
 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap 

 

This paper is made available online in accordance with 
publisher policies. Please scroll down to view the document 
itself. Please refer to the repository record for this item and our 
policy information available from the repository home page for 
further information.  

To see the final version of this paper please visit the publisher’s website. 
Access to the published version may require a subscription. 

 

Author(s): E. Göhler, J. Wilms, and R. Staubert 

Article Title: XMM-Newton observation of the anomalous X-ray pulsar 
4U 0142+61 
Year of publication: 2005 
Link to published article:  
http://dx.doi.org/10.1051/0004-6361:20042101 
Publisher statement:  © ESO 2005. E. Göhler et al. (2005). XMM-
Newton observation of the anomalous X-ray pulsar 4U 0142+61. 
Astronomy & Astrophysics, Vol.433(3), pp.1079-1083 

 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/46005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/wrap


A&A 433, 1079–1083 (2005)
DOI: 10.1051/0004-6361:20042101
c© ESO 2005

Astronomy
&

Astrophysics

XMM-Newton observation of the anomalous
X-ray pulsar 4U 0142+61

E. Göhler1, J. Wilms2, and R. Staubert1

1 Institut für Astronomie and Astrophysik, Abt. Astronomie, University of Tübingen, 72076 Tübingen, Germany
e-mail: goehler@astro.uni-tuebingen.de

2 Department of Physics, University of Warwick, Coventry CV4 7AL, UK

Received 30 September 2004 / Accepted 17 December 2004

Abstract. We present results of an observation of the anomalous X-ray pulsar 4U 0142+61 with the EPIC cameras on
XMM-Newton performed on 2003 January 24. The pulse phase averaged spectrum can be best described by the sum of a
black body with a temperature of kTBB = 0.395(5) keV and a power law with photon index Γ = 3.62(5). The unabsorbed
2−10 keV flux is ∼7.2 × 10−11 erg s−1 cm−2. No evidence for additional spectral features such as cyclotron lines is present.
These results are consistent with those from an earlier Chandra observation in 2001 May. Phase resolved spectroscopy over
the 8.6882(2) s period (MJD 52 663.93) shows clear variations with pulse phase of Γ, while kTBB shows a small variation of
∼12%. We confirm earlier conclusions by Özel (2001, ApJ, 563, 276) that the emission from AXPs is more likely to originate
from neutron stars with one single and magnetically active region on the neutron star. The significantly different behavior of the
soft and hard spectral components with pulse phase, however, cannot be fully reconciled with the present magnetar emission
models.
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1. Introduction

4U 0142+61 is a member of the small group of anomalous
X-ray pulsars (AXPs) which are characterized by spin periods
in the range of 6−12 s, associated with a relatively stable long
term spin down (Gavriil & Kaspi 2002), very soft X-ray spectra
well modeled by blackbody plus power law components with
Γ ∼ 3, a X-ray luminosity of ∼1034–1036 erg s−1, low in com-
parison to High Mass X-ray Binaries (HMXB) (Israel et al.
2002), and very faint optical counterparts. It is generally as-
sumed that these objects are isolated neutron stars as no binary
companion for any of these objects has been found up to now.

The X-ray luminosity of AXPs exceeds the energy avail-
able from the spin down of the neutron star, so some additional
energy source is needed (van Paradijs et al. 1995). There are
mainly two classes of models trying to explain the source of the
missing energy. One class proposes that the AXPs are powered
by accretion, either from debris of a disrupted HMXB after a
common envelope phase (van Paradijs et al. 1995) or from a
disk formed by the fallback material from a supernova explo-
sion (Chatterjee & Hernquist 2000). The other class of models
assumes a very strong magnetic field which can explain the spin
down as magnetic dipole radiation while the X-ray luminosity
is supplied by either the decay of the magnetic field (Thompson
& Duncan 1995) or the cooling of the neutron star (Heyl &
Hernquist 1997).

