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Abstract. Long period longitudinal oscillations of a flaring coronal loop are studied numerically. In the recent work of
Nakariakov et al. (2004) it has been shown that the time dependence of density and velocity in a flaring loop contain pro-
nounced quasi-harmonic oscillations associated with the 2nd harmonic of a standing slow magnetoacoustic wave. In this work
we investigate the physical nature of these oscillations in greater detail, namely, their spectrum (using the periodogram tech-
nique) and how heat positioning affects mode excitation. We found that excitation of such oscillations is practically independent
of the location of the heat deposition in the loop. Because of the change of the background temperature and density, the phase
shift between the density and velocity perturbations is not exactly a quarter of the period; it varies along the loop and is time
dependent, especially in the case of one footpoint (asymmetric) heating.
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1. Introduction

Magnetohydrodynamic (MHD) coronal seismology is one of
the main reasons for studying waves in the solar corona. Such
studies also are important in connection with coronal heating
and solar wind acceleration problems. Observational evidence
of coronal waves and oscillations in EUV are numerous (e.g.,
Ofman et al. 1999; Ofman & Wang 2002). Radio band obser-
vations also demonstrate various kinds of oscillations (e.g., the
quasi-periodic pulsations, or QPP, see Aschwanden 1987, for
a review), usually with periods from a few seconds to tens of
seconds. Decimeter and microwave observations show much
longer periodicities, often in association with a flare. For ex-
ample, Wang & Xie (2000) observed QPP with the periods of
about 50 s at 1.42 and 2 GHz (in association with an M 4.4
X-ray flare). Similar periodicities have been observed in the
X-ray band (e.g., McKenzie & Mullan 1997; Terekhov et al.
2002) and in the white-light emission associated with the stellar
flaring loops (Mathioudakis et al. 2003). A possible interpre-
tation of these medium period QPPs may be in terms of kink or
torsional modes (Zaitsev & Stepanov 1989).

In our previous, preliminary study (Nakariakov et al.
2004), we outlined an alternative, simpler, thus more attractive
mechanism for the generation of long-period QPPs. That model
used a symmetric heating function (heat deposition was strictly
at the apex). This left the outstanding questions: A) is the

generation of the 2nd harmonic a consequence of the fact that
the heating function was symmetric? B) Would the generation
of these oscillations occur if we break symmetry? C) What
is the spectrum of these oscillations? Is it consistent with a
2nd spatial harmonic? The present work attempts to answer
these important outstanding questions.

The paper is organized as follows: in Sect. 2 we present
the numerical results, with Sect. 2.1 dedicated to the case of
apex (symmetric) heating which completes the work started in
Nakariakov et al. (2004), and Sect. 2.2 summarizing our find-
ings in the case of single footpoint (asymmetric) heating. We
close with conclusions in Sect. 3.

2. Numerical results

The model that we use to describe plasma dynamics in a coro-
nal loop is outlined in Nakariakov et al. (2004); Tsiklauri et al.
(2004). Here we just add that, when numerically solving the
1D radiative hydrodynamic equations (infinite magnetic field
approximation), and using a 1D version of the Lagrangian Re-
map code (Arber et al. 2001) with the radiative loss limiters,
the radiative loss function was specified as in Tsiklauri et al.
(2004) which essentially is the Rosner et al. (1978) law ex-
tended to a wider temperature range (Peres et al. 1982; Priest
1982).
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We have used the same heating function as in Tsiklauri
et al. (2004). The choice of the temporal part of the heating
function is such that at all times there is a small background
heating present (either at footpoints or the loop apex) which
ensures that in the absence of flare heating (when α, which de-
termines the flare heating amplitude, is zero) the average loop
temperature stays at 1 MK. For easy comparison between the
apex and footpoint heating cases we fix Qp, flare heating ampli-
tude, at a different value in each case (which ensures that with
the flare heating on when α = 1 the average loop temperature
peaks at about the observed value of 30 MK in both cases).

In all the numerical runs presented here 1/(2σ2
s ) was fixed

at 0.01 Mm−2, which gives a heat deposition length scale,
σs = 7 Mm. This is a typical value determined from the ob-
servations (Aschwanden et al. 2002). The flare peak time was
fixed in all numerical simulations at 2200 s. The duration of the
flare, σt, was fixed at 333 s. The time step of data visualization
was chosen to be 0.5 s. The CFL limited time-step used in the
simulations was 0.034 s.

2.1. Case of apex (symmetric) heating

In this section we complete the analysis started in Nakariakov
et al. (2004), namely for the same numerical run we study the
spectrum of oscillations at different spatial points.

