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Abstract. Magnetohydrodynamic (MHD) waves are widely considered as a possible source of heating for various parts of the
outer solar atmosphere. Among the main energy dissipation mechanisms which convert the energy of damped MHD waves
into thermal energy are collisional dissipation (resistivity) and viscosity. The presence of neutral atoms in the partially ionized
plasmas of the solar photosphere, chromosphere and prominences enhances the efficiency of both these energy dissipation
mechanisms.
A comparative study of the efficiency of MHD wave damping in solar plasmas due to collisional and viscous energy dissipation
mechanisms is presented here. The damping rates are taken from Braginskii 1965 and applied to the VAL C model of the quiet
Sun (Vernazza et al. 1981). These estimations show which of the mechanisms are dominant in which regions. In general the
correct description of MHD wave damping requires the consideration of all energy dissipation mechanisms via the inclusion
of the appropriate terms in the generalized Ohm’s law, the momentum, energy and induction equations. Specific forms of the
generalized Ohm’s Law and induction equation are presented that are suitable for regions of the solar atmosphere which are
partially ionised.
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1. Introduction

Magnetohydrodynamic (MHD) waves are believed to play an
important role in the solar atmosphere. In particular, they are
widely considered as a possible source for heating of var-
ious parts of the outer solar atmosphere (Piddington 1956;
Osterbrock 1961; Gordon & Hollweg 1983; Hollweg 1986,
1991; Narain & Ulmschneider 1996; Goodman 2000, 2001).
The heating effect of MHD waves depends on dissipation
mechanism which convert the energy of damped MHD waves
into thermal energy.

It is well known that the presence of neutral atoms in par-
tially ionized plasmas enhances the dissipation of MHD waves.
The energy and momentum transfer from the Alfvén waves
damped in the partially ionized chromospheric plasma has been
proposed as a driving factor for solar spicules (Haerendel 1992;
DePontieu & Haerendel 1998; James & Erdélyi 2002; James
et al. 2003). The leakage of Alfvén wave energy through the
footpoints of a coronal loop, caused by wave dissipation in the
partially ionized chromosphere (DePontieu et al. 2001; Ofman
2002), is considered as one of possible explanations of the

recently observed rapid damping of coronal loop oscillations
(Aschwanden et al. 1999b; Nakariakov et al. 1999).

Analysis of the distribution of temperature and heat depo-
sition along magnetic loops based on recent SOHO/EIT and
TRACE EUV observations shows that, contrary to the soft
X-ray loops observed by Yohkoh/SXT (Priest et al. 1998),
cooler loops are heated non-uniformly (Aschwanden et al.
1999a, 2000, 2001). More heat deposition is detected near the
loop footpoints. Dissipation of slow magnetoacoustic waves
in the chromospheric parts of the loop was suggested as a
possible explanation of such non-uniform energy deposition
(Nakariakov et al. 2000; Tsiklauri & Nakariakov 2001). The
non-uniform heating of the chromospheric footpoints of a mag-
netic loop also appears as a key assumption of the dynamical
model for prominence formation in a dipped magnetic arcade
(Antiochos et al. 1999; Karpen et al. 2001). It is also invoked in
explanations of material flows and intensity variations in non-
flaring coronal loops (Spadaro et al. 2003).

Therefore, understanding the specifics of MHD wave prop-
agation and damping in the partially ionized plasmas of the
photosphere and chromosphere is important for understanding
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the heating and dynamics of the whole external solar atmo-
sphere. The same concerns the case of another typical example
of the partially ionized solar plasmas, – the material of promi-
nences. MHD waves are widely referred regarding the interpre-
tation of the material motion in the prominences, their possible
oscillations and energy budget.

In previous publications the damping of MHD waves has
been considered using two different energy dissipation mecha-
nisms. One group of researchers assumes the friction between
ions and the neutral fraction in the partially ionized plasma
is the dominant dissipation mechanism (Piddington 1956;
Haerendel 1992; DePontieu & Haerendel 1998; DePontieu
et al. 2001; James & Erdélyi 2002). Another group of au-
thors takes into account only the viscosity effects (Gordon &
Hollweg 1983; Nakariakov et al. 2000; Tsiklauri & Nakariakov
2001; Ofman 2002).

It is worth emphasizing the different physical nature of the
above two mechanisms of MHD wave dissipation. The forces
associated with the viscosity have purely kinetic origin and are
caused by the momentum transfer during the thermal motion
of particles. The collisional friction forces appear due to the
averaged relative motion of the plasma species. Therefore, the
correct description of MHD wave damping requires the consid-
eration of both energy dissipation mechanisms via the inclusion
of the appropriate terms in the generalized Ohm’s Law, as well
the momentum and energy equations.

While the frictional dissipation (electrical resistivity) can
usually be safely neglected as compared to viscosity effects in
the fully ionized solar corona (Gordon & Hollweg 1983), the
relation and mutual role of both these dissipation mechanisms
for the damping of different types of MHD waves in the lower
(partially ionized) solar atmosphere requires a special compar-
ative study. In this paper we give some elementary estimations
of the frictional and viscous damping of MHD waves and dis-
cuss which dissipation mechanism is dominant in different re-
gions of the solar atmosphere.

2. MHD wave damping in the linear approximation

In this section we summarize the results from Braginskii (1965)
on the damping rates of MHD waves. These results are used
in later sections and are reproduced here for reference. The
method adopted by Braginskii was to calculate the energy
decay time for different modes from the local heating rates
Qvisc, Qfrict, etc. In this approach each damping mechanism is
assumed to be linearly independent and therefore the method is
only formally valid for light damping. The decay of wave am-
plitude is described by the complex frequency ω − iωδ so that
the energy in a particular wave mode will decay as e−t/τ, where
τ = (2ωδ)−1 is a characteristic wave damping time and δ is the
logarithmic damping decrement. Damping rates in this paper
are therefore presented in terms of 2ωδ and represent energy
decay times. Throughout the paper, unless explicitly stated oth-
erwise, the temperature is in energy units (T [erg] ≡ kBT [K◦]),
the magnetic field in Gauss and all other quantities are in cgs.

