View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by UPCommons. Portal del coneixement obert de la UPC

UNIVERSITAT POLITECNICA DE CATALUNYA
O M

DEPARTMENT OF ELECTRONIC ENGINEERING

FINAL PROJECT

MULTIEFFECTS PROCESSOR
REPORT

Student: Cristian Gil Morales

Supervised by: Albert Masip Alvarez
Manuel Lamich Arocas

December 2013

https://core.ac.uk/display/46111612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

| want to thank to all the people who have encoedage during the realization of this project.

I would like to thank my supervisors Albert MasifpvArez and Manuel Lamich Alvarez for
their guidance and support.

| would like to thank all my English teachers aridrids who have corrected this project in
English.

Finally I want to thank my family, friends and d@iiénd, who always believed in me.

Thank you.

Multieffects processor Index
I EEE—————————————————————————

Index
Introduction
F o1 (0] 017/ 11RO Q
T oTo [¥ ox 1 o] o PSRRI Q.1
Motivations and ODJECHIVES........ccooiii i 12
The audio effECtS.. ..o 13
GaIN EFfECTS ..t 13
Dynamic range effectSuuueuiiiiiii e 16
Modulation effECScoooiiiiiii e 19
Repetition effeCtSccoooe it 21
The effeCcts Order ... 23
Retrospective - The history of the sound effects...........ccceeeeiiiiiiininnnee. 24
A brief view in the NiStOrYccoooiiiii i 24
The history of some sound effects...........coouvuiiiiiiiee 25
Programming
MATLAB SIMUIALION ..o 27
Texas Instruments TMS320C6713..........iiiiiiiiii e 30
Differences between DSP and General Purpose Pacess............ 30
Descrption of the TMS320CE713........uuuuiii e 31
Peripherals. ... 33
Code CompPOSEr STUAIO........ccceeeiiiiiieeeeiiiire e e e ee e e e e e e e e e e e e e e e e eeeeeneennnaes 40
Introduction to Code Composer Studiocccceeevvvvveeeieiininiiinnnn. 40
Creating a Code Composer Studio Project.... o ceeeereeeeeeeeeeeeeene. 41
DSK Program STTUCTUIEoouuuiieeeieiiie et e e e e e e eeeaans 46
PrOtOIYPES ..o 46
Header fileS ... a7
Constant StatEMENT.........oovuiiiiieeiei e 47
Global variablesouuiiiei 47
Definition and configuration of audio codec and RIEhannels....... 48
Definition and configuration of EDMA channels................c..c....... 50
Main METNOA ettt 53
Routine to initialize the EDMAuuiiiii e 54
Service routine for the EDMA interrupt.........ccoovvvevvevevivviiniinneeenn. 54
Effects programming.............ueeeiuiiiiiiii e 55

Cristian Gil Morales REPORT 5/97

Multieffects processor Index

GaAUN B I ECES e e e an 56
Dynamic range effectSuuuueiiiiiiii e 59
MOAUIALION EFFECES ... 064
Repetition effECtScccoe i e 67
LIS 1L 69
MICIOSOTt ViSUAL G e 71
Introduction to Microsoft Visual CH+ ..o, 71
Creating a Visual C++ Projectceeeeiviccccie e 72
The main iNterface ClaSSEScouie e 74
The graphical user interface...........ccceee e 75
The IMAXEXP ClassSoooveiiiiiiiiiie e e 75
The application PartS............uuuviiiiiiiiiiie e 77
Performed MethOdS oo e e 78
SR T D X e 6.8
Conclusions
COSE ANAIYSIS. ..ottt 88
2 70T [0 = S UERRPSUUPRRR Q0
(0de] (¢l (11T T0] ¢ F- TR a1.
FINAL FOSUITS ..o et et e e e e e e e e e e e eeens a1
Yo (Yo [0 | TP a3
Future developmentS.... ... ceeemmm e 94
Personal CONCIUSIONSc.nviee e 94
2]] oo =Y o]) /2SS 96

Cristian Gil Morales REPORT 6/97

Cristian Gil Morales REPORT 7197

Multieffects processor Introduction
I EEE—————————————————————————

INTRODUCTION

Cristian Gil Morales REPORT 8/97

Multieffects processor Introduction

Acronyms

There are many elements / components / progrartes With very long names in the present
document, and read them a lot of times it can lm®onfortable for the reader.

For readability, the following acronyms are useddplacement of these names. It is also shown
their meaning.

Likewise, it sometimes recalls their meanings altmg document to avoid losing the reading
thread continuously.

PC: Personal Computer.

DSP: Digital Signal Processor.

RTDX: Real Time Data Exchange.

LFO: Low Frequency Oscillator.

AM: Amplitude Modulation.

DSK: DSP Starter Kit.

FFT: Fast Fourier Transform.

DFT: Discrete Fourier Transform.

ASIC: Application-Specific Integrated Circuit.
FPGA: Field-Programmable Gate Array.

TIl: Texas Instruments.

DSK: DSP Starter Kit.

USB: Universal Serial Bus.

IDE: Integrated Development Environment.
VLIW: Very Long Instruction Word.
MFLOPS: Million of FLating-point Operations Per Second.
MIPS: Million of Instructions Per Second.
MMACS: Million of Multiplictions Per Second.
JTAG: Joint Test Action Group.

ADC: Analog-Digital Converter.

DAC: Digital Analog Converter.

FS: Sampling Frequency.

FM: Maximum Frequency.

McBSP: Multichannel Buffered Serial Port.
EDMA: Enhanced Direct Memory Access.
GUI: Graphical User Interface.

CCsStudio: Code Composer Studio.

VC++: Microsoft Visual C++.

API: Application Programming Interface.
SDK: Software Development Kit.

MFC: Microsoft Foundation Classes.

SDI: Single Document Interface.

MDI: Multiple Document Interface.

Cristian Gil Morales REPORT 9/97

Multieffects processor Introduction

Introduction

Music is transmitted increasingly among the popaoitatThis does that the people have more
contact with the audio waves and its treatment.

Nowadays it is normal that a lot of people play iaisinstruments. Hence they end up having
the need to treat the audio waves which they genéoa give another sense or personality to
their songs, transmitting new and unique emotions.

Throughout the history, the search of new soundsnbaended. The musicians, in their attempt
to innovate and achieve new styles and soundsatthreheir personal mark, have always used
all of their ingenuity in anywhere.

To create a new effect, firstly it has to find tthesired effect. After that, it has to make an
artifact which allows to generate this effect, ggurely analog techniques.

Examples are the characteristic distortion sounthefvalve amps, the Fuzz pedal from Jimi
Hendrix, the Delay effect discovered accidentaihyRitchie Blackmore, the Flanger effect used
by The Beatles, etc.

New technology throughout the years has done pesgibdo digital signal processing in an
economic way, but mainly easier.

The present project of the multieffect pedal isrbtwr the need to investigate in the world of
audio processing in a more professional level foiloveeek new sounds with their musical
instrument.

This multieffect pedal generates the most used sodreffects in the music world in real
time with the input signal.

Elements like Digital Signal Processors (DSPs)eapgd in the eighties, are systems based on
processors or microprocessors. They have a grooptohized instructions to apps that require
a lot of numeric operations in very high velocity front of the big and expensive analog
circuits.

Due to this reason, the DSPs are especially udefuthe processing and representation of
signals in real time. Now, complex operations Kgnal filtering or the Fourier transform, are
easy to implement in a simple work file.

In addition to this processing in real time, itrniecessary an interface which is the bridge
between the user and the DSP. It allows to chamgeng all the effects and change their
configuration in a easy and simple manner.

Therefore the communication between both uniteistant and uninterrupted.

The coordination between the DSP and the interfacearried out by the communication
protocol Real Time Data Exchange (RTDX). Its libearare included in the programming
software of the DSP (which are distributed wittstlaist one).

This is useful to obtain a powerful homemade mifilict processor with a decent quality,
acceptable for any user.

Onwards it explains the hardware TMS320C6713 D&Pperipherals, its programming code
and the interface programmed in Visual C++ thatmis it.

Cristian Gil Morales REPORT 10/97

Multieffects processor Introduction

USB ‘ USB

VC++ ANSI C
User Interface DSP
Application Application
Audio Audio

- Codec - Codec

Speakers

Cristian Gil Morales REPORT 11/97

Multieffects processor Introduction

Motivations and objectives

Motivations

| proposed to do this project because two yearsldmggrame interested in music in a deeper
sense and | also play the electric guitar regulanlyny own.

Without option to go to a music school, it is coioated the fact of learning the secrets of this
INFINITE world, especially if | am working or busyith other issues.

Recently | bought an amplifier which incorporatemious sound effects, but | do not know
what the differences between them are, how tcheet tthe best way to connect them, etc.

| would have to find out more about the issue,lldda not have the necessary time to enter into
this whole wide world.

Moreover, after discussing this topic with my psser, | decided to do this project to initiate
me into this world definitely.

Objectives

Initially the project was thought to have a finidhgroduct and use it at home with my musical
instrument and amplifier. This required a hardwiaterface to control it with the feet, so it
would be possible playing guitar while it changesf@ures the effects, like in the professional
world.

Therefore, the objectives to be achieved in thiggat are:

o Know the audio effects and the audio treatmentdeeper way.
Developing an application using a DSP microproaesso
Receiving audio with a codec from outside (by mstent, PC, iPod...).
Implement a group of algorithms to use them in tiead.
Sending the audio result to speakers with the codec
Managing the algorithm variables through an extantarface.

O O O0OO0OOo

After this project, | hope to have much knowledgetls subject and hence be able to apply it
in my life as a musician.

Cristian Gil Morales REPORT 12 /97

Multieffects processor Introduction

Audio effects

For this project it creates a total of 13 effed&ssified into 4 groups according to the method
used to create them:

« Gain effects: Distortion of the original signal with gain vatian.
Overdrive: Low distortion.
Distortion: Medium distortion.
Fuzz: High distortion.
« Dynamic Range Effects:Alters the signal using filters and thresholds.
Compressor: Compress the dynamic range of the signal.
Expander: Expands the dynamic range of the signal.
Noise Gate:Eliminates the signal range under a threshold.
AutoWah: Applies a dynamic band pass filter.
Panning: Swing of the signal between speakestefeo spekaers are needed
* Modulation Effects: Alters the signal with a Low Frequency OscillatbFO).
Chorus: Simulates two musicians playing an instrumentrison.
Flanger: Produces a swept comb filter effect.
Tremolo: Oscillates the output volume.
* Repetition effects:Simulation of the environment with repeated signal
Delay: Original signal plus delayed signal.
Reverb: Simulates the acoustics of a room.

Gain effects

The gain effects create "warm", "gritty" and "fuzapunds by "clipping" an instrument's audio
signal, which distorts the shape of its wave forrd adds overtones.

It affects to the gain level of sound. Dependingtbe characteristics, succeeds altering
various harmonics and it dulls the fundamental motifferent levels.

Driginal Signal Distartion ====Threshald

"Clipping" an instrument's audio signal producestatition

Cristian Gil Morales REPORT 13/97

Multieffects processor Introduction
I EEE—————————————————————————

Overdrive

The overdrive effect appears when the optimum Huielsof the input signal is exceeded.
The signal is saturated with a low distortion angroduces natural harmonics, which enhance
the sound body.

It affects mainly to the second harmonic in a matieway, resulting irregular peaks in the

signal.
The sound is more "dirty", but the main note ididguishable and the saturation is not much
heavy. Hence the natural sound remains.

Static characteristic: y= f(x) Log. output over input level

Yin dB

0% -20 -10 0
XindB
Amplitude

1
o8 Overdrive
08 effect
04

. Input signal

0.2 . OQutput signal
Y
-0.5
-8

B) . . .| [

0 5 10 15 x 10°

Samples
Example with a +-1 Volt signal

Cristian Gil Morales REPORT 14 /97

Multieffects processor Introduction
I EEE—————————————————————————

Distortion

The second and third harmonic are enhanced. Timalsig highly saturated, the main note is
indistinguishable and the wave is totally irregulahighlights the medium-high tones, but with

more distortion, and there are notable lows too.
However it is pleasant to hear these enhanced pelfksugh the sound is theoretically dirty.

The distortion effect operates along a wider t@mah than it does the overdrive effect.

Amplitude
1

08

Distortion
effect

08
04

0.2

. Input signal

. Chutput signal

I Ml Jj:ulﬂhl.

Samples
Example with a +-1 Volt signal

il gl

0 5

1

Fuzz

The second harmonic is enhanced in a highly wag,the signal peaks are generated in more
quantity than the overdrive effect. The sound suad on lows and middle tones, but not in

treble tones.
The sound is heavier, with little clarity and itshe completely non-linear behaviour.

Amplitude
1

0.8

> Fuzz
04 effect
0.2
. Input signal
0.2
0.4 . Output signal
0.5
0.4
% o 5 10 15 % 10*

Samples
Example with a +-1 Volt signal

Cristian Gil Morales REPORT 15/97

Multieffects processor Introduction

Dvnamic range effects

The dynamic range of an audio signal is the rarejesden the softest and loudest parts of the
signal. These effects are done to adjust the dynaange of audio input signal. This is due to
an increase the perceived loudness and to highdigtite main parts of the sound. At the same
time, it ensures that the softer sounds are nofridee mix.

These effects alter the frequency content of anoasignal by boosting or weakening specific
frequencies or frequency regions.

Compressor

The signal compression is a process which modifiesaudio signal to level all its amplitude
throughout the signal. The signal is increasedesrehsed according to a math equation.

The difference between the most and the least sixemparts of the signals with an applied
compression is reduced, as consequence the solurdess equalised.

Regarding the threshold, the signal is reducedilyedt’does not include the higher volume in
the low parts, namely, this effect does not amglify volume. It is only reduced.

Amplitude
1

[1E:}

06|

Compressor
effect

04

0z

. Input signal

. Output signal

1 1 1
5 10 15 x 10
Samples

Example with a +-1 Volt signal

The use of the compression is necessary for piofessecorders.

Cristian Gil Morales REPORT 16 /97

Multieffects processor Introduction

Expander

The expansor is a dynamic process which is useddligrofessional recording filter. It does the
inverse process of a compressor, since it incraasadynamic range of the audio signal.

It has several control parameters. The threshotdriskines the level at which the expander
starts working. The attack time to start the effelsen the signal passes below the threshold.
The relaxation time or decay stops the effect wthensignal returns to be above the threshold.
And the last one is the expansion ratio which iatis the expansion level when the signal
exceeds the threshold, for example a ratio of 14, etc.

Amplitude
1

08

08 Expansor
' effect

. Input signal

. Output signal

5 10 15 x 10"
Samples

Example with a +-1 Volt signal

It is very used to reduce the background noise lwh& not wanted in the professional
recordings.

Noise Gate

A noise gate can be considered as an extreme cesgprevith a infinite slope (in fact, the
relation 1:10 is enough).

This effect consists in the complete muting of skgnal below the defined threshold. The noise
gate is typically used to eliminate the noise hyirsg the threshold just above the level of the
background noise. So the signal only passes whéevi¢l is above the predefined threshold.

This results in an overall cleaner sound.

Amplitude Noise Gate
! A /\ effect
SindeThreshold f } /N N
i \J[:_,ﬂ ™ £TTN
[B E_vf \/ PN B inputsi
R R A . : put signal
Input Level | 3 é : é : E E : \
n ?-LEEL-IE-L-E-\:-El----: E---E E-- o E— ----------------- : : ----------- . Dlltpllt Sigllal
0 Samples 500

Example with a 1 Volt signal

Cristian Gil Morales REPORT 17 /97

Multieffects processor Introduction

Auto Wah

The wah-wah effect alters the tone of the signatremate a distinctive effect, mimicking the
human voice. The effect sweeps the peak resporesbdad pass filter to create the sound.

The auto-wah effect is the wah-wah effect with aime signal which oscillates the cut

frequency for the band pass filter.

Amplitude
1

08

08

Auto Wah
o4 effect

. Input signal

. Cutput signal

0 5§ 10 15 x 10°
Samples)

Example with a +-1 Volt signal

Panning

The panning effect is the spread of the signahéeitmonaural or stereophonic) into a new
stereo or multi-channel sound field.

It is used to create the impression that the awstiorce is moving from one side of the
soundstage to the another.

For the stereo output, one channel is multipliedabgosine signal and another channel is
multiplied by a sine signal, both with the samejérency and amplitude.

Amplitude
15

il
05

0 . Left channel

output signal

-0.5F

_1f

-i5 1 1

Samples 15 x 10°

Amplitude Panning
effect

. Right channel
output signal

] 10 15 x 10*
Samples

Example with a +-1.5 Volt signal

Cristian Gil Morales REPORT 18 /97

Multieffects processor Introduction

Modulation effects

The modulation effects are used to add motion apdhdto the sound. They typically delay the
input signal a few milliseconds and use a LFO talutate the delayed signal.

A low frequency oscillator (LFO) is an artefact whigenerates a wave with a frequency which
can be modified in low levels. These levels aréosothan they cannot be heard, therefore they
are only used for modulation purposes. The LFOrpatars include speed (or frequency) and
depth (or intensity) controls.

The LFO may also be used to modulate the delayitireme effects.

The original signal is often called the "dry" sijaad the processed signal is called the "wet"
signal.

Some modulation effects include feedback parametdrieh add part of the effect output back
into the input.

Chorus

The Chorus effect is qualitatively similar to thiarfger effect. It simulates the effect of several
sound sources producing nearly the same soundalikboir does with multiple singers in
unison.

Electronically, it is achieved using small randoamigtions of the time delay and it uses several
delay channels which are recombined in stereoddyme a very rich sound.

Modulation rates are longer than the Flanger effiggtically 0.1-0.5 Hz, with similar delay
times of 1 to 50 milliseconds. Unlike Flanger efféebe Chorus effect often employs amplitude
modulation to simulate the way that the singery tae volume in time.

Amplitude
1

08

0.6

Chorus
osk NI effect

0.z

. Input signal

. Output signal

i) 5 10

]
15 x 10"
Samples %

Example with a +-1 Volt signal

Cristian Gil Morales REPORT 19/97

Multieffects processor Introduction

Flanger

When time-delayed and direct signals are combiaszhmb-filter effect is created. Generally,
this is undesirable. However, the effect can beal use'spice-up” certain sounds. If the delay
time is constantly slightly altered, a rich sweegiifter is created. This is known as flanging.

In addition, the depth of the effect can be cotdrbthrough changing the balance between the
delayed and direct signals. For flanging, the dékag is in the range of 5-35 milliseconds.
The modulation rate (which changes the delay tis\@) the range of 1-10 Hz.

Amplitude
150

Flanger
effect

. Input signal

. Qutput signal

1 1]
5 10 15 x 10°
Samples

Example with a +-1.5 Volt signal

Tremolo

The tremolo effect changes the amplitude of theaig
To obtain this effect, it multiplies the input sajnby a periodic signal, usually a sinusoidal
signal (with a LFO). In terms of modulation, thésthe amplitude modulation (AM).

It also causes small phase changes which primafifiact low waves. Sometimes it is confused
with the vibrato effect. The vibrato effect altete frequency in function of time, not the
volume.

Amplitude
1
LETS
06+
04 Tremolo
02 effect
ok
-0z . Cutput signal
0.4
0.6
-0.8
"o % 10 50 200 250

Samples
Example with a +-1 Volt signal

Cristian Gil Morales REPORT 20/97

Multieffects processor Introduction

Repetition effects

The most effects which are used in the modern nursiduction are time-based.

These ones are achieved by mixing a original signtd a delayed copy of itself. Unlike the
dynamics range and modulation effects (they amenafised to enhance recorded sound without
being obvious to the listener), the repetition etfeare used to creatively alter the sound of the
source.

It can create many effects by delaying the inpgai in variable amounts. In order to hear the
delay, the delayed signal needs to be combinedtiloriginal signal.
For improve these effects, it is important to cohthe mix balance between the two signals.

It can also control the ratio of the modified sigfveet) and the original signal (dry).

Delay/Echo

The Delay effect records an input signal to an awtorage medium, and then it reproduces
back after a period of time. The delayed signal lmamplayed back multiple times to create the
sound of a repeating.

