
 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap 

 

This paper is made available online in accordance with 
publisher policies. Please scroll down to view the document 
itself. Please refer to the repository record for this item and our 
policy information available from the repository home page for 
further information.  

To see the final version of this paper please visit the publisher’s website. 
Access to the published version may require a subscription. 

 

Author(s): Sushama Murty 

Article Title: Topology of utility possibility frontiers of economies 
with Ramsey taxation 
Year of publication: 2009 
Link to published article:  
http://www2.warwick.ac.uk/fac/soc/economics/research/papers_2009/t
werp_912b.pdf 
Publisher statement:  None 

 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/46072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/wrap


 

 
 

Topology of utility possibility frontiers of economies  
with Ramsey taxation 

 
Sushama Murty 

 
No 912 

 
 

 

 

 

 

 

WARWICK ECONOMIC RESEARCH PAPERS 
 

 

 

 

DEPARTMENT OF ECONOMICS 

 
 



Topology of utility possibility frontiers of economies with Ramsey taxation: Working paper version December 11, 2009

Topology of utility possibility frontiers

of economies with Ramsey taxation

Sushama Murty∗

December 2009

I thank Charles Blackorby, Andrés Carvajal, Roger Guesnerie, David Mond, Herakles Pole-
marchakis, and participants of the CRETA Seminar Series at the University of Warwick.

∗Sushama Murty: Department of Economics, University of Warwick: s.murty@warwick.ac.uk

December 11, 2009



Topology of utility possibility frontiers of economies with Ramsey taxation: Working paper version December 11, 2009

Abstract

We explore the scope of employing standard assumptions and replicating standard (Kuhn-
Tucker-type) techniques that are used to study the first-best Pareto frontier to the study
of Pareto frontiers of second-best economies. In the context of a simple second-best sit-
uation created by the inability of the government to implement personalized lump-sum
transfers and where the government takes recourse to linear (Ramsey) commodity taxes
as alternative redistributive devices, we identify at least three potential problems that
second-best situations create for obtaining well-behaved Pareto frontiers. We show that
additional conditions are required to ensure that the second-best Pareto frontier of an
economy with H consumers will have the expected structure of a H−1-dimensional mani-
fold. Second-best Pareto optima, as is well-known, are characterized by consumption and/
or production inefficiencies. In a class of private-ownership economies with Ramsey tax-
ation, we show that, generically, while the jointly production and consumption inefficient
component of the second-best Pareto manifold is a submanifold that also has a dimension
equal to H − 1, the production efficient but consumption inefficient, consumption effi-
cient but production inefficient, and the first-best components are lower dimensional, and
hence negligible in size, submanifolds. Thus, we formally demonstrate that, generically,
in second-best economies, joint production and consumption inefficiencies are prevalent
and, hence, neither producer nor consumer prices reveal the true social shadow prices of
resources. The recovery of unobservable shadow prices from observable data is crucial
for cost-benefit analysis of competing public sector projects. Our results demonstrate the
important need for further research for recovering the true social shadow prices from ob-
servable data in second-best economies.
Journal of Economic Literature Classification Number: H21, D50
Keywords: Ramsey taxation, second-best, production efficiency, general equilibrium, pri-
vate ownership, differential topology, transversality theorem.
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Topology of utility possibility frontiers of economies with Ramsey taxation

by
Sushama Murty

1. Introduction.

Second-best situations are created when there are constraints–informational, institutional,
and behavioral–on the implementation of the second-welfare theorem. In such situations,
the feasible states of the economy are the equilibria that can be obtained through the use
of instruments and policies by the planner that are consistent with the constraints in the
economy. The second-best equilibria are obtained by a Pareto ranking of feasible states
in such constrained economies. A fundamental feature of second-best equilibria is that,
generically, unlike in the first-best economies, all the prevailing (observable) market prices
will not be indicative of the generally unobservable social value (the social shadow prices)
of resources in the economy. Hence, if at a given status-quo, new opportunities (projects)
for development arise, then the planner is confronted with the problem of computing the
true social shadow prices in the economy for performing cost-benefit tests to judge the
merits of and to choose between various competing projects.

Examples exist in the literature, however, of second-best situations where some mar-
ket prices could still be used as perfect proxies for the social shadow prices of the resources.
Where this is possible, this is a big help for cost-benefit exercises involving marginal
public-sector projects. The Ramsey [1927]/Diamond and Mirrlees (DM) [1971] second-
best model is one such example. In that model, a second-best situation arises because
of the government’s inability to implement personalized lump-sum transfers as required
by the second-welfare theorem. In their absence the government uses linear commodity
(Ramsey) taxes and uniform-lump-sum transfers as alternative, albeit second-best, means
of redistribution or raising revenue. Commodity taxes draw a wedge between the prices
the producers receive and the prices the consumers pay for goods, and hence create distor-
tions in a competitive economy. In an economy characterized by such taxes and constant
returns to scale, DM demonstrated that all second-best optimal allocations are production
efficient, that is, the producer prices in the private competitive sector correctly reflect the
social shadow prices in such economies. So, assuming that the planner chooses a status-
quo that is second-best optimal, producer prices can be used in lieu of social shadow prices

for cost-benefit analysis of public-sector projects that are available at the status-quo.1

The problem for cost-benefit exercises will remain for second-best models for which
there exist second-best equilibria where none of the observable market prices reflect the
unobservable social shadow prices in the economy. How likely is it to encounter such
economies? In such economies, what is the generic size and structure of the set of second-
best equilibria where market prices can be used in lieu of the shadow prices? These are

1 See Dréze and Stern [1987] and Boadway [1975].
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some of the questions that this paper aims to tackle in the context of a simple second-best
model. These questions are important for, if the existence of such economies is more a
rule than an exception and if the size of the set of second-best equilibria where market
prices correctly reflect the social shadow prices is generically of measure zero, then we are
led to further interesting and important questions: (i) what is the relationship between
observable market prices and the social shadow prices in such economies? (ii) how can
we recover social shadow prices from data in such economies? These, however, will be
questions to be answered in future research projects.

The income distribution scheme in the DM model involves consumers receiving only
endowment incomes. If this model is extended to allow for decreasing returns-to-scale in
production (and hence the existence of positive profits) and if the consumers own shares
in the pure profits of the firms (as in a Arrow-Debreu private-ownership economy), then

the production efficiency result of DM is jeopardized.2

Though our analysis will be restricted to the study of this simple but more realistic
extension of the DM model that allows for both production and consumption inefficien-
cies, we believe that the methodology that is developed in this paper is common to the

understanding of generic results of most second-best models.3 Moreover, to the extent
commodity taxation is a current reality and is widespread in most economies, cost-benefit

tests have to be conducted in the framework of distortions identified by Ramsey and DM.4

We employ the tools of differential topology to study the generic structure and size
of the second-best frontiers of private-ownership economies with Ramsey taxation. These

tools have been widely used in the study of the structure of equilibria in various contexts.5

To the best of our knowledge the scope of these tools to study Pareto-frontiers of second-
best economies has not been fully explored thus far. A study of the generic structure of
the second-best frontiers of tax economies with one-hundred percent profit taxation was
initiated by Guesnerie [1998], where he highlighted some of the difficulties in employing
these tools to such a study. Precisely, his work demonstrates that difficulties arise on at
least two counts: firstly, in such an analysis, the preferences of the consumers, expressed
in the dual space of the policy instruments that parametrize tax equilibria, are generally

2 Though it is known that second-best production efficiency continues to hold as long as the government
can tax away pure profits at one-hundred percent and redistribute the proceeds as uniform-lumpsum
transfers or if the government can implement firm-specific profit taxation (see Dasgupta and Stiglitz
[1972], Mirrlees [1972], Hahn [1973], Sadka [1977], Guesnerie [1998], Reinhorn [2005], and Blackorby and
Murty [2009]). The assumption that the government can have the power to implement such profit taxes
seems unrealistic in mixed economies.

3 Consumption inefficiencies imply that the consumer prices in tax economies are not reflective of the
social shadow prices.

4 Commodity taxation, which includes VAT, sales, excise, etc. taxes, is an important source of govern-
ment revenue world-wide. VAT accounts for 20-percent of world’s tax revenue and has been adopted in
more than 130 countries. See Keen and Lockwood [2007].

5 See, for example, Debreu [1970] and Balasko [1998] for their application to the case of competitive
equilibria, see Geanakoplas and Polemarchakis [1986], Villanacci et al. [2002], and Carvajal and Polemar-
chakis [2009] for applications to the case of incomplete asset markets, see Guesnerie [1998] and Fuchs and
Guesnerie [1983] for their application to the case of Ramsey tax equilibria.
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non-convex. This leads to the usual problems associated with non-convexities, namely,
discontinuities in the solution mapping of the optimization problem under consideration

(here the second-best Pareto problem) and multiplicity of solutions.6 Secondly, the lit-
erature on Ramsey taxation that emanated from the pioneering work of DM works with
models in the dual space of the policy instruments. Though convenient for characterizing
second-best optimal taxes, such models are not helpful for establishing generic compara-
tive static results, as they do not easily allow a rich enough set of perturbations in the
fundamentals (the data) of the economy. Given these two limitations, Guesnerie [1998] was
able to study only the generic size of the set of almost second-best equilibria (these are tax
equilibrium values of the government’s policy variables where the first-order conditions of

second-best Pareto optimality are almost satisfied).7 As he points out, his characterization
gives only an idea of the size and not the topological structure of the second-best Pareto
optimal tax equilibria. Moreover, in his model with one-hundred percent profit taxation,
all second-best are production efficient.

In this paper, we study tax economies in the space of both primal and dual variables.
We borrow the modeling framework that has been used to study models of competitive
equilibria in complete and incomplete markets by Geanakoplas and Polemarchakis (GP)
[1986], Villanacci et al. (V et al.) [2002], Citana et al. (C et al.) [1998], and Carvajal and
Polemarchakis (CP) [2009]. Such an approach allows us to identity a class of economies
with a rich set of perturbations in the fundamentals that proves helpful in obtaining our
generic results. In the class of economies that we study, economies differ with respect to the
preferences of the consumers, the technologies of the firms, the endowment distribution,
and the profit shares of consumers. Despite the non-convexities of the indirect preferences
and the associated problems of multiplicity and discontinuity of the solution that have
been identified by Guesnerie [1998], we identify conditions which allow a systematic study
of the second-best frontier and its various subsets.

Our results are that, in the class of economies and under the conditions that we iden-
tify, generically, that is, for almost all of the economies in this class, except on a closed
subset of measure zero, (i) the second-best Pareto (utility possibility) frontiers of private
ownership economies with Ramsey taxation are manifolds whose dimension is H−1, where
H is the number of consumers and (ii) the production efficient but consumption inefficient,
the consumption efficient but production inefficient, and the jointly production and con-
sumption efficient (that, is the first-best) subsets of this manifold are lower dimensional
submanifolds. These results demonstrate the prevalence of production and consumption
inefficiencies, that is, in almost all economies with Ramsey taxation the subset of the
second-best manifold where market prices can be used in lieu of social shadow prices is of
measure zero. Since this is a generic property, the economies such as the ones in DM and
Guesnerie [1998], where every second-best is production efficient, must have zero measure
in our class of economies. Blackorby and Murty (BM) [2009] provide an example of an

6 Guesnerie [1998] points out that results of the Zeckhauser-Weinstein [1974] type in the context of
public goods, which were based on convexity assumption, cannot be expected in this context.

7 In fact this characterization holds for the stationary values of the second-best problem. The actual
solutions to the problem will be a subset of the set of stationary values.
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economy where all the second-best equilibria, other than those that are also first-best,

exhibit production and consumption inefficiencies.8

In Section 2, we provide two examples to motivate and provide the intuition behind
our analysis. In Section 3, we construct the class of economies on which our analysis is
based and define a tax equilibrium in the space of both dual and primal variables. In Sec-
tion 4, we state the second-best Pareto problem and study the structure of the constraint
set of this problem. We identify conditions under which the constraint qualification condi-
tion, required for applying the Lagrange/Kuhn-Tucker theorem, will hold for the second-
best Pareto problem. In Section 5, we identify conditions that, despite the non-convexities
and associated problems identified by Guesnerie [1998], will ensure that the second-best
Pareto frontier will have the usual feature of a continuous H − 1-dimensional manifold.
We also characterize production and consumption efficiencies in terms of the Lagrange
multipliers of the second-best problem. We use this characterization in Sections 6, 7, 8,
and 9, to show that, while the second-best jointly production and consumption inefficient
subset of the second-best Pareto manifold is, generically, a H−1-dimensional submanifold,
the second-best production efficient but consumption inefficient, second-best consumption
efficient but production inefficient, and the first-best subsets are lower dimensional (and
hence negligible in size) components of the of the second-best Pareto frontier. In Section
10 we conclude. Proofs of our results are relegated to the appendix.

2. Preliminary notation and motivating examples.

There are N commodities indexed by k, H consumers indexed by h, and I + 1 firms
indexed by i = 0, . . . , I. The firm indexed by zero is the public sector firm. For every
firm i, the net output vector is denoted by yi ∈ RN , and for every consumer h the gross
consumption bundle is denoted by xh ∈ RN

+ . For every firm i, we define a mapping

f i : RN → R such that the production function of firm i is defined implicitly by the
equation f i(yi) = 0. For every consumer h, the preferences are represented by a continuous

function uh : RN
+ → R with image uh(xh). Consumers face a price vector denoted by

q ∈ RN
+ , and private producers face a price vector denoted by p ∈ RN

+ .9 The uniform
lump-sum transfer distributed by the government is denoted by R ∈ R. The profit and
supply functions of firm i 6= 0 are denoted by πi(p) and yi(p), respectively. The share

of consumer h in the profits of firm i 6= 0 is denoted by θhi > 0, with
∑

h θ
h
i = 1 for

all i 6= 0. The public sector firm is behaviorally unconstrained and is free to choose any
production vector from its technology. It collects the indirect taxes and uses the receipts
to finance public sector production and to distribute uniform lump-sum transfers. The
endowment vector of consumer h is denoted by eh ∈ RN

++. Thus, the income of consumer

h is Rh(q, p, R) =
∑

i 6=0 θ
h
i π

i(p) + R + qeh. Consumers maximize utility subject to their

8 Note that the economies studied by DM and Guesnerie [1998] are special cases of our model where
every consumer owns a share 1

H in the profits of every firm (see BM).
9 Thus, the vector of commodity taxes is q − p.
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budget constraints. The indirect utility function and the demand function of consumer h
are denoted by gh(q, Rh(q, p, R)) and xh(q, Rh(q, p, R)), respectively.

We now present two examples. These are not precise numerical examples. Rather,
the spirit is to use them to provide some intuition of our analysis, to demonstrate some
aspects of our methodology, and to give a flavor of our results.

2.1. Example 1: nonconvexity of indirect preferences, discontinuities, and multiplicity of
solutions.

Consider an economy where H = 2 and N = 2. Suppose there is no government produc-

tion. The tax equilibrium conditions are given by the equation system10∑
h

xh(q, Rh(q, p, R) =
∑
i 6=0

yi(p) +
∑
h

eh. (2.1)

These are two equations in five unknowns, q1, q2, p1, p2, and R. Note that the system is
also homogeneous of degree zero in q, p, and R. Hence, it admits one normalization, say,
p1 = 1. So, potentially, there are two degrees of freedom in choosing equilibria. Let us
assume this is the case, so that, locally, around any equilibrium, we can solve for q1 and q2

in terms of p2 and R. We obtain functions qk(p2, R) for k = 1, 2 that locally parametrize
the tax equilibria around a given equilibrium. The indirect preferences, restricted to the
space of variables that parametrize the tax equilibria, are easily obtained for h = 1, 2
as gh(q(p2, R), Rh(q(p2, R), p2, R)), which we rewrite as functions of p2 and R, namely,

gggh(p2, R). In general, nothing can be said about the properties of the functions gggh in the
space of p2 and R. There is no reason why such indirect preferences should be convex in
this space. Guesnerie [1998] gives examples of economies where the indirect preferences
are single peaked and non-convex. This means that cases like those in Figures 1, 2, and 3
are not ruled out.

Second-best optimal points are those that are obtained by maximizing consumer one’s
indirect utility holding the indirect utility of consumer two fixed at various levels. They
lie on the two contract curves AB and CD in Figure 1 and in the shaded region in Figure
2. Both Figures 1 and 2 indicate the multiplicity of solutions to the second-best Pareto
problem. In addition, Figure 3 demonstrates that discontinuities in the solution mapping
of the second-best problem can also occur – though both curves AB and CD in Figure
3 indicate stationary values for the second-best problem, there is a discontinuity in the
solution of the second-best problem when utility of consumer two switches from ū2 to û2.
When this happens, the solution for û2 level of utility lies only on curve CD.

Our analysis will demonstrate that cases such as Figure 2 are generically ruled out in
the class of economies we will consider in the later sections. Solution to the second-best
problem will generically be locally unique, that is, the solution mappings will be of the
types shown in Figures 1 and 3. In addition, a systematic study of the structure of the
second-best becomes possible if we assume that the solution mapping of the problem is
also continuous, e.g., as in Figure 1.

10 As will be shown later, Walras law will imply that the government’s budget is balanced at every tax
equilibrium.
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2.2. Example 2: the size and structure of the second-best frontier.

Consider an economy where H = 3, I = 2, N = 2, and with public sector production.
For i 6= 0, the technology is defined by the production function

yi1 =ιi(y
i
2)

2
+ υiy

i
2, y

i
2 <
−υi
2ιi

=
−υ2

i

4ιi
, yi2 ≥

−υi
2ιi

, (2.2)

where the signs of the parameters are ιi < 0, υi > 0, i = 1, 2, The technology of public
firm is defined by the production function

y0
1 = (y0

2)
0.5
. (2.3)

For all h, the preferences of consumers are defined by

uh = ϑh lnxh1 + ϕh lnxh2 , (2.4)

where the signs of the parameters are ϑh > 0 and ϕh > 0. For all h, the endowments
of consumers are eh1 = 0 and eh2 = 1. The income of consumer h is, hence, Rh(q, p, R) =∑

i 6=0 θ
h
i π

i(p)+R+qeh. For all i 6= 0, the supply and profit functions are yi1(p) = (p2−υi)2

4ιi
+

υi(p2−υi)
2ιi

and yi2(p) = (p2−υi)
2ιi

, πi(p) = (p2−υi)2

−4ιi
. The demand functions of consumer h are

xh1(q, Rh(q, p, R)) = ϑhR
h(q,p,R)
q1

and xh2(q, Rh(q, p, R)) = ϕhR
h(q,p,R)
q2

. A tax equilibrium is

defined by the system of equations

∑
h

ϑhR
h(q, p, R)

q1
=
∑
i 6=0

[(p2 − υi)2

4ιi
+
υi(p2 − υi)

2ιi

]
+ y0

1,

∑
h

ϕhR
h(q, p, R)

q2
= −

∑
i 6=0

(p2 − υi)
2ιi

− y0
2 + 3, and

y0
1 = (y0

2)
0.5
.

(2.5)

These are three equations in seven unknowns– q1, q2, p1, p2, y
0
1, y

0
2, and R. Because of

the homegeneity properties of the demand and supply functions, the equation system is
homogeneous of degree zero in q, p, and R. So it admits one normalization, say, p1 = 1.
This implies that there are potentially three degrees of freedom in choosing equilibria. It is
easy to check that, in this example, this is indeed the case and we can solve for the variables
q1, q2, and y0

1 in terms of p2, y0
2, and R to obtain functions q1(p2, y

0
2, R), q2(p2, y

0
2, R), and

y0
1(p2, y

0
2, R) that globally parametrize the tax equilibria. As in the above example, these

functions can then be used to derive the indirect preferences of the consumers in the space

6
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of p2, y0
2, and R. Denote the indirect preference of consumer h by gggh(p2, y

0
2, R). The

second-best Pareto problem can be written as

V(u2, u3) := max
p2,y

0
2 ,R

ggg1(p2, y
0
2, R)

subject to

gggh(p2, y
0
2, R) ≥ uh, h = 2, 3.

