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Abstract. The discovery of process models out of system traces is an
interesting problem that has received significant attention in the last
years. In this work, a theory for the derivation of a Petri net from a set
of traces is presented. The method is based on the theory of abstract
interpretation, which has been applied successfully in other areas. The
principal application of the theory presented is Process Mining, an area
that tries to incorporate the use of formal models both in the design and
use of information systems.

1 Introduction

Traces are everywhere: from information systems that store their continuous
executions, to any type of health care applications that record each patient’s
history. The transformation of a set of traces into a mathematical model that
can be used for a formal reasoning is therefore of great value which can save
money or even human lives.

This paper proposes methods to build a process model representing the causal
relations between the events in the trace, i.e., whether the event a occurs before
b and after c or d. The goal is to construct a graph modeling all these orderings
in a concise form. Among many of the graph formalisms that exist nowadays, we
have selected Petri nets (PN) [15] for representing a set of traces. The reasons
for this selection are: sound mathematical model, clear semantics, succinctness,
ability of representing concurrent and conflict behavior among others.

The problem of deriving a PN out of a set of traces (called log) is one of
the main areas of Process Mining [19]. More concretely, the goal is to obtain a
PN whose behavior contains all the traces in the log, but maybe more. Within
this area, several algorithms have been proposed to accomplish this task [4,5,20],
most of them based on the theory of regions [11]. Informally, the theory of regions
tries to map structures in the state-based or language-based representation of
a system into places of the derived PN. However, given the well-known state
explosion problem, algorithms that are defined at the level of the states will
suffer when dealing with large systems exhibiting a high degree of concurrency.

Abstract interpretation [9] is a generic approach for the static analysis of
complex systems. The underlying notion in abstract interpretation is that of
upper approximation: to provide an abstraction of a complex behavior with less
details. A property about a system such as an invariant is in some way an
abstraction: it represents all the states of the system that satisfy the property.
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Fig. 1. Approximating a set of values (left) with several abstract domains

Intuitively, abstract interpretation defines a procedure to compute an upper
approximation for a given behavior of a system. This definition guarantees (a)
the termination of the procedure and (b) that the result is conservative. An
important decision is the choice of the kind of upper approximation to be used,
which is called the abstract domain. For a given problem, there are typically
several abstract domains available. Each abstract domain provides a different
trade-off between precision (proximity to the exact result) and efficiency.

There are many problems where abstract interpretation can be applied, sev-
eral of them oriented towards the compile-time detection of run-time errors in
software. For example, some analysis based on abstract interpretation can dis-
cover numeric invariants among the variables of a program. Also, it has been ap-
plied to extract invariants from a PN [7]. Several abstract domains can be used
to describe the invariants: intervals [8], octagons [14], convex polyhedra [10],
among others. These abstract domains provide different ways to approximate
sets of values of numeric variables. For example, Figure 1 shows how these ab-
stract domains can represent the set of values of a pair of variables x and y.

In this work we present an approach for deriving a PN from a log, based on
the theory of abstract interpretation. The contributions can be summarized in:
1) a theory for deriving PNs out of a set of traces, 2) a technique to allow for the
partitioning of the set of events into groups. The relations inside the groups and
between groups can be detected and the corresponding causalities computed, 3)
a sampling strategy that can be applied to detect the relations on a small set of
instances instead of the whole set, and 4) a prototype tool implementing all the
theory of the paper.
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Fig. 2. Derivation of PNs using abstract interpretation: (a) log, (b) some invariants
obtained, (c) from invariants to PN arcs, (d) mined Petri net.