After that, the processed signal is mixed withdhiginal one.

The difference between the Delay and Echo effscéstablished simply by the amount of delay
of the input signal and its repetition.

Therefore, in the Echo effect, the output signadt(and dry signals together) are perceived by
the ear like a new signal respect the originalaigsince the delay is small. But with the Delay

effect, the delay is very long, and the ear caiimgjgish the mix of both signals.

Amplitude

03r

o2 M Delay / Echo
effect

o

¢ w . Input signal

0.1
. Cutput signal

202

03}

04 1 1 1 1 1 1 1 1 1]

0 50 100 150 200 250 300 350 400 450 500
Samples

Example with a +-0.3 Volt signal

Cristian Gil Morales REPORT 21/97

Multieffects processor Introduction

Reverb

Inside a room, it receives the sound through twanakls: the direct sound and the reflected
sound.

The reverb is a phenomenon produced by the raflectihe reflection consists in a permanence
of the sound even when the original wave is gone.

Listener

This effect is more notable in big rooms with éttibsorbency (without curtains or any flexible
object). Consequently, this effect is less notablemall rooms with a lot of absorbency (with
curtains and other flexible objects).

This is part of the light system.

Amplitude
1

0.5

Reverb
effect

. Input signal

. Chutput signal

—F

5 ' !

5 10

1
Samples 15 x10°

Example with a +-1 Volt signal

Cristian Gil Morales REPORT 22 /97

Multieffects processor Introduction

The effects order

This project has the possibility to use multipléeefs simultaneously. It can use at most one
effect for each group together, namely, betweea aefour effects at the same time.

Mix two effects of the same group is not sense igedhey could generate a lot of unnecessary
noise.

Based on how these effects are generated, it isriant to generate some of them before than
other ones to achieve a minimum background noideagaid unnecessary distortions.

This does not mean that it is not possible useetfexts with another different order. Actually
there are musicians who try to use other strandersito find a special sound.

But the order proposed here is the most commoritdredps to eliminate the background noise
and distinguish the different used effects in thalfresult.

The correct order of the effects proposed is exdb# same order which these effects are been
described: first of all the gain effects, after tihygnamic range effects, then the modulation
effects and finally the repetition effects.

In the next picture it can see better the propasddr:

Repetition effects g)@ Modulation effects B Dynamic range effects é-é Gain effects w\

Delay Chorus Compressor Overdrive
Reverb Flanger Expansor Distortion
Tremolo Noise gate Fuzz
Auto Wah [
Panning

4

For example, if the delay effect is generated arsd then the distortion effect, the second effect
distorts the first one. When the delay is distarteid not possible to distinguish the delay effec
very well.

Conversely, if the distortion effect is appliedstiand then the delay effect, the result distorts
the input signal. And once the input signal isatigtd, then it delays.

Theoretically this one is the optimal result.

This example can be applied to any possible configation among the different effects.

Cristian Gil Morales REPORT 23 /97

Multieffects processor Introduction

Retrospective: The history of the sound effects

A brief view in the history

As it can read below, in parallel and with few diste of time, there were several precursors
who began conducting the first trials in searchihg different or particular sound.

The first amplified guitars appeared during ther®@nera in the early 1930s.

At that time, the bands with many members and swuath wind instruments, dominated the
show. Naturally, the guitarists wanted to grab sasheéhose solos for themselves. But the
natural sound of early amplified guitars was thagedy, thoroughly, anticlimactic and it did not
quite be in the environment of the orchestras eftitme.

It is not surprise that guitarists quickly begaakimg for ways to pump up their sound.

The very first guitar effects were built into instruments themselves.

In the 1930s, Rickenbacker made a clunky Vibrolargh guitar with motorized pulleys that
jiggled the bridge to create a vibrato effect.

In the 1940s, DeArmond manufactured the world& Btandalone effect, a type of tremolo.
Many guitarists looked for a way to reproduce tla¢ural reverb and echo who they enjoyed
during soundchecks in empty halls.

Although it is funny, the first effect of this kingdas achieved when the guitarist Duane Eddy
outfitted a 500 liters metal water tank with a d@eaat one end and a microphone at the other to
create an artificial echo chamber for recordingc@irse, this idea was not to use it on stage.

By the late 1950s, many amplifiers incorporateditini tremolo, vibrato, echo and reverb
effects. It began to emerge guitarists who useuh théot.

Guitarists like Chet Atkins, Luther Perkins and ROybison used these ones to produce the
now-classic Rock ‘N' Roll and the "slapback" echongl on stage. The tape-based echo units,
such as the Watkins Copicat, influenced heavilysiiiend of British beat rock.

In the 1960s, the early standalone guitar effeasevpowered with vacuum tubes. They were
bulky, expensive, fragile and not very practicalliee performance.

Then, the transistor became widely available. Rerfirst time, engineers were able to create
affordable portable standalone effects, such asuimevibe Jimi Hendrix used on his song
"Machine Gun".

By the late 1970s, the manufacturing of affordadsid-state effects had exploded, creating a
whole new gear market that continues to thrive yoda
Several stompbox preamplifiers were produced tol@®the overdriven valve amplifier tones.

The mid-1980s saw the rise of digital effects pedaiilt into single systems called multi-effects
pedals. These electronic racks contained peddlstiiid activate several effects at a time.
Some of these effects were digital representatainslassic overdrive, reverb and wah-wah
effects, with the addition of compression, pitchftehs, octave doublers and other modern
effects.

In the 1990s, multi-effect racks and floor unitcdm®me prevalent, with options for switching
between a wide range of overdrive sounds, in audito other popular effects. It was also
created several custom made amplifiers, producimg tgpe of sound extremely well. Punk
music called the most distorted sounds as possible.

The early 2000's saw an explosion of digital madgllas companies tried to offer popular
products for home recordings, bedroom players and-pro musicians.

Cristian Gil Morales REPORT 24 [97

Multieffects processor Introduction

The Global Financial Crisis in the late 2000s fdragost companies to curtail development and
focus on high volume, low cost items. The outstagdixception was a small company, Fractal
Audio, who produced the Axe-FX. This amp emula®aiguably the first device to convince
experienced professionals for valve tone.

Nowadays, the amplifiers are made with hundredsfigicts built in. Computer chips make it
possible to carry the sound effects to anywherh iiitte or no setup time. All preprogrammed
and ready to go. In many cases, one pedal can tepatlaof these effects, therefore the
combinations are almost endless.

The history of some sound effects

Distortion: A man named Link Wray was the first to find thffeet in 1958, when two valves

in his amp were loosened. Reggie Young, guitatesta Nashville and Memphis studies, used
to remove one of the bulbs of the power stagedtwdihis amp.

Another important precursor of overdriven sound Waet Atkins. In the 50s, he used a small
preamp of transistors with the size of a pack gaettes to saturate his tube amp. Perhaps he
was the first precursor of compact pedals.

Wah-Wabh: It is an effect which has been widely used, ragkive second after the distortion in

popularity. Its creation was also the result ofagnident. In 1963, the trumpeter Clyde McCoy
commissioned to Vox (important company of ampljeto simulate the muted effect of his

trumpet.

Trying to reach this result, the Vox techniciansrfd the Vox Wah-Wah effect which achieves
a very similar sound to its name. The company pit & pedal and it went on sale at the time
that Jimmy Hendrix began recording his first album.

Octave: Roger Mayer, a sound technician of the '60s, wgntd modify the octave fuzz, he
developed this one.
This effect adds an acute note (in the upper oft@ivie original one that gives the instrument.

Flanger: From the Beatles, it was common to "double tragkieffect was achieved with two
recording machines, the first one dephased witlh@nmne.

To dephase, it rubbed with the hand against tredfrrolls of tape of one of them, hence the
name os this effect: flange.

Chorus: Around 1977, Roland, with his division of Bosseefts, released this processor.

The chorus effect was the most used effect in8be '

This effect is generated taking the input signalvig it about 20 milliseconds and modulating
it. So it can say that this effect is a derivatfeéhe flanger, but cleaner.

Cristian Gil Morales REPORT 25/97

Multieffects processor Programming
I EEE—————————————————————————

PROGRAMMING

Cristian Gil Morales REPORT 26 /97

Multieffects processor Programming

MATLAB simulation

Before programming the audio effects in the DSRt&tKit (DSK), it was decided to make
some simulations with the software MATLAB, whichused in many subjects of the degree.

Firstly, it was decided to start working on theeetfsimulations with the frequency spectrum of
the input signal. It was believed that working ditg with the frequencies would make the
modification of the signal easier.

Therefore, the input signal (which is based on #ogd values over samples) must be
transformed into the frequency spectrum. The fraquespectrum shows the amplitude values
of the different frequencies which form the signal.

In fact, some effects such as the Octaver (whictlegges an output signal with its frequency an
octave above the input frequency) can only be g@eerwhen working inside the spectrum of
the signal. For this simple reason, it was deteedhithat this would be the ideal way to work.

Although it seemed the most optimal way, it wa® &sown that it required additional work,
since it is necessary to reach its frequency specfirst. Initially, this point was not important
and the complexion of the matter was unknown.

To get the frequency spectrum, the fastest wagiiggitheFast Fourier Transform (FFT).

The FFT is an efficient algorithm to compute thesdéte Fourier Transform (DFT) and its
inverse. In exchange, the DFT transforms a fundtiothe time domain in a representation of
the frequency domain.

The DFT requires that the input function is a diserand finite duration sequence.

Therefore, this algorithm is perfect because thmutirsignal is sampled and stored in an array
using a Digital Analog Converter (DAC), before dércuse its samples.

Due to the fact that the final application gathalisthe information in real time, it has to
simulate equally.

Therefore it cannot take a full data array and mbke=FT. It must be done every certain period
of time, depending on the quantity of samples whiehbeing entered.

To perform the FFT correctly, it must understangtfihe concepts ofvindow length and
window step

The window length is the dimension of data thamiist be taken to perform the FFT. This
means it has to wait until all the necessary inftiam is saved.

The window step is the time (in samples) whichais o wait between each FFT to ensure that
each new result provides new information.

Both elements are calculated depending on the sagnplequency according the following
equations:

Wmdows lentgh 1 sampling freq.
(in samples) min. freq. {m Hz)
{in Hz)

Cristian Gil Morales REPORT 27197

Multieffects processor Programming
I EEE—————————————————————————

Window step 1 sampling freq.
. D —— =
{(in samples) max. freq. (i Hz)
{mn Hz)

These formulas are correct, but it can set otHérdnt values of these parameters to adapt it in
each specific situation.

Again, the application is processed in real tinteeréfore the DSP app must perform this
operation continuously.

For this reason, with a correct value of the presiparameters, the FFT is performed the
minimum number of times, subtracting processingkworthe DSP.

To sum up, the FFT is performed after a specifimiper of samples (window step) with a
specific number of samples (window length), retogna single value of frequency.

After numerous FFTs, the frequency spectrum ofithat signal is formed, which has the ratio
between the amplitude and the frequency of thetisigmal.

Finally, when it has the spectrum of frequencies,fiit searches for the maximum
amplitude, the main note of the signal is determirak
And with this value, the output signal can be geneated.

This system seemed feasible at first, but afteersd\vests and simulations, it was determined
that, in fact, it has several important problems:

e It can only recognize one note at a time. If it i more than one note at a time, it is
impossible to find them all with the amount of roend harmonics which the input signal
has... at least by this way of working.

* The sound generated at the output is a pure tdmxeTore there is not similarity with the
characteristic sound that a musical instrumenwdedi (due to the force to generate the note,
the wood of the instrument, the body resonance). etc

» To fix the last point, it is necessary look for tleemula which defines the sound of the
musical instrument to apply the found frequencyisTiprocess is called characterization.
But each instrument has its own formula (even amdiifgrent models of the same
instrument). Therefore, it is a lot of absurd work.

< In addition, if it is decided to introduce a compkound (like an audio track from a music
player), the output would be unrecognizable.

With those problems which greatly complicated tluekyafter weeks of research, it reached the
following conclusion:

Not only this was of working is more complicatedt i also requires more processing work to
the DSP microcontroller.

As a result, the first form of work is discarded. The best solution is work directly with the
amplitude values over samples.

A lot of time was devoted to reaching this conausitherefore it starts to work directly on the
DSK now, taking the input samples with the audidemand treating them consequently.

But fortunately, it was not all a waste of time.eTalgorithm designed in MATLAB is used to
design the implementation of the tuner in the DSP.

Cristian Gil Morales REPORT 28 /97

Multieffects processor

Programming
I EEE—————————————————————————

Part of this algorithm is used in the DSP app tiectethe lowest note using the FFT and their

other functions.

However, for a proper performance of the tunesait only play one note at a time. If more than

one note is reproduced, the algorithm only takeddtvest one.

Followed it shows part of the code in MATLAB, whiah used for the final algorithm of the

tuner in the DSP app. The rest of the code is shnwlme annexes.

for N=1:lengthi(Airraylote)

S L LS EETELITL LI L L LS

5%
% READING THE INPUT SIGNAL IN REAL TIME

A

HEEE eSS RS RRESSLLS
1

for j=1:(WinLength-1)
inpuc3awmples(i,1) = input3amples(j+1l);
end
input3amples (WinLength)l = Arravlote (N) :
timelnput3ighalReading=toc

H
B EEEEES TSRS35 5535%553%

% WINDOW STEP

samplesCount = samplesCount+1:;
if samplesCount>=Windtep &£& Nr=WinLength
samplesCount = 0;
timeWindtep=toc

s
s
A
A
A
A
o
o
o
A
s
s
A
A
A
A
A
o
o
A
s
s
A
A
A
A
A
o
o
A
s
s
A
A
A
A
A
o
o
A
s
s
A

H
5

A
o
o
o
A
s
s
A
A
A
A
o
o
o

MATN FREQUENCY

[L
HA
ey
ey
e
e
A
oA
ey
ey
ey
ey
ey
ey
e
e
A
oA
ey
ey
ey
ey
ey
ey
e
e
A
oA
ey
ey
ey
ey
ey
ey
e
e
A
oA
ey
ey
ey
ey
ey
ey
e
e
A
oA
ey
ey
ey
ey
ey
ey
e
e
A
oA
ey

¥

if input3amples<=0.05 &£ inputSawples>=-0.05

% mainFrec = 0;
% noteFreg = 0;
else
% The window type is applied to the input sawmples
for j=1:WinLength
TinInput (i) = coefWindow(]) *inputlawples(j):
end
% The FFT is performed
tie;

windowFFT = abs (fft (Winlnput, £3)):
timeFFT = togo:

SpechimpMax = 0;

for j=1:2000 % The array is crossed until 2000 Hz

if windowFFT(]) =3pecimpMax
SpechmpMax = windowFFTI(]):
mainfFreqg = j;
end
end
end
timeMainFrec=coc;

All the code is explained in the annexes.

Cristian Gil Morales REPORT

SEEEEEEEEEEESEEE5S%S5S

S EEEEEEEEEEEEESERE5S%S5S

B EEEEEET RIS ESEEEE5 55555555 555553%%3
1

&
&
&

&
&
&

BE555555%%

BE555555%%

$5535355%%

$E555555%%3

A
o
o
A
s
s
A

A
o
o
A
s
s
A

5%

EUE

5%

%%

EUSE L

%%

&
&
&
&
e
Aok

A
A
A
A
o

29 /97

Multieffects processor Programming

Texas Instruments TMS320C6713

Differences between DSP and General Purpose Process

A microprocessor incorporates the functions of @ ¢lentral processing unit of a computer
(CPU) on a single or few integrated circuits. Thepmse of a microprocessor is to accept
digital data as input, process it as per the iotivns, and then provide the output. This is
known as sequential digital logic. The microproceskas internal memory and operates
basically on the binary system.

A general purpose microprocessor is a processoistimat tied to or integrated with a particular
language or piece of software. Most of the genprajpose microprocessors are present in
personal computers. They are often used for cortipataext editing, multimedia display, and
communication over a network. Other microprocesacespart of embedded systems.

These ones provide digital control over practicallygy technology, such as appliances,
automobiles, cell phones, industrial process chreto.

The DSP processor, on the other hand, is a pati¢tybe of microprocessor. DSP stands for
digital signal processing. It is basically any sigprocessing that is done on a digital signal or
information signal. A DSP processor is a specidlingcroprocessor that has an architecture
optimized for the operational needs of digital sigorocessing.

DSP aims to modify or improve the signal. It is rdtderized by the representation of discrete
units, such as discrete time, discrete frequencydiscrete domain signals. DSP includes
subfields like communication signals processingdarasignal processing, sensor array
processing, digital image processing, etc.

The main goal of a DSP processor is to measutey, ihd compress digital or analog signals.

It does this by converting the signal from a reakd analog signal to a digital form. To
convert the signal it uses a digital-to-analog @ster (DAC). However, the required output
signal is often another real-world analog signdlisTiransformation also requires a digital-to-
analog converter.

These algorithms can run on various platforms. Saglgeneral purpose microprocessors and
standard computers. Specialized processors caitgldsignal processors (DSPs). Purpose-
built hardware such as application-specific intégplacircuit (ASICs) and field-programmable
gate arrays (FPGAs). Digital Signal Controllers atietam processing for traditional DSP, or
graphics processing applications, such as imageleo.

The main difference between a DSP and a micropsocés that the DSP processor has features
designed to support high-performance, repetitivanerically intensive tasks. DSP processors
are designed specifically to perform large numhdrsomplex arithmetic calculations and as
quickly as possible. They are often used in appboa such as image processing, speech
recognition and telecommunications. In comparisoith wgeneral microprocessors, DSP
processors are the more efficient at performingichbasithmetic operations, especially
multiplication.

Most general-purpose microprocessors and operaystems can execute DSP algorithms

successfully. However, they are not suitable feriagportable devices such as mobile phones.
Hence, specialized digital signal processors age.us

Cristian Gil Morales REPORT 30/97

Multieffects processor Programming
I EEE—————————————————————————

Digital Signal Processors have approximately thmeskevel of integration and the same clock
frequencies as general purpose microprocessorsthByt tend to have better performance,
lower latency, and no requirements for specializealing or large batteries. This allows them
to be a lower-cost alternative to general-purposeaprocessors.

DSPs also tend to be from two to three times dsafageneral-purpose microprocessors.

This is due to architectural differences. DSPs téodhave a different arithmetic unit
architecture. Specialized units, such as multiplietc. Regular instruction cycle, a RISC-like
architecture. Parallel processing. A Harvard Busiaecture. An internal memory organization.
Multiprocessing organization, local links and meynbanks interconnection.

For these reasons, the present project is based arDSP, using its processing capacity for
math operations and audio treatment.

Due to this, the EET provides the TMS320C6713 DSPta8ter Kit, which is used in the
audiovisual system degree.

Description of the TMS320C6713

The TMS320C6713 DSP Starter Kit (DSK) is a low-cdstrelopment platform designed to
speed up the development of high precision appiestbased on TI's TMS320C6000 floating
point DSP generation. The kit uses USB communinatfor true plug-and-play functionality.
Both experienced and novice designers can getedtamimediately with innovative product
designs with the DSK’s full featured Code CompdStrdio IDE (Integrated Development
Environment) and eXpressDSP Software which includ@SP/BIOS and Reference
Frameworks.

This kit is based for a high performance. It hasdwmanced architecture Very Long Instruction
Word (VLIW) developed by Texas Instruments (TI), o8k DSP offers a great choice for
multichannel and multifunction applications.

The C6713 DSK tools include the latest fast sinmkatrom Tl and access to the Analysis
Toolkit via Update Advisor, which features the Cadmalysis tool and Multi-Event Profiler.
Using Cache Analysis, developers improves the padace of their application by optimizing
cache usage. By providing a graphical view of thehip cache activity over time the user can
quickly determine if their code is using the ongcbache to get peak performance.

The C6713 DSK allows to download and step throumttecquickly and uses Real Time Data
Exchange (RTDX) for improved Host and Target comitations.

The DSK includes the Fast Run Time Support libeadad utilities such as Flashburn to
program flash and Update Advisor (to download tpdtsalso includes utilities, software and a
power on self-test and diagnostic utility to endina the DSK is operating correctly.