(2.6)

The Lagrangian of the problem is

L(u2, u3, p2, y
0
2, R, α

2, α3) =ggg1(p2, y
0
2, R)−

3∑
h=2

αh[uh − gggh(p2, y
0
2, R)], (2.7)

where α2 and α3 are the Lagrange multipliers of the problem. The first-order conditions
are given by

Γ(u2, u3, p2, y
0
2, R, α

2, α3) = 0, (2.8)

where Γ : R+ ×R6 → R5 is defined by the functions

(i)
∂L(u2,u3,p2,y

0
2 ,R,α

2,α3)
∂p2

(ii)
∂L(u2,u3,p2,y

0
2 ,R,α

2,α3)

∂y0
2

(iii)
∂L(u2,u3,p2,y

0
2 ,R,α

2,α3)
∂R

(iv) ggg2(p2, y
0
2, R)− u2

(v) ggg3(p2, y
0
2, R)− u3

These are thus five equations in five endogeneous variables p2, y
0
2, R, α

2, and α1 and

two exogeneous variables u2 and u3. Let the mapping that solves (2.8) be denoted by

Φ : R2 → R5 with image Φ(u2, u3) = 〈p2, y
0
2, R, α

2, α3〉. This is the map that identifies

the stationary values and the associated Lagrange multipliers of Problem (2.6), and Γ−1(0)
is the graph of Φ.

Generically, that is, for almost all economies in the class of economies that we study
in the next sections, we find that Φ is locally unique and continuous. These properties
of Φ are established by first partitioning the set Γ−1(0) into four subsets and establishing
generic local uniqueness and continuity of the mapping Φ in each of the subsets. These
four subsets correspond to the following components of Γ−1(0): (a) the production and
consumption inefficient component, (b) the production efficient but consumption inefficient
component, (c) the production inefficient but consumption efficient component, and (d)
the production and consumption efficient (the first-best) component.

These components are derived in the following manner. In Section 5.2, we show that,
at a second-best, the social shadow prices of the resources are reflected in the shadow prices
of the public sector. In our case, given the production function of the public sector in (2.3),

these are given by the gradient vector 〈1, 0.5(y0
2)
−0.5〉. Production efficiency, thus, implies

the proportionality of the private-sector producer prices and the public-sector shadow

7
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prices at the second-best. Since p1 is normalized to one, this implies that, at a production
efficient second-best, we have the condition

p2 = 0.5(y0
2)
−0.5

(2.9)

holding, in addition to (2.8). Similarly consumption efficiency requires the proportionality
of the consumer prices and the public sector shadow prices at the second-best, which
amounts to the condition

q2(p2, R, y
0
2)

q1(p2, R, y0
2)

= 0.5(y0
2)
−0.5

(2.10)

holding at a consumption efficient second-best, in addition to (2.8).

Component (a) of Γ−1(0) is obtained by solving (2.8) with values of p2, R, y
0
2, α

2 and

α3 such that (2.9) and (2.10) do not hold. We show in Section 6 that, generically, in the

class of economies that we consider, in this component of Γ−1(0), the mapping Φ is locally

unique and continuous, so that this component of Γ−1(0) can be parametrized by u2 and

u3. Hence, it is, generically, a manifold of dimension H − 1 (two in this example).

Component (b) of Γ−1(0) is derived by solving equations (2.8) and (2.9) simultane-
ously. Note these are six equations in five endogenous variables. In general this system
cannot be solved unless one of the exogenous variables, say u3 is converted into an en-
dogeneous variables. This is equivalent to losing a degree of freedom in finding solution
to (2.8), as the solution also needs to satisfy condition (2.9). We show in Section 7 that,

when this is done, then, generically, we can solve for p2, R, y
0
2, u

3, α2, and α3 in terms of

u2 and the solution is locally unique and continuous. In particular, let u3 = u3(u2). The

production efficient component of Γ−1(0) can thus be parametrised by the exogenous vari-

able u2. Hence, the production efficient component of Γ−1(0) is a manifold of dimension

H − N (one in this example). Thus, along the curve 〈u2, u3(u2)〉 in the parameter space

defined by u2 and u3, the stationary points of Problem (2.6) are Φ(u2, u3(u2)).11

Component (c) of Γ−1(0) is similarly derived in Section 8 by solving equations (2.8)
and (2.10) simultaneously and is, generically, a manifold of dimension H −N (one in this
example).

Component (d) of Γ−1(0) is derived in Section 9 by solving equations (2.8), (2.9),
and (2.10) simultaneously. However, in our analysis, we find that (2.9) and (2.10) together

imply the first order condition
∂L(u2,u3,p2,y

0
1 ,R,α

2,α3)
∂R = 0. Thus, (2.8), (2.9), and (2.10)

reduce to six equations in five endogeneous variables. To solve this system, we have to
convert one of the exogenous variables u2 or u3 into an endogeneous variable, and we are

11 Actually, as will be seen, Component (b) of Γ−1(0) is, generically, either a manifold of dimension
H −N or a manifold of dimension H − I.

8



Topology of utility possibility frontiers of economies with Ramsey taxation: Working paper version December 11, 2009

left with one degree of freedom for moving in the first-best subset of Γ−1(0), which is,

hence, a manifold of dimension one.12

Note, however, that Φ is the mapping of only the stationary values of Problem (2.6).

The actual solution mapping, which we denote by
∗
Φ, will be a subset of Φ at every

parameter vector 〈u2, u3〉. Since, generically, Φ is locally unique, so is
∗
Φ. However, in our

analysis, we cannot, in general, establish local continuity of the mapping
∗
Φ. The reason

being the non-convexities of the indirect preferences. The intuition lies in the case seen in

Figure 3, where Φ corresponds to both the curves AB and CD, while
∗
Φ corresponds to curve

CD and only a part of curve AB. However, we show that, despite the discontinuities in the

mapping
∗
Φ, the value function V(u2, u3) of Problem (2.6) is, generically, continuous, so

that the second-best Pareto frontier (or the second-best utility possibility frontier), which
is the set

U := {〈u1, u2, u3〉 ∈ R3|u1 = V(u2, u3)}, (2.11)

is a manifold of dimension H − 1 (two in this example) in the space of u1, u2, and u3.

If we assume that the mapping
∗
Φ is also locally continuous then, generically, we

show in Sections 6 to 9 that homeomorphisms can be established between each of the four

components of Γ−1(0) restricted to the graph of
∗
Φ and appropriate subsets of the second-

best Pareto manifold in the utility space. Hence, each of these four cases corresponds to
a submanifold of appropriate dimensions of the second-best utility possibility manifold.

Figure 4, where
∗
Φ is assumed to be locally unique and continuous, is a stylized diagram to

illustrate this point. The mapping ζ in the figure is a local homeomorphism between the

graph of
∗
Φ and the second-best utility possibility frontier. Its restriction, for example, to

the production inefficient but consumption efficient component de of the graph of
∗
Φ implies

that its image gh is a lower dimensional (in this case, of dimension one) submanifold of
the second-best utility possibility frontier.

12 Intuitively, as will be seen in Section 5.2, when (2.9) and (2.10) hold in addition to (2.8), then we
are at a tax equilibrium where all the first order conditions for a first-best Pareto optimum are met. We
can interpret this to be a tax equilibrium in a regime with personalized lump-sum transfers R1, R2, and
R3 (which consumers receive in addition to R), where these transfers are fixed at values zero. Since this
is a tax equilibrium where first-order conditions for a first-best hold, we find that, starting at such a tax
equilibrium, the welfare gains from introducing non-zero personalized lump-sum transfers are zero, that
is, ∂L(u2,u3,p2,y

0
1 ,R,R

1,R2,R3,α2,α3)
∂Rh = ∂gggh(p2,y

0
1 ,R+Rh)

∂Rh = 0 for all h. Further, for every consumer, the welfare
gain from introducing a personalized lump-sum transfer is the same as the welfare gain from a marginal
change in R, that is, ∂gggh(p2,y

0
1 ,R+Rh)

∂Rh = ∂gggh(p2,y
0
1 ,R+Rh)

∂R , and hence ∂gggh(p2,y
0
1 ,R+Rh)

∂R = 0 for all h. This

implies that ∂L(u2,u3,p2,y
0
1 ,R,R

1,R2,R3,α2,α3)
∂R = 0 at such a tax equilibrium.

9
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3. A class of private ownership economies with Ramsey taxation and the def-
inition of a tax equilibrium.

We first define a benchmark economy E. The class of private ownership economies
E , which we use for our analysis, is derived by perturbing economy E. The technologies,
preferences, and endowments in economy E are as follows. For every firm i, the function
f i is smooth with ∇yf i � 0, ∇2

yyf
i positive definite, and the asymptotic cone of the set

{y ∈ RN |f i(y) = 0} is RN
− . The technology of firm i is defined by the set Y i = {yi ∈

RN |f i(yi) ≤ 0}. Y i contains RN
− and satisfies irreversibility. For every consumer h, the

consumption set is RN
+ , uh is smooth on RN

++ with∇xuh � 0 and∇2
xxu

h negative definite,

and the closure of the indifference curves of uh do not intersect the boundaries of RN
+ . The

aggregate endowment vector of the economy is denoted by ē ∈ RN
++ and the distribution

of endowments is (ēh) ∈ RHN
++ .13

Definition. A feasible allocation of E is a tuple 〈(xh)h, (y
i)i〉 ∈ RHN

+ × R(I+1)N such

that yi ∈ Y i for all i and ∑
h

xh =
∑
i

yi + ē. (3.1)

The set of all feasible allocations of E is denoted by S.

Remark E1. Under the assumptions made above S is non-empty and compact.14

Pick s̄ = 〈(x̄h)h, (ȳ
i)i〉 ∈ S such that x̄h � 0 for all h. To derive the class of private

ownership economies E from E, we follow GP, C et al, and CP.15 First, for each h and i,
the functions uh and f i are perturbed so that the new utility and the production functions
obtained from these perturbations differ from uh and f i only in open neighborhoods Nε(x̄

h)

and Nε′(ȳ
i) of their respective domains for some ε and ε′ greater than zero.16 Next, for

each h and i, the consumption set and the domain of the (perturbed) production function

in the new class of economies are restricted to be Nε(x̄
h) and Nε′(ȳ

i), respectively.

The new utility functions are obtained by perturbing uh in its first and second-order
derivatives evaluated at x̄h, while the new production functions are obtained by perturbing
f i in its zeroth, first, and second-order derivatives evaluated at ȳi. ε, ε′, and the perturba-
tions can be chosen small enough such that the new functions retain the monotonicity and
curvature properties of the original functions over their entire domains of definition. Such
perturbations in the function uh are illustrated in Figure 5, where the dotted indifference
curves are obtained by perturbing the bold indifference curve.

13 Given ah ∈ RN for h = 1, . . . ,H, the notation (ah) denotes the vector 〈a1, . . . , aH〉 ∈ RHN .
14 See Debreu [1959].
15 We refer you to these articles for all the details on the construction of E .
16 Nε(x̄h) denotes the ε neighborhood around x̄h.
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As in CP, we employ a bump function to define the perturbed functions. For every
ε > 0, a bump function is defined as a mapping lε: RN → R with image

lε (x) = 1 if |x | < ε

= 0 if |x | > 2ε.
(3.2)

Let M⊂ R
N(N+1)

2 denote the set of all symmetric N ×N matrices. For every h and
xh ∈ RN

++, there exist an open neighborhood of matrices Mh
u ⊂M around the null matrix

and an open neighborhood Nεu(0) ⊂ RN such that for every A ∈Mh
u and a ∈ Nεu(0), we

have ∇xuh(xh) + a + Axh � 0 and ∇2
x,xu

h(xh) + A is negative definite.17 Similarly, for

every i and for every yi ∈ RN , there exist an open neighborhood of matrices Mi
f ⊂ M

around the null matrix, an open neighborhood Nεf (0) ⊂ RN , and an open neighborhood

N[(0) ⊂ R such that for every B ∈Mi
f , b ∈ Nεy(0), and b0 ∈ N[(0), we have b+Byi � 0

and ∇2
y,yf

i +B, is positive definite.18

Employing such perturbations and the bump function, we find that there exist (i)
εu > 0 and εf > 0, (ii) an open neighborhood of matrices Mu ⊂ M around the null
matrix, (iii) an open neighborhood of matrices Mf ⊂ M around the null matrix, (iv)

[ > 0, and (v) ε > 0 and ε′ > 0 such that (i’) Nε(x̄
h) ⊂ RN

++ for all h, (ii’) Nε′(ȳ
i) ⊂ RN

for all i, (iii’) for all h, if U is in the set of functions

Uh :=
{
U : RN

+ ×Nεu(0)×Mu → R
∣∣ U(x, a, A) =

uh(x)+ lε (x− x̄h)[aT (x− x̄) + (x− x̄h)TA(x− x̄h)]
}
,

(3.3)

then ∇xU � 0, and ∇x,xU is negative definite, and (iii’) for all i, if F is in the set of
functions

F i :=
{
F : RN ×N[(0)×Nεf (0)×Mf → R

∣∣ F (y, b0, b, B) =

f i(y)+ lε′ (y − ȳi)[b0 + bT (y − ȳi) + (y − ȳi)TB(y − ȳi)
}
,

(3.4)

then ∇yF � 0, and ∇y,yF is positive definite.19

Each private ownership economy in E is characterised as follows:
1. For each consumer h, the consumption set is X h = Nε(x̄

h) and the preferences are

given by the restriction of a utility function Uh(., ah, Ah) ∈ Uh to the consumption

space X h.
2. For every firm i, the production function is given by the restriction of F i(., bi0, b

i, Bi) ∈
F i to Nε′(ȳ

i). The technology of firm i is Y i = {yi ∈ Nε′(ȳi)|F i(., bi0, bi, Bi) ≤ 0}.

17 The existence follows from the continuity of the first and second derivatives of uh.
18 Although, so far we have placed no restrictions on [, which defines the limits for the perturbations

in the zeroth order derivative of f i, later we will assume a value for [ that will ensure that the profits of
private firms in the perturbed economies remain positive as in the original economy.
19 Note, since H and I are finite, εu, εf , ε, ε′, and [ have been taken to be independent of h and i. If

such such scalers were consumer or firm specific then, for example, we could choose εu = minh=1,...,H{εhu}.

11
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3. A (H × I) matrix of profit shares denoted by Θ, with typical element θhi such that

〈θ1
i , . . . , θ

H
i 〉 ∈ ∆H−1 for all i 6= 0.20

4. The aggregate endowment e is such that its distribution (eh) lies in Nη((ē
h)) ⊂ RHN

++ ,
where η > 0.

Define Ω := [Nεu(0)×Mu]H×[N[(0)×Nεf (0)×Mf ]I+1 and W = Nη((ē
h))×∆I

H−1.21

The vector of characteristics that characterizes an economy in E is denoted by 〈w, ω〉, where

w = 〈(eh),Θ〉 ∈ W and ω = 〈(ah), (Ah), (bi0), (bi), (Bi)〉 ∈ Ω. We denote the vector 〈w, ω〉
by r and the set W × Ω by R. An economy in E corresponding to r ∈ R is denoted by
E(r).

Definition. For every r ∈ R, a feasible allocation of E(r) is a tuple 〈(xh)h, (y
i)i〉 ∈

RHN
+ ×R(I+1)N such that yi ∈ Y i for all i and xh ∈ X h for all h and∑

h

xh =
∑
i

yi +
∑
h

eh. (3.5)

The set of all feasible allocations of E(r) is denoted by S(r).
Remark E2. η > 0 is chosen such that for all r ∈ R, S(r) is non-empty. In that case,
S(r) is compact for all r ∈ R.

3.1. Tax equilibria.

We follow the approach of V et al. and CP in defining equilibrium of an economy in
E . This approach employs both the primal and dual variables.
Definition. Let r ∈ R. A tax equilibrium of the economy E(r) is a configuration

〈(xh), (yi), p, q, R, (λh), (γi)i 6=0〉 ∈ RHN
++ ×R(I+1)N ×R2N

++×R×RH+I
++ such that xh ∈ X h

for all h, yi ∈ N(ȳi) ∩ Y i for all i, and

(∇xhUh(xh, ah, Ah)− λhq)
(F i(yi, bi0, b

i, Bi))i6=0

(∇yiF i(yi, bi0, bi, Bi)− γip)i6=0

F 0(y0, b00, b
0, B0)∑

h x
h −

∑
i y
i −
∑

h e
h

(qTxh −R−
∑

i6=0 θ
h
i p
T yi − qT eh)


= 0. (3.6)

Let T (r) be the set of tax equilibria of E(r).
The first and the last set of equalities in (3.6) are the necessary conditions for utility

maximization for consumers, the second and the third set of equalities are the necessary
conditions for profit maximization of competitive firms, the fourth equality is the techno-
logical constraint on the public sector, while the fifth set of equalities are the economy-wide
resource constraints. Note that if 〈(xh), (yi), p, q, R, (λh), (γi)i6=0〉 is a tax equilibrium,

20 Where ∆H−1 = {θ ∈ RH
++|

∑
i θi = 1.}.

21 ∆I
H−1 is the Caretsian product of ∆H−1 taken I times.
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then so is 〈(xh), (yi), µp, µq, µR, ( 1
µλ

h), ( 1
µγ

i)i6=0〉. The system permits a normalization.

We adopt the normalization p1 = 1. Denote the vector of prices of goods k = 2, . . . , N by

p̂. Then p̂ ∈ RN−1. The vector p ∈ RN denotes 〈1, p̂〉.22

An implication of the Walras law is that ,at a tax equilibrium of E(r), the government’s
budget is balanced. To see this, multiply both sides of the second-last equation in (3.6)
by q to obtain

qT
∑
h

xh = (pT + qT − pT )
∑
i6=0

yi + qT y0 + qT
∑
h

eh. (3.7)

Now employ the last equation in (3.6) to obtain

HR = (qT − pT )
∑
i6=0

yi + qT y0. (3.8)

(3.8) is the government’s budget balance condition. It implies that the total tax revenue of

the government ([q−p]
∑

i 6=0 y
i) plus the government receipts from sale of goods publically

produced (qy0) must equal the total disbursements of the government to the H consumers
in the form of uniform lump-sum transfers (HR).

In this paper, we do not deal with the issue of existence of a tax equilibrium. Issues

of existence of tax equilibria have been studied in other papers.23 We assume that tax
equilibria exist.
Assumption E: For all r ∈ R, we have T (r) 6= ∅.

4. The second-best Pareto problem and the constraint qualification (CQ).

Let nc = HN+N(I+1)+2N+H+I. Denote a vector 〈(xh), (yi), p̂, q, R, (λh), (γi)i6=0〉 ∈
Rnc by c. Denote

∏
hX h ×

∏
iNε(ȳ

i) ×R2N−1
++ ×R ×RH+I

++ ⊂ Rnc by C. Given r ∈ R
and a vector of utilities 〈u2, . . . , uH〉 ∈ RH−1 of consumers h = 2, . . . , H, the second-best
problem of Ramsey tax economies is:

V(u2, . . . , uH , r) := max
c∈C

U1(x1, a1, A1)

subject to

c ∈ T (r) and

uh = Uh(xh, ah, Ah) ∀h = 2, . . . , H.