1.1 An introductory example

Let us provide a simple example to illustrate the theory of this paper. The ex-
ample is taken from [17] and considers the process of handling customer orders.
The starting point in Process mining is a set of traces representing the log of a
system. In our example, the log contains seven traces with the following activi-
ties: r=register, s=ship, sb=send bill, p=payment, ac=accounting, ap=approved,
c=close, em=express mail, rj=rejected, and rs=resolve. Part of these traces is
shown in Figure 2(a), whilst Figure 2(b) shows some invariants that have been
extracted from these traces using the theory of abstract interpretation. These in-
equalities can be obtained under the domain of convex polyhedra (see Figure 1),
and relate the number of occurrences between events, e.g., r ≥ em+ s indicates
that the number of occurrences of r is always greater or equal than the sum of oc-
currences of em and s. Each invariant can be converted into a set of arcs in a PN,
as it is shown in Figure 2(c). The final PN that covers all the traces in the log is
presented in Figure 2(d) (see Section 2.1 for the formal semantics of a PN). It ac-
cepts the language defined by the expression1: r; (sb; p)||(em|s); ac; (rj; rs)|ap; c,
where ||, | and ; denote interleaving, union and concatenation operators.

2 Preliminaries

Some mathematical notation is provided for the understanding of the paper.
Given a set T , we denote P(T ) as the powerset over T , i.e. the set of possible
subsets of elements of T . A sequence σ ∈ T ∗ is a called trace. Given a trace
σ = t1, t2, . . . , tn, and a natural number 0 ≤ k ≤ n, the trace t1, t2, . . . , tk is
1 For the reader not familiar with Petri nets: a transition (box) in a PN is enabled if

every input place (circle) holds a token (black dot). If enabled, the transition can
fire, removing tokens from its input places and adding tokens to its output places.
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called the prefix of length k in σ. Given a set of traces L, we denote Pref (L) the
set of all prefixes for traces in L. Finally, given a trace σ, #(σ, e) computes the
number of times that event e occurs in σ.

2.1 Logs and Petri Nets

Definition 1 (Log). A log over a set of activities T is a set L ∈ P(T ∗).

Definition 2 (Petri net [15]). A Petri net is a tuple (P, T, F,M0) where
P and T represent finite sets of places and transitions, respectively, and
F : (P × T ) ∪ (T × P )→ N is the weighted flow relation. The initial marking
M0 ∈ N|P | defines the initial state of the system.

The sets of input and output transitions of place p in PN N are denoted
by •p and p•, respectively. A transition t ∈ T is enabled in a marking M if
∀p ∈ P : M [p] ≥ F (p, t). Firing an enabled transition t in a marking M leads to
the marking M ′ defined by M ′[p] = M [p]− F (p, t) + F (t, p), for p ∈ P , and is
denoted by M t→M ′. The set of all markings reachable from the initial marking
m0 is called its Reachability Set. The Reachability Graph of PN (RG(PN)) is
an automaton in which the set of states is the Reachability Set, the arcs are
labeled with the transitions of the net and an arc (m1, t,m2) exists if and only
if m1

t→ m2. We use L(PN) as a shortcut for L(RG(PN)). Finally, a place p in a
PN is redundant if its removal does not changes L(PN). Figure 2(d) contains an
example of a PN such that σ = r, s, sb, p, ap, c ∈ L(PN).

2.2 Convex Polyhedra

As suggested in Section 1.1, the convex polyhedra domain provides the necessary
inequalities for the purposes of this paper. It can be described as the set of
solutions of a set of linear inequality constraints with rational (Q) coefficients.
Let P be a polyhedron over Qn, then it can be represented as the solution to
the system of m inequalities P = {X|AX ≤ B} where A ∈ Qm×n and B ∈ Qm.
Convex polyhedra can also be characterized in a polar representation by means of
a system of generators, i.e. as a linear combination of a set of vertices V (points)
and a set of rays R (vectors). Figure 3 exemplifies this double description.

The fact that there are two representations is important, because several
of the operations for convex polyhedra are computed very efficiently when the



proper representation is available. There are efficient algorithms [6,10] that trans-
late one representation into the other. Also, the dual representations can be used
to keep a minimal description, removing redundant constraints and generators.

