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Abstract

Geometric constraint solving is a growing field devoted to solve geomet-
ric problems defined by relationships, called constraints,established between
the geometric elements. In this work we show that what characterizes a ge-
ometric constraint problem is the set of geometric elementson which the
problem is defined. If the problem is wellconstrained, a given solution in-
stance to the geometric constraint problem admits different representations
defined by measuring geometric relationships in the solution instance.

Keywords: Abstract Geometric Constraint Problem, Problem Instance,
Solution Instance, Realization.

1 Introduction

In two-dimensional constraint-based geometric design, the designer creates a rough
sketch of an object made out of simple geometric elements like points, lines, circles
and arcs of circle. Then the intended exact shape is specifiedby annotating the
sketch with constraints like distance between two points, distance from a point
to a line, angle between two lines, line-circle tangency andso on. A geometric
constraint solver then checks whether the set of geometric constraints coherently
defines the object and, if so, determines the position of the geometric elements. The
designer can now modify the values of constraints or ask the geometric constraint
solver for alternative solutions that also satisfy the constraints.

Since in general geometric constraint solvers are not complete, given a geometric
problem based on constraints, the set of solution instancesthat can be determined
depends on the specific solving technique used. However, once the set of geometric
objects in the problem has been fixed, it would be interestingto know whether
different placements for the geometry are solutions to the same problem.
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In this report we present a way of building different representations for a solution
instance by properly taking measures. We deliberately avoid considering any spe-
cific geometric constraint solving technique and focus on the general concept of
solution realization. That is, we focus on an actual placement of the geometric
elements without considering how the placement has actually been figured out.

The outline of the paper is as follows. In Section 2 we recall declarative definitions
for several basic concepts relevant in geometric constraint solving. Geometric con-
straint problems and their categorization are defined in Section 3. In Section 4 we
identify a first order logic formula to represent solutions to geometric constraint
problems. The main result on geometry and realizations is presented in Section 5.
Finally, in Section 6 we offer a brief discussion.

2 Notation and Concepts

Following Joan-Arinyo [7] and Vila [9], in this section we recall concepts and
notational conventions that will be used later on. We assumethat a constraint-based
design is made of geometric elements like point, lines, circles and arcs of circle.
The intended shape is defined by means of constraints like distance between two
points, distance from a point to a line, angle between two lines, line-circle tangency
and so on.

In what follows, the symbols to represent geometric elements will be taken from
the set

LG = {p1, l1, c1, p2, l2, c2, . . . , pn, ln, cn, . . .}

wherepi denotes a point,li a straight line andci a circle. We assume that the
number of different available symbols is unlimited.

Constraints will be represented by predicates relating geometric elements or geo-
metric elements plus a symbolic value calledparameter. For example,

LR = {onPL(p, l),

distPP(pi, pj , d),

distPL(pi, lj , h),

angleLL(li, lj , a), . . .}

Predicate names are self explanatory. The predicateonPL(p, l) specifies that point
p must lie on linel, distPP (pi, pj , d) specifies a point-point distance,distPL(pi, lj , h)
defines the perpendicular distance from a point to a straightline and,angleLL(li, lj , a)
denotes the angle between two straight lines. The number andsyntax of available
constraints are fixed. Symbolsd, h anda are parameters. The symbols to represent
parameters will be taken from the set

LP = {d1, h1, a1, d2, h2, a2, . . . , dn, hn, an, . . .}
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Figure 1: Geometric problem defined by constraints.

di denoting a distance between two points,hi a distance between a point and a line
andai an angle between two lines. Figure 1 shows an example of a constraint-
based design and the set of constraints defined between the geometric elements.

Given a set of symbolsS and a set of valuesV , a textual substitutionα is a total
mapping fromS to V . Let W be a set of predicates andα a textual substitution,
we note byα.W the set of predicates obtained by replacing every occurrence of
any symbols ∈ S found inW by α(s) ∈ V .

Example 2.1 Let S = {a1, h1} be a set of symbols andV = R. Let α a textual
substitution fromS to V defined as

α(a1) = 0.57, α(h1) = 4.0

and letW be a set of predicates inLR with

W = {onPL(p1, l1), angleLL(l1, l3, a1),

distPL(p1, l3, h1)}.