(4.1)

Given r ∈ R, we are interested in studying the structure of the second-best utility
possibility frontier of E(r), which is defined as the set

U(r) := {〈u1, . . . , uH〉 ∈ RH |〈u2, . . . , uH〉 ∈ RH−1 and u1 = V(u2, . . . , uH , r)}. (4.2)

22 In what follows, given a vector a = 〈a1, . . . , aN 〉 ∈ RN , â will denote the vector 〈a2, . . . , aN 〉 ∈ RN−1,
so that a = 〈a1, â〉. In defining tax equilibria, from now on, we follow the normalization p1 = 1. This
means that, from now on, the domain of producer prices has been restricted to RN−1

++ .
23 See Shoven [1973], Guesnerie [1979], and Geanakoplas and Polemarchakis [2008].
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The definition of U(r) suggests that for U(r) to have the expected feature of a H−1-
dimensional manifold, it is required that the value function V(r, .) of Problem (4.1) is well-

defined in an open subset of utility profiles of consumers 2, . . . , H in RH−1 for all r ∈ R.
A necessary condition for this to hold is that the set of parameter vectors 〈u2, . . . , uH〉, for

which the constraint set of Problem (4.1) is non-empty, is an open subset of RH−1. In this

section we identify conditions that will ensure this. Define the function Ḡ : C×R×RH−1 →
RH+HN+I+IN+N+H with image

Ḡ(c, r, u2, . . . , uH) =



(Uh(xh, ah, Ah)− uh)

(∇xhUh(xh, ah, Ah)− λhq)
(F i(yi, bi0, b

i, Bi))i6=0

(∇yiF i(yi, bi0, bi, Bi)− γip)i 6=0

F 0(y0, b00, b
0, B0)∑

h x
h −

∑
i y
i −
∑

h e
h

(qTxh −R−
∑

i6=0 θ
h
i p
T yi − qT eh)


. (4.3)

Define also the mapping Ḡr,u2,...,uH : C → RH+HN+I+IN+N+H with image Ḡr,u2,...,uH (c) =

Ḡ(c, r, u2, . . . , uH).24 It is clear that c ∈ C is in the constraint set of Problem (4.1) for

parameter values 〈r, u2, . . . , uH〉 ∈ R ×RH−1 if and only if Ḡ(c, r, u2, . . . , uH) = 0.
In Subsection 5.1, we will apply the theorem of Lagrange to solve Problem (4.1).

To do so requires ensuring that the constraint qualification of the problem holds, that is,
for every vector of parameter values 〈r, u2, . . . , uH〉 ∈ R ×RH−1, the Jacobian matrix of

the function Ḡr,u2,...,uH is full-row ranked whenever Ḡr,u2,...,uH (c) = 0.25 In other words,

Ḡr,u2,...,uH t 0 for every 〈r, u2, . . . , uH〉 ∈ R × RH−1.26 When this is true then, firstly,

from the theorem of Lagrange, it follows that, at a solution to Problem (4.1), the gradient
of the objective function can be expressed as a linear combination of the gradients of the
constraints (the weights being the Lagrange multipliers) and, secondly, from the implicit
function theorem, it follows that, starting from any tax equilibrium c of an economy E(r)

that results in utilities 〈u2, . . . , uH〉 for consumers h = 2, . . . , H, any utility profile in a

local neighborhood of 〈u2, . . . , uH〉 can be realized as a tax equilibrium of E(r) that lies in
a local neighborhood of c.

A condition like Assumption CQ, below, is required to ensure that the constraint

qualification holds for Problem (4.1) for all vectors in the parameter space.27 To state

24 Given any mapping f : A×B → C with image f(a, b) = c, fa : B → C is defined as the mapping with
image fa(b) = f(a, b) whenever a ∈ A.
25 See Mas-Colell et al. [1995], pp. 956-57.
26 Let f : A × B → C be mapping with image f(a, b) = c. Then f is transverse to zero, denoted by
f t 0, if f(a, b) = 0 implies ∇f(a, b) is full-row ranked.
27 Note, in the absence of conditions like Assumption CQ, it can be shown easily by applying the

transversality theorem (see the appendix for a statement of this theorem) that the constraint qualification
will hold for almost all vectors in the parameter space R except on a closed subset of R of measure
zero. However, in this case, we cannot rule out the possibility that the set of parameter vectors for which
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Assumption CQ, we define the following perturbations: For all h, given the curvature

properties of Uh, there exists a matrix Ẋh of perturbations in xh and λh, which we denote

by28

Ẋh =


ẋh1

1 . . . ẋhN1 ẋhλ1
...

...
...

...
ẋh1
N . . . ẋhNN ẋhλN
λ̇h1
λ . . . λ̇hNλ λ̇hλλ

 , (4.4)

such that29 [
∇2
xhxh

Uh ∇xhUh

∇T
xh
Uh 0

]
Ẋh = IN+1. (4.5)

Similarly, for all i 6= 0, given the curvature properties of F i, there exists a matrix Ẏi

of perturbations in yi and γi, which we denote by

Ẏi =


ẏi11 . . . ẏiN1 ẏiγ1
...

...
...

...
ẏi1N . . . ẏiNN ẏiγN
γ̇i1λ . . . γ̇iNλ γ̇iγλ

 , (4.6)

such that [
∇2
yiyi

F i ∇yiF i

∇T
yi
F i 0

]
Ẏi = IN+1. (4.7)

the constraint set is non-empty lies in this latter closed subset of measure zero, where the constraint
qualification fails. By ensuring that the constraint qualification holds for all vectors in R, Assumption
CQ rules out such a case.
28 Uh is strictly concave and hence strictly quasi-concave. Hence, the determinant of its bordered

Hessian is non-zero.
29 IN+1 denotes the identity matrix of dimension N + 1.
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Assumption CQ: For all r ∈ R and all c ∈ T (r), we have

[
∇y0

1
F 0 ∇y0

2
F 0 . . . ∇y0

N
F 0
] ẋ

11
1 . . . ẋ1N

1
...

...
...

ẋ11
N . . . ẋ1N

N





∇2
x1

1
,x1

1
U1

∇
y0
1
F 0

∇2
x1

1
,x1

2
U1

∇
y0
1
F 0

...
∇2
x1

1
,x1
N
U1

∇
y0
1
F 0


6= 1

and x2
1 − e2

1 . . . x2
N − e2

N
...

...
...

xH1 − eH1 . . . xHN − eHN

 is full-row ranked.

(4.8)

The matrix in the second condition in (4.8) is the matrix of net demands of consumers
2, . . . , H at any tax equilibrium. Assumption CQ requires this matrix to be full-row ranked.
A necessary condition for this is that H − 1 ≤ N . Intuitively, this is because N is the
number of instruments the government has available in the form of commodity taxes and
to be able to realize any direction of change in the utilities of H − 1 consumers, there is a
need for at least H − 1 instruments. From Roy’s theorem, the matrix of net demands of
the H−1 consumers is also the matrix of the derivatives of the indirect utility functions of
these consumers with respect to consumer prices (or taxes). When this has full-row rank,
then it is possible to change the indirect utilities of consumers 2, . . . , H independently of
one another by changing commodity tax rates. If, in addition, the first condition in (4.8)
also holds, then it becomes possible to realize any direction of changes in the utilities of
consumers 2, . . . , H, starting from an initial tax equilibrium, as a tax equilibrium in its
local neighborhood. Intuitively, this condition provides a relation between the preferences
of consumer one and the technology of the public sector that will ensure that the supply
from the public sector and the demand vector of consumer one will adjust to accommodate
the changes in the demands of consumers 2, . . . , H associated with the changes in their

utility.30

Lemma CQ: Under Assumption CQ, we have Ḡr,u2,...,uH t 0 for all 〈r, u2, . . . , uH〉 ∈
R ×RH−1.31

30 Note that Assumption CQ will hold if utility function of consumer one is quasi linear and that all our
results can be extended to strictly quasi-concave utility functions.
31 It follows immediately that Ḡ−1

r,u2,...,uH (0) is a manifold of dimension 2N − 1 for all 〈r, u2, . . . , uH〉 ∈
R ×RH−1.
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Though Lemma CQ demonstrates that the constraint qualification of Problem (4.1)

will hold for every vector of parameter values inR×RH−1, it is possible that the constraint

set is empty for some parameter values.32 Define the set

P = {〈r, u2, . . . , uH〉 ∈ R ×RH−1|∃ c = 〈(xh), (yi), p̂, q, R, (λh), (γi)i 6=0〉 ∈ T (r)

such that uh = Uh(xh, ah, Ah) ∀h = 2, . . . , H}.
(4.9)

This is the set of parameter values of Problem (4.1) for which the constraint set of Problem
(4.1) is non-empty. For all r ∈ R define also the set

P(r) = {〈u2, . . . , uH〉 ∈ RH−1|〈r, u2, . . . , uH〉 ∈ P}. (4.10)

This is the set of utility profiles of consumers h = 2, . . . , H that can be realized as tax
equilibria of economy E(r).
Remark CQ. Assumption E implies that P(r) is not an empty set for all r ∈ R. Hence,
P is not an empty set.

The following theorem and its corollary demonstrate that for all r ∈ R, the set P(r),

which is the set of parameter values u2, . . . , uH where the constraint set of Problem (4.1)

is well defined, is an open subset of RH−1.

Theorem CQ: If Assumption CQ holds then P is open relative to R×RH−1.

Corollary CQ: If Assumption CQ holds then, for every r ∈ R, P(r) is an open subset

of RH−1.

5. The generic structure of the second-best (SB) utility possibility frontier and
the characterization of production and consumption efficiencies.

In all the remaining analysis we will restrict the set of parameter vectors of Problem
(4.1) to P . We will assume that N ≥ 1, H ≥ 1, N ≥ H − 1 and that Assumptions E and
CQ hold. In that case, as demonstrated by Lemma CQ, the constraint qualification of
Problem (4.1) holds and the theorem of Lagrange can be applied to obtain the necessary
conditions that characterize the solution of Problem (4.1).

In this section we (i) identify conditions under which the value function V(r, .) of
Problem (4.1) is continuous on the domain P(r) for all r ∈ R and, hence, U(r) is a H− 1-
dimensional manifold, (ii) use the first order conditions of Problem (4.1) to characterize
second-best production and consumption efficiencies in terms of the Lagrange multipliers
of the problem, and (iii) show that the set of Lagrange multipliers and choice variables
that solve Problem (4.1) for all parameter vectors in P lies in a compact set.

32 For any given economy E(r), the set of feasible states S(r) and hence the set of feasible utility profiles
of consumers h 6= 1 are bounded. So for utility profiles associated with (infeasible) states not in S(r), the
constraint set of Problem (4.1) is empty.
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In the next sections, (iii) is used to show that the results regarding the various com-
ponents of the second-best Pareto manifold hold in open and dense subsets of our class of
economies E and (i) and (ii) are used for establishing the generic size and structure of the
various components of the second-best Pareto manifold.

The Lagrangian of Problem (4.1) is

L = U1(x1, a1, A1)−
∑
h6=1

αh [uh − Uh(xh, ah, Ah)]−
∑
h

ψh[qTxh −R−
∑
i

θhi p
T yi − qT eh]

−
∑
h,k

κhk [
∂Uh

∂xhk
− λhqk]−

∑
i 6=0

µiF i(yi, bi0, b
i, Bi)−

∑
i 6=0,k

φik[
∂F i

∂yi
− γipk]− δF 0(y0, b00, b

0, B0)

−
∑
k

βk[
∑
h

xhk −
∑
i

yik −
∑
h

ehk ].

(5.1)

In the above, the Lagrangian multipliers (αh)h 6=1, (ψh), (κh), (µi)i6=0, (φi)i 6=0, δ, and β

are defined in an obvious manner.33

Define the vector-valued mapping ΓΓΓ : R × RH−1 × C × Rnl → Rne , with image
ΓΓΓ((uh)h 6=1, r, c, l) as follows:

ΓΓΓh
x((uh)h 6=1, r, c, l) =

[
∇xhUh(xh, ah, Ah)− λhq

αhλhq − ψhq −∇xh,xhUhκh − β

]
∀h, (2HN) (5.2)

ΓΓΓi
y((uh)h6=1, r, c, l) =

 F i(yi, bi0, b
i, Bi)

∇yiF i(yi, bi0, bi, Bi)− γip∑
h ψ

hθhi p− µiγip−∇yi,yiF iφi + β

 ∀i 6= 0, (2IN + I)

(5.3)

ΓΓΓ0
y((uh)h 6=1, r, c, l) =

[
F 0(y0, b00, b

0, B0)

−δ∇y0F 0 + β

]
, (N + 1) (5.4)

ΓΓΓβββ((uh)h 6=1, r, c, l) =
[∑

h x
h −

∑
i y
i −
∑

h e
h
]
, (N) (5.5)

ΓΓΓp,γγγ((uh)h 6=1, r, c, l) =

[
(φiT p)i 6=0∑

h ψ
h
∑

i θ
h
i ŷ

i +
∑

i φ̂
iγi

]
, ((N − 1) + I) (5.6)

ΓΓΓ
q,λλλ,ψψψ((uh)h 6=1, r, c, l) =

 (qTxh −R−
∑

i θ
h
i p
T yi − qT eh)

−
∑

h ψ
h[xh − eh] +

∑
h κ

hλh

(κhT q)h

 , (N + 2H) (5.7)

ΓΓΓR((uh)h 6=1, r, c, l) =
∑
h

ψh, and (1) (5.8)

ΓΓΓu((uh)h 6=1, r, c, l) = (uh − Uh(xh, ah, Ah)). (H − 1) (5.9)

33 We define β = 〈β1, . . . , βN 〉. For all h, κh = 〈κh1 , . . . , κhN 〉. For all i 6= 0, φi = 〈φi1, . . . , φiN 〉.
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Then, the first-order conditions of Problem (4.1) are ΓΓΓ((uh)h 6=1, r, c, l) = 0. Let

2HN+2IN+4N+3H+2I = ne. This is the number of equations in ΓΓΓ((uh)h 6=1, r, c, l) = 0.
Let HN+IN+2H+N+I be denoted by nl. The vector of Lagrange multipliers, denoted
by l = 〈(αh)h 6=1, (ψ

h), (κh), (φi)i 6=0, (µ
i)i 6=0, δ〉, lies in Rnl . We note that ne = nl + nc.

5.1. The generic structure of the second-best utility possibility frontier.

For every r ∈ R, let the choice variables and Lagrange multipliers that solve the
first-order conditions ΓΓΓr((u

h)h 6=1, c, l) = 0 (that is, let the stationary values of Problem

(4.1)) be given by the map Φr : P(r) → Rne with image Φr(u
2, . . . , uH) = ΓΓΓ−1

r,u2,...,uH
(0).

Let the choice variables and Lagrange multipliers that actually solve Problem (4.1) be

given by the map
∗
Φr : P(r)→ Rne with image

∗
Φr(u

2, . . . , uH). Clearly,
∗
Φr(u

2, . . . , uH) ⊆
Φr(u

2, . . . , uH) for all 〈u2, . . . , uH〉 ∈ P(r).
For every r ∈ R, Assumption SB1, below, assumes that Φr is non-empty, locally

unique, and continuous, with the cardinality of the set Φr(u
2, . . . , uH) being finite and

constant (say J) for all 〈u2, . . . , uH〉 ∈ P(r). This is not a restrictive assumption because,

in the later sections, when we partition the set ΓΓΓr
−1(0) into (1) the joint production and

consumption inefficient, (2) production efficient but consumption inefficient, (3) production
inefficient but consumption efficient, and (4) joint production and consumption efficient
components, we find that, generically, local uniqueness and continuity hold for the mapping
Φr in each of these components.
Assumption SB1. For all r ∈ R,
(a) the mapping Φr is non-empty valued and
(b) there exist

(i) a positive integer J and

(ii) for every 〈ū2, . . . , ūH〉 ∈ P(r), a neighborhood Vū2,...,ūH (r) around 〈ū2, . . . , ūH〉
that is open in P(r), pair-wise disjoint neighborhoods Oj

ū2,...,ūH
(r) open in Rne and

continuous functions gj
r,ū2,...,ūH : Vū2,...,ūH (r)→ Oj

ū2,...,ūH
(r) for j ∈ {1, . . . , J} =: J

such that, for all 〈u2, . . . , uH〉 ∈ Vū2,...,ūH (r), we have

Φr(u
2, . . . , uH) =

{
gj

r,ū2,...,ūH(u2, . . . , uH)
}
j∈J

. (5.10)

Remark SB. If Assumption SB1 holds, then for all r ∈ R, the mapping
∗
Φr is nonempty

valued.34

If Assumption SB1 holds, then for all r ∈ R and for every 〈ū2, . . . , ūH〉 ∈ P(r), we
define the set

∗
J ū2,...,ūH (r) =

{
j ∈ J

∣∣ gj
r,ū2,...,ūH(ū2, . . . , ūH) ∈

∗
Φr(ū

2, . . . , ūH)
}
. (5.11)

34 This because the cardinality of the set Φr(u2, . . . , uH) is assumed to be finite and constant (J) for all
〈u2, . . . , uH〉 ∈ P(r).
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Thus,
∗
J ū2,...,ūH (r) is the cardinality of

∗
Φr(ū

2, . . . , ūH). Remark SB implies that
∗
J ū2,...,ūH (r)

is non-empty for every 〈ū2, . . . , ūH〉 ∈ P(r).

Assumption SB1 and Remark SB imply that the mapping
∗
Φr is locally unique. How-

ever, because of the non-convexity problem that we discussed in our examples in Section

2,
∗
Φr need not be continuous, in general. Assumption SB2, which will be invoked in the

later sections, assumes that it is locally continuous.
Assumption SB2. For all r ∈ R and for every 〈ū2, . . . , ūH〉 ∈ P(r) there exists a

neighborhood around 〈ū2, . . . , ūH〉 that is open in P(r) such that
∗
Φr restricted to this

neighborhood is a continuous correspondence.

For all r ∈ R, define the set

Γ(r) = {〈u2, . . . , uH , c, l〉 ∈ RH−1 × C ×Rnl |ΓΓΓ(r, u2, . . . , uH , c, l) = 0} (5.12)

This is the graph of the mapping Φr.
Theorem SB establishes the size and the topological structure of the utility possibil-

ity frontier of private-ownership economies with Ramsey taxation. It shows that, if the
mapping Φr of stationary values of the second-best Problem (4.1) is locally unique and
continuous, then U(r) is a H − 1–dimensional manifold for all r ∈ R. Note that local

continuity of the solution mapping
∗
Φr of Problem (4.1) is not required for this result. In

a local neighborhood of any point 〈ū2, . . . , ūH〉 ∈ P(r), the solution to Problem (4.1) can

switch discontinuously between the functions gj
r,ū2,...,ūH for j ∈ J .35

If, in addition to being locally unique, the solution mapping of Problem (4.1) is also
locally continuous, that is, Assumption SB2 is also true, then, around a local neighborhood

of ū2, . . . , ūH ∈ P(r), such a switching of the solution is not possible.36 The solution

mapping in this neighborhood of 〈ū2, . . . , ūH〉 is a union over j ∈
∗
J ū2,...,ūH (r) of the values

taken by the maps gj
r,ū2,...,ūH . Moreover, for any j ∈

∗
J ū2,...,ūH (r), a homeomorphism can

be established between the graph of gj
r,ū2,...,ūH and an open set of U(r).37 We will exploit

this homeomorphism later to obtain the structure of the different components of U(r).

Theorem SB: Let Assumption SB1 hold.
(i) The sets Γ(r) and U(r) are H − 1 dimensional manifolds for all r ∈ R.