The domain of convex polyhedra provides the operations required in abstract
interpretation. In this paper, we will mainly use the following two operations:

y

x

P QP Q

Meet (∩): Given convex polyhedra P and Q,
computes R = P ∩ Q. Notice that this opera-
tion is exact, e.g., the intersection of two convex
polyhedra is always a convex polyhedra, imply-
ing that R does not contain any point outside
P ∩Q.

y

x

P Q

P

Q

Join (∪): Given convex polyhedra P and Q, com-
putes R = P∪Q. Unfortunately the union of convex
polyhedra is not necessarily a convex polyhedron.
Therefore, the union of two convex polyhedra is ap-
proximated by the convex hull, the smallest convex
polyhedron that includes both operands. The ex-
ample on the left shows in gray the zone added by

computing the convex hull of P and Q.

3 From logs to Petri nets via extraction of invariants

This section will set the basis for the approach presented in this paper. The
underlying idea can be stated informally: for each trace of the log and each
prefix of the trace, a vector describing the number of firings of each event for the
prefix is computed. All these vectors are then inserted as n-dimensional points
in the theory of convex polyhedra, where n is the number of events considered.
Finally, a polyhedra is computed such that contains all these points, and its set
of constraints represents invariants for the system.

3.1 Derivation of invariants from logs

We introduce the main element to link traces from a log L and convex polyhedra:

Definition 3 (Parikh vector). Given a trace σ ∈ {t1, t2, . . . , tn}∗, the Parikh
vector of σ is defined as σ̂ = (#(σ, t1),#(σ, t2), . . . ,#(σ, tn)).

Any component of a Parikh vector can be seen as a constraint
for the n-dimensional point that it defines. Hence, a Parikh vector
σ̂ = (#(σ, t1),#(σ, t2), . . . ,#(σ, tn)) can be seen as the following polyhedron:

Pbσ = (x1 = #(σ, t1)) ∩ (x2 = #(σ, t2)) ∩ . . . ∩ (xn = #(σ, tn))

where each variable xi denotes the number of occurrences of ti in σ. For each
prefix σ of a trace in L, a convex polyhedra Pbσ can be obtained. Given all possible
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Fig. 4. From traces in the log to invariants: (a) Initial log, (b) corresponding m prefixes
of the log, (c) Parikh vectors associated to the prefixes, and (d) derived causality
constraints.

prefixes σ1, σ2, . . . , σm of traces in L, convex polyhedra Pcσ1 , Pcσ2 , . . . , Pcσk
can be

found2. Finally, the convex polyhedra

P =
⋃

i∈{1...m}

P bσi

contains all the points defined by the convex polyhedra Pcσ1 , Pcσ2 , . . . , Pcσm
, thus

representing completely the behavior of the log. As Section 2.2 explains, convex
polyhedra can be described as the set of solutions of a conjunction of linear in-
equality constraints. These constraints can be obtained from P in state-of-the-art
libraries for convex polyhedra [12]. Hence from P one can obtain the set of m
constraints representing it:

a11 · x1 + a12 · x2 + . . .+ a1n · xn ≤ b1
a21 · x1 + a22 · x2 + . . .+ a2n · xn ≤ b2

... ≤
...

am1 · x1 + am2 · x2 + . . .+ amn · xn ≤ bm

each one of these constraints models invariants that the system (i.e., the log)
satisfy.

Example 1. Figure 4(a) shows part of a log containing several traces on the
events a, b, c, d, e, x, y and z3. Once the prefixes of the traces are found (Fig-
ure 4(b)), corresponding Parikh vectors are converted into polyhedra. A unique
polyhedra is derived by performing a join operation on all the polyhedra, and
the related invariants are extracted, some of them shown in Figure 4(d).
2 Here k is in practice significantly smaller than

P
σ∈L |σ| since many prefixes of

different traces in L share the same Parikh vector.
3 This log contains 100 traces of length 50 each. The reader can inspect the log by

following the reference provided in [2].