Thenα.W is

α.W = {onPL(p1, l1), angleLL(l1, l3, 0.57),

distPL(p1, l3, 4.0)}.
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In this paper we will also apply textual substitutions to first order logic formulae
and other syntactical descriptions.

3 Geometric Constraint Problems

We define and describe declaratively the concepts of abstract geometric constraint
problem and of instance of a geometric constraint problem. Abstract entities are
exclusively defined in terms of symbols like those in the setsLG, LP andLI .
Instance entities are abstract entities where some of the symbols occurring in them
have been replaced by values.

3.1 Abstract Problem

An abstract geometric constraint problem, or abstract problemin short, is a tuple
A = 〈G,C,P 〉 whereG is a set of symbols inLG denoting geometric elements,C

is a set of constraints taken fromLR and defined between elements ofG, andP is
the set of parameters taken fromLP .

Example 3.1 Consider the sketch with annotated dimension lines shown inFig-
ure 1. It can be seen as an abstract problemA = 〈G,C,P 〉 where the set of
geometric elements is

G = {p1, p2, p3, p4, l1, l2, l3, l4} ,

C is the set of constraints listed in Figure 1 and, the set of parameters is

P = {d1, d2, a1, a2, h1} .

3

A convenient way to fully describe an abstract problem is thealgorithm-like nota-
tion. In this notation, the abstract problem in Example 3.1 can be expressed as

gcp A
param

d1, d2, a1, a2, h1 : real
endparam
geom

p1, p2, p3, p4 : point
l1, l2, l3, l4 : line

endgeom
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onPL(p1, l1)
onPL(p1, l2)
onPL(p2, l1)
onPL(p2, l3)
onPL(p3, l3)
onPL(p3, l4)
onPL(p4, l4)
onPL(p4, l2)
distPP (p2, p3, d1)
distPP (p3, p4, d2)
distPL(p1, l3, h1)
angleLL(l3, l1, a2)
angleLL(l3, l4, a1)

endgcp

Note that an abstract problem defines a family of geometric constraint solving prob-
lems parameterized by the setP .

3.2 Problem Instance

A parameters assignmentis a textual substitutionα from a set of parametersP to
R.

Let A = 〈G,C,P 〉 be an abstract problem andα be a parameters assignment from
P . We say thatα.A = 〈G,α.C, P 〉 is aproblem instanceof A. Note that given an
abstract problem, each different parameters assignment defines a different problem
instance.

Example 3.2 Consider the abstract problemA = 〈G,C,P 〉 described in the Ex-
ample 3.1. An example of parameters assigmentα is

α(a1) = −1.222

α(a2) = 1.0472

α(h1) = 160.0

α(d1) = 290.0

α(d2) = 130.0

A description for the problem instanceα.A is

gcp α.A

param
d1, d2, a1, a2, h1 : real
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endparam
geom

p1, p2, p3, p4 : point
l1, l2, l3, l4 : line

endgeom
onPL(p1, l1)
onPL(p1, l2)
onPL(p2, l1)
onPL(p2, l3)
onPL(p3, l3)
onPL(p3, l4)
onPL(p4, l4)
onPL(p4, l2)
distPP (p2, p3, 290.0)
distPP (p3, p4, 130.0)
distPL(p1, l3, 160.0)
angleLL(l3, l1, 1.0472)
angleLL(l3, l4,−1.222)

endgcp

3

Problem instances are no longer parameterized because the parameters have been
replaced by the corresponding actual values.

Figure 2 shows a picture for the problem instanceα.A given in Example 3.2. Now
parameters are no longer symbolic but actual values defined by the assignmentα.
This picture is a declarative description of the geometric elements and constraints
and, thus the actual geometry is irrelevant. For example, the actual values ofh1

andd2 in the figure do not match the values defined byα(h1) andα(d2).