(ii) If, in addition, Assumption SB2 holds, then for every 〈ū2, . . . , ūH〉 ∈ P(r) there

exists a neighborhood V̂ū2,...,ūH (r) open in P(r) around 〈ū2, . . . , ūH〉 such that, for all

〈u2, . . . , uH〉 ∈ V̂ū2,...,ūH (r), we have

∗
Φr(u

2, . . . , uH) =
{
gj

r,ū2,...,ūH(u2, . . . , uH)
}
j∈
∗
J
ū2,...,ūH

(r)
(5.13)

35 In Figure 3, for example, the solution switches from the curve AB to curve CD when utility of
consumer two changes from ū2 to û2.
36 For example, as in Figure 1.
37 For example, as was shown in Figure 4.
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and, for every j ∈
∗
J ū2,...,ūH (r), there exists a homeomorphism ζj between the graph

of gj
r,ū2,...,ūH restricted to V̂ū2,...,ūH (r) and an open subset of U(r).

5.2. Characterizing production and consumption efficiency.

Note that, from the Lagrangian (5.1) of Problem (4.1), it is clear that the social
shadow prices of the resources are indicated by the value of the vector β at a solution to
Problem (4.1). This is because this is the vector of the Lagrange multipliers associated
with the resource constraints. We can now define production and consumption efficient
stationary values of Problem (4.1) as well as second-best production and consumption
efficiency.
Definition. Let 〈r, u2, . . . , uH〉 ∈ P and 〈c, l〉 = 〈(xh), (yi), p̂, q, R, (λh), (γi)〉 ∈
Φr(u

2, . . . , uH). c is a production (consumption) efficient stationary value of Problem
(4.1) if there exists µ > 0 such that p = µβ (q = µβ). If c is a production (consumption)
efficient stationary value of Problem (4.1) then c is a production (consumption) efficient

second-best equilibrium if c ∈
∗
Φr(u

2, . . . , uH).

Note that the first-order condition ΓΓΓ0
y(r, c, l, u

2, . . . , uH) = 0 (see (5.4)) of Problem

(4.1) implies that, at a stationary value of the problem, β is proportional to the shadow

prices in the public sector (∇y0F 0). Hence production (consumption) efficiency at a sta-

tionary value of Problem (4.1) implies the proportionality of the private sector producer
(consumer) prices and the shadow prices in the public sector. Lemmas SB1 to SB3 char-
acterize production and consumption efficient stationary values of Problem (4.1) in terms
of the Lagrange multipliers of the problem.

Lemma SB1 relates production efficiency to the multipliers (φi)i 6=0, Lemma SB2 re-

lates consumption efficiency to the multipliers (κh), and Lemma SB3 relates the first-best

equilibria to the multipliers (ψh).

Lemma SB1: Let 〈r, u2, . . . , uH〉 ∈ P and 〈c, l〉 = 〈(xh), (yi), p̂, q, R, (λh), (γi)〉 ∈
Φr(u

2, . . . , uH).

1. c is a production efficient stationary value of Problem (4.1) if and only if p̂− β̂
β1

= 0.

2. c is a production efficient stationary value of Problem (4.1) if and only if (φi)i6=0 = 0.
3. If c is a production inefficient stationary value of Problem (4.1) then, for every i 6= 0,

φi 6= 0.
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Lemma SB2: Let 〈r, u2, . . . , uH〉 ∈ P and 〈c, l〉 = 〈(xh), (yi), p̂, q, R, (λh), (γi)〉 ∈
Φr(u

2, . . . , uH).

1. c is a consumption efficient stationary value of Problem (4.1) if and only if q̂
q1
− β̂
β1

= 0

for all h.
2. c is a consumption efficient stationary value of Problem (4.1) if and only if (κh) = 0.
3. If c is a consumption inefficient stationary value of Problem (4.1) then, for every h,

κh 6= 0.

Lemma SB3: Let 〈r, u2, . . . , uH〉 ∈ P and 〈c, l〉 = 〈(xh), (yi), p̂, q, R, (λh), (γi)〉 ∈
Φr(u

2, . . . , uH). c is a joint consumption and production efficient stationary value of Prob-

lem (4.1) if and only if (ψh) = 0 for all h.

To interpret these results, note that the current tax regime can be interpreted as a
special case of more general regimes where the government can implement firm-specific
changes in private producer prices (pi)i 6=0, consumer-specific changes in consumer prices

(qh), consumer-specific (personalized) changes in lump-sum transfers (Rh), or firm-specific

profit taxes (τ i)i 6=0. This is because a tax equilibrium in the current regime can be in-
terpreted to be an equilibrium in these more general regimes where, for all i 6= 0 and
h, pi = 0, qh = 0, Rh = 0, and τ i = 0. These additional policy instruments can
be taken as parameters of Problem (4.1), so that the value function of this problem is

V(u2, . . . , uH , r, (pi)i6=0, (q
h), (Rh), (τ i)i 6=0), and it is evaluated at a point where all these

additional parameters take the value zero.38 In that case the Lagrangian of Problem (4.1)
is

L = U1(x1, a1, A1)−
∑
h 6=1

αh [uh − Uh(xh, ah, Ah)]−
∑
h,k

κhk [
∂Uh

∂xhk
− λh(qk + qhk )]

−
∑
h

ψh[qTxh −R−
∑
i

θhi (pT yi − τ i)− qT eh −Rh]

−
∑
i6=0

µiF i(yi, bi0, b
i, Bi)−

∑
i6=0,k

φik[
∂F i

∂yi
− γi(pk − pik)]

− δF 0(y0, b00, b
0, B0)−

∑
k

βk[
∑
h

xhk −
∑
i

yik −
∑
h

ehk ].

(5.14)

38 More precisely, note that (pi)i6=0 does not enter the budget equations of the consumers. The new
regime is one where private firms respond competitively to firm specific prices, pi + p, and maximize
profits, but the profit incomes that go to consumers are computed using p. The indirect tax revenue to
the government is

∑
i6=0(q−p−pi)yi (the additional indirect tax revenue due to switching to the new regime

is −
∑
i 6=0 py

i). Equivalently, the new regime can be shown to be one where each consumer h receives
profit incomes

∑
i 6=0 θ

h
i (p+pi)yi and −

∑
i 6=0 p

iyi is also distributed back to each consumer h as a transfer
−
∑
i 6=0 θ

h
i p
iyi, in addition to R, by the govenrment. Consumer h’s income is, thus, R−

∑
i θ
h
i p
T yi−qT eh

as before. Similarly, we can also make precise the regime with consumer-specific prices.
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Applying the envelope theorem, it is clear that, for all h and i 6= 0, the derivatives
of V with respect to pi, qh, Rh, and τ i are γiφi, λhκh, ψh, and

∑
h ψ

hθhi , respectively.
These derivatives are thus the shadow prices of introducing firm-specific prices, consumer
specific prices, personalized lump-sum transfers, or firm-specific profit taxes, starting from
a situation where the values of these instruments were set at zero.

It is now clear that second-best production efficiency in the current regime (from

Lemma SB1, this is equivalent to φi = 0 for all i 6= 0) implies that there are no welfare
gains in moving to a more general regime with firm-specific prices, or equivalently, a
production-efficient second best in the current regime is also a second-best in the regime
with firm-specific prices. Similarly, we can interpret second-best consumption efficiency
(from Lemma SB2, this is equivalent to κh = 0 for all h) in the current regime.

Joint production and consumption-efficiency at a second best in the current regime,
(from Lemma SB3, this is equivalent to ψh = 0 for all h) implies that there are no welfare
gains from introducing personalized lump-sum transfers or, in other words, we are also at
a first-best.

It is easy to show that if there is zero welfare gain from introducing firm-specific profit
taxes at a second-best of the current regime, that is, if

∑
h ψ

hθhi = 0 for all i 6= 0, then

this also implies that φi = 0 for all i 6= 0, that is, the second-best of the current regime
is also production efficient and is also a second-best of a regime with firm-specific profit

taxes.39 Note, however, that second-best production efficiency in the current regime is a
more general phenomenon. It can happen even when there are welfare gains in introducing
firm-specific profit taxation, that is, at such a point, φi = 0 for all i 6= 0 but there can exist
i 6= 0 such that

∑
h ψ

hθhi 6= 0. This fact will be employed later in studying the generic
structure of the production efficient subset of the the second-best manifold.

5.3. Boundedness of the stationary values and Lagrange multipliers of the second-best
problem.

The following lemma proves that the set of stationary values and Lagrange multipliers
that solve the above first-order conditions of Problem (4.1) lies in a compact set.

Lemma SB4: The sets S := {〈c, l〉 ∈ C × Rnl |∃ 〈r, u2, . . . , uH〉 ∈ P such that 〈c, l〉 ∈
ΓΓΓ−1
r,u2,...,uH

(0)} and S′ := {〈c, l, u2, . . . , uH〉 ∈ C ×Rnl ×RH−1|∃ r ∈ R such that

〈c, l, u2, . . . , uH〉 ∈ ΓΓΓ−1
r (0)} lie in compact sets.

6. The generic size and structure of the second-best production and consump-
tion inefficient (SBPCI) subset of the second-best frontier.

For all i 6= 0 and h, Lemmas SB1 and SB2 imply that, at a SBPCI tax equilibrium,
none of the vectors of Lagrange multpliers φi and κh are zero. Denote the space of all

Lagrange multipliers such that (φi)i6=0 and (κh) are each not zero by Rnl
φ,κ.40 Define the

39 It has long been known that production efficiency is desirable in a regime with firm-specific profit
taxation. See, e.g., Dasgupta and Stiglitz [1972] and BM.
40 That is, Rnl

φ,κ = {l ∈ Rnl | ∀i 6= 0, φi 6= 0 and ∀h, κh 6= 0}.
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mapping Γ̃ΓΓ as the restriction of the mapping ΓΓΓ to the open set P × C ×Rnl
φ,κ. For every

r ∈ R define the following subset of U(r):

Ũ(r) = {〈u1, . . . , uH〉 ∈ U(r)|∃〈c, l〉 ∈ C ×Rnl
φ,κ such that Γ̃ΓΓ(c, l, r, u2, . . . , uH) = 0}.

(6.1)
This is the subset of U(r) which is associated with both consumption and production
inefficiencies, that is, these are utility profiles corresponding to second-best tax equilibria,
where the social shadow prices are not reflected by any of the observable market prices. In
this section we study the generic size and structure of this component of the second-best
Pareto frontier.

Lemma SBPCI: Γ̃ΓΓ t 0.

Remark SBPCI The transversality theorem and Lemmas SB4 and SBPCI imply that

Γ̃ΓΓr t 0 for almost all r ∈ R except on a closed subset of R of measure zero.41 Further,

if Γ̃ΓΓr t 0 then Γ̃ΓΓ
−1

r (0), if not empty, is a smooth manifold of dimension H − 1.42 Define

R̃ = {r ∈ R|Γ̃ΓΓr t 0}. R̃ is open and dense in R.43

The following theorem establishes the generic size and structure of the SBPCI com-
ponent of second-best Pareto frontier in the utility space. The idea is simple. In Theorem

SB, using the assumption of local continuity of the solution mapping
∗
Φr, a homeomor-

phism ζ was constructed between the graph of
∗
Φr and the second-best Pareto frontier

in the utility space U(r). Remark SBPCI can also be used to show that the production

and consumption inefficient component of the graph of
∗
Φr for r ∈ R̃ is an open subset

(a H − 1-dimensional submanifold) of this graph. Hence, ζ maps this open subset of the

graph of
∗
Φr into a H − 1-dimensional submanifold of the second-best Pareto frontier U(r)

in the utility space.

Theorem SBPCI1: Let Assumptions SB1 and SB2 hold. For all r ∈ R̃, Ũ(r), if not
empty, is a H − 1-dimensional submanifold of U(r).

Lemma SBPCI also indicates the generic local uniqueness of the solution to the equa-

tion system Γ̃ΓΓ(r, u2, . . . , uH , c, l) = 0. Noting that there are ne equations in ne unknowns

(the endogeneous variables c and l) in the equation system Γ̃ΓΓr,u2,...,uH〉(c, l) = 0, the proof

of generic local uniqueness follows from a direct application of the transversality theorem.

41 For a statement of the transversality theorem, see the appendix or GP.
42 For example, in the one-hundred percent profit taxation case of Guesnerie [1998], which is equivalent

to the case of a private ownership economy where θhi = 1
H for all h and i 6= 0, Γ̃ΓΓ

−1

r (0) is empty. On
the other hand, BM given an example of an economy where all second-best (except those that are also
first-best) tax equilibria are production and consumption inefficient.
43 R̃ is open follows from Lemma SB4 and the transversality theorem.
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Theorem SBPCI2 (Generic Local Uniqueness): For almost all 〈r, u2, . . . , uH〉 ∈ P,

except on a closed set of measure zero, we have Γ̃ΓΓ
−1

r,u2,...,uH〉(0) is manifold of dimension
zero.

7. The generic size and structure of the second-best production efficient (SBPE)
but consumption inefficient subset of the second-best frontier.

In this section the generic size and structure of the production efficient but consump-
tion inefficient component of the second-best Pareto manifold is established. In Section 5.2
it was shown that second-best production efficiency in the current regime may or may not
imply positive welfare gains from shifting to a regime with firm-specific profit taxes. The
size and structure of the SBPE component will vary depending on whether or not there
are such gains. Denote the space of all Lagrange multipliers such that (κh) is not zero by

Rnl
κ .44 Given 〈r, u2, . . . , uH〉 ∈ P , from Lemmas SB1 and SB2 it follows that c ∈ C is a

production efficient and consumption inefficient second-best tax equilibrium if and only if
there exists l ∈ Rnl

κ such that 〈c, l〉 solves[
ΓΓΓ(r, u2, . . . , uH , c, l)

p̂− β̂
β1

]
= 0. (7.1)

Define the mapping Γ̄ΓΓ : P × C ×Rnl
κ → Rne+N−1 with image

Γ̄ΓΓ
h
x((uh)h 6=1, r, c, l) =

[
∇xhUh(xh, ah, Ah)− λhq

αhλhq − ψhq −∇xh,xhUhκh − β

]
∀h, (2HN) (7.2)

Γ̄ΓΓ
i
y((uh)h 6=1, r, c, l) =

 F i(yi, bi0, b
i, Bi)

∇yiF i(yi, bi0, bi, Bi)− γi ββ1

(µiγi − β1 −
∑

h ψ
hθhi )i 6=0

 ∀i 6= 0, (IN + 2I) (7.3)

Γ̄ΓΓ
0
y((uh)h 6=1, r, c, l) =

[
F 0(y0, b00, b

0, B0)

−δ∇y0F 0 + β

]
, (N + 1) (7.4)

Γ̄ΓΓβββ((uh)h 6=1, r, c, l) =
[∑

h x
h −

∑
i y
i −
∑

h e
h
]
, (N) (7.5)

Γ̄ΓΓR((uh)h 6=1, r, c, l) =
∑
h

ψh, (1) (7.6)

Γ̄ΓΓ
q,λλλ,ψψψ((uh)h 6=1, r, c, l) =


∑

h ψ
h
∑

i θ
h
i ŷ

i

(qTxh −R−
∑

i θ
h
i
β
β1

T
yi − qT eh)

−
∑

h ψ
h[xh − eh] +

∑
h κ

hλh

(κhT q)h

 , (2N + 2H − 1)

(7.7)

44 That is, Rnl
κ = {l ∈ Rnl | ∀h, κh 6= 0}.
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Γ̄ΓΓu((uh)h 6=1, r, c, l) = (uh − Uh(xh, ah, Ah)), (H − 1) (7.8)

Γ̄ΓΓ∗((u
h)h 6=1, r, c, l) = p̂− β̂

β1
, and (N − 1) (7.9)

Γ̄ΓΓφφφ((uh)h 6=1, r, c, l) = (φi). (IN) (7.10)

Lemma SB1 showed that c is a production efficient stationary point if and only if the
associated Lagrange multipliers φi = 0 for all i 6= 0. Hence, it can easily be verified that
(7.1) is equivalent to Γ̄ΓΓ((uh)h 6=1, r, c, l) = 0. For every r ∈ R, we define the following subset
of U(r)

Ū(r) := {〈u1, . . . , uH〉 ∈ U(r)|∃〈c, l〉 ∈ C ×Rnl
κ such that Γ̄ΓΓ(c, l, r, u2, . . . , uH) = 0}.

(7.11)
This is the component of U(r) that is associated with production efficient but consumption
inefficient second-best tax equilibria. Thus, in this component, the producer prices in the
private sector reflect the social shadow prices. The following lemma will be useful in
understanding the generic size and structure of Ū(r).

Partition the domain of Γ̄ΓΓ into two subsets:

A = {〈r, (uh)h 6=1, c, l〉 ∈ P × C ×Rnl
κ |∃i 6= 0 such that

∑
h

ψhθih 6= 0} (7.12)

and
B = {〈r, (uh)h 6=1, c, l〉 ∈ P × C ×Rnl

κ |
∑
h

ψhθih = 0 ∀i 6= 0}. (7.13)

From Section 5.2 it follows that the restriction of Γ̄ΓΓ to set A is the case where there are
no welfare gains from switching to a regime with firm-specific profit taxation, while the
restriction to the set B is the case where there are such welfare gains.

In Subsections 7.1 and 7.2 we establish generic local uniqueness and continuity of the

map Φr in the SBPE component of ΓΓΓ−1(0) and in Subsection 7.3 we establish the generic
size and structure of Ū(r).

7.1. SBPE and generic local uniqueness and continuity of Φr: ∃i 6= 0 such that∑
h ψ

hθhi 6= 0.

We denote the restriction of Γ̄ΓΓ to A by ¯̄ΓΓΓ.

Lemma SBPE1: ¯̄ΓΓΓ t 0.
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Lemmas SB4, SBPE1, and the transversality theorem imply that, except on a closed

set of measure zero in P , ¯̄ΓΓΓr,u2,...,uH t 0 for almost all 〈r, u2, . . . , uH〉 ∈ P . But, given any

〈r, u2, . . . , uH〉 ∈ P , the number of equations (ne +N − 1) in ¯̄ΓΓΓr,u2,...,uH () = 0 exceeds the

number of unknowns (ne) by N − 1.45 Hence, from the transversality theorem it follows

that ¯̄ΓΓΓr,u2,...,uH t 0 if and only if ¯̄ΓΓΓ
−1

r,u2,...,uH (0) is an empty set.

This hints that, in this production efficient subset, there is no (locally) continuous
relationship between 〈c, l〉 and the utilities of all the H − 1 consumers and r, that is, it is
not generically possible to change r and the utilities of consumers 2, . . . , H independently

while moving in this subset. Let Q = {2, . . . , H} and let ¯̄Q denote any H−N -dimensional

subset of Q. Let P ¯̄Q
be the projection of P to the space of r and (uh)

h∈ ¯̄Q
. The number of

equations in the system ¯̄ΓΓΓr,(uh)
h∈ ¯̄Q

= 0 is ne +N − 1, while the number of unknowns (c, l,

and (uh)
h 6∈ ¯̄Q

) is also ne +N − 1.46

Theorem SBPE1 (Generic Local Uniqueness): If H ≥ N then, for almost all

〈r, (uh)
h∈ ¯̄Q
〉 ∈ P ¯̄Q

, except on a closed subset of P ¯̄Q
of measure zero, we have ¯̄ΓΓΓr,(uh)

h∈ ¯̄Q
t 0

and ¯̄ΓΓΓ
−1

r,(uh)
h∈ ¯̄Q

(0), if not empty, is a manifold of dimension zero.