The brightest of the small sample of anomalous X-ray
pulsars is 4U 0142+61, a source detected by Uhuru, which

had its nature established during an EXOSAT campaign in
which a 8.7 s periodic variation was found (Israel et al. 1994).
Subsequent X-ray observations manifested features usually at-
tributed to AXPs such as a spectrum which is best fit by a
0.386(5) keV black body plus a power law with photon index
Γ = 3.67(9), White et al. (1996). Long term period changes
were discovered in subsequent ASCA and RXTE observations
(Paul et al. 2000; Gavriil & Kaspi 2002), with the latter re-
vealing a period of P = 8.68832877(3)s and a period change
of Ṗ = 2.02(25) × 10−12 s s−1. Finally, an optical counterpart
was detected which showed strong periodic variation (Kern &
Martin 2002, see also Hulleman et al. 2004). A recent observa-
tion of 4U 0142+61 by Chandra confirmed the association of
this optical counterpart with the X-ray source and also resulted
in a further improvement of the X-ray spectral results (Patel
et al. 2003; Juett et al. 2002).

In this Paper we report an observation of 4U 0142+61
with XMM-Newton. In Sect. 2 we describe the observation and
data reduction. Lightcurve analysis and pulse phase averaged
spectral analysis, presented in Sects. 3 and 4, confirm earlier
Chandra and RXTE results. Phase resolved spectroscopy shows
a variation of two different spectral components which are pre-
sented in Sect. 5 and discussed in Sect. 6.

2. Observations with XMM-Newton
The observation of 4U 0142+61 with XMM-Newton was per-
formed on 2003 January 24 (XMM-Newton Revolution 573).
This observation has an exposure time of ∼4.2 ks with the
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EPIC-pn camera in small window mode and ∼5.8 ks with
both EPIC-MOS cameras in fast timing mode. The EPIC-pn
detector is a back-illuminated charge coupled device (CCD)
using 64 × 64 pixels in small window mode, covering a
∼4′ × 4′ area (Strüder et al. 2001). The two MOS cameras are
front-illuminated CCDs detectors (Turner et al. 2001). In their
timing mode, spatial information is preserved only along the
x-axis of the detector, but events are registered with a higher
time resolution than in the EPIC-MOS imaging modes.

Standard data processing was performed with the
XMM-Newton Scientific Analysis Software, version 5.4.1. For
the EPIC-pn the source region was taken to be a circle of
radius ∼100′′ around the point source. The background was
measured in two rectangular regions arranged at the corners
of the readout window. For the MOS cameras, events in the
raw x interval 280 . . .330 were chosen for source events, back-
ground events were taken from the intervals 260 . . .279 and
331 . . .345. No background flares were present during this ob-
servation. We checked the EPIC-pn data for evidence for pileup
and found no indication for pattern pileup or pileup in diagonal
pixel patterns at energies above 0.3 keV. For the MOS1/2 data
pattern pileup is negligible in timing mode (Ehle et al. 2003).

We note that a second earlier XMM-Newton observation of
4U 0142+61 exists, which was performed on 2002 February 13
(revolution 399). For this 3.4 ks long observation, only data
from the EPIC-pn cameras are available (the MOS cam-
eras were switched off) and the background was a factor
of 10 higher than in the Rev. 573 observation, such that we
decided to not use these data here.

The position of 4U 0142+61 was estimated by fitting a
Gaussian to the point-spread function of the EPIC-pn data
in both observations. The position obtained is αJ2000.0 =

01h46m22.′′3, δJ2000.0 = 61◦45′02.′′5, which is consistent within
the XMM 2.′′2 error circle with the more accurate Chandra po-
sition of α = 01h46m22.′′42, δ = 61◦45′02.′′8 (positional uncer-
tainty ∼0.′′7; Patel et al. 2003).