Notice that abstract problems precisely describe a set of geometric elements and
the constraints that must fulfill, but they do not define how toplace the geometric
elements to satisfy the constraints.

a2 = 1.0472
a1 = −1.222

l2

l3

l4l1
h1 = 160.0

d2 = 130.0

d1 = 290.0

p3

p1

p4

p2

Figure 2: Problem instance.
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a2 = 1.0472
a1
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l4l1
h1 = 160.0

d2 = 130.0

d1 = 290.0

p3

p1

p4

p2

Figure 3: Problem instance with one degree of freedom,a1.

3.3 Problem Instance with One Degree of Freedom

A partial parameters assignmentis a textual substitutionα from a subset of param-
etersP ′ ⊂ P to R. That is, a partial parameters assignment, orpartial assignment
in short, is an assignment such that at least one parameter inP is not assigned a
specific value.

Let A = 〈G,C,P 〉 be an abstract problem andα be a parameters assignment from
P such that just one parameter inP has not been assigned a specific value. We say
thatα.A = 〈G,α.C, P 〉 is aproblem instanceof A with one degree of freedom.

Figure 3 shows an instance of the problem in Figure 2 where angle a1 has not been
assigned a value.ai is the problem degree of freedom. Problems with one degree
of freedom will play a central role in this work.

3.4 Problem Categorization

One of the main goals of the geometric constraint solving community focuses on
solutions to a constraint problem that are determined up to aglobal coordinate sys-
tem, that is, where solutions are congruent under the rigid-body transformations of
translation and rotation. We call a configuration of geometric objects in Euclidean
spacerigid when all objects are fixed with respect to each other up to translation
and rotation.

An intuitive way to introduce rigidity comes from considering the number of so-
lutions that a geometric constraint problem has. There are three categories: A
problem isstructurally under constrainedif there are infinitely many solutions
that are not congruent under rigid transformation,structurally well-constrained, if
there are finitely many solutions modulo rigid transformation, andstructurally over
constrainedif the deletion of one or more constraints results in a well-constrained
problem. A constraint problem naturally corresponds to a set of (usually nonlinear)
algebraic equations.

Defined in this way, the concept of rigidity appears to be simple but it is not quite in
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Figure 4: Left: General configuration. Right: Degenerate configuration forγ+β =
90◦.

accord with the intuition about rigidity. The categories sodefined only refer to the
problem’s structure and do not account for other issues suchas inconsistencies that
could originate from specific values assigned to the constraints. Clearly a problem
that is structurally well-constrained could actually be underconstrained for specific
values of the constraints.

For example, consider thestructurallywell constrained problem given in Figure 4,
see Fudos and Hoffmann, [2]. PointP is properly placed wheneverγ + β 6= 90◦

and the problem is well-constrained. But ifγ + β = 90◦, then the placement for
pointP is undetermined and, therefore, the problem is no longer well constrained.

Different formal definitions of rigidity have been exploredin the literature. See, for
example, the work by Henneberg, [4], and Laman, [8], or the more recent works
by Graveret al. [3], Fudos and Hoffmann, [2], Hoffmannet al., [6], and Whitley,
[10, 11].

4 Solution to a Geometric Constraint Problem

Many attempts to provide general, powerful and efficient methods for solving prob-
lems of geometric constraints have been reported in the literature. For an extensive
review in geometric constraint solving techniques refer toDurand [1] and to Hoff-
mann and Joan-Arinyo [5]. The work reported here does not depend on any specific
geometric constraint solving technique. Therefore, we will not go further in this
subject.

Existing geometric constraint solving techniques have been developed under the
assumption that problems are wellconstrained. As defined inSection 3.4, in well-
constrained problems the number of constraints and their placement on the geomet-
ric elements define a problem with a finite number of solutionsfor nondegenerate
configurations. In what follows we only consider wellconstrained geometric con-
straint problems.
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4.1 The First Order Formula

For our pourposes, it is convenient to interpret geometric constraint problems as
first order logic formulae.

Let A = 〈G,C,P 〉 be an abstract geometric constraint problem with the set of
constraintsC = {c1, c2, . . . , cm}. Then the geometric constraint problemA can
be expressed as the first order logic formula,

Σ(A) ≡
m∧

i=1

ci

where the geometric elements ofG and the parameters ofP occurring inΣ are
interpreted as free variables.