The proof follows as an application of Lemmas SB4, SBPE2, and the transversality
theorem. Theorem SBPE1 shows that in this case of production efficiency, there is a
(locally) continuous relationship between 〈r, (uh)

h∈ ¯̄Q
〉 ∈ P ¯̄Q

and 〈c, l, (uh)
h 6∈ ¯̄Q
〉, that is,

moving along this production efficient subset implies that we can change r and only the

utilities of H − N consumers independently.47 This theorem also demonstrates local
uniqueness when the solution to Problem (4.1) is production efficient.

7.2. SBPE and generic local uniqueness and continuity of Φr:
∑

h ψ
hθhi = 0 for all i 6= 0.

In this case one of the equations in Γ̄ΓΓ((uh)h 6=1, r, c, l) = 0 is redundant. This is

because, pre-multiplying the third set of equations in Γ̄ΓΓq,λ,ψ((uh)h 6=1, r, c, l) = 0 by qT , pre-

multiplying the budget equation (see the second set of equations in Γ̄ΓΓq,λ,ψ((uh)h 6=1, r, c, l) =

45 The unknown/endogeneous variables are c and l.
46 The dimension of the complement of ¯̄Q relative to Q is H − 1− (H −N) = N − 1.
47 Note, when combined with our maintained assumptions, N ≥ 1, H ≥ 1, and N ≥ H−1, the condition
H ≥ N implies that H −N is either zero or one.
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0) of consumer h by ψh, and adding, we obtain

qT [−
∑
h

ψh[xh − eh] +
∑
h

κhλh] +
∑
h

ψh[qt[xh − eh]−R−
∑
i

θhi p
T yi]

= −qT
∑
h

ψh[xh − eh] + qT
∑
h

κhλh + qT
∑
h

ψh[xh − eh]−R
∑
h

ψh −
∑
i

pT yi
∑
h

ψhθhi

= 0.

(7.14)

The last equality in (7.14) follows from Γ̄ΓΓR((uh)h 6=1, r, c, l) = 0 and the last equation in

Γ̄ΓΓ
q,λλλ,ψψψ((uh)h 6=1, r, c, l) = 0, both of which hold when Γ̄ΓΓ((uh)h 6=1, r, c, l) = 0. Thus, without

loss of generality, we can eliminate one equation, say the budget equation of consumer one
(qt[x1 − e1]−R−

∑
i θ

1
i p
T yi] = 0), from Γ̄ΓΓ.

With an abuse of notation, define the mapping
¯̄̄
ΓΓΓ : B → Rne+I−N , with image

¯̄̄
ΓΓΓ((uh)h 6=1, r, c, l) as

¯̄̄
ΓΓΓ

h

x(.) = Γ̄ΓΓ
h
x(.), ∀h (2HN) (7.15)

¯̄̄
ΓΓΓ

i

y(.) = Γ̄ΓΓ
i
y(.), (IN + 2I) (7.16)

¯̄̄
ΓΓΓ

0

y(.) = Γ̄ΓΓ
0
y, (N + 1) (7.17)

¯̄̄
ΓΓΓβββ(.) = Γ̄ΓΓβββ(.), (N) (7.18)

¯̄̄
ΓΓΓR(.) = Γ̄ΓΓR(.), (1) (7.19)

¯̄̄
ΓΓΓ

q,λλλ,ψψψ(.) =


(qTxh −R−

∑
i θ
h
i p
T yi − qT eh)h 6=1

−
∑

h ψ
h[xh − eh] +

∑
h κ

hλh

(κhT q)

(
∑

h ψ
hθih)i6=0

 , (N + 2H − 1 + I) (7.20)

¯̄̄
ΓΓΓu(.) = Γ̄ΓΓu(.), ∀h 6= 1, (H − 1) (7.21)

¯̄̄
ΓΓΓ∗(.) = Γ̄ΓΓ∗(.), and (N − 1) (7.22)

¯̄̄
ΓΓΓφφφ(.) = Γ̄ΓΓφφφ(.). (IN) (7.23)

It is easily verified that Γ̄ΓΓ((uh)h 6=1, r, c, l) = 0 when Γ̄ΓΓ is restricted to B is equivalent to
¯̄̄
ΓΓΓ((uh)h 6=1, r, c, l) = 0.

Lemma SBPE2:
¯̄̄
ΓΓΓ t 0.
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An analysis similar to the one in Section 7.1 can be repeated for this case, when we

note that the number of equations (ne + I − 1) in
¯̄̄
ΓΓΓr,u2,...,uH () = 0 exceeds the number of

unknowns (ne) by I − 1. Let
¯̄̄
Q denote any H − I-dimensional subset of Q. Let P ¯̄̄

Q
be the

projection of P to the space of r and (uh)
h∈ ¯̄̄
Q

.

Theorem SBPE2 (Generic Local Uniqueness): If H − I ≥ 0 then, for almost all

〈r, (uh)
h∈ ¯̄̄
Q
〉 ∈ P ¯̄̄

Q
, except on a closed subset of P ¯̄̄

Q
of measure zero, we have

¯̄̄
ΓΓΓr,(uh)

h∈ ¯̄̄
Q

t 0

and
¯̄̄
ΓΓΓ
−1

r,(uh)
h∈ ¯̄̄
Q

(0), if not empty, is a manifold of dimension zero.

7.3. The generic structure of Ū(r).

For every r ∈ R, define the following subsets of U(r):

¯̄U(r) := {〈u1, . . . , uH〉 ∈ U(r)|∃〈c, l〉 ∈ C ×Rnl
κ such that ¯̄ΓΓΓ(c, l, r, u2, . . . , uH) = 0}.

(7.24)
and

¯̄̄
U(r) := {〈u1, . . . , uH〉 ∈ U(r)|∃〈c, l〉 ∈ C ×Rnl

κ such that
¯̄̄
ΓΓΓ(c, l, r, u2, . . . , uH) = 0}.

(7.25)
Remark SBPE1. From the transversality theorem, Lemmas SB4 and SBPE1 imply that,

for almost all r ∈ R, except on a closed subset of measure zero, ¯̄ΓΓΓr t 0. If ¯̄ΓΓΓr t 0 then
¯̄ΓΓΓ
−1

r (0), if not an empty set, is a smooth manifold of dimension H − N . Let ¯̄R := {r ∈
R|¯̄ΓΓΓr t 0}. Then ¯̄R is open and dense in R.

Remark SBPE2. From the transversality theorem, Lemmas SB4 and SBPE2 imply that,

for almost all r ∈ R, except on a closed subset of measure zero,
¯̄̄
ΓΓΓr t 0. If

¯̄̄
ΓΓΓr t 0 then

¯̄̄
ΓΓΓ
−1

r (0), if not an empty set, is a smooth manifold of dimension H − I. Let
¯̄̄R := {r ∈

R| ¯̄̄ΓΓΓr t 0}. Then
¯̄̄R is open and dense in R.

The proof of Theorem SBPE3, below, is exactly similar to the proof of Theorem
SBPCI1. It involves applying the homeomorphism ζ to lower dimensional submanifolds of

the graph of
∗
Φr. This implies that the images of ζ, restricted to these submanifolds, are

lower dimensional submanifolds of U(r).

Theorem SBPE3: Let Assumptions SB1 and SB2 hold. If H ≥ N then for every r ∈ ¯̄R,

we have ¯̄U(r), if not empty, is a H −N-dimensional submanifold of U(r). If H ≥ I then

for every r ∈ ¯̄̄R, we have
¯̄̄
U(r), if not empty, is a H − I-dimensional submanifold of U(r).

The following theorem establishes the generic size and structure of Ū(r) (which is the

union of ¯̄U(r) and
¯̄̄
U(r)) when we note that ¯̄R∪ ¯̄̄R is open and has full Lebesgue measure

in the set R.
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Theorem SBPE4: Let Assumptions SB1 and SB2 hold. For almost all r ∈ R, except
on a closed subset of measure zero, Ū(r) is either an empty set or a union of manifolds of
dimensions H −N and H − I.

In BM it was demonstrated that for any economy r ∈ R, where the rank of the matrix
of shares Θ was one, every second-best is production efficient, that is, Ū(r) = U(r), and

hence Ū(r) is a H−1-dimensional manifold.48 Since, second-best production efficient sets
are generically of dimensions H − I or H − N , the economies for which the second-best
production sets are of dimension H − 1 must be critical economies. The following result,
hence, follows as a Corollary to Theorem SBPE4.

Corollary SBPE4: Under Assumptions SB1 and SB2, the set

{r ∈ R|Ū(r) is a H − 1-dimensional manifold} (7.26)

has Lebesgue measure zero in R. In particular,

{r ∈ R|θhi = θh ∀h} ⊂ {r ∈ R|Ū(r) is a H − 1-dimensional manifold}. (7.27)

8. The generic size and structure of the second-best consumption efficient
(SBCE) but production inefficient subset of the second-best frontier.

In this section the generic size and structure of the consumption efficient but pro-
duction inefficient component of the second-best Pareto manifold is established. Denote

the space of all Lagrange multipliers such that (φi)i6=0 is not zero by Rnl
φ .49 Given

〈r, u2, . . . , uH〉 ∈ P , from Lemmas SB1 and SB2 it follows that c ∈ C is a consump-
tion efficient and production inefficient second-best tax equilibrium if and only if there
exists l ∈ Rnl

φ such that 〈c, l〉 solves[
ΓΓΓ(r, u2, . . . , uH , c, l)

q̂
q1
− β̂

β1

]
= 0, (8.1)

Define the mapping Γ̂ΓΓ : P × C ×Rnl
φ → Rne+N−1 with image

Γ̂ΓΓ
h

x((uh)h 6=1, r, c, l) =

[
∇xhUh(xh, ah, Ah)− λhq

αhλh − ψh − β1
q1

]
∀h, (HN +H) (8.2)

Γ̂ΓΓ
i

y((uh)h 6=1, r, c, l) =

 F i(yi, bi0, b
i, Bi)

∇yiF i(yi, bi0, bi, Bi)− γip∑
h ψ

hθhi p− µiγip−∇yi,yiF iφi + β

 ∀i, (2IN + I) (8.3)

48 Note, the DM case and the case with one-hundred percent profit taxation are special cases of this
rank condition.
49 That is, Rnl

φ = {l ∈ Rnl | ∀i 6= 0, φi 6= 0}.
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Γ̂ΓΓ
0

y((uh)h 6=1, r, c, l) =

[
F 0(y0, b00, b

0, B0)

−δ∇y0F 0 + β

]
, (N + 1) (8.4)

Γ̂ΓΓβββ((uh)h 6=1, r, c, l) =
[∑

h x
h −

∑
i y
i −
∑

h e
h
]
, (N) (8.5)

Γ̂ΓΓp,γγγ((uh)h 6=1, r, c, l) =

[
(φiT p)i 6=0∑

h ψ
h
∑

i θ
h
i ŷ

i +
∑

i φ̂
iγi

]
, ((N − 1) + I) (8.6)

Γ̂ΓΓ
q,λλλ,ψψψ((uh)h 6=1, r, c, l) =

[
(qTxh −R−

∑
i θ
h
i p
T yi − qT eh)

−
∑

h ψ
h[xh − eh]

]
, (N +H) (8.7)

Γ̂ΓΓR((uh)h 6=1, r, c, l) =
∑
h

ψh, (1) (8.8)

Γ̂ΓΓu((uh)h 6=1, r, c, l) = (uh − Uh(xh, ah, Ah)), (H − 1) (8.9)

Γ̂ΓΓ∗((u
h)h 6=1, r, c, l) =

q̂

q1
− β̂

β1
, and (N − 1) (8.10)

Γ̂ΓΓκκκ((uh)h 6=1, r, c, l) = (κh). (HN) (8.11)

Recalling that Lemma SB2 said that c is a consumption efficient second-best if and only

if κh = 0 for all h, it is clear that (8.1) is equivalent to Γ̂ΓΓ(r, u2, . . . , uH , c, l) = 0. Following

methods similar to the previous sections, it is straightforward to establish that (i) Γ̂ΓΓ t 0,

(ii) for almost all r ∈ R except on a closed subset of measure zero, Γ̂ΓΓr t 0 and Γ̂ΓΓ
−1

r (0), if

not an empty set, is a smooth manifold of dimension H−N . Define R̂ := {r ∈ R|Γ̂ΓΓr t 0}.
Then R̂ is open and dense in R, (iii) Φr is generically locally unique and continuous in

the SBCE component of ΓΓΓ−1(0), and (iv) for all r ∈ R̂, Û(r), if not empty, is a H − N -
dimensional submanifold of U(r), where

Û(r) := {〈u1, . . . , uH〉 ∈ U(r)|∃〈c, l〉 ∈ C ×Rnl
φ such that Γ̂ΓΓ(c, l, r, u2, . . . , uH) = 0}.

(8.12)

9. The generic size and structure of the first-best (FB) tax equilibria.

First-best tax equilibria of private ownership economies are tax equilibria where the
producer and consumer prices are both proportional to the shadow prices of the resources
in the economy (or equivalently, to the shadow prices in the public sector), and where the
wedge (the constant of proportionality) between consumer and producer prices generates
indirect tax revenue to the government, which the government can use to finance public
sector production or distribute as a uniform lump-sum transfer. In the usual competitive
equilibria of private ownership economies the constant of proportionality between q and
p is one. We show that, generically, the first-best subset of U(r) is a one-dimensional
manifold.
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Given 〈r, u2, . . . , uH〉 ∈ P , from Lemmas SB1 and SB2, it follows that c ∈ C is
a consumption and production efficient second-best tax equilibrium if and only if there
exists l ∈ Rnl such that 〈c, l〉 solves

ΓΓΓ(r, u2, . . . , uH , c, l)

p̂− β̂
β1

q̂
q1
− β̂

β1

 = 0. (9.1)

Lemmas SB1 to SB3 imply that if c is a production and consumption efficient second-best,
then κh = 0 for all h, φi = 0 for all i 6= 0, and ψh = 0 for all h. Define the mapping

Γ̆ΓΓ : P × C ×Rnl → Rne+H−2 with image

Γ̆ΓΓ
h

x((uh)h 6=1, r, c, l) =

[
∇xhUh(xh, ah, Ah)− λhq

αhλh − ψh − β1
q1

]
∀h, (HN +H) (9.2)

Γ̆ΓΓ
i

y((uh)h 6=1, r, c, l) =

 F i(yi, bi0, b
i, Bi)

∇yiF i(yi, bi0, bi, Bi)− γip
µiγi − β1

 ∀i, (IN + 2I) (9.3)

Γ̆ΓΓ
0

y((uh)h 6=1, r, c, l) =

[
F 0(y0, b00, b

0, B0)

−δ∇y0F 0 + β

]
, (N + 1) (9.4)

Γ̆ΓΓβββ((uh)h 6=1, r, c, l) =
[∑

h x
h −

∑
i y
i −
∑

h e
h
]
, (N) (9.5)

Γ̆ΓΓ
q,λλλ((uh)h 6=1, r, c, l) =

[
(qTxh −R−

∑
i θ
h
i p
T yi − qT eh)]

]
(H) (9.6)

Γ̆ΓΓu((uh)h 6=1, r, c, l) = (uh − Uh(xh, ah, Ah)) (H − 1) (9.7)

Γ̆ΓΓq((uh)h 6=1, r, c, l) =
q̂

q1
− β̂

β1

(N − 1) (9.8)

Γ̆ΓΓp((uh)h 6=1, r, c, l) = p̂− β̂ (N − 1) (9.9)

Γ̆ΓΓκκκ((uh)h 6=1, r, c, l) = (κh) (HN) (9.10)

Γ̆ΓΓψψψ((uh)h 6=1, r, c, l) = (ψh) (H) (9.11)

Γ̆ΓΓφφφ((uh)h 6=1, r, c, l) = (φi)i 6=0 (IN) (9.12)

It is clear that (9.1) is equivalent to Γ̆ΓΓ(r, u2, . . . , uH , c, l) = 0. It is straightforward to

prove that Γ̆ΓΓ t 0. From that it follows that, for almost all r ∈ R, except on a closed subset

of measure zero, we have Γ̆ΓΓr t 0. We define R̆ in a manner similar to the earlier sections.

This set is open and dense in R. For all r ∈ R̆, by counting the number of equations

and the number of unknowns in Γ̆ΓΓr(c, l, u
2, . . . , uH) = 0 and applying the transversality

theorem, we can show that Γ̆ΓΓ
−1

r (0), if not an empty set, is a smooth manifold of dimension
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one. We can also apply the transversality theorem, as in the previous sections, to show
the local uniqueness and continuity of the stationary values of Problem (4.1) in the FB

component of ΓΓΓ−1(0). Moreover, if, for every r ∈ R, we define the following FB subset of
U(r),

Ŭ(r) := {〈u1, . . . , uH〉 ∈ U(r)|∃〈c, l〉 ∈ C ×Rnl such that Γ̆ΓΓ(c, l, r, u2, . . . , uH) = 0},
(9.13)

then for all all r ∈ R̆, Ŭ(r) is a one-dimensional submanifold of U(r).

10. Conclusions.

There seem three main difficulties that make a systematic study of the generic size and
structure of the Pareto frontiers of second-best economies hard (i) the preferences of the
consumers expressed in the dual space of the policy instruments that parametrize equilibria
in second-best economies could be nonconvex. This leads to problems of multiplicity of
solutions and discontinuities in the solution mapping of the second-best Pareto problem,
(ii) second-best problems, when posed in the dual space of policy instruments, do not
easily allow a rich enough set of perturbations in the fundamentals (the data) of the
economy for establishing generic results, and (iii) for the second-best Pareto frontier to
have the expected feature of a H−1-dimensional manifold in economies with H consumers,
a necessary condition is to be able to change, independently and in a manner that is
equilibrium preserving, the utilities of H − 1 consumers, that is, the constraint set of
the second-best Pareto problem should be well defined on an open subset of the space of
utilities of H − 1 consumers, which is the parameter space of the optimization problem.

In this paper we study a simple second-best situation motivated by the inability of the
government to implement personalized lump-sum transfers. Rather, the government has
recourse to linear commodity taxes and a uniform lump-sum transfer in private ownership
economies. We identify conditions under which the second-best Pareto frontier will be a
H − 1-dimensional manifold, despite the nonconvexities in the indirect preferences of the
consumers.

By posing the problem in the space of both the primal and dual variables, we are
able to identify a class of economies which allows a rich enough set of perturbations in
the fundamentals of the economy that yields the required generic results. Precisely, these
perturbations are in the zeroth, the first, and the second-order derivatives of utility and
production functions. This helps in overcoming problem (ii) above.

In order to apply the theorem of Lagrange/Kuhn-Tucker to solve the second-best
Pareto optimization problem, the constraint qualification condition should be met. In
our case, this condition will hold if the government has recourse to at least H − 1 policy
instruments to independently change utilities of H−1 of the H consumers. We also identify
a condition that ensures that such changes in utilities can be realized as tax equilibria.
Thus, if the constraint qualification is satisfied, then it also ensures that (iii) above is met.
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We distinguish between the stationary and solution values of the second-best Pareto
optimization problem. With respect to (i) above, we show that, if the mapping of station-
ary values (that is, those values of choice variables that solve the first-order conditions of
the Pareto problem) is locally unique (even if it is not a singleton set because of noncon-
vexities in indirect preferences) and continuous, then the value function V of the Pareto
problem is continuous in the utilities of H − 1 consumers, so that the second-best utility
possibility frontier is a H − 1-dimensional manifold. Examining the various components
of the graph of the mapping of stationary values reveals that this mapping is, generically,
locally unique and continuous.