3.2 From invariants to Petri nets

If we split the coefficients into positive and negative coefficients, constraint i can
be represented in the following way:∑

aij>0

aij · xj +
∑
aij<0

aij · xj ≤ bi

that can be transformed into:∑
aij>0

aij · xj − bi ≤
∑
aij<0

−aij · xj

A constraint i is a causality constraint if the following conditions hold:

– There is at least one positive coefficient, and
– bi ≤ 0

Hence causality constraints can be described as:∑
aij>0

aij · xj + ci ≤
∑
aij<0

−aij · xj (1)

with ci = −bi ≥ 0. The intuition behind causality constraints is that they
represent real causalities observed in the log which can be explicit in the derived
PN. Hence if we assume indices n1, . . . nk range over the indices of variables
with negative coefficients and p1, . . . pl range over the variables with positive
coefficients, (1) can be modeled in a PN as:

.
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.
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.

xn1
xp1

xplaipl

ci

ain1
aip1

aink

xnk

where ci inside the place denotes ci tokens, and aij in an arc represents the
weighted flow relation F for the arc (see Def. 2).

Example 2. Following the example in the previous section (shown in Figure 4),
causality constraints can be selected and the corresponding places and arcs in-
troduced, deriving the Petri net shown in Figure 5. For instance the place labeled
p is obtained from the constraint c+ d ≥ y.

Finally, a necessary property in the area of Process Mining that relates the
set of traces possible in the PN and the ones in the log can be established:

Theorem 1. Let PN = (P, T, F,M0) and L be a Petri net and a log, respectively,
such that L(PN) ⊇ L, and the i-th causal constraint from L as described in (1).
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Fig. 5. Petri net derived from the causality constraints shown in Figure 4(d).

Then the PN′ = (P ′, T, F ′,M ′0) defined as

P ′ = P ∪ {p}

F ′ = F ∪ {tj
aij−→ p | aij < 0} ∪ {p aij−→ tj | aij > 0}

M ′0[q] =
{
M0[q] if q 6= p
ci otherwise

where p /∈ P , satisfies L(PN) ⊇ L(PN′) ⊇ L.

Proof. The inclusion L(PN) ⊇ L(PN′) is well-known in Petri net theory from the
fact that P ⊂ P ′, F ⊂ F ′ and M0 ≤M ′0. The inclusion L(PN′) ⊇ L can be shown
by induction on the length of traces in L, and we sketch here the proof. First,
if a trace σ = σ′t ∈ L satisfies σ′ ∈ L(PN′) but σ /∈ L(PN′), then t ∈ p• because
transitions not in the postset of the new place inserted p will also be enabled by
firing σ′ in PN’. Second, the induction can now be used to prove that p will have
enough tokens to also enable t, hence contradicting the hypothesis σ /∈ L(PN′).
For |σ| = 1 it trivially holds. Assume it is true for |σ| ≤ n − 1, let us consider
|σ| = n, with σ = σ′xt. If x /∈ •p or t /∈ p•, applying the induction hypothesis
on σ′ the statement on p holds. If x ∈ •p and t ∈ p•, the induction hypothesis
guarantees that after σ′, either some other place q 6= p is disabling t or t is
enabled. Hence, by firing x the enabling state of t cannot change, contradicting
the disabling of t after σ′ in PN’. 2

The addition of places and arcs corresponding to causality constraints
is applied starting from the net PNinit

def
= (∅, T, ∅, ∅), which accepts

the language T ∗. In summary, the flow for Process Mining will fol-
low the steps Log

abstract interpretation−→ Convex Polyhedra
causality constraints−→ PN.

The next corollary follows from Theorem 1 and L ⊆ L(PNinit):

Corollary 1. Let PN be the net obtained after adding to PNinit all the places
and arcs corresponding to causality constraints in the convex polyhedra P derived
from L. Then L(PN) ⊇ L.
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.

3.3 Derivation of unbounded places

Perhaps one of the main theoretical results of this work has been already pre-
sented in the example of the previous section. Informally, the derivation of places
and arcs from causality constraints may produce unbounded places in the Petri
net, i.e. places where no bound is possible on their number of tokens. For in-
stance, the place p in Figure 5 may have k tokens when k firings of the sequence
ac occur and no firing of y occurs, for any natural number k.