As was pointed out in Nakariakov et al. (2004), the most
interesting fact is that we see clear quasi-periodic oscillations,
especially in the second stage (peak of the flare) for the time in-
terval t = 2500−2800 s (cf. Fig. 1 in Nakariakov et al. 2004).
Such oscillations are frequently seen during the solar flares ob-
served in X-rays, 8−20 keV, (e.g., Terekhov et al. 2002) as
well as stellar flares observed in white-light (e.g., Mathioudakis
et al. 2003).

Before discussing the physical nature of these oscillations,
it is worth recalling for completeness the simple 1D analytic
theory of standing sound waves. For 1D, linearized, hydrody-
namic equations with constant unperturbed (zero order) back-
ground variables, the solutions for density, ρ, and velocity, Vx,
can be easily written as

Vx(s, t) = A cos
(nπCs

L
t
)

sin
(nπ

L
s
)
, (1)

ρ(s, t) = −Aρ0

Cs
sin
(nπCs

L
t
)

cos
(nπ

L
s
)
, (2)

where Cs is the speed of sound, A is wave amplitude, L is loop
length, n = 1, 2, 3, ... is the harmonic number, and s is the dis-
tance along the loop. Note the (relative) phase shift between Vx

and ρ is ∆P/P = −(π/2)/(2π) = −1/4, where P is the standing
wave period, while this ratio is zero for a propagating wave.
Also, Eqs. (3) and (4) from Nakariakov et al. (2004) are miss-
ing a factor of 2, while our Eqs. (1) and (2) correct this previous
omission.

In Fig. 1 we present a periodogram (which here we use
interchangeably with the (power) spectrum, although strictly
speaking the power spectrum is a theoretical quantity defined
as an integral over continuous time, and of which the peri-
odogram is simply an estimate based on a finite amount of dis-
crete data) of the velocity and density time series outputted at

Fig. 1. Case of apex (symmetric) heating: periodogram (spectrum) of
the velocity and density oscillatory component times series outputted
in the following three points: loop apex (solid curve), 1/4 (dash-dotted
curve) and 1/6 (dashed curve) of the effective loop length (48 Mm),
i.e. at s = 0,−12,−16 Mm.

the three points: loop apex, 1/4 and 1/6 of the effective loop
length (48 Mm), i.e. at s = 0,−12,−16 Mm (cf. Scargle 1982,
and his Eq. (10) in particular). The first two points are cho-
sen to test whether the simple analytic solution for 1D stand-
ing sound waves (see below) is relevant in this case. The third
point (1/6) was chosen arbitrarily (any spatial point along the
loop where density and velocity of the standing waves does not
have a node would be equally acceptable). As expected for a
2nd spatial harmonic of a standing sound wave in the velocity
periodogram there are two clearly defined peaks and the largest
peak corresponds to 1/4 of the effective loop length, while the
smaller peak corresponds to 1/6. Note that at the loop apex
the periodogram gives 0 (solid line is too close to zero to be
seen in the plot). The density periodogram shows the oppo-
site behaviour to that of the velocity with the largest peak cor-
responding to the loop apex, while 1/6 of the effective loop
length corresponds to a smaller peak, and 1/4 is close to zero.
The locations of the peaks are at about 0.0155 Hz i.e. the period
of the oscillation is 64 s. The period of a 2nd spatial harmonic
of a standing sound wave should be

P = L/Cs = L/
(
1.52 × 105

√
T
)
, (3)

where T is plasma temperature measured in MK, while L is in
meters. If we substitute an effective loop length L = 48 Mm
(see Fig. 2 in Nakariakov et al. 2004) and an average temper-
ature of 25 MK (see top panel in Fig. 1 in Nakariakov et al.
2004, in the range of 2500−2800 s – the quasi periodic oscil-
lations time interval we study) we obtain 63 s, which is close
to the result of our numerical simulation. Such a close coinci-
dence is surprising bearing in mind that the theory does not take
into account variation of background density and velocity over
time, while we see from Fig. 1 in Nakariakov et al. (2004)
that even within a short interval of a flare, i.e. 2500−2800 s,
all physical quantities vary significantly with time. To close
our investigation of the physical nature of the oscillations we
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Fig. 2. Case of apex (symmetric) heating: oscillatory components of
time series outputted at ±6 Mm and ±18 Mm in the time inter-
val of 2500−2800 s. The solid curve shows plasma number density
in units of 1011 cm−3. The dashed curve shows velocity normalized
to 400 km s−1.