Local continuity of the solution mapping is not required to prove the continuity of V .
However, if the solution mapping is also locally continuous, then our results demonstrate
that, in the class of economies and under the conditions that we have identified, generically
(that is, in an open and dense subset of our class of economies), the production efficient
but consumption inefficient, consumption efficient but production inefficient, and the first-
best subsets of the second-best Pareto manifold are either empty sets or lower dimensional
(and, hence, negligible in size) submanifolds. On the other hand, its jointly production
and consumption inefficient subset is a H − 1-dimensional submanifold. This indicates
that economies such as those that are often studied in the literature, where every second-
best is production (or consumption) efficient, are extremely rare. Most economies and
most of the second-best equilibria in such economies exhibit production and consumption
inefficiencies, so that market prices cannot be used in lieu of the social shadow prices
for evaluating prospective public sector projects. This begs an answer to the following
important question to be taken up in the future for further research: how can one recover
the true social shadow prices in such economies from the data on the fundamentals of the
economy and the available policy instruments?

APPENDIX

Transversality Theorem: Let A, B, and C be smooth manifolds of dimension m, n,
and l, respectively, and f : A × B → C be a smooth mapping of manifolds with image
f(a, b) = c. If f t 0 then fa t 0 for almost all a ∈ A except on a subset of A of

measure zero and f−1
a (0) is either a manifold of dimension n − l or is an empty set. If

f−1(0) ⊂ A×K where K is compact and B ⊂ K, then fa t 0 for almost all a ∈ A except
on a closed subset of A of measure zero.

The proofs of most lemmas in this paper often require showing that the Jacobian
matrices of some vector-valued functions are full-row ranked. To demonstrate this, we
take recourse to Lemma FRR, which is proved below. Lemma FRR identifies a set of
sufficient conditions under which the Jacobian matrix of a vector valued function L is full-
row ranked. Most of the vector valued functions in our paper will satisfy these conditions.50

50 Lemma FRR is a formalization of the methodology used in papers such as V et al. and CP to prove
that Jacobian matrices of a class of functions can be shown to be full-row ranked.
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Let L : RN → RM be a vector-valued function with components L1 : RN → RM1

...
LT : RN → RMT

 . (A.1)

Thus,
∑T

t=1Mt = M . SupposeN ≥M and the set of arguments of L is {x1, . . . , xN} =: X.

Let n1, . . . , nT be T positive integers such that
∑T

t=1 nt ≤ N . With a slight abuse of
notation, we define the following T subsets of X:

n1 := {x1, . . . , xn1},
n2 := {xn1+1, . . . , xn1+n2},

...

nT := {x∑T−1
t=1 nt+1

, . . . , x∑T−1
t=1 nt+nT

}.

(A.2)

Define the set nt = ∪tt′=1nt′ and the set nc = X \ nT . Then the collection of subsets of

X {n1, . . . , nT ,n
c} is a partition of X. For all t = 1, . . . , T , we define the vector valued

function

Lt : RN → R
∑t
t′=1Mt′ :=

L1 : RN → RM1

...
Lt : RN → RMt

 . (A.3)

Lemma Full-Row Rank (FRR): Let x ∈ RN . Suppose for all t = 1, . . . , T , ∇nt−1L
t(x) =

0 and ∇ntLt(x) is full row-ranked. Then ∇L(x) is full row-ranked.

Proof: Lor all t = 1, . . . , T , since ∇ntLt(x) is full row-ranked, there exist |nt | × Mt–

dimensional matrix of perturbations Zt such that ∇ntLt(x)Zt = IMt .
51

We will prove by induction that for every t = 1, . . . , T − 1, there exists a |nt | ×∑t
t′=1Mt′–dimensional matrix Zt and a

∑t
t′=1Mt′ × Mt+1-dimensional matrix At such

that52 [ ∇ntLt ∇nt+1Lt

∇ntL
t+1 ∇nt+1L

t+1

] [
Zt ZtAt
0 Zt+1

]
= I∑t+1

t′=1
Mt′

. (A.4)

We first show that (A.4) holds for t = 1. In this case L1 = L1. Choose Z1 = Z1. Since

∇n1L
1 is full ranked and ∇n1L

1Z1 = IM1 , there exists a M1×M2-dimensional matrix A1

such that ∇n2L
1Z2 +∇n1L

1Z1A1 = ∇n2L
1Z2 + IM1A1 = 0. (Clearly, A1 = −∇n2L

1Z2.)

Under the maintained hypothesis of the lemma, ∇n1L
2 = 0. Thus, we have[

∇n1L1 ∇n2L1

∇n1L
2 ∇n2L

2

] [
Z1 Z1A1

0 Z2

]
=

[
IM1 0

0 IM2

]
= I∑2

t′=1Mt′
. (A.5)

51 |nt | is the cardinality of the set nt.
52 In what follows, to save on notation, we omit writing x explicitly, though it is assumed that L is

evaluated at x.
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So (A.4) holds for t = 1. Suppose it holds for t̄ < T . We show that it holds for t̄ + 1.

Since it holds for t̄ < T , there exists a |nt̄ | ×
∑t̄

t′=1Mt′-dimensional matrix Zt̄ and a∑t̄
t′=1Mt′ ×Mt̄+1-dimensional matrix At̄ such that[

∇nt̄L
t̄ ∇nt̄+1

Lt̄

∇nt̄L
t̄+1 ∇nt̄+1

Lt̄+1

] [
Zt̄ Zt̄At̄
0 Zt̄+1

]
= I∑t̄+1

t′=1
Mt′

. (A.6)

The first matrix on the left-side of (A.6) is ∇nt̄+1
Lt̄+1. Let us denote the second

matrix on the left side of (A.6) by Zt̄+1. Then (A.6) is equivalent to

∇nt̄+1
Lt̄+1Zt̄+1 = I∑t̄+1

t′=1
Mt′

. (A.7)

Therefore there exists a
∑t̄+1

t′=1Mt′×Mt̄+2-dimensional matrixAt̄+1 such that∇nt̄+1
Lt̄+1Zt̄+1At̄+1+

∇nt̄+2
Lt̄+1Zt̄+2 = 0. (Simply choose At̄+1 = −∇nt̄+2

Lt̄+1Zt̄+2). Further, under the main-

tained hypothesis of the lemma, ∇nt̄+1
Lt̄+2 = 0. Thus, for t = t̄+ 1, (A.4) holds as[

∇nt̄+1
Lt̄+1 ∇nt̄+2

Lt̄+1

∇nt̄+1
Lt̄+2 ∇nt̄+2

Lt̄+2

] [
Zt̄+1 Zt̄+1At̄+1

0 Zt̄+2

]
= I∑t̄+2

t′=1
Mt′

. (A.8)

Thus, (A.4) is true for all t = 1, . . . , T − 1. In particular, it holds for t = T − 1 as[
∇nT−1LT−1 ∇nTLT−1

∇nT−1L
T ∇nTLT

][
ZT−1 ZT−1AT−1

0 ZT

]
= IM . (A.9)

But this is equivalent to

∇nTL

[
ZT−1 ZT−1AT−1

0 ZT

]
= IM . (A.10)

Hence, ∇nTL is full-row ranked. Since ∇nTL is a M -rowed sub-matrix of ∇L, the above
implies that ∇L(x) is full row-ranked.

Proof of Lemma CQ: Step 1: We show that Ḡ t 0.

Assume, without loss of generality, H = 3, I = 2, andN = 2.53 Let Ḡ(c, u2, . . . , uH , r) =

0. We apply FRR with T = 4, M1 = 6, M2 = 8, M3 = 3, and M4 = 3, n1 = {y0, x1, λ1},
n2 = {x2, λ2, x3, λ3, q}, n3 = {y1, γ1}, and n4 = {y2, γ2},

L1() =


∇x1U1(x1, a1, A1)− λ1q

qTx1 −R−
∑

i6=0 θ
1
i p
T yi − qT e1

F 0(y0, b00, b
0, B0)∑

h x
h −

∑
i y
i −
∑

h e
h

 , (A.11)

53 Note, the condition H − 1 ≤ N holds in this example.
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L2() =



∇x2U2(x2, a2, A2)− λ2q

U2(x2, a2, A2)− u2

∇x3U3(x3, a3, A3)− λ3q

U3(x3, a3, A3)− u3

qTx2 −R−
∑

i6=0 θ
2
i p
T yi − qT e2

qTx3 −R−
∑

i6=0 θ
3
i p
T yi − qT e3


, (A.12)

and for i = 1, 2,

L2+i() =

[
∇yiF i(yi, bi0, bi, Bi)− γip

F i(yi, bi0, b
i, Bi)

]
. (A.13)

We now prove that ∇ntLt are full-row ranked for all t = 1, . . . , 4.

∇n1L
1 =



∇2
x1

1,x
1
1
U1 ∇2

x1
1,x

1
2
U1 −q1 0 0

∇2
x1

1,x
1
2
U1 ∇2

x1
2,x

1
2
U1 −q2 0 0

q1 q2 0 0 0
0 0 0 ∇y0

1
F 0 ∇y0

2
F 0

1 0 0 −1 0
0 1 0 0 −1


. (A.14)

Consider the matrix of perturbations

Z1 =



ẋ11
1 ẋ12

1 ẋ1λ
1

1
∇
y0
1
F 0 0 0

ẋ11
2 ẋ12

2 ẋ1λ
2 0 0 0

λ̇11
λ λ̇12

λ λ̇1λ
λ 0 0 0

0 0 0 1
∇
y0
1
F 0 −1 0

0 0 0 0 0 −1


. (A.15)

∇n1L
1Z1 =



1 0 0
∇2
x1

1
,x1

1
U1

∇
y0
1
F 0 0 0

0 1 0
∇2
x1

1
,x1

2
U1

∇
y0
1
F 0 0 0

0 0 1 q1
∇
y0
1
F 0 0 0

0 0 0 1 −∇y0
1
F 0 −∇y0

2
F 0

ẋ11
1 ẋ12

1 0 0 1 0

ẋ11
2 ẋ12

2 0 0 0 1


. (A.16)

If the first condition of (4.8) holds then, by performing elementary row and column opera-

tions, ∇n1L
1Z1 can be converted into an identity matrix. Thus, ∇n1L

1Z1 is non-singular.

Hence, ∇n1L
1 is full-row ranked.
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∇n2L
2 =



∇2
x2

1,x
2
1
U2 ∇2

x2
1,x

2
2
U2 −q1 0 0 0 −λ2 0

∇2
x2

1,x
2
2
U2 ∇2

x2
2,x

2
2
U2 −q2 0 0 0 0 −λ2

∇x2
1
U2 ∇x2

2
U2 0 0 0 0 0 0

0 0 0 ∇2
x3

1,x
3
1
U3 ∇2

x3
1,x

3
2
U3 −q1 −λ3 0

0 0 0 ∇2
x3

1,x
3
2
U3 ∇2

x3
2,x

3
2
U3 −q2 0 −λ3

0 0 0 ∇x3
1
U3 ∇x3

2
U3 0 0 0

q1 q2 0 0 0 0 x2
1 − e2

1 x2
2 − e2

2

0 0 0 q1 q2 0 x3
1 − e3

1 x3
2 − e3

2


.

(A.17)
Consider a matrix of perturbations

Z2 =



ẋ21
1 ẋ22

1 ẋ2λ
1 0 0 0 0 0

ẋ21
2 ẋ22

2 ẋ2λ
2 0 0 0 0 0

λ̇21
λ λ̇22

λ λ̇2λ
λ 0 0 0 0 0

0 0 0 ẋ31
1 ẋ32

1 ẋ3λ
1 0 0

0 0 0 ẋ31
2 ẋ32

2 ẋ3λ
2 0 0

0 0 0 λ̇31
λ λ̇32

λ λ̇3λ
λ 1 0

0 0 0 0 0 0 0 1


. (A.18)

∇n2L
2Z2 =



1 0 0 0 0 0 −λ2 0
0 1 0 0 0 0 0 −λ2

0 0 1 0 0 0 0 0
0 0 0 1 0 0 −λ3 0
0 0 0 0 1 0 0 −λ3

0 0 0 0 0 1 0 0∑2
k=1 qkẋ

21
k

∑2
k=1 qkẋ

22
k 1 0 0 0 x2

1 − e2
1 x2

2 − e2
2

0 0 0
∑2

k=1 qkẋ
31
k

∑2
k=1 qkẋ

32
k 1 x3

1 − e3
1 x3

2 − e3
2


.

(A.19)

Note that
∑2

k=1 qkẋ
hk′

k = 0 for h = 2, 3 and k′ = 1, 2. So

∇n2L
2Z2 =



1 0 0 0 0 0 −λ2 0
0 1 0 0 0 0 0 −λ2

0 0 1 0 0 0 0 0
0 0 0 1 0 0 −λ3 0
0 0 0 0 1 0 0 −λ3

0 0 0 0 0 1 0 0
0 0 1 0 0 0 x2

1 − e2
1 x2

2 − e2
2

0 0 0 0 0 1 x3
1 − e3

1 x3
2 − e3

2


. (A.20)
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By elementary row and column operations, ∇n2L
2Z2 can be converted into

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 x2

1 − e2
1 x2

2 − e2
2

0 0 0 0 0 0 x3
1 − e3

1 x3
2 − e3

2


. (A.21)

It is clear that if the second condition in (4.8) holds then ∇n2L
2Z2 can be converted into

an identity matrix and hence ∇n2L
2 is full-row ranked. For i = 1, 2,

∇n2+iL
2+i =


∇2
yi1,y

i
1
F i ∇2

yi1,y
i
2
F i −p1

∇2
yi1,y

i
2
F i ∇2

yi2,y
i
2
F i −p2

∇yi1F
i ∇yi2F

i 0

 . (A.22)

The matrix of perturbations Ẏi ensures that ∇n2+iL
2+i is full-row ranked for i = 1, 2.

Note that ∇nt−1L
t = 0 for all t = 2, 3, 4. Thus all the conditions of Lemma FRR are

satisfied and conclusions of this lemma follow. Hence, ∇Ḡ is full-row ranked whenever
Ḡ(c, u2, . . . , uH , r) = 0. Hence, Ḡ t 0.

Step 2: We show that ∇Ḡr,u2,...,uH t 0 for all 〈r, u2, . . . , uH〉 ∈ R ×RH−1.

Note that our computations above show that ∇Ḡ =
[
∇cḠ ∇r,u2,...,uHḠ

]
is full-

row ranked whenever Ḡ(c, u2, . . . , uH , r) = 0 precisely because ∇cḠ is full-row ranked.

(Recall, no perturbations in r, u2, . . . , uH were used to prove that ∇Ḡ is full-row ranked.)

Pick 〈r, u2, . . . , uH〉 ∈ R × RH−1. Since Ḡ t 0 and ∇cḠ(r, u2, . . . , uH , c) is full-

row ranked for all c ∈ C such that Ḡ(r, u2, . . . , uH , c) = 0, the definition of the function

Ḡr,u2,...,uH implies that

∇cḠr,u2,...,uH (c) ≡ ∇cḠ(r, u2, . . . , uH , c) (A.23)

is full row ranked whenever

Ḡr,u2,...,uH (c) ≡ Ḡ(r, u2, . . . , uH , c) = 0. (A.24)

Hence, Ḡr,u2,...,uH t 0.

Proof of Theorem CQ: Let 〈r̄, ū2, . . . , ūH〉 ∈ P . We show that there exists an open set

in R×RH−1 that contains 〈r̄, ū2, . . . , ūH〉 and is a subset of P . 〈r̄, ū2, . . . , ūH〉 ∈ P implies

that there exists c̄ ∈ T (r̄) such that ūh = Uh(x̄h, āh, Āh) for all h = 2, . . . , H.54 This im-

plies that Ḡ(c̄, r̄, ū2, . . . , ūH) = 0. From Lemma CQ, this implies that ∇Ḡr̄,ū2,...,ūH (c̄),

54 x̄h is the xhth component of c̄.
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which is a matrix with nc columns and H + HN + I + IN + N + H rows, is full-
row ranked. Let C = {(xh, λh), (yi), (γi)i6=0, p̂, q, R}. Since, ∇Ḡr̄,ū2,...,ūH (c̄) is full-row

ranked, there exists a H + HN + I + IN + N + H dimensional subset C1 of C such
that ∇C1Ḡr̄,ū2,...,ūH (c̄) is full-row ranked. In an obvious way we rewrite c̄ = 〈c̄1, c̄2〉.
Note c̄2 lies in nc − (H + HN + I + IN + N + H) = 2N − H–dimensional Euclidean

space. Under the maintained assumptions, 2N −H ≥ 0.55 Then ∇C1Ḡ(r̄, ū2, . . . , ūH , c̄) is
full-row ranked and an application of the implicit function theorem implies that there
exist open neighborhoods O and V around 〈c̄2, r̄, ū2, . . . , ūH〉 in R2N−H × R and c̄1
in RH+HN+I+IN+N+H , respectively, and a smooth mapping Ψ : O → V such that
Ḡ(Ψ(r, u2, . . . , uH , c2), r, u2, . . . , uH , c2) = 0 for all 〈r, u2, . . . , uH , c2〉 ∈ O. Let O′ be

the projection of O into R×RH−1. Since O is open in R2N−1 ×R, we have O′ open in
R×RH−1. Clearly, O′ contains 〈r̄, ū2, . . . , ūH〉 and is a subset of P .

Proof of Theorem SB:
Proof of (i): Pick r ∈ R. Under Assumption SB1 (a), Γ(r) 6= ∅. Pick 〈c̄, l̄, ū2, . . . , ūH〉 ∈
Γ(r) ⊂ RH−1 × C × Rnl . We show that there exists an open set Z in RH−1 × C × Rnl

such that 〈c̄, l̄, ū2, . . . , ūH〉 ∈ Z and Z ∩ Γ(r) is homeomorphic to an open set in RH−1.

〈c̄, l̄, ū2, . . . , ūH〉 ∈ Γ(r) implies that 〈c̄, l̄〉 ∈ Φr(ū
2, . . . , ūH). Define Vū2,...,ūH (r),

Oj
ū2,...,ūH

(r), and gj
r,ū2,...,ūH for all j ∈ J as in Assumption SB1. Then it follows that

there exists j ∈ J such that gj
r,ū2,...,ūH(ū2, . . . , ūH) = 〈c̄, l̄〉 ∈ Oj

ū2,...,ūH
(r). Choose Z =

Vū2,...,ūH (r) × Oj
ū2,...,ūH

(r). Then 〈c̄, l̄, ū2, . . . , ūH〉 ∈ Z and, as a Cartesian product of

two open sets, Z is open in RH−1 × C ×Rnl . Under Assumption SB1 (b), Oj
ū2,...,ūH

(r) ∩

Oj
′

ū2,...,ūH
(r) = ∅ for all j′ ∈ J such that j′ 6= j. Hence, Γ(r) ∩ Z = Gr(gj

r,ū2,...,ūH).56 Z

open in RH−1 × C × Rnl and Γ(r) ⊂ RH−1 × C × Rnl implies that Z ∩ Γ(r) is open in
Γ(r).

Define the mapping Ψ : Z ∩ Γ(r) → Ψ(Z ∩ Γ(r)) with image Ψ(c, l, u2, . . . , uH) ≡
Ψ(gj

r,ū2,...,ūH(u2, . . . , uH), u2, . . . , uH) = 〈u2, . . . , uH〉. Ψ is clearly a homeomorphism. We

show that Ψ(Z ∩ Γ(r)) is open in RH−1. This is true as Ψ(Z ∩ Γ(r)) = Vū2,...,ūH (r) and

Vū2,...,ūH (r) is a set open in P(r) and P(r) is open in RH−1 (this follows from the Corollary

CQ). This proves that Γ(r) is a H − 1-dimensional manifold.
We now show that U(r) is a H − 1-dimensional manifold. Remark SB implies that

U(r) is not empty. Let 〈ū1, . . . , ūH〉 ∈ U(r). We show that there exists an open set V in

RH such that 〈ū1, . . . , ūH〉 ∈ V and V ∩ U(r) is homeomorphic to an open set in RH−1.

