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Abstract. In the last few years, the traditional ways to keep the in-
crease of hardware performance to the rate predicted by the Moore’s
Law have vanished. When uni-cores were the norm, hardware design
was decoupled from the software stack thanks to a well defined Instruc-
tion Set Architecture (ISA). This simple interface allowed developing
applications without worrying too much about the underlying hardware,
while hardware designers were able to aggressively exploit instruction-
level parallelism (ILP) in superscalar processors. Current multi-cores are
designed as simple symmetric multiprocessors (SMP) on a chip. How-
ever, we believe that this is not enough to overcome all the problems
that multi-cores face. The runtime of the parallel application has to drive
the design of future multi-cores to overcome the restrictions in terms of
power, memory, programmability and resilience that multi-cores have.
In the paper, we introduce a first approach towards a Runtime-Aware
Architecture (RAA), a massively parallel architecture designed from the
runtime’s perspective.

1 Introduction and Motivation

When uniprocessors were prominent, Instruction Level Parallelism (ILP) and
Data Level Parallelism (DLP) were used to maximize the number of instruc-
tions per cycle. The most important designs devoted to exploit ILP were su-
perscalar and Very Long Instruction Word (VLIW) processors. VLIW requires
to statically figure out dependencies between instructions and to schedule them
accordingly. However, since compilers do not do good a job obtaining optimal
schedulings, VLIW is not successful in achieving the maximal ILP workloads
have. Superscalar designs try to overcome the increasing memory latencies, the
so called Memory Wall [24], by using Out of Order (OoO) and speculative execu-
tions [11]. Also, improvements like prefetching, to fetch data from main memory
in advance, memory hierarchies, to exploit temporal and spatial locality, and re-
order buffers, to expose more instructions to the hardware, have been proposed.
DLP is typically expressed explicitly at the software layer and it consisted in a
parallel operation on multiple data performed by multiple independent instruc-
tions, or by multiple independent threads. In uniprocessors, the Instruction Set
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Architecture (ISA) was typically in charge of decoupling the high level applica-
tion source code and the underlying hardware. In this context, new architecture
ideas were applied at the pipeline level without changing the ISA.

Besides the problems associated with the memory wall, traditional useful
ways to increase hardware performance at the Moore’s Law rate vanished. For
instance, the processor clock frequency stagnated because, when it reached a
threshold, the power per unit of area (power density) could not be dissipated.
That problem was called the Power Wall. Indeed, a study made by the In-
ternational Technology Roadmap for Semiconductors expects the frequency to
increase by 5% every year for the next 15 years [12]. Therefore, further perfor-
mance increases are expected to come from larger concurrency levels rather than
higher frequencies.

To overcome the stagnation of the processor clock frequency, vendors started
to release multi-core devices over a decade ago. By exploiting Task Level Par-
allelism (TLP) multi-core devices may achieve significant performance gains.
However, multi-core designs, rather than fixing the problems associated with the
memory and power walls, exacerbate them. The ratio cache storage / operation
stagnates or decreases in multi-core designs as well as the memory bandwidth
per operation does, making it very hard to fully exploit the throughput that
multi-core designs have. Energy consumption is also a major problem since the
current increase makes computing challenges such as building an exascale ma-
chine completely infeasible. This set of challenges related to power consumption
issues constitutes a new power wall.

Also, there is a trend towards more heterogeneous multi-core systems, which
might have processors with different ISA’s connected through deep and complex
memory hierarchies. To manage data motion among these memory hierarchies
while properly handling Non-Uniform Memory Access (NUMA) effects and re-
specting stringent power budget in data movements is going to be a major chal-
lenge in future multi-core machines. The Programmability Wall [7] concept is
commonly use to categorize the above mentioned data management and pro-
grammability issues.

Multi-core architectures provide significant performance levels under low
voltages. However, as the voltage supply scales relative to the transistor thresh-
old voltage, the sensitivity of circuit delays to transistor parameter variations
increases remarkably, which implies that processor faults will become more fre-
quent in future designs. Additionally, the total number of hardware components
in future designs is expected to increase by several orders of magnitude, which
only makes the fault prevalence problem more dramatic. Therefore, in addition
to the current challenges in parallelism, memory and power management, we are
moving towards a Reliability Wall.

