI – The Complete Reference, Vol. 1, The MPI Core, 2Nd Ed., Scientific and Engineering
Computation Series, by Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker and Jack Don-
garra. Sci. Program. 13, 1 (Jan. 2005), 57–63. DOI:http://dx.doi.org/10.1155/2005/653765

Judit Planas, Rosa M. Badia, Eduard Ayguadé, and Jesus Labarta. 2009. Hierarchical Task-Based
Programming With StarSs. Int. J. High Perform. Comput. Appl. 23, 3 (Aug. 2009), 284–299.
DOI:http://dx.doi.org/10.1177/1094342009106195

Artur Podobas and Mats Brorsson. 2010. A Comparison of some recent Task-based Parallel Programming
Models. In Proceedings of the 3rd Workshop on Programmability Issues for Multi-Core Computers,
(MULTIPROG’2010), Jan 2010, Pisa. Qc 20120214.

Sean Quinlan and Sean Dorward. 2002. Awarded Best Paper! - Venti: A New Approach to Archival Data
Storage. In Proceedings of the 1st USENIX Conference on File and Storage Technologies (FAST ’02).
USENIX Association, Article 7. http://dl.acm.org/citation.cfm?id=1083323.1083333

Eftychios Sifakis, Igor Neverov, and Ronald Fedkiw. 2005. Automatic Determination of Facial Muscle Ac-
tivations from Sparse Motion Capture Marker Data. ACM Trans. Graph. 24, 3 (July 2005), 417–425.
DOI:http://dx.doi.org/10.1145/1073204.1073208

Christi Symeonidou, Polyvios Pratikakis, Angelos Bilas, and Dimitrios S. Nikolopoulos. 2013. DRASync:
Distributed Region-based Memory Allocation and Synchronization. In Proceedings of the 20th European
MPI Users’ Group Meeting (EuroMPI ’13). ACM, 49–54. DOI:http://dx.doi.org/10.1145/2488551.2488558

George Tzenakis, Angelos Papatriantafyllou, John Kesapides, Polyvios Pratikakis, Hans Vandieren-
donck, and Dimitrios S. Nikolopoulos. 2012. BDDT:: Block-level Dynamic Dependence Anal-
ysisfor Deterministic Task-based Parallelism. SIGPLAN Not. 47, 8 (Feb. 2012), 301–302.
DOI:http://dx.doi.org/10.1145/2370036.2145864

Hans Vandierendonck, Kallia Chronaki, and Dimitrios S. Nikolopoulos. 2013. Deterministic Scale-free
Pipeline Parallelism with Hyperqueues. In Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis (SC ’13). ACM, Article 32, 12 pages. http:
//doi.acm.org/10.1145/2503210.2503233

Hans Vandierendonck, Polyvios Pratikakis, and Dimitrios S. Nikolopoulos. 2011. Parallel Programming of
General-purpose Programs Using Task-based Programming Models. In Proceedings of the 3rd USENIX
Conference on Hot Topic in Parallelism (HotPar’11). USENIX Association, 13–13. http://dl.acm.org/
citation.cfm?id=2001252.2001265

Stéphane Zuckerman, Joshua Suetterlein, Rob Knauerhase, and Guang R. Gao. 2011. Using a ”Codelet”
Program Execution Model for Exascale Machines: Position Paper. In EXADAPT ’11. ACM, 64–69. http:
//doi.acm.org/10.1145/2000417.2000424