The approaches in the literature for deriving general (unrestricted) Petri nets
from logs are [4, 5, 20]. They are based in the theory of regions [11], which asso-
ciates places with regions. These methods cannot compute unbounded regions,
and therefore are restricted to model behaviors without these type of places.

4 Process mining of large logs

The approach presented in the previous section cannot be applied for logs ex-
tracted from industrial/real-life applications, where either the number of events
or the number of Parikh vectors in the traces or both might be too large for grow-
ing polyhedra straightaway. For these situations, a divide-and-conquer strategy
is required. A possible strategy is presented in this section: instead of a blind
search for causality constraints on the whole set of events T , groups of events
that are tightly related are identified, and causality constraints are divided into
inter-group and intra-group. For instance, on a log representing a producer and
a pair of consumers, inter-group relations might provide the causalities within
the three gray zones depicted in Figure 6, whereas intra-group relations might
derive the causalities within the corresponding area shown in the figure.

4.1 Identification of groups of tightly coupled events

For determining the partition of T into groups, several techniques can be applied.
In this paper, two different techniques are used:



– Principal Component Analysis (PCA) [13] is an exploratory data analysis
technique that, given a data set of possibly correlated variables, tries to select
a subset of variables that is uncorrelated (called principal components) and
which accounts for as much of the variability in the data as possible.

– Firing causalities is an ad hoc technique to extract causalities between two
events from the Parikh vectors considered in the previous section.

In the remainder of this section we explain them in detail:

Principal Component Analysis can be applied to select the partition
on T = {t1, . . . , tn}. The steps are i) the set of Parikh vectors σ̂1, . . . , σ̂m is
transformed to the set σ̂′1, . . . , σ̂′m so that σ̂′i = (#(σi, t1)/t1, . . . ,#(σi, tn)/tn),
where ti is the mean for number of occurrences of ti in the set of Parikh vectors
of L, ii) compute the correlation matrix A ∈ [−1 . . . + 1]n×n using the data
set found at i) [13]. This matrix measures the amount of correlation between
variables ti and tj : when |A(i, j)| w 1 then both variables are highly correlated.
Finally, iii) the number of groups is decided by finding the eigenvalues and
eigenvectors of A: the eigenvalues are sorted according to their value (the
highest eigenvalue explains the highest correlation and so on), and only the
most important (those that explain the important amount of correlation) are
taken. For each selected eigenvalue λi, we can select the leader of the group
for λi by looking at the corresponding eigenvector α1 · x1 + . . . + αn · xn:
the leader will be the transition ti for which absolute value of the coefficient
αi is maximal [13]. The set of transitions tj such that |A(i, j)| w 1 will be
incorporated to the group leaded by ti.

Firing causalities between two events ti and tj can be extracted by consid-
ering the maximal distance (in number of firings) between both events in any
possible Parikh vector. Formally, we build the matrix M ∈ Zn×n such that
M(i, j) = max{#(σk, ti)−#(σk, tj) | 1 ≤ k ≤ m}. There is a causality between
ti and tj if M(i, j) > 0 and M(j, i) ≤ 0.

4.2 Inter-group causality constraints

The information obtained from the two previous techniques can be combined to
form the groups. Intuitively, events ti and tj will belong to the same group if

– ti leads a group and has a high correlation with tj or vice versa, or
– there is a firing causality relating ti and tj

Once a group is identified, the Parikh vectors can be projected into the
events of the group and the technique presented in Section 3 can be applied for
the projected Parikh vectors.