Since the irruption of multi-cores and parallel applications it is not possible
anymore to write high-level code in a completely hardware oblivious way. An
option is to transfer the role of decoupling applications from the hardware to
the runtime system , that is, to let the runtime layer to be in charge of efficiently
using the underlying hardware without exposing its complexities to the applica-
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tion. In fact, the collaboration between the heterogeneous parallel hardware and
the runtime layer becomes the only way to keep the programmability hardship
that we are anticipating within acceptable levels while dealing with the memory,
power and resilience walls.

Current multi-cores are conceived as simple symmetric multiprocessors (SMP)
on a chip. However, that is not enough to overcome all the problems that multi-
cores already have to face. To properly take advantage of their potential, tight
hardware-software collaboration is required. The runtime has to drive the de-
sign of hardware components to overcome the challenges of the above mentioned
walls. We envision a Runtime-Aware Architecture (RAA) [22], a holistic ap-
proach where the parallel architecture is partially implemented as a software
runtime management layer, and the remainder in hardware. In this architec-
ture, TLP and DLP are managed by the runtime and are transparent to the
programmer. The idea is to have a task-based representation of parallel pro-
grams and handle the tasks in the same way as superscalar processors manage
ILP, since tasks have data dependencies between them and a Task Dependency
Graph (TDG) can be built at runtime or statically. In this context, the runtime
drives the design of new architecture components to support activities like the
construction of the TDG [9], among other things.

In the next sections, we describe some illustrative examples of techniques
that allow alleviating the challenges arisen from the Memory, Power, Resilience
and Programmability Walls. These examples show that an adequate hardware-
software co-designed system can significantly improve the final performance and
energy consumption of our envisioned RAA’s. Section 2 presents a hybrid mem-
ory approach that combines scratchpads and caches to deal with the Memory
Wall. Section 3 shows how task criticality and hardware reconfiguration can re-
duce energy consumption. We also highlight the important of vector processors
in that same section. Next, Section 4 describes how the asynchrony provided
by the OmpSs programming model combined with fine grain error detection
techniques can be efficiently combined to mitigate the Resilience Wall. Section 5
provides some examples to illustrate how to deal with the Programmability Wall.
Finally, Section 6 presents the related work and Section 7 summarizes the main
findings of this work.

2 Memory Wall

The increasing number of cores in shared memory manycore architectures causes
important power and scalability problems in the memory hierarchy. One solution
is to introduce ScratchPad Memories (SPM) alongside the caches, forming a
hybrid memory hierarchy. SPMs are more power-efficient than caches and they
do not generate coherence traffic, but they suffer from poor programmability. A
good way to hide the programmability difficulties to the programmer is to give
the compiler the responsibility of generating code to manage the scratchpad
memories but, unfortunately, compilers do not succeed in generating this code
in the presence of random memory accesses with unknown aliasing hazards.
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Fig. 1: Performance, energy and NoC traffic speedup of the hybrid memory hi-
erarchy on a 64-core processor with respect to a cache-only system.

We propose a hardware/software co-designed coherence protocol that allows
the compiler to always generate code to manage the SPMs of hybrid memory hi-
erarchies, even if it encounters memory aliasing hazards between strided and ran-
dom memory references [1]. On the software side, the proposed solution consists
on simple modifications to the compiler analyses so that it can classify memory
references in three categories: strided memory references, random memory ref-
erences that do not alias with strided ones, and random memory references with
unknown aliases. The compiler then transforms the code for the strided memory
references to map them to the SPMs using tiling software caches, while for the
random memory references that do not alias with strided ones it generates mem-
ory instructions that are served by the cache hierarchy. For the random memory
references with unknown aliasing hazards the compiler generates a special form
of memory instruction that gives the hardware the responsibility to decide what
memory is used to serve them. On the hardware side, a coherence protocol is
proposed so that the architecture can serve the memory accesses with unknown
aliasing hazards with the memory that keeps the valid copy of the data. For this
purpose the hybrid memory hierarchy is extended with a set of directories and
filters that track what part of the data set is mapped and not mapped to the
SPMs. These new elements are consulted at the execution of memory accesses
with unknown aliases, so all memory accesses can be correctly and efficiently
served by the appropriate memory.