Since
∗
Φr(ū

2, . . . , ūH) ⊆ Φr(ū
2, . . . , ūH) and since Assumption SB1 holds, there exists

∗
J ū2,...,ūH (r) ⊂ J such that

∗
Φr(ū

2, . . . , ūH) = {gj
r,ū2,...,ūH(ū2, . . . , ūH)}

j∈
∗
J
ū2,...,ūH

(r)
.

55 Our maintained assumptions include H − 1 ≤ N and N ≥ 1.
56 For any mapping f : A→ B, Gr(f) is the graph of f in A×B.
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For all j ∈ J define the functions Vjr : Vū2,...,ūH (r)→ R with image Vjr (u2, . . . , uH) =

U1(x1j(u2, . . . , uH), a1, A1).57 The continuity of the mappings U1 and gj
r,ū2,...,ūH imply

that Vjr is continuous for all j ∈ J . Further, Vjr (ū2, . . . , ūH) = Vj
′
r (ū2, . . . , ūH) for all

j, j′ ∈
∗
J ū2,...,ūH (r) and Vjr (ū2, . . . , ūH) > Vj

′
r (ū2, . . . , ūH) for all j′ /∈

∗
J ū2,...,ūH (r) and

j ∈
∗
J ū2,...,ūH (r). The continuity of the functions Vjr implies that there exists V ′

ū2,...,ūH
(r)

open in Vū2,...,ūH (r) such that for all j ∈
∗
J ū2,...,ūH (r), j′ /∈

∗
J ū2,...,ūH (r), and 〈u2, . . . , uH〉 ∈

V ′
ū2,...,ūH

(r) we have Vjr (u2, . . . , uH) > Vj
′
r (u2, . . . , uH). In that case, for all 〈u2, . . . , uH〉 ∈

V ′
ū2,...,ūH

(r), the value function V of Problem (4.1) is

V(u2, . . . , uH , r) = max
j∈
∗
J
ū2,...,ūH

(r)

Vjr (u2, . . . , uH). (A.25)

Hence, as a maximum of continuous functions, the mapping V restricted to V ′
ū2,...,ūH

(r) is

continuous. Define a mapping ρ : V ′
ū2,...,ūH

(r)→ ρ(V ′
ū2,...,ūH

(r)) with image ρ(u2, . . . , uH) =

〈u2, . . . , uH ,V(u2, . . . , uH , r)〉. ρ is a homeomorphism. V ′
ū2,...,ūH

(r) is open in RH−1 as

Vū2,...,ūH (r) is open in RH−1 and V ′
ū2,...,ūH

(r) ⊂ Vū2,...,ūH (r). We prove that ρ(V ′
ū2,...,ūH

(r))

is open in U(r). Consider any open set V in RH such that projection of V into RH−1

is V ′
ū2,...,ūH

(r). Then it is clear that ρ(V ′
ū2,...,ūH

(r)) = V ∩ U(r). Hence ρ(V ′
ū2,...,ūH

(r)) is

open in U(r) and is a H − 1-dimensional manifold.

Proof of (ii): Let 〈ū2, . . . , ūH〉 ∈ P(r). Remark SB implies that
∗
Φr(ū

2, . . . , ūH) is not

empty. For all j ∈ J define the mapping Vjr and the set V ′
ū2,...,ūH

(r) as in the proof of part

(i) above. We show that, under Assumption SB2, Vjr (u2, . . . , uH) = V(u2, . . . , uH , r) for all

j ∈
∗
J ū2,...,ūH (r) and all 〈u2, . . . , uH〉 ∈ V ′

ū2,...,ūH
(r). (This would imply (A.5) if we choose

V̂ū2,...,ūH (r) to be equal to V ′
ū2,...,ūH

(r).) Suppose not. Then there exists ̃ ∈
∗
J ū2,...,ūH (r)

and 〈ũ2, . . . , ũH〉 ∈ V ′
ū2,...,ūH

(r) such that V ̃r(ũ2, . . . , ũH) < V(ũ2, . . . , ũH , r). On the other

hand, we know that Vjr (ū2, . . . , ūH) = V(ū2, . . . , ūH , r) for all j ∈
∗
J ū2,...,ūH (r). Consider

the line joining ū−1 := 〈ū2, . . . , ūH〉 and ũ−1 := 〈ũ2, . . . , ũH , 〉 with parameterised equation
u−1(t) = (ũ−1 − ū−1)t+ ū−1, where t is a scalar. Thus, u−1(0) = ū−1 and u−1(1) = ũ−1.
Define

∗
t := max{t ∈ [0, 1]

∣∣ V ̃r(u(t)−1)−V(u(t)−1, r) = 0 and V ̃r(u(t′)−1)−V(u(t′)−1, r) = 0 ∀t′ < t}.
(A.26)

57 Note, x1j(u2, . . . , uH) is the x1th component of 〈c, l〉 = gj
r,ū2,...,ūH(u2, . . . , uH) and a1 and A1 are the

respective components of r. Thus, Vjr (u2, . . . , uH) is the value of the objective function of Problem (4.1)
evaluated at the stationary point gj

r,ū2,...,ūH(u2, . . . , uH).
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Define ∗u−1 = u(
∗
t )−1 and 〈∗c ,

∗
l 〉 = g̃

r,ū2,...,ūH(∗u−1). Note that 〈∗c ,
∗
l 〉 ∈

∗
Φr(
∗u−1). The

continuity of the mappings V ̃r and V restricted to V ′
ū2,...,ūH

(r) (see proof of Part (i) above)

imply that there exists ε > 0 such that for all t ∈ (
∗
t ,
∗
t + ε), we have V ̃r(u(t)−1) −

V(u(t)−1, r) < 0. Let {tv} → ∗t with tv >
∗
t for all v. Then for all sequences {〈cv, lv〉}

such that 〈cv, lv〉 ∈
∗
Φr(u(tv)−1) for all v, we have {〈cv, lv〉} does not converge to 〈∗c ,

∗
l 〉.

This is because (1) for all big enough v (that is, for tv ∈ (
∗
t ,
∗
t + ε)), we have 〈cv, lv〉 6=

g̃
r,ū2,...,ūH(u(tv)−1) and (2) under Assumption SB1, the range of mapping g̃

r,ū2,...,ūH is

disjoint from the range of all other mappings gj
r,ū2,...,ūH such that j 6= ̃. But this implies

that
∗
Φr is not lower-hemi continuous. A contradiction arises.

Choose V̂ū2,...,ūH (r) to be equal to V ′
ū2,...,ūH

(r). For all j ∈
∗
J ū2,...,ūH (r), with an abuse

of notation, call the restriction of the mapping gj
ū2,...,ūH to V̂ū2,...,ūH (r) also as gj

ū2,...,ūH .

For all j ∈
∗
J ū2,...,ūH (r), define the mapping Ψj : Gr(gj

ū2,...,ūH) → RH−1 with image

Ψj(u2, . . . , uH ,gj
ū2,...,ūH(u2, . . . , uH)) = 〈u2, . . . , uH〉 for all 〈u2, . . . , uH〉 ∈ V̂ū2,...,ūH (r).

Clearly Ψj is a homeomorphism between Gr(gj
ū2,...,ūH) and V̂ū2,...,ūH (r). Define the map-

ping ζj = ρ ◦ Ψj , where the mapping ρ is as defined in the proof of part (i) above. Then

ζj defines the required homeomorphism between Gr(gj
ū2,...,ūH) and an open set in U(r)

for all j ∈
∗
J .

Proof of Lemma SB1:
(1) This is obvious when one notes that because of the normalization adopted, p1 = 1,

so that p̂− β̂
β1

= 0 is equivalent to p− β
β1

= 0.

(2) Suppose c is a production efficient stationary value of Problem (4.1). Then there
exists τ > 0 such that τp = β. The last set of equations in (5.3) implies that, for

every i 6= 0, ∇yi,yiF iφi = [µiγi −
∑

h ψ
hθhi − τ ]p. Premultiply both sides by φiT .

Then the first set of equations in (5.6) implies that

φiT∇yi,yiF iφi = [µiγi −
∑
h

ψhθhi − τ ]φiT p = 0. (A.27)

Since ∇yi,yiF i is positive definite for every i 6= 0, (A.27) is true if and only if φiT = 0

for every i 6= 0. Suppose φi = 0N for every i 6= 0. Then production efficiency of c
follows from the last two set of equations in (5.3).

(3) Suppose c is not production efficient and there exists i 6= 0 such that φi = 0N . Then

the last set of equations in (5.3) implies that [−
∑

h ψ
hθhi + µiγi]p = β, which is a

contradiction to c not being production eficient.

Proof of Lemma SB2: Similar to proof of Lemma SB1.
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Proof of Lemma SB3: First we claim that∑
h

ψh
∑
i6=0

θhi y
i +
∑
i6=0

γiφi = 0 (A.28)

This is true because multiplying the hth budget equation in (5.7) by ψh and adding over
all h gives ∑

h

ψhqT [xh − eh]−R
∑
h

ψh −
∑
h

ψh
∑
i6=0

θhi p
T yi = 0. (A.29)

Pre-multiplying the second set of equations in (5.7) by qT and employing the last set of
equations in (5.7) gives ∑

h

ψhqT [xh − eh] = 0. (A.30)

Employing (A.29), (A.30), and (5.8), we obtain∑
h

ψh
∑
i6=0

θhi p
T yi = 0. (A.31)

Multiplying the first set of equations in (5.6) by γi, adding these over all i, and employing
(A.31), we obtain ∑

h

ψh
∑
i6=0

θhi p
T yi +

∑
i6=0

γipTφi = 0 (A.32)

Pre-multiplying the second set of equations in (5.6) by p̂T we obtain∑
h

ψh
∑
i6=0

θhi p̂
T ŷi +

∑
i6=0

γip̂T φ̂i = 0 (A.33)

(A.32) minus (A.33) and noting that p1 = 1 under our normalization, we obtain∑
h

ψh
∑
i 6=0

θhi y
i
1 +

∑
i 6=0

γiφi1 = 0 (A.34)

The second set of equations in (5.6) and (A.34) imply (A.28).

Now suppose ψh = 0 for all h. Then (A.28) implies∑
i6=0

γiφi = 0N (A.35)

The last set of equations in (5.3) implies

−µiγip−∇yi,yiF iφi + β = 0, ∀i 6= 0 (A.36)

Premultiplying both sides of (A.36) by φiT we obtain

−µiγiφiT p− φiT∇yi,yiF iφi + φiTβ = 0, ∀i 6= 0 (A.37)
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Employing the first set of equations in (5.6) and multiplying (A.37) by γi and adding over
all i 6= 0, we obtain

−
∑
i 6=0

γiφiT∇yi,yiF iφi + β
∑
i6=0

γiφiT = 0, (A.38)

Since γi > 0 for all i 6= 0, ∇yi,yiF i is positive definite, and (A.35) holds, we find that

(A.38) is true if and only if φi = 0 for all i 6= 0. In an exactly similar manner we can

prove that κh = 0 for all h. Lemmas SB1 and SB2 imply that c is both consumption and
production efficient.

Suppose c is both a consumption and production efficient tax equilibrium. Lemmas
SB1 and SB2 imply that φi = 0 for all i 6= 0 and κh = 0 for all h. (5.2) implies that

[αhλh − ψh]q = β, ∀h (A.39)

(5.3) implies that

[
∑
h

ψhθhi − µiγi]p = −β, ∀i 6= 0. (A.40)

Given our assumption on the technologies of firms and the preferences of the consumers,
the second set of equations in (5.4) imply that β � 0. Hence (A.39) and (A.40) imply

that αhλh − ψh > 0 for all h and
∑

h ψ
hθhi − µiγi < 0 for all i 6= 0. Define ᾱh = αhλh−ψh

λh

and µ̄i =
∑
h ψ

hθhi −µ
iγi

γi
for all i 6= 0. Consider a set of new vector l̃ of Lagrange multipliers:

1. ψ̃h = 0 for all h
2. κ̃h = 0 for all h
3. φ̃i = 0 for all i 6= 0

4. α̃h = ᾱh

ᾱ1 for all h

5. µ̃i = µ̄i

ᾱ1 for all i 6= 0

6. δ̃ = δ
ᾱ1 , and

7. β̃ = β
ᾱ1 .

Then the new set of multipliers l̃ = 〈(˜̂α
h
), (ψ̃h), (κ̃h), (φ̃i)i6=0, δ̃, (µ̃

i)i 6=0, β̃〉 along with c

also solve equations (5.2) to (5.9), and hence solve Problem (4.1), i.e., ΓΓΓ(c, l̃, r, u2, . . . , uH) =
0. But, since the constraint qualification holds, and the Jacobian matrix of the constraints
of Problem (4.1) is full-row ranked, the theorem of Lagrange implies that the vector of
Lagrange multipliers is uniquely paired up with the vector of choice variables. Hence,

l = l̃. Hence, ψh = ψ̃h = 0 for all h.

Proof of Lemma SB4: For all h, Cl(X h) is compact and, for all i, Y i ∩ Cl(Nε′(ȳi)) is

compact.58 This implies that, for all 〈c, l〉 ∈ S, 〈(xh), (yi)〉 lies in a compact set. At a

tax equilibrium, we have p = γi∇yiF i for all i 6= 0. Further, p1 = 1 implies that, at a

58 For any set A ⊂ RN , Cl(A) is the closure of A in RN .
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tax equilibrium, γi = 1
∇
yi
1
F i

for all i 6= 0. From continuity of ∇yiF i in yi over a compact

domain Y i ∩ Cl(Nε′(ȳi)), it follows that, for all 〈c, l〉 ∈ S, we have 〈(γi)i 6=0, p〉 lies in a

compact set. Continuity of ∇xhUh in xh over a compact domain Cl(X h) implies that, for

all 〈c, l〉 ∈ S, we have λhq lies in a compact set for all h. It follows that, for all 〈c, l〉 ∈ S,

we have 〈(λh), q〉 lies in a compact set. From the consumer budget constraint at a tax

equilibrium, it follows that HR = q
∑

h[xh − eh] −
∑

i py
i. From the above arguments

and the boundedness of (eh) (which follows from the boundedness of R in our definition
of the class of economies E), all terms on the right-side of this equality lie in compact sets,
so for all 〈c, l〉 ∈ S, R lies in a compact set. The Lagrange multipliers are obtained at

the optimum by first taking the derivatives of the objective function U1() with respect to
the choice variables and then the derivatives of the choice variables with respect to the

parameters of Problem (4.1). Since these derivatives are continuous and bounded59 the
vector of Lagrange multipliers l also lies in a compact set whenever 〈c, l〉 ∈ S. So S lies

in a compact set. Noting that (1) for all h, Cl(X h) is compact, (2) the set Uh consists

of continuous functions which are obtained by perturbing uh in its first and second order
derivatives, and (3) R is bounded, it is clear that the utility profiles 〈u2, . . . , uH〉 that can

be attained in
∏
hX h) are bounded. Hence, S′ also lies in a compact set.

To prove Lemma SBPCI, we first prove Lemmas SBPCI.i to SBPCI.viii below by
employing Lemma FRR.

Lemma SBPCI.i: Γ̃ΓΓ
h

x t 0.

Proof: For every h, Uh(xh, ah, Ah) = uh(xh) + ahTxh + xhTAhxh. This implies that

∇xhU
h() = ∇xhu

h(xh) + ah + Ahxh and

∇xh,xhU
h() = ∇xh,xhu

h(xh) + Ah,
(A.41)

where60

Ah =



ah1,1 ah1,2 ah1,3 . . . ah1,N

ah1,2 ah2,2 ah2,3 . . . ah2,N

ah1,3 ah2,3 ah3,3 . . . ah3,N
...

...
ah1,N ah2,N ah3,N . . . ahN,N


and ah =


ah1
ah2
...
ahN

 . (A.42)

From Lemmas SB1 and SB2 it follows that if Γ̃ΓΓ(u1, . . . , uH , r, c, l) = 0 then c is a

production and consumption inefficient tax equilibrium and κh 6= 0 and φi 6= 0 for all h
and i 6= 0. Therefore, for every h there exists kh such that κhkh 6= 0. We now apply Lemma

59 As seen above, the choice variables are bounded due to the compactness of the sets Cl(X h) and
Yi ∩ Cl(Nε′(ȳi)) for all h and i)
60 Recall, Ah is a symmetric matrix and hence has N(N+1)

2 elements.
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FRR with T = 2, L1 being the first set of equations in Γ̃ΓΓ
h

x, and L2 being the second set

of equations in Γ̃ΓΓ
h

x. This implies that M1 = N and M2 = N . n1 = {ah1 , . . . , ahN} and

n2 = {ah1,kh , . . . , a
h
kh,kh

, ahkh,kh+1, . . . , a
h
kh,N
}.

∇n1L
1 = ∇ah,xhU

h = IN . (A.43)

This implies that ∇n1L
1 is full-row ranked and hence ∇L1 is full-row ranked.

∇n2L
2 =[

−∇ah1,kh
[Ahκh] . . . −∇ahkh,kh

[Ahκh] −∇ahkh,kh+1
[Ahκh] . . . −∇ahkh,kh+N

[Ahκh]
]

=



−κhkh 0 . . . 0 0 . . . 0

0 −κhkh . . . 0 0 . . . 0

...
...

−κh1 −κh2 . . . −κhkh −κhkh+1 . . . −κhN
0 0 . . . 0 −κhkh . . . 0

...
...

0 0 . . . 0 0 . . . −κhkh


.

(A.44)

By elementary row and column operations, it can be show that ∇n2L
2 can be converted

into an Identity matrix, and hence is full-row ranked. Further, note that ∇n1L
2 = 0.

Hence, the conclusions of Lemma FRR can be employed to show that ∇L, which is the

same as ∇Γ̃ΓΓ
h

x, is full-row ranked.

Lemma SBPCI.ii: Γ̃ΓΓ
i

y t 0.

Proof: For every i 6= 0, F i(yi, bi0, b
h, Bh) = bi0 + f i(yi) + biT yi + yiTBiyi. This implies

that
∇yiF i() = ∇yif i(yi) + bi +Biyi and

∇yi,yiF i() = ∇yi,yif i(yi) +Bi,
(A.45)

where

Bi =



bi1,1 bi1,2 bi1,3 . . . bi1,N

bi1,2 bi2,2 bi2,3 . . . bi2,N

bi1,3 bi2,3 bi3,3 . . . bi3,N
...

...
bi1,N bi2,N bi3,N . . . biN,N


and bi =


bi1
bi2
...
biN

 (A.46)
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From Lemmas SB1 and SB2 it follows that if Γ̃ΓΓ(u1, . . . , uH , r, c, l) = 0 then c is a

production and consumption inefficient tax equilibrium and κh 6= 0 and φi 6= 0 for all h
and i 6= 0. Therefore, for every i 6= 0 there exists ki such that φiki 6= 0. We now apply

Lemma FRR with T = 3, L1, L2, and L3 being the first, second, and third sets of equations

in Γ̃ΓΓ
i

y. This implies that M1 = 1, M2 = N, and M3 = N . n1 = {bi0}, n2 = {bi1, . . . , biN},
and n3 = {bi1,ki , . . . , b

i
ki,ki

, biki,ki+1, . . . , b
i
ki,N
}. Thus, M1 = 1, M2 = |n2| and M2 = |n3|.