The full content of the kit includes:

o C6713 DSP Development Board

C6713 DSK Code Composer Studio IDE including thet FEimulators and access to
Analysis Toolkit on Update Advisor

Quick Start Guide

Technical Reference

Customer Support Guide

USB Cable

Universal Power Supply

AC Power Cord(s)

MATLAB from The Mathworks 30 day free evaluation

o

OO0OO0OO0Oo0OOo0OOo

Cristian Gil Morales REPORT 31/97

Multieffects processor Programming

Features

The DSK features the TMS320C6713 DSP. A 225 MHziatewhich delivers up to 1350
million of floating-point operations per second (MPPS). 1800 million of instructions per
second (MIPS) with double multiplications fixedediting-point, and up to 450 millions of
multiplications per second (MMACS).

This DSP generation is designed for applicatioas thquire high precision accuracy.

The C6713 is based on the TMS320C6000 DSP platfi@signed for needs of high-performing
high-precision applications such as pro-audio, cadind diagnostic.

Other hardware features of the TMS320C6713 DSKdoalude:

» Texas Instrument's TMS320C6713 DSP operating atvii2h

 Embedded USB JTAG (Joint Test Action Group) cofgrolith plug and play drivers,
USB cable included

* TLV320AIC codec

* 2M x 32 on board SDRAM

e 512K bytes of on board Flash ROM

« 3 expansion connectors (Memory Interface, Periphémterface, and Host Port
Interface)

e On board IEEE 1149.1 JTAG connection for optiomaliator debug

e Four 3.5 mm. audio jacks (microphone, line-in, &eeaand line out)

* 4 user definable LEDs

e 4 position dip switch, user definable

e +5 Volt operation only, power supply included

e Size: 8.25"x 4.5" (210 x 115 mm), 0.062" thicka@ers

e Compatible with Spectrum Digital's DSK Wire Wrapfttype Card

¢ RoHS Compliant

Line In Headphone
Line Out

Mic In

TMS320C6713 DS
16 MEG SDRAM

40

DIF LEDs Reset Config External Hurricane
Jack Port Switches Switch Switch JTAG Header

Cristian Gil Morales REPORT 32/97

Multieffects processor Programming

Peripherals

As shown in the following picture, this DSK has @d amount of peripherals that help to the
proper functioning of DSP. They are enabled/dighbieinteract with the user.

z| |Z 5 S
ol wl [|©
P McBSPs | : 2
AIC23 ‘ i -
Codec — £
- ___J_F_’J__L_2§_\£ ____________________ s '5
N ok —— 6713 9 @ < | g
| o = @
B ZI2C Mux f=— DSP & r 2|8
Voltage I ‘ .
Reg
Embedded , } Peripheral Exp ‘
i JTAG |
z _— . .
o m Ext. ‘W [LED | [DIP]
= o JTAG 0123 0123

The following describes the most important periplewhich are used to perform this project:

Analog-Digital Converter (ADC)

The analog-digital converter consists basicallpénforming periodically measurements of the
input signal amplitude and translating them intwaneric language.

The digital analog conversion process basicallysists of four stages:
Sampling

Quantification

Coding

Digital-Digital Recoding transmission

NE

O 00O

Quannization
I k

127

OO 0000 100TED « = Blnar_\. 000
encoding
+127

+ 138 + 024

Digital/digital
encoding

Cristian Gil Morales

-

GO1100100 00011000
] |

Direction of transfer

.

REPORT

33/97

Multieffects processor Programming

Sampling

Sampling consists in taking periodic samples ofvilage amplitude. The speed with which the
sample is taken, namely, the number of samplesspeond is what is known as sampling
frequency (FS). It depends on the Nyquist theofEne theorem establishes that the sampling
frequency must be the double of maximum frequefd¥)(signal to be sampled.

—
—J
=
=]
=
=
o
v

1
|
|
I

i i e v

e

-

- s
—

—

(ETE—

T
v

Fig. 13-3
Quantification

The quantification process converts a sequencemgfiitide samples into a predetermined
sequence of discrete values according to the ceeld. u

During the quantification process, the voltage lefeesach sample is measured, obtained from
the sampling process. They are saved into a fifdtecrete) amplitude value selected by
approximation within a previously set level range.

Al e

+127
+ 100
+ 075
+ (3500
e 0I2s
(L]
0n2e
S0
— 075
100

- 127

The preset values to adjust the quantization aoseshdepending on the very resolution itself
using the code while encoding. If the level obtdiigenot identical with any other, it is taken as

the next lower value.

Then, the analog signal (which it can take any ejls converted into a digital signal, because
the preset values are finite.

However, it is not translated into binary code yéte signal has been represented by a finite
value while encoding, becoming it in a successfarecos and ones.

Thus, the digital signal resulting after quantifioa is substantially different from the analog
electrical signal. Therefore, there is always sdlifference between them. The difference is
known as the quantification error. This error oscwhen the actual sample value is not
equivalent to any of the steps available for itprapch. The distance between the actual value
and its approximation is also very large. A quacdiion error becomes a noise signal when
playing back after digital decoding process.

Cristian Gil Morales REPORT 34 /97

Multieffects processor Programming

Coding

Coding involves the translating of the analog \gétavalues which have been quantified to
binary by preset codes. The analog signal will tr@verted into a digital pulse train.

+024 0011000 =015 10001111 + 125 01111101

+038 oo100110 80 11010000 +110 01101110

+048 00110000 - 050 10110010 + (90 01011010

+039 0100111 +052 00110110 + 088 11011000

+026 00011010 +127 [IRERENNI +077 01001101
Sign bit

+is0 —isl

This is the specific code used for encoding / dewpdf data. Indeed, the word codec is an
abbreviation for Coder-Decoder.

Parameters defining the codec

o Number of channels: It indicates the signal typeatiniress: monaural, binaural or
multichannel.

o Sampling: The sampling frequency refers to the arhofiamplitude samples taken per
unit of time in the sampling process. Accordingth® theorem Nyquist-Shannon,
sampling rate determines the bandwidth based osaimpled signal. That is to limit the
maximum frequency of the sinusoidal components wfaem a periodic waveform.

0 Bitrate: The bit rate is the speed or data trarsfie. Its unit is the bit per second (bps).

0 Resolution: It determines the accuracy with thegiodl signal is reproduced. It
typically uses 8, 10, 16 or 24 bps. High precisimans more number bits.

0 Loss: Some codecs removes certain amount of intomomdao do the compression,
hence the resulting signal is not equal to theimaigloss compression).

» Digital-Analog Converter (DAC)

The reverse process is much less complex. It dsrisiputting the values of the samples in the
order they have been processed according to tlealgerithm.

The filters of output recomposition DAC are respblesfor converting the resultant signal of
discrete values (digital) into an analog signal.

The analog signal can be reconstructed from itg&snThe only condition is that the sampling
rate is high enough to avoid the problem referredas aliasing(the signal becomes
indistinguishable when it is sampled).

According to the Nyquist-Shannon theorem, highengang rate for a signal should not be
interpreted as a higher fidelity in the signal restouction. The sampling process is reversible,
which means that the reconstruction can be perfdimean accurate way.

Furthermore, the quantification is an irreversiilecess resulting in signal distortion.

- A

4

Cristian Gil Morales REPORT 35/97

Multieffects processor Programming

« AIC23 codec

The evaluation kit DSK6713 has a stereo audio cdde¢320AIC23 (AIC23) based on the
delta-sigma technology. The AIC23 allows converdrecuencies of 8, 16, 24, 32, 44.1, 48 and
96 kHz. These sample frequencies are generated dra@fock signal of 12 MHz. The same
clock signal that it is used in the USB interface.

AIC23 Codec \
[EFTNvOL |

] T
1 [RIGHTINVOL d
o [ZTEFTPVEL
Y T
Faxt McBSPO cs| |@[E[AAFATH
CLKEX1 |_p. SCLK « |5 | DIGPATH
T4 som| | [E[FOWERDGWH
SP1 Format '§' T BIGIE
& [E | SAMPLERATE B,
T | DIGACT [Analsg]
15 | RESET T
LR McBSP1 : : ' ; q_
pouT L mim— BAIC (N — B,
FeXz] ADC] [
gtg dﬂbspmml L.Fcch:cllJJT< [i "ﬂ"’— LINE IN h
1 R :
R ——L | DAC | b | LINE OUT
. ‘ [-’}-'- HP OUT s [HF 0T]

The comunication with the AIC23 codec is performeidh the McBSPO and McBSP1
(Multichannel Buffered Serial Port). The McBSPOiaeport is used like a unidirectional
channel for the sending and receiving of data frleencodec or to the codec.

The AIC23 has 10 control registers that allow tonage the volume, data format, sampling
frecuency, selection of input signals, etc.
For the access to the audio codec, it is necesisafgoard Support Library.

Features:

= High-Performance Stergdodec
90-dB SNR Multibit Sigma-Delta ADC (A-weighted &8 4Hz)
100-dB SNR Multibit Sigma-Delt® AC (A-weighted at 48 kHz)
1.42V- 3.6V Core Digital Supply: Compatible with Ts4x DSP Core Voltages
2.7V- 3.6V Buffer and Analog Supply: Compatible Bai C54x DSP Buffer Voltages
8-kHz — 96-kHz Sampling-Frequency Support

= Software Control Via TI McBSP-Compatible Multipra Serial Port
2-wire-Compatible and SPI-Compatible Serial-Podté&cols
Glueless Interface to TI McBSPs

= Audio-Data Input/Output Via TI McBSP-Compatible Brammable Audio Interface
I2S-Compatible Interface Requiring Only One McB®PHoth ADC and DAC
Standard 12S, MSB, or LSB Justified-Data Transfers
16/20/24/32-Bit Word Lengths
Audio Master/Slave Timing Capability Optimized for DSPs (250/272 fs), USB mode
Industry-Standard Master/Slave Support Provided A256/384 fs), Normal mode
Glueless Interface to TI McBSPs

= Integrated Total Electret-Microphone Biasing andf&ing Solution
Low-Noise MICBIAS pin at 3/4 AVDD for Biasing of Ettret Capsules
Integrated Buffer Amplifier with Tunable Fixed Gaifil to 5
Additional Control-Register Selectable Buffer GafrD dB or 20 dB

= |deally Suitable for Portable Solid-State Audioy®les and Recorders

Cristian Gil Morales REPORT 36/97

Multieffects processor Programming

Stereo-Line Inputs

- Integrated Programmable Gain Amplifier

- Analog Bypass Path of Codec

ADC Multiplexed Input for Stereo-Line Inputs anddvbphone
Stereo-Line Outputs

- Analog Stereo Mixer for DAC and Analog BypasshPat
Volume Control With Mute on Input and Output

Highly Efficient Linear Headphone Amplifier

- 30 mW into 322 From a 3.3-V Analog Supply Voltage
Flexible Power Management Under Total Software @bnt

- 23-mW Power Consumption During Playback Mode

- Standby Power Consumption <1j50/

- Power-Down Power Consumption <%/

Industry’s Smallest Package: 32-Pin Tl ProprietdrgroStar Junior!
- 25 mm2

Total Board Area

— 28-Pin TSSOP Also Is Available (62 mm2 Total BbArea)

« EDMA

The Enhanced Direct Memory Access (EDMA) is a gegipl that it can configures to copy
data from one place to another one without the GRtdervention. It can be set up to copy data
or program from a source (external/ internal memarya serial port) to a destination (e.qg.
internal memory). After the transfer is completélde EDMA can autoinitialize itself and
perform the same transfer again, or it can be ggpromed with another configuration.

There are 16 memory direct access channels whithe&onfigured independently for the data
transmision, and 69 reload channels to set a nefigcwation to previous channels.

These charging channels allow updating the diffeemess channels to perform a new data
sending when the previous one has finished.

Channel 0
Channel 1 | souce |

Channel 15
Reload 1

Reload 2 Count Reload Link Addr
31 1615 0
Reload 69

Registers:

= Options (OPT): It allows the configuration of thé@fefent avaiable options for
perform the data sending, the priority, the nundjdiits to send, etc.

Source (SRC): The memory direction where the data be sent.

Transfer Count (CNT): The number of data to send.

Destination: The memory direction where the datojsed.

Count Reload/ Link Addr (RLD): It specifies the chimg channel associated with
the channel which is using. This allows to reloatbmaticaly this channel with the
data in the charging channel, after the previosis teas been completed.

Cristian Gil Morales REPORT 37197

Multieffects processor Programming

Features:

* Fully orthogonal transfer description
3 transfer dimensions
A-synchronized transfers: 1 dimension servicedegpent
AB- synchronized transfers: 2 dimensions servicadepent
Independent indexes on source and destination
Chaining feature allows 3-D transfer based on siegknt
* Flexible transfer definition
Increment or constant transfer addressing modes
Linking mechanism allows automatic PaRAM set update
Chaining allows multiple transfers to execute wvatte event
* Interrupt generation for:
Transfer completion
Error conditions
« Debug visibility
Queue watermarking/threshold
Error and status recording to facilitate debug
* 64 DMA channels
Event synchronization
Manual synchronization (CPU(s) write to event sejister)
Chain synchronization (completion of one trangfigigers another transfer)
* 8 QDMA channels
QDMA channels are triggered automatically uponimgito a PaRAM set entry
Support for programmable QDMA channel to PaRAM niagp
* 128 PaRAM sets
Each PaRAM set can be used for a DMA channel, QDbhannel, or link set
(remaining)
« 2 transfer controllers/event queues. The syswwmlH priority of these queues is user
programmable.
* 16 event entries per event queue

Parameter RAM CPU Chain Event
(PaRAM) trigger O trigger ©F trigger
—__Ch0 parameter set +—] — 1 — Event 0
= gy —
Transfer D51 Chlparameterset o S —W| -1 Event’
t % ¥ Ch2 parameter set m — S W Uiz — Event 2 Frolm
reques 0.0 = o Q @ W peripherals
(TR) QE Ch3 parameterset | % 1S 12| =1 FEvent3 N
to EDMA 85] 2 o | € or external
(t - : E &2 c| < events
ransfer [: o fm = |
controller) Fa T O3 &
#—1 ChN parameter set — — —f — Event N
LinkD parameter set
Link1 parameter set . T Completion Transfer_
Link2 parameter set detect — completion
code (TCC/ATCC)
. = — : (from EDMA
) annel intemup transfer
LinkM parameter set pending (CIPR) controller)
Channel interrupt
enable (CIER)
L4
EDMA_INT
(to CPU)

Cristian Gil Morales REPORT 38/97

Multieffects processor Programming

* Communication protocol RTDX

RTDX is a protocol that Tl developed to send data & debugging interface from a client
processor to a host processor and vice versa.
For the DSK-boards this is in the JTAG interfacaagelly.

Many applications require that a host controls diperation of a DSP-system which starts
actions (like reading the output values from DSBrapons). Mostly this is done via a graphical
user-interface (GUI).

The DSK development boards of Tl are connectedhos&PC either via a printer port or via an
USB-connection.

HOST (INTERFACE APP) TARGET (DSP APP)
TI CCS Debugger
L= > Communication "
Automation client OLE JTAG interf User library
display interface interface «
I -~
Application
running on the |«
target DSP

The same link is also available for the user todfer data from the host to the DSK-board and
vice versa. Tl implemented for this purpose a comigation channel architecture called
RTDX. The basic functionality is similar to I/O-aaels found in major operating systems.
To work properly, it needs a "Code Composer Stugiadgram on a PC, which has to be
connected by hardware and software to the DSK-board
The RTDX-link is only for development purposes. fidfere it has to be replaced by other link-
implementations, such as a standard serial or W&Bih final applications.
The RTDX provides data types and functions for:

o To send data from the Target application to thetldpplication.

0 To send data from the Host application to the Tiaagelication.

o To send event data from the Target applicatioméd-ost application.

Cristian Gil Morales REPORT 39/97

Multieffects processor Programming

Code Composer Studio

Introduction to Code Composer Studio

Designers can readily target the TMS32C6713 DSButlir TI's robust and comprehensive
Code Composer Studio DSK development platform. #wods, which run on Windows 98,
Windows 2000 and Windows XP, allow developers tandessly manage projects of any
complexity.

Code Composer Studio (CCStudio) is an Integrateceldpment Environment (IDE) for Texas
Instruments (T1) embedded processor families.

CCsStudio comprises a suite of tools used to devatmpdebug embedded applications.

It includes compilers for each of TI's device fdes| source code editor, project build
environment, debugger, profiler, simulators, ré&akt operating system and many other
features. The intuitive IDE provides a single usgerface which it shows each step of the
application development flow. Familiar tools antenfiaces allow users to get started faster than
ever before. They also add functionality to th@plecation thanks to sophisticated productivity
tools.

CCsStudio is based on the Eclipse open source saftisamework.

The Eclipse software framework was originally depeld as an open framework for creating

development tools. Eclipse offers an excellentveaft framework for building software

development environments and it is becoming a stahftamework used by many embedded
software vendors.

CCStudio combines the advantages of the Eclipséwad framework with advanced

embedded debug capabilities from TI resulting ircaanpelling feature-rich development

environment for embedded developers.

CCStudio features for the TMS320C6713 DSK includes:

o0 A complete IDE, an efficient optimizing C/C++ corgri assembler, linker, debugger, an a
advanced editor with Code Maestro technology feteiacode creation, data visualization, a
profiler and a flexible project manager.

o DSP/BIOS real-time kernel.

o Target error recovery software.

o0 DSK diagnostic tool.

0 "Plug-in" ability for third-party software for adibnal functionality.

0 Test/sample code provided to reduce coding time.

0 Compatible with National Instruments LabView Embed@.0.

0 Compatible with JTAG emulators from Spectrum Digita

Cristian Gil Morales REPORT 40/ 97

Multieffects processor Programming

Creating a Code Composer Studio project

First of all it executes the “Setup CCStudio” pragr to assign specifically the hardware
environment which will be used to work.

In this case, it selects the device "C6713 DSK-U8®t simultor). It adds it to the project and
finally it saves the configuration selecting “Sav&uit” button.

§ Code Composer Studio Setup

Fle Edit View Help

ISystem Configuration | Avaiable Factory Boards ‘ By ‘ iAEET ‘ Bl ‘;
= lce Sa > llitte -
O C6713 DSk ERCE 70 1 Device Simulator CB7xx simulator litte:
| - m —T R 5 70 PP Emulator CE7xx pp emulator %
- B C570% SPIS25 PCI Emulator CETHx spis25e.. *
S 70 XDS510 Emulator CETxx xds510e., *
ECE 70 XDS5 10USE Emulator CoTxx xds510us.. *
B CE 70 ¥DS560 Emulator CETx xds560 e,
B C5711 Device Cycle Accurate Simul... C&7xx simulator litte
B 67 12 Device Cycle Accurate Simul.. C67xx simulator litde
B 6713 DSK XDSS 10 PP EmUlator £, CE7xx pp emulator
EICE 713 DSK ADS510 USB Emulator .. CB7xx #ds510us,.. *
B C57 13 DSK-USE CeFxx dsk. .
EC5 713 Device Cycle Accurate Simul.. C&Txx simulator litthe
ECE 7 1 PP Emulator CE7xxX pp emulator
B CE 7 1x SPI525 PCLEmulator CE 7 spis2se,., *
B o7 1x XDS510 Emulator CETax xds510e., *
B C57 1 ¥DSS510USE Emulator CE7xxX *ds510us... ¥
R 67 1 XDSS60 Emulator CETxx wdsS60 e, ¥
BEICE 7 1x_C6 7 2 PP Emulator CB7xx pp emulator % b
B C57 1_c672x ¥DS510USE Emulator CE7xx xds510us... *
B C5 7 2 CPU Cydle Accurate Simulat,.. CE7xx simulator itte
ERECE 7 2 XDS510 Emulator CETxx xds510e.. *
R CE 7 2 ¥DS560 Emulator CETx xdsSe0e.,
B C5 745 ¥DS 100 USE Emulator CETxx xds100us,.. *
B C5.745 ¥DS560 Emulator CE7xxX x*ds560e.. ¥
B~ TAC VTS EAN Fran daber #Oomism TT TR T weAcEAM a * ;I
BE Factory Boards lﬂi Custom Boards | # Create Board

| Sawe & Quit I Bermye. | | << A I << Add hultiple |

It confirms the upper configuration by clicking “¥ein the “Start Code Composer Studio on
exit?” window. After that, the CCStudio is openedamatically.