Example 4.1 The first order formula of the abstract problemA given in Exam-
ple 3.1 is

Σ(A) ≡ onPL(p1, l1) ∧ onPL(p1, l2) ∧

onPL(p2, l1) ∧ onPL(p2, l3) ∧

onPL(p3, l3) ∧ onPL(p3, l4) ∧

onPL(p4, l2) ∧ onPL(p4, l4) ∧

distPP(p2, p3, d1) ∧

distPP(p3, p4, d2) ∧

distPL(p1, l3, h1) ∧

angleLL(l3, l1, a2) ∧

angleLL(l3, l4, a1)

3

Note that, as defined, a textual substitutionα can be applied to both an abstract
problem and to a first order logic formula. Therefore, the relation Σ(α.A) =
α.Σ(A) is well defined. Letα be a parameters assignment forP and α.A the
corresponding instance problem. Then the first order formula Σ(α.A) expresses
the instance problem. See Example 4.2.

Example 4.2 The first order formula for the instance problemA given in Exam-
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ple 3.1 is

Σ(α.A) ≡ onPL(p1, l1) ∧ onPL(p1, l2) ∧

onPL(p2, l1) ∧ onPL(p2, l3) ∧

onPL(p3, l3) ∧ onPL(p3, l4) ∧

onPL(p4, l2) ∧ onPL(p4, l4) ∧

distPP(p2, p3, 290.0) ∧

distPP(p3, p4, 130.0) ∧

distPL(p1, l3, 160.0) ∧

angleLL(l3, l1, 1.0472) ∧

angleLL(l3, l4,−1.222)

3

4.2 Solution Instances

First we define the concept ofrealization. Let A = 〈G,C,P 〉 be an abstract
geometric constraint problem. Ageometry assignmentor realization, ρ.A, is a
textual substitution that embeds inR2 the geometric elements inP by assigning
an actual geometry to each element in the set of geometric symbols G. That is,
ρ.A = 〈ρ.G,C, P 〉. Example 4.3 illustrates this concept.

Example 4.3 Let (x, y) denote a point inR2 and(a, b, c) be the coefficients of the
straight lineax+ by + c = 0 with a2 + b2 = 1. Then an example of realization for
the abstract problemA given in Example 3.1 is

ρ(p1) = (92.38, 160)

ρ(p2) = (0, 0)

ρ(p3) = (290, 0)

ρ(p4) = (245.54, 122.16)

ρ(l1) = (−0.87, 0.5, 0)

ρ(l2) = (−0.24,−0.97, 177.48)

ρ(l3) = (0,−1, 0)

ρ(l4) = (0.94, 0.34,−272.51)

3

It is easy to see that the realtionshipsρ.Σ(A) = Σ(ρ.A) and ρ.(α.(Σ(A))) =
Σ(ρ.α.A)) are welldefined. Moreover,α andρ commute. Deriving the first order
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formulaΣ resulting from applying the realizationρ defined in Example 4.3 to the
abstract formula given in Example 4.1 is routine matter.

Next we dfine the concept ofsolution instance. Let A = 〈G,C,P 〉 be an abstract
problem on geometric constraints, letα.A be a problem instance and letρ.(α.A) =
〈G, ρ.(α.C), P 〉 be a realization ofα.A. We say thatρ.(α.A), in shortρ.α.A, is a
solution instanceto the problem instanceα.A if and only if all the constraints inC
hold for the realizationρ.α.A.

Example 4.4 Solution instance for the instance problemA given in Example 3.1
and realization given in Example 4.3.

Σ(ρ.α.A) ≡ onPL((92.38, 160), (−0.87, 0.5, 0)) ∧

onPL((92.38, 160), (0,−1, 0)) ∧

onPL(0, 0), (−0.87, 0.5, 0)) ∧

onPL((0, 0), (0.94, 0.34,−272.51)) ∧

onPL((290, 0), (0,−1, 0)) ∧

onPL((290, 0), (0.94, 0.34,−272.51)) ∧

onPL((245, .54, 122.16), (−0.24,−0.97, 177.48)) ∧

onPL((245.54, 122.16), (0.94, 0.34,−272.51))) ∧

distPP((0, 0), (290.0), 290.0) ∧

distPP((290, 0), (245.54), 122.16), 130.0) ∧

distPL((92.38, 160), (0,−1, 0), 160) ∧

angleLL((0,−1, 0), (−0.87, 0.5, 0), 1.0472) ∧

angleLL((0,−1, 0), (0.94, 0.34,−272.51),−1.222)

3

Note that the set of solution instances for the instance problem α.A is the set of
realizationsρ.A for whichΣ(ρ.α.A) holds.

