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Abstract

Geometric constraint solving is a growing field devoted tvesgeomet-
ric problems defined by relationships, called constraggtblished between
the geometric elements. In this work we show that what chieriaes a ge-
ometric constraint problem is the set of geometric elementsvhich the
problem is defined. If the problem is wellconstrained, a gigelution in-
stance to the geometric constraint problem admits diftergpresentations
defined by measuring geometric relationships in the saiitistance.
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1 Introduction

In two-dimensional constraint-based geometric designdésigner creates a rough
sketch of an object made out of simple geometric elemerdgliints, lines, circles
and arcs of circle. Then the intended exact shape is spetifiexhnotating the
sketch with constraints like distance between two poinistadce from a point
to a line, angle between two lines, line-circle tangency smn. A geometric
constraint solver then checks whether the set of geomatristraints coherently
defines the object and, if so, determines the position ofleengtric elements. The
designer can now modify the values of constraints or ask ¢oengtric constraint
solver for alternative solutions that also satisfy the ti@sts.

Since in general geometric constraint solvers are not cgt@pyiven a geometric
problem based on constraints, the set of solution instathetsan be determined
depends on the specific solving technique used. Howeveg,thiacset of geometric
objects in the problem has been fixed, it would be interestingnow whether
different placements for the geometry are solutions to #&meesproblem.
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In this report we present a way of building different repreaions for a solution
instance by properly taking measures. We deliberatelydasonsidering any spe-
cific geometric constraint solving technique and focus angbneral concept of
solution realization. That is, we focus on an actual placenoé the geometric
elements without considering how the placement has agtha#n figured out.

The outline of the paper is as follows. In Section 2 we recadliarative definitions
for several basic concepts relevant in geometric constsaining. Geometric con-
straint problems and their categorization are defined ini@e8. In Section 4 we
identify a first order logic formula to represent solutionsgeometric constraint
problems. The main result on geometry and realizationseisguted in Section 5.
Finally, in Section 6 we offer a brief discussion.

2 Notation and Concepts

Following Joan-Arinyo [7] and Vila [9], in this section weaal concepts and
notational conventions that will be used later on. We asdiiaiea constraint-based
design is made of geometric elements like point, lineslesrand arcs of circle.
The intended shape is defined by means of constraints likendis between two
points, distance from a point to a line, angle between twaslitine-circle tangency
and so on.

In what follows, the symbols to represent geometric elemeiill be taken from
the set

LG = {pla l17617p27 l2>c27 -eyDPn; ln>cna .. }
wherep; denotes a point]; a straight line and; a circle. We assume that the
number of different available symbols is unlimited.

Constraints will be represented by predicates relatingrggiic elements or geo-
metric elements plus a symbolic value calf@tameter For example,

Lr = {onPL(p,l),
distPP(p;,pj,d),
distPL(pi,lj, h),
angleLL(l;,1;,a),...}

Predicate names are self explanatory. The predigal®. (p, ) specifies that point

p mustlie onlind, dist PP (p;, pj, d) specifies a point-point distancést P L(p;, 1, h)
defines the perpendicular distance from a point to a stréighand,angleLL(l;,1;, a)
denotes the angle between two straight lines. The numbesyaridx of available
constraints are fixed. Symbalsh anda are parameters. The symbols to represent
parameters will be taken from the set

EP - {d17h1>a17d27h27a27 cee >dnahnaan>' . }
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dy
onPL(p1,l1) onPL(p1,l3)
onPL(pa, 1) onPL(py,13)
onPL(ps,l3) onPL(ps,l4)
onPL(p4,l2) onPL(p4,l4)

distPP(p2,ps;di)  distPP(ps,pa, da)
distPL(py,l3, h1) angleLL(l3,11, az)
angleLL(l3, 1y, ay)

Figure 1: Geometric problem defined by constraints.

d; denoting a distance between two poiritsa distance between a point and a line
anda; an angle between two lines. Figure 1 shows an example of araoris
based design and the set of constraints defined betweendheege elements.

Given a set of symbol$' and a set of value¥’, atextual substitutionv is a total
mapping fromS to V. Let W be a set of predicates amda textual substitution,
we note bya.WW the set of predicates obtained by replacing every occuereiic
any symbols € S found inW by a(s) € V.

Example 2.1 Let S = {a;,h;} be a set of symbols and = R. Let« a textual
substitution fromS to V' defined as

alar) =0.57, a(hy) =4.0
and letlW be a set of predicates iz with

W = {onPL(p1,l1),angleLL(ly,l3,a1),
d’iStPL(pl,lg,hl)}.

Thena.W is

aW = {onPL(p1,ly),angleLL(ly,l3,0.57),
diStPL(pl, l3, 40)}



<&

In this paper we will also apply textual substitutions totfwsder logic formulae
and other syntactical descriptions.

