中子辐照的单晶硅参数研究

沈颜华 朱文章** 吴孙桃 谢敬仁 陈仪明

1993年2月24日收到初稿,1993年6月21日收到修改稿

提要 在不同温度和红外光照下,测量了经中子辐照的单晶硅表面光电压,确定了其深能级 的位置和少子扩散长度;由双能级复合理论,推导了中子辐照单晶硅的深能级复合中心和寿命的 计算公式;计算了热中子辐照和高能中子辐照单晶硅后的深能级密度、费米能级和其他有关重要 参数。

关键词:中子辐照 单晶硅 深能级 表面光伏效应 少子扩散长度或寿命

Study of Parameters of Neutron-Irradiated Single Crystal Silicon

Shen Yihua, Zhu Wenzhang, Wu Suntao, Xie Jinren, Chen Yiming (Xiamen University, 361005)

Abstract: The photovoltage spectra of neutron-irradiated single crystal silicon under infra-red illumination and at low temperatures are measured. The deep level and minority carrier diffusion length are determined. By the double-level recombination model, the statistics formulas of the deep level and lifetime are derived for neutron-irradiated single crystal silicon. Some important parameters of the silicon irradiated with high energy and thermal neutron are calculated respectively.

Key Words: Neutron-Irradiation, Single Crystal Silicon, Deep Level, Surface Photovoltaic Effect, Minority Carrier Diffusion Length or Lifetime

1引言

高反压大功率硅器件,为提高其性能,通常采用热中子嬗变掺杂衬底(Neutron Transmutation Doping);有些半导体器件必须在辐照条件下工作或在辐照后仍能继续工作,但这些器件的基体材料单晶硅在受中子辐照后,会产生新的缺陷,形成深能级复合中心,使材料和器件 性能发生变化,因此,研究其受辐照后深能级位置和密度及其他有关参数,对器件研制有实际 意义。为测量深能级位置,采用一种新的方法——低温红外表面光电压谱测量,它属于非破坏 性,不需制备 pn 结和电极,不会引进新的缺陷。本研究的测量和计算结果与已有文献报导的

⁽厦门大学,361005)

^{*} 国家自然科学基金研究课题。

^{**} 现为集美航海学院教师。

(2)

基本一致。

2 原 玾

低温(15~100 K)下,用红外光照射经中子辐照后的单晶硅样品,当光子能量等于电子从 深能级到导带或从价带到深能级的能量差时,发生光激发。如图1的过程1或2,产生的光生 载流子的扩散、复合和在表面势垒电场作用下,在表面势垒两侧形成光生载流子的积累,从而 产生光生电压;其结果在表面光电压谱中出现峰值,由峰值对应的位置即可计算出深能级位 置,如图2的1,3峰位置。

图 1 低温下红外光照的光激发示意

图 2 960C金扩散的 p 型硅单晶,在低温下

红外表面光电压谱。•:97.7 K,×:61.2 K 热中子辐照单晶硅,对硅样品的主要损伤机理是;使晶格原子往间隙位置位移,且有的发 生嬗变。当辐照的中子能量与热运动能量相近时,中子与单晶硅中含量为 3.1%的同位素14Si30 发生核反应而形成稳定的磷原子15P31[1],使晶格原子发生嬗变和产生缺陷;高能中子与晶格原 子发生碰撞,使其产生缺陷群[2]。在轻掺杂和室温下,受中子辐照的单晶硅中产生的缺陷,双空 位缺陷起主要作用^[3],因此,可用双能级模型对它进行分析。

根据电中性条件:

$$n + N_A^- + N_T^- = p + N_D^+ + N_T^+ \tag{1}$$

对 p 型样品,
$$N_A \gg N_D$$
(对 n 型样品 $N_D \gg N_A$)

则

$$n + N_{A}^{-} + N_{T}^{-} = p + N_{T}^{+}$$

$$N_{T} = N_{T}^{0} + N_{T}^{+} + N_{T}^{-}$$
(2)
(3)

$$N_{T}^{-}: N_{T}^{0}: N_{T}^{+} = \exp\left(\frac{E_{F} - E_{TA}}{KT}\right) : 1 : \exp\left(\frac{E_{TD} - E_{F}}{KT}\right)^{[4]}$$
(4)