Once the CCStudio is opened, it has to check samé&guration options in the new window

(which appears when it clicks in “Option — Custo&i)zfor a optimized use:

= |Inthe “Debug properties” label, it selects therfBam Go Main automatically” option.

= |n the “Program/Project/CIO” label, it selects ttizsable All Breakpoints When Loading
New Programs” and “Auto-save Projects Before Budgtions.

= |n the “Control Window Display” label, it selectset “Current Project”, “Display full path”
and “Close all windows on Project Close” optiongl dnhdeselects the “Product Name”
option.

With the CCStudio configured, it selects "Projettew" to create a new project and it opens a
new window to specify the project name, locatiamjgct type and its DSP family.

Project Creation il

Project Mame: I

Location Ic WCCStudio_w3 Frmyprojectsy

L [

Project Type: IExecutabIe [Lout)

L

Target [Trs 3200704

Finizh | Cancelar I Ayucla

Cristian Gil Morales REPORT 41 /97

Multieffects processor Programming

It clicks in the “finish” button to accept the upgdeatures and create the project.

Then it creates the configuration file (.tcf) inlé&~ New - DSP/BIOS Configuration”.
It selects the label "C6XXX" and after the “ti.dl@ims.dsk6713" template to work with the
TMS320C6713 and finally it selects "Ok".

2 | C54 | CEBxe CEXXX |

Select Platfarm
EEE] CLLC] -
dom EE
fforms.dskB416 ti.platforms.dskE455
EEE| CLL| CLL|
dom EEL dum

orms.dskTCIB482 tiplatforms.evmDi420 1 platforms.ewvmDME42

L [T [
sow] dom

ms.evmDhE437 tiplatforms.evmDhE446 i platforms. evmDhE4S

<] o™

Afterwards it is configured the board in the configtion window:

w-Lgg System

m- (g Instrumentation
w38 Scheduling

- ## Synchronization
- InpuUt/output

It goes to “System — Global Settings” and it sedéBtroperties” with the right button.
It specifies in the popup window "Target Board Namé713 and "DSP Speed in MHz
(CCKOUT)": 225MHz (These are the features of thedusardware).

It applies and accepts the changes.

General | 620x/670x | 621x571x | B41x |

Target Board Name: IC5?13

Procassor ID (PROCID): B

Board Clock in KHz (Infarmational Only): IEDDDEI

DSF Speed In MHz (CLKOUTY: |225-UUUU

Then it configures the memory space:

It goes to “MEM — Memory Section Manager — IRAM”dait selects “Properties” with the right
button of the mouse. It marks the options “Createeap in this memory” and “Enter a user
defined heap identifier label”.

It also writes MEM_HEAP in the label “heap idertifilabel”.

Cristian Gil Morales REPORT 42 | 97

Multieffects processor Programming
I EEE—————————————————————————

It applies and accepts the changes.

Propiedades de IRAM

General |

comment: IInternaI LZ memany
base: |nxnnnnnnnn
len: IDxDDD4DDDD

[create a heap in this memary

heap size: |nxnnnnannn

[entera user defined heap identifier label

heap identifier label: IMEM_HEAP

space Icode,-"data vl
Aceptar I Cancelar | Aplicar | Ayuda |

Still in the memory space configuration, it clicks“MEM — Memory Section Manager” and
with the right boton select “Properties”.

It selects the IRAM (already configured) for thee@nent For DSP/BIOS Objects” and
“Segment For malloc() / free()” labels.

[~ Mo Dynamic Memory Heaps

Segment For DSF/BIOS Ohjects: IIRAM LI

Segment For malloc) / freel): IIRAM LI

It applies and accepts the changes.

At this point, it saves the configuration file imetsame location when the project is created.
Then it adds to this project clicking with the ridghutton in “Add files to project” on the XX.pjt
file, which can be seen in the left window (the dow of the project hierarchy).

Consequently, it adds automaticaly the cfg.s62gy ckc files (the ASM and C codes created
respectively by the tool of graphic configuration).

There is another file (automaticaly created whendbnfiguration file was saved) which needs
to be added manually. This file is the commanddflénker called cfg.cmd.

Now it adds to the project the Board Support LipréBSL) and Chip Support Library (CSL)
libraries, called csl6713.lib and dsk6713.lib redpely.

With all the necessary files inside the projectclitks in “Scan All File Dependances” to

introduce automaticaly the rest of associated.files
These new files are introduced for a correct opmrdb the project.

Cristian Gil Morales REPORT 43 /97

Multieffects processor Programming

The following picture shows the project hierarchiytmall the files inside of it:

D Flles
[GEL fles
=23 Projects

e
----- [Dependent Projects
----- 20 Docurnents
B3 DSP/RICS Config
LR pRG tef
153 Generated Files
[PFGCfg.s62
FFGCfg_c.c
£ Include

-2 PFGefghe2
[poolhs2
=+ Libraries

[cdB713lb
dske713bsllib
----- L1 Source
----- PFGCfg.cmd

From this moment, it is possible to create code3.in

To create a new .c file, it clicks in “File — Newld® and then this file can be added to the
project with the “Add files to project” option witthe right button from the XX.pjt.

The last configurations are the compile and linkays.

It clicks in “Project — Build Options” and, insidbe new window, it goes to “Compiler —
Category: Basic” and it selects the processorithsiused (“C671x").
Here it can also select the use of the debug modéhe optimized options.

In the same new window, it goes to the “CompileCategory: Preprocessor” label to add the
directory (if it exists more than one directoryeyimust be separated using “;”). This directory
contains the header files (extension .h).

These files have the implementation of the boadi8P functions.

If it works with the CSL library, it has to writeCHIP_6713" (it puts “;” previously to separate
this name with the previous one) in the “Pre-Defgyenbols” label too.

General Compiler | Linkerl DspBiDsBuiIderl Link Orderl

-g -poswa2h ' $Fraj_din\Debug" :I
H"CACCStudio_3 HCE00MDSKE 1 Iek000dskE? 13 include"
H"CACCStudio_w3 3\Ce000cshnclude" -d"_DEBUG" -d"CHIP_B71 3" -mw&710 LI
Categony: —Preprocessar
Basic Include Search Path (-): |;C:‘-,CCStudiD_v3.3‘-,CEDIJIJ'~,CSI‘-,incIude
Advanced : ; :
Advanced (2) Fre-Define Symbol (~d): |_DEEIUG,CHIP_E?1 g
Feedback Undefine Symbal {-u): I
Files _
Assembly Freprocessing: INDne ﬂ
Parser Preinclude File (—preinclude): |
Diagnostics [~ Generate list of macros
[~ Continue with Compilation -ppa)

Cristian Gil Morales REPORT 44 | 97

Multieffects processor Programming

Finally it goes to “Linker — Category: Librariesd tadd the CSL and DSK6713 directories
which contain the necessary library files (extensiib).

Generall Compiler Linker | DspEliDsEluiIderl Link Orderl

-o-m" ADebugh\PFG.map" -0" \DebugFFG.out" -w -x :I
- CACCStudio w3 ANCED0M s ib"

Categony: Libraries
[v Exhaustively Read Libraries (=
Adhvanced Search Path (H): |CCStudiD_v3.SMCEDDD\DSKEN FeB000HskE7T 3k

Advanced (2] | Incl. Libraries (-1):|
Achsanced (3)

It applies and accepts the changes.

The configuration is finished. If it is already dore the ANSI C program, it would be
necessary to click in “Rebuild all” button to compie all the project.

If it appears some warnings or errors, they haveeteolved.

With the code compiled without errors or warninggpens the executable file (.out) in “File —
Load Program” option (inside Debug folder) to prep@ run the ANSI C code.

(AN oad Program

“n Buscar en: I_} Debug

& PFG.oLE

@ﬁ@mmwmm

Mombre: I

Finally it clicks the “Run” button to run the code.

Cristian Gil Morales REPORT 45/ 97

Multieffects processor Programming

DSK program structure

Here it shows the different parts of the perforrpesiyram in the DSK. It has been scheduled to
receive the audio signal from the codec, processdbeived signal to generate the sound effects
and take out the results to reproduce in speakers.

The implementation of the effects is described $eparate section for a better explanation.

The present code is divided into the following partcording to the functionality of each one:

Prototypes

The ANSI C language needs to define first the nathtm be used (except for the main
method). Thus, the compiler can identify them wheses them.

It shows some of them:

vold edma init ({void}; /It defines the prototypes of
vold EDMA HWI (void); J/the functions which are used
vold ByPass (void):

vold Overdrive (void);

vold Compressor (void);

vold MNoiseGate (void);

vold AutoWah (void);

vold DelayBEcho (void);

vold Tremolo (void);

vold Tuner (void);

vold D3P _bitrev cplx {(int *x, short *index, int nx);

edma_init - Initialization of the EDMA peripheral.
EDMA_HW!I - Interruption produced by the EDMA.
ByPass—> It takes out the input signal.

Overdrive - It generates the Overdrive effect.

Distortion > It generates the Distortion effect.

Fuzz - It generates the Fuzz effect.

Compressor-> It generates the Compressor effect.
Expansor - It generates the Expansor effect.

Noise Gate—> It generates the Noise Gate effect.

AutoWah - It generates the auto Wah effect.

Panning - It generates the Panning effect.

Chorus - It generates the Chorus effect.

Flanger - It generates the Flanger effect.

Tremolo - It generates the Tremolo effect.

Delay/Echo-> It generates the Delay/Echo effect.
Reverb—> It generates the Reverb effect.

DSP_radix2-> It calculates the FFT radix 2 (The result is diswed).
DSP_bitrev_cplx—> It orders the previously calculated FFT.

Cristian Gil Morales REPORT 46 / 97

Multieffects processor Programming

Header files

To control the DSK and to use of all peripherdlsyiist define first a set of header files (.h).
These header files contain the declaration of tinetfons to use when the compiler finds them.
Anyway, these functions are implemented in otHesfi

To define them, it must put the word "# includetiahen the name of the specific file between
brackets. However, it is not necessary put ";hatend of the line.

Some of the used header files are:
#include <csl.h>
#include <csl irg.h>
#include <dsk@713 aicZi.hx
#include <math.h:>
#include <rtdx.h>
#include <tw radix2.h>

csl.h> To manage the internal functions of the DSP.

csl_irg.h = To use the interruptions.

csl_mcbsp.h> To use the serial communication.

csl_edma.h> To use the EDMA peripheral.

dsk6713.h-> To use all the intern peripherals.

dsk6713_aic23.h> To use and configure the audio codec

math.h > To implement the mathematical operations.

rtdx.h > To implement the functions for RTDX communicatioetween the PC and DSP.
tw_radix2.h > To implement the methods which are used to caleulse coefficients of the
FFT radix2.

bitReverse.h> To implement the methods which are used to caleutae coefficients for
ordering the FFT result.

Constant statement

In this section, the constants used in the maigrara are defined.

These constants are values which cannot be modifibdrefore, they are usually used to
configure all functions automatically.

To define these values, it puts "#define" at thgifr@ng, then a reference to this element and
ultimately its value. It is not necessary put 't'ttee end of line.

Because there are many constants, they are shoeatlgiin the annexes.
It only gets one of them to see the definitiondine: #define PT 3.141582A53589793

Global variables

This section defines all the global variables/asragich are used throughout the main program.
These variables/arrays are constantly updatedrforpethe various functions in the main code.
To define a variable, it puts the type first anertlits name to use it. Later all these variables ar
initialized before the infinite loop.

Due to the large number of variables, it puts diyea the annexes.
It only gets a couple of them to see the definigtmcture:

short flagInterrupt;
short inputdamples [PR3S];

Cristian Gil Morales REPORT 47 | 97

Multieffects processor Programming
I EEE—————————————————————————

Definition and confiquration of audio codec and RTIX channels

* Audio codec

To activate and use correctly the A/D and D/A coters from the audio codec, which are
controlled by the DSP, it has to configure propéhnly specific registers in the DSP.

First of all a handle is created to control theiawthdec:
D3KE713 AICZ3 CodecHandle hCodec; //Handle for the AICZ3 codec

When the handle is created, it has to configureviitsking mode by creating a configuration
variable. This variable defines the volume, samfsbguency, etc.

The following picture shows the different registergonfigure this configuration variable:

ADDRESS REGISTER

0000000 | Left line input channel volume control

0000001 | Right line input channel volume control

0000010 | Left channel headphone volume control

0000011 | Right channel headphone volume control

0000100 | Analeg audic path control
0000101 | Digital audio path control

0000110 | Power down control

0000111 | Digital audio interface format
0001000 | Sample rate control
0001001 | Digital interface activation
0001111 Feset register

The manufacturer (Texas Instruments) gives all ifermation about this topic in the
TLV320AIC23B datasheet which is defined in the bibliography section.
The datasheet explains the meaning of each registeall the possible values to set in them.

For this project, according the last documentabigmal configuration for the audio codec is:

DSKAT13 AICZZ Config config = |
O=0017,
0x0017,
Ox01F9,
0x01F9,
0x0011,
Oz0000,
0x0000,
0x0043,
O=0001,
0x0001

Cristian Gil Morales REPORT 48 / 97

Multieffects processor Programming
I EEE—————————————————————————

Left line input channel volume control: The input volume of the left channel is set to 0dB
without mute.

Right line input channel volume control: The input volume of the right channel is set t® 0d
without mute.

Left channel headphone volume controlThe headphone volume of the left channel is set to
0dB.

Right channel headphone volume controlThe headphone volume of the right channel is set
to 0dB.

Analog audio path control: Microphone boost is set to 20dB and the DAC isctel.
Digital audio path control: It doe so’t use the digital control.
Power down control: Enable all the peripherals and 1/O to be used.

Digital audio interface format: Master mode anftame sync followed by two data words
(DSP format).

Sample rate control: Frequency Sample 1/O to 48Hz.
Digital interface activation: The digital interface is activated.

Reset register:It does not use (in fact, it is not necessaryubiton the configuration variable).

+ RTDX channels

This library provides the data types and functitmms
0 Sending data from the target to the host
0 Sending data from the host to the target

The following data types and functions are defirethe header file rtdx.h. They are available
via DSP/BIOS or standalone.

Declaration Macros
— RTDX_CreatelnputChannel
— RTDX_CreateOutputChannel

Functions

— RTDX_channelBusy
— RTDX_disablelnput
— RTDX_disableOutput
— RTDX_enableOutput
— RTDX_enablelnput
— RTDX read

— RTDX_readNB

— RTDX_sizeoflnput
— RTDX_write

Macros
— RTDX_isInputEnabled
— RTDX_isOutputEnabled

Cristian Gil Morales REPORT 49 /97

Multieffects processor Programming
I EEE—————————————————————————

With the upper functions, it is possible configulee CCStudio to enable the RTDX
communication between the DSP app and an exteenvidal(in this case, the user interface).

Therefore, 2 RTDX channels are created for the comcation between the PC and VC++:

##Create the channels for the communication between DEP and PC
ETDHE_CreatelnputChannel (RTDEinput);
RTDE CreateCutputChannel (ETDHoutput);

RTDX_CreatelnputChannel(RTDXinput): A RTDX channel called RTDXinput is created to
receive the data from a external device (in theec&rom the VC++ interface).

RTDX_CreateOutputChannel(RTDXoutput): A RTDX channel called RTDXoutput is
created to send the treated data from a externadalén this case, from the VC++ interface).

With these channels and the RTDX protocol configuithe configuration is performed in the
user interface), the communication is enabled ¢tuest or receive data from one platform to
another.

The sending and receiving actions are performehldrinfinite loop, inside the main method.

Definition and confiquration of EDMA channels

To read the input data from the codec, updateripetiarray and take out the treated data to the
speakers, it uses the EDMA peripheral to movehalt tlata continuously. Hence it subtracts a
lot of work to the DSP app.

The channels performed for these tasks are:

EDMA Handle hEdmaRead;
EDMA Handle hEdmaWrite;
EDMA Handle hEdmaUpdateInput;

hEdmaRead: EDMA channel used for move the input data fromdbeéec to the buffer.
hEdmaWrite: EDMA channel used for move the output data froetibffer to the codec.
hEdmaUpdatelnput: EDMA channel used for move the input data fromtb#er to an array.

In addition of those channels, 6 reload chann@seated to change the configuration (i.e. the
performance) of the previous EDMA channels.

EDMA Handle hEdmaLINKreadl, hEdmaLINKreadZ;
EDMA Handle hEdmaLINKwritel, hEdmaLINKwriteZ;
EDMA Handle hEdmaLINKupdateInputl, hEdmaLINKupdateInputZ;

hEdmaLINKreadl: EDMA reload channel used for change the hEdmaReafiguration.
hEdmaLINKread2: EDMA reload channel used for change the hEdmaReafiguration.
hEdmaLINKwritel: EDMA reload channel used for change the hEdmaWatdiguration.
hEdmaLINKwrite2: EDMA reload channel used for change the hEdmaWdtdiguration.
hEdmaLINKupdatelnputl: EDMA reload channel used for change the hEdmaldbalabt
configuration.

hEdmaLINKupdatelnput2: EDMA reload channel used for change the hEdmaldaiamt
configuration.

Cristian Gil Morales REPORT 50/ 97

Multieffects processor Programming

The EDMA is configured to take the input data frtira codec firstly (hREdmaRead). Its 2 reload
channels (for stereo input) configure the inputneted which it is in use.

Consequently, it updates the input array with thiega to treat them (hEdmaUpdatelnput).
Finally, it takes out the treat data to the cod#edmaWwrite). Its 2 reload channels (for stereo
output) configure the output channel which it igngs

The following picture shows the configured datansfar between the audio codec and DSP by
the EDMA:

—»\ Write

A\ channel

Buffer out 1

Line out

Read ==
\channel t\
h\
Buffer_in_1 McBSPA1 {

Buffer_in_2

Line in

Y
Input Samples

A Update
channel

Input Samples

EDMA interruption Event REV1

The following picture shows the different registergonfigure these reload channels:

Acronym Parameter Name

OPT EDMA channel options parameter

SRC EDMA channel source address parameter

CNT EDMA channel transfer count parameter

DST EDMA channel destination address parameter

IDX EDMA channel index parameter

RLD EDMA channel count reload/link address parameter

The manufacturer (Texas Instruments) gives allinfermation about this topic in thEDMA
controller datasheet which is defined in the bibliography section.
The datasheet explains the meaning of each registeall the possible values to set in them.

Cristian Gil Morales REPORT 51/97

Multieffects processor Programming

The configuration of the reload channels are veng] therefore it only shows one of them.
For this project, according the last documentapimal configuration of this reload channel is:

EDWA Config edma Config Readl={
EDMA OPT RHE(

EDMA OPT PRI HIGH,
EDMA OPT E3IEZE 16EIT,
EDMA OPT ZD3 NO,
EDMA OPT SUM NCNE,
EDMA OPT ZDD NO,
EDMA OFT DUM INC,
EDMA OPT TCINT YES,
EDMA OPT TCC OF (D),
EDMA OPT LINE YE3,
EDMA OPT F3 NO

s
EDMA 3RC_OF (McESF1 _DRR)
EDMA CNT OF (2*WIN STEF) ,
EDMA DST OF (buffer in 1),
EDMA IDE OF(d),
EDMA RLD OF (0]
b

EDMA_OPT_RMK: OPTIONS
EDMA_OPT_PRI_HIGH: High priority
EDMA_OPT_ESIZE_16BIT: Data length to read
EDMA_OPT_2DS_NO: One dimension origin (the element is inside afaafe)
EDMA_OPT_SUM_NONE: Static direction. It always reads from the sanae@l
EDMA_OPT_2DD_NO: One dimension destiny (the element is inside fofme)
EDMA_OPT_DUM_INC: It increases one memory position in buffer whetadsaread.
EDMA_OPT_TCINT_YES: It enables the chain to connect with the next nkhn
EDMA_OPT_TCC_OF (9): When buffer is full, it pass to the channel 9.
EDMA_OPT_LINK_YES: It allows the linker. It links channel read1 withannel read2.
EDMA_OPT_FS_NO: The channel is synchronized by element.