3. Timing analysis

For all instruments the background subtracted lightcurve was
searched for periods in the 8.6 s domain using epoch folding
(Leahy et al. 1983). Combining the results of the period search
from all instruments of Rev. 573 (Epoch: MJD 52 663.93) we
found a period of P = 8.6882(2) s. This period agrees with
the RXTE data of Gavriil & Kaspi (2002) which predict P =
8.68849(1) s, assuming a constant Ṗ = 2.02(25)× 10−12 s s−1.

We estimate the uncertainty of the XMM-Newton period
using a Monte-Carlo simulation: a synthetic lightcurve was
constructed by taking the time stamps as in the measured
light curve and associate them with the flux of the folded
pulse profile at the corresponding phase (for the best period
and ephemeris found from the observed data). From this tem-
plate 1000 simulated lightcurves were constructed assuming
the mean pulse profile and then randomizing the flux values
using the appropriate Poisson distribution. For all simulated
lightcurves the best periods were determined. The standard de-
viation of the distribution of those periods was taken as the
uncertainty of the period found in the observed data.
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Fig. 1. Pulse profile of 4U 0142+61 in the energy range 0.3−10 keV.
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Fig. 2. Profile of the combined lightcurves in the energy ranges
0.3−1.3 keV, 1.3−2.5 keV, and 2.5−10 keV. The peak-to-peak pulse
fractions are: 8.6%±1.3% (0.3−1.3 keV), 9.1%±0.9% (1.3−2.5 keV),
and 9.6% ± 2.0% (2.5−10 keV). The dash dotted line is the result of
the fit of a Gaussian distribution to the peak at phase ∼0.9. Here all
data from EPIC-pn and MOS-1/2 from Rev. 573 were used.

For further timing and profile analysis we used a period of
8.68823 s and an epoch of MJD 50 814. To compute pulse pro-
files all single events from all three EPIC detectors are back-
ground subtracted and added. Multiple events were not taken
into account. The pulse profile in the energy range 0.3−10 keV
is shown in Fig. 1. Its peak-to-peak pulsed fraction, defined as
(Fmax − Fmin)/(Fmax + Fmin), is 7.7% ± 0.9%.

In Fig. 2 we display the pulse profile and give the peak-
to-peak pulse fractions for several energy bands. As was first
noted by White et al. (1996) the pulse is double peaked at low
energies. At higher energies the main pulse remains as a broad
single peak centered at phase ∼0.9, while the secondary peak
weakens and changes into a double peaked feature.

In our data we observe a slight phase shift of the main
peak. Fitting a Gaussian distribution to this peak yields a
centered phase value of 0.878(9) (0.3−1.3 keV), 0.891(5)
(1.3−2.5 keV) and 0.92(1) (2.5−10 keV). The peak-to-peak
pulsed fraction is not significantly energy dependent, with
measured pulsed fractions of 8.6% ± 1.3% (0.3−1.3 keV),
9.1% ± 0.9% (1.3−2.5 keV), and 9.6% ± 2.0% (2.5−10 keV).
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Table 1. Phase averaged spectral fits. Best fit parameters for an absorbed power law (PL) and a bremsstrahlung (BREMS) continuum, with
and without an additional blackbody (BB) component. The parameters are the equivalent hydrogen column density, NH, the power-law photon
index, Γ, and its normalization at 1 keV in units of 10−1 Photons keV−1 cm−2 s−1, the temperature of the bremsstrahlung spectrum, kTbrems, and
its 2−10 keV unabsorbed component flux contribution, Fbrems, in 10−11 erg s−1 cm−2 for the EPIC-pn camera, the temperature of the black body,
kTbb, and the radius of the black body, Rbb, assuming a distance of 10 kpc. MOS 1/2 spectra are scaled with constants S MOS1 and S MOS2 with
respect to the EPIC-pn. All error bars are at the 90% level for one interesting parameter and expressed in parentheses in units of the last digit
shown.

NH Γ NΓ kTbrems Fbrems kTbb Rbb S MOS1 S MOS2 χ2/d.o.f.