则得
$$N_T^0 = N_T / \{1 + \exp[(E_F - E_{TA})/KT] + \exp[(E_{TD} - E_F)/KT]\}$$
 (5)

?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

$$N_{T}^{-} = N_{T} / \{1 + \exp[(E_{TA} - E_{F})/KT] \times \{1 + \exp[(E_{TD} - E_{F})/KT]\}\}$$
(6)

 $N_T^{\dagger} = N_T / \{1 + \exp[(E_F - E_{TD})/KT] \times \{1 + \exp[(E_F - E_{TA})/KT]\}\}$ $\tag{7}$

式中 N_A 和 N_D 分别代表浅受主和浅施主浓度; n 和 p 分别代表导带电子和价带空穴浓度; N_T , N_T^- , N_T^+ 和 N_T^0 分别代表深能级复合中心浓度、离化受主型、离化施主型和中性深能级的 浓度; E_{TA} 和 E_{TD} 分别代表受主型和施主型深能级的位置。

由于每个缺陷具有三种带电状态,因此,有四个发射和四个复合过程:

(1)中性施主深能级俘获空穴,俘获截面为σ[°],施主型深能级带正电。

(2)带正电的施主俘获电子,俘获截面为σ⁺,施主型深能级呈中性。

(3)中性施主深能级发射电子,则带正电。

(4)带正电的施主型深能级发射空穴,即由价带中俘获电子,施主型深能级呈中性。

(5)中性受主深能级俘获电子。管获截面为 o%,受主深能级带负电。

(6)带负电受主深能级俘获空穴,俘获截面为σ,,受主深能级呈中性。

(7)中性受主深能级发射空穴,即由价带俘获电子,则它带负电。

(8)带负电受主深能级发射电子,受主深能级呈中性。

在稳态和小信号条件下,由动力学方程,可推导出少子寿命 r 和少子扩散长度 L 的计算公式:

$$\tau_{n} = D' / [(p_{0} + n_{0}) \times (n_{1A}\tau_{pA} + p\tau_{nA} + p_{1D}\tau_{nD} + n\tau_{pD})]$$
(8)

$$D' = (p\tau_{nD} + n_{1D}\tau_{pD}) \times (p\tau_{nA} + n_{1A}\tau_{pA}) + (n\tau_{pD} + p_{1D}\tau_{nD}) \times (p\tau_{nA} + n_{1A}\tau_{pA}) + (n\tau_{pD} + p_{1D}\tau_{nD}) \times (n\tau_{pA} + p_{1A}\tau_{nA})$$
(9)
$$\tau_{nD} = 1/(V_{ubc}N_{T}\sigma_{n}^{+}), \tau_{oD} = 1/(V_{ubb}N_{T}\sigma_{0}^{0}),$$

$$\tau_{nA} = 1/(V_{the}N_T\sigma_n^0), \tau_{pA} = 1/(V_{thh}N_T\sigma_p^-),$$

$$L_n = \sqrt{\tau_n D_n}$$
(10)

式中 n_{1A},n_{1D}和 p_{1A},p_{1D}分别代表费米能级在受主型和施主型深能级上时,导带中的电子和价带中的空穴浓度,V_{the}和 V_{thh}分别代表电子和空穴的热运动速度。