Example 3. Following with the running example used in the previous section
(see the resulting PN in Figure 5), we will show how the same Petri net can be
obtained by the hierarchical approach presented in this section. Using the firing



causalities, we will find the pairwise causalities a→ c, b→ d, x→ y and y → z.
With PCA, more complex relations will be detected: e related with a and b, and
also e related with c and d. Hence, two groups are selected: g1 = {a, b, c, d, e} and
g2 = {x, y, z}. Projecting the Parikh vectors into each group of events will give
the causality constraints only relating the events in the group, e.g., for group g1
the constraints a ≤ c, b ≤ d, e+ 1 ≤ a+ b and c+ d ≤ e will be obtained. These
constraints correspond to the subnet to the left of place p in Figure 5. The right
subnet correspond to group g2.

4.3 Intra-group causality constraints

The causalities between different groups might be detected by applying a hierar-
chical approach: for each group gi = {ti1, . . . , ti|gi|}, a new variable hi is created
such that represents the sum of firings of the transitions in the group for each
Parikh vector. By using the sum of the firings, relations between group’s firings
might be revealed. Afterwards, the same strategy of Section 3 can be applied to
detect causalities between these new variables introduced.

Formally, given a set of groups detected g1, . . . , gk and the set of Parikh
vectors σ̂1, . . . , σ̂m, a new set of hierarchical Parikh vectors σ̂h1 , . . . , σ̂hm is created
such that

σ̂hm = (
∑
t∈g1

#(σ1, t), . . . ,
∑
t∈gk

#(σm, t))

and now convex polyhedra can be created representing the hierarchical Parikh
vectors:

Pcσh
i

= (h1 =
∑
t∈g1

#(σi, t)) ∩ . . . ∩ (hk =
∑
t∈gk

#(σi, t))

And in the same way as Section 3.1, a set of invariants can be extracted from
the union of the m polyhedra build as explained above.

a11 · h1 + a12 · h2 + . . .+ a1k · hk ≤ b1
a21 · h1 + a22 · h2 + . . .+ a2k · hk ≤ b2

... ≤
...

am1 · h1 + am2 · h2 + . . .+ amk · hk ≤ bm

These invariants provide relations between groups of variables. Intuitively,
invariants where the constant bi is small denote relevant causalities between
groups, whilst invariants with a large constant represent loose causalities possibly
originated by the length of the traces in the log. Hence, the invariants are sorted
in increasing order according to their constant and only these invariants with
small constant are used4.
4 Several threshold criteria can be applied to limit the number of invariants to consider.

For instance, one can greedily take invariants as far as the constant lies within the
order of the previous one.



Algorithm 1: GroupMining
Input: Parikh vectors cσ1, . . . , cσm,
Output: Invariant set I containing inter and intra-group causality constraints
begin1

I = ∅2

{g1, . . . , gk} = ComputeGroups(cσ1, . . . , cσm)3

foreach group gi do4

I = I ∪ InvariantMining(cσ1|gi , . . . , cσm|gi)5

end6

H = SelectLowConstant(InvariantMining(cσh1 , . . . , cσhm))7

foreach invariant i ∈ H do8

{g1, . . . , gl} = NonZeroCoefs(i)9

I = I ∪ InvariantMining(cσ1|g1,...,gl , . . . , cσm|g1,...,gl)10

end11

end12

When a set of groups are identified to be related, the same technique of
Section 4.2 applied for a group can be now applied for the set of groups: the
Parikh vectors are projected into the variables that belong to any of the groups
related, and causality constraints that relate these variables can be extracted.

The general algorithm is presented as Algorithm 1. The functions used in the
algorithm are next defined:

– InvariantMining implements the invariant derivation technique explained in
Section 3.1.

– ComputeGroups implements the group derivation technique explained in
Section 4.1.

– SelectLowConstant is a function that given a set of invariants, chooses those
ones having a small constant.

– NonZeroCoefs is a function that given an invariant, return these variables
that have non-zero coefficients, i.e., the variables that define the invariant.