Model (1022 cm−2) (keV) (keV) (km)

PL 1.2(5) 3.9(1) 0.39(4) – – – – 0.84(4) 0.85(4) 3039/1144

BREMS 0.82(4) – – 1.09(5) 6.79(2) – – 0.85(4) 0.85(4) 1721/1144

BB+BREMS 0.68(8) – – 1.7(4) 4.5(2) 0.35(3) 835(27) 0.85(4) 0.85(4) 1299/1142

BB+PL 0.96(2) 3.62(5) 0.155(8) – – 0.395(5) 428(40) 0.85(4) 0.85(4) 1367/1142

4. Spectra

For spectral analysis we used the single event data from
the EPIC-pn camera and the MOS cameras of Rev. 573.
Simultaneous fits were made with XSPEC version 11.2.0bl in
the energy ranges of 0.5−9.5 keV (pn) and 0.5−8 keV (MOS),
using a multiplicative constant to take into account the flux cal-
ibration uncertainty of the MOS cameras with respect to the
EPIC-pn. To allow χ2 analysis the channels were rebinned to
contain at least 50 counts per bin.

Several models were used to fit the phase averaged spectra:
single component models (blackbody, bremsstrahlung, power
law) and combinations of those, including the classical combi-
nation of a black body component plus a power law. All models
include absorption due to the interstellar medium with hydro-
gen equivalent column density NH (using the XSPEC model
phabs). Fit results of the different models are shown in Table 1.

Single component models gave unacceptable results. The
best fit is obtained for the black body plus bremsstrahlung
model. The blackbody plus power law model (Fig. 3) gave al-
most the same χ2 but had a smoother residual at higher ener-
gies, and we will use this model in our further discussion. The
residuals of this model show no indication for any line in the
energy band covered by our observation. Using this model
the unabsorbed 2−10 keV flux is 7.02× 10−11 erg s−1 cm−2. No
further spectral features such as cyclotron lines were found in
the spectral range of 0.5−10 keV.

Extending the fit to energies below 0.5 keV for the EPIC-pn
data alone and refitting yields a deviation of ∼30% between
the data and the model in 0.3−0.5 keV band. This deviation
is larger than allowed by the uncertainties of the calibration
(Kirsch 2003). Phase resolved spectroscopy shows this excess
of the model in all phases (see Sect. 5), i.e., the excess flux
is not caused by a possible continuum variability with pulse
phase. The feature also is present for different absorption mod-
els and abundances and is also present in the double event
spectrum of the EPIC-pn camera. We assume that the residual
either comes from a higher galactic absorption than the absorp-
tion model or from unresolved calibration issues in this energy
band. For the remainder of this paper, therefore, we will restrict
ourselves to the energy band above 0.5 keV.
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Fig. 3. Spectrum and residuals for the blackbody plus power law
model.

5. Phase resolved spectroscopy

To search for spectral variations with pulse phase we split the
data into ten phase bins, rebin the spectra to contain at least
25 counts per bin, and model the EPIC data of each phase bin
with a black body plus power law model. Figure 4a shows the
resulting pulse profile.

In a first step, all parameters were allowed to freely vary
with pulse phase. We found that the column density NH did
not show significant variation. To test this constancy we fit the
subset of phase bins with the highest flux, constraining NH to be
the same for these bins. In a second iteration, NH was allowed
to vary with pulse phase. The F-test shows a probability of 71%
that NH does not vary. Therefore we considered NH to be a
constant parameter with a value of NH = 0.91 × 1022 cm−2 in
our subsequent analysis.

The results of our spectral analysis are shown in Figs. 4b
and c as a function of pulse phase. The blackbody temperature
is virtually constant, while the photon index shows a clear pulse
phase dependence. Using the unabsorbed spectrum, we further-
more derive the contribution of the blackbody and the power
law component to the total 0.5−10 keV flux as a function of
pulse phase. The result is shown in Figs. 4d and e. Uncertainties
are computed using a Monte-Carlo approach randomizing the
input data sets. We compare these results with AXP emission
models in the following section.
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Fig. 4. Results of phase resolved spectroscopy for a blackbody plus
power law model. Shown are a) total EPIC count rate, b) blackbody
temperature, c) photon index, d) blackbody flux, and e) flux of the
power law. The 0.5−10 keV fluxes are unabsorbed fluxes and are in
units of 10−11 erg cm−2 s−1.

