
 

 

 
 
UNIVERSITAT POLITÈCNICA DE CATALUNYA 

 

 
 

DEPARTMENT OF ELECTRONIC ENGINEERING 
 

FINAL PROJECT 

 
 
 
 

MULTIEFFECTS PROCESSOR 
 

REPORT 
 
 
 
 
 
 
 
 

Student:  Cristian Gil Morales 
 

Supervised by:  Albert Masip Alvarez 
Manuel Lamich Arocas 

 

December 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46111612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 



 

 
 
 
 
 
 
 
 
 

I want to thank to all the people who have encouraged me during the realization of this project. 
 

I would like to thank my supervisors Albert Masip Alvarez and Manuel Lamich Alvarez for 
their guidance and support. 

 
I would like to thank all my English teachers and friends who have corrected this project in 

English. 
 

Finally I want to thank my family, friends and girlfriend, who always believed in me. 
 
 

Thank you.



 



Multieffects processor  Index 
 

Cristian Gil Morales REPORT 5 / 97 

Index 
 
 
Introduction 
 

Acronyms.........................................................................................................9 
 
Introduction .....................................................................................................10 
 
Motivations and objectives.............................................................................12 

 
The audio effects.............................................................................................13 

Gain effects ...........................................................................................13 
Dynamic range effects ..........................................................................16 
Modulation effects ................................................................................19 
Repetition effects ..................................................................................21 
The effects order ...................................................................................23 
 

Retrospective - The history of the sound effects..........................................24 
A brief view in the history ....................................................................24 
The history of some sound effects ........................................................25 

 
 
 
Programming 
 

MATLAB simulation ......................................................................................27 
 
Texas Instruments TMS320C6713................................................................30 

Differences between DSP and General Purpose Processor ..................30 
Descrption of the TMS320C6713.........................................................31 
Peripherals.............................................................................................33 
 

Code Composer Studio...................................................................................40 
Introduction to Code Composer Studio ................................................40 
Creating a Code Composer Studio project............................................41 
 

DSK program structure .................................................................................46 
Prototypes .............................................................................................46 
Header files ...........................................................................................47 
Constant statement ................................................................................47 
Global variables ....................................................................................47 
Definition and configuration of audio codec and RTDX channels.......48 
Definition and configuration of EDMA channels.................................50 
Main method .........................................................................................53 
Routine to initialize the EDMA............................................................54 
Service routine for the EDMA interrupt ...............................................54 
 

Effects programming......................................................................................55 



Multieffects processor  Index 
 

Cristian Gil Morales REPORT 6 / 97 

Gain effects ...........................................................................................56 
Dynamic range effects ..........................................................................59 
Modulation effects ................................................................................64 
Repetition effects ..................................................................................67 
Tuner .....................................................................................................69 
 

Microsoft Visual C++ .....................................................................................71 
Introduction to Microsoft Visual C++ ..................................................71 
Creating a Visual C++ project ..............................................................72 
The main interface classes ....................................................................74 
 

The graphical user interface..........................................................................75 
The IrtdxExp class ................................................................................75 
The application parts.............................................................................77  
Performed methods ...............................................................................78 
sndRTDX..............................................................................................86 

 
 
 
Conclusions 
 

Cost analysis....................................................................................................88 
Budget ...................................................................................................90 
 

Conclusions......................................................................................................91 
Final results...........................................................................................91 
Schedule................................................................................................93 
Future developments.............................................................................94 
Personal conclusions.............................................................................94 
 

Bibliography ....................................................................................................96 
 

 



 

Cristian Gil Morales REPORT 7 / 97 

 
 



Multieffects processor  Introduction 
 

Cristian Gil Morales REPORT 8 / 97 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INTRODUCTION



Multieffects processor  Introduction 
 

Cristian Gil Morales REPORT 9 / 97 

Acronyms           
 
There are many elements / components / programs / etc with very long names in the present 
document, and read them a lot of times it can be uncomfortable for the reader. 
 
For readability, the following acronyms are used in replacement of these names. It is also shown 
their meaning. 
 
Likewise, it sometimes recalls their meanings along the document to avoid losing the reading 
thread continuously. 
 
 
PC: Personal Computer. 
DSP: Digital Signal Processor. 
RTDX:  Real Time Data Exchange. 
LFO:  Low Frequency Oscillator. 
AM:  Amplitude Modulation. 
DSK: DSP Starter Kit. 
FFT:  Fast Fourier Transform. 
DFT:  Discrete Fourier Transform. 
ASIC:  Application-Specific Integrated Circuit. 
FPGA: Field-Programmable Gate Array. 
TI:  Texas Instruments. 
DSK: DSP Starter Kit. 
USB: Universal Serial Bus. 
IDE:  Integrated Development Environment. 
VLIW:  Very Long Instruction Word. 
MFLOPS:  Million of FLating-point Operations Per Second. 
MIPS:  Million of Instructions Per Second. 
MMACS:  Million of Multiplictions Per Second. 
JTAG:  Joint Test Action Group. 
ADC: Analog-Digital Converter. 
DAC:  Digital Analog Converter. 
FS: Sampling Frequency. 
FM:  Maximum Frequency. 
McBSP: Multichannel Buffered Serial Port. 
EDMA:  Enhanced Direct Memory Access. 
GUI:  Graphical User Interface. 
CCStudio: Code Composer Studio. 
VC++:  Microsoft Visual C++. 
API:  Application Programming Interface. 
SDK: Software Development Kit. 
MFC:  Microsoft Foundation Classes. 
SDI: Single Document Interface. 
MDI:  Multiple Document Interface. 
 
 
 
 
 
 
 
 



Multieffects processor  Introduction 
 

Cristian Gil Morales REPORT 10 / 97 

Introduction  
 
Music is transmitted increasingly among the population. This does that the people have more 
contact with the audio waves and its treatment. 
Nowadays it is normal that a lot of people play musical instruments. Hence they end up having 
the need to treat the audio waves which they generate for give another sense or personality to 
their songs, transmitting new and unique emotions. 
 
Throughout the history, the search of new sounds has not ended. The musicians, in their attempt 
to innovate and achieve new styles and sounds to reach their personal mark, have always used 
all of their ingenuity in anywhere. 
To create a new effect, firstly it has to find the desired effect. After that, it has to make an 
artifact which allows to generate this effect, using purely analog techniques. 
Examples are the characteristic distortion sound of the valve amps, the Fuzz pedal from Jimi 
Hendrix, the Delay effect discovered accidentally by Ritchie Blackmore, the Flanger effect used 
by The Beatles, etc. 
 
New technology throughout the years has done possible to do digital signal processing in an 
economic way, but mainly easier. 
 
 
The present project of the multieffect pedal is born to the need to investigate in the world of 
audio processing in a more professional level for who seek new sounds with their musical 
instrument. 
 
This multieffect pedal generates the most used sound effects in the music world in real 
time with the input signal. 
 
 
Elements like Digital Signal Processors (DSPs), appeared in the eighties, are systems based on 
processors or microprocessors. They have a group of optimized instructions to apps that require 
a lot of numeric operations in very high velocity in front of the big and expensive analog 
circuits. 
Due to this reason, the DSPs are especially useful for the processing and representation of 
signals in real time. Now, complex operations like signal filtering or the Fourier transform, are 
easy to implement in a simple work file. 
 
In addition to this processing in real time, it is necessary an interface which is the bridge 
between the user and the DSP. It allows to change among all the effects and change their 
configuration in a easy and simple manner. 
Therefore the communication between both units is constant and uninterrupted. 
 
The coordination between the DSP and the interface is carried out by the communication 
protocol Real Time Data Exchange (RTDX). Its libraries are included in the programming 
software of the DSP (which are distributed with this last one). 
 
This is useful to obtain a powerful homemade multieffect processor with a decent quality, 
acceptable for any user. 
 
 
Onwards it explains the hardware TMS320C6713 DSP, its peripherals, its programming code 
and the interface programmed in Visual C++ that controls it. 



Multieffects processor  Introduction 
 

Cristian Gil Morales REPORT 11 / 97 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Multieffects processor  Introduction 
 

Cristian Gil Morales REPORT 12 / 97 

Motivations and objectives 
 

Motivations 
 
I proposed to do this project because two years ago I became interested in music in a deeper 
sense and I also play the electric guitar regularly on my own. 
 
Without option to go to a music school, it is complicated the fact of learning the secrets of this 
INFINITE world, especially if I am working or busy with other issues. 
 
Recently I bought an amplifier which incorporates various sound effects, but I do not know 
what the differences between them are, how to set them, the best way to connect them, etc. 
I would have to find out more about the issue, but I do not have the necessary time to enter into 
this whole wide world. 
Moreover, after discussing this topic with my professor, I decided to do this project to initiate 
me into this world definitely. 
 
 
 

Objectives 
 
Initially the project was thought to have a finished product and use it at home with my musical 
instrument and amplifier. This required a hardware interface to control it with the feet, so it 
would be possible playing guitar while it changes/configures the effects, like in the professional 
world. 
 
Therefore, the objectives to be achieved in this project are: 

o Know the audio effects and the audio treatment in a deeper way. 
o Developing an application using a DSP microprocessor. 
o Receiving audio with a codec from outside (by instrument, PC, iPod...). 
o Implement a group of algorithms to use them in real time. 
o Sending the audio result to speakers with the codec. 
o Managing the algorithm variables through an external interface. 

 
 
After this project, I hope to have much knowledge on this subject and hence be able to apply it 
in my life as a musician. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Multieffects processor  Introduction 
 

Cristian Gil Morales REPORT 13 / 97 

Audio effects 
 
For this project it creates a total of 13 effects classified into 4 groups according to the method 
used to create them: 
 
• Gain effects: Distortion of the original signal with gain variation. 

Overdrive:  Low distortion. 
Distortion:  Medium distortion. 
Fuzz: High distortion. 

• Dynamic Range Effects: Alters the signal using filters and thresholds. 
Compressor: Compress the dynamic range of the signal. 
Expander: Expands the dynamic range of the signal. 
Noise Gate: Eliminates the signal range under a threshold. 
AutoWah:  Applies a dynamic band pass filter. 
Panning: Swing of the signal between speakers (stereo spekaers are needed). 

• Modulation Effects: Alters the signal with a Low Frequency Oscillator (LFO). 
Chorus: Simulates two musicians playing an instrument in unison. 
Flanger: Produces a swept comb filter effect. 
Tremolo: Oscillates the output volume. 

• Repetition effects: Simulation of the environment with repeated signals. 
Delay: Original signal plus delayed signal. 
Reverb: Simulates the acoustics of a room. 

 
 

Gain effects 
 
The gain effects create "warm", "gritty" and "fuzzy" sounds by "clipping" an instrument's audio 
signal, which distorts the shape of its wave form and adds overtones. 
 
It affects to the gain level of sound. Depending on the characteristics, it succeeds altering 
various harmonics and it dulls the fundamental note in different levels. 
 

 
"Clipping" an instrument's audio signal produces distortion 

 
 
 
 
 



Multieffects processor  Introduction 
 

Cristian Gil Morales REPORT 14 / 97 

Overdrive 
 
The overdrive effect appears when the optimum threshold of the input signal is exceeded. 
The signal is saturated with a low distortion and it produces natural harmonics, which enhance 
the sound body. 
 
It affects mainly to the second harmonic in a moderate way, resulting irregular peaks in the 
signal. 
The sound is more "dirty", but the main note is distinguishable and the saturation is not much 
heavy. Hence the natural sound remains. 
 

 
 

 
Example with a +-1 Volt signal 

 
 
 
 
 
 
 
 
 
 



Multieffects processor  Introduction 
 

Cristian Gil Morales REPORT 15 / 97 

Distortion  
 
The second and third harmonic are enhanced. The signal is highly saturated, the main note is 
indistinguishable and the wave is totally irregular. It highlights the medium-high tones, but with 
more distortion, and there are notable lows too. 
However it is pleasant to hear these enhanced peaks, although the sound is theoretically dirty. 
 
The distortion effect operates along a wider tonal area than it does the overdrive effect. 
 

 
Example with a +-1 Volt signal 

 
 
Fuzz 
 
The second harmonic is enhanced in a highly way, and the signal peaks are generated in more 
quantity than the overdrive effect. The sound is focused on lows and middle tones, but not in 
treble tones. 
 
The sound is heavier, with little clarity and it has a completely non-linear behaviour. 
 

 
Example with a +-1 Volt signal 



Multieffects processor  Introduction 
 

Cristian Gil Morales REPORT 16 / 97 

Dynamic range effects 
 
The dynamic range of an audio signal is the range between the softest and loudest parts of the 
signal. These effects are done to adjust the dynamic range of audio input signal. This is due to 
an increase the perceived loudness and to highlight of the main parts of the sound. At the same 
time, it ensures that the softer sounds are not lost in the mix. 
 
These effects alter the frequency content of an audio signal by boosting or weakening specific 
frequencies or frequency regions. 
 
 
Compressor 
 
The signal compression is a process which modifies the audio signal to level all its amplitude 
throughout the signal. The signal is increased or decreased according to a math equation. 
 
The difference between the most and the least extensive parts of the signals with an applied 
compression is reduced, as consequence the sound volume is equalised. 
Regarding the threshold, the signal is reduced heavily. It does not include the higher volume in 
the low parts, namely, this effect does not amplify the volume. It is only reduced. 
 

 
Example with a +-1 Volt signal 

 
The use of the compression is necessary for professional recorders. 
 
 
 
 
 
 
 
 
 
 
 
 
 



Multieffects processor  Introduction 
 

Cristian Gil Morales REPORT 17 / 97 

Expander 
 
The expansor is a dynamic process which is used like a professional recording filter. It does the 
inverse process of a compressor, since it increases the dynamic range of the audio signal. 
 
It has several control parameters. The threshold determines the level at which the expander 
starts working. The attack time to start the effect when the signal passes below the threshold. 
The relaxation time or decay stops the effect when the signal returns to be above the threshold. 
And the last one is the expansion ratio which indicates the expansion level when the signal 
exceeds the threshold, for example a ratio of 1:2, 1:4, etc. 
 

 
Example with a +-1 Volt signal 

 
It is very used to reduce the background noise which is not wanted in the professional 
recordings. 
 
 
Noise Gate 
 
A noise gate can be considered as an extreme compressor with a infinite slope (in fact, the 
relation 1:10 is enough). 
This effect consists in the complete muting of the signal below the defined threshold. The noise 
gate is typically used to eliminate the noise by setting the threshold just above the level of the 
background noise. So the signal only passes when its level is above the predefined threshold. 
 
This results in an overall cleaner sound. 
 

 
Example with a 1 Volt signal 



Multieffects processor  Introduction 
 

Cristian Gil Morales REPORT 18 / 97 

Auto Wah 
 
The wah-wah effect alters the tone of the signal to create a distinctive effect, mimicking the 
human voice. The effect sweeps the peak response to a band pass filter to create the sound. 
 
The auto-wah effect is the wah-wah effect with a cosine signal which oscillates the cut 
frequency for the band pass filter. 