EDMA_SRC_OF (McBSP1_DRR):SOURCE: DRR MCBSP1

EDMA_CNT_OF (2*WIN_STEP): LENGHT: 64 positions.

EDMA _DST_OF (buffer_in_1): DESTINATION: buffer_in_1.

EDMA _IDX_OF (0): INDEX: It doesn't use. It leaves to O.

EDMA_RLD_OF (0): RELOAD: link. It puts to O because later it withrafigure the reload.

According the upper configuration variable, theoeel channel has high priority. It only moves
a byte from a static direction to a dinamic directi

The pointer of the dinamic direction increasesitsition one unity in each movement of data
until 64 posistions (the double of WIN_STEP).

When this read channel finishes its work, it pasthé input update channel.

The rest of reload channels are shown and explami annexes.

Cristian Gil Morales REPORT 52 /97

Multieffects processor Programming
I EEE—————————————————————————

Main method

The main method is divided into two parts: theidiitation of variables and the infinite loop.

Initializing variables

The first part is to initialize all the variablesrays and handles to be used later. This seion i
only executed once after the code runs.

It also fills the arrays with the necessary cogdfits for the FFT calculation. The interruptions
are defined too.

Due to it exists a lot of variables, arrays anddhesto initialize, here it is only shows some of
them. The rest it can see in the annexes.

delayedSampleCF = 0O;
pointerFreqglFT = 0;

for (i=0; i<WIN 3TEP; i++) {inputlamples[i]=0;}
for (i=0; i<WIN 3ITEP; i++) {inputEffect[i]=0;}

for [(i=0; i<delayMax; i++) {delavyEchoReverb[i]=0:}
for [(i=0; i<WIN STEP; i++) di{reflections[i]=0;}

for (i=0; i<15; i++) {ArrayRTDE[i]=0;}
readFreq = 0O;

for (i=0; i<WIN LENGTH; i++) {coefRadixiZ[i]=0;}

for (i=0; i<longCoefBitRew; i4+4) {coefBitRew[i]=0:}
gen twiddle rz (coefRadixEZ, WIN LENGTH, scale):
bitrev index (coefBitcRew, WIN LENGTH) :

C3L_initi):

D3E6Y13 _initi):

hCodec = DIKET713 ATCZ3 openCodec (0, &config):
edma init():

Infinite loop

The infinite loop treats continuously the receiwada in function of the selected options from

the graphical interface.
It also receives the variable values from the V@#erface.

For a optimal configuration of the tuner implemeiota, when it uses this one, the sampling
frequency is changed from 48Hz to 8Hz to ensureaal gesolution of the calculated frequency.

The audio codec also incorporates a Nyquist fitbeavoid that frequencies bigger than the half
of the sampling frequency (which it is 8000Hz whba tuner is enabled) are taken to ensure

input samples with a good quality.
Therefore, the maximum value which the tuner caaalés 4000Hz (8000Hz / 2).

Here it can see a part of this section. The rasbeaseen in the annexes.

Cristian Gil Morales REPORT 53/97

Multieffects processor Programming
I EEE—————————————————————————

if (IRTDX channelBusy (&RTDXinput); |
RTDX readNB {&RTDXinput, &ArrayRTDX, sizeof (ArrayRTDX)}; |}

if {ArrayRTDX[13]

1y {DSK6T13 AICZ3 rset (hCodec, 8, 0x0009);}
if {(ArrayRTD¥[13]==0) i

{DBK6T1s AICZ3 rset (hCodec, 8, 0x0001);

BvPass () ;

if (ArrayRTDX [10] == 0} [
//Gain effects
if {(ArrayRTDX[9] == 1) [Overdrive();!}
if {(ArravyETDX[9] == 2} [Distortioni);}
if (ArravyETDH[9] == 3} [Fuzz{):!}
//Dyanmic range effects

if {(ArravyETD®[3] == 1) [Compressori);}
if (ArrayRETD¥[3] == 2} [Expanscorci{);!}
if {(ArrayRTDX[3] == 3) [NoiseGate() ;!
if {ArrayRTDX[3] == 4) {[AutoWah();}
if {(ArrayETD¥[3] == 5) [Panning{);}

I else {Tuner();!

buffer out 1[2*i] = outputBEffectl[i];
buffer out 1[2*i+l] = outputEffectZ[i];

Routine to initialize the EDMA

To use the EDMA peripheral, firstly it has to ialize the channels.
In this method, the channels are configured anldatls in them the corresponding reload
channels in each cycle. Therefore, this methochig executed once before enter to the infinite

loop.

This routine can be seen directly in the annexes.

Service routine for the EDMA interrupt

With the EDMA interrupt configured, it enters inidhmethod every time that the audio codec
gets any input data, executing its code inside.

Inside the method, it resets the interruption tepare it for the next time. Then it activates a
flag which serves to enter to the infinite loop.
If the infinite loop is only executed when the ihplata is received, it subtracts a lot of work to

the DSP.

volid EDMA_HWI (woid) {

EDMA_intCleari9): S¢Bring down the interrupt petition
flagInterrupt = 1; ~-Flag which indicate=s when 1t has
* Ssentered to the EDMA interrupt

Cristian Gil Morales REPORT 54 /97

Multieffects processor Programming

Effects programming

This section contains the algorithms which simuthtepreviously described effects used in this
project.

Some algorithms are more robust/complex than otlersanyway they have been thought to
obtain a result as close as possible to the ofigimaog effect in the simplest possible way.

In turn, these effects have been designed withxgerreal variable (from the interface in Visual
C++) which changes significantly the final resuitchanges an essential parameter for each
group of effects.

ByPass

This effect (in fact it is not a real effect, btithas scheduled like it was one more) is the first
one in the effect chain and it is always executh. matter the previously selected
configuration from the VC++ interface.

Its only function is to pass the information fronetinput array to the output arrays to use them
later with other effects if they are selected, ioectly take them out to the codec.

The implementation code is:

for (i=0:; i<WIN STEP: i++)

outputEffectl[i] = input3amples[i]:
if (outcputEffectl[i] >30000) {outputEffectl[i] = 30000;}
if [(outcputEffectl[i] <-30000) {outputEffectl[i] = -30000:}

outputEffectZ[1i] = outputEffectl[i]:
+

At each position of the received input array (irfgamples]i]) is processed as follows:

= |t updates the value of the output arrays withitipeit array value.
= The output values are limited for security.

Cristian Gil Morales REPORT 55/97

Multieffects processor Programming
I EEE—————————————————————————

Gain effects

The gain effects (Overdrive, Distortion and Fuz& achieved playing with the output gain,
determined by a serie of predefined equations.

Overdrive

The overdrive effect produces a low distortion.
For overdrive simulations a soft clipping of th@uim values has to be performed.

This effect is simulated according the followingiatjon:

2x for 0<x<1/3
f(x) = @ for 1/3<x<2/3
| for 2/3<x <1

Taking the previous equation, the implementatiotecis:

float thresholdover;

float saturdverdrive = -100 * ArrayRTDX[T] + 20000;
float absInput = 0;

thresholdover = saturdverdrive/320;

for (i=0; i{EﬂIN_STEP; 1++)
inputEffect([i] = outputEffectl[i] / 32000;
absInput = fabs {inputEffect[i])*100;
if {absInput<{thresholdover/3))
[outputEffectl[i] = Z*inputEffect([i];}
if {{absInputs={thresholdover/3))
&& [absInput<{thresholdover*2/3))) |
if {inputBffect[i]=0) |
outputBEffectl[i] =
{(3- {pow{ {Z2- (3¥inputEffect [1]1)),2)1)/3;
1
if {inputBffect[i]<0) |
outputBEffectl[i] =
- {3-{pow{{2- (3*fabs {inputEffect (1]}) ,2)1)/3;
1

}
if {absInputr=(thresholdover*z/3)) |

if {inputBffect[i]=0) {outputEffectl([i] = 1;
if {inputEBffect[i]«<0) {outputEffectl[i] -1;

1

outputBEffectl[i] =
if {outputEffectl[i
if {outputEffectl[i
outputBEffectz [i] =

outputBEffectl[i] * 3Z000;

1]>25000) {outputEffectl[i] = 25000;}
]<-25000) {outputBffectl[i] = -25000;}
outputEffectl[i];

}

It takes the threshold value according the exterakle of the gain effect from the slider in the
VC++ interface (saved in ArrayRTDX [7]).
The auxiliar variable is defined.

Cristian Gil Morales REPORT 56 /97

Multieffects processor Programming

At each position of the received input array (irigfteict[i]) is processed as follows:

= |t updates the input effect array with the actaahgle.

= |If the absolute value of the input is less thanth& threshold, the output is the double of
the input.

= |f the absolute value of the input is between 18 2/3 threshold, the output is obtained in
function the above described equation.

= If the absolute value of the input is greater tB& of the threshold, it shows directly the
threshold (saturation) value.

= The oputput value is limited for security.

= Finally the output arrays are updated.

Distortion
The distortion effect produces a medium ditortipexfect for the rock/metal music.

A nonlinearity suitable for the simulation of didfon is given by:
f(x) =sgn(x) (1 —e)

Taking the previous equation, the implementatiotecis:
short gainDist = 0.15 * ArrayRTDX[7] + 5;
float distvValue = 0;
float distortedSignal = 0O;

for (i=0; i<E‘JIN_STEP; i++ |

inputEffect[i] = outputEffectl[i]:
distvalue = inputEffect[i] * gainDist / 32768;
distorteddiqnal = {distValue*32768) /fabs (distvalue*32768)

* (l-expi{-fabs {distvValue)));
outputEffectl[i] = 0.6*distortediiqnal*227a8+0.6%inputEffect[i];
if {outputEffectl[i]=25000) {outputEffectl[i] = Z5000;}
if {outputEffectl[i]«-25000} {outputBEffectl[i] = -2Z5000;}
outputEffect2[i] = outputEffectl[i];

!

It takes the output gain value according the edlevalue of the gain effects from the slider in
the VC++ interface (saved in ArrayRTDX [7]).
The auxiliar variables are defined.

At each position of the received input array (iriftect[i]) is processed as follows:

= |t updates the input effect array with the actaahgle.

= The input sample is multiplied by the received otigain and it leaves in percentage 1%.

= |t calculates the distorted sample according tle®ipus equation.

= The output value is limited for security.

= Finally the output arrays are updated by mixingeacentage of the modified signal and
another percentage from the original signal.

Cristian Gil Morales REPORT 57197

Multieffects processor Programming

Fuzz

The fuzz effect clips the sound wave until it isartg a square wave, resulting in a heavily
distorted or "fuzzy" sound.

A non-linear function commonly used to simulatealigon/fuzz is given by:

T

fla)= (1 —e* /i
|

Taking the previous equation, the implementatiothecis:

short gainFuzz = 0.10 * ArrayRTDX[7] + 5;
float fuzzvalue = 0;
float fuzzeddignal = 0;

for (i=0; i<E'JIN_STEP; i+
inputEffect[i] = outputEffectl[i]:
fuzzvalue = inputEffect[i] * gainFuzz / 22768;
fuzzeddignal = (fuzzValue*32768)/fabs (fuzzvalue*22768) *
{l-exp{(0.7*fuzzValue*fuzzvalue) /fabs (fuzzvalue)) ;

outputEffectl[i] = 0.5*fuzzediignal*32768+0.a*inputEffect[i];
if {outputEffectl[i]=25000) {outputEffectl[i] = Z5000;}

if {outputEffectl[i]«-25000} {outputBEffectl[i] = -2Z5000;}
outputEffect2[i] = outputEffectl[i];

}

It takes the output gain value according the edlevalue of the gain effects from the slider in
the VC++ interface (saved in ArrayRTDX [7]).
The auxiliar variables are defined.

At each position of the received input array (iriftect[i]) is processed as follows:

= |t updates the input effect array with the actaahple.

= The input sample is multiplied by the received otigain and it leaves in percentage 1%.

= |t calculates the super distorted sample accortiegprevious equation.

= The output value is limited for security.

= Finally the output arrays are updated by mixingeacentage of the modified signal and
another percentage from the original signal.

Cristian Gil Morales REPORT 58 /97

Multieffects processor Programming
I EEE—————————————————————————

Dvnamic range effects

The dynamic range effects (Compressor, ExpandeiseNGate, AutoWah and Panning) are
achieved by altering parameters in them, very difieto each other.
The aim is increases/decreases/alters the dynamie rin which they work.

Compressor

The compression effect is achieved by elevatingitipeit with a exponent lower than 1 to
reduce its dynamic range and compress the signal.

The compressor behaviour follows this equation:

comp

f (x) = x 0.6 < comp <1

Taking the previous equation, the implementatiotecis:
float complevel = -0.004*RrrayRTDE [2] + 1;

for (i=0; i<WIN_STEP; i++ |

inputEffect[i] = outputEffectl[i]:
auxvarCompExp = pow {(inputEffect[i], compLevel);
outputEffectl[i] = auxVarCompExp;

if {outputEffectl[i]=320000) {outputEffectl[i]=320000;}
if {outputEffectl[i]«-30000} {outputBEffectl[i]=-20000;}
outputEffect2[i] = outputEffectl[i];

}

It takes the elevated value according the exterale of the dynamic range effects from the
slider in the VC++ interface (saved in ArrayRTDX)[2

At each position of the received input array (iriftect[i]) is processed as follows:

= |t updates the input effect array with the actaahgle.

= The input sample is elevated to the received v@alinch is between 0.6 and 1) to compress
the signal.

= The output value is limited for security.
= Finally the output arrays are updated.

Expander

The expansor effect is achieved by elevating tpeatiwith a exponent higher than 1 in order to
increase its dynamic range and expand the signal.

The compressor behaviour follows this equation:

exp

f(x)= x 1<exp=<1.1

Taking the previous equation, the implementatiotecis:

Cristian Gil Morales REPORT 59/97

Multieffects processor Programming
I EEE—————————————————————————

float explLevel = 0.001*ArrayRTDX[Z2] + 1;

for (1=0; i{WIN_STEP; 1++)
inputBffect[i] = outputEffectl[i]:
auxvVarCompEBxp = pow [(inputEffect([i], explevel);

outputBEffectl[i] = auxVarCompExp;:
if {outputEffectl[i]=30000)} {outputEffectl[i]=30000;}
if {outputEffectl[i]«<-30000}) {outputBffectl[i]=-30000;}

outputEffectZ [1] outputEffectl[i];

}

It takes the elevated value according the exterakle of the dynamic range effects from the
slider in the VC++ interface (saved in ArrayRTDX)[2

At each position of the received input array (ifgftéct[i]) is processed as follows:

= |t updates the input effect array with the actaahgle.

= The input sample is elevated to the received véhich is between 1 and 1.1) to expand
the signal.

= The output value is limited for security.

= Finally the output arrays are updated.

Noise Gate

The Noise Gate effect deleted the information urderedifined threshold.
Its behaviour is described with the following diagyr.

z(n) T y(n)
o—— PEAK AT/RT —>o

Y

Y

1] -
nt

Taking the previous diagram, the implementatiorecisd

int auxNoiseGate = 0;
if (ArrayRTDX [9]==0}

[thresholdNoizseGate = 150%ArrayRTDX (2] + 100;}
elze [thresholdNoiseGate = 230%ArrayRTDX (2] + 500;}

for (i=0; i<WIN_STEP; i++)

inputBffect[i] = outputEffectl[i]:
if (fabs{inputEffect[i]}<thresholdNoiseGate)
auxMNolseGate++;

for (i=0; i<WIN_STEP; i++)

if {auxNoiseGate>=(WIN STEP/Z)} {outputEffectl[i]=0;]
else [outputBffectl[i] = inputEffect[i];}
outputEffectZ [i] = outputEffectl[i];

}

It takes the threshold value according the extevahle of the dynamic range effects from the
slider in the VC++ interface (saved in ArrayRTDX)[2

Cristian Gil Morales REPORT 60 /97

Multieffects processor Programming

The range of the threshold changes if any gaircei$eactivated.
The auxiliar variable is defined.
At each position of the received input array (irigftect[i]) is processed as follows:
= |t updates the input effect array with the actaahgle.
It counts how many samples of the input array wihaighunder the threshold value.

= |f more than half of the array values are undettiineshold, all the output array is O.
= Finally the output arrays are updated.

Auto Wah

The Auto Wah effect is generated with a variabledopass filter automatically in time with a
LFO (Low Frequency Oscillator).

This effect consist in add to the input signal saene filtered signal with a band pass filter,
which the cut frequency is changed temporally,éasing it or decreasing it.

I.npu: N * (#;.‘"\,I Ouiput

L

Pass Band Filter

i

fc

For its implementation, the most used algorithtiésuse of state variable filters:

yh(n) ybin) yliin)

2-1

Cristian Gil Morales REPORT 61/97

Multieffects processor Programming
I EEE—————————————————————————

Taking the previous diagram and equations, theémphtation code is:

short auxWah;
int oscillationflah = -320%ArrayRTDX [Z] + &64000;

for (i=0; i1<WIN STEF; i++) |
inputEffect[1i] = outputEffectl[i];
FCvariableWah = 850%cos (2*PI*FCpointerWah/oscillationWah) +950;
Flwah = Z#sin (PI*FCvarliableWah/F3) ;

auxllah = 1-1; if (auxWah<0) {auxWah = auxWah + WIN STEF;}
highPassFilter[i] = inputEffect[i] - lowPassFilter [auxWah]
- 0.1*bandPassFilter [auxWahl];
bandPassFilter[i] = Flwah*highPassFilter[i]
+ bandPassFilter [auxWah];
lowPassFilter[1] = Flwah*bandPassFilter[1]
+ lowPassFilter [auxWah];
if {highPassFilter[i]==25000) {highPassFilter[i]=0;}
if (bandPassFilter[1i]==25000) {bandPassFilter[i]=0;}
1f {(lowPassFilter[i1]>=25000) { lowPassFilter [1]1=0;}
outputBffectl[i] = l1*bandPassFilter[i] + 0.3*inputEffect[i];
outputEffect2 [1] = outputEffectl[i];
FCpointerWah++;

if [(FCpointerWah>=oscillationWah) {FCpointerWah=0;}
1

It takes the frequency value according the extervahle of the dynamic range effects from the
slider in the VC++ interface (saved in ArrayRTDX)[2
The auxiliar variable is defined.

At each position of the received input array (irigfteict[i]) is processed as follows:

It updates the input effect array with the act@ahple.

The cut frequency is updated (between a predefinade) with a cosinus signal (LFO)

which frequency is the received value from outside.

With the previous cut frequency, one parametetterstate variable filter is updated.

It calculates the value of the 3 filters (low pdier, high pass filter and the band pass
filter), which depend on each other, its previoakigs and input samples.

The auxiliar variable is used to implement a ciacdduffer for the next step.

If the filter values are higher than the maximuniueathey are resetted.

Finally the output arrays are updated by mixingeacentage of the modified signal and
another percentage from the original signal.

It increments the used pointer and resetted thieves the maximum value.

Cristian Gil Morales REPORT 62 /97

Multieffects processor Programming
I EEE—————————————————————————

Panning

The Panning effect moves the sound from one owutpannel to the another one with a LFO
(Low Frequency Oscillatdr

For this effect, the only thing which has to danisoduce the horizontal component of the input
signal in one output channel (Left or Right) ane wlertical component in the another channel.

Left channel
Cos -
— Output
Input
Sin >
Right channel

The implementation code is:
int freqPanning = -1440%ArrayRTDE [2] + 122000;

for (i=0; i<WIN STEP; i++] {
inputBEffect[i] = outputEffectl[i]:;
outputEffectl[i] =
inputEffect[i]*cos (2*PI*pointerPanning/freqPanning) ;
outputEffectZ [i] =
inputEffect[i]*sin (2*PI*pointerPanning/freqPanning) ;
pointerPanning++;
if {(pointerPanning>=freqPanning) {pointerPanning=0;}

}

It takes the frequency value according the exterahle of the dynamic range effects from the
slider in the VC++ interface (saved in ArrayRTDX)[2

At each position of the received input array (irgftect[i]) is processed as follows:

= |t updates the input effect array with the actaahgle.