6. Discussion

In this paper we have shown that the comparatively short obser-
vation of 4U 0142+61 with XMM-Newton confirms the spec-
tral and timing parameters from earlier observations. The best
fit models are the standard black body plus power law and the
black body plus bremsstrahlung model. The period agrees well
with the high precision value derived from the long term timing
campaign with RXTE (Gavriil & Kaspi 2002).

The flux of 7.02 × 10−11 erg s−1 cm−2 is slightly lower than
the flux reported in the ASCA observations of Paul et al. (2000),
ranging from 9 . . .16 × 10−11 erg s−1 cm−2. We consider this
discrepancy as negligible because the authors of the ASCA ob-
servation note the possibility of a flux overestimation due to
limited spectral resolution.

Pulse phase resolved spectroscopy allowed us to disentan-
gle the different phase dependencies of the relevant parame-
ters (Fig. 4): the blackbody temperature is constant with pulse
phase, although taken at face value there is a ∼12% variation
with phase and a slightly lower temperature at phase ∼0.3. The
flux of both, black body and power law, follows the double
peaked pulse profile (Fig. 4a), although but for the powerlaw
flux variation the peak at phase ∼0.5 is suppressed. This is

reasonable if one takes into account the hardening of the power
law at phase ∼0.5.

As has been pointed out, e.g., by Özel (2001, 2002), ob-
served pulse profile variations in AXPs can be used to test
emission models for magnetars. These models predict a fan
beam plus pencil beam emission pattern and a resulting pulse
profile variation that is strongly dependent on the characteris-
tics of the emitting plasma. The observed pulsed fraction de-
pends on the angle between the magnetic field axis and the ro-
tation axis of the neutron star as well as on the angle between
the observer’s line of sight and the rotational axis. As shown
by Özel et al. (2001), the high pulsed fractions of most AXPs
argue for the radiation to come from a single emitting region on
the neutron star, e.g., caused by a region of enhanced magnetic
activity on the neutron star (Özel 2002), although the parame-
ters of 4U 0142+61 are still barely compatible with two emis-
sion regions (Özel et al. 2001). We can confirm this conclusion
of a single emission region from the XMM-Newton data, which
shows only a small change of the pulsed fraction with energy,
which is in contrast to the strong energy dependence expected
from models with two antipodal emission regions.

Using phase resolved X-ray spectroscopy, it is in principle
possible to further constrain these emission models. In terms
of the empirical spectral model applied here, magnetar models
predict that the blackbody and powerlaw components should
be coupled through resonant Compton heating of photons scat-
tered at cyclotron resonances (see also Thompson et al. 2002).
This coupling results in pulse profiles which are predicted to
have essentially the same shape over the 1−10 keV energy
range. In our observations, this predicted behaviour cannot be
fully confirmed: Both, the energy resolved profiles as well as
the decomposition of the pulse into a blackbody and a pow-
erlaw component show only little correlation. For example,
Pearson’s correlation coefficient, r, of the component fluxes of
the black body and the powerlaw is only r = 0.561. On the
other hand, however, the similar variation of both model com-
ponents suggests that there is a common flux contribution su-
perimposed with an spectral variation of the powerlaw. This
would explain the decrease of the pulse at phase ∼0.5 with
higher energies.

In summary, in this paper we were able to show that phase
resolved spectroscopy adds power to constrain existing models
and allows in principle to test different hypotheses describing
the physical geometry of the system. Further and longer obser-
vations and further modeling are required, however, until these
tests will yield a conclusive and selfconsistent answer on the
emission process at work.
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