 
Example with a +-1 Volt signal 

 
Panning 
 
The panning effect is the spread of the signal (either monaural or stereophonic) into a new 
stereo or multi-channel sound field. 
It is used to create the impression that the audio source is moving from one side of the 
soundstage to the another. 
 
For the stereo output, one channel is multiplied by a cosine signal and another channel is 
multiplied by a sine signal, both with the same frequency and amplitude. 
 

 
Example with a +-1.5 Volt signal 



Multieffects processor  Introduction 
 

Cristian Gil Morales REPORT 19 / 97 

Modulation effects 
 
The modulation effects are used to add motion and depth to the sound. They typically delay the 
input signal a few milliseconds and use a LFO to modulate the delayed signal. 
 
A low frequency oscillator (LFO) is an artefact which generates a wave with a frequency which 
can be modified in low levels. These levels are so low than they cannot be heard, therefore they 
are only used for modulation purposes. The LFO parameters include speed (or frequency) and 
depth (or intensity) controls. 
The LFO may also be used to modulate the delay time in some effects. 
 
The original signal is often called the "dry" signal and the processed signal is called the "wet" 
signal. 
Some modulation effects include feedback parameters, which add part of the effect output back 
into the input. 
 
 
Chorus 
 
The Chorus effect is qualitatively similar to the Flanger effect. It simulates the effect of several 
sound sources producing nearly the same sound, like a choir does with multiple singers in 
unison. 
 
Electronically, it is achieved using small random variations of the time delay and it uses several 
delay channels which are recombined in stereo to produce a very rich sound. 
 
Modulation rates are longer than the Flanger effect, typically 0.1-0.5 Hz, with similar delay 
times of 1 to 50 milliseconds. Unlike Flanger effect, the Chorus effect often employs amplitude 
modulation to simulate the way that the singers vary the volume in time. 
 

 
Example with a +-1 Volt signal 

 
 
 
 
 
 



Multieffects processor  Introduction 
 

Cristian Gil Morales REPORT 20 / 97 

Flanger 
 
When time-delayed and direct signals are combined, a comb-filter effect is created. Generally, 
this is undesirable. However, the effect can be used to "spice-up" certain sounds. If the delay 
time is constantly slightly altered, a rich sweeping filter is created. This is known as flanging. 
 
In addition, the depth of the effect can be controlled through changing the balance between the 
delayed and direct signals. For flanging, the delay time is in the range of 5-35 milliseconds. 
The modulation rate (which changes the delay time) is in the range of 1-10 Hz. 
 

 
Example with a +-1.5 Volt signal 

 
 
Tremolo 
 
The tremolo effect changes the amplitude of the signal. 
To obtain this effect, it multiplies the input signal by a periodic signal, usually a sinusoidal 
signal (with a LFO). In terms of modulation, this is the amplitude modulation (AM). 
 
It also causes small phase changes which primarily affect low waves. Sometimes it is confused 
with the vibrato effect. The vibrato effect alters the frequency in function of time, not the 
volume. 

 
Example with a +-1 Volt signal 



Multieffects processor  Introduction 
 

Cristian Gil Morales REPORT 21 / 97 

Repetition effects 
 
The most effects which are used in the modern music production are time-based. 
 
These ones are achieved by mixing a original signal with a delayed copy of itself. Unlike the 
dynamics range and modulation effects (they are often used to enhance recorded sound without 
being obvious to the listener), the repetition effects are used to creatively alter the sound of the 
source. 
 
It can create many effects by delaying the input signal in variable amounts. In order to hear the 
delay, the delayed signal needs to be combined with the original signal. 
For improve these effects, it is important to control the mix balance between the two signals. 
 
It can also control the ratio of the modified signal (wet) and the original signal (dry). 
 
 
Delay/Echo 
 
The Delay effect records an input signal to an audio storage medium, and then it reproduces 
back after a period of time. The delayed signal can be played back multiple times to create the 
sound of a repeating. 
After that, the processed signal is mixed with the original one. 
 
The difference between the Delay and Echo effects is established simply by the amount of delay 
of the input signal and its repetition. 
Therefore, in the Echo effect, the output signal (wet and dry signals together) are perceived by 
the ear like a new signal respect the original signal, since the delay is small. But with the Delay 
effect, the delay is very long, and the ear can distinguish the mix of both signals. 
 

 
Example with a +-0.3 Volt signal 

 
 
 
 
 
 
 
 



Multieffects processor  Introduction 
 

Cristian Gil Morales REPORT 22 / 97 

Reverb 
 
Inside a room, it receives the sound through two channels: the direct sound and the reflected 
sound. 
 
The reverb is a phenomenon produced by the reflection. The reflection consists in a permanence 
of the sound even when the original wave is gone. 
 

 
 
This effect is more notable in big rooms with little absorbency (without curtains or any flexible 
object). Consequently, this effect is less notable in small rooms with a lot of absorbency (with 
curtains and other flexible objects). 
This is part of the light system. 
 

 
Example with a +-1 Volt signal 

 
 
 
 
 
 
 



Multieffects processor  Introduction 
 

Cristian Gil Morales REPORT 23 / 97 

The effects order 
 
This project has the possibility to use multiple effects simultaneously. It can use at most one 
effect for each group together, namely, between zero or four effects at the same time. 
Mix two effects of the same group is not sense because they could generate a lot of unnecessary 
noise. 
 
Based on how these effects are generated, it is important to generate some of them before than 
other ones to achieve a minimum background noise and avoid unnecessary distortions. 
 
This does not mean that it is not possible use the effects with another different order. Actually 
there are musicians who try to use other strange orders to find a special sound. 
But the order proposed here is the most common and it helps to eliminate the background noise 
and distinguish the different used effects in the final result. 
 
The correct order of the effects proposed is exactly the same order which these effects are been 
described: first of all the gain effects, after the dynamic range effects, then the modulation 
effects and finally the repetition effects. 
 
In the next picture it can see better the proposed order: 
 

 
 
 
For example, if the delay effect is generated first and then the distortion effect, the second effect 
distorts the first one. When the delay is distorted, it is not possible to distinguish the delay effect 
very well. 
Conversely, if the distortion effect is applied first and then the delay effect, the result distorts 
the input signal. And once the input signal is distorted, then it delays. 
Theoretically this one is the optimal result. 
 
This example can be applied to any possible configuration among the different effects. 
 
 
 



Multieffects processor  Introduction 
 

Cristian Gil Morales REPORT 24 / 97 

Retrospective: The history of the sound effects 
 

A brief view in the history 
 
As it can read below, in parallel and with few distance of time, there were several precursors 
who began conducting the first trials in searching of a different or particular sound. 
 
The first amplified guitars appeared during the Swing era in the early 1930s. 
At that time, the bands with many members and usually with wind instruments, dominated the 
show. Naturally, the guitarists wanted to grab some of those solos for themselves. But the 
natural sound of early amplified guitars was thin, reedy, thoroughly, anticlimactic and it did not 
quite be in the environment of the orchestras of the time. 
It is not surprise that guitarists quickly began looking for ways to pump up their sound. 
 
The very first guitar effects were built into instruments themselves. 
 
In the 1930s, Rickenbacker made a clunky Vibrola Spanish guitar with motorized pulleys that 
jiggled the bridge to create a vibrato effect. 
 
In the 1940s, DeArmond manufactured the world's first standalone effect, a type of tremolo. 
Many guitarists looked for a way to reproduce the natural reverb and echo who they enjoyed 
during soundchecks in empty halls. 
Although it is funny, the first effect of this kind was achieved when the guitarist Duane Eddy 
outfitted a 500 liters metal water tank with a speaker at one end and a microphone at the other to 
create an artificial echo chamber for recording. Of course, this idea was not to use it on stage. 
 
By the late 1950s, many amplifiers incorporated built-in tremolo, vibrato, echo and reverb 
effects. It began to emerge guitarists who used them a lot. 
Guitarists like Chet Atkins, Luther Perkins and Roy Orbison used these ones to produce the 
now-classic Rock 'N' Roll and the "slapback" echo sound on stage. The tape-based echo units, 
such as the Watkins Copicat, influenced heavily the sound of British beat rock. 
 
In the 1960s, the early standalone guitar effects were powered with vacuum tubes. They were 
bulky, expensive, fragile and not very practical for live performance. 
Then, the transistor became widely available. For the first time, engineers were able to create 
affordable portable standalone effects, such as the Uni-Vibe Jimi Hendrix used on his song 
"Machine Gun". 
 
By the late 1970s, the manufacturing of affordable solid-state effects had exploded, creating a 
whole new gear market that continues to thrive today. 
Several stompbox preamplifiers were produced to emulate the overdriven valve amplifier tones. 
 
The mid-1980s saw the rise of digital effects pedals built into single systems called multi-effects 
pedals. These electronic racks contained pedals that could activate several effects at a time. 
Some of these effects were digital representations of classic overdrive, reverb and wah-wah 
effects, with the addition of compression, pitch shifters, octave doublers and other modern 
effects. 
 
In the 1990s, multi-effect racks and floor units became prevalent, with options for switching 
between a wide range of overdrive sounds, in addition to other popular effects. It was also 
created several custom made amplifiers, producing one type of sound extremely well. Punk 
music called the most distorted sounds as possible. 
The early 2000's saw an explosion of digital modelling as companies tried to offer popular 
products for home recordings, bedroom players and semi-pro musicians. 



Multieffects processor  Introduction 
 

Cristian Gil Morales REPORT 25 / 97 

The Global Financial Crisis in the late 2000s forced most companies to curtail development and 
focus on high volume, low cost items. The outstanding exception was a small company, Fractal 
Audio, who produced the Axe-FX. This amp emulator is arguably the first device to convince 
experienced professionals for valve tone. 
 
Nowadays, the amplifiers are made with hundreds of effects built in. Computer chips make it 
possible to carry the sound effects to anywhere with little or no setup time. All preprogrammed 
and ready to go. In many cases, one pedal can operate all of these effects, therefore the 
combinations are almost endless. 
 
 
 

The history of some sound effects 
  
Distortion:  A man named Link Wray was the first to find this effect in 1958, when two valves 
in his amp were loosened. Reggie Young, guitarist star of Nashville and Memphis studies, used 
to remove one of the bulbs of the power stage to distort his amp. 
Another important precursor of overdriven sound was Chet Atkins. In the 50s, he used a small 
preamp of transistors with the size of a pack of cigarettes to saturate his tube amp. Perhaps he 
was the first precursor of compact pedals. 
 
Wah-Wah: It is an effect which has been widely used, ranking the second after the distortion in 
popularity. Its creation was also the result of an accident. In 1963, the trumpeter Clyde McCoy 
commissioned to Vox (important company of amplifiers) to simulate the muted effect of his 
trumpet. 
Trying to reach this result, the Vox technicians found the Vox Wah-Wah effect which achieves 
a very similar sound to its name. The company put it in a pedal and it went on sale at the time 
that Jimmy Hendrix began recording his first album. 
 
Octave: Roger Mayer, a sound technician of the '60s, wanting to modify the octave fuzz, he 
developed this one. 
This effect adds an acute note (in the upper octave) of the original one that gives the instrument. 
 
Flanger: From the Beatles, it was common to "double tracking" effect was achieved with two 
recording machines, the first one dephased with another one. 
To dephase, it rubbed with the hand against the fins of rolls of tape of one of them, hence the 
name os this effect: flange. 
 
Chorus: Around 1977, Roland, with his division of Boss effects, released this processor. 
The chorus effect was the most used effect in the '80s. 
This effect is generated taking the input signal, slowing it about 20 milliseconds and modulating 
it. So it can say that this effect is a derivative of the flanger, but cleaner. 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 26 / 97 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PROGRAMMING  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 27 / 97 

MATLAB simulation  
 
Before programming the audio effects in the DSP Starter Kit (DSK), it was decided to make 
some simulations with the software MATLAB, which is used in many subjects of the degree. 
 
Firstly, it was decided to start working on the effect simulations with the frequency spectrum of 
the input signal. It was believed that working directly with the frequencies would make the 
modification of the signal easier. 
 
Therefore, the input signal (which is based on amplitude values over samples) must be 
transformed into the frequency spectrum. The frequency spectrum shows the amplitude values 
of the different frequencies which form the signal. 
 
In fact, some effects such as the Octaver (which generates an output signal with its frequency an 
octave above the input frequency) can only be generated when working inside the spectrum of 
the signal. For this simple reason, it was determined that this would be the ideal way to work. 
 
Although it seemed the most optimal way, it was also known that it required additional work, 
since it is necessary to reach its frequency spectrum first. Initially, this point was not important 
and the complexion of the matter was unknown. 
 
 
To get the frequency spectrum, the fastest way is using the Fast Fourier Transform (FFT). 
 
The FFT is an efficient algorithm to compute the Discrete Fourier Transform (DFT) and its 
inverse. In exchange, the DFT transforms a function in the time domain in a representation of 
the frequency domain. 
The DFT requires that the input function is a discrete and finite duration sequence. 
Therefore, this algorithm is perfect because the input signal is sampled and stored in an array 
using a Digital Analog Converter (DAC), before it can use its samples. 
 
 
Due to the fact that the final application gathers all the information in real time, it has to 
simulate equally. 
Therefore it cannot take a full data array and make the FFT. It must be done every certain period 
of time, depending on the quantity of samples which are being entered. 
 
To perform the FFT correctly, it must understand first the concepts of window length and 
window step. 
 
The window length is the dimension of data that it must be taken to perform the FFT. This 
means it has to wait until all the necessary information is saved. 
 
The window step is the time (in samples) which it has to wait between each FFT to ensure that 
each new result provides new information. 
 
Both elements are calculated depending on the sampling frequency according the following 
equations: 

 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 28 / 97 

 
 
These formulas are correct, but it can set other different values of these parameters to adapt it in 
each specific situation. 
 
Again, the application is processed in real time, therefore the DSP app must perform this 
operation continuously. 
For this reason, with a correct value of the previous parameters, the FFT is performed the 
minimum number of times, subtracting processing work to the DSP. 
 
To sum up, the FFT is performed after a specific number of samples (window step) with a 
specific number of samples (window length), returning a single value of frequency. 
 
After numerous FFTs, the frequency spectrum of the input signal is formed, which has the ratio 
between the amplitude and the frequency of the input signal. 
 
Finally, when it has the spectrum of frequencies, if it searches for the maximum 
amplitude, the main note of the signal is determined. 
And with this value, the output signal can be generated. 
 
This system seemed feasible at first, but after several tests and simulations, it was determined 
that, in fact, it has several important problems: 
 
• It can only recognize one note at a time. If it sounds more than one note at a time, it is 

impossible to find them all with the amount of noise and harmonics which the input signal 
has... at least by this way of working. 

 
• The sound generated at the output is a pure tone. Therefore there is not similarity with the 

characteristic sound that a musical instrument delivers (due to the force to generate the note, 
the wood of the instrument, the body resonance, etc.). 

 
• To fix the last point, it is necessary look for the formula which defines the sound of the 

musical instrument to apply the found frequency. This process is called characterization. 
But each instrument has its own formula (even among different models of the same 
instrument). Therefore, it is a lot of absurd work. 