The aim of this paper is a comparative study of the colli-
sional friction and viscous damping of MHD waves. We limit
ourselves here to a consideration of only these two energy

dissipation mechanisms and do not take into account MHD
wave damping due to thermoconductivity effects.

The MHD wave modes are the Alfvén wave, fast magne-
toacoustic, and slow magnetoacoustic waves. The slow mag-
netoacoustic wave degenerates in the limit Cs � VA (or the

plasma β =
4πp0

B2
0

� 1) to a pure acoustic wave distorted by

the magnetic field. The frequency of this wave is ω = Csk‖.
The frequency of fast magnetoacoustic waves in this case is
ω = VAk, not to be confused with the Alfvén frequency which

is ω = VAk‖. Here VA =
B0√
4πρ0

and Cs =

(
γp0

ρ0

)1/2

are

the Alfvén and the sound speed in a plasma with total density
ρ0, pressure p0, external magnetic field B0, and adiabatic con-
stant γ. The condition Cs � VA holds true for magnetic fields
B0 > 10 G everywhere above the middle chromosphere, as well
as in the majority of prominences.

In the opposite limit of Cs � VA (or plasma β � 1),
which is valid in the non- or weakly magnetized B0 < 10 G
regions of the chromosphere and photosphere, fast magnetoa-
coustic waves transform to the usual acoustic wave with fre-
quency ω = Csk, while the slow magnetoacoustic wave be-
haves like the Alfvén wave with frequency ω = VAk‖.

2.1. The case of fully ionized plasma

For the damping decrements of Alfvén, fast magnetoacous-
tic, and acoustic waves propagating in a fully ionized plasma,
Braginskii (1965) gives the following expressions:

Alfvén wave (A.w.):

2ωδA.w.
Joule ≡

1

τA.w.
Joule

=
c2

4πσ‖
k2
⊥ +

c2

4πσ⊥
k2
‖ , (1)

2ωδA.w.
visc ≡

1

τA.w.
visc

=
1
ρ0

(
η1k2
⊥ + η2k2

‖
)
. (2)

Fast magnetoacoustic (or magnetosonic) wave ( f .ms.w.):

2ωδf.ms.w.
Joule ≡

1

τf.ms.w.
Joule

=
c2

4πσ⊥
k2, (3)

2ωδf.ms.w.
visc ≡ 1

τf.ms.w.
visc

=
1
ρ0

[(η0

3
+ η1

)
k2
⊥ + η2k2

‖
]
. (4)

Acoustic (or sound) wave (s.w.):

2ωδs.w.
Joule ≡

1
τs.w.

Joule

=
c2

4πσ⊥
k2
⊥

C2
s

V2
A

, (5)

2ωδs.w.
visc ≡

1
τs.w.

visc

=
1
ρ0

(
4
3
η0k2
‖ + η2k2

⊥

)
. (6)

Since in a fully ionized plasma the frictional heat term contains

only the Joule heating part, i.e. Qfrict = QJoule =
j2‖
σ‖
+

j2⊥
σ⊥

, we
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use the notation δJoule in place of δfrict in the above expressions
for damping decrements from Braginskii (1965).

In Equations (1)–(6) k‖ and k⊥, σ‖ and σ⊥ are components
of the wave vector and electric conductivity of the plasma in
directions parallel and perpendicular to the background mag-
netic field respectively; η0, η1, and η2 are viscosity coefficients.
In the case of an isothermal plasma the viscosity coefficients
are determined essentially by ions. Braginskii (1965) gives the
following expressions for the ion viscosity coefficients:

η0 = 0.96niTiτi,

η2 = niTiτi

(
6
5 (ωiτi)2 + 2.23

)
(ωiτi)4 + 4.03(ωiτi)2 + 2.33

· (7)

The coefficient η1 is obtained from η2 by replacing ωi by 2ωi.
Hereωi is the ion gyrofrequency and τi is the ion collision time,
defined for a fully ionized plasma as the inverse of the ion-ion
collision frequency:

τi ≡ 1
νii
= 1.03 × 1025

√
µT 3/2

i

ΛZ4ni
, (8)

where µ =
mi

mp
is mass of the ion measured in units of the

proton mass, Z is the ion charge number, and Λ is the Coulomb
logarithm (Spitzer 1962). Throughout this paper we assume an
isothermal plasma, i.e. Tk = T, k = e, i, n.

It is important to remember when using Eqs. (1)–(6) that
care must be taken over the plasma β. As mentioned above for
very low plasma β the damping of Alfvén waves and fast mag-
netoacoustic waves are described by Eqs. (1)–(4) while slow
magnetoacoustic waves are damped according to the acous-
tic formulas Eqs. (5)–(6). However, in the high plasma β limit
both Alfvén and slow magnetoacoustic waves are covered by
Eqs. (1)–(2) and fast magnetoacoustic waves are damped ac-
cording to Eqs. (5)–(6). In all situations the classical sound
wave, i.e. parallel propagating pressure perturbations with k⊥ =
0, are covered by Eq. (6).

2.2. The case of partially ionized plasma

The presence of neutral atoms causes the Joule heating to in-
crease because the electrons collide with neutrals as well as
with ions, and what is more important, the ions collide with
neutrals. Thus the value and form of the electric conductiv-
ity coefficients in Eqs. (1), (3), and (5) are different for a par-
tially ionized plasma. The expressions for the viscous damping
decrements in a partially ionized plasma, δ̃visc, should contain
now the viscosity coefficients η̃0, η̃1, and η̃2 modified appropri-
ately to include the neutral gas, also the total density ρ0 should
include the density of the neutral component as well. Note that
throughout this paper variables with a tilda refer to expression
which relate to partially ionised plasmas. In a weakly ionized
plasma the viscosity coefficients are isotropic and the estima-
tion η̃0,1,2 ∼ nnTτn can be applied, where τn = (νni+νnn)−1 is the
neutral particle collision time. When the ionization ratio ni/nn

is sufficiently high the ion viscosity effects will still dominate
over the neutral contribution. However, in general the ion colli-
sion time in Eqs. (7) should take account of the ion-neutral col-
lisions, i.e. τi should be replaced in Eqs. (7) by τ̃i = (νii+νin)−1.