= One output channel (left or right) is updated byitiplying the input array with a cosinus
signal (LFO opposite to the sinus signal). The useduency is defined with the external
value. It also determines the output gain.

= The another output channel (left or right) is updaby multiplying the input array with a
sinus signal (LFO opposite to the cosinus signge used frequency is defined with the
external value. It also determines the output gain.

= [|tincrements the used pointer and resetted ifhieves the maximum value.

Cristian Gil Morales REPORT 63 /97

Multieffects processor Programming
I EEE—————————————————————————

Modulation effects

The modulation effects (Chorus, Flanger and Trejnal® achieved playing with previous
samples of a variable delay by a LFO. This LFO nhatés the signal under specific
circumstances.

Chorus

The chorus effect plays with delayed samples (uaibgO) to simulate the mix of 2 inputs with
the same information, but without perfect (but ¢an§ synchronization between them.

LFO
¥

Delay

Unit
O
[nput Ouatput

Taking the previous diagram, the implementatiorecisd

int oscillationChorus = -1al00*ArrayRTDX [0] + 192000;

for (i=0; i1<WIN STEF; i++) |
inputEffect[1i] = outputEffectl[i];
delayedfampleCF = delaybms *
cos [2%PI*pointerFreqCPT/oscillationChorus) +delay2ons;
indexChorus = pointerChorus - delavedSampleCFE;

if {indexChorus<0) {indexChorus = indexChorus + delay3lms;}
outputBffectl[i] = 0.8*chorusdamples [indexChorus]

+ 0.5*inputEffect[i];
outputEffect2 [1] = outputEffectl[i];
chorusSamnples [pointerchorus] = inputBffect[i]:
pointercChorus-++;
pointerFreqCET++;

if {pointerChorus>=delavilims) {pointerchorus=0;}
if {pointerFregCFTr=oscillationChorus) {pointerFregqCET=0; }

}

It takes the frequency value according the extewahle of the modulation effects from the
slider in the VC++ interface (saved in ArrayRTDX)[0

At each position of the received input array (irifteict[i]) is processed as follows:

= |t updates the input effect array with the actaahgle.

= |t takes a variable delayed value (with a LFO) lestw10ms and 30ms.

= |t subtracts the previous value to the actual goitd achieve the desired array index.

= |[f this array index is negative, it adds the maximualue to simulate a circular buffer.

= With the final value of the array index, it takeée tdelayed sample from the chorus array.

= Finally the output arrays are updated by mixingeacentage of the modified signal and
another percentage from the original signal.

= The actual input sample is saved in the choruy aorapdate it.

= Itincrements the used pointers and they are egbdtthey achieve the maximum value.

Cristian Gil Morales REPORT 64 /97

Multieffects processor Programming

Flanger

Similar to the chorus effect, the flanger effecys with delayed samples (using a LFO which
changes its frequency periodically with another LE®simulate the mix of 2 inputs with the
same information but with variable imperfect symtization between them.

LFO (= LFO
'
Delay
Unit ‘

.
Input C Output

Taking the previous diagram, the implementatiorecisd
int oscillationFlanger = -3a0*ArrayRTDX (0] + 48000;

for (i=0; i{E'IIIN_STEP; 1++)
inputBffect[i] = outputEffectl[i]:
freqFlanger = (48000-12000)/2 *
cos [2%PI*pointerFreqCPT/oscillationFlanger) + (48000+12000) /2 ;
delayedSamnpleCF = delaybms *
cos (2%PI* (freqFlanger-12000)/ (48000-12000)) + delayoms;
indexFlanger = pointerFlanger - delayedSampleCF;

if {indexFlanger<0) {indexFlanger = indexFlanger + delaylOms;}
outputBEffectl[i] = 0.8*flangerdamples [indexFlanger]

+ 0.5*inputEffect[i];
outputEffectZ [i] = outputEffectl[i];
flangerSamples [pointerFlanger] = inputEffect[i];
pointerFlanger++;
pointerFreqCERT++;

if ({pointerFlanger>=delaylims) |[pointerFlanger=0;}
if (pointerFreqCFT==oscillationFlanger) {pointerFreqCFPT=0;}
1

It takes the frequency value according the extewahile of the modulation effects from the
slider in the VC++ interface (saved in ArrayRTDX)[0

At each position of the received input array (irigfteict[i]) is processed as follows:

= |t updates the input effect array with the actaahgle.

= |t takes a variable frequency value (with a LFOm®n 1Hz and 4Hz.

= |t takes a variable delayed value (with another L. B&ween Oms and 10ms.

= |t subtracts the previous value to the actual goitd achieve the desired array index.

= |f this array index is negative, it adds the maximvalue to simulate a circular buffer.

= With the final value of the array index, it takég delayed sample from the flanger array.

= Finally the output arrays are updated by mixingeacentage of the modified signal and
another percentage from the original signal.

= The actual input sample is saved in the choruy aorapdate it.

= [t increments the used pointers and they are sgb#tthey achieve the maximum value.

Cristian Gil Morales REPORT 65 /97

Multieffects processor Programming

Tremolo
The Tremolo effect simulates that the output gaiange continuosly (with a LFO) all the time.

Its behaviour is described with the next diagram:
yv(n)=(1+am(n))xn)

I+-min)

x(n) y(n)

Taking the previous diagram, the implementationecsd

float gainTremolo = 0;
int oscillationTremolo = -400%ArravyRTDX [0] + &4000;

for (i=0; i<WIN STEF; i++) |

inputEffect[1i] = outputEffectl[i];
gainTremolo =

cos [2%PI*pointerFreqCFT/oscillationTremolo) ;
outputEffectl[i] = (l+gainTremolo) /2*inputEffect[i];
outputEffect2 [1] = outputEffectl[i];

pointerFreqCET++;
if {pointerFregCFTr=oscillationTremolo)
{pointerFreqCFT=0; }
i

It takes the frequency value according the extewahle of the modulation effects from the
slider in the VC++ interface (saved in ArrayRTDX)[0

At each position of the received input array (irigftecct[i]) is processed as follows:

= |t updates the input effect array with the actaahgle.

= |t takes a variable value (with a LFO) of outputnga

= The previous oscillatory gain is multiplied withetlactual input sample according the upper
equation.

= Finally the output arrays are updated.

= [|tincrements the used pointer and it is reseft@édachieves the maximum value.

Cristian Gil Morales REPORT 66 /97

Multieffects processor Programming
I EEE—————————————————————————

Repetition effects

The modulation effects (Delay/Echo and Reverb) aphieved using delayed samples
(sometimes many of them at the same time with diffedistance from each other) and digital
filters to simulate the acoustics of the rooms.

Delay/Echo

The Delay or Echo effect simulates the returned @&layed) data which was bounced off in a
wall.

To realice the Delay or Echo effects, it has ttofelthis diagram:

ByPass
Line

DE]::]}" @_»
[nput Unit Output

Taking the previous diagram, the implementationecsd

int fixDelayBEcho = a0 * ArravRTDX[4];
if {(fixDelavBEcho > delavMax) |{fixDelayEcho = delayMax;]

for (i=0; i1<WIN STEF; i++) |

inputEffect[1i] = outputEffectl[i];

if {fixDelavBEcho==0} {outputBffectl[i] = inputBffect[i];}

else {outputBffectl[i] = 0.7*delavEchoReverb [indexDelavEcho]
+ 0.6*%inputEffect[i];}

outputEffect2 [1] = outputEffectl[i];

delayEchoReverb [indexDelayEcho] = inputBffect[i]:

indexDelayBcho++;

if {indexDelayEchor=fixDelayBEcho) {indexDelavEcho=0;}
i

It takes the delayed time value (in samples) adogrihe external value of the repetition effects
from the slider in the VC++ interface (saved inadyRTDX [4]).

If this extern value is higher than the maximumgiole value, this value is reduced to the
maximum possible value.

At each position of the received input array (iriftect[i]) is processed as follows:

= |t updates the input effect array with the actaahgle.

= |If the delayed time is O, the output informatiorthie same than the input infomation.

= |f the delayed time is not O, it takes the delaganhple according the received delay value.

= Finally the output arrays are updated by mixingeacentage of the modified signal and
another percentage from the original signal.

= The actual input sample is saved in the Delay/HRbeérb array to update it.

= [|tincrements the used pointer and it is reseft@édachieves the maximum value.

Cristian Gil Morales REPORT 67 /97

Multieffects processor Programming

Reverb
The Reverb effect simulate the acoustics of a raim many delayed samples.

To facilitate this algorithm, it uses a fixed/stagquation which simulates the acoustic of a
room with nothing which would muffle the sound (wout curtains, blankets...):

y'[n] = 0.4 y [n-1] — 0.2499 y [n-2] + 0.0441 y [n-3]
+0.5814 x'[n-1] + 0.2142 x [n-2]

With this equation, it uses the Schroeder modeidwhises the mix of many delayed samples
with a IIR filter) to simulate the effect. Its diagn is:

| Comb v
Filter
1 .| Comb x(n) y'(n)
Filter
Allpass —b[:::>——*(:::}———>
Input | comb Qutput
Filter
L,| Comb
Filter

Taking the previous diagram and equation, the implgation code is:

int fixReverb = 60 * ArravyRTD¥ [4];
short auxRevl, auxBRevZ, auxRev3;
if (fixReverb > delayMax] {fixReverb = delayMax;}

for (i=0; i{WIN_STEP; i++) o
inputEffect[i] = outputEffectl[i]:;

[
auxkRevl=i-1; if (auxRevl<l) {auxRevl=auxRev1+WIN STEEF;)
auxRevi=i-Z; if (auxReviZ<0} {auxRevi=auxRevZ+WIN STEFP;}
auxRevi=i-3; if (auxRev3<0) {auxRevi=auxRev3+WIN STEEF;)
if (fixRewverb==0) {outputEffectl[i] = inputEBffect[i];!}
aelse |
reflections [i] = 0.8*delayEchoReverb[indexReverb]

+ 0.4*delayEchoReverb [indexReverh/2]
+ 0.2*delayEchoReverb [indexReverb/3]
+ 0.1*delayBEchoReverb |[indexReverb/4];
1f (reflections [1]>=25000) {reflections([i]=0;1}
ITRoutput[i] = 0.4*IIRoutput[auxRevl]
- 0.24090*TTRoutput [auxRevi]
+ 0.0441*TIRoutput [auxRev3]
+ 0.5814*reflections [auxRevl]
+ 0.2142*reflections [auxRevZ];
outputEffectl [1]=0.7*IIRcutput [1]+0.7*inputEffect[i];
i
outputEffectZ [1] = cutputEffectl[i]:;
delayBEchoReverb [indexReverb] = inputkBEffect[i]:;
indexReverb++;
if {indexReverbr=fixEREeverb) {indexReverh=0; !

Cristian Gil Morales REPORT 68 /97

Multieffects processor Programming

It takes the delayed time value (in samples) adogrihe external value of the repetition effects
from the slider in the VC++ interface (saved inayRTDX [4]).

The auxiliar variables are defined.

If this extern value is higher than the maximumgiole value, this value is reduced to the
maximum possible value.

At each position of the received input array (irftect[i]) is processed as follows:

= |t updates the input effect array with the actaahgle.

= The auxiliar variables are used to implement cacbluffers for the next steps.

= |If the delayed time is O, the output informatiorthie same than the input infomation.
= [f the delayed time is not O:

o It gets a sum of delayed samples in different mdmgwhich simulate all the
reflections). Each one has its specific gain (thestmrecent samples have the higher
gain because these ones take less time to rettine @rigin).

0 The previous value is set to 0 if exceeds the maxirpossible value.

o0 The upper final value is processed inside a lIRerjlwhich uses the value of the
reflections and their own previous values to geteditze filtered output value.

= Finally the output arrays are updated by mixingeacentage of the modified signal and
another percentage from the original signal.

= The actual input sample is saved in the Reverly dorapdate it.

= [t increments the used pointer and it is reseftédachieves the maximum value.

Tuner

This one is not a real effect, but it has beengihesi like one of them because it is activated or
deactivated according to the user interface, hieedther effects.

The tuner (on the DSP app) takes the input infdomaand it performs the FFT to get the
frequency spectrum of the input signal and to deites its main frequency.

Then the data is sent to the interface by RTDX thiede it calculates the name of the note and
its octave.

It is important to indicate that the detection rarmg this implementation is between 32 Hz and
4000 Hz.

The minimum frequency (32Hz) is due to the configiem of the window length and the
window step, which determine the resolution aceardhe sampling frequency.
32 Hz is a Do/C note in the first octave.

The maximum frequency (4000Hz) is due to the Nytdfilier which the codec incorporates to

ensure a good quality of the input samples.
This means that the sampling frequency here is 8200

Cristian Gil Morales REPORT 69 /97

Multieffects processor Programming
I EEE—————————————————————————

According to the work in MATLAB, the algorithm is:

int speclimpMax = 0;
float position o;

for [(i=0; 1<WIN 3TEP: i++) |
outputEffectl1[i] = 0O;
outputEffectz[1i] o;

¥
if (ArrayRTDI[14]==1] |
for (readFredq=0; readFredgq<5; readFredg++) |
for (i=0; i< (WIN LENGTH-WIN 3TEF); i++)
{inputlamplesi [i] = inputSamplesz [WIN STEP+i]::
for (i=0; 1<WIN 3TEP; i++)
{inputlamples: [1+WIN LENGTH-WIN 3TEP]=input3amples[i]::
for (i=0; i<WIN LENGTH: i++)
{FFTsamples[Z*i] = input3amplesZ[i] /WIN LENGTH;:

D3P radixz (WIN LENGTH, FFTsamples, coefRadixi];
D3P _bitrev cplx [(int®)FFTsamples, coefBitRev, WIN LENGTH] ;

for [(i=0; 1<WIN LENGTH; i++] |
abhsFFT[1i] = FFTzamples[Z¥%i] *FFTsamples[Z2¥i] +
FFTzamplezs[2%i+1] *FFTsamples[Z2%i+1]
FFTzamplez[2%1i+1] =0;
¥
specimpMlax = 0;
for (i=0; i<WIN LENGTH/Z: i++] |
if [(absFFT[i] rspecimpMax) |
specimpMlax = absFFT[1i]:
pozition = i

¥
frequency = position ¥ BDDDIHIN_LENGTH;

¥

if [(readFreq == 5] |
RTDE write [&RTDXoutput, sfrequency, sizeof (frequency)]:
hrrayRTDE[14] = 0O;
readFreq = 0;

The auxiliar variables are defined.
The output signal is muted.

If the a frequency value is solicited, during ada#ned number of times:
= The data is prepared to use it for the FFT function

= The FFT is performed (the result is disordered).

= The FFT result is ordered (these values have rehimaginary part).
= To ease the process, it takes the module of eagplea

= |t takes the frequency value with the higher amgEgt

The frequency is calculated a predefined numbénas (to ensure a real value).
This final value is sent to the interface to shaw i

Cristian Gil Morales REPORT 70/ 97

Multieffects processor Programming

Microsoft Visual C++

There are two forms to schedule an user interflad@eprogramming to graphic interface and the
programming oriented to a text interface (consabel@).

In the second one, the scheduler organizes in @estigl form the calculation instructions and
the interaction with the user. But in the programgnin a graphic interface, it is not defined the
order which the user interacts with the progranefdmg any option, changing text...).

Due to this, the form to organize a program to lesthironments is different.

In the console mode, the scheduler can intercaitaillation and user interaction sentences.
However, in the graphic environment it executesrdimite loop. It waits for an event (from
user or system), it executes the code associatdtht@vent, and then it returns to wait to the
next one. The events can be everything: pressibgttmn from the mouse, pressing a key,
selecting a menu option, creating a window, chamngie window size, etc.

Furthermore, it cannot define the order of thesn&sy It only depends on the user.

In the different events in graphic mode, it is imtpat to understand which events are
associated with the window. On the other hand, whemites something in the console mode,
it is permanent. In the graphic mode it is necgssaredraw the window completely when it is
required. This requirement can come from the progoa the system (for example, a new
window inhibits the older one). This requiremeninidicated with an event. Due to this, in the
graphic mode is necessary that the program stdirdseadata to redraw the window content in
any moment when it receives the event.

The graphic interface elements can be described antsed easily like objects. It is normal
to use the programming oriented to objects for thescheduling of these interfaces.

For this reason, it is decided to program a graphidnterface using the Microsoft Visual
C++ (VC++).

Introduction to Microsoft Visual C++

The development environment of VC++ 6.0 providesynpossibilities to the programmer
from creating applications for various formats dedtures, plus through the creation of DLL
libraries, icons, bitmaps, cursors, windows, etc.

All this Integrated Development Environment (IDBE)a great tool to develop the most versatile
applications for both, Windows and DOS, environreent

To realize the scheduling for windows and its esgtihe operating system provides many
functions in libraries. That set of functions idled Application Programming Interface (API),
and in Windows is called Software Development ISDK). These functions serve to manage
windows (create, resize, close, etc.) of differegges (normal, menu, button, dialog, text,
selection list, etc.), obtain events, perform demtions, etc.

An APl is a set of functions very extensive. Iniscessary a lot of functions and very varied to
manage the windows environment.

Furthermore, a lot of functionalities are very rigpee along the programs (create a main
window with menu options, etc.), hence it requiteset of complex and heavy API, even for the
easiest program.

Cristian Gil Morales REPORT 71/97

Multieffects processor Programming

To facilitate this job, Visual C++ provide anothé&Pl, including a class library that
encapsulates the most part of the complexity. Iy teaves the task of the specific part of the
program to the scheduler. In Visual C++, this clbsary is called Microsoft Foundation
Classes (MFC).

These classes have become a standard of develofponéMindows applications. They have
facilitated a lot the programming in C++, for exdenfo include a CString type data to declare
strings. That does not exist in C.

In this way, for example, the creation of the maindow is encapsulated in series of objects
that create the program framework without addingadditional code line.

To help even more, the development environment 8omae disposes of utilities which allow
to put in a graphic and intuitive way the interfatements (menus, buttons, text squares, etc.)
and even links with the service functions of items.

Of this manner, the scheduler can write less cadgayes time and errors). Furthermore, the
part of the program which it can see is more ciewr concise.

Creating a Visual C++ project

To create the interface, firstly it enters in thisdal C++ 6.0 program. Then it selects “NEW”
from the “FILE” menu and the following screen apmea

New 2|
Filez Proects I ‘Workzpaces | Other Documents |
L& ATL COM Appiwizard 2] "Win32 Static Library Project name:
11| Cluster Resource Type Wizard I

L] Custom Apphwfizard :

ke D atabase Project Logstiorn:

DevStudio Add-in Wwizard ID:\F'FIDGF!.&M FILESYMICROS __l
Extended Stored Proc \wizard

L SAPI E stension Wizard

i Makefile % Create new workspace

i MFC Actived Controlfizand
[8#] MFC Apphwizard (Il D :
- MFC Appiwizand [exe]

% Mew Database YWizard I :J
Th Utility Project

| \Win32 Application

| |'Win32 Conzole Application %a::_m;;
|] Wwina2 Dynamic-Link Library | L
4] | -+

K | Cancel i

This screen shows the different projects which lsardeveloped with VC++. It selects “MFC
AppWizard (exe)” to do a MFC app. The VC++ workshwPROJECTS, and these ones are
grouped into WORKSPACES.

Therefore it selects the name and the directotiisfproject.

After entering the name of the project, it preses “OK” button. Then it starts the MFC
Application Wizard which creates a default window.

Cristian Gil Morales REPORT 72 /97

Multieffects processor Programming

This process is shown in the following window:

MFC AppWizard - Step 1) 2| x|

3 Fpphication wihat type of application would vou ke to create?

" Single document

[¥ | Dactment e achitecting Suppot

Wwikiat language would vou like pour resources in’?

[Spanish [Intemational Son] [APPWZESFL = |

¢ Back I et = I Einish | Cancel |

This application can be Single Document Interfe&gBIf, Multiple Document Interface (MDI)
or based on dialogues (Dialog Based). SDI is vemjilar to Dialog Based, except that by
default VC++ adds menus. MDI is an application sashVord, with a main window that can
contain many other inside (as a container).