∇n1L
1 = ∇bi0F

i = [1]. (A.47)

∇n2L
2 = ∇bi,yiF i = IN . (A.48)

This implies that ∇n1L
1 and ∇n2L

2 are full-row ranked and hence ∇L1 and ∇L2 are
full-row ranked.

∇n3L
3 =[

−∇bi1,ki
[Biφi] . . . −∇biki,ki

[Biφi] −∇biki,ki+1
[Biφi] . . . −∇biki,ki+N

[Biφi]
]

=



−φiki 0 . . . 0 0 . . . 0

0 −φiki . . . 0 0 . . . 0

...
...

−φi1 −φi2 . . . −φiki −φ
i
ki+1 . . . −φiN

0 0 . . . 0 −φiki . . . 0

...
...

0 0 . . . 0 0 . . . −φiki


.

(A.49)

By elementary row and column operations, it can be show that ∇n3L
3 is full-row

ranked, which will imply that ∇L3 is full-row ranked. Further, note that ∇ntLt+1 = 0
for t ∈ {1, 2}. Hence, the conclusions of Lemma FRR can be employed to show that ∇L,

which is the same as ∇Γ̃ΓΓ
i

y, is full-row ranked.

Lemma SBPCI.iii: Γ̃ΓΓ
0

y t 0.

Proof: Follow exactly similar steps as in the proof of Lemma SBPCI.ii for defining func-
tions L1 and L2, proving that ∇L1 and ∇L2 are full-row ranked. Note that ∇n1L

2 is zero.

It thus follows from Lemma FRR that ∇L, which is equal to ∇Γ̃ΓΓ
0

y, is full-row ranked.

Lemma SBPCI.iv: Γ̃ΓΓβββ t 0.
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Proof: Consider the following N ×N submatrix of ∇Γ̃ΓΓβββ .

∇y0Γ̃ΓΓβββ =


1 0 . . . 0
0 1 . . . 0
...
0 0 . . . 1

 . (A.50)

Thus, ∇y0Γ̃ΓΓβββ is full-row ranked. Hence, the matrix ∇Γ̃ΓΓβββ , which has N rows, is full-row

ranked.

Lemma SBPCI.v: Γ̃ΓΓp,γγγ t 0.

Proof: Note that for all i 6= 0, The second set of functions in Γ̃ΓΓp,γγγ are independent of

φi1. We apply Lemma FRR with T = 2, L1 and L2 being the first and the second set

of functions in Γ̃ΓΓp,γγγ . Hence, M1 = I and M2 = N − 1. Let n1 = {φ1
1, . . . , φ

I
1} and

n2 = {φ1
2, . . . , φ

1
N}. Recalling our normalization p1 = 1, we have

∇n1L
1 = II (A.51)

and
∇n2L

2 = γ1IN−2. (A.52)

Thus, both ∇n1L
1 and ∇n2L

2 are full-row ranked, and hence ∇L1 and ∇L2 are full-row

ranked. Further, since L2 is independent of n1, we have ∇n1L
2 is zero. Conclusions of

Lemma FRR follow, and ∇L, which is equal to ∇Γ̃ΓΓp,γγγ , is full-row ranked.

Lemma SBPCI.vi: Γ̃ΓΓ
p,λλλ,ψψψ t 0.

Proof: From Lemmas SB1 and SB2 it follows that if Γ̃ΓΓ(u1, . . . , uH , r, c, l) = 0 then c is

a production and consumption inefficient tax equilibrium and κh 6= 0 and φi 6= 0 for all

h and i 6= 0. Lemma SB3 implies that there exists h′ such that ψh
′ 6= 0. Pick a firm

i 6= 0. We will apply Lemma FRR. For this purpose T = 3 and we define L1, L2, and L3

to be the first, second, and third set of functions in Γ̃ΓΓ
p,λλλ,ψψψ, respectively. Define the sets

n1 = {θ1
i , . . . , θ

H
i }, n2 = {eh′1 , . . . , e

h′
N}, and n3 = {κ1

1, . . . , κ
H
1 }. Then

∇n1L
1 = −pT yiIH , (A.53)

∇n2L
2 = ψh

′
IN , (A.54)

and
∇n3L

3 = q1IH . (A.55)
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Clearly, all the matrices above are full-row ranked.61 Hence, ∇L1, ∇L2, and ∇L3 are
full-row ranked. Further, ∇ntL

t+1 = 0 for all t ∈ {1, 2}. Conclusions of Lemma FRR

follow, and ∇L, which is equal to Γ̃ΓΓ
p,λλλ,ψψψ, is full-row ranked.

Lemma SBPCI.vii: Γ̃ΓΓR t 0.

Proof: This follows from the fact that ∇ψhΓ̃ΓΓR = 1 for all h.

Lemma SBPCI.viii: Γ̃ΓΓu t 0.

Proof: Consider the [H − 1]× [H − 1] submatrix of Γ̃ΓΓu obtained from the derivatives of

Γ̃ΓΓu with respect to u2, . . . , uH . This is clearly the identity matrix IH−1. Thus, ∇Γ̃ΓΓu is
full-row ranked.

Proof of Lemma SBPCI: We will employ Lemmas SBPCI.i to SBPCI.viii and Lemma

FRR. Suppose Γ̃ΓΓ(u1, . . . , uH , r, c, l) = 0. We prove that ∇Γ̃ΓΓ(u1, . . . , uH , r, c, l) is full-row
ranked. In order to apply Lemma FRR, let T = H + I + 6. Define

L1() = Γ̃ΓΓ
1

x()
...

LH() = Γ̃ΓΓ
H

x ()

LH+1() = Γ̃ΓΓ
1

y()
...

LH+I() = Γ̃ΓΓ
I

y()

LH+I+1() = Γ̃ΓΓ
0

y()

LH+I+2() = Γ̃ΓΓβββ()

LH+I+3() = Γ̃ΓΓp,γγγ()

LH+I+4() = Γ̃ΓΓ
q,λλλ,ψψψ()

LH+I+5() = Γ̃ΓΓR()

LH+I+6() = Γ̃ΓΓu()



. (A.56)

Let nh = {ah, Ah} for h = 1, . . . , H, nH+i = {bi, Bi} for i 6= 0, nH+I+1 = {b00, b0, B0},
nH+I+2 = {y0}, nH+I+3 = {φ1

1, . . . , φ
I
1, φ

1
2, . . . , φ

1
N}, nH+I+4 = {θ1

i , . . . , θ
H
i , e

h′
1 , . . . , e

h′
N ,

κ1
1, . . . , κ

H
1 }, nH+I+5 = {ψh}, and nH+I+6 = {u2, . . . , uH}. Lemmas SBPCI.i to SBPCI.viii

show that∇ntLt is full-row ranked for t = 1, . . . , H+I+6. Further, it can be easily verified

61 Note that, for all i 6= 0, given our regularity assumptions on the technology Y i, in the construction of
our class of economies E , [ can be picked so that the perturbations of the zeroth order derivatives of the
production functions can be restricted to those that imply that all private firms continue to make positive
profits in the new economies.
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that ∇ntL
t+1 is zero for all t = 1, . . . , H + I + 5. Conclusions of Lemma FRR follow, and

∇L, which is equal to ∇Γ̃ΓΓ, is full-row ranked. Hence, Γ̃ΓΓ t 0.

Proof of Theorem SBPC1: Let r ∈ R̃ and let ū = 〈ū1, . . . , ūH〉 ∈ Ũ(r) ⊂ U(r). We

show that there exists a set V , which is open in U(r) and contains ū, such that V ∩ Ũ(r)

is homeomorphic to an open set in RH−1.

Since ū ∈ Ũ(r) ⊂ U(r), it follows that there exists 〈c̄, l̄〉 ∈ C ×Rnl such that 〈c̄, l̄〉 ∈
∗
Φr(ū

2, . . . , ūH). From Assumption SB1 (b), this implies that there exists j ∈
∗
J ū2,...,ūH (r)

such that gj
r,ū2,...,ūH(ū2, . . . , ūH) = 〈c̄, l̄〉. Define the set V̂ j

ū2,...,ūH
(r) as in Theorem SB and

the set Oj
ū2,...,ūH

(r) as in Assumption SB1 (b).

From Lemma SBPCI and Remark SBPCI we have Γ̃ΓΓr t 0 and Γ̃ΓΓ
−1

r (0), which we

denote by Γ̃(r), is a smooth manifold of dimension H − 1. 〈ū2, . . . , ūH , c̄, l̄〉 ∈ Γ̃(r). Hence

there exists an open set O in P(r) × C × Rnl such that O ∩ Γ̃(r) is diffeomorphic to an

open set in RH−1.

Define Zj = V̂ j
ū2,...,ūH

(r)×Oj
ū2,...,ūH

(r). As a Cartesian product of two open sets, Zj is

open in P(r)×C×Rnl . As an intersection of two open sets, Zj∩O is open in P(r)×C×Rnl .

Moreover, Assumption SB1 (b) implies that Zj ∩ O ∩ Γ(r) = Gr(gj
r,ū2,...,ūH) ∩ Zj ∩ O.

Define the homeomorphism ζ as in Theorem SB. Define V := ζ(Zj ∩ O ∩ Γ(r)). Then,
from Theorem SB, V is an open subset of U(r).

Since Γ̃(r) ⊂ Γ(r), we have Zj ∩O∩ Γ̃(r) ⊂ Gr(gj
r,ū2,...,ūH)∩Zj ∩O = Zj ∩O∩Γ(r).

Further, since Γ̃(r) is a H − 1-dimensional manifold, we have Zj ∩ O ∩ Γ̃(r) is a H − 1-

dimensional submanifold of Zj ∩O∩Γ(r). Hence, ζ(Zj ∩O∩ Γ̃(r)) is a H−1-dimensional

submanifold of V and, clearly, ζ(Zj ∩O ∩ Γ̃(r)) = V ∩ Ũ(r).

Proof of Lemma SBPE1: We need to show that for all 〈r, (uh)h 6=1, c, l〉 ∈ A, the

Jacobian ∇¯̄ΓΓΓ(r, (uh)h 6=1, c, l) is full-row ranked.

Claim 1. For all h, ∇¯̄ΓΓΓ
h

x, ∇¯̄ΓΓΓ
0

y, ∇¯̄ΓΓΓβββ , ∇¯̄ΓΓΓR, and ∇¯̄ΓΓΓu are full-row ranked: Proofs are the

same as in Lemmas SBPCI.i, SBPCI.iii, SBPCI.iv, SBPCI.vii, and SBPCI.viii.

Claim 2. For all i 6= 0, ∇¯̄ΓΓΓ
i

y is full-row ranked: Lemma FRR can be applied with T =

3, L1, L2, and L3 being the first, second, and the third sets of equations in ∇¯̄ΓΓΓ
i

y. n1 =

{bi0}, n2 = {bi}, and n3 = {µi}.
Claim 3. ∇¯̄ΓΓΓ

q,λλλ,ψψψ is full-row ranked: There exists i such that
∑

h ψ
hθhi 6= 0 and since we

are not at a first-best, Lemma SB3 implies that there exists h such that ψh 6= 0. Without

loss of generality, assume that i = 1 and h = 1. We extract the submatrix of ∇¯̄ΓΓΓ
q,λλλ,ψψψ
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obtained by differentiating ¯̄ΓΓΓ
q,λλλ,ψψψ with respect to y1, e1, κ1

1, . . . , κ
H
1 , and θ1

1, . . . , θ
H
1 . With

no loss of generality assume N = 3 and H = 2. This yields the following matrix.[
∇y1

¯̄ΓΓΓ
q,λλλ,ψψψ ∇κ1

1

¯̄ΓΓΓ
q,λλλ,ψψψ ∇κ2

1

¯̄ΓΓΓ
q,λλλ,ψψψ ∇e1 ¯̄ΓΓΓ

q,λλλ,ψψψ ∇θ1
1

¯̄ΓΓΓ
q,λλλ,ψψψ ∇θ2

1

¯̄ΓΓΓ
q,λλλ,ψψψ

]
= (A.57)

0
∑

h ψ
hθh1 0 0 0 0 0 0 ψ1y1

2 ψ2y1
2

0 0
∑

h ψ
hθh1 0 0 0 0 0 ψ1y1

3 ψ2y1
3

0 0 0 q1 0 0 0 0 0 0
0 0 0 0 q1 0 0 0 0 0
0 0 0 λ1 λ2 ψ1 0 0 0 0
0 0 0 0 0 0 ψ1 0 0 0
0 0 0 0 0 0 0 ψ1 0 0

−θ1
1p1 −θ1

1p2 −θ1
1p3 0 0 −q1 −q2 −q3 −pT y1 0

−θ2
1p1 −θ2

1p2 −θ2
1p3 0 0 0 0 0 0 −pT y1


=: J

(A.58)

Define a 10× 9 matrix of perturbations Z, whose kth column has the structure

zk =



dy1
1

dy1
2

dy1
3

dκ1
1

dκ2
1

de1
1

de1
2

de1
3

dθ1
1

dθ2
1


. (A.59)

Define

z1 =



− p2

p1
∑
h ψ

hθh1
1∑

h ψ
hθh1

0
0
0
0
0
0
0
0


, z2 =



− p3

p1
∑
h ψ

hθh1
0
1∑

h ψ
hθh1

0
0
0
0
0
0
0


, z3 =



0
0
0
1
q1
0

− λ1

q1ψ1

0
0
0
0


, z4 =



0
0
0
0
1
q1
0

− λ2

q1ψ1

0
0
0


, (A.60)
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z5 =



0
0
0
0
0
1
ψ1

0
0

− q1
ψ1pT y1

0


, z6 =



0
0
0
0
0
0
1
ψ1

0
− q1
ψ1pT y1

0


, z7 =



0
0
0
0
0
0
0
1
ψ1

− q1
ψ1pT y1

0


, (A.61)

z8 =



dy1
1 = −p2

p1
dy1

2

dy1
2 =

−ψ1y1
2

pT y1
∑
h ψ

hθh1
dθ1

1

0
0
0
0
0
0

dθ1
1 = −1

pT y1

0



, and z9 =



dy1
1 = −p3

p1
dy1

3

0

dy1
3 =

−ψ1y1
3

pT y1
∑
h ψ

hθh1
dθ2

1

0
0
0
0
0
0
0

dθ2
1 = −1

pT y1



. (A.62)

Thus, JZ = I9×9. Which implies that J is full-row ranked. In the general case, one can
define a 2(N + H) × (2N − 1 + 2H) matrix of perturbations Z and show that JZ is an

identity matrix of dimension 2N − 1 + 2H. This implies that ∇¯̄ΓΓΓ
q,λλλ,ψψψ is full-row ranked.

Claim 4. ∇¯̄ΓΓΓ∗ and∇¯̄ΓΓΓφφφ are full-row ranked: True as∇p̂ ¯̄ΓΓΓ∗ = I(N−1)×(N−1) and∇(φi)i6=0

¯̄ΓΓΓφφφ =

IIN×IN
Claim 5. ¯̄ΓΓΓ t 0: We apply Lemma FRR with T = H + I + 7. The functions L1, . . . , LH

correspond to ¯̄ΓΓΓ
1

x, . . . ,
¯̄ΓΓΓ

H

x , LH+i corresponds to ¯̄ΓΓΓ
i

y, LH+I+2 corresponds to ¯̄ΓΓΓβββ , LH+3

corresponds to ¯̄ΓΓΓ
q,λλλ,ψψψ, LH+4 corresponds to ¯̄ΓΓΓR, LH+5 corresponds to ¯̄ΓΓΓu, LH+6 cor-

responds to ¯̄ΓΓΓ∗, and LH+7 corresponds to ¯̄ΓΓΓφφφ. Define nh = {ah, Ah}, ∀h = 1, . . . , H,

nH+i = {µi, (bi0), (bi)i} for i 6= 0, nH+I+1 = {b00, b0}, nH+I+2 = {y0}, nH+I+3 =

{e1, y1, (κh1)h, (θ
h
1 )h}, nH+I+4 = {ψ1}, nH+I+5 = {u2, . . . , uH}, nH+I+6 = {p̂} and

nH+I+7 = {(φi)i6=0}. Given Claims 1 to 4, it can be verified that these definitions satisfy
all the assumptions of Lemma FRR and the conclusions of the lemma follow.

Thus, ∇¯̄ΓΓΓ is full-row ranked whenever ¯̄ΓΓΓ((uh)h 6=1, r, c, l) = 0, that is, whenever

〈r, (uh)h 6=1, c, l〉 ∈ A.
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Proof of Lemma SBPE2: We need to show that for all 〈r, (uh)h 6=1, c, l〉 ∈ B, the

Jacobian ∇ ¯̄̄
ΓΓΓ(r, (uh)h 6=1, c, l) is full-row ranked.

Claim 1. For all h, ∇¯̄̄
ΓΓΓ

h

x, ∇¯̄̄
ΓΓΓ

0

y, ∇ ¯̄̄
ΓΓΓβββ , ∇ ¯̄̄

ΓΓΓR, ∇ ¯̄̄
ΓΓΓu, ∇¯̄̄

ΓΓΓ
i

y, ∇ ¯̄̄
ΓΓΓ∗, and ∇ ¯̄̄

ΓΓΓφφφ are full-row

ranked: Proof is the same as in Lemmas SBPCI.i, SBPCI.iii, SBPCI.vii, and SBPCI.viii
and Claims 2 and 4 in the proof of Lemma SBPE.1 above.

Claim 2. ∇ ¯̄̄
ΓΓΓ

q,λλλ,ψψψ is full-row ranked: Since, we are not at a first-best, Lemma SB3 implies

that there exists h′ such that ψh
′ 6= 0. We apply Lemma FFR. Let T = 4 and define the

functions L1, L2, L3 and L4 to be the first, second, third, and fourth set of functions in
¯̄̄
ΓΓΓ

q,λλλ,ψψψ. Define n1 = {e1}, n2 = {κh1 , . . . , κhN}, n3 = {e2
1, . . . , e

H
N}, and n4 = {θ1

h′ , . . . , θ
I
h′}.

It can be verified easily that these choices will satisfy all the assumptions in Lemma FRR
and the conclusions of the this lemma will follow.

Claim 3. ∇ ¯̄̄
ΓΓΓ is full-row ranked: Lemma FRR can be applied, with T = H+I+7. L1 to LH

correspond to functions
¯̄̄
ΓΓΓ

1

x to
¯̄̄
ΓΓΓ

H

x , respectively, LH+i for i 6= 0 corresponds to
¯̄̄
ΓΓΓ

i

y, LH+I+1

to LH+I+7 correspond to ,
¯̄̄
ΓΓΓ

0

y,
¯̄̄
ΓΓΓβββ ,

¯̄̄
ΓΓΓR,

¯̄̄
ΓΓΓ

q,λλλ,ψψψ,
¯̄̄
ΓΓΓu,

¯̄̄
ΓΓΓ∗, and

¯̄̄
ΓΓΓφφφ, respectively. Define nh =

{ah, Ah} for h = 1, . . . , H, nH+i = {β, (bi0, bi)i6=0} for i 6= 0, nH+I+1 = {b00, b0}, nH+I+2 =

{y0}, nH+I+3 = {ψh}, nH+I+4 = {e1, κ1
1, . . . , κ

H
1 , e

2
1, . . . , e

H
1 , θ

h′
1 , . . . θ

h′
I }, nH+I+5 =

{u2, . . . , uH}, nH+I+6 = {p̂}, and nH+I+7 = {(φi)i 6=0}. It can be verified that all the
assumptions of Lemma FRR hold for these choices. Hence, conclusions of the lemma

follow and ∇L, which is the same as ∇ ¯̄̄
ΓΓΓ, is full-row ranked.
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