Either from the generalized Ohm’s Law in a partially ion-
ized plasma (Cowling 1957; Zaitsev & Stepanov 1992), or from
direct calculation involving the frictional coefficients of each
species (Braginskii 1965), the expression for the frictional heat-
ing can be shown to contain, along with the Joule heating, an
additional term arising due to the plasma-neutral gas collisional
friction. It has the following form (Braginskii 1965):

Qfrict =
j2

σ
+

1
αn

(
ξn
c

[ j × B] − G
)2

, (9)

where

G = ξn∇(pe + pi) − ξi∇pn, (10)

σ =
nee2

me(ν′ei + ν
′
en)

and αn = meneν
′
en + miniν

′
in. Here nk and

pk, k = e, i, n are the number densities and kinetic pres-

sures of each species respectively; ξn =
mnnn

mnnn + mini
and

ξi =
mini

mnnn + mini
are the relative densities of neutrals and

ions; ν′ei, ν
′
en and ν′in are the effective electron-ion, electron-

neutral and ion-neutral collisional frequencies defined as ν′kl =
ml

ml + mk
νkl, k = e, i, l = i, n. For estimation of the collision

frequencies νei, νen and νin we use the following expressions:

νei = 5.89 × 10−24 niΛZ2

T 3/2
,

νen = nn

√
8T
πmen

Σen,

νin = nn

√
8T
πmin
Σin, (11)

where Σen ∼ 10−15 cm2, Σin ∼ 5 × 10−15 cm2 are electron-
neutral and ion-neutral collisional cross-sections, and mkn =

mkmn

mk + mn
, k = e, i.

For an Alfvén wave G = 0, while for a fast magnetoacoustic
wave the ratio of G to the first term in brackets in the Eq. (9)
is of the order of ξiC2

s /V
2
A. Neglecting G for both these modes

we can again present the frictional heating term (9) as Joule
heating:

Qfrict = Q̃Joule =
j2‖
σ
+

j2⊥
σC
, (12)

whereσC =
σ

1 +
ξ2n B2

0

αnc2σ
is the well known Cowling conductivity

defined mainly by the ion-neutral collisions. In a strong enough

magnetic field
σ

σC
= 1+ ξ2n

B2
0σ

αnc2
≈ 1+ ξ2n

ωeωi

max{ν′ei, ν
′
en}ν′in

� 1.

Thus, the Cowling conductivity σC is much less than the usual
conductivityσ. This fact causes, assuming ([ j×B] � 0), an in-
crease in the Joule heating in a partially ionized plasma. The
significant increase in Joule energy dissipation, due to ion-
neutral collisions, has been considered in (Piddington 1954;
Frank-Kamenetskii 1961) and applied to solar phenomena in
(Zaitsev & Stepanov 1992; Khodachenko & Zaitsev 1992;
Khodachenko 1996).
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Based on Eq. (12), the expressions (1) and (3) can be re-
written for logarithmic damping decrements, δ̃A.w.

Joule, δ̃f.ms.w.
Joule , of

the Alfvén and fast magnetoacoustic waves in a partially ion-
ized plasma as the following:

2ωδ̃A.w.
Joule ≡

1

τ̃A.w.
Joule

=
c2

4πσ
k2
⊥ +

c2

4πσC
k2
‖

=
c2

4πσ
k2 +

c2

4π

ξ2n B2
0

αnc2
k2
‖ , (13)

2ωδ̃f.ms.w.
Joule ≡ 1

τ̃f.ms.w.
Joule

=
c2

4πσC
k2

=
c2

4πσ
k2 +

c2

4π

ξ2n B2
0

αnc2
k2. (14)

For the acoustic wave both terms in brackets in the Eq. (9) are
of the same order and should be taken into account. In par-
ticular, based on Eqs. (9) and (10), and applying techniques
described in Braginskii (1965), one will obtain for the case of
mi = mn:

2ωδ̃s.w.
frict ≡

1
τ̃s.w.

frict

=
c2

4πσ
C2

s

V2
A

k2
⊥

+
ξ2nC2

s ρ0

αn

k2
‖

n2
e

n2
0

+ k2
⊥

(ni + nn)2

n2
0

 · (15)

Here n0 =
∑

k nk, k = i, e, n, and the total density, ρ0, of par-
tially ionized plasma includes now as the density of the neutral
gas. Note that the pressure function G in the Eq. (9) results in

appearance of the coefficient
(ni + nn)2

n2
0

near k2⊥ in brackets in

the Eq. (15), as well as causes the term proportional to k2
‖ there.

Therefore, in a partially ionized plasma the expression for
the acoustic wave frictional damping decrement (15) contains
additional terms, as compared to the case of the fully ionized
plasma (5). It is important to note that the frictional damping
of acoustic waves takes place in a partially ionized plasma not
only for waves propagating across the background magnetic
field (k⊥ � 0), as it was in the fully ionized plasma, but also
for waves propagating along the magnetic field (k⊥ = 0, k‖ �
0). The additional terms (in brackets) in Eq. (15) are usually
greater than the first term. In particular, for waves propagat-
ing across the magnetic field (k⊥ � 0, k‖ = 0) the ratio of

the first term in (15) to the second is
n2

0

(ni + nn)2

σC

σ
� 1. This

means that in a partially ionized plasma the frictional damping
of acoustic waves is much stronger than it is in a fully ionized
plasma.

3. Application to the Sun

As related to the phenomena on the Sun, the case of longitu-
dinal with respect to the magnetic field (k⊥ = 0, k‖ � 0),
propagation of MHD waves appears to be the most important.
These waves are believed to be guided within magnetic flux
tubes, which therefore play the role of channels providing the
energetic coupling of different layers of the solar atmosphere.

Fig. 1. Variation of
σ

σC
with height for the quiet Sun model of

Vernazza et al. (1981) for different B0: 1) 10 G; 2) 100 G and 3)
1000 G.

From Eqs. (1), (3) and (13), (14), parallel propagating
Alfvén and fast magnetoacoustic waves are equally damped
due to the collisional friction (Joule) dissipation. But because

of
σ

σC
� 1, this damping is much higher for the partially

ionized plasma of the solar photosphere, chromosphere and
prominences, in comparison to the coronal plasma. Figure 1

shows the variation of the ratio
σ

σC
with height in the low so-

lar atmosphere (photosphere/chromosphere) calculated for dif-
ferent values of the magnetic field B0. For this calculation we
used the solar atmospheric plasma parameters provided by the
VAL C model of the quiet Sun (Vernazza et al. 1981).