 
• In addition, if it is decided to introduce a complex sound (like an audio track from a music 

player), the output would be unrecognizable. 
 
With those problems which greatly complicated the work, after weeks of research, it reached the 
following conclusion: 
Not only this was of working is more complicated, but it also requires more processing work to 
the DSP microcontroller. 
 
As a result, the first form of work is discarded. The best solution is work directly with the 
amplitude values over samples. 
 
A lot of time was devoted to reaching this conclusion, therefore it starts to work directly on the 
DSK now, taking the input samples with the audio codec and treating them consequently. 
 
But fortunately, it was not all a waste of time. The algorithm designed in MATLAB is used to 
design the implementation of the tuner in the DSP. 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 29 / 97 

Part of this algorithm is used in the DSP app to detect the lowest note using the FFT and their 
other functions. 
 
However, for a proper performance of the tuner, it can only play one note at a time. If more than 
one note is reproduced, the algorithm only takes the lowest one. 
 
Followed it shows part of the code in MATLAB, which is used for the final algorithm of the 
tuner in the DSP app. The rest of the code is shown in the annexes. 
 

 
 
All the code is explained in the annexes. 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 30 / 97 

Texas Instruments TMS320C6713 
 

Differences between DSP and General Purpose Processor 
 
A microprocessor incorporates the functions of a the central processing unit of a computer 
(CPU) on a single or few integrated circuits. The purpose of a microprocessor is to accept 
digital data as input, process it as per the instructions, and then provide the output. This is 
known as sequential digital logic. The microprocessor has internal memory and operates 
basically on the binary system. 
 
A general purpose microprocessor is a processor that is not tied to or integrated with a particular 
language or piece of software. Most of the general purpose microprocessors are present in 
personal computers. They are often used for computation, text editing, multimedia display, and 
communication over a network. Other microprocessors are part of embedded systems. 
These ones provide digital control over practically any technology, such as appliances, 
automobiles, cell phones, industrial process control, etc. 
  
The DSP processor, on the other hand, is a particular type of microprocessor. DSP stands for 
digital signal processing. It is basically any signal processing that is done on a digital signal or 
information signal. A DSP processor is a specialized microprocessor that has an architecture 
optimized for the operational needs of digital signal processing. 
  
DSP aims to modify or improve the signal. It is characterized by the representation of discrete 
units, such as discrete time, discrete frequency, or discrete domain signals. DSP includes 
subfields like communication signals processing, radar signal processing, sensor array 
processing, digital image processing, etc. 
 
The main goal of a DSP processor is to measure, filter and compress digital or analog signals. 
It does this by converting the signal from a real-world analog signal to a digital form. To 
convert the signal it uses a digital-to-analog converter (DAC). However, the required output 
signal is often another real-world analog signal. This transformation also requires a digital-to-
analog converter. 
  
These algorithms can run on various platforms. Such as general purpose microprocessors and 
standard computers. Specialized processors called digital signal processors (DSPs). Purpose-
built hardware such as application-specific integrated circuit (ASICs) and field-programmable 
gate arrays (FPGAs). Digital Signal Controllers and stream processing for traditional DSP, or 
graphics processing applications, such as image or video. 
  
The main difference between a DSP and a microprocessor is that the DSP processor has features 
designed to support high-performance, repetitive, numerically intensive tasks. DSP processors 
are designed specifically to perform large numbers of complex arithmetic calculations and as 
quickly as possible. They are often used in applications such as image processing, speech 
recognition and telecommunications. In comparison with general microprocessors, DSP 
processors are the more efficient at performing basic arithmetic operations, especially 
multiplication. 
  
Most general-purpose microprocessors and operating systems can execute DSP algorithms 
successfully. However, they are not suitable for use in portable devices such as mobile phones. 
Hence, specialized digital signal processors are used. 
 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 31 / 97 

Digital Signal Processors have approximately the same level of integration and the same clock 
frequencies as general purpose microprocessors. But they tend to have better performance, 
lower latency, and no requirements for specialized cooling or large batteries. This allows them 
to be a lower-cost alternative to general-purpose microprocessors. 
  
DSPs also tend to be from two to three times as fast as general-purpose microprocessors. 
This is due to architectural differences. DSPs tend to have a different arithmetic unit 
architecture. Specialized units, such as multipliers, etc. Regular instruction cycle, a RISC-like 
architecture. Parallel processing. A Harvard Bus architecture. An internal memory organization. 
Multiprocessing organization, local links and memory banks interconnection. 
 
For these reasons, the present project is based on a DSP, using its processing capacity for 
math operations and audio treatment. 
Due to this, the EET provides the TMS320C6713 DSP Starter Kit, which is used in the 
audiovisual system degree. 
 
 

Description of the TMS320C6713 
 
The TMS320C6713 DSP Starter Kit (DSK) is a low-cost development platform designed to 
speed up the development of high precision applications based on TI´s TMS320C6000 floating 
point DSP generation. The kit uses USB communications for true plug-and-play functionality. 
Both experienced and novice designers can get started immediately with innovative product 
designs with the DSK´s full featured Code Composer Studio IDE (Integrated Development 
Environment) and eXpressDSP Software which includes DSP/BIOS and Reference 
Frameworks. 
 
This kit is based for a high performance. It has an advanced architecture Very Long Instruction 
Word (VLIW) developed by Texas Instruments (TI), whose DSP offers a great choice for 
multichannel and multifunction applications. 
 
The C6713 DSK tools include the latest fast simulators from TI and access to the Analysis 
Toolkit via Update Advisor, which features the Cache Analysis tool and Multi-Event Profiler. 
Using Cache Analysis, developers improves the performance of their application by optimizing 
cache usage. By providing a graphical view of the on-chip cache activity over time the user can 
quickly determine if their code is using the on-chip cache to get peak performance.  
 
The C6713 DSK allows to download and step through code quickly and uses Real Time Data 
Exchange (RTDX) for improved Host and Target communications. 
The DSK includes the Fast Run Time Support libraries and utilities such as Flashburn to 
program flash and Update Advisor (to download tools). It also includes utilities, software and a 
power on self-test and diagnostic utility to ensure that the DSK is operating correctly. 
 
The full content of the kit includes: 
 

o C6713 DSP Development Board 
o C6713 DSK Code Composer Studio IDE including the Fast Simulators and access to 

Analysis Toolkit on Update Advisor 
o Quick Start Guide 
o Technical Reference 
o Customer Support Guide 
o USB Cable 
o Universal Power Supply 
o AC Power Cord(s) 
o MATLAB from The Mathworks 30 day free evaluation 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 32 / 97 

Features 
 
The DSK features the TMS320C6713 DSP. A 225 MHz device which delivers up to 1350 
million of floating-point operations per second (MFLOPS). 1800 million of instructions per 
second (MIPS) with double multiplications fixed-/floating-point, and up to 450 millions of 
multiplications per second (MMACS). 
This DSP generation is designed for applications that require high precision accuracy. 
The C6713 is based on the TMS320C6000 DSP platform designed for needs of high-performing 
high-precision applications such as pro-audio, medical and diagnostic. 
 
Other hardware features of the TMS320C6713 DSK board include: 
 

• Texas Instrument's TMS320C6713 DSP operating at 225 Mhz. 
• Embedded USB JTAG (Joint Test Action Group) controller with plug and play drivers, 

USB cable included 
• TLV320AIC codec 
• 2M x 32 on board SDRAM 
• 512K bytes of on board Flash ROM 
• 3 expansion connectors (Memory Interface, Peripheral Interface, and Host Port 

Interface) 
• On board IEEE 1149.1 JTAG connection for optional emulator debug 
• Four 3.5 mm. audio jacks (microphone, line-in, speaker, and line out) 
• 4 user definable LEDs 
• 4 position dip switch, user definable 
• +5 Volt operation only, power supply included 
• Size: 8.25" x 4.5" (210 x 115 mm), 0.062" thick, 6 layers 
• Compatible with Spectrum Digital's DSK Wire Wrap Prototype Card 
• RoHS Compliant 

 

 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 33 / 97 

Peripherals 
 
As shown in the following picture, this DSK has a good amount of peripherals that help to the 
proper functioning of DSP. They are enabled/disabled to interact with the user. 
 

 
 
The following describes the most important peripherals which are used to perform this project: 
 
• Analog-Digital Converter (ADC) 
 
The analog-digital converter consists basically in performing periodically measurements of the 
input signal amplitude and translating them into a numeric language. 
 
The digital analog conversion process basically consists of four stages: 

o Sampling 
o Quantification 
o Coding 
o Digital-Digital Recoding transmission 
 

 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 34 / 97 

Sampling 
 
Sampling consists in taking periodic samples of the wave amplitude. The speed with which the 
sample is taken, namely, the number of samples per second is what is known as sampling 
frequency (FS). It depends on the Nyquist theorem. The theorem establishes that the sampling 
frequency must be the double of maximum frequency (FM) signal to be sampled. 
 

 
 

Quantification 
 
The quantification process converts a sequence of amplitude samples into a predetermined 
sequence of discrete values according to the code used. 
During the quantification process, the voltage level of each sample is measured, obtained from 
the sampling process. They are saved into a finite (discrete) amplitude value selected by 
approximation within a previously set level range. 
 

 
 
The preset values to adjust the quantization are chosen depending on the very resolution itself 
using the code while encoding. If the level obtained is not identical with any other, it is taken as 
the next lower value. 
Then, the analog signal (which it can take any value) is converted into a digital signal, because 
the preset values are finite. 
However, it is not translated into binary code yet. The signal has been represented by a finite 
value while encoding, becoming it in a succession of zeros and ones. 
 
Thus, the digital signal resulting after quantification is substantially different from the analog 
electrical signal. Therefore, there is always some difference between them. The difference is 
known as the quantification error. This error occurs when the actual sample value is not 
equivalent to any of the steps available for its approach. The distance between the actual value 
and its approximation is also very large. A quantification error becomes a noise signal when 
playing back after digital decoding process. 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 35 / 97 

Coding 
  
Coding involves the translating of the analog voltage values which have been quantified to 
binary by preset codes. The analog signal will be converted into a digital pulse train. 
 

 
 
This is the specific code used for encoding / decoding of data. Indeed, the word codec is an 
abbreviation for Coder-Decoder. 
 
Parameters defining the codec 

o Number of channels: It indicates the signal type to address: monaural, binaural or 
multichannel. 

o Sampling: The sampling frequency refers to the amount of amplitude samples taken per 
unit of time in the sampling process. According to the theorem Nyquist-Shannon, 
sampling rate determines the bandwidth based on the sampled signal. That is to limit the 
maximum frequency of the sinusoidal components which form a periodic waveform. 

o Bit rate: The bit rate is the speed or data transfer rate. Its unit is the bit per second (bps). 
o Resolution: It determines the accuracy with the original signal is reproduced. It 

typically uses 8, 10, 16 or 24 bps. High precision means more number bits. 
o Loss: Some codecs removes certain amount of information to do the compression, 

hence the resulting signal is not equal to the original (loss compression). 
 
 
• Digital-Analog Converter (DAC) 
 
The reverse process is much less complex. It consists in putting the values of the samples in the 
order they have been processed according to the used algorithm. 
The filters of output recomposition DAC are responsible for converting the resultant signal of 
discrete values (digital) into an analog signal. 
 
The analog signal can be reconstructed from its samples. The only condition is that the sampling 
rate is high enough to avoid the problem referred to as aliasing (the signal becomes 
indistinguishable when it is sampled). 
 
According to the Nyquist-Shannon theorem, higher sampling rate for a signal should not be 
interpreted as a higher fidelity in the signal reconstruction. The sampling process is reversible, 
which means that the reconstruction can be performed in an accurate way. 
Furthermore, the quantification is an irreversible process resulting in signal distortion. 

 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 36 / 97 

• AIC23 codec 
 
The evaluation kit DSK6713 has a stereo audio codec TLV320AIC23 (AIC23) based on the 
delta-sigma technology. The AIC23 allows conversion frecuencies of 8, 16, 24, 32, 44.1, 48 and 
96 kHz. These sample frequencies are generated from a clock signal of 12 MHz. The same 
clock signal that it is used in the USB interface. 
 

 
 
The comunication with the AIC23 codec is performed with the McBSP0 and McBSP1 
(Multichannel Buffered Serial Port). The McBSP0 serial port is used like a unidirectional 
channel for the sending and receiving of data from the codec or to the codec. 
 
The AIC23 has 10 control registers that allow to manage the volume, data format, sampling 
frecuency, selection of input signals, etc. 
For the access to the audio codec, it is necessary the Board Support Library. 
 
 
Features: 
 

� High-Performance Stereo Codec 
90-dB SNR Multibit Sigma-Delta ADC (A-weighted at 48 kHz) 
100-dB SNR Multibit Sigma-Delta DAC (A-weighted at 48 kHz) 
1.42V– 3.6V Core Digital Supply: Compatible with TI C54x DSP Core Voltages 
2.7V– 3.6V Buffer and Analog Supply: Compatible Both TI C54x DSP Buffer Voltages 
8-kHz – 96-kHz Sampling-Frequency Support 

� Software Control Via TI McBSP-Compatible Multiprotocol Serial Port 
2-wire-Compatible and SPI-Compatible Serial-Port Protocols 
Glueless Interface to TI McBSPs 

� Audio-Data Input/Output Via TI McBSP-Compatible Programmable Audio Interface 
I2S-Compatible Interface Requiring Only One McBSP for both ADC and DAC 
Standard I2S, MSB, or LSB Justified-Data Transfers 
16/20/24/32-Bit Word Lengths 
Audio Master/Slave Timing Capability Optimized for TI DSPs (250/272 fs), USB mode 
Industry-Standard Master/Slave Support Provided Also (256/384 fs), Normal mode 
Glueless Interface to TI McBSPs 

� Integrated Total Electret-Microphone Biasing and Buffering Solution 
Low-Noise MICBIAS pin at 3/4 AVDD for Biasing of Electret Capsules 
Integrated Buffer Amplifier with Tunable Fixed Gain of 1 to 5 
Additional Control-Register Selectable Buffer Gain of 0 dB or 20 dB 

� Ideally Suitable for Portable Solid-State Audio Players and Recorders 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 37 / 97 

� Stereo-Line Inputs 
− Integrated Programmable Gain Amplifier 
− Analog Bypass Path of Codec 

� ADC Multiplexed Input for Stereo-Line Inputs and Microphone 
� Stereo-Line Outputs 

− Analog Stereo Mixer for DAC and Analog Bypass Path 
� Volume Control With Mute on Input and Output 
� Highly Efficient Linear Headphone Amplifier 

− 30 mW into 32 Ω From a 3.3-V Analog Supply Voltage 
� Flexible Power Management Under Total Software Control 

− 23-mW Power Consumption During Playback Mode 
− Standby Power Consumption <150 µW 
− Power-Down Power Consumption <15 µW 

� Industry’s Smallest Package: 32-Pin TI Proprietary MicroStar Junior 
− 25 mm2 

� Total Board Area 
− 28-Pin TSSOP Also Is Available (62 mm2 Total Board Area) 

 
 
• EDMA  
 
The Enhanced Direct Memory Access (EDMA) is a peripheral that it can configures to copy 
data from one place to another one without the CPU’s intervention. It can be set up to copy data 
or program from a source (external/ internal memory, or a serial port) to a destination (e.g. 
internal memory). After the transfer is completed, the EDMA can autoinitialize itself and 
perform the same transfer again, or it can be reprogrammed with another configuration. 
 