As shown in Figure 1, the proposed system achieves significant speedups
in terms of performance, energy and NoC traffic for several NAS benchmarks.
Average improvements reach 14.7%, 18.5% and 31.2%, respectively. Reduced
execution time combined with more energy-efficient accesses to the hybrid mem-
ory hierarchy lead to the highlighted reduction in energy. Even for benchmarks
with minimal accesses to the SPM (as in the case of EP), performance, energy
consumption and NoC traffic are not degraded
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Fig. 2: Runtime Support Unit (RSU) to accelerate critical tasks in the applica-
tion.

3 Power Wall

3.1 Exploiting Task Criticality

Task-based data-flow programming models intrinsic information and execution
mechanisms can be exploited to open new performance gains or power savings
opportunities. Such programming models overcome the performance of widely
used threading approaches when running on heterogeneous many-cores. Further-
more, task criticality information can be exploited to optimize execution time or
Energy-Delay Product (EDP). A task is considered critical if it belongs to the
critical path of the Task Dependency Graph. Consequently, critical tasks can be
run in faster or accelerated cores while non critical tasks can be scheduled to
slow cores without affecting the final performance and reducing overall energy
consumption. Moreover, task criticality can be simply annotated by the pro-
grammer and exploited to reconfigure the hardware by using DVFS, achieving
improvements over static scheduling approaches that reach 6.6% and 20.0% in
terms of performance and EDP on a simulated 32-core processor, respectively.

The cost of reconfiguring the hardware with a software-only solution rises
with the number of cores due to locks contention and reconfiguration overhead.
Therefore, novel architectural support is proposed to reduce these overheads on
future many-core systems. Figure 2 illustrates such hardware support to build
a runtime-aware architecture. The runtime system is in charge of informing the
Runtime Support Unit (RSU) of the criticality of each running task. Based on
this information and the available power budget, the RSU decides the frequency
of each core, which can be seen as a criticality-aware turbo boost mechanism.
Consequently, this hardware support minimally extends hardware structures al-
ready present in current processors, which allows further improvements in per-
formance with negligible hardware overhead. The integrated solution proposed,
which goes from the source code to the hardware level passing through the run-
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Fig. 3: Speedup over a scalar baseline for different vectorized sorting algorithms.
Different maximum vector lengths (MVL) and lanes are considered.

time and the operating system, shows the need for a multi-layer approach to
optimally exploit the heterogeneity of future many-core systems.

3.2 Vector Processors

Due to their energy efficiency, SIMD extensions have become ubiquitous in mod-
ern microprocessors and are expected to grow in width and functionality in future
generations. After extensive analysis on three diverse sorting algorithms in the
context of future SIMD support, we learned that all of the algorithms suffer from
bottlenecks and scalability problems due to the irregularity of the DLP and the
limitations of a standard SIMD instruction set. Based on these findings we pro-
posed VSR sort [10], a novel way to efficiently vectorize the radix sort algorithm.
To enable this algorithm in a SIMD architecture we defined two new instruc-
tions: vector prior instances (VPI) and vector last unique (VLU). VPI
uses a single vector register as input, processes it serially and outputs another
vector register as a result. Each element of the output asserts exactly how many
instances of a value in the corresponding element of the input register have been
seen before. VLU also uses a single vector register as input but produces a vec-
tor mask as a result that marks the last instance of any particular value found.
We provided a suitable hardware proposal that includes both serial and parallel
variants, demonstrating that the algorithm scales well when increasing the max-
imum vector length, and works well both with and without parallel lockstepped
lanes. VSR sort is a clear example of the benefits that a hardware/software
co-designed system can offer.