Example 4. Let us show the relation between the two only groups g1 and g2
found in Example 3. By creating two sum variables h1 and h2 as explained in
Section 4.3 and building the polyhedra that corresponds to the union of the
polyhedra representing the projection of the Parikh vectors into these variables,
the constraint h2 ≤ h1 is detected, meaning that the number of firings in the
group g2 is always less or equal than the number of firings of group g1. By pro-
jecting now the Parikh vectors into these groups and extracting the causality
constraints that relate both groups of variables, the constraint y ≤ c + d will
be extracted, which corresponds to the place p shown in Figure 5. Notice that
although for this toy example we ended up by building polyhedra for the whole
set of events, in general this will not be the case for real systems. For instance,
we experimented with several systems like the one used in our running exam-
ple, working in parallel. The approach presented in this paper was able to find
the intra and inter-group relations for each individual system, thus avoiding to
project into the whole set of events. In section 6 we provide such experiments.



Algorithm 2: Sampling
Input: Parikh vectors cσ1, . . . , cσm, number of samplings p, sampling size s
Output: Invariant set I
begin1

I = ∅2

for i← 1 to p do3

P = empty domain4

for j ← 1 to s do5

r =Random(1 . . .m)6

compute Pcσr7

P = P ∪ Pcσr8

end9

I1 = Invariants(P )10

foreach invariant i ∈ I1 do11

if i satisfies cσ1, . . . , cσm then I = I ∪ {i}12

end13

end14

end15

5 Sampling

Orthogonal to the approach presented in the previous section, this section in-
troduces a technique to avoid dealing with a large number of polyhedra and use
instead a limited amount that might be enough for extracting the important re-
lations between the events. For instance, if the log contains ten thousand traces
of length a hundred, then in the worst case the techniques presented in the pre-
vious sections will be dealing with a million of polyhedra that must be joined, a
scenario that often can not be completed successfully with existing libraries for
abstract interpretation.

The general algorithm for applying sampling is shown as Algorithm 2. In
order to avoid operations with a large number of polyhedra, one can randomly
select with uniform probability a small set (s) of Parikh vectors that will be
converted to polyhedra and joined (lines 5-9). Once the join operation for the
s vectors has been done, the set of invariants that denote properties for the
Parikh vectors considered must be verified on each one of the Parikh vectors not
considered in the join, and only those invariants that are true for all the Parikh
vectors will be accepted (lines 10-13). This sampling technique can be applied
more than once, i.e., one can apply p samplings in order to find the relations on
a set of events (external loop starting at line 3).

Sampling and the strategy presented in the previous section can be applied
jointly. This will be accomplished by simply substituting the calls to Invariant-
Mining in Algorithm 1 by calls to the function Sampling with a user-defined
sampling size and number of samplings. In the experiments, this joint use of
these strategies has enabled dealing with large specifications.



Log Information genet Parikh aim

Log |T | #traces #Parikh P/F Time P/F Time P/F Time
a12f0n00 1 12 200 17 11/25 0.1 11/25 1 11/27 0
a12f0n00 5 12 1800 17 11/25 0.1 11/25 0.7 12/30 0
a22f0n00 1 22 100 750 19/49 0.3 19/49 3 19/48 20
a22f0n00 5 22 900 3290 19/49 0.3 19/49 23 16/38 2
a32f0n00 1 32 100 1377 32/75 718 31/73 25 34/84 33
a32f0n00 5 32 900 5543 31/73 1 31/73 112 31/68 6
a42f0n00 1 42 100 1211 memout 44/109 154 41/88 16
a42f0n00 5 42 900 4326 timeout 44/101 1557 49/118 77

Table 1. PN derivation from logs.

6 Experiments

As a proof of concept, the theory of this paper has been implemented in a proto-
type tool. It is written in C/C++ and uses the Apron library for Convex Polyhedra
manipulation [12]. For the PCA method which requires computation of eigen-
values and eigenvectors, the ALGLIB library [1] was used. Some conclusions can
be drawn from applying the tool on some well-known benchmarks within the
Process Mining domain.