There are 16 memory direct access channels which can be configured independently for the data 
transmision, and 69 reload channels to set a new configuration to previous channels. 
These charging channels allow updating the different access channels to perform a new data 
sending when the previous one has finished. 
 

 
 
Registers: 

� Options (OPT): It allows the configuration of the different avaiable options for 
perform the data sending, the priority, the number of bits to send, etc. 

� Source (SRC): The memory direction where the data is to be sent. 
� Transfer Count (CNT): The number of data to send. 
� Destination: The memory direction where the data is copied. 
� Count Reload/ Link Addr (RLD): It specifies the charging channel associated with 

the channel which is using. This allows to reload automaticaly this channel with the 
data in the charging channel, after the previous task has been completed. 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 38 / 97 

Features: 
 

• Fully orthogonal transfer description 
3 transfer dimensions 
A-synchronized transfers: 1 dimension serviced per event 
AB- synchronized transfers: 2 dimensions serviced per event 
Independent indexes on source and destination 
Chaining feature allows 3-D transfer based on single event 

• Flexible transfer definition 
Increment or constant transfer addressing modes 
Linking mechanism allows automatic PaRAM set update 
Chaining allows multiple transfers to execute with one event 

• Interrupt generation for: 
Transfer completion 
Error conditions 

• Debug visibility 
Queue watermarking/threshold 
Error and status recording to facilitate debug 

• 64 DMA channels 
Event synchronization 
Manual synchronization (CPU(s) write to event set register) 
Chain synchronization (completion of one transfer triggers another transfer) 

• 8 QDMA channels 
QDMA channels are triggered automatically upon writing to a PaRAM set entry 
Support for programmable QDMA channel to PaRAM mapping 

• 128 PaRAM sets 
Each PaRAM set can be used for a DMA channel, QDMA channel, or link set 

(remaining) 
• 2 transfer controllers/event queues. The system-level priority of these queues is user 
programmable. 
• 16 event entries per event queue 

 
 

 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 39 / 97 

• Communication protocol RTDX 
 
RTDX is a protocol that TI developed to send data via a debugging interface from a client 
processor to a host processor and vice versa. 
For the DSK-boards this is in the JTAG interface generally. 
 
Many applications require that a host controls the operation of a DSP-system which starts 
actions (like reading the output values from DSP operations). Mostly this is done via a graphical 
user-interface (GUI). 
The DSK development boards of TI are connected to a host-PC either via a printer port or via an 
USB-connection. 
 

 
 
The same link is also available for the user to transfer data from the host to the DSK-board and 
vice versa. TI implemented for this purpose a communication channel architecture called 
RTDX. The basic functionality is similar to I/O-channels found in major operating systems. 
 
To work properly, it needs a "Code Composer Studio" program on a PC, which has to be 
connected by hardware and software to the DSK-board. 
The RTDX-link is only for development purposes. Therefore it has to be replaced by other link-
implementations, such as a standard serial or USB link, in final applications. 
 
 
The RTDX provides data types and functions for: 
 

o To send data from the Target application to the Host application. 
 
o To send data from the Host application to the Target application. 

 
o To send event data from the Target application to the Host application. 

 
 
 
 
 
 
 
 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 40 / 97 

Code Composer Studio 
 

Introduction to Code Composer Studio 
 
Designers can readily target the TMS32C6713 DSP through TI´s robust and comprehensive 
Code Composer Studio DSK development platform. The tools, which run on Windows 98, 
Windows 2000 and Windows XP, allow developers to seamlessly manage projects of any 
complexity. 
 
Code Composer Studio (CCStudio) is an Integrated Development Environment (IDE) for Texas 
Instruments (TI) embedded processor families. 
 
CCStudio comprises a suite of tools used to develop and debug embedded applications. 
It includes compilers for each of TI's device families, source code editor, project build 
environment, debugger, profiler, simulators, real-time operating system and many other 
features. The intuitive IDE provides a single user interface which it shows each step of the 
application development flow. Familiar tools and interfaces allow users to get started faster than 
ever before. They also add functionality to their application thanks to sophisticated productivity 
tools. 
 
CCStudio is based on the Eclipse open source software framework. 
The Eclipse software framework was originally developed as an open framework for creating 
development tools. Eclipse offers an excellent software framework for building software 
development environments and it is becoming a standard framework used by many embedded 
software vendors. 
CCStudio combines the advantages of the Eclipse software framework with advanced 
embedded debug capabilities from TI resulting in a compelling feature-rich development 
environment for embedded developers. 
 
 
CCStudio features for the TMS320C6713 DSK includes: 
 
o A complete IDE, an efficient optimizing C/C++ compiler assembler, linker, debugger, an a 

advanced editor with Code Maestro technology for faster code creation, data visualization, a 
profiler and a flexible project manager. 

 
o DSP/BIOS real-time kernel. 
 
o Target error recovery software. 
 
o DSK diagnostic tool. 
 
o "Plug-in" ability for third-party software for additional functionality. 
 
o Test/sample code provided to reduce coding time. 
 
o Compatible with National Instruments LabView Embedded 2.0. 
 
o Compatible with JTAG emulators from Spectrum Digital. 
 
 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 41 / 97 

Creating a Code Composer Studio project 
 
First of all it executes the “Setup CCStudio” program to assign specifically the hardware 
environment which will be used to work. 
 
In this case, it selects the device "C6713 DSK-USB" (not simultor). It adds it to the project and 
finally it saves the configuration selecting “Save & Quit” button. 
 

 
 
It confirms the upper configuration by clicking “Yes” in the “Start Code Composer Studio on 
exit?” window. After that, the CCStudio is opened automatically. 
 
Once the CCStudio is opened, it has to check some configuration options in the new window 
(which appears when it clicks in “Option – Customize”) for a optimized use: 
� In the “Debug properties” label, it selects the “Perform Go Main automatically” option. 
� In the “Program/Project/CIO” label, it selects the “Disable All Breakpoints When Loading 

New Programs” and “Auto-save Projects Before Build” options. 
� In the “Control Window Display” label, it selects the “Current Project”, “Display full path” 

and “Close all windows on Project Close” options and it deselects the “Product Name” 
option. 

 
With the CCStudio configured, it selects "Project - New" to create a new project and it opens a 
new window to specify the project name, location, project type and its DSP family. 
 

 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 42 / 97 

It clicks in the “finish” button to accept the upper features and create the project. 
 
 
Then it creates the configuration file (.tcf) in "File - New - DSP/BIOS Configuration". 
It selects the label "C6XXX" and after the “ti.platforms.dsk6713” template to work with the 
TMS320C6713 and finally it selects "Ok". 
 

 
 
 
Afterwards it is configured the board in the configuration window: 
 

 
 
It goes to “System – Global Settings” and it selects “Properties” with the right button. 
It specifies in the popup window "Target Board Name": 6713 and "DSP Speed in MHz 
(CCKOUT)": 225MHz (These are the features of the used hardware). 
 
It applies and accepts the changes. 
 

 
 
 
Then it configures the memory space: 
 
It goes to “MEM – Memory Section Manager – IRAM” and it selects “Properties” with the right 
button of the mouse. It marks the options “Create a heap in this memory” and “Enter a user 
defined heap identifier label”. 
 
It also writes MEM_HEAP in the label “heap identifier label”. 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 43 / 97 

It applies and accepts the changes. 
 

 
 
Still in the memory space configuration, it clicks in “MEM – Memory Section Manager” and 
with the right boton select “Properties”. 
 
It selects the IRAM (already configured) for the “Segment For DSP/BIOS Objects” and 
“Segment For malloc() / free()” labels. 
 

 
 
It applies and accepts the changes. 
 
 
At this point, it saves the configuration file in the same location when the project is created. 
Then it adds to this project clicking with the right button in “Add files to project” on the XX.pjt 
file, which can be seen in the left window (the window of the project hierarchy). 
 
Consequently, it adds automaticaly the cfg.s62 y cfg_c.c files (the ASM and C codes created 
respectively by the tool of graphic configuration). 
 
There is another file (automaticaly created when the configuration file was saved) which needs 
to be added manually. This file is the command file of linker called cfg.cmd. 
 
 
Now it adds to the project the Board Support Library (BSL) and Chip Support Library (CSL) 
libraries, called csl6713.lib and dsk6713.lib respectively. 
 
With all the necessary files inside the project, it clicks in “Scan All File Dependances” to 
introduce automaticaly the rest of associated files. 
These new files are introduced for a correct operation to the project. 
 
 
 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 44 / 97 

The following picture shows the project hierarchy with all the files inside of it: 
 

 
 
From this moment, it is possible to create codes in C. 
 
To create a new .c file, it clicks in “File – New File” and then this file can be added to the 
project with the “Add files to project” option with the right button from the XX.pjt. 
 
 
The last configurations are the compile and link options. 
 
It clicks in “Project – Build Options” and, inside the new window, it goes to “Compiler – 
Category: Basic” and it selects the processor that it is used (“C671x”). 
Here it can also select the use of the debug mode and the optimized options. 
 
In the same new window, it goes to the “Compiler – Category: Preprocessor” label to add the 
directory (if it exists more than one directory, they must be separated using “;”). This directory 
contains the header files (extension .h). 
These files have the implementation of the board and DSP functions. 
 
If it works with the CSL library, it has to write “CHIP_6713” (it puts “;” previously to separate 
this name with the previous one) in the “Pre-Define Symbols” label too. 
 

 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 45 / 97 

Finally it goes to “Linker – Category: Libraries” to add the CSL and DSK6713 directories 
which contain the necessary library files (extension .lib). 
 

 
 
It applies and accepts the changes. 
 
 
The configuration is finished. If it is already done the ANSI C program, it would be 
necessary to click in “Rebuild all” button to compile all the project. 
 
If it appears some warnings or errors, they have to be solved. 
 
 
With the code compiled without errors or warnings, it opens the executable file (.out) in “File – 
Load Program” option (inside Debug folder) to prepare to run the ANSI C code. 
 

 
 
Finally it clicks the “Run” button to run the code. 
 
 
 
 
 
 
 
 
 
 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 46 / 97 

DSK program structure 
 
Here it shows the different parts of the performed program in the DSK. It has been scheduled to 
receive the audio signal from the codec, process the received signal to generate the sound effects 
and take out the results to reproduce in speakers. 
 
The implementation of the effects is described in a separate section for a better explanation. 
 
The present code is divided into the following parts according to the functionality of each one: 
 
 

Prototypes 
 
The ANSI C language needs to define first the methods to be used (except for the main 
method). Thus, the compiler can identify them when it sees them. 
 
It shows some of them: 
 

 
 
edma_init � Initialization of the EDMA peripheral. 
EDMA_HWI � Interruption produced by the EDMA. 
ByPass � It takes out the input signal. 
Overdrive � It generates the Overdrive effect. 
Distortion � It generates the Distortion effect. 
Fuzz � It generates the Fuzz effect. 
Compressor � It generates the Compressor effect. 
Expansor � It generates the Expansor effect. 
Noise Gate � It generates the Noise Gate effect. 
AutoWah � It generates the auto Wah effect. 
Panning � It generates the Panning effect. 
Chorus � It generates the Chorus effect. 
Flanger � It generates the Flanger effect. 
Tremolo � It generates the Tremolo effect. 
Delay/Echo � It generates the Delay/Echo effect. 
Reverb � It generates the Reverb effect. 
DSP_radix2 � It calculates the FFT radix 2 (The result is disordered). 
DSP_bitrev_cplx � It orders the previously calculated FFT. 
 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 47 / 97 

Header files 
 
To control the DSK and to use of all peripherals, it must define first a set of header files (.h). 
These header files contain the declaration of the functions to use when the compiler finds them. 
Anyway, these functions are implemented in other files. 
 
To define them, it must put the word "# include" and then the name of the specific file between 
brackets. However, it is not necessary put ";" at the end of the line. 
 
Some of the used header files are: 

 
 
csl.h � To manage the internal functions of the DSP. 
csl_irq.h � To use the interruptions. 
csl_mcbsp.h � To use the serial communication. 
csl_edma.h � To use the EDMA peripheral. 
dsk6713.h � To use all the intern peripherals. 
dsk6713_aic23.h � To use and configure the audio codec 
math.h � To implement the mathematical operations. 
rtdx.h  � To implement the functions for RTDX communication between the PC and DSP. 
tw_radix2.h � To implement the methods which are used to calculate the coefficients of the 
FFT radix2. 
bitReverse.h � To implement the methods which are used to calculate the coefficients for 
ordering the FFT result. 
 
 

Constant statement 
 
In this section, the constants used in the main program are defined. 
These constants are values which cannot be modified. Therefore, they are usually used to 
configure all functions automatically. 
To define these values, it puts "#define" at the beginning, then a reference to this element and 
ultimately its value. It is not necessary put ";" at the end of line. 
 
Because there are many constants, they are shown directly in the annexes. 
It only gets one of them to see the definition structure:  
 
 

Global variables 
 
This section defines all the global variables/arrays which are used throughout the main program. 
These variables/arrays are constantly updated to perform the various functions in the main code. 
To define a variable, it puts the type first and then its name to use it. Later all these variables are 
initialized before the infinite loop. 
 
Due to the large number of variables, it puts directly in the annexes. 
It only gets a couple of them to see the definition structure: 
 

 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 48 / 97 

Definition and configuration of audio codec and RTDX channels 
 
• Audio codec 
 
To activate and use correctly the A/D and D/A converters from the audio codec, which are 
controlled by the DSP, it has to configure properly the specific registers in the DSP. 
 
First of all a handle is created to control the audio codec: 
 

 
 
When the handle is created, it has to configure its working mode by creating a configuration 
variable. This variable defines the volume, samplig frequency, etc. 
 
The following picture shows the different registers to configure this configuration variable: 
 

 
 
The manufacturer (Texas Instruments) gives all the information about this topic in the 
TLV320AIC23B datasheet, which is defined in the bibliography section. 
The datasheet explains the meaning of each register and all the possible values to set in them. 
 
For this project, according the last document, the optimal configuration for the audio codec is: 
 

 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 49 / 97 

Left line input channel volume control: The input volume of the left channel is set to 0dB 
without mute. 
 
Right line input channel volume control: The input volume of the right channel is set to 0dB 
without mute. 
 
Left channel headphone volume control: The headphone volume of the left channel is set to 
0dB. 
 
Right channel headphone volume control: The headphone volume of the right channel is set 
to 0dB. 
 
Analog audio path control: Microphone boost is set to 20dB and the DAC is selected. 
 
Digital audio path control: It doe so’t use the digital control. 
 
Power down control: Enable all the peripherals and I/O to be used. 
 
Digital audio interface format: Master mode and frame sync followed by two data words 
(DSP format). 
 