当已知深能级位置后,由表面光电压法测得少子扩散长度 L_n ,则可算出 N_T ,而 $N_T \propto \pmb{\Phi}_n$,

则 $N_T = A \Phi_e$ (11) 式中 Φ_e 为中子辐照的剂量; A 为比例常数, 它表明每个具有一定能量的中子在单晶硅中单位

式中 Q, 为中于输照的剂重; A 为比例常数, 它表明每个具有一定能重的中于在单晶硅中单位 厘米深度内产生的复合中心数, 定义为中子的缺陷引进率。

考虑单一复合能级、单一复合截面近似,则为 SRH 理论^[5],对 p 型样品,只考虑施主型复 合中心,则得

$$\tau_n = 1/(\sigma_n^+ V_{the} N_T) \tag{12}$$

$$1/\tau_n' = 1/\tau_{n0} + 1/\tau_n \tag{13}$$

式中 7,0和 7,1分别为辐照前、后的少子寿命,由(11)和(12)式代入(13)式得

$$1/\tau_n' = 1/\tau_{n0} + K_L \boldsymbol{\Phi}_e \tag{14}$$

由(10)式则得

$$K_L \Phi_{\epsilon} = 1/L_n^{\prime 2} - 1/L_{n0}^2 \tag{15}$$

式中 L_n 。和 $L_n'分别为辐照前、后的少子扩散长度, K_L 为辐照损伤系数。当已知 <math>L_n$ 。和 $L_n'时, 则$ 可计算出 K_L 。

?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

3 实验结果与计算

采用文献[6]的实验装置,对掺金硅和中子辐照的样品,测量了它们在低温下的红外表面 光电压谱(如图 2),从而确定了它们的深能级位置,其结果如表 1。

测量了 p 型和 n 型单晶硅受中子辐照前后的少子扩散长度。由所推导的公式和所测量的 深能级复合中心位置、少子扩散长度,计算了它们的体内费米能级、深能级复合中心的密度和 损伤系数、缺陷引进率以及其他有关参数,其结果如表 2。

计算中所采用的常数为:

(1)n型单晶硅为 FZ 单晶,电阻率 ρ>200 Ω·cm,其掺杂浓度取为 N_D=10¹³ cm⁻³,D_ρ=
 11.63 cm²/s。

(2)p型单晶硅为CZ单晶,电阻率 ρ=18 Ω・cm,其掺杂浓度 N_A=7.5×10¹⁴ cm⁻³, D_n=
 36.2 cm²/s。

(3)浅施主杂质能级 E_D=0.045 eV,浅受主杂质能级 E_A=0.045 eV。

(4)深能级俘获截面分别为^[7]:

 $\sigma_n^0 = 1.9 \times 10^{-14} \text{ cm}^2$, $\sigma_n^+ = 1.0 \times 10^{-13} \text{ cm}^2$,

 $\sigma_{p}^{0} = 1.2 \times 10^{-14} \text{ cm}^{2}, \qquad \sigma_{p}^{-} = 2.3 \times 10^{-13} \text{ cm}^{2}$

计算中的一些参量由下列公式计算得出:

(1)费米能级的值由求解电中性条件得出

 $n + N_A^- + N_T^- = p + N_D^+ + N_T^+$

(2)电子和空穴有效质量随温度变化,由文献[8]的实验曲线值,经最小二乘法用多项式曲 线拟合得出

$$m_{\bullet}^{*}/m_{0} = 1.\ 061\ 6+2.\ 465\times10^{-5}T+3.\ 604\times10^{-6}T^{2}$$

-1. 215×10⁻⁸T³+1. 754×10⁻¹¹T⁴-9. 469×10⁻¹⁵T⁵
$$m_{\bullet}^{*}/m_{0} = 0.\ 589\ 55-2.\ 389\times10^{-4}T+1.\ 267\times10^{-5}T^{2}$$

-5. 358×10⁻⁸T³+9. 033×10⁻¹¹T⁴-5. 429×10⁻¹⁴T⁵

(3)禁带宽度 E, 随温度 T 变化[9]

 $E_{g} = E_{g}(0) - \beta T^{2}/(T+\gamma)$ $E_{g}(0) = 1.170 \text{ eV}, \beta = 4.73 \times 10^{-4} \text{ eV/K}$ $\gamma = 636 \text{ K}$

4 讨 论

4.1 表1表明,由测量低温下的红外表面光电压谱,得出的深能级位置与其他方法测量的结果基本一致;测量温度95K左右即可,因此,可采用液氮冷却,使测量简便。对处于禁带中央上方和下方的其他深能级,在低温和红外光照下,同样可进行测定。