5 Geometries and Realizations

In this section we show how solution instances to different abstract problems de-
fined on the same set of geometric symbols are related once therealizationρ has
been fixed. We start by stating a trivial lemma.

Lemma 5.1 Let A = 〈G,C,P 〉 be an abstract wellconstrained geometric con-
straint problem and letα.A = 〈G,α.C, P 〉 be a problem instance. Letρ.α.A be a
realization of problemA. Then for any pair of symbolsgi, gj ∈ G any relationship
between them can be measured inρ.α.A.
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Proof
Since the problem is wellconstrained, just consider that any realizationρ.α.A

places all the geometric elements inG in a common reference.2

Next we state and prove the theorem that relates solution instances for different
abstract problems on the same set of geometric symbols for a given realizationρ.

Theorem 5.2 Let A1 = 〈G,C1, P1〉 and A2 = 〈G,C2, P2〉 be two wellcon-
strained abstract geometric constraint problems defined onthe same set of geo-
metric elementsG. Let ρ.α1.A1 be a solution instance for the problem instance
α1.A1. Let α2 be an assigment such that replaces each symbolpi ∈ P2 with the
corresponding measure taken inρ.α1.A1. Then the realizationρ.α2.A2 is a solu-
tion instance to the problem instanceα2.A2.

Proof
The actual solution instanceρ.α1.A1 is a realization for the wellconstrained prob-
lem instanceα1.A1. Thus Lemma 5.1 allows measuring actual values for the con-
straints parameters inP2. Since the realizationρ is preserved,ρ.α2.A2 is a solution
instance to the wellconstrained problem instanceα2.A2. 2

Example 5.1 Consider the constraint problemsA1 = 〈G,C1, P1〉 and A2 =
〈G,C2, P2〉 be two abstract geometric constraint problems with points

G = {A,B,C,D,E}

and respective distance constraints

C1 = {d1, d2, d3, d4, d5, d6, d7}

C2 = {d1, d2, d
′

3, d4, d5, d6, d7}

Assume that Figure 5 left is the realizationρ.α1.A1. If we defineα2 by replacing in
α1 the constraintd3 with d′

3
and assigning tod′

3
the value resulting from measuring

the distance between pointsA andD in the realization ofA1, thenρ.α2.A2 is also
a realization for the problemA2. See Figure 5 right.

3

Finally, we have

Corollary 5.3 Let Aλ = 〈G,Cλ, Pλ〉 and Aµ = 〈G,Cµ, Pµ〉 be two wellcon-
strained geometric constraint problems, with one degree offreeedom, defined on
the same set of geometric elements such thatCλ − {λ} = Cµ − {µ}. Then the
problem instancesαλ.Aλ andαµ.Aµ have the same set of solution instances.

Proof
For each value assigned to the degree of freedom of one of the problems, apply
Theorem 5.2.2
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Figure 5: Left) Realizationρ.α1.A1 Right) Realizationρ.α2.A2 where constraint
d′
3

has been assigned a value measured inρ.α1.A1.

6 Discussion

We have shown that given two wellconstrained abstract geometric problems de-
fined by constraints on the same set of geometric elements, once we know one
realization for one solution instance, we can derive different parameters assign-
ments that result in different representations of the same solution instance just by
measuring properies in the given solution instance.

This is a formal statement of the fact that given a finite set ofgeometric elements,
we can place them with respect to each other in the twodimensional space at our
will without changing the nature of the placing problem. That is, what charac-
terizes a geometric constraint problem is not the set of constraints but the set of
geometric elements.

Note that the geometric constraint solving method that may be used to solve the
problem, does not play any role in this discussion.
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