Parallel propagating acoustic waves are not damped due to
friction in a fully ionized coronal plasma (see Eq. (5)), but are
damped in the partially ionized solar photospheric, chromo-
spheric and prominence plasmas (see Eq. (15)).

Viscous damping of longitudinally propagating (k⊥ =
0, k‖ � 0) Alfvén and fast magnetoacoustic waves again are de-
scribed by the same expression, which follows from (2) and (4).
Different viscous damping of MHD waves in different parts of
the solar atmosphere appears due to the corresponding changes
of the plasma density and viscosity coefficients in accordance
with varying solar photospheric/chromospheric/coronalplasma
parameters.

Before further presentation of our results regarding MHD
waves damping in the solar partially ionized plasmas we
would like to make a remark concerning the difference be-
tween the present work and existing similar studies. The
previous investigations were usually addressed to particu-
lar regions of the solar atmosphere. For example photo-
sphere/chromosphere in DePontieu et al. (2001) and the chro-
mosphere in Goodman (2000, 2001). Other works concentrated
on a particular MHD mode, e.g. Alfven waves in DePontieu
et al. (2001), and James & Erdélyi (2002) or slow magnetoa-
coustic waves in Goodman (2000, 2001)). In the present paper
we do not limit ourselves to consideration of a particular mode,
or particular region. We perform our analysis in the whole
range of the solar partially ionized plasmas, including the pho-
tosphere, chromosphere and material of prominences, as well
as consider all the important solar MHD modes: Alfvén wave,
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fast magnetoacoustic wave and slow magnetoacoustic/acoustic
wave. One more important difference of our work from others
consists in its main goal: to perform a quantitative compari-
son of the efficiency of MHD waves damping due to collisional
friction and viscous energy dissipation mechanisms in the par-
tially ionized solar plasmas. In the previous studies one of the
above damping mechanisms was usually neglected. The rea-
soning for this was given in a brief semi-quantitative estimative
style, like for example in the paper by Goodman (2000). The
quantitative study of this subject has never been done for the
solar atmosphere and we try to fill this gap. It is also important
to note that, considered here, collisional friction energy dissi-
pation (i.e. heat generated in a gas due to particle collisions) in
a partially ionized plasma represents a more general case than
just the resistive (Joule) energy dissipation (see Eq. (9)). Only
in the case of certain MHD modes, when disturbances of the
pressure are absent or can be neglected, can the collisional fric-
tion energy dissipation rate be represented as a resistive dissi-
pation (see Eq. (12)), i.e. expressed, similar to the fully ionized
plasma case, in terms of electric conductivities. This is, in par-
ticular, not the case of the acoustic wave, considered among
others below.

3.1. MHD wave damping in the solar
photosphere/chromosphere

Based on Eqs. (2), (4), (13), (14) and taking into account the
corresponding estimations for the viscosity coefficients, we
compare the collisional friction (Joule) and viscous damping
times of Alfvén and fast magnetoacoustic waves propagating
along the magnetic field (‖) in the partially ionized plasmas of
the low solar atmosphere:

τ̃Joule

τ̃visc

∣∣∣∣∣ A.w.(‖)
f.ms.w.(‖)

=
4πη̃2σC

c2ρ0
· (16)

In the photospheric case of a weakly ionized plasma (η̃2 ∼
nnTτn) and strong magnetic field

(
ωeωi

ν′enν
′
in

� 1

)
, Eq. (16) gives

τ̃Joule

τ̃visc

∣∣∣∣∣ A.w.(‖)
f.ms.w.(‖)

≈ µ

1 + µ
µ + (nn/n)
1 + (nn/n)

βi � 1, where βi =
4πTn

B2
0

� 1.

Here and below we assume ne = ni = n.

In Fig. 2 the dependence of
τ̃Joule

τ̃visc

∣∣∣∣∣ A.w.(‖)
f.ms.w.(‖)

on height in the

low solar atmosphere, calculated for the VAL C model param-
eters (Vernazza et al. 1981) and different values of the mag-
netic field B0, is presented. As can be seen in Fig. 2, the effects
of frictional (Joule) energy dissipation, caused mainly by the
ion-neutral collisions, are much stronger for the damping of
Alfvén and fast magnetoacoustic waves in the low solar atmo-
sphere than viscosity. Therefore, the correct description of the
propagation of these waves in the partially ionized solar pho-
tospheric and chromospheric plasmas requires the inclusion of
collisional energy dissipation mechanisms, whereas the viscous
energy dissipation can be quite often neglected (DePontieu &
Haerendel 1998; DePontieu et al. 2001).

Simply modifying of the magnetic diffusion coefficient in
the induction equation is not sufficient to correctly account for

Fig. 2. Variation of
τ̃Joule

τ̃visc

∣∣∣∣∣ A.w.(‖)
f.ms.w.s(‖)

with height in the low solar atmo-

sphere (Vernazza et al. 1981) for different B0: 1) 5 G; 2) 10 G; 3)
100 G; and 4) 1000 G.

all the resistive effects in a partially ionized plasma. The gen-

eralized Ohm’s Law is more complicated than just E +
1
c

[V ×
B] =

j
σ

(Bakhareva et al. 1992; Khodachenko & Zaitsev 1992;

2002). The heating term

(
E +

1
c

[V × B]

)
· j in the energy equa-

tion also becomes more complicated, and instead of just j2/σ
includes other terms, among which the most significant is the
term j2⊥/σC � j2/σ. Thus simply increasing the magnetic dif-
fusion will drive the magnetic field towards a potential field
while the generalized Ohm’s Law has an enhanced perpen-
dicular Cowling resistivity which would leave any non-linear
force free field unaffected. Since, as shown below, the Cowling
conductivity term is dominant in regions of the lower atmo-
sphere this is especially important as a large scalar resistivity
will quickly, and erroneously, establish a potential field instead
of leaving any parallel current unchanged.