This user interface is scheduled in a graphical (védth windows as classes). So it selects the
Dialog Based option and after that it selects threect language (in this case English).

Later, it presses “NEXT” to move the rest of scee€and “FINISH” for last one) until the
following window is shown, and the app is created:

*.. Interface - Microsoft Visual C++ - [Interface. rc - IDD_INTERFACE_DIALOG [English (U.S.)] (Dialog)]

Bleie £dt View Insert Project Buld Layout Took Window Help =] x|
8 EEHd i L DR e A B ED
[CintertaceDl |18 class members] 1| @ CinterfaceDlg ~|®~
e Bl o e e =
= i Interface | P T — & 2
- (L] Dialog t; 1@' Ag abl
- (] leon = - o
- = o
- (2 String Table: <k 0
o Version ; [* ®
5 Cancel g
a5 el
$ m
—i i
i d] B
A T000; Place dislog controls here. o g ré
! e 25 B
| =
: e
™8 Clas... | @8 Res... |] Filey. 2
g = e F | 3+ = [B | #{T
x{ =
¥
| Build { Debug %, Findin Flles1 3, FindinFlles 2 3, Resuts el | A
FRieady] Y 320 % 200

Now it can schedule a new program, in this case withe graphical user interface.

Cristian Gil Morales REPORT 73 /97

Multieffects processor Programming

When a new program is scheduled, it must chedkidi$ errors or warnings.
If it has any problem, it has to fix it. But iflias none, the code is compiled automatically.

To verify and compile the code, it clicks on theufl@" button in the top toolbar.

When the code has been verified, it proceeds toutedt with the "Execute program" button
(which it is a red exclamation sign), next to poad button.

In fact, it can do all the above process directiyphkessing the button "Execute program".

The main interface classes

When the VC++ project has been performed, the geaiplterface is generated with 3 main
classes. They are the minimum required classescfwaie generated automatically by the
Visual C++) to the correct functionality of the dipption.

They can be seen in the “Classes” label in then@gftiow.

alx
= ’ uzerlnterface classes!
+- W8 CaboutDlg
+- ™8 Clselnterfacedpp
+- ™8 ClserlnterfaceDlg
+--[_7] Globalz

maciss. [g Res.. | =] Fiev.. |

CAboutDIg: This class contains the "About message" dialog,nasnost window-based
applications.

CxxxxxxApp: This class is a standard class included in magepts to handle the application
start-up, since there is no main function as igpacal C console application. It represents the
application, and it is necessary for the compitatibthe program.

Inside this one has to be declared the use of the @bjects for the data exchange between the
interface app and the DSP app. Last one has toebermed by executing the function:
AfxOlelnit();

CxxxxxxDlg: This class is the main class of the program.dtegents the dialog window where
appears the controls, buttons, lists and othefapgionalities.

This class contains all the weight of the applaratisince this one is the main class. If it exists
other windows, the main class allows the data exghdetween all of them.

It also contains all the specific methods whichaeated to this project.

In addition to these classes, it is necessary fmel@ne more class to enable the RTDX
communication between the Visual C++ app and th&)Blapp, which it is explained later.

Cristian Gil Morales REPORT 74 [97

Multieffects processor Programming

The graphical user interface

Here it exposes the different parts from the ustriace, as well as their classes and methods.
Only when the user clicks in any check box or slitlee interface sends a data frame (using the
RTDX communication) with the selected options tal@e or disable and configure the audio
effects previously shown.

Parallely when the tuner option is enabled, therfate receives the frequency value of the
input signal and it shows on the screen.

The IrtdxExp class

As previously it has told, it must add manually additional class (IrtdxExp) to manage the
communication between the user interface and thE Bfplication. The communication is
performed through the RTDX libraries.

This class is created from importing the DIl "Riabdll" supplied by Texas Instruments in the
CCStudio folders.

Thus, it is possible from the interface to enablelieable the effects which the DSP processes.
The DSK works like an external card.

The complexity is encapsulated in the class, fioendynamic library (dll).
Therefore, the RTDX has two interfaces: the firsirtpcorresponds to the Host (the user
interface), and the second part to the Target (DSP)

The export RTDX interface allows the access toftimetionalities from the Client to the Host.
Using these functions, the Client application catdpata from the RTDX libraries of the Host
or it can send data to the RTDX libraries of thestlo

The functions in this interface can be used wittstHdients written in Visual Basic, C++ or
Labview. Below they are shown some of them. Inliliography it can see many documents
which explain these functions and its possible eslu

Processor Activation:
SetProcessor

Configuration functions:

ConfigureRTDX

ConfigureLogFile

EnableRtdx, DisableRtdx

EnableChannel, DisableChannel

(The RTDX configuration can be done either fromtiser interface or from the CCStudio).

Functions to open/close channels:

Open
Close

Cristian Gil Morales REPORT 75 /97

Multieffects processor Programming
I EEE—————————————————————————

Functions to read channels:

ReadSAll, ReadSAl2, ReadSAl4, ReadSAF4, ReadSAF8
ReadSAI2V, ReadSAl4V

Read

Readll, Readl2, Readl4, ReadF4, ReadF8

Functions to write channels:

Write

Writell, Writel2, Writel4, WriteF4, WriteF8
StatusOfWrite

Functions to search channels:
Seek
SeekData

Flush functions of channels:
Flush

To use the IrtdxExp class in the interface, a cewblpointers are declared. With these pointers,
it is possible to use all the previous methods.

To perform the communication, it must distinguigivieen the two types of channels:

- Input channels: They allow the communication from the Target amilmn to the Host
application. These channels are only for input .daterefore, to access them, it must use the
Read() function. But before, it must has been @efithe previous channel as a global variable
of the class.

- Output channels: They allow the communication from the Host applmatto the Target
application. These channels provide the abilitge¢ad the configuration data to the code which
is running in the Target application (DSP).

To use these output channels, first they must lxdade. Then it accessed to the sending
information using the Write() function or its demtives.

With the previous information, the implementation the interface to use the RTDX
communication is:

#+The writing channel for the RTDX comm. is defined and set
w_RTD¥ = new IRtdzExp:
w_RTDX->Createlispatch (_T("ETDX")):
1f (lw_RIDH->ZetProcessor(_T("Ce¥13_DSKE"),_T("CPU_1"1))
MessageBox ("It is impossihle initialize the processor","Error"):

#+The reading channel for the RTDX comm. is defined and set
r_FTD¥ = new IRtdzExp:
r_RTDX->»Createlispatch (_T("ETDX")):
1f(lr_RID¥->ZetProcessor(_T("Ce¥13_DSKE"),_T("CPU_1"1))
MessageBox ("It is impossihle initialize the processor","Error"):

#+The FIDX communication i1s configured

w_RTD¥->DisableRtdxz ()

w_RIDX->ConfigureRtd=z(1,1024,4); . -Continuous mode, buffer of 1024
w_RTD¥->EnableRtdz(]): <~and 4 huffers

<1t shows error messages 1f these channels cannot he opened
1f (w_RIDX-»O0pen("RIDXinput","W"))

MessageBox ("Unable to open the writing channel","Error"):
1f (r_RIDX-»Open("RIDXoutput","R"))

MessageBox ("lUnable to open the reading channel","Error"):

Cristian Gil Morales REPORT 76 /97

Multieffects processor Programming

All the code can be seen in the annexes.

It has to remember that these channels are natebtdinal. Hence, each channel can be an
input or output channel exclusively. For this regdwo channels are created.

When the class is added and the pointers are defimese the RTDX communication, it can
see the new class in the class hierarchy, witiisathethods to be used inside.

= uszerlnterface classes
+- ™% CaboutDlg

B8 CUszerlnterfacetpp

B8 CUsernterfaceDlg

B8 |Rtd«Exp

[L3 Glabals

T [

The application parts

The present application is a very easy applicatibich has the following parts:

¢ User Interface x|

— Gain Effects ————0n/0ff - —Dyn. Range Effects Onfoff - —Tuner—0on/of I

_ [~ Compressor _

[Overdrive
[~ Expansor Freq: 0 Hz

[~ Distortion [T Moise Gate MNote:
" [T Autoah Octave: 0

+ +

Fannin
Gain [E Freq { Threshold

—bodulation Effects Onfoff I 4 —Repetition Effects Onfoff | -

[~ Chorus - -
[~ Delay/Echa

[~ Flanger

[T Reweth
[Tremnlo

+ +

Freq. Delay

= Many check boxes to activate or deactivate thesflagich enable or disable the different

effects. Only the effects inside a group are mijutclusive. It adds text labels to clarify
the function of every check box.

= 4 Check boxes to enable or disable each effectpgfmain, dynamic range, modulation and
repetition effects). It adds text labels to clatif function of each check box.

= A slider for each effect group changes a specificameter to vary the selected effect
(quantity of gain, frequency or threshold valuesgirency value and quantity of delay
respectively) in real time. It adds text labelslarify the variable paramenter in each slider.

= A check box and 3 text labels to interact with gitdi tuner in real time. The tuner gives the
name, the frequency and the octave of the receiggzlfrom the DSP app.

Cristian Gil Morales REPORT 77197

Multieffects processor Programming

Performed methods

The designed methods of the user interface areiegul here. The rest of methods are omitted
because they are created automatically by the Vista.
Anyway, all the effects can be seen in the annexes.

Gain effects
void CUserlInterfaceDlg::OnOverdrive()

It activates or deactivates the corresponding fiaig that the DSP app can perform the
Overdrive effect when the specific check box iskaid.

Enabling this flag, it disables the Distortion aRdzz effects if they are selected. The slider
corresponding to the gain effects is rebooted.

Tpdatelbata (TRUE] ;
if (m_owverdriwve == TRUE] {
m distortion = FAL3IE:
m fuzz = FALZIE:
GetDlgltem(IDC SLIDER GALIN) -rEnableWindow (TRUE] ;
b else |
GetDlgltem(IDC SLIDER GALIN) -»EnableWindow (FAL3E] :
b
m slider gain = 0;
Tpdatelbata (FALSE) :

SsndRTDE[7] = m slider gain;

sndRTDE[I] = m overdrive:
Sendirravi() :

The variable parameters are updated and this slalad sent to the DSP app.

void CUserlInterfaceDlg::OnDistortion()

It activates or deactivates the corresponding fiag that the DSP app can perform the
Distortion effect when the specific check box isksd.

Enabling this flag, it disables the Overdrive andz# effects if they are selected. The slider
corresponding to the gain effects is rebooted.

The variable parameters are updated and this slalad sent to the DSP app.

void CUserlInterfaceDlg::OnFuzz()

It activates or deactivates the corresponding ftagthat the DSP app can perform the Fuzz
effect when the specific check box is clicked.

Enabling this flag, it disables the Overdrive andt@rtion effects if they are selected. The slider
corresponding to the gain effects is rebooted.

The variable parameters are updated and this slataa sent to the DSP app.

Cristian Gil Morales REPORT 78 197

Multieffects processor Programming
I EEE—————————————————————————

void CUserInterfaceDIg::OnSliderGain(NMHDR* pNMHDR, LRESULT* pResult)

When the corresponding slider is moved, it chartbesquantity of gain of the selected gain
effect under the bounds previously defined. If ¢hisrnot any effect selected, or the check box
for disable the gain effects is activated, theesli@mains disabled.

Updatebata (TRUE) ;
sndRTDE[7?] = m slider gain;
Sendirravyi() :

*pResult = 0O;

The variable parameters are updated and this iafitomis also sent to the DSP app.

void CUserlInterfaceDIg::OnGainOnOff()

It deactivates and disables all the check boxestladlider inside the gain effects group box,
when the corresponding check box is clicked.

All the gain effects are not enabled until thigyfia deactivated again, leaving those effects in
their initial configuration.

Tpdatebata (TRUE) ;

if (m gain on off == TRUE] |
GetDlgltem|IDC OVERDRIVE) —>EnableWindow (FALIE) ;
GetDlgItem|IDC DISTORTICN) —>EnableWindow (FALSE) ;
GetDlgltem|IDC FUZZ) —>EnableWindow (FALIE) ;
GetDlgltem|IDC SLIDER GATIN) —->EnableWindow ([FALSE) ;
m overdrive = 0;
m distortion = 0;
m fuzz = 0;
m slider gain = 0;

'

else |
GetDlgltem|IDC OVERDRIVE) —>EnahleWindow (TRUE) ;
GetDlgltem|IDC DISTORTIOH) ->EnableWindow (TRUE) ;
GetDlgItem(IDC FUOZIZ) ->EnableWindowTRUE) ;

'

Tpdatelbata (FALSIE) ;

sndRTDE[7] = m slider gain;
sndRTDHE[9] o;
SGendhrravyi():

The variable parameters are updated and this iafitomis also sent to the DSP app.

Cristian Gil Morales REPORT 79 /97

Multieffects processor Programming

Dynamic range effects

void CUserlInterfaceDIg::OnCompressor()

It activates or deactivates the corresponding fiaig that the DSP app can perform the
Compressor effect when the specific check boxicket!.

Enabling this flag, it disables the Expander, Nd&se, Autowah and Panning effects if they
are selected. The slider corresponding to the di;meange effects is rebooted.

The variable parameters are updated and this slalad sent to the DSP app.

void CUserlInterfaceDlg::OnExpansor()

It activates or deactivates the correspondingfitaghat the DSP app can perform the Expander
effect when the specific check box is clicked.

Enabling this flag, it disables the Compressor sddbate, Autowah and Panning effects if they
are selected. The slider corresponding to the di;meange effects is rebooted.

The variable parameters are updated and this slalad sent to the DSP app.

void CUserlInterfaceDlg::OnNoiseGate()

It activates or deactivates the corresponding ftaghat the DSP app can perform the Noise
Gate effect when the specific check box is clicked.

Enabling this flag, it disables the Compressor, dqer, Autowah and Panning effects if they
are selected. The slider corresponding to the dimeange effects is rebooted.

The variable parameters are updated and this slataa sent to the DSP app.

void CUserlInterfaceDlg::OnAutoWah()

It activates or deactivates the corresponding fitaghat the DSP app can perform the Autowah
effect when the specific check box is clicked.

Enabling this flag, it disables the Compressor,dixjer, Noise Gate and Panning effects if they
are selected. The slider corresponding to the dimeange effects is rebooted.

The variable parameters are updated and this slataa sent to the DSP app.

void CUserlInterfaceDlg::OnPanning()

It activates or deactivates the corresponding fibeghat the DSP app can perform the Panning
effect when the specific check box is clicked.

Enabling this flag, it disables the Compressor, d&xjer, Noise Gate and Autowah effects if
they are selected. The slider corresponding taynamic range effects is rebooted.

The variable parameters are updated and this slalad sent to the DSP app.

Cristian Gil Morales REPORT 80/97

Multieffects processor Programming

void CUserlInterfaceDlg::0OnSliderDynRan(NMHDR* pNMHD R, LRESULT* pResult)

When the corresponding slider is moved, it chanigedrequency level or the threshold value of
the selected dynamic range effect under the bopr@sgously defined. If there is not any effect

selected, or the check box for disable the dynaanige effects is activated, the slider remains
disabled.

The variable parameters are updated and this irfitomis also sent to the DSP app.

void CUserlInterfaceDlg::OnDynRanOnOff()

It deactivates and disables all the check boxestladlider inside the dynamic range effects
group box, when the corresponding check box iketic

All the dynamic range effects are not enabled uhidl flag is deactivated again, leaving those
effects in their initial configuration.

The variable parameters are updated and this irfitomis also sent to the DSP app.

Modulation effects

void CUserlInterfaceDlg::0OnChorus()

It activates or deactivates the corresponding fiteghat the DSP app can perform the Chorus
effect when the specific check box is clicked.

Enabling this flag, it disables the Flanger andniok effects if they are selected. The slider
corresponding to the modulation effects is rebooted

The variable parameters are updated and this slataa sent to the DSP app.

void CUserlInterfaceDlg::OnFlanger()

It activates or deactivates the corresponding fiteghat the DSP app can perform the Flanger
effect when the specific check box is clicked.

Enabling this flag, it disables the Chorus and Tolerreffects if they are selected. The slider
corresponding to the modulation effects is rebooted

The variable parameters are updated and this slataa sent to the DSP app.

void CUserlInterfaceDIlg::OnTremolo()

It activates or deactivates the corresponding fiteghat the DSP app can perform the Tremolo
effect when the specific check box is clicked.

Enabling this flag, it disables the Chorus and §aneffects if they are selected. The slider
corresponding to the modulation effects is rebooted

The variable parameters are updated and this slalad sent to the DSP app.

Cristian Gil Morales REPORT 81/97

Multieffects processor Programming

void CUserlInterfaceDlg::0OnSliderModul(NMHDR* pNMHDR , LRESULT* pResult)

When the corresponding slider is moved, it chants frequency level of the selected
modulation effect under the bounds previously a=finf there is not any effect selected, or the
check box for disable the modulation effects isvatéd, the slider remains disabled.

The variable parameters are updated and this iafitomis also sent to the DSP app.

void CUserlInterfaceDlg::OnModuOnOff()

It deactivates and disables all the check boxegtamdlider inside the modulation effects group
box, when the corresponding check box is clicked.

All the modulation effects are not enabled untistflag is deactivated again, leaving those
effects in their initial configuration.

The variable parameters are updated and this irfitomis also sent to the DSP app.

Repetition effects

void CUserlInterfaceDlg::OnDelayEcho()

It activates or deactivates the corresponding fiag that the DSP app can perform the
Delay/Echo effect when the specific check box iskeld.

Enabling this flag, it disables the Reverb effédt is selected. The slider corresponding to the
repetition effects is rebooted.

The variable parameters are updated and this slalad sent to the DSP app.

void CUserInterfaceDIlg::OnReverb()

It activates or deactivates the corresponding fitmghat the DSP app can perform the Reverb
effect when the specific check box is clicked.

Enabling this flag, it disables the Delay/Echo efffi¢it is selected. The slider corresponding to
the repetition effects is rebooted.

The variable parameters are updated and this slataa sent to the DSP app.

void CUserInterfaceDIg::OnSliderRepet(NMHDR* pNMHDR , LRESULT* pResult)

When the corresponding slider is moved, it chantipes quantity of delay of the selected
repetition effect under the bounds previously dadinlf there is not any effect selected, or the
check box for disable the repetition effects isvated, the slider remains disabled.

The variable parameters are updated and this irfitomis also sent to the DSP app.

Cristian Gil Morales REPORT 82 /97

Multieffects processor Programming
I EEE—————————————————————————

void CUserInterfaceDIlg::OnRepeONOff()

It deactivates and disables all the check boxestlamdlider inside the repetition effects group
box, when the corresponding check box is clicked.

All the repetition effects are not enabled untistiiag is deactivated again, leaving those effects
in their initial configuration.

The variable parameters are updated and this irfitomis also sent to the DSP app.

Tuner implementation

void CUserlInterfaceDlg::OnTunerOnOff()

This method allows that the user interface caniveaaformation from the DSP application and
it enables the tuner to use it.

A timer is set to execute periodically its methadading the defined time.
It also deactivates the rest of the interface, beeavhen the tuner is working, it does not have
sense to use the audio effects. Here it showsopénts method:

Updatelata (TRUE] ;
if (m_tuner on off==TRUE] {
sndRTDE[10] = 1;
sndRTDE[13] = 1;
SetTimwer (1, 50, NULL):
GetDlgItem (IDC OVERDRIVE) —>EnahleWindow (FALIE) ;
GetDlgItem (IDC DISTORTION) ->EnableWindow (FALSE) :
GetDlgltem (IDC FUZZ) —>EnashleWindow (FALIE) ;
GetDlgItem (IDC SLIDER GAIN) —->EnshleWindow (FALZE) :
k
if (m_tuner on off==FALZE] {
sndRTDE[10] = 0O;
sndRTDE[13] = 0O;
KillTimer (1) ;
GetDlgItem (IDC OVERDRIVE) —>EnashleWindow (TRUE) ;
GetDlgItem (IDC DISTORTION) —->EnableWindow (TRUE) ;
GetDlgItem (IDC FUZZ) ->EnableWindow (TRUE] ;
GetDlgltem (IDC GATIN ON OFF) ->EnshleWindow (TRUE) :
k
m freqg = 0;
UpdateData (FALSIE) ;
Sendlrrayi():

void CUserlInterfaceDIg::OnTimer(UINT nIDEvent)

This method is executed periodically accordingdéfned time by a timer.
It is only executed when the tuner flag is enabled.