3 Geometric Constraint Problems

We define and describe declaratively the concepts of abgjemmetric constraint
problem and of instance of a geometric constraint problerostiact entities are
exclusively defined in terms of symbols like those in the g&ts Lp and ;.
Instance entities are abstract entities where some of theag occurring in them
have been replaced by values.

3.1 Abstract Problem

An abstract geometric constraint problemr abstract problenin short, is a tuple
A = (G, C, P) whereG is a set of symbols i ; denoting geometric elements,
is a set of constraints taken frofly and defined between elementafandP is
the set of parameters taken frafp.

Example 3.1 Consider the sketch with annotated dimension lines showfign
ure 1. It can be seen as an abstract problém= (G, C, P) where the set of
geometric elements is

G = {p17p27p37p47 lla l2> l37 l4} 3

C is the set of constraints listed in Figure 1 and, the set dipaters is
P = {dla d2>a1>a27 hl} .

<&
A convenient way to fully describe an abstract problem isaigerithm-like nota-
tion. In this notation, the abstract problem in Example i be expressed as

gcp A
param
dl,dz,al,az,hl :real
endparam
geom
P1,P2,P3, P4 - point
ll,lz,lg,l4 line
endgeom



onPL(py,l2)

d?:StPP(pQ, P3, dl)

distPP(ps3, p4,dz)

diStPL(pl, l3, hl)

angleLL(l3,11, a2)

angleLL(l3,14,a1)
endgcp

Note that an abstract problem defines a family of geometristraint solving prob-
lems parameterized by the get

3.2 Problem Instance

A parameters assignmeitt a textual substitutioa from a set of parameter® to
R.

Let A = (G, C, P) be an abstract problem antbe a parameters assignment from
P. We say thatv.A = (G, «a.C, P) is aproblem instancef A. Note that given an
abstract problem, each different parameters assignménede different problem
instance.

Example 3.2 Consider the abstract problesh = (G, C, P) described in the Ex-
ample 3.1. An example of parameters assignaeist

ala;) = —1.222
alaz) = 1.0472
alh)) = 160.0
a(d) = 290.0
a(dy) = 130.0

A description for the problem instaneeA is

gcp o A
param
d1>d27 ai, az, hl : real



endparam
geom
P1,D2,P3, P4 - Point
ll, lz, l3, l4 s line
endgeom

onPL(py,l2)

distPP(p2,p3,290.0)

distPP(ps,p4,130.0)

diStPL(pl, lg, 160.0)

angleLL(l3,11,1.0472)

angleLL(l3,14,—1.222)
endgcp

O
Problem instances are no longer parameterized becausardmagters have been
replaced by the corresponding actual values.

Figure 2 shows a picture for the problem instancd given in Example 3.2. Now
parameters are no longer symbolic but actual values defipdebassignment.
This picture is a declarative description of the geometiécnents and constraints
and, thus the actual geometry is irrelevant. For exampkeattiual values of;
andds in the figure do not match the values definedi§yt; ) anda(dz).

Notice that abstract problems precisely describe a setahgéic elements and
the constraints that must fulfill, but they do not define howplece the geometric
elements to satisfy the constraints.

P4

P1 l2
do = 130.0
15 4
h1 = 160}0 as = 1.0472
a; = —1.222
I3
p2 p3
dy = 290.0

Figure 2: Problem instance.



P4
P1 l2

dz = 130.0

h1 = 160/0 as = 1.0472
al

I3

p2 P3
d; = 290.0

Figure 3: Problem instance with one degree of freedom,

3.3 Problem Instance with One Degree of Freedom

A partial parameters assignmeista textual substitution. from a subset of param-
etersP’ C P toR. That s, a partial parameters assignmenpantial assignment
in short, is an assignment such that at least one paramefeismot assigned a
specific value.

Let A = (G, C, P) be an abstract problem ancbe a parameters assignment from
P such that just one parameterihhas not been assigned a specific value. We say
thata. A = (G, «.C, P) is aproblem instancef A with one degree of freedam

Figure 3 shows an instance of the problem in Figure 2 wherkeandas not been
assigned a values; is the problem degree of freedom. Problems with one degree
of freedom will play a central role in this work.

3.4 Problem Categorization

One of the main goals of the geometric constraint solvingroomity focuses on
solutions to a constraint problem that are determined umtolzal coordinate sys-
tem, that is, where solutions are congruent under the hgitl transformations of
translation and rotation. We call a configuration of geometbjects in Euclidean
spacerigid when all objects are fixed with respect to each other up tskation
and rotation.