study the phase shift between the velocity and density oscilla-
tions and compare our simulation results with analytic theory.
In Fig. 2 we plot time series, outputted at ±6 and ±18 Mm, of
the plasma number density in units of 1011 cm−3 and velocity,
normalized to 400 km s−1. These points were selected so that
one symmetric (with respect to the apex) pair (±6 Mm) is close
to the apex, while another pair (±18 Mm) is closer to the foot-
points. We choose these pairs because we wanted to compare
how the phase shift is affected by spatial location. One would
expect stronger upflows close to footpoints (due to chromo-
spheric evaporation), which in turn alters the phase shift. Note
that phase shift between the density and velocity is different
(see below) for standing and propagating (with flows) acoustic
waves). We gather from the graph that: (A) clear quasi-periodic
oscillations are present; (B) they are shifted with respect to
each other in time; (C) near the apex (±6 Mm) the phase shift
is close to that predicted by 1D analytic theory; (D) close to
the footpoints (±18 Mm) the phase shift is somewhat different
from the one predicted by 1D analytic theory. In the last case
the discrepancy can be attributed to the presence of flows near
the footpoints. The main reason for the overall deviation is due
to the fact that analytic theory does not take into account varia-
tions of background density and velocity in time and that den-
sity gradients in the transition region are not providing perfect
reflecting boundary conditions for the formation of standing
sound waves.

Another interesting result is that even with the wide
variation of the parameter space of the flare, its duration,
peak average temperature, etc., we always obtained a domi-
nant 2nd spatial harmonic of a standing sound wave with some
small admixture of 4th and sometimes 6th harmonics. Our ini-
tial guess was that this is due to the symmetric excitation of
these oscillations (recall that we use apex heat deposition). In
order to investigate the issue of excitation further we decided to
break the symmetry and put the heating source at one footpoint,
hoping to see excitation of odd harmonics 1st, 3rd, etc.

Fig. 3. Case of single footpoint (asymmetric) heating: average temper-
ature, temperature at apex, and number density at the apex as functions
of time.

2.2. Case of single footpoint (asymmetric) heating

For single footpoint heating we fix s0 = 30 Mm in Eq. (1)
in Nakariakov et al. (2004), i.e. (spatial) peak of the heating
is chosen to be at the bottom of the transition region (top of
chromosphere). Initially we run a code without flare heating,
i.e. we put α = 0 (in this manner we turn off flare heating).
E0 = 0.02 erg cm−3 s−1 was chosen such that in the steady (non-
flaring) case the average loop temperature stays at about 1 MK.
Then, we run the code with flare heating, i.e. we put α = 1, and
fix Qp at 1 × 104, so that it yields a peak average temperature
of about 30 MK. The results are presented in Fig. 3. During the
flare the apex temperature peaks at 38.38 MK while the num-
ber density at the apex peaks at 3.11 × 1011 cm−3. In this case,
as opposed to the case of symmetric (apex) heating, the veloc-
ity dynamics is quite different. Since the symmetry of heating
is broken there is a non-zero net flow through the apex at all
times. However, as in the symmetric heating case, we again
see quasi-periodic oscillations superimposed on the dynamics
of all physical quantities (cf. time interval of t = 2400−2700
in Fig. 3).

In Fig. 4 we present time-distance plots of velocity and den-
sity for the time interval 2400−2700 s, where the quasi-periodic
oscillations are most clearly seen. Here we again subtracted the
slowly varying background (with respect to oscillation period).
The picture is quite different from the case of apex (symmetric)
heating (compare it with Fig. 2 in Nakariakov et al. 2004). This
is because now the node in the velocity (at the apex) moves
back and forth periodically along the apex, and at later times
(t > 2550 s) stronger flows are now present. However, the
physical nature of the oscillations remains mainly the same.
i.e. a 2nd spatial harmonic of a sound wave, but now with an
oscillating node at the apex.

To investigate this further we plot in Fig. 5 a periodogram
(spectrum) of the velocity and density oscillatory component
time series outputted at the following three points: loop apex,
1/6 and 1/4 of the effective loop length. We gather from the
graph that the periodogram (spectrum) is more complex than
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Fig. 4. Time-distance plots of the velocity and density oscillatory com-
ponents in the time interval of 2400−2700 s for the case of single foot-
point (asymmetric) heating.

in the case of apex (symmetric) heating. In the velocity peri-
odogram at the apex there is a peak with a frequency higher
than that of 2nd spatial harmonic of a standing sound wave.
This is the frequency with which the node of the velocity oscil-
lates (see discussion in the previous paragraph). It has nothing
to do with the standing mode, but is dictated by the excitation
conditions of the loop which acts as a dynamic resonator. Let
us analyze now how this periodogram compares with 1D ana-
lytic theory. The peak in the periodogram corresponding to 1/6
of the effective loop length (dashed line) corresponds to a fre-
quency of about 0.017 Hz, i.e. the period of oscillation is 59 s.
Again, the period of a 2nd spatial harmonic of a standing sound
wave should be calculated from Eq. (3). If we substitute the ef-
fective loop length L = 48 Mm (see Fig. 4) and an average
temperature of 26 MK (see top panel in Fig. 3 in the range
of 2400−2700 s) we obtain 62 s, which is close to the result of
our numerical simulation (59 s).