It reads in real time the data which the DSP sdadbe user interface (the frequency of the

input signal) to calculate the name of the noteitsdctave.
Then it shows all the information on the screen.

Cristian Gil Morales REPORT 83/97

Multieffects processor Programming
I EEE—————————————————————————

if (m _tuner on off==TRUE] {
float fredquency = 0;
r RTDE->ReadF4 [sfrequency) ;
r RTDE->Rewindl() ;
if [(frequencyr=frec min] {m_freq = fregquency;}
else |
m freq = 0;
In_hote e
I octave = 07}
short octave = 0O;
while (freguency>frec min) i
frequency = fredquency [Z:
octave++:
frequency = fredquency & 2:
for (short i=0; i<notesNuwnber; i++) |
if [(frequency<=(notesFrecquency[i] *semitone) £&
frequencys (notesFrequency[i] fsemitone)) {

m note = notesName[i]:
m _octave = octave:
bhreak::}

Tpdatebata (FALIE) ;
sndRTDE[13]=2;
sndRTDE[14]=1;
SJendirravi()

Chialog: :onTiwer (nIDEwvent) ;

Common methods

BOOL CUserInterfaceDIg::OnlInitDialog()

This method is only executed once when the interfadnitialized. It is created automatically
by the program.

For this project, it adds the inicialization of thlelers and the variables to use.
Here it shows part of the code:

fAht the beginning, all the sliders are diseabled
GetDlgItew(IDC SLIDER GAIN)-»>EnshleWVindow |FALSE) ;
GetDlgItew(IDC SLIDER DYN RAN)->EnableWindow (FALSE) ;
GetDlgItew(IDC SLIDER MODUL)->EnshleWindow (FALSE) ;

f4011 the wariahles/array are initialized

for (int i=0; i<long3ND; i4++4+) {sndRTDE[i] = 0:}
m fregq = 0O:

m octave = 0;

S/ The lowest frequehncy waluess are defined
notesFrequency[0] = 32,71:
notesFregquency[1] = 34,65;
notesFregquency [2] 3e,71;

S/ The note names are defined

notesMame[0] = "Lo J/ C7;
notesMName[1] = "Do# / CH";
notesMName[2] = "Ee / D":

It also includes the definition of the RTDX commerion, which is shown above.

Cristian Gil Morales REPORT 84 /97

Multieffects processor Programming

void CUserInterfaceDIg::SendArray()

This method is called whenever the array with thdi@effects variables is updated. The data is
sent from the user interfacing to the DSP usingRIB®X communication.

VARIANT sa:

SAFEARRAYBOUND rgsabound[1]:

rrVariantlInit (&sa) !

sa.vt = VT_ARRAY | VT TI4:

rogsabound[0] . 1Lbound = 0;

rogsabound[0] .cElements = long3ND:

Sa.parray = SafelrrayCreate (VT_TI4, 1, rgsabound):

HEEZULT hr:

for (long i=0; i<i(signed)sa.parravy-rrgsabound[0] .cElements; i++) |
hr = ::3afelrrayPutElement (sa.parray, &£1i, [(long¥*) &sndRTDX[i]) -}

long bufferstate;

w_RTDE->Write (za, &hufferstate):

rrVariantClear (&3a) ;

w RTDE->Flushi):

void CUserlInterfaceDIlg::ReceiveArray()

This method is designed to receive a data array ftee DSP to the user interface using RTDX
communication.

The received information would be used for the tunglementation and to show the output
signal level in real time. However, when the RTe&ives and sends information altogether, it

has problems to work correctly. Therefore this rodtls only defined, but it is not used.
VARIANT sa:

HEESULT hr:
SAFEARRAYBOUND rgsabound[1]:

rrVariantlInit (&sa) ;!

sa.vt = VT_ARRAY | VT _R4;

rogsabound[0] . 1Lbound = 0;

rogsabound[0] .cElements = longRCV;

Sa.parray = 3JafelrrayCreate (VT R4, 1, rgsabound);

¥ RTDE->Read3iIZ (&sa);

r RTDE->Rewindi] :

for (long i=0; i< (signed)sa.parray->rgsabound[0] .cElements; i++) 1
hr = ::3afeldrrayGetElenent (Sa.parravy, &1, (long®) srowvRTDE[i]) 5

rVariantClear (&£sa) ;2

void CUserlInterfaceDIg::OnOK()

This method closes the user interface when the épcbutton is pressed. It is also created
automatically by the program.

In this application, it also closes the timer defirbefore and it resets all the variables to their
initial state to be sent to the DSP via RTDX.

EillTimer (1) :

for (int i=0; i<long3ND; i++) {sndRTDE[i] = 0;;:

Sendirravyi() :

Chialog: i OnQKE(] ;

Cristian Gil Morales REPORT 85/97

Multieffects processor Programming

sndRTDX

sndRTDX (ArrayRTDX in the DSP app) is the data wrsent to the DSP app by the user
interface whenever it interact with it (to move afigler, to press any check box ...).

Each position in this array informs to the DSP apput which effects have to be used and the
variable value of each group of effects.

The information in each position is:

sndRTDX [14] = It solicits another frequency value from the D& to the user interface.

sndRTDX [13] = It changes the sampling frequency /O betwedrdz48nd 8Hz. This flag is
only used for the tuner algorithm.

sndRTDX [12] = For future uses.

sndRTDX [11] = For future uses.

sndRTDX [10] = It enables the tuner. It also disables theakaudio effects.

sndRTDX [9] = It indicates which gain effect (Overdrive, Didton or Fuzz) has to be used.
sndRTDX [8] = For future uses.

sndRTDX [7] = It indicates the quantity of gain for the gaffeets.

sndRTDX [6] = For future uses.

sndRTDX [5] = It indicates which repetition effect (Delay/EcbioReverb) has to be used.
sndRTDX [4] = It indicates the quantity of delay for the répen effects.

sndRTDX [3] = It indicates which dynamic range effect (Compaes Expansor, Noise Gate,
Auto-Wah or Panning) has to be used.

sndRTDX [2] = It indicates the the frequency level or the shadd value for the dynamic range
effects.

sndRTDX [1] = It indicates which modulation effect (Chorusatider or Tremolo) has to be
used.

sndRTDX [0] = It indicates the frequency level for the modioiateffects.

Cristian Gil Morales REPORT 86 /97

Multieffects processor Conclusions
I EEE—————————————————————————

CONCLUSIONS

Cristian Gil Morales REPORT 87 /97

Multieffects processor Conclusions

Cost analysis

This project was carried out in a total of 8 monfhsemesters), in which it has been invested
all the possible time in the documentation, stugydesigning and programming of it.

First of all, the time spent to simulate the audsatment in real time with MATLAB has been:

SIMULATING WITH MATLAB
Task Time
Studying of audio treatment 20 hours
Studying the acquisition in real time | 20 hours
Fast Fourier Transform 20 hours
Programming in MATLAB 80 hours
Others 10 hours
TOTAL 150 hours

150 hours of studyingwere necessary to simulate the function of thgepto

The time spent to study each part of the projesthigen:

STUDYING OF TMS320C6713

Task Time
Processor DSP 30 hours
Programming environment 30 hours
Peripheral audio codec 10 hours
Peripheral McBSP (comm. serie) 15 hours
Interruptions 15 hours
Peripheral EDMA 40 hours
Peripheral RTDX 30 hours
Rest of peripherals 15 hours
Programming language ANSI C 50 hours
Others 25 hours
TOTAL 260 hours
STUDYING OF THE INTERFACE
Task Time
Searching of a software 10 hours
Using Microsoft Visual 20 hours
Programming language Visual C++ | 50 hours
Communication RTDX 30 hours
Others 30 hours
TOTAL 140 hours

400 hours of studyingwere necessary to prepare the project.

Cristian Gil Morales REPORT 88 /97

Multieffects processor

Conclusions

When all the knowledge has been learnt, the indesitee to design
project has been:

and programming this

PROGRAMMING THE DSP APP

Task Time
Configuration of the project 10 hours
Initialization of the DSP 20 hours
Configuration of audio codec 15 hours
Configuration of McBSP 25 hours
Configuration of EDMA 40 hours
Managing the interruptions 20 hours
Effects programming 400 hours
Implementation of the FFT 160 hours
Communication RTDX 30 hours
Others 40 hours
TOTAL 760 hours
PROGRAMMING THE INTERFACE APP
Task Time
Configuration of the project 10 hours
Designing the interface 25 hours
Programming the interface 55 hours
Communication RTDX 30 hours
Others 20 hours
TOTAL 140 hours

900 hours of programmingwere necessary to perform the project.

Once the programming has been finished, the tiraatspriting the mem

ory has been:

WRITING THE MEMORY
Task Time
Introduction (1* part) 30 hours
Programming (2™ part) 70 hours
Conclusions (¥ part) 30 hours
Others 15 hours
TOTAL 145 hours

145 hours of writing were necessary to document the project.

Cristian Gil Morales REPORT

89 /97

Multieffects processor Conclusions

Budget

The sum of all these hours makes a total of 1595 ims, or 200 working days if they are
distributed in 8 hours/day (like the working timiesoworker).

To do the budget of this project, it can only cotivé programming hours. The hours spent in
the studying or simulating (and writing the memocgnnot count because these ones are not
part of the project development.

This results in 900 hours spent in the developmerfprogramming) of the project, or 113
working days if they are distributed in 8 hours/dlélye the working time of a worker).

The price charged to a customet €/hour. This price includes the labor of junior engineer,
the used material, internal expenses, etc.

It also has to count the price of the hardware TRAED 713, which iS04 €aprox.

Therefore, it multiplies the hours spent in schexuby the upper price per hour, and it adds the
price of the used hardware.

The project has a budget of:

Twenty two thousand eight hundred and four euros (2804 €).

Cristian Gil Morales REPORT 90/ 97

Multieffects processor Conclusions

Conclusions

Final results

All the performed tests have resulted correct:

Most of the effects are generated correctly with tb designed algorithmsbut some of them
are a little bit different in respect of the origindea.

Following there is a brief description about thessults, effect by effect:

* ByPass:This effect (although it is not really a real etfeworks perfectly. It is verified that
the codec takes out the same information whichivese

e Overdrive: This effect works fine. This effect applies a feistdrtions in the output signal.

« Distortion: This effect works very well. The signal is distati@nd it has a lot of gain in the
output.

* Fuzz: This effect works fine. The result can annoy inhhigvels.

* Compressor: This effect works very well. It offers compressidnt the result is not very
impressive.

e Expansor: This effect works fine. The result can annoy ighhlievels.
* Noise Gate:The algorithm is technically good, but when theuinpignal is around the
threshold, the result is strange. In this speafse, it produces some noise due to the

speakers, which are not of good quality.

e Auto Wah: The algorithm and the result are technically gdmd,the result is a bit different
in respect of the expected one.

« Panning: This effect works very well. The sound rotates arbthe speakers perfectly.

e Chorus: This effect works very well. It simulates the twiputs with a little delay between
them.

* Flanger: This effect works fine, but the result is a bitferent in respect of the expected
one.

* Tremolo: This effect works very well. The result oscillageording to the output gain.
» Delay/Echo: This effect works very well. If the delay time imall, the Echo effect (it
cannot distinguish the two used inputs) can becheéend if the delay time is big, the Delay

effect (it can distinguish the two used inputs) barheard.

* Reverb: This effect works very well. If the delay time imall, it looks like to the delay
effect. But when the delay time is big, the acasstif the room can be perfectly heard.

e Tuner: The tuner only works fine when the input frequeigygonstant (using a function

generator, for example).
In addition, it can only detect frequencies betw82Hz to 4000Hz approx.

Cristian Gil Morales REPORT 91/97

Multieffects processor Conclusions

The minimum frequency (32Hz) is due to the configion of the window length and the
window step, which determine the resolution acaaydhe sampling frequency. To improve
this implementation, the FS has to be 8000Hz.

32 Hz is the Do/C note in the first octave.

The maximum frequency (4000Hz) is due to the Nydilter which the codec incorporates
to ensure a good quality of the input samples. fitgans that, in fact, the FS is 8000 Hz.

The effects used together work fineUntil 4 effects simultaneously can be put (or@rfreach
group), getting curious results.

The effects of gain have presented problems to owmith others effects because they have
big output gain. But those problems were fixed.

In respect of the user interface, the result has lem perfect.

All the check boxes, sliders and labels work cdlyecThe effects can be activated and
deactivated using the check boxes. The specifizevaf the sliders can be changed and the data
of the tuner can be seen with its labels withoobfams.

Although the tuner implementation in the DSP app limaitations, when a frequency is detected
and sent to the user interface, this one showfelgeency, the name of the note and its octave
on the screen perfectly. Without any errors, agis scheduled.

The RTDX communication works fine But it has problems when it sends and receives ata

a time. In this case, it is sometimes blocked.

Therefore, it is not a good idea to send and receiformation at a time. For this reason, it was
not possible to implement a volume screen.

All the other audio processing parts work fine too.

Therefore, the audio codec gets and samples the dgpa to use them later. When the data are
treated, the codec also takes out the informatorectly.

The EDMA moves the data to the different destimetiwvithout problems.

When a external device supplies the data (likePaxl ior PC), their input samples have a correct
amplitude value.

But when a musical instrument is connected, it sehd data with a very small amplitude.
Therefore, a preamplifier is necessary betweerD®kK and the musical instrument to amplify
the input data.

With the preamplifier, the instrument can be usetha source perfectly.

Therefore it can be said that all the objectives daed at the beqginning of the
project are fulfilled.

The following picture shows the schedule with tifeedent tasks of this project:

Cristian Gil Morales REPORT 92 /97

Conclusions

Multieffects processor

02/13

03/13 04/13 05/13 06/13 07/13 08/13 09/13 10/113 11/13 12/13

01/14

Audio Treatment

CCS Studying

DSK Studying

DSK Programming

VC++ Studying

RTDX

VC++ Programming

Documentation

[
MATLAB Simulation [

e —
N
N

W

o

93/97

REPORT

Cristian Gil Morales

Multieffects processor Conclusions

Future developments

The main improvement that should be made to thogept is to make a hardware interface to
interact with it with the feet. Namely, to changeset effects while it is playing the musical
instrument at a time.

The hardware interface requires more work thanstifevare interface, hence the second one
was the most suitable option due to lack of time.

Another extension is the developing of new effddts, creating the phaser or equalizer effects.
It can also modify some of the existing effects athtan admit greater complexity in order to
achieve more realistic sounds.

For example, the improving of the chorus effecthwitore voices simultaneously. It can also
improve the reverb effect, setting the particulapwstic conditions to reproduce a better
background sound, including special characteristiesh as attenuation or amplification of
certain materials, dimensions and specific geoe®tetc.

Moreover, it could use a communication system mobaist in respect of the one implemented
in this project, since most of transmissions haw¢ wverification of receipt or delivery.
Therefore it can be interesting to investigate nadreut this field.

By the way, it is not appreciated any failure ia #ending or receiving separately.

Finally, in the VC++ interface part, it would beénesting to implement a system to save the
configuration of the effects in a simply file favdd and use it again in another time with the
same parameters.

It is also interesting to improve the interfacehatihose end small details in the communication

interface as to use a Smitter to know the ampliwalaes of the input sound, to create a menu
with support options, etc.

Personal conclusions

| am very satisfied with the realization of thiojact and its final result.

| could see that the field of the sound effecta idifficult and extensive field. Even if | have
only worked the basic concepts, they have helpetbra@derstand many things of this exciting
world. They also made me want to continue invetitigeon my own.

It is necessary to say that the implementationllofha system has been hard, since adequate
information was not available. Therefore, many kolabave been devoted of consultation and
tests with the compiler in order to implement hé features.

Personally, the development of this project hapdtkime to understand better the functioning
of my personal equipment (amplifier, effect pedald the electronics of the guitar) and learn to
use it more efficiently.

Another big plus for me was the need to learn tnag@mmming languages very important in

the professional world: the ANSI C language (toesttle the DSP microprocessor) and the
Visual C++ language (to schedule the graphicatiate).

Cristian Gil Morales REPORT 94 /97

Multieffects processor Conclusions
I EEE—————————————————————————

Even | had to attend a special class outside oflegree to learn how to use the hardware from
Texas Instruments, giving me to understand theopmdnce of the DSPs and the most
important and commonly used peripherals.

With all these knowledge, | think that | will bex@ore efficient and versatile engineer.

| also have to say that it has only been possibteach the end of this road with the help of my
professors, who answered my questions and explaihedsteps to complete the project

properly.

| recommend to other students for their future PRISs investigate the sound and its effects, or
directly continue this project to make it more coetg, especially if they like playing a musical
instrument like | do.

Cristian Gil Morales REPORT 95 /97

Multieffects processor Conclusions

Bibliography

Audio treatment

[1] José M@ Grijota Delgaddmplementacion de un procesador digital de efecos ediante
DSP e interfaz grafica sobre plataforma Windows XP.
Published in 2008.

[2] Cristian Quirante Catalarimplementacion de algoritmos de efectos de audio emn
procesador DSP de Texas Instruments.
Published in 2008.

[3] Udo zolzer.DAFX: Digital Audio Effects, Second Edition
Published in 2011 by John Wiley & Sons, Ltd. ISBIN8-0-470-66599-2

[4] D. Marshal. MATLAB, DSP, Graphics. Module No: CM0268.

TMS320C6713

[5] Rulph ChassaindDigital signal processing and applications with theC6713 and C6416
DSK.
Published in 2005 by John Wiley & Sons, Inc., HotrokNew Jersey.

[6] Texas Instrumentd'MS320C62x DSP Library — Programmer’s Referente Guie
Published in 2003. Literature Number: SPRU402B

[7] Texas Instrumentd.MS320C67x DSP Library — Programmer’s Reference Gule
Published in 2010. Literature Number: SPRU657C

[8] Texas Instrumentd.MS320C6000 — Chip Support Library — API ReferenceGuide
Published in 2004. Literature Number SPRU401J

[9] Texas Instrumentd.MS320C6000 DSP — 32Bit Timer - Reference Guide.
Published in 2003. Literature Number: SPRU582B

[10] Texas InstrumentsTLV320AIC23B — Stereo Audio CODEC, 8 to 96 kHz, Wih
Integrated Headphone Amplifier.
Published in 2004

[11] Texas InstrumentdMS320C6000 DSP — Multichannel Buffered Serial Por{McBSP)
- Reference Guide.
Published in 2006. Literature Number: SPRU580G

[12] Texas InstrumentsSIMS320C6000 DSP — Enhanced Direct Memory Access (BA)
Controller - Reference Guide.
Published in 2006. Literature Number: SPRU234C

[13] Sophocles J. OrfanidiBSP Lab Manual
Published in 2012.

Cristian Gil Morales REPORT 96 / 97

Multieffects processor Conclusions

RTDX communication

[14] Horst RogallaRTDX Tutorial Version 1.0
http://www.tsseshop.com/Developer/Tutorials/RTDX@nalRTDX.html

[15] Deborah KeilReal-Time Data Exchange. Digital Signal Processirfgolutions
http://www.ti.com/lit/wp/spry012/spry012.pdf

[16] APPLICATION NOTE — RTDX feature
http://www.sundancedsp.com/docs/RTDXbyJTAG.pdf

Graphical user interface

[17] Application Programming Interface (API) of C++
http://www.cplusplus.com/reference/

[18] Demian C. Panelldlutorial 1 of Visual C++
http://www.dcp.com.ar

[19] Tutorial 2 of Visual C++
http://www.programacionfacil.com/visual cpp/start

[20] Tutorial 3 of Visual C++
http://www.tenouk.com/visualcplusmfc/visualcplus2fia.html

Cristian Gil Morales REPORT 97 /97