Next we estimate the frictional damping of acoustic waves
in a partially ionized plasma. This effect could be important,
in particular, for acoustic waves propagating in the low solar
atmosphere. Based on Eqs. (15) and (6), we compare the fric-
tional and viscous damping times of the acoustic wave propa-
gating along the magnetic field (‖):
τ̃frict

τ̃visc

∣∣∣∣∣
s.w.(‖)

=
4
3
η̃0αn

ξ2nC2
s ρ

2
0

n2
0

n2
· (17)

Using the above definitions for η̃0, αn and C2
s the ratio (17) can

be written as

τ̃frict

τ̃visc

∣∣∣∣∣
s.w.(‖)

=
0.64
γ

τ̃iνin

ξ2n

(2 + nn/n)
(1 + nn/n)

· (18)

Here we take into account the fact that Eq. (15), used for the
derivation of Eq. (17), was obtained with the assumption mi =

mn.
When the ionization degree is high, i.e. nn → 0, Eq. (18)

gives
τ̃frict

τ̃visc

∣∣∣∣∣
s.w.(‖)

∝ 1
nn
−→ ∞. Thus, the role of the acoustic

wave frictional damping in this case is small compared to the
viscous damping. Contrary to that, for a weakly ionized plasma
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Fig. 3. Variation of
τ̃frict

τ̃visc

∣∣∣∣∣
s.w.(‖)

with height in the solar chromosphere

(Vernazza et al. 1981).

(nn/n → ∞), when one can assume τ̃i ≈ ν−1
in , it follows from

Eq. (18) that
τ̃frict

τ̃visc

∣∣∣∣∣
s.w.(‖)

−→ 0.64/γ < 1. Therefore the col-

lisional energy dissipation mechanism can dominate over the
viscous one for the acoustic wave damping in a partially ion-
ized plasma.

Variation with height in the solar chromosphere of the ratio
τ̃frict

τ̃visc

∣∣∣∣∣
s.w.(‖)

defined by Eq. (17) is presented in Fig. 3. Here we

again used the solar atmospheric plasma parameters provided
by the VAL C model of the quiet Sun (Vernazza et al. 1981),
and limit our consideration to the height interval of the mid-
dle and upper chromosphere, where the ionized hydrogen pro-
vides the majority of ions so that the case mi = mn, for which
Eqs. (15) and (17) are valid, is more or less realized. As can be
seen from Fig. 3, the frictional damping of the acoustic wave in
the low chromosphere is stronger than the viscous damping. At
the same time, above the middle chromosphere the efficiency
of both damping mechanisms becomes to be of the same order
of magnitude. Thus none of the mechanisms can be neglected
in models.

3.2. MHD wave damping in the solar corona
and prominences

The majority of solar coronal plasma can be considered as a
fully ionized medium and the effects of the small amount of
neutral atoms are usually ignored. But even in this case, the col-
lisional friction (Joule) damping of MHD waves under certain
conditions could be comparable or even stronger than the vis-
cous damping. The ratio of the resistive and viscous damping
times of Alfvén and fast magnetoacoustic waves, propagating
along the magnetic field in the corona can be easily obtained
from Eqs. (1)–(4). It has the same form as Eq. (16), where the
ion viscosity η2 and transverse conductivity of a fully ionized
plasma, σ⊥, should be substituted in place of η̃2 and σC respec-
tively. In the case of a strong magnetic field, ωiτi � 1 (this
condition is well satisfied in the solar corona for B0 > 10 G),
taking into account Eqs. (7), (11) and the expression for the

Table 1.
τJoule

τvisc

∣∣∣∣∣ A.w.(‖)
f.ms.w.(‖)

calculated for B0 = 10; 50; 100 G

in the corona.

T = 105 K T = 5 × 105 K T = 106 K

0.0063 0.0315 0.063

n = 108 cm−3 0.000252 0.00126 0.00252

0.000063 0.000315 0.00063

0.63 3.15 6.3

n = 1010 cm−3 0.0252 0.126 0.252

0.0063 0.0315 0.063

63 315 630

n = 1012 cm−3 2.52 12.6 25.2

0.63 3.15 6.3

transverse conductivity σ⊥ =
ne2

meν
′
ei

, provided by Braginskii

(1965), after substitution of all numeric constants the ratio of
the damping times is:

τJoule

τvisc

∣∣∣∣∣ A.w.(‖)
f.ms.w.(‖)

= 18.17β
√
µ

≈ 6.3 × 10−14√µnT [ K◦]
B2

0

· (19)

For convenience of application to the Sun the temperature in
Eq. (19) is expressed in Kelvins. It follows from Eq. (19), for
sufficiently small plasma β the resistive damping of Alfvén and
fast magnetoacoustic waves in the corona can be stronger, or
comparable with the viscous damping, and therefore, should

not be neglected. The range of possible values of
τJoule

τvisc

∣∣∣∣∣ A.w.(‖)
f.ms.w.(‖)

calculated for some typical coronal plasma parameters and dif-
ferent values of the magnetic field is presented in the Table 1.
For each particular density and temperature of plasma we give

in the Table 1 three values of
τJoule

τvisc

∣∣∣∣∣ A.w.(‖)
f.ms.w.(‖)

. The upper of these

values corresponds to B0 = 10 G, the middle, to B0 = 50 G,
and the bottom, to B0 = 100 G. All of these numbers are simply
classical results with no neutral component.

Returning to partially ionised plasmas specific examples
where the neutral fraction is significant are of course promi-
nences. This is a relatively cold (T = (6−10)×103 K) and dense

(n = (1−50)×1010 cm−3) partially ionized (
nn

n
= 0.05−1), mag-

netized (B ∼ 10 G) medium, with the majority of ions provided
by the ionized hydrogen (i.e. µ ≈ 1).

The ratios of collisional friction (Joule) and viscous damp-
ing times of the Alfvén, fast magnetoacoustic and acoustic
waves propagating along the magnetic field in the prominence
plasma are defined in general by Eqs. (16) and (17). From
these, Eq. (18) for the acoustic wave, derived from Eq. (17)
can be directly applied for the case of prominences. It yields
τ̃frict

τ̃visc

∣∣∣∣∣
s.w.(‖)

= 5 × 10−3−10−2 for the prominence parameters

given above.
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Fig. 4. Typical values of the collisional and viscous damping time ratios for parallel propagating a) Alfvén and fast magnetoacoustic waves
τ̃Joule

τ̃visc

∣∣∣∣∣ A.w.(‖)
f.ms.w.(‖)

and b) acoustic wave
τ̃frict

τ̃visc

∣∣∣∣∣
s.w.(‖)

in the prominence plasma for B0 = 10 G and
nn

n
= 1.