Sample rate control: Frequency Sample I/O to 48Hz. 
 
Digital interface activation: The digital interface is activated. 
 
Reset register: It does not use (in fact, it is not necessary to put it in the configuration variable). 
 
 
• RTDX channels 
 
This library provides the data types and functions for: 

o Sending data from the target to the host 
o Sending data from the host to the target 

 
The following data types and functions are defined in the header file rtdx.h. They are available 
via DSP/BIOS or standalone. 
 
Declaration Macros 
— RTDX_CreateInputChannel 
— RTDX_CreateOutputChannel 
 
Functions 
— RTDX_channelBusy 
— RTDX_disableInput 
— RTDX_disableOutput  
— RTDX_enableOutput  
— RTDX_enableInput  
— RTDX_read  
— RTDX_readNB  
— RTDX_sizeofInput  
— RTDX_write 
 
Macros 
— RTDX_isInputEnabled 
— RTDX_isOutputEnabled  



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 50 / 97 

With the upper functions, it is possible configure the CCStudio to enable the RTDX 
communication between the DSP app and an external device (in this case, the user interface). 
 
Therefore, 2 RTDX channels are created for the communication between the PC and VC++: 
 

 
 
RTDX_CreateInputChannel(RTDXinput):  A RTDX channel called RTDXinput is created to 
receive the data from a external device (in this case, from the VC++ interface). 
 
RTDX_CreateOutputChannel(RTDXoutput):  A RTDX channel called RTDXoutput is 
created to send the treated data from a external device (in this case, from the VC++ interface). 
 
With these channels and the RTDX protocol configured (the configuration is performed in the 
user interface), the communication is enabled to request or receive data from one platform to 
another. 
The sending and receiving actions are performed in the infinite loop, inside the main method. 
 
 
 

Definition and configuration of EDMA channels 
 
To read the input data from the codec, update the input array and take out the treated data to the 
speakers, it uses the EDMA peripheral to move all that data continuously. Hence it subtracts a 
lot of work to the DSP app. 
 
The channels performed for these tasks are: 
 

 
 
hEdmaRead: EDMA channel used for move the input data from the codec to the buffer. 
hEdmaWrite:  EDMA channel used for move the output data from the buffer to the codec. 
hEdmaUpdateInput: EDMA channel used for move the input data from the buffer to an array. 
 
In addition of those channels, 6 reload channels are created to change the configuration (i.e. the 
performance) of the previous EDMA channels. 
 

 
 
hEdmaLINKread1:  EDMA reload channel used for change the hEdmaRead configuration. 
hEdmaLINKread2:  EDMA reload channel used for change the hEdmaRead configuration. 
hEdmaLINKwrite1:  EDMA reload channel used for change the hEdmaWrite configuration. 
hEdmaLINKwrite2:  EDMA reload channel used for change the hEdmaWrite configuration. 
hEdmaLINKupdateInput1:  EDMA reload channel used for change the hEdmaUpdateInput 
configuration. 
hEdmaLINKupdateInput2:  EDMA reload channel used for change the hEdmaUpdateInput 
configuration. 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 51 / 97 

The EDMA is configured to take the input data from the codec firstly (hEdmaRead). Its 2 reload 
channels (for stereo input) configure the input channel which it is in use. 
Consequently, it updates the input array with these data to treat them (hEdmaUpdateInput). 
Finally, it takes out the treat data to the codec (hEdmaWrite). Its 2 reload channels (for stereo 
output) configure the output channel which it is using. 
 
 
The following picture shows the configured data transfer between the audio codec and DSP by 
the EDMA: 
 

 
 
The following picture shows the different registers to configure these reload channels: 
 

 
 
The manufacturer (Texas Instruments) gives all the information about this topic in the EDMA 
controller datasheet, which is defined in the bibliography section. 
The datasheet explains the meaning of each register and all the possible values to set in them. 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 52 / 97 

The configuration of the reload channels are very long, therefore it only shows one of them. 
For this project, according the last document, the optimal configuration of this reload channel is: 
 

 
 
 
EDMA_OPT_RMK:  OPTIONS 
     EDMA_OPT_PRI_HIGH:  High priority 
     EDMA_OPT_ESIZE_16BIT:  Data length to read 
     EDMA_OPT_2DS_NO: One dimension origin (the element is inside of a frame) 
     EDMA_OPT_SUM_NONE: Static direction. It always reads from the same place 
     EDMA_OPT_2DD_NO: One dimension destiny (the element is inside of a frame) 
     EDMA_OPT_DUM_INC:  It increases one memory position in buffer when data is read. 
     EDMA_OPT_TCINT_YES:  It enables the chain to connect with the next channel. 
     EDMA_OPT_TCC_OF (9): When buffer is full, it pass to the channel 9. 
     EDMA_OPT_LINK_YES:  It allows the linker. It links channel read1 with channel read2. 
     EDMA_OPT_FS_NO: The channel is synchronized by element. 
 
  EDMA_SRC_OF (McBSP1_DRR): SOURCE: DRR MCBSP1 
  EDMA_CNT_OF (2*WIN_STEP):  LENGHT: 64 positions. 
  EDMA_DST_OF (buffer_in_1): DESTINATION: buffer_in_1. 
  EDMA_IDX_OF (0):  INDEX: It doesn't use. It leaves to 0. 
  EDMA_RLD_OF (0):  RELOAD: link. It puts to 0 because later it will configure the reload. 
 
 
According the upper configuration variable, the reload channel has high priority. It only moves 
a byte from a static direction to a dinamic direction. 
The pointer of the dinamic direction increases its position one unity in each movement of data 
until 64 posistions (the double of WIN_STEP). 
 
When this read channel finishes its work, it pass to the input update channel. 
 
 
The rest of reload channels are shown and explained in the annexes. 
 
 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 53 / 97 

Main method 
 
The main method is divided into two parts: the initialization of variables and the infinite loop. 
 
 
Initializing variables 
 
The first part is to initialize all the variables, arrays and handles to be used later. This section is 
only executed once after the code runs. 
 
It also fills the arrays with the necessary coefficients for the FFT calculation. The interruptions 
are defined too. 
 
Due to it exists a lot of variables, arrays and handles to initialize, here it is only shows some of 
them. The rest it can see in the annexes. 
 

 
 
 
Infinite loop 
 
The infinite loop treats continuously the received data in function of the selected options from 
the graphical interface. 
It also receives the variable values from the VC++ interface. 
 
For a optimal configuration of the tuner implementation, when it uses this one, the sampling 
frequency is changed from 48Hz to 8Hz to ensure a good resolution of the calculated frequency. 
 
The audio codec also incorporates a Nyquist filter to avoid that frequencies bigger than the half 
of the sampling frequency (which it is 8000Hz when the tuner is enabled) are taken to ensure 
input samples with a good quality. 
Therefore, the maximum value which the tuner can detect is 4000Hz (8000Hz / 2). 
 
 
Here it can see a part of this section. The rest can be seen in the annexes. 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 54 / 97 

 
 
 
 

Routine to initialize the EDMA 
 
To use the EDMA peripheral, firstly it has to initialize the channels. 
In this method, the channels are configured and it loads in them the corresponding reload 
channels in each cycle. Therefore, this method is only executed once before enter to the infinite 
loop. 
 
This routine can be seen directly in the annexes. 
 
 
 

Service routine for the EDMA interrupt  
 
With the EDMA interrupt configured, it enters in this method every time that the audio codec 
gets any input data, executing its code inside. 
 
Inside the method, it resets the interruption to prepare it for the next time. Then it activates a 
flag which serves to enter to the infinite loop. 
If the infinite loop is only executed when the input data is received, it subtracts a lot of work to 
the DSP. 
 

 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 55 / 97 

Effects programming 
 
 
This section contains the algorithms which simulate the previously described effects used in this 
project. 
 
Some algorithms are more robust/complex than others, but anyway they have been thought to 
obtain a result as close as possible to the original analog effect in the simplest possible way. 
 
In turn, these effects have been designed with an external variable (from the interface in Visual 
C++) which changes significantly the final result. It changes an essential parameter for each 
group of effects. 
 
 
ByPass 
 
This effect (in fact it is not a real effect, but it has scheduled like it was one more) is the first 
one in the effect chain and it is always executed. No matter the previously selected 
configuration from the VC++ interface. 
 
Its only function is to pass the information from the input array to the output arrays to use them 
later with other effects if they are selected, or directly take them out to the codec. 
 
The implementation code is: 
 

 
 
At each position of the received input array (inputSamples[i]) is processed as follows: 
� It updates the value of the output arrays with the input array value. 
� The output values are limited for security. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 56 / 97 

Gain effects 
 
The gain effects (Overdrive, Distortion and Fuzz) are achieved playing with the output gain, 
determined by a serie of predefined equations. 
 
 
Overdrive 
 
The overdrive effect produces a low distortion. 
For overdrive simulations a soft clipping of the input values has to be performed. 
 
This effect is simulated according the following equation: 
 

 
 
Taking the previous equation, the implementation code is: 
 

 
 
It takes the threshold value according the external value of the gain effect from the slider in the 
VC++ interface (saved in ArrayRTDX [7]). 
The auxiliar variable is defined. 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 57 / 97 

At each position of the received input array (inputEffect[i]) is processed as follows: 
� It updates the input effect array with the actual sample. 
� If the absolute value of the input is less than 1/3 the threshold, the output is the double of 

the input. 
� If the absolute value of the input is between 1/3 and 2/3 threshold, the output is obtained in 

function the above described equation. 
� If the absolute value of the input is greater than 2/3 of the threshold, it shows directly the 

threshold (saturation) value. 
� The oputput value is limited for security. 
� Finally the output arrays are updated. 
 
 
 
Distortion  
 
The distortion effect produces a medium ditortion, perfect for the rock/metal music. 
 
A nonlinearity suitable for the simulation of distortion is given by: 
 

 
 
Taking the previous equation, the implementation code is: 
 

 
 

It takes the output gain value according the external value of the gain effects from the slider in 
the VC++ interface (saved in ArrayRTDX [7]). 
The auxiliar variables are defined. 
 
At each position of the received input array (inputEffect[i]) is processed as follows: 
� It updates the input effect array with the actual sample. 
� The input sample is multiplied by the received output gain and it leaves in percentage 1%. 
� It calculates the distorted sample according the previous equation. 
� The output value is limited for security. 
� Finally the output arrays are updated by mixing a percentage of the modified signal and 

another percentage from the original signal. 
 
 
 
 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 58 / 97 

Fuzz 
 
The fuzz effect clips the sound wave until it is nearly a square wave, resulting in a heavily 
distorted or "fuzzy" sound. 
 
A non-linear function commonly used to simulate distortion/fuzz is given by: 
 

 
 
Taking the previous equation, the implementation code is: 
 

 
 
It takes the output gain value according the external value of the gain effects from the slider in 
the VC++ interface (saved in ArrayRTDX [7]). 
The auxiliar variables are defined. 
 
At each position of the received input array (inputEffect[i]) is processed as follows: 
� It updates the input effect array with the actual sample. 
� The input sample is multiplied by the received output gain and it leaves in percentage 1%. 
� It calculates the super distorted sample according the previous equation. 
� The output value is limited for security. 
� Finally the output arrays are updated by mixing a percentage of the modified signal and 

another percentage from the original signal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 59 / 97 

Dynamic range effects 
 
The dynamic range effects (Compressor, Expander, Noise Gate, AutoWah and Panning) are 
achieved by altering parameters in them, very different to each other. 
The aim is increases/decreases/alters the dynamic range in which they work. 
 
 
Compressor 
 
The compression effect is achieved by elevating the input with a exponent lower than 1 to 
reduce its dynamic range and compress the signal. 
 
The compressor behaviour follows this equation: 
 

 
 
Taking the previous equation, the implementation code is: 
 

 
 
It takes the elevated value according the external value of the dynamic range effects from the 
slider in the VC++ interface (saved in ArrayRTDX [2]). 
 
At each position of the received input array (inputEffect[i]) is processed as follows: 
� It updates the input effect array with the actual sample. 
� The input sample is elevated to the received value (which is between 0.6 and 1) to compress 

the signal. 
� The output value is limited for security. 
� Finally the output arrays are updated. 
 
 
Expander 
 
The expansor effect is achieved by elevating the input with a exponent higher than 1 in order to 
increase its dynamic range and expand the signal. 
 
The compressor behaviour follows this equation: 
 

 
 
Taking the previous equation, the implementation code is: 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 60 / 97 

 
 
It takes the elevated value according the external value of the dynamic range effects from the 
slider in the VC++ interface (saved in ArrayRTDX [2]). 
 
At each position of the received input array (inputEffect[i]) is processed as follows: 
� It updates the input effect array with the actual sample. 
� The input sample is elevated to the received value (which is between 1 and 1.1) to expand 

the signal. 
� The output value is limited for security. 
� Finally the output arrays are updated. 
 
 
Noise Gate 
 
The Noise Gate effect deleted the information under a predifined threshold. 
Its behaviour is described with the following diagram: 
 

 
 
Taking the previous diagram, the implementation code is: 
 

 
 
It takes the threshold value according the external value of the dynamic range effects from the 
slider in the VC++ interface (saved in ArrayRTDX [2]). 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 61 / 97 

The range of the threshold changes if any gain effect is activated. 
 
The auxiliar variable is defined. 
 
At each position of the received input array (inputEffect[i]) is processed as follows: 
� It updates the input effect array with the actual sample. 
� It counts how many samples of the input array which are under the threshold value. 
� If more than half of the array values are under the threshold, all the output array is 0. 
� Finally the output arrays are updated. 
 
 
Auto Wah 
 
The Auto Wah effect is generated with a variable band pass filter automatically in time with a 
LFO (Low Frequency Oscillator). 
 
This effect consist in add to the input signal the same filtered signal with a band pass filter, 
which the cut frequency is changed temporally, increasing it or decreasing it. 
 

 
 
For its implementation, the most used algorithm is the use of state variable filters: 
 

 
 

 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 62 / 97 

Taking the previous diagram and equations, the implementation code is: 
 

 
 
It takes the frequency value according the external value of the dynamic range effects from the 
slider in the VC++ interface (saved in ArrayRTDX [2]). 
The auxiliar variable is defined. 
 
At each position of the received input array (inputEffect[i]) is processed as follows: 
� It updates the input effect array with the actual sample. 
� The cut frequency is updated (between a predefined range) with a cosinus signal (LFO) 

which frequency is the received value from outside. 
� With the previous cut frequency, one parameter for the state variable filter is updated. 
� It calculates the value of the 3 filters (low pass filter, high pass filter and the band pass 

filter), which depend on each other, its previous values and input samples. 
� The auxiliar variable is used to implement a circular buffer for the next step. 
� If the filter values are higher than the maximum value, they are resetted. 
� Finally the output arrays are updated by mixing a percentage of the modified signal and 

another percentage from the original signal. 
� It increments the used pointer and resetted if it achieves the maximum value. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 63 / 97 

Panning 
 
The Panning effect moves the sound from one output channel to the another one with a LFO 
(Low Frequency Oscillator). 
For this effect, the only thing which has to do is introduce the horizontal component of the input 
signal in one output channel (Left or Right) and the vertical component in the another channel. 
 