An intuitive way to introduce rigidity comes from considggi the number of so-
lutions that a geometric constraint problem has. There laeetcategories: A
problem isstructurally under constrainedf there are infinitely many solutions
that are not congruent under rigid transformatisinycturally well-constrainedif
there are finitely many solutions modulo rigid transformatiandstructurally over
constrainedif the deletion of one or more constraints results in a welistrained
problem. A constraint problem naturally corresponds ta afsg@isually nonlinear)
algebraic equations.

Defined in this way, the concept of rigidity appears to be syt it is not quite in



dy

do

Figure 4: Left: General configuration. Right: Degeneratafiguration fory+3 =
90°.

accord with the intuition about rigidity. The categoriesdgfined only refer to the

problem’s structure and do not account for other issues asiainconsistencies that
could originate from specific values assigned to the coimstraClearly a problem

that is structurally well-constrained could actually belerconstrained for specific
values of the constraints.

For example, consider trstructurally well constrained problem given in Figure 4,
see Fudos and Hoffmann, [2]. PoiRtis properly placed whenever+ 3 # 90°
and the problem is well-constrained. Butjif+ 5 = 90°, then the placement for
point P is undetermined and, therefore, the problem is no longedramsaktrained.

Different formal definitions of rigidity have been exploriedhe literature. See, for
example, the work by Henneberg, [4], and Laman, [8], or theemmecent works
by Graveret al. [3], Fudos and Hoffmann, [2], Hoffmanet al,, [6], and Whitley,
[10, 11].

4 Solution to a Geometric Constraint Problem

Many attempts to provide general, powerful and efficientrods for solving prob-
lems of geometric constraints have been reported in thatitee. For an extensive
review in geometric constraint solving techniques refddtwand [1] and to Hoff-
mann and Joan-Arinyo [5]. The work reported here does natrlpn any specific
geometric constraint solving technique. Therefore, wé mat go further in this
subject.

Existing geometric constraint solving techniques havenlaeveloped under the
assumption that problems are wellconstrained. As defin&kation 3.4, in well-
constrained problems the number of constraints and theedephent on the geomet-
ric elements define a problem with a finite number of solutimmnsiondegenerate
configurations. In what follows we only consider wellcoasied geometric con-
straint problems.



4.1 TheFirst Order Formula

For our pourposes, it is convenient to interpret geometritstraint problems as
first order logic formulae.

Let A = (G,C, P) be an abstract geometric constraint problem with the set of
constraintsC' = {¢y,ca,...,cn}. Then the geometric constraint problefncan
be expressed as the first order logic formula,

where the geometric elements Gfand the parameters df occurring in¥ are
interpreted as free variables.

Example 4.1 The first order formula of the abstract probledngiven in Exam-
ple 3.1is

Y(A) = onPLUpi,l;) AonPLpy,ls)
onPL(pa, 1) A ONPL(ps, I3)
onPL(ps,l3) A onPL(ps,l4)
ONPL(p4, l2) A ONPL(py, l4)
distPR(p2, p3,dy) A
distPR(ps, ps, da) A
distPL(p1, 3, h1) A
angleLL(ls, 11, a2) A
angleLl(l3, 4, a;)

<&

Note that, as defined, a textual substitutiorcan be applied to both an abstract
problem and to a first order logic formula. Therefore, thatieh ¥(«.A) =
a.X(A) is well defined. Leta be a parameters assignment f@rand «. A the
corresponding instance problem. Then the first order faarhlihv. A) expresses
the instance problem. See Example 4.2.

Example 4.2 The first order formula for the instance probledngiven in Exam-



ple 3.1is

Y(a.A)

onPL(p1,11) A onPL(py, lo
onPL(ps,11) A onPL(pa, I3
onPL(ps,l3) A onPL(ps, I4
onPL(p4, l2) A oNPL(py, Iy
distPR(p2, p3,290.0) A
distPR(ps3, ps4, 130.0) A
distPL(p1, I3, 160.0) A
angleLLl(ls, 1y, 1.0472) A
angleLl(s, 14, —1.222)

)A
) A
)A
) A

4.2 Solution Instances

First we define the concept oalization Let A = (G, C, P) be an abstract
geometric constraint problem. geometry assignmemr realization p.A, is a

textual substitution that embeds R¥ the geometric elements iR by assigning
an actual geometry to each element in the set of geometribagrtr. That is,

p. A= (p.G,C, P). Example 4.3 illustrates this concept.

Example 4.3 Let (x, y) denote a point ifR? and(a, b, ¢) be the coefficients of the
straight lineaz + by + ¢ = 0 with a? + b = 1. Then an example of realization for
the abstract problem given in Example 3.1 is

<

It is easy to see that the realtionship&££(A4) = X(p.A) andp.(a.(2(A))) =
Y(p.a.A)) are welldefined. Moreovery andp commute. Deriving the first order
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formula X resulting from applying the realizatigndefined in Example 4.3 to the
abstract formula given in Example 4.1 is routine matter.