As illustrated in Figure 3, VSR sort shows maximum speedups over a scalar
baseline between 7.9x and 11.7x when a simple single-lane pipelined vector ap-
proach is used, and maximum speedups between 14.9x and 20.6x when as few as
four parallel lanes are used. Next, we compare VSR sort with three very differ-
ent vectorized sorting algorithms: quicksort, bitonic mergesort and a previously
proposed implementation of radix sort. VSR sort outperforms all of the afore-
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mentioned algorithms and achieves a comparatively low Cycles Per Tuple (CPT)
without strictly requiring parallel lanes. It has a complexity of O(k ·n) meaning
that this CPT will remain constant as the input size increases, a highly-desirable
property of a sorting algorithm. The k factor is significantly improved over the
original vectorized radix sort as well as the constant performance factor. Its
dominant memory access pattern is unit-stride which helps maximise the utili-
sation of the available memory bandwidth. Unlike the previous vectorized radix
sort, VSR sort does not replicate its internal bookkeeping structures which con-
sequently allows them to be larger and reduces the number of necessary passes
of the algorithm. On average VSR sort performs 3.4x better than the next-best
vectorized sorting algorithm when run on the same hardware configuration.

4 Resilience Wall

Relying on error detection techniques already available in commodity hardware,
we develop algorithmic-level error correction techniques for Detected and Un-
corrected Errors (DUE) in iterative solvers. When a data loss or corruption is
detected, we use simple algorithmic redundancies that are not available under
coarser grained error models, such as node failure.

Using straightforward relations existing in the solver, we interpolate the lost
data and manage to recover it exactly. Our forward recovery scheme allows bet-
ter performance than backwards recoveries such as checkpointing and rollback.
Other previous recoveries trade in convergence rate for recovery by restarting,
and the better of these methods gain an immediate reduction in the solver’s resid-
ual norm. We are able to avoid sacrificing convergence rate altogether thanks to
the exactitude of the recovered data, allowing the solver to continue, which is
better in the long run.

Furthermore, we can lever the asynchrony of task-based programming models
to perform our recoveries’ interpolations simultaneously with the normal work-
load of the solver. This allows to reduce the overheads of our recovery technique,
and is done with virtually no burden on the programmer thanks to the pro-
gramming model, by scheduling the recoveries in tasks that are placed out of
the critical path of the solver.

Figure 4 illustrates these behaviours, for a single error scenario where the
Conjugate Gradient method for the matrix thermal2 is disturbed by a DUE
around 30s. The lightblue checkpointing scheme incurs a significant overhead
when rolling back, and the restart method, in green, has a slower convergence
afterwards, when compared to the ideal baseline, in red, which has no fault
injected nor resilience mechanism. Our recovery technique, in purple, shows a
convergence time close to the ideal baseline, and its asynchronous counterpart,
in blue, displays an even smaller overhead.
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Fig. 4: CG execution example with a single error occurring at the same time for
all implemented mechanisms.

5 Programmability Wall

Task parallel models are being widely used to program parallel shared memory
machines, offering an alternative to the effective, but difficult to use, Pthreads
model. They offer simpler syntax than Pthreads, which allows the programmer
to easily describe parallel work as asynchronous tasks. Task-based models are
coupled with a runtime system, which at its simplest form, takes the burden
of thread management from the programmer. Such runtime systems can offer
additional functionality, such as load balancing or tracking data dependencies
between different tasks, ensuring their correct order of execution. In order for
the runtime to track data dependencies, task parallel models often offer syntactic
tools to the programmer for expressing data-flow relations between tasks [2,
8, 13, 21, 23]. The OpenMP standard has recently adopted tasks and dataflow
extensions to its syntax [17], allowing dynamic tracking of dependencies during
execution.

However, it is important to evaluate how effective this emerging program-
ming model is in terms of usability and performance. This has been extensively
studied, but only in the scope of HPC kernel applications [3,19,21]. Parallelism
today is employed by all kinds of applications, from economic calculations to
search engines and multimedia. We believe that it is important to understand
how task parallelism can be effectively adopted in different application domains
and where its limitations lie. To answer this question we have ported a large
subset (10 out of 13) of applications from the PARSEC benchmark suite [5].
These applications are representative of the different domains that are currently
adopting parallelism to improve their performance. We have used the OmpSs
programming model, which is a forerunner of OpenMP 4.0, to port the bench-
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Fig. 5: Scalability comparion between OmpSs and Pthreads.

marks. We evaluate our task-based implementations in terms of usability and
performance against the native implementations of the PARSEC suite (which
is always in Pthreads, except in the case of freqmine, which uses OpenMP’s
parallel loops).