4.2 表 2 说明,通过测量单晶硅受中子辐照前后的少子扩散长度,当已知深能级复合中心的 位置和俘获截面,可计算出复合中心的密度,其计算结果与采用统计计算结果基本一致;同时,

样品		掺 金 浓度/cm ⁻³	中子辐照 剂量/cm ⁻²	测 量 温度/K	施主型深 能级 <i>E_{TD}/e</i> V	文 献 实验值/eV	受主型深 能级 <i>E_{TA}/</i> eV	文 献 实验值/eV
掺金的	p 型	2.061 \times 10 ¹³		15.9~96.9	$E_{\nu} + (0.352 \pm 0.003)$	$E_{v} + 0.35^{[9]}$	$E_c = (0.564 \pm 0.002)$	$E_c - 0.54^{[9]}$
中晶硅	n 型	5. 663×10 ¹⁵		60.2~95.8	$E_v + (0.344 \pm 0.002)$	$E_{\nu} + 0.35^{[9]}$	$E_c - (0.553 \pm 0.002)$	$E_c - 0.54^{[9]}$
热中子相	n 型 硅 1 [#]		7.85×10 ¹⁵	15. 3~96. 9	$E_{v} + (0.337 \pm 0.006)$	$E_v + 0.35^{[7]}$	$E_c - (0.560 \pm 0.002)$	$E_{C} = 0.54^{[10]}$
抽照单晶	P型硅 2*		7.8× 19	60.1~96.7	$E_{v} + (0.337 \pm 0.002)$	$E_{v} + 0.35^{[7]}$	$E_c = (0.539 \pm 0.005)$	$E_{C} = 0.54^{[10]}$
高能中子辐照	P 型 · 主 11 [#] 直		1. 0×10 ¹²	16.0~98.0	$E_{v} + (0.380 \pm 0.020)$	$E_{\nu} + 0.35^{[7]}$	$E_c - (0.557 \pm 0.0003)$	$E_c = 0.54^{[10]}$

表 1 由表面光电压谱测定深能级位置

表 2 由测定的深能级和少子扩散长度计算得出的参数

样品		中子辐照	編照前	辐照后	费米能级	复合中心	损伤系	缺陷引	由计算的 N _T 反算 L' 及与测量值的比较		
			剂量/cm ⁻²	5^{-2} Cm /10 ⁻² Cm	<i>L</i> /10 ⁻⁴ cm	E_F/eV	N_T/cm^{-3}	数 K _L	进率 A	<i>L'</i> /10 ⁻⁴ cm	相对误 差/%
	n 型 単	1#	7.8 $\times 10^{15}$	7.394	7.5	0. 742 185	6.99×10 ¹²	2.28×10 ⁻¹⁰	8.97×10-4	7.4996	5. 33×10 ^{−3}
热中子辐照单晶硅		2#	2. 3×10^{16}	6.825	5.4	0. 734 065	1.35×10 ¹³	1.49×10 ⁻¹⁰	5.88×10-4	5.399 8	3.70×10−3
		3#	7.8×10 ¹⁵	7.459	9.0	0. 745 758	4.88×10 ¹²	1.58×10 ⁻¹⁰	6.26×10-4	8.9994	6.67×10 ⁻³
		4*	2. 3×10 ¹⁶	6.837	4.6	0. 717 586	1.91×10 ¹³	2.05×10 ⁻¹⁰	8.31×10-4	4.5999	2.17×10 ⁻³
		5#	3.96×10 ¹⁶	6.313	3. 7	0. 667 016	3.56×10 ¹³	1.84×10 ⁻¹⁰	8.99×10-4	3.6999	2.70×10 ⁻³
	P 型 单	6#	7.8×10 ¹⁵	5.635	6.2	0. 263 807	9. 25×10 ¹³	3.35×10 ^{−10}	1.19×10 ⁻²	6.185 4	2.35×10 ⁻¹
		7#	2. 3×10^{16}	4.820	3.8	0. 270 265	2.50×10 ¹⁴	3.02×10 ⁻¹⁰	1.08×10-2	3. 791 2	2. 32×10^{-1}
	晶	8*	3.96×10 ¹⁶	4.612	2.6	0. 288 155	5.65×10 ¹⁴	3.75×10 ⁻¹⁰	1.43×10 ⁻²	2.594 1	2.27×10 ⁻¹
高 p 能型		9#	4.0×10 ¹¹	5.188	1.077	0. 458 169	1.22×10 ¹⁶	2. 16×10-4	3.04×104	1.076	2.18
中子	ー し し し し し	10#	6. 0×10 ¹¹	4.704	0. 999	0. 462 791	1.47×10 ¹⁶	1.67×10-4	2.45×104	0.998 5	1.5×10 ⁻¹
·福硅 照		11#	1. 0×10^{12}	4. 091	0.758	0. 476 675	2.80×10 ¹⁶	1.74×10-4	2.80×104	0.7577	3. 0×10 ⁻¹