For not very dense prominences (n = (1−3) × 1010 cm−3)
the conditions of a strong magnetic field

ωeωi

max{ν′en, ν
′
ei}ν′in

= (4−100) × 105 � 1,

ωiτ̃i = 14−3 > 1

are usually satisfied. In this case Eq. (16) can be transformed to:

τ̃Joule

τ̃visc

∣∣∣∣∣ A.w.(‖)
f.ms.w.(‖)

=
4πη̃2αn

ρ0ξ
2
n B2

0

≈ 3
5

(1 + (nn/n))
(nn/n)2

νin
ωi

(ωiτ̃i)−1βi � 1, (20)

which again indicates the dominant role of the frictional wave
damping mechanism over viscosity.

An overview of the damping time ratios defined by
Eqs. (16) and (17) for the range of plasma densities and tem-
peratures typical for prominences, is presented in Fig. 4. We

have assumed B0 = 10 G and
nn

n
= 1 in these calculations.

A decrease of
nn

n
results in a slight increase of

τ̃Joule

τ̃visc

∣∣∣∣∣ A.w.(‖)
f.ms.w.(‖)

and
τ̃frict

τ̃visc

∣∣∣∣∣
s.w.(‖)

. As can be seen from Fig. 4, for the Alfvén,

fast magnetoacoustic and acoustic waves propagating along
the magnetic field in the prominence plasma, the collisional
friction energy dissipation mechanism is more efficient than
the viscosity, which can be safely neglected in the majority of
cases.

Of interest for prominences is also the transverse (k⊥ �
0, k‖ = 0) propagation of MHD waves with respect to the
background magnetic field. Based on Eqs. (4), (6) (with par-
tially ionized plasma viscosity coefficients) and Eqs. (14), (15)
we define the ratios of collisional friction (Joule) and viscous
damping times of fast magnetoacoustic and acoustic waves
propagating across the magnetic field (⊥), and compare them
with the corresponding ratios (Eqs. (16) and (17)) in the case
of longitudinal wave propagation:

τ̃Joule

τ̃visc

∣∣∣∣∣
f.ms.w.(⊥)

=
4π(η̃0/3 + η̃1)σC

c2ρ0

=
η̃0/3 + η̃1

η̃2

τ̃Joule

τ̃visc

∣∣∣∣∣
f.ms.w.(‖)

, (21)



1080 M. Khodachenko, et al.: MHD wave collisional and viscous damping

Fig. 5. Typical values of the collisional and viscous damping time ratios for propagating across the magnetic field a) fast magnetoacoustic
τ̃Joule

τ̃visc

∣∣∣∣∣
f.ms.w.(⊥)

and b) acoustic
τ̃frict

τ̃visc

∣∣∣∣∣
s.w.(⊥)

wave in the prominence plasma for B0 = 10 G and
nn

n
= 1.

τ̃frict

τ̃visc

∣∣∣∣∣
s.w.(⊥)

≈ η̃2αn

ξ2nC2
sρ

2
0

n2
0

(n + nn)2

=
3
4
η̃2

η̃0

(
1 +

nn

n

)−2 τ̃frict

τ̃visc

∣∣∣∣∣
s.w.(‖)

· (22)

The factor
η̃0/3 + η̃1

η̃2
in Eq. (21) is >1 in prominence plasma

conditions. Thus, the relative role of the effect of collisional
damping of fast magnetoacoustic waves, as compared to the
viscosity damping, is smaller for waves propagating across the
magnetic field, than for longitudinally propagating waves. In
spite of this, however, the collisional damping of this mode,
i.e. the case of propagation across the magnetic field, still re-
mains stronger in the prominence plasma than viscous damp-
ing. This fact is demonstrated in Fig. 5a, where the ratio of
collisional and viscous damping times, defined by Eq. (21) is
presented for the range of plasma densities and temperatures
typical of prominences. For definiteness we assume in this cal-

culation B0 = 10 G and
nn

n
= 1. Similar to the case of the

longitudinal propagation of fast magnetoacoustic wave, a de-

crease of
nn

n
results in a slight increase of

τ̃Joule

τ̃visc

∣∣∣∣∣
f.ms.w.(⊥)

, which

nevertheless still remains <1 for all reasonable prominence
plasma parameters.

As can be seen from Eq. (7), the factor
3
4
η̃2

η̃0

(
1 +

nn

n

)−2
in

Eq. (22) always remains <1 under prominence plasma condi-
tions. This means that the role of collisional damping of acous-
tic waves compared to their viscous damping in the case of
waves propagation across the magnetic field is even stronger
than in the case of longitudinal propagation. The dependence of

the damping times ratio
τ̃frict

τ̃visc

∣∣∣∣∣
s.w.(⊥)

, on the prominence plasma

parameters is presented in Fig. 5b, where we again assume

B0 = 10 G and
nn

n
= 1.

The collisional damping of MHD waves in the prominence
plasma is always stronger than their viscous damping. So, it
should be considered as the main mechanism of the MHD wave
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energy dissipation in prominences. Collisional damping must
therefore be included in any attempt to describe the observed
oscillatory motion of prominence material.

4. Generalized Ohm’s Law and magnetic induction
equations in the low solar atmosphere

According to estimations performed in this paper, the frictional
energy dissipation mechanism in majority of cases appears to
be the most important mechanism for MHD wave damping in
partially ionized plasmas. For the self-consistent description of
the collisional friction damping of MHD waves the generalized
Ohm’s Law (Cowling 1957; Braginskii 1965; Bakhareva et al.
1992, 1992; Khodachenko & Zaitsev 1992, 2002)

E +
1
c

[V × B] =
εG − ∇pe

en
+

j
σ
+

(1 − 2εξn)
enc

[ j × B]

− ξn
cαn

{
ξn

[[ j × B] × B]
c

− [G̃ × B]

}
(23)

should be included into the modelling set of MHD equations.
Here V = ξnun + ξiui is the velocity of the center of mass of the

partially ionized plasma and ε =
nemeν

′
en

αn
=

ν′en

ν′en + (mi/me)ν′in
.