To evaluate the usability of task-parallel models we need to see how main-
tainable and compact the code is, compared to Pthreads/OpenMP and also how
expressive the model is. By measuring the lines of code, we have observed that
OmpSs’ syntax is less verbose than Pthreads, for most benchmarks. Compared
to OpenMP loops, we did not observe any benefit from using tasks. Moreover,
we were able to express the same level of parallelism as the Pthreads/OpenMP
versions using tasks and dataflow relations. In some cases, where the applica-
tions used pipeline parallelism, we could express additional parallelism execut-
ing asynchronously I/O intensive sequential stages and overlapping them with
computation intensive parallel regions. In these cases we could also improve the
scalability of the applications. Figure 5 shows the scalability comparison between
OmpSs and Pthreads versions for bodytrack and facesim on a 16-core machine.
Both applications improve significantly their scalability over the original code,
reaching a scaling factor of 12 and 10, respectively, when running with 16 cores.
Overall, our evaluation shows that data-parallel applications, limited to simple
do-all loops, can be implemented using tasks, but cannot benefit from them in
neither programmability nor performance. Benchmarks that have pipeline par-
allelism can greatly reduce the lines of code of the application, since simple
data-flow relations can replace user implemented queuing and thread manage-
ment systems. Performance can also improve if the pipeline can be extended
to asynchronously execute sequential I/O intensive regions. Applications that
work with irregular or dynamic data structures cannot benefit from dynamic
dependence analysis, since the standard syntax can only be used to express data
footprints of continguous data structures.

6 Related Work

Previous work has been devoted to many-core architectures with a single global
address space where parallel work is expressed in terms of a taskcentric bulk-
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synchronous model using hardware support [14]. The execution paradigm of this
approach is based on tasks, like the one presented in this paper. However, this
previous approach assummes the mapping of the tasks to the functional units of
the processor to be specified in the application binary, significantly reducing its
flexibility.

Some approaches propose architectures composed of multiple processor types
and a set of user-managed direct memory access (DMA) engines that let the run-
time scheduler overlap data transfer and computation [20]. The runtime system
automatically allocates tasks on the heterogeneous cores and schedules the data
transfers through the DMA engines. The programming model suggested by this
approach supports various highly parallel applications, with matching support
from specialized accelerator processors. The Runtime-aware architecture pre-
sented in this paper includes these ideas and incorporates new ones (resilience,
hardware support for frequency reconfiguration, etc.) to achieve a more general
and robust design.

Other many-core proposals with separate execution units for runtime and
application code, application-managed on-chip memory and direct physical ad-
dressing, a hierarchical on-chip network and a codelet-based execution model [6]
have been suggested to reduce energy consumption and increase performance.
The main drawback of such designs is programmability, as they require the mem-
ory and data transfer management to be done at the source code level.

Hardware techniques to accelerate dynamic task scheduling on scalable CMPs
have also been suggested [15]. They consist in relatively simple hardware that
can be placed far from the cores. While our proposal also aims to support task
scheduling, it incorporates many more innovations like runtime-based hybrid
memory designs or hardware support for reconfiguration, to mention just two.

Some previous approaches aim to exploit the runtime system information to
either reduce cache coherence traffic [16] or enable software prefetching mech-
anisms [4, 18]. The Runtime-aware architecture presented in this paper gathers
all these previous experiences and provides an holistic view that integrates not
only the memory system but also all the hardware components to ride again on
the Moore’s Law.

7 Conclusions

Our approach towards parallel architectures offers a single solution that could
solve most of the problems we encounter in the current approaches: handling
parallelism, the memory wall, the power wall, the programmability wall, and the
upcoming reliability wall in a wide range of application domains from mobile
up to supercomputers. Altogether, this novel approach toward future parallel
architectures is the way to ensure continued performance improvements, getting
us out of the technological hardship that computers have turned into, once more
riding on Moore’s Law.
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