注:为比较和说明问题,有的数据取 4~6 位。

还可计算出其他重要参数,如费米能级、少子扩散长度损伤系数、中子辐照的缺陷引进率、离化 或中性的深能级密度等,为研究粒子辐照对材料性质的影响提供一种简便方法。 4.3 图 2 的第 2 表面光电压谱峰,系与表面态能级有关,这有待进一步研究。

承蒙刘士毅教授对本工作关心和进行有益的讨论;峨嵋半导体厂李斯成高级工程师和清 华大学陆金法副教授、北京师范大学低能核物理所华铭老师提供有关样品、谨表衷心感谢!

- 参考文献
- Haas E W, Schnoller M S. IEEE Trans Electron Devices, 1976; ED-23(8): 803
- 2 Holmes R R. IEEE Trans Nucl Sci, 1970; NS-17 (6):137
- 3 Chen L T, Lori J. Phys Rev. 1968; 171(3):6
- 4 Moll J L. Physics of Semiconductors. Megraw-Hill, New York, 1964:99
- 5 Shockly W, Read W T. Phys Rev. 1952:87(5): 835
- 6 沈颜华.电子学报,1989;17(3):1
- 7 Messenger G C. IEEE Trans Nucl Sci. 1967, NS-14(6):88
- 8 Barber H D. Solid-State Electronics, 1967; 10 (11):1 039
- 9 Sze S M. Physics of Semiconductor Devices. Se cond Edition, John Wiley and Sons. Inc, 1981:15
- 10 查芬RJ著,阎光彬,胡林浦译,黄世明校.微波 半导体器件一原理和辐射效应,北京:原子能出版社,1980:104

沈顗华 男,1939 年生,1962 年 毕业于厦门大学物理系半导体专 业,现在厦门大学物理系工作,副 教授。长期从事半导体物理与器 件物理的教学和科研,现主要从 事半导体光电性质方面的教学与 科研;曾参加完成和承担多项国

家及福建省自然科学基金资助研究课题;在国内外 刊物和学术会议上发表论文几十篇。

朱文章 男,1962年生,1986年 厦门大学物理系毕业,并获硕士 学位,1993年1月在厦门大学获 理学博士学位。现在集美航海学 院工作,副教授。主要从事半导体 单晶、异质结、超晶格和量子阱光 电性质的研究,在国内外学术刊

物上发表论文 20 多篇。

世界固体电子新闻

小型化的微波和毫米波发射机

据《J Electron. Def. 》1993 年 第 6 期报道,1991 年美国空军与诺 思罗普电子系统子公司签订合同, 研制成两种高度小型化的发射机 ——微波功率组件(MPM)。这两种 组件都直接用于电子干扰和雷达设 备。具体性能如右表。

(曲兰欣)

参数/单位	电子战组件	雷达组件
频率/GHz	6~18	7~11
功率/W	500~100	100
占空比/%	100	50
増益/dB	>50	>50
效率/%	>30	>40
(噪声功率/Hz)	-105 dBm	- 157 dBC (1kHz 下)
噪声系数/dB	-10	<10
尺寸	8 mm×102 mm ×152 mm	25 mm×51 mm ×152 mm