Next, we studied the phase shift between velocity and den-
sity oscillations, and compare our simulation results with the
1D analytic theory. In Fig. 6 we produce a plot similar to Fig. 2,
but for the case of asymmetric heating. The deviation, which
is greater than in the case of apex (symmetric) heating, can
again be attributed to the over-simplification of the 1D analytic
theory, which does not take into account time variation of the
background physical quantities and imperfection of the reflect-
ing boundary conditions (see above). More importantly, in the
asymmetric case strong flows are present throughout the flare
simulation time. Thus, if linear time dependence is assumed,
which is relevant within the short interval 2400−2700 s of the
flare, then Eqs. (1) and (2) would be modified such that phase
shifts would vary secularly in time. This is similar to that seen
in Fig. 6.

Yet another interesting observation comes from the follow-
ing argument: in a steady 1D case analytic theory predicts
that the phase shift between the density and velocity should
be (A) zero for for a propagating acoustic wave and (B) quar-
ter of a period for the standing acoustic wave. Since in the

Fig. 5. As is Fig. 1 but for the case of single footpoint (asymmetric)
heating. Time interval here is 2400−2700 s.

Fig. 6. As in Fig. 2, but for the case of single footpoint (asymmetric)
heating. Time interval here is 2400−2700 s.

asymmetric case strong flows are present, we see less phase
shift between the velocity and density in Fig. 6 as one would
expect.

Thus, the results of the present study provide further, and
more definitive proof than in Nakariakov et al. (2004) that
these oscillations are indeed the 2nd spatial harmonic of a
standing sound wave. However, the present work also reveals
that in the case of single footpoint (asymmetric) heating the
physical nature of the oscillations is more complex, as the
node in the velocity oscillates along the apex and net flows are
present.

3. Conclusions

Initially we used a 1D radiative hydrodynamics loop model
which incorporates the effects of gravitational stratification,
heat conduction, radiative losses, added external heat input,
presence of helium, hydrodynamic non-linearity, and bulk
Braginskii viscosity to simulate flares (Tsiklauri et al. 2004).
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As a byproduct of that study, in practically all the numeri-
cal runs quasi-periodic oscillations in all physical quantities
were detected (Nakariakov et al. 2004). Such oscillations are
frequently seen during the solar flares observed in X-rays,
8−20 keV (e.g., Terekhov et al. 2002) as well as stellar flares
observed in white-light (e.g., Mathioudakis et al. 2003). Our
present analysis shows that quasi-periodic oscillations seen in
our numerical simulations bear many similar features com-
pared to observational datasets. In this work we tried to answer
important outstanding questions (cf. Introduction section) that
arose from the previous analysis (Nakariakov et al. 2004).

In summary the present study (and Nakariakov et al. 2004)
established the following features:

– We show that the time dependences of density and tem-
perature in a flaring loops contain well-pronounced quasi-
harmonic oscillations associated with standing slow mag-
netoacoustic modes of the loop.

– For a wide range of physical parameters, the dominant
mode is the second spatial harmonic, with a velocity os-
cillation node and the density oscillation maximum at the
loop apex. This result is practically independent of the po-
sitioning of the heat deposition in the loop.

– Because of the change of the background temperature and
density, and the fact that density gradients in the transition
region are not providing perfect reflecting boundary condi-
tions for the formation of standing sound waves, the phase
shift between the density and velocity perturbations is not
exactly equal to a quarter of a period.

– We conclude that the oscillations in the white light, radio
and X-ray light curves observed during solar and stellar
flares may be produced by slow standing modes, with the
period determined by the loop temperature and length.

– For a typical solar flaring loop the period of oscillations
is shown to be about a few minutes, while amplitudes are
typically of a few percent.

The novelty of this study is that by studying the spectrum and
phase shift of these oscillations we provide more definite proof
that these oscillations are indeed the 2nd harmonic of a stand-
ing sound wave, and that the single footpoint (asymmetric) heat

positioning still produces 2nd spatial harmonics, although it is
more complex than the apex (symmetric) heating as the node
in the velocity oscillates along the apex and net flows are also
present.
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