The benchmarks applied are logs publicly available within the website [3].
These logs have been used by other algorithms and therefore will be considered
in this paper to perform a comparison with two other tools for the same purpose.
The tools are: genet, which implements algorithms based on the theory of regions
and supports the mining of k-bounded PNs [5], and the Parikh Miner, that uses
the language version of the theory of regions for the same purpose [20]. For using
genet, an automaton representing all the traces is the input of the tool. Several
algorithms exists to transform the log into an automaton [18]. For both tools we
used the default parameters.

The comparison is shown in Table 1. For each log, we report the number of
events (|T |), the number of traces and the number of Parikh vectors obtained
after removing repetitions. The number of places discovered (P ) and the number
of arcs (F ) is then provided for each one of the tools, together with the CPU
time (measured in a desktop computer) in seconds. For testing each tool, we
limited the amount of memory and time that could be used to 1Gb and 10000
seconds respectively. We report the results obtained by the tool of this paper in
the columns under aim.

For the experiments, we run the tool applying 5 samplings with sampling
size a number between 50 and 100, depending on the log. This light sampling
application allowed to derive PNs sometimes within two orders of magnitude less
CPU time than other methods. Notice that genet has both memory (memout)
and time (timeout) problems with the last two logs. On the other hand, aim
invests considerably more time in deriving a PN for a22f0n00 1, which may be due



Log Information genet Parikh aim

Log |T | #traces #Parikh P/F Time P/F Time P/F Time
ProdCons 1 8 50 3756 7/16 14 0/0 5 8/19 7
ProdCons 3 24 50 4910 timeout 0/0 182 24/57 36

Table 2. PN derivation from two logs obtained from a Producers/Consumers system.

to the particular structure of the polyhedra built on that log. Notice however that
the degradation in CPU time is not as significant as in the opposite direction.

A second point to consider is the quality of the information obtained. The
PNs derived with aim most of the time have the same arcs and places of the
other tools. Sometimes extra causalities might be obtained like in a12f0n00 1 or
a42f0n00 5. These denote redundant causalities that can be removed by a final
application of well-known PN methods for redundant places removal [16].

Table 2 reports experiments with two logs that represent the activity of a
system of producers and consumers where components are synchronized through
unbounded places (see Figure 6). For ProdCons 1, the PN derived by aim is the
one shown in Figure 5. The traces for ProdCons 3 contain the interleaving of
three independent instances of PNs like the one in Figure 5. Both genet and the
Parikh Miner have problems in dealing with these logs: genet cannot derive
the unbounded place in ProdCons 1 and received a timeout for ProdCons 3,
whereas the Parikh Miner did not obtain any relation between the activities of
the log5. In contrast, aim was able to discover the exact PN in both logs.

7 Conclusions and future work

A novel theory for deriving a PN from a set of traces has been presented. The
results obtained are promising when compared with some of the approaches in
the literature for the same task. The current work is mainly focused in obtaining
a mature implementation of the first prototype. Also, other strategies to comple-
ment the ones described in this paper will be investigated. Finally, the derivation
of other graph formalisms will be explored.

Acknowledgements

This work has been supported by the project FORMALISM (TIN2007-66523),
and a grant by Intel Corporation.

References

1. ALGLIB library. http://www.alglib.net.

5 By changing the default parameters of the Parikh Miner, 5 places and 11 arcs are
derived for ProdCons 1, but for ProdCons 3 the net is degraded (49 places, 239
arcs), with many places and arcs being redundant.



2. Example log. http://www.lsi.upc.edu/∼jcarmona/prodcons1000.tr.
3. Process mining. www.processmining.org.
4. R. Bergenthum, J. Desel, R. Lorenz, and S.Mauser. Process mining based on

regions of languages. In Proc. 5th Int. Conf. on Business Process Management,
pages 375–383, Sept. 2007.

5. J. Carmona, J. Cortadella, and M. Kishinevsky. New region-based algorithms for
deriving bounded Petri nets. IEEE Transactions on Computers, 59(3):371–384,
2009.

6. N. Chernikova. Algoritm for discovering the set of all solutions of a linear pro-
gramming problem. USSR Computational Mathematics and Mathematical Physics,
6(8):282–293, 1964.
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