The pressure function G in Eq. (23) is defined by Eq. (10).
Application of the generalized Ohm’s Law (Eq. (23))

changes the form of the magnetic induction equation and the

Joule heating term

(
E +

1
c

[V × B]

)
· j in the energy equation. In

the easiest case of a cold strongly magnetized plasma (plasma
β � 1) and relatively slow processes, the pressure gradient
terms (the pressure function G) and Hall term in Eq. (23) can
be neglected. Thus, the corresponding induction equation will
have the following form:

∂B
∂t
= ∇ × [V × B] + η∆B

+ (ηC − η)∇ × ([∇ × B × B] × B)

B2
0

, (24)

where η =
c2

4πσ
and ηC =

c2

4πσC
are the Coulomb and Cowling

coefficients of magnetic diffusion. It is important to note here,
that besides the usual convective and magnetic diffusion terms,
the induction equation (Eq. (24)) in a partially ionized plasma
contains an additional term (∝ ∇ × ([∇ × B × B] × B)). This
extra term is an anisotropic magnetic diffusion resulting from
the strong dissipation of the transverse to the magnetic field
electric current due to ion-neutral collisions, i.e. the Cowling
conductivity.

In this case, as with the traditional magnetic Reynolds num-

ber Rem =
4πV0L0

c2
σ, where V0 and L0 are a characteristic

speed and spatial scale respectively, a new, “partially ionized
plasma magnetic Reynolds number”

R̃em =
4πV0L0

c2

σσC

σ − σC
(25)

can be introduced. This new magnetic Reynolds number char-
acterizes the relative role of the convective and the ion-neutral

collisional dissipation terms in the magnetic induction equa-
tion. The ratio of the traditional (∝∆B) and newly appeared
anisotropic magnetic diffusion terms in the Eq. (24) is

D =
c2αn

ξ2n B2
0σ
=
σC

σ − σC
· (26)

In the partially ionized plasma of the solar chromosphere (h >
500 km), where σ � σC (see Fig. 1) and Rem ∼ 105−107, the
partially ionized plasma magnetic Reynolds number is R̃em =
4πV0L0

c2
σC =

σC

σ
Rem � Rem and the parameter D =

σC

σ
. This

means that the traditional magnetic diffusion term can always
be safely neglected, but the convective and the anisotropic mag-
netic diffusion terms will be of different importance in different
regions of the chromosphere. In particular, in the upper chro-
mosphere (see Fig. 1) R̃em � 1 and the only third (anisotropic
magnetic diffusion) term remains to be important in the induc-
tion equation. Whereas below the middle chromosphere where
σC/σ is not very small the partially ionized plasma magnetic
Reynolds number R̃em can be of the order or greater than unity
and both terms (convective term and the anisotropic magnetic
diffusion) must be included.

In the solar photosphere, where the values of σ and σC ap-
proach each other (see Fig. 1) and Rem ∼ 104−105, according
to Eqs. (25) and (26), both diffusion terms in Eq. (24) can be
neglected, and the induction equation will contain only the con-
vective term in the right hand side, i.e. the induction equation
will have the same form as in the case of a fully ionized plasma.

5. Conclusion

In this paper we have performed a comparison of the efficiency
of MHD wave damping in solar plasmas due to the collisional
and viscous energy dissipation mechanisms. The main conclu-
sion which follows from this analysis is that the collisional fric-
tion damping of MHD waves is often more important than the
viscous damping. This is especially true for waves propagat-
ing in the partially ionized plasmas of the solar photosphere,
chromosphere and prominences.

In conclusion we would like to make just a few remarks
regarding the applicability of these results and some conse-
quences for the damping of MHD waves in the solar atmo-
sphere.

1. Our estimations were based on the results of the MHD wave
damping analysis performed within the linear approximation.
This means that the expressions used above are valid only if

the damping decrements δ =
1

2ωτ
(or the same but with δ̃

and τ̃ in the case of partially ionized plasma) are much less
then unity. The requirement δ � 1 provides a limitation on the
frequency range of MHD waves for which the formulas pre-
sented in this paper are formally valid. Our analysis is therefore

only valid for waves with frequencies f =
ω

2π
much less than

a critical frequency fc. Since in the majority of cases consid-
ered in this paper the viscous damping of MHD waves is less

than the collisional friction damping, i.e.

{
δfrict

δJoule

}
> δvisc, to
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Fig. 6. a) Critical frequency of the Alfvén and fast magnetoacoustic waves versus height in the low solar atmosphere for different B0: 1) 1000 G,
2) 100 G, 3) 10 G. b) Critical frequency of the acoustic wave versus height in the low solar atmosphere for 1) longitudinal (‖) and 2) transverse
(⊥) propagation of waves. c) The range of values of critical frequency of the Alfvén and fast magnetoacoustic waves in the prominence plasma

for B0 = 10 G and
nn

n
= 1.

define the frequency range of validity of our analysis it makes

sense to consider only the condition

{
δfrict

δJoule

}
� 1, the con-

dition δvisc � 1 will be fulfilled automatically. Equations (1),
(3), (13), (15), after taking account of the appropriate disper-
sion relations ω(k) for particular modes, yield the following
expressions for the critical frequencies:

f̃ Joule
c

∣∣∣ A.w.(‖)
f.ms.w.(‖,⊥)

=
4V2

AσC

c2
, (27)

f̃ frict
c

∣∣∣
s.w.(‖) =

αnn2
0

πρ0ξ
2
nn2
, (28)

f̃ frict
c

∣∣∣
s.w.(⊥)

=
αnn2

0

πρ0ξ
2
n(n + na)2

(29)

in the partially ionized plasma of the solar photosphere, chro-
mosphere and prominences, and

f Joule
c

∣∣∣ A.w.(‖)
f.ms.w.(‖,⊥)

=
4V2

Aσ⊥
c2

(30)

in the fully ionized coronal plasma. The dependence of
f̃ Joule
c

∣∣∣ A.w.(‖)
f.ms.w.(‖,⊥)

on height in the solar photosphere and chro-

mosphere calculated by the Eq. (27) for different values of
the background magnetic field (B0 = 10, 100, 1000 G)
and the atmospheric plasma parameters provided by VAL C
model (Vernazza et al. 1981), is presented in Fig. 6a. In
Fig. 6b the dependencies of f̃ frict

c

∣∣∣
s.w.(‖) and f̃ frict

c

∣∣∣
s.w.(⊥)

on height
in the solar photosphere and chromosphere, defined by the
Eqs. (28) and (29) are shown. The range of possible values of
f̃ Joule
c

∣∣∣ A.w.(‖)
f.ms.w.(‖,⊥)

in the prominence plasmas is presented in Fig. 6c.