Next we dfine the concept sblution instancelLet A = (G, C, P) be an abstract
problem on geometric constraints, tetA be a problem instance and Jeta. A) =
(G, p.(a.C), P) be arealization ofv. A. We say thap.(a.A), in shortp.a. 4, is a
solution instanceo the problem instance. A if and only if all the constraints id’
hold for the realization.«. A.

Example 4.4 Solution instance for the instance probletrgiven in Example 3.1
and realization given in Example 4.3.

S(p.a.A) = onPL((92.38,160), (—0.87,0.5,0)) A
onPL((92.38,160), (0, —1,0)) A
onPL(0,0), (—0.87,0.5,0)) A
onPL((0,0), (0.94,0.34, —272.51)) A
onPL((290,0), (0, —1,0)) A
onPL((290,0), (0.94,0.34, —272.51)) A
onPL((245, .54,122.16), (—0.24, —0.97, 177.48)) A
onPL((245.54,122.16), (0.94, 0.34, —272.51))) A
distPP((0,0), (290.0),290.0) A
distPP((290,0), (245.54), 122.16), 130.0) A
distPL((92.38,160), (0, —1,0), 160) A
angleLL((0, —1,0), (—0.87,0.5,0),1.0472) A
angleLL((0, —1,0), (0.94,0.34, —272.51), —1.222)

<&

Note that the set of solution instances for the instancelpnol. A is the set of
realizationsp. A for which X(p.a.. A) holds.

5 Geometries and Realizations

In this section we show how solution instances to differdogtiact problems de-
fined on the same set of geometric symbols are related onagedlizationp has
been fixed. We start by stating a trivial lemma.

Lemmab5.1 Let A = (G,C, P) be an abstract wellconstrained geometric con-
straint problem and letv.A = (G, «.C, P) be a problem instance. Lgta. A be a
realization of problemA. Then for any pair of symbolg, g; € G any relationship
between them can be measuregin. A.

11



Proof
Since the problem is wellconstrained, just consider that @alization p.a. A
places all the geometric elementsGiin a common referenceél

Next we state and prove the theorem that relates solutidanoss for different
abstract problems on the same set of geometric symbols fieen gealizationp.

Theorem 5.2 Let 4, = (G,C1,P) and A, = (G,Cy, P») be two wellcon-
strained abstract geometric constraint problems definedhensame set of geo-
metric elementss. Letp.a1.A; be a solution instance for the problem instance
a1.41. Letas be an assigment such that replaces each sympeal P, with the
corresponding measure taken ;. A;. Then the realizatiom.as. A, is a solu-
tion instance to the problem instanag. A,.

Proof

The actual solution instangea;.A; is a realization for the wellconstrained prob-
lem instancev;.A;. Thus Lemma 5.1 allows measuring actual values for the con-
straints parameters if,. Since the realizatiop is preservedy.«s. A, is a solution
instance to the wellconstrained problem instanged,. O

Example 5.1 Consider the constraint problem$, = (G,Cy,P;) and Ay =
(G, Oy, P») be two abstract geometric constraint problems with points

G={A,B,C,D,E}
and respective distance constraints
Cy = {di1,dz,d3,dy,ds, dg, d7 }
Co = {dy,do,d5,dy, ds, dg, d7}

Assume that Figure 5 left is the realizatiprav; . A1 . If we defineas by replacing in
a1 the constraints with di; and assigning td; the value resulting from measuring
the distance between pointsand D in the realization ofd, thenp.as. A, is also
a realization for the problem,. See Figure 5 right.

<&

Finally, we have

Corollary 5.3 Let Ay, = (G,C\,P,) and 4, = (G,C,, P,) be two wellcon-
strained geometric constraint problems, with one degrefreafedom, defined on
the same set of geometric elements such that- {\} = C, — {u}. Then the
problem instancea,.Ay anda,,.A, have the same set of solution instances.

Proof

For each value assigned to the degree of freedom of one ofrtiidems, apply
Theorem 5.200

12



Figure 5: Left) Realizatiom.a1. A1 Right) Realizationp.a,.As where constraint
d4, has been assigned a value measurgddn. A; .

6 Discussion

We have shown that given two wellconstrained abstract ge@r@oblems de-

fined by constraints on the same set of geometric elementg we know one

realization for one solution instance, we can derive diffitrparameters assign-
ments that result in different representations of the sashdisn instance just by

measuring properies in the given solution instance.

This is a formal statement of the fact that given a finite sejesfmetric elements,
we can place them with respect to each other in the twodiroeakspace at our
will without changing the nature of the placing problem. Thg what charac-
terizes a geometric constraint problem is not the set oftcainss but the set of
geometric elements.

Note that the geometric constraint solving method that mayded to solve the
problem, does not play any role in this discussion.
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