 
 
The implementation code is: 
 

 
 
It takes the frequency value according the external value of the dynamic range effects from the 
slider in the VC++ interface (saved in ArrayRTDX [2]). 
 
At each position of the received input array (inputEffect[i]) is processed as follows: 
� It updates the input effect array with the actual sample. 
� One output channel (left or right) is updated by multiplying the input array with a cosinus 

signal (LFO opposite to the sinus signal). The used frequency is defined with the external 
value. It also determines the output gain. 

� The another output channel (left or right) is updated by multiplying the input array with a 
sinus signal (LFO opposite to the cosinus signal). The used frequency is defined with the 
external value. It also determines the output gain. 

� It increments the used pointer and resetted if it achieves the maximum value. 
 
 
 
 
 
 
 
 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 64 / 97 

Modulation effects 
 
The modulation effects (Chorus, Flanger and Tremolo) are achieved playing with previous 
samples of a variable delay by a LFO. This LFO modulates the signal under specific 
circumstances. 
 
 
Chorus 
 
The chorus effect plays with delayed samples (using a LFO) to simulate the mix of 2 inputs with 
the same information, but without perfect (but constant) synchronization between them. 
 

 
 
Taking the previous diagram, the implementation code is: 
 

 
 
It takes the frequency value according the external value of the modulation effects from the 
slider in the VC++ interface (saved in ArrayRTDX [0]). 
 
At each position of the received input array (inputEffect[i]) is processed as follows: 
� It updates the input effect array with the actual sample. 
� It takes a variable delayed value (with a LFO) between 10ms and 30ms. 
� It subtracts the previous value to the actual pointer to achieve the desired array index. 
� If this array index is negative, it adds the maximum value to simulate a circular buffer. 
� With the final value of the array index, it takes the delayed sample from the chorus array. 
� Finally the output arrays are updated by mixing a percentage of the modified signal and 

another percentage from the original signal. 
� The actual input sample is saved in the chorus array to update it. 
� It increments the used pointers and they are resetted if they achieve the maximum value. 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 65 / 97 

Flanger 
 
Similar to the chorus effect, the flanger effect plays with delayed samples (using a LFO which 
changes its frequency periodically with another LFO) to simulate the mix of 2 inputs with the 
same information but with variable imperfect synchronization between them. 
 

 
 
Taking the previous diagram, the implementation code is: 
 

 
 
It takes the frequency value according the external value of the modulation effects from the 
slider in the VC++ interface (saved in ArrayRTDX [0]). 
 
At each position of the received input array (inputEffect[i]) is processed as follows: 
� It updates the input effect array with the actual sample. 
� It takes a variable frequency value (with a LFO) between 1Hz and 4Hz. 
� It takes a variable delayed value (with another LFO) between 0ms and 10ms. 
� It subtracts the previous value to the actual pointer to achieve the desired array index. 
� If this array index is negative, it adds the maximum value to simulate a circular buffer. 
� With the final value of the array index, it takes the delayed sample from the flanger array. 
� Finally the output arrays are updated by mixing a percentage of the modified signal and 

another percentage from the original signal. 
� The actual input sample is saved in the chorus array to update it. 
� It increments the used pointers and they are resetted if they achieve the maximum value. 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 66 / 97 

Tremolo 
 
The Tremolo effect simulates that the output gain change continuosly (with a LFO) all the time. 
 
Its behaviour is described with the next diagram: 
 

 
 
Taking the previous diagram, the implementation code is: 
 

 
 
It takes the frequency value according the external value of the modulation effects from the 
slider in the VC++ interface (saved in ArrayRTDX [0]). 
 
At each position of the received input array (inputEffect[i]) is processed as follows: 
� It updates the input effect array with the actual sample. 
� It takes a variable value (with a LFO) of output gain. 
� The previous oscillatory gain is multiplied with the actual input sample according the upper 

equation. 
� Finally the output arrays are updated. 
� It increments the used pointer and it is resetted if it achieves the maximum value. 
 
 
 
 
 
 
 
 
 
 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 67 / 97 

Repetition effects 
 
The modulation effects (Delay/Echo and Reverb) are achieved using delayed samples 
(sometimes many of them at the same time with different distance from each other) and digital 
filters to simulate the acoustics of the rooms. 
 
 
Delay/Echo 
 
The Delay or Echo effect simulates the returned (and delayed) data which was bounced off in a 
wall. 
 
To realice the Delay or Echo effects, it has to follow this diagram: 

 
 
Taking the previous diagram, the implementation code is: 
 

 
 
It takes the delayed time value (in samples) according the external value of the repetition effects 
from the slider in the VC++ interface (saved in ArrayRTDX [4]). 
If this extern value is higher than the maximum possible value, this value is reduced to the 
maximum possible value. 
 
At each position of the received input array (inputEffect[i]) is processed as follows: 
� It updates the input effect array with the actual sample. 
� If the delayed time is 0, the output information is the same than the input infomation. 
� If the delayed time is not 0, it takes the delayed sample according the received delay value. 
� Finally the output arrays are updated by mixing a percentage of the modified signal and 

another percentage from the original signal. 
� The actual input sample is saved in the Delay/Echo/Reverb array to update it. 
� It increments the used pointer and it is resetted if it achieves the maximum value. 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 68 / 97 

Reverb 
 
The Reverb effect simulate the acoustics of a room with many delayed samples. 
 
To facilitate this algorithm, it uses a fixed/static equation which simulates the acoustic of a 
room with nothing which would muffle the sound (without curtains, blankets...):  
 

 
 
With this equation, it uses the Schroeder model (which uses the mix of many delayed samples 
with a IIR filter) to simulate the effect. Its diagram is: 

 
Taking the previous diagram and equation, the implementation code is: 
 

 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 69 / 97 

It takes the delayed time value (in samples) according the external value of the repetition effects 
from the slider in the VC++ interface (saved in ArrayRTDX [4]). 
The auxiliar variables are defined. 
If this extern value is higher than the maximum possible value, this value is reduced to the 
maximum possible value. 
 
At each position of the received input array (inputEffect[i]) is processed as follows: 
� It updates the input effect array with the actual sample. 
� The auxiliar variables are used to implement circular buffers for the next steps. 
� If the delayed time is 0, the output information is the same than the input infomation. 
� If the delayed time is not 0: 

o It gets a sum of delayed samples in different moments (which simulate all the 
reflections). Each one has its specific gain (the most recent samples have the higher 
gain because these ones take less time to return to the origin). 

o The previous value is set to 0 if exceeds the maximum possible value. 
o The upper final value is processed inside a IIR filter, which uses the value of the 

reflections and their own previous values to generate the filtered output value. 
� Finally the output arrays are updated by mixing a percentage of the modified signal and 

another percentage from the original signal. 
� The actual input sample is saved in the Reverb array to update it. 
� It increments the used pointer and it is resetted if it achieves the maximum value. 
 
 
 

Tuner 
 
This one is not a real effect, but it has been designed like one of them because it is activated or 
deactivated according to the user interface, like the other effects. 
 
The tuner (on the DSP app) takes the input information and it performs the FFT to get the 
frequency spectrum of the input signal and to determine its main frequency. 
Then the data is sent to the interface by RTDX and there it calculates the name of the note and 
its octave. 
 
It is important to indicate that the detection range of this implementation is between 32 Hz and 
4000 Hz. 
 
The minimum frequency (32Hz) is due to the configuration of the window length and the 
window step, which determine the resolution according the sampling frequency. 
32 Hz is a Do/C note in the first octave. 
 
The maximum frequency (4000Hz) is due to the Nyquist filter which the codec incorporates to 
ensure a good quality of the input samples. 
This means that the sampling frequency here is 8000 Hz. 
 
 
 
 
 
 
 
 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 70 / 97 

According to the work in MATLAB, the algorithm is: 
 

 
 
The auxiliar variables are defined. 
The output signal is muted. 
 
If the a frequency value is solicited, during a predefined number of times: 
� The data is prepared to use it for the FFT function. 
� The FFT is performed (the result is disordered). 
� The FFT result is ordered (these values have real and imaginary part). 
� To ease the process, it takes the module of each sample. 
� It takes the frequency value with the higher amplitude. 
 
The frequency is calculated a predefined number of times (to ensure a real value). 
This final value is sent to the interface to show it. 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 71 / 97 

Microsoft Visual C++ 
 
There are two forms to schedule an user interface: the programming to graphic interface and the 
programming oriented to a text interface (console mode). 
 
In the second one, the scheduler organizes in a sequential form the calculation instructions and 
the interaction with the user. But in the programming in a graphic interface, it is not defined the 
order which the user interacts with the program (selecting any option, changing text…). 
Due to this, the form to organize a program to both environments is different. 
 
In the console mode, the scheduler can intercalate calculation and user interaction sentences. 
However, in the graphic environment it executes an infinite loop. It waits for an event (from 
user or system), it executes the code associated to that event, and then it returns to wait to the 
next one. The events can be everything: pressing a button from the mouse, pressing a key, 
selecting a menu option, creating a window, changing the window size, etc. 
Furthermore, it cannot define the order of these events. It only depends on the user. 
 
In the different events in graphic mode, it is important to understand which events are 
associated with the window. On the other hand, when it writes something in the console mode, 
it is permanent. In the graphic mode it is necessary to redraw the window completely when it is 
required. This requirement can come from the program or the system (for example, a new 
window inhibits the older one). This requirement is indicated with an event. Due to this, in the 
graphic mode is necessary that the program stores all the data to redraw the window content in 
any moment when it receives the event. 
 
The graphic interface elements can be described and used easily like objects. It is normal 
to use the programming oriented to objects for the scheduling of these interfaces. 
For this reason, it is decided to program a graphic interface using the Microsoft Visual 
C++ (VC++). 
 
 

Introduction to Microsoft Visual C++  
 
The development environment of VC++ 6.0 provides many possibilities to the programmer 
from creating applications for various formats and features, plus through the creation of DLL 
libraries, icons, bitmaps, cursors, windows, etc. 
 
All this Integrated Development Environment (IDE) is a great tool to develop the most versatile 
applications for both, Windows and DOS, environments. 
 
 
To realize the scheduling for windows and its events, the operating system provides many 
functions in libraries. That set of functions is called Application Programming Interface (API), 
and in Windows is called Software Development Kit (SDK). These functions serve to manage 
windows (create, resize, close, etc.) of different types (normal, menu, button, dialog, text, 
selection list, etc.), obtain events, perform draw actions, etc. 
 
An API is a set of functions very extensive. It is necessary a lot of functions and very varied to 
manage the windows environment. 
Furthermore, a lot of functionalities are very repetitive along the programs (create a main 
window with menu options, etc.), hence it requires a set of complex and heavy API, even for the 
easiest program. 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 72 / 97 

To facilitate this job, Visual C++ provide another API, including a class library that 
encapsulates the most part of the complexity. It only leaves the task of the specific part of the 
program to the scheduler. In Visual C++, this class library is called Microsoft Foundation 
Classes (MFC). 
 
These classes have become a standard of development for Windows applications. They have 
facilitated a lot the programming in C++, for example to include a CString type data to declare 
strings. That does not exist in C. 
 
In this way, for example, the creation of the main window is encapsulated in series of objects 
that create the program framework without adding any additional code line. 
 
To help even more, the development environment sometimes disposes of utilities which allow 
to put in a graphic and intuitive way the interface elements (menus, buttons, text squares, etc.) 
and even links with the service functions of its events. 
Of this manner, the scheduler can write less code (it saves time and errors). Furthermore, the 
part of the program which it can see is more clear and concise. 
 
 
 

Creating a Visual C++ project 
 
To create the interface, firstly it enters in the Visual C++ 6.0 program. Then it selects “NEW” 
from the “FILE” menu and the following screen appears: 

 

This screen shows the different projects which can be developed with VC++. It selects “MFC 
AppWizard (exe)” to do a MFC app. The VC++ works with PROJECTS, and these ones are 
grouped into WORKSPACES. 
Therefore it selects the name and the directory of this project. 
 
After entering the name of the project, it presses the “OK” button. Then it starts the MFC 
Application Wizard which creates a default window. 
 
 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 73 / 97 

This process is shown in the following window: 
 

 
 
This application can be Single Document Interface (SDI), Multiple Document Interface (MDI) 
or based on dialogues (Dialog Based). SDI is very similar to Dialog Based, except that by 
default VC++ adds menus. MDI is an application such as Word, with a main window that can 
contain many other inside (as a container). 
 
This user interface is scheduled in a graphical way (with windows as classes). So it selects the 
Dialog Based option and after that it selects the correct language (in this case English). 
 
Later, it presses “NEXT” to move the rest of screens (and “FINISH” for last one) until the 
following window is shown, and the app is created: 
 

 
 
Now it can schedule a new program, in this case with the graphical user interface. 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 74 / 97 

When a new program is scheduled, it must check if it has errors or warnings. 
If it has any problem, it has to fix it. But if it has none, the code is compiled automatically. 
 

 
 
To verify and compile the code, it clicks on the "Build" button in the top toolbar. 
 
When the code has been verified, it proceeds to execute it with the "Execute program" button 
(which it is a red exclamation sign), next to previous button. 
 
In fact, it can do all the above process directly by pressing the button "Execute program". 
 
 
 

The main interface classes 
 
When the VC++ project has been performed, the graphic interface is generated with 3 main 
classes. They are the minimum required classes (which are generated automatically by the 
Visual C++) to the correct functionality of the application. 
 
They can be seen in the “Classes” label in the left window. 
 

 
 
 
CAboutDlg:  This class contains the "About message" dialog, as in most window-based 
applications. 
 
CxxxxxxApp:  This class is a standard class included in most projects to handle the application 
start-up, since there is no main function as in a typical C console application. It represents the 
application, and it is necessary for the compilation of the program. 
Inside this one has to be declared the use of the OLE objects for the data exchange between the 
interface app and the DSP app. Last one has to be performed by executing the function: 
AfxOleInit(); 
 
CxxxxxxDlg: This class is the main class of the program. It represents the dialog window where 
appears the controls, buttons, lists and other app functionalities. 
This class contains all the weight of the application, since this one is the main class. If it exists 
other windows, the main class allows the data exchange between all of them. 
 
It also contains all the specific methods which are created to this project. 
 
In addition to these classes, it is necessary to define one more class to enable the RTDX 
communication between the Visual C++ app and the ANSI C app, which it is explained later. 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 75 / 97 

The graphical user interface 
 
Here it exposes the different parts from the user interface, as well as their classes and methods. 
 
Only when the user clicks in any check box or slider, the interface sends a data frame (using the 
RTDX communication) with the selected options to enable or disable and configure the audio 
effects previously shown. 
 
Parallely when the tuner option is enabled, the interface receives the frequency value of the 
input signal and it shows on the screen. 
 
 

The IrtdxExp class 
 
As previously it has told, it must add manually an additional class (IrtdxExp) to manage the 
communication between the user interface and the DSP application. The communication is 
performed through the RTDX libraries. 
 