Here we do not give a special plot for f̃ frict
c

∣∣∣
s.w.(‖) in the promi-

nence plasma, since as it follows from Eqs. (27) and (28) with
σ

σC
� 1 taken into account,

f̃ Joule
c

∣∣∣ A.w.(‖)
f.ms.w.(‖,⊥)

f̃ frict
c

∣∣∣
s.w.(‖)

=
1

2 + nn/n
, (31)

and the behaviour of f̃ frict
c

∣∣∣
s.w.(‖) is similar to the behaviour of

f̃ Joule
c

∣∣∣ A.w.(‖)
f.ms.w.(‖,⊥)

. The value of f̃ frict
c

∣∣∣
s.w.(‖) is always higher than the
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Table 2. f Joule
c

∣∣∣ A.w.(‖)
f.ms.w.(‖,⊥)

calculated for B0 = 10; 50; 100 G in the
corona.

T = 105 K T = 5 × 105 K T = 106 K
2.74 × 1010 2.68 × 1011 7.20 × 1011

n = 108 cm−3 6.85 × 1011 6.71 × 1012 1.80 × 1013

2.74 × 1012 2.68 × 1013 7.20 × 1013

3.17 × 108 3.04 × 109 8.12 × 109

n = 1010 cm−3 7.92 × 109 7.61 × 1010 2.03 × 1011

3.17 × 1010 3.04 × 1011 8.12 × 1011

3.75 × 106 3.51 × 107 9.30 × 107

n = 1012 cm−3 9.39 × 107 8.79 × 108 2.32 × 109

3.75 × 108 3.51 × 109 9.30 × 109

value of f̃ Joule
c

∣∣∣ A.w.(‖)
f.ms.w.(‖,⊥)

. The dependence on the magnetic field

in Eq. (31) is indirect via the condition
σ

σC
� 1.

Some characteristic values of f Joule
c

∣∣∣ A.w.(‖)
f.ms.w.(‖,⊥)

calculated for

the typical coronal plasma parameters and different values of
the magnetic field are presented in Table 2. For each particular
density and temperature of plasma we give in the Table 2 three
values of f Joule

c

∣∣∣ A.w.(‖)
f.ms.w.(‖,⊥)

. The upper of these values corresponds

to B0 = 10 G, the middle, to B0 = 50 G, and the bottom, to
B0 = 100 G.

2. It follows from Eqs. (13)–(15), with the corresponding dis-
persion relations ω(k) for the particular mode being stud-
ied, that the decrements of MHD wave collisional damping{
δ̃frict

δ̃Joule

}
are proportional to the wave frequency. Because of

this the damping time of a wave measured in wave periods
Q̃ = τ̃ f , can be expressed via the critical frequency for the
particular mode and the wave frequency:

Q̃ = (4π)−1 f̃c
f
· (32)

If Q̃ approaches unity then this will brake the validity of the
above linear analysis. Using plots in Fig. 6 and Eq. (32) one can
easily estimate the collisional damping time for any frequency
wave.

In order for a wave with frequency f to be completely
damped on a particular spatial scale L0, its propagation time
tprop = L0/V0 should be greater than the damping time. Using
Eq. (32) this non-transparency condition can be written as

L0/V0 > (4π)−1 f̃c
f 2
· (33)

Here V0 is the speed of a particular mode (VA, or Cs in our
case).

3. Under certain conditions (some cases of prominences; chro-
mospheric plasma) more realistic modelling could require in-
clusion of both, collisional and viscous, mechanisms of MHD
waves damping in the partially ionized solar plasmas. For a
self-consistent description of MHD waves damping in this
case, besides the inclusion of the appropriate terms into the

momentum and energy equations, the kinetic pressure variables
pk, k = e, i, n in the generalized Ohm’s Law (23) and Eq. (10)
defining the pressure function G, should be replaced by the gen-
eralized pressures p̃k = pk + π̃

k
αβ, k = e, i, n, which contain the

viscous stress tensors π̃k
αβ.

However, in many cases it may be sufficient to use

E +
[V × B]

c
=

j
σ
− ξ

2
n

c2αn
[[ j × B] × B] (34)

and as a result Eq. (24) for the induction equation
(Khodachenko & Zaitsev 2002). The conditions which must
be met for such a simplification were detailed in the previous
section. Note further that if the only currents in the system are
perpendicular to the magnetic field, as is the case for a pure
Alfvén wave in simple geometry, then it is valid to simplify this

further and use E +
[V × B]

c
=

j
σC

as the generalized Ohm’s

Law. However, care must be taken to avoid this final simplifi-
cation if there are parallel currents in the system.

In the corona it is common to treat the conductivity as a
scalar since the perpendicular and parallel components only
differ by a factor of about 2. This is especially true in numeri-
cal simulations where the numerical resistivity exceeds the real
resistivity by many orders of magnitude. The situation in the
chromosphere is quite different with the perpendicular resistiv-
ity (1/σC) exceeding the parallel component (1/σ) by many
orders of magnitude. The Cowling conductivity is so small that
it may be possible to use the real value in numerical simula-
tions. To treat the conductivity as a scalar in such circumstances
would damp any parallel currents and may lead to an erroneous
magnetic field structure.

4. In this paper we did not consider one more important mech-
anism of MHD waves energy dissipation – thermoconductiv-
ity. Preliminary rough estimations indicate that sometimes (in
particular in the low solar atmosphere) the thermoconductivity
effects could be of the same importance for MHD waves damp-
ing as the collisional friction, and appear to be more important
than viscosity effects.
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James, S. P., & Erdélyi, R. 2002, A&A, 393, L11
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