This class is created from importing the Dll "Rtdxint.dll" supplied by Texas Instruments in the 
CCStudio folders. 
 
Thus, it is possible from the interface to enable or disable the effects which the DSP processes. 
The DSK works like an external card. 
 
The complexity is encapsulated in the class, from the dynamic library (dll). 
Therefore, the RTDX has two interfaces: the first part corresponds to the Host (the user 
interface), and the second part to the Target (DSP). 
 
The export RTDX interface allows the access to the functionalities from the Client to the Host. 
Using these functions, the Client application can get data from the RTDX libraries of the Host 
or it can send data to the RTDX libraries of the Host. 
 
The functions in this interface can be used with Host clients written in Visual Basic, C++ or 
Labview. Below they are shown some of them. In the bibliography it can see many documents 
which explain these functions and its possible values. 
 
 
Processor Activation: 
SetProcessor 
 
Configuration functions: 
ConfigureRTDX 
ConfigureLogFile 
EnableRtdx, DisableRtdx 
EnableChannel, DisableChannel 
(The RTDX configuration can be done either from the user interface or from the CCStudio). 
 
Functions to open/close channels: 
Open 
Close 
 
 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 76 / 97 

Functions to read channels: 
ReadSAI1, ReadSAI2, ReadSAI4, ReadSAF4, ReadSAF8 
ReadSAI2V, ReadSAI4V 
Read 
ReadI1, ReadI2, ReadI4, ReadF4, ReadF8 
 
Functions to write channels: 
Write 
WriteI1, WriteI2, WriteI4, WriteF4, WriteF8 
StatusOfWrite 
 
Functions to search channels: 
Seek 
SeekData 
 
Flush functions of channels: 
Flush 
 
 
To use the IrtdxExp class in the interface, a couple of pointers are declared. With these pointers, 
it is possible to use all the previous methods. 
 
To perform the communication, it must distinguish between the two types of channels: 
 
- Input channels: They allow the communication from the Target application to the Host 
application. These channels are only for input data. Therefore, to access them, it must use the 
Read() function. But before, it must has been defined the previous channel as a global variable 
of the class. 
 
- Output channels: They allow the communication from the Host application to the Target 
application. These channels provide the ability to send the configuration data to the code which 
is running in the Target application (DSP). 
To use these output channels, first they must be declared. Then it accessed to the sending 
information using the Write() function or its derivatives. 
 
With the previous information, the implementation in the interface to use the RTDX 
communication is: 
 

 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 77 / 97 

All the code can be seen in the annexes. 
 
It has to remember that these channels are not bidirectional. Hence, each channel can be an 
input or output channel exclusively. For this reason, two channels are created. 
 
When the class is added and the pointers are defined to use the RTDX communication, it can 
see the new class in the class hierarchy, with all its methods to be used inside. 
 

 
 
 

The application parts 
 
The present application is a very easy application which has the following parts: 
 

 
 
� Many check boxes to activate or deactivate the flags which enable or disable the different 

effects. Only the effects inside a group are mutually exclusive. It adds text labels to clarify 
the function of every check box. 

 
� 4 Check boxes to enable or disable each effect group (gain, dynamic range, modulation and 

repetition effects). It adds text labels to clarify the function of each check box. 
 
� A slider for each effect group changes a specific parameter to vary the selected effect 

(quantity of gain, frequency or threshold value, frequency value and quantity of delay 
respectively) in real time. It adds text labels to clarify the variable paramenter in each slider. 

 
� A check box and 3 text labels to interact with a digital tuner in real time. The tuner gives the 

name, the frequency and the octave of the received note from the DSP app. 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 78 / 97 

Performed methods 
 
The designed methods of the user interface are explained here. The rest of methods are omitted 
because they are created automatically by the Visual C++. 
Anyway, all the effects can be seen in the annexes. 
 
 
Gain effects 
 
void CUserInterfaceDlg::OnOverdrive() 
 
It activates or deactivates the corresponding flag for that the DSP app can perform the 
Overdrive effect when the specific check box is clicked. 
 
Enabling this flag, it disables the Distortion and Fuzz effects if they are selected. The slider 
corresponding to the gain effects is rebooted. 
 

 
 
The variable parameters are updated and this data is also sent to the DSP app. 
 
 
void CUserInterfaceDlg::OnDistortion() 
 
It activates or deactivates the corresponding flag for that the DSP app can perform the 
Distortion effect when the specific check box is clicked. 
 
Enabling this flag, it disables the Overdrive and Fuzz effects if they are selected. The slider 
corresponding to the gain effects is rebooted. 
 
The variable parameters are updated and this data is also sent to the DSP app. 
 
 
void CUserInterfaceDlg::OnFuzz() 
 
It activates or deactivates the corresponding flag for that the DSP app can perform the Fuzz 
effect when the specific check box is clicked. 
 
Enabling this flag, it disables the Overdrive and Distortion effects if they are selected. The slider 
corresponding to the gain effects is rebooted. 
 
The variable parameters are updated and this data is also sent to the DSP app. 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 79 / 97 

void CUserInterfaceDlg::OnSliderGain(NMHDR* pNMHDR,  LRESULT* pResult) 
 
When the corresponding slider is moved, it changes the quantity of gain of the selected gain 
effect under the bounds previously defined. If there is not any effect selected, or the check box 
for disable the gain effects is activated, the slider remains disabled. 
 

 
 
The variable parameters are updated and this information is also sent to the DSP app. 
 
 
void CUserInterfaceDlg::OnGainOnOff() 
 
It deactivates and disables all the check boxes and the slider inside the gain effects group box, 
when the corresponding check box is clicked. 
 
All the gain effects are not enabled until this flag is deactivated again, leaving those effects in 
their initial configuration. 
 

 
 
The variable parameters are updated and this information is also sent to the DSP app. 
 
 
 
 
 
 
 
 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 80 / 97 

Dynamic range effects 
 
void CUserInterfaceDlg::OnCompressor() 
 
It activates or deactivates the corresponding flag for that the DSP app can perform the 
Compressor effect when the specific check box is clicked. 
 
Enabling this flag, it disables the Expander, Noise Gate, Autowah and Panning effects if they 
are selected. The slider corresponding to the dynamic range effects is rebooted. 
 
The variable parameters are updated and this data is also sent to the DSP app. 
 
 
void CUserInterfaceDlg::OnExpansor() 
 
It activates or deactivates the corresponding flag for that the DSP app can perform the Expander 
effect when the specific check box is clicked. 
 
Enabling this flag, it disables the Compressor, Noise Gate, Autowah and Panning effects if they 
are selected. The slider corresponding to the dynamic range effects is rebooted. 
 
The variable parameters are updated and this data is also sent to the DSP app. 
 
 
void CUserInterfaceDlg::OnNoiseGate() 
 
It activates or deactivates the corresponding flag for that the DSP app can perform the Noise 
Gate effect when the specific check box is clicked. 
 
Enabling this flag, it disables the Compressor, Expander, Autowah and Panning effects if they 
are selected. The slider corresponding to the dynamic range effects is rebooted. 
 
The variable parameters are updated and this data is also sent to the DSP app. 
 
 
void CUserInterfaceDlg::OnAutoWah() 
 
It activates or deactivates the corresponding flag for that the DSP app can perform the Autowah 
effect when the specific check box is clicked. 
 
Enabling this flag, it disables the Compressor, Expander, Noise Gate and Panning effects if they 
are selected. The slider corresponding to the dynamic range effects is rebooted. 
 
The variable parameters are updated and this data is also sent to the DSP app. 
 
 
void CUserInterfaceDlg::OnPanning() 
 
It activates or deactivates the corresponding flag for that the DSP app can perform the Panning 
effect when the specific check box is clicked. 
 
Enabling this flag, it disables the Compressor, Expander, Noise Gate and Autowah effects if 
they are selected. The slider corresponding to the dynamic range effects is rebooted. 
 
The variable parameters are updated and this data is also sent to the DSP app. 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 81 / 97 

void CUserInterfaceDlg::OnSliderDynRan(NMHDR* pNMHD R, LRESULT* pResult) 
 
When the corresponding slider is moved, it changes the frequency level or the threshold value of 
the selected dynamic range effect under the bounds previously defined. If there is not any effect 
selected, or the check box for disable the dynamic range effects is activated, the slider remains 
disabled. 
 
The variable parameters are updated and this information is also sent to the DSP app. 
 
 
void CUserInterfaceDlg::OnDynRanOnOff() 
 
It deactivates and disables all the check boxes and the slider inside the dynamic range effects 
group box, when the corresponding check box is clicked. 
 
All the dynamic range effects are not enabled until this flag is deactivated again, leaving those 
effects in their initial configuration. 
 
The variable parameters are updated and this information is also sent to the DSP app. 
 
 
 
Modulation effects 
 
void CUserInterfaceDlg::OnChorus() 
 
It activates or deactivates the corresponding flag for that the DSP app can perform the Chorus 
effect when the specific check box is clicked. 
 
Enabling this flag, it disables the Flanger and Tremolo effects if they are selected. The slider 
corresponding to the modulation effects is rebooted. 
 
The variable parameters are updated and this data is also sent to the DSP app. 
 
 
void CUserInterfaceDlg::OnFlanger() 
 
It activates or deactivates the corresponding flag for that the DSP app can perform the Flanger 
effect when the specific check box is clicked. 
 
Enabling this flag, it disables the Chorus and Tremolo effects if they are selected. The slider 
corresponding to the modulation effects is rebooted. 
 
The variable parameters are updated and this data is also sent to the DSP app. 
 
 
void CUserInterfaceDlg::OnTremolo() 
 
It activates or deactivates the corresponding flag for that the DSP app can perform the Tremolo 
effect when the specific check box is clicked. 
 
Enabling this flag, it disables the Chorus and Flanger effects if they are selected. The slider 
corresponding to the modulation effects is rebooted. 
 
The variable parameters are updated and this data is also sent to the DSP app. 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 82 / 97 

void CUserInterfaceDlg::OnSliderModul(NMHDR* pNMHDR , LRESULT* pResult) 
 
When the corresponding slider is moved, it changes the frequency level of the selected 
modulation effect under the bounds previously defined. If there is not any effect selected, or the 
check box for disable the modulation effects is activated, the slider remains disabled. 
 
The variable parameters are updated and this information is also sent to the DSP app. 
 
 
void CUserInterfaceDlg::OnModuOnOff() 
 
It deactivates and disables all the check boxes and the slider inside the modulation effects group 
box, when the corresponding check box is clicked. 
 
All the modulation effects are not enabled until this flag is deactivated again, leaving those 
effects in their initial configuration. 
 
The variable parameters are updated and this information is also sent to the DSP app. 
 
 
 
Repetition effects 
 
void CUserInterfaceDlg::OnDelayEcho() 
 
It activates or deactivates the corresponding flag for that the DSP app can perform the 
Delay/Echo effect when the specific check box is clicked. 
 
Enabling this flag, it disables the Reverb effect if it is selected. The slider corresponding to the 
repetition effects is rebooted. 
 
The variable parameters are updated and this data is also sent to the DSP app. 
 
 
void CUserInterfaceDlg::OnReverb() 
 
It activates or deactivates the corresponding flag for that the DSP app can perform the Reverb 
effect when the specific check box is clicked. 
 
Enabling this flag, it disables the Delay/Echo effect if it is selected. The slider corresponding to 
the repetition effects is rebooted. 
 
The variable parameters are updated and this data is also sent to the DSP app. 
 
 
void CUserInterfaceDlg::OnSliderRepet(NMHDR* pNMHDR , LRESULT* pResult) 
 
When the corresponding slider is moved, it changes the quantity of delay of the selected 
repetition effect under the bounds previously defined. If there is not any effect selected, or the 
check box for disable the repetition effects is activated, the slider remains disabled. 
 
The variable parameters are updated and this information is also sent to the DSP app. 
 
 
 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 83 / 97 

void CUserInterfaceDlg::OnRepeOnOff() 
 
It deactivates and disables all the check boxes and the slider inside the repetition effects group 
box, when the corresponding check box is clicked. 
 
All the repetition effects are not enabled until this flag is deactivated again, leaving those effects 
in their initial configuration. 
 
The variable parameters are updated and this information is also sent to the DSP app. 
 
 
 
Tuner implementation 
 
void CUserInterfaceDlg::OnTunerOnOff() 
 
This method allows that the user interface can receive information from the DSP application and 
it enables the tuner to use it. 
 
A timer is set to execute periodically its method according the defined time. 
It also deactivates the rest of the interface, because when the tuner is working, it does not have 
sense to use the audio effects. Here it shows part of this method: 
 

 
 
 
void CUserInterfaceDlg::OnTimer(UINT nIDEvent) 
 
This method is executed periodically according the defined time by a timer. 
It is only executed when the tuner flag is enabled. 
 
It reads in real time the data which the DSP sends to the user interface (the frequency of the 
input signal) to calculate the name of the note and its octave. 
Then it shows all the information on the screen. 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 84 / 97 

 
 
 
Common methods 
 
BOOL CUserInterfaceDlg::OnInitDialog() 
 
This method is only executed once when the interface is initialized. It is created automatically 
by the program. 
 
For this project, it adds the inicialization of the sliders and the variables to use. 
Here it shows part of the code: 
 

 
 
It also includes the definition of the RTDX communication, which is shown above. 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 85 / 97 

void CUserInterfaceDlg::SendArray() 
 
This method is called whenever the array with the audio effects variables is updated. The data is 
sent from the user interfacing to the DSP using the RTDX communication. 

 
 
 
void CUserInterfaceDlg::ReceiveArray() 
 
This method is designed to receive a data array from the DSP to the user interface using RTDX 
communication. 
 
The received information would be used for the tuner implementation and to show the output 
signal level in real time. However, when the RTDX receives and sends information altogether, it 
has problems to work correctly. Therefore this method is only defined, but it is not used. 

 
 
 
void CUserInterfaceDlg::OnOK() 
 
This method closes the user interface when the "Accept" button is pressed. It is also created 
automatically by the program. 
 
In this application, it also closes the timer defined before and it resets all the variables to their 
initial state to be sent to the DSP via RTDX. 

 



Multieffects processor  Programming 
 

Cristian Gil Morales REPORT 86 / 97 

sndRTDX 
 
sndRTDX (ArrayRTDX in the DSP app) is the data array sent to the DSP app by the user 
interface whenever it interact with it (to move any slider, to press any check box ...). 
 
Each position in this array informs to the DSP app about which effects have to be used and the 
variable value of each group of effects. 
 
 
The information in each position is: 
 
sndRTDX [14] = It solicits another frequency value from the DSP app to the user interface. 
 
sndRTDX [13] = It changes the sampling frequency I/O between 48Hz and 8Hz. This flag is 
only used for the tuner algorithm. 
 
sndRTDX [12] = For future uses. 
 
sndRTDX [11] = For future uses. 
 
sndRTDX [10] = It enables the tuner. It also disables the rest of audio effects. 
 
sndRTDX [9] = It indicates which gain effect (Overdrive, Distortion or Fuzz) has to be used. 
 
sndRTDX [8] = For future uses. 
 
sndRTDX [7] = It indicates the quantity of gain for the gain effects. 
 
sndRTDX [6] = For future uses. 
 
sndRTDX [5] = It indicates which repetition effect (Delay/Echo or Reverb) has to be used. 
 
sndRTDX [4] = It indicates the quantity of delay for the repetition effects. 
 
sndRTDX [3] = It indicates which dynamic range effect (Compressor, Expansor, Noise Gate, 
Auto-Wah or Panning) has to be used. 
 
sndRTDX [2] = It indicates the the frequency level or the threshold value for the dynamic range 
effects. 
 
sndRTDX [1] = It indicates which modulation effect (Chorus, Flanger or Tremolo) has to be 
used. 
 
sndRTDX [0] = It indicates the frequency level for the modulation effects. 



Multieffects processor  Conclusions 
 

Cristian Gil Morales REPORT 87 / 97 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CONCLUSIONS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Multieffects processor  Conclusions 
 

Cristian Gil Morales REPORT 88 / 97 

Cost analysis 
 
This project was carried out in a total of 8 months (2 semesters), in which it has been invested 
all the possible time in the documentation, studying, designing and programming of it. 
 
 
First of all, the time spent to simulate the audio treatment in real time with MATLAB has been: 
 

SIMULATING WITH MATLAB 
Task Time 

Studying of audio treatment 20 hours 
Studying the acquisition in real time 20 hours 
Fast Fourier Transform 20 hours 
Programming in MATLAB 80 hours 
Others 10 hours 
TOTAL 150 hours 

 
150 hours of studying were necessary to simulate the function of the project. 
 
 
The time spent to study each part of the project has been: 
 

STUDYING OF TMS320C6713 
Task Time 

Processor DSP 30 hours 
Programming environment 30 hours 
Peripheral audio codec 10 hours 
Peripheral McBSP (comm. serie) 15 hours 
Interruptions 15 hours 
Peripheral EDMA 40 hours 
Peripheral RTDX 30 hours 
Rest of peripherals 15 hours 
Programming language ANSI C 50 hours 
Others 25 hours 
TOTAL 260 hours 

 
STUDYING OF THE INTERFACE 

Task Time 
Searching of a software 10 hours 
Using Microsoft Visual 20 hours 
Programming language Visual C++ 50 hours 
Communication RTDX 30 hours 
Others 30 hours 
TOTAL 140 hours 

 
400 hours of studying were necessary to prepare the project. 
 
 
 
 
 
 



Multieffects processor  Conclusions 
 

Cristian Gil Morales REPORT 89 / 97 

When all the knowledge has been learnt, the invested time to design and programming this 
project has been: 
 

PROGRAMMING THE DSP APP 
Task Time 

Configuration of the project 10 hours 
Initialization of the DSP 20 hours 
Configuration of audio codec 15 hours 
Configuration of McBSP 25 hours 
Configuration of EDMA 40 hours 
Managing the interruptions 20 hours 
Effects programming 400 hours 
Implementation of the FFT 160 hours 
Communication RTDX 30 hours 
Others 40 hours 
TOTAL 760 hours 

 
PROGRAMMING THE INTERFACE APP 

Task Time 
Configuration of the project 10 hours 
Designing the interface 25 hours 
Programming the interface 55 hours 
Communication RTDX 30 hours 
Others 20 hours 
TOTAL 140 hours 

 
900 hours of programming were necessary to perform the project. 
 
 
Once the programming has been finished, the time spent writing the memory has been: 
 

WRITING THE MEMORY 
Task Time 

Introduction (1 st part) 30 hours 
Programming (2nd part) 70 hours 
Conclusions (3rd part) 30 hours 
Others 15 hours 
TOTAL 145 hours 

 
145 hours of writing were necessary to document the project. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Multieffects processor  Conclusions 
 

Cristian Gil Morales REPORT 90 / 97 

Budget 
 
The sum of all these hours makes a total of 1595 hours, or 200 working days if they are 
distributed in 8 hours/day (like the working time of a worker). 
 
To do the budget of this project, it can only count the programming hours. The hours spent in 
the studying or simulating (and writing the memory) cannot count because these ones are not 
part of the project development. 
 
This results in 900 hours spent in the development (programming) of the project, or 113 
working days if they are distributed in 8 hours/day (like the working time of a worker). 
 
 
The price charged to a customer is 25 €/hour. This price includes the labor of junior engineer, 
the used material, internal expenses, etc. 
 
It also has to count the price of the hardware TMS320C6713, which is 304 € aprox. 
 
Therefore, it multiplies the hours spent in scheduling by the upper price per hour, and it adds the 
price of the used hardware. 
 
The project has a budget of: 
 

Twenty two thousand eight hundred and four euros (22804 €). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Multieffects processor  Conclusions 
 

Cristian Gil Morales REPORT 91 / 97 

Conclusions 
 

Final results 
 
All the performed tests have resulted correct: 
 
Most of the effects are generated correctly with the designed algorithms, but some of them 
are a little bit different in respect of the original idea. 
 
Following there is a brief description about these results, effect by effect: 
 
• ByPass: This effect (although it is not really a real effect) works perfectly. It is verified that 

the codec takes out the same information which receives. 
 
• Overdrive: This effect works fine. This effect applies a few distortions in the output signal. 
 
• Distortion: This effect works very well. The signal is distorted and it has a lot of gain in the 

output. 
 
• Fuzz: This effect works fine. The result can annoy in high levels. 
 
• Compressor: This effect works very well. It offers compression, but the result is not very 

impressive. 
 
• Expansor: This effect works fine. The result can annoy in high levels. 
 
• Noise Gate: The algorithm is technically good, but when the input signal is around the 

threshold, the result is strange. In this specific case, it produces some noise due to the 
speakers, which are not of good quality. 

 
• Auto Wah: The algorithm and the result are technically good, but the result is a bit different 

in respect of the expected one. 
 
• Panning: This effect works very well. The sound rotates around the speakers perfectly. 
 
• Chorus: This effect works very well. It simulates the two inputs with a little delay between 

them. 
 
• Flanger: This effect works fine, but the result is a bit different in respect of the expected 

one. 
 
• Tremolo: This effect works very well. The result oscillates according to the output gain. 
 
• Delay/Echo: This effect works very well. If the delay time is small, the Echo effect (it 

cannot distinguish the two used inputs) can be heard. And if the delay time is big, the Delay 
effect (it can distinguish the two used inputs) can be heard. 

 
• Reverb: This effect works very well. If the delay time is small, it looks like to the delay 

effect. But when the delay time is big, the acoustics of the room can be perfectly heard. 
 
• Tuner: The tuner only works fine when the input frequency is constant (using a function 

generator, for example). 
In addition, it can only detect frequencies between 32Hz to 4000Hz approx. 



Multieffects processor  Conclusions 
 

Cristian Gil Morales REPORT 92 / 97 

The minimum frequency (32Hz) is due to the configuration of the window length and the 
window step, which determine the resolution according the sampling frequency. To improve 
this implementation, the FS has to be 8000Hz. 
32 Hz is the Do/C note in the first octave. 
The maximum frequency (4000Hz) is due to the Nyquist filter which the codec incorporates 
to ensure a good quality of the input samples. This means that, in fact, the FS is 8000 Hz. 

 
 
The effects used together work fine. Until 4 effects simultaneously can be put (one from each 
group), getting curious results. 
The effects of gain have presented problems to combine with others effects because they have 
big output gain. But those problems were fixed. 
 
 
In respect of the user interface, the result has been perfect. 
All the check boxes, sliders and labels work correctly. The effects can be activated and 
deactivated using the check boxes. The specific value of the sliders can be changed and the data 
of the tuner can be seen with its labels without problems. 
 
Although the tuner implementation in the DSP app has limitations, when a frequency is detected 
and sent to the user interface, this one shows the frequency, the name of the note and its octave 
on the screen perfectly. Without any errors, as it was scheduled. 
 
 
The RTDX communication works fine. But it has problems when it sends and receives data at 
a time. In this case, it is sometimes blocked. 
Therefore, it is not a good idea to send and receive information at a time. For this reason, it was 
not possible to implement a volume screen. 
 
 
All the other audio processing parts work fine too. 
Therefore, the audio codec gets and samples the input data to use them later. When the data are 
treated, the codec also takes out the information correctly. 
The EDMA moves the data to the different destinations without problems. 
 
When a external device supplies the data (like an iPod or PC), their input samples have a correct 
amplitude value. 
But when a musical instrument is connected, it sends the data with a very small amplitude. 
Therefore, a preamplifier is necessary between the DSK and the musical instrument to amplify 
the input data. 
With the preamplifier, the instrument can be used as the source perfectly. 
 
 
 
Therefore it can be said that all the objectives defined at the beginning of the 
project are fulfilled.  
 
 
 
 
The following picture shows the schedule with the different tasks of this project: 



Multieffects processor  Conclusions 
 

Cristian Gil Morales REPORT 93 / 97 

 



Multieffects processor  Conclusions 
 

Cristian Gil Morales REPORT 94 / 97 

Future developments 
 
The main improvement that should be made to this project is to make a hardware interface to 
interact with it with the feet. Namely, to change or set effects while it is playing the musical 
instrument at a time. 
The hardware interface requires more work than the software interface, hence the second one 
was the most suitable option due to lack of time. 
 
Another extension is the developing of new effects, like creating the phaser or equalizer effects. 
It can also modify some of the existing effects which can admit greater complexity in order to 
achieve more realistic sounds. 
For example, the improving of the chorus effect with more voices simultaneously. It can also 
improve the reverb effect, setting the particular acoustic conditions to reproduce a better 
background sound, including special characteristics such as attenuation or amplification of 
certain materials, dimensions and specific geometries, etc. 
 
Moreover, it could use a communication system more robust in respect of the one implemented 
in this project, since most of transmissions have not verification of receipt or delivery. 
Therefore it can be interesting to investigate more about this field. 
By the way, it is not appreciated any failure in the sending or receiving separately. 
 
Finally, in the VC++ interface part, it would be interesting to implement a system to save the 
configuration of the effects in a simply file for load and use it again in another time with the 
same parameters. 
 
It is also interesting to improve the interface with those end small details in the communication 
interface as to use a Smitter to know the amplitude values of the input sound, to create a menu 
with support options, etc. 
 
 
 

Personal conclusions 
 
I am very satisfied with the realization of this project and its final result. 
 
I could see that the field of the sound effects is a difficult and extensive field. Even if I have 
only worked the basic concepts, they have helped me to understand many things of this exciting 
world. They also made me want to continue investigating on my own. 
 
It is necessary to say that the implementation of all the system has been hard, since adequate 
information was not available. Therefore, many hours have been devoted of consultation and 
tests with the compiler in order to implement all the features. 
 
 
Personally, the development of this project has helped me to understand better the functioning 
of my personal equipment (amplifier, effect pedals and the electronics of the guitar) and learn to 
use it more efficiently. 
 
Another big plus for me was the need to learn two programming languages very important in 
the professional world: the ANSI C language (to schedule the DSP microprocessor) and the 
Visual C++ language (to schedule the graphical interface). 
 



Multieffects processor  Conclusions 
 

Cristian Gil Morales REPORT 95 / 97 

Even I had to attend a special class outside of my degree to learn how to use the hardware from 
Texas Instruments, giving me to understand the performance of the DSPs and the most 
important and commonly used peripherals. 
 
With all these knowledge, I think that I will be a more efficient and versatile engineer. 
 
I also have to say that it has only been possible to reach the end of this road with the help of my 
professors, who answered my questions and explained the steps to complete the project 
properly. 
 
I recommend to other students for their future PFGs also investigate the sound and its effects, or 
directly continue this project to make it more complete, especially if they like playing a musical 
instrument like I do. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Multieffects processor  Conclusions 
 

Cristian Gil Morales REPORT 96 / 97 

Bibliography  
 

Audio treatment 
 
[1] José Mª Grijota Delgado. Implementación de un procesador digital de efecos mediante 
DSP e interfaz gráfica sobre plataforma Windows XP. 
Published in 2008. 
 
[2] Cristian Quirante Catalán. Implementación de algoritmos de efectos de audio en un 
procesador DSP de Texas Instruments. 
Published in 2008. 
 
[3] Udo Zölzer. DAFX: Digital Audio Effects, Second Edition. 
Published in 2011 by John Wiley & Sons, Ltd. ISBN: 978-0-470-66599-2 
 
[4] D. Marshall. MATLAB, DSP, Graphics. Module No: CM0268. 
 
 
 

TMS320C6713 
 
[5] Rulph Chassaing. Digital signal processing and applications with the C6713 and C6416 
DSK. 
Published in 2005 by John Wiley & Sons, Inc., Hoboken, New Jersey. 
 
[6] Texas Instruments. TMS320C62x DSP Library – Programmer’s Referente Guide 
Published in 2003. Literature Number: SPRU402B 
 
[7] Texas Instruments. TMS320C67x DSP Library – Programmer’s Reference Guide 
Published in 2010. Literature Number: SPRU657C 
 
[8] Texas Instruments. TMS320C6000 – Chip Support Library – API Reference Guide 
Published in 2004. Literature Number SPRU401J 
 
[9] Texas Instruments. TMS320C6000 DSP – 32Bit Timer - Reference Guide. 
Published in 2003. Literature Number: SPRU582B 
 
[10] Texas Instruments. TLV320AIC23B – Stereo Audio CODEC, 8 to 96 kHz, With 
Integrated Headphone Amplifier. 
Published in 2004 
 
[11] Texas Instruments. TMS320C6000 DSP – Multichannel Buffered Serial Port (McBSP) 
- Reference Guide. 
Published in 2006. Literature Number: SPRU580G 
 
[12] Texas Instruments. TMS320C6000 DSP – Enhanced Direct Memory Access (EDMA) 
Controller - Reference Guide. 
Published in 2006. Literature Number: SPRU234C 
 
[13] Sophocles J. Orfanidis. DSP Lab Manual 
Published in 2012. 
 
 



Multieffects processor  Conclusions 
 

Cristian Gil Morales REPORT 97 / 97 

RTDX communication 
 
[14] Horst Rogalla. RTDX Tutorial Version 1.0 
http://www.tsseshop.com/Developer/Tutorials/RTDX/TutorialRTDX.html 
 
[15] Deborah Keil. Real-Time Data Exchange. Digital Signal Processing Solutions 
http://www.ti.com/lit/wp/spry012/spry012.pdf 
 
[16] APPLICATION NOTE – RTDX feature  
http://www.sundancedsp.com/docs/RTDXbyJTAG.pdf 
 
 
 

Graphical user interface 
 
[17] Application Programming Interface (API) of C++ 
http://www.cplusplus.com/reference/ 
 
[18] Demian C. Panello. Tutorial 1 of Visual C++ 
http://www.dcp.com.ar 
 
[19] Tutorial 2 of Visual C++ 
http://www.programacionfacil.com/visual_cpp/start 
 
[20] Tutorial 3 of Visual C++ 
http://www.tenouk.com/visualcplusmfc/visualcplusmfc25a.html 
 
 
 


