
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/3602

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

Modelling Recursion

by

Mojtaba Ammari-Allahyari

A thesis submitted for the degree of Doctor of

Philosophy in Mathematics Education

University of Warwick, Institute of Education

March 2008

In memory of my Grandfather,

A great man who taught me the language of nature!

Declaration

I declare that this thesis was carried on in accordance with the regulations of

the University of Warwick. This research is my own work and it has not been

submitted for any other degree.

This thesis has not been presented to any other University for examination

either in the United Kingdom or overseas.

Signed: Mojtaba Ammari-Allahyari Date: 12
th

 July 2010

 1

Acknowledgment

First and foremost I would like to acknowledge the debt I owe to Professor

Dave Pratt who, as both friend and supervisor, gave me the encouragement and

direction to construct a thesis. The outcome owes much to his inspiration.

Thanks also to Dr Peter Johnston-Wilder and the members and my colleagues

at Warwick Institute of Education. I am grateful for your help and concern.

I am grateful for the bursary that enabled me to embark on this PhD. It was

awarded by the National office of “World Mathematical Year 2000”, which

was assigned by the International Mathematical Union (IMU) and supported by

UNESCO in Iran and MSRT (Ministry of Science, Research, & Technology of

Iran).

Thanks to all the students who worked with me.

Thanks also to my dear friends for their support during my journey towards

this PhD, in particular Miss Katia Merine and Mr Reza Shahrjerdi.

Special thanks to my mother, father, and my sister without whose continual

support and assurance I would not have been able to finish this journey.

Finally, a short acknowledgement in Persian, my mother tongue:

 بٌام خالق ُستی، هبدع بسرگ ّ بَ ّجْد آّرًدٍ ازلی ّ ابدی داًص

در ایراى ّ ّزارت علْم، یًْسکْ دفتر تشکر هیکٌن از ستاد هلی سال جِاًی ریاضیات ّابستَ بَ

هْزش ریاضی در ایراى بَ آدکترای اعسام دّرٍایراى کَ با برگساری کٌکْرتحقیقات ّ فٌاّری

.ک ًوْدًدپیشرفت ایي داًص در ایراى کو

 2

 Table of Contents

Declaration ..
Acknowledgment .. 1

Table of Contents .. 2
Table of Figures .. 5
Table of Tables .. 11
Table of Programs ... 12
Table of Flowcharts... 13

Abstract 14

1. Introduction ... 18
1.1. Overview ... 18

1.2. My story toward recursion .. 18
1.3. Pedagogical account.. 21
1.4. Epistemological issues .. 22
1.5. Research Themes .. 25
1.6. Structure of the Thesis .. 26

2. Review of the Literature ... 29

2.1. Overview ... 29
PART ONE ... 29

2.2. Recursion and its Essential Components .. 29
2.2.1. Essential Components of Recursion ... 36

2.2.2. Tail and Embedded Recursion .. 39
PART TWO .. 41

2.3. Students‟ Difficulties with Understanding Recursion 41
2.3.1. Declarative vs. Imperative programming ... 43
2.3.2. Inherent complexity of Recursion ... 44

2.3.3. Need for a comprehensive definition for Recursion 45
2.3.4. Everyday analogies and Recursion ... 48

2.3.5. Fractals ... 50
2.3.6. Recursion vs. Iteration .. 52
2.3.7. Flow of Control ... 57
2.3.8. Functional abstraction ... 61

PART THREE ... 65
2.4. A Brief Introduction to Mental Models .. 66

2.4.1. Main Characteristics and Definition of Mental Models 67
2.5. Mental Models of Recursion ... 78
2.6. Computer-based Approach to Recursion .. 85
2.6.1. Pedagogical Aspects of Computer-based Tools 88
2.7. Summary ... 93

3. Aim of Research ... 91
3.1. Overview ... 91
3.2. Theoretical stance ... 94
3.3. Main Theme .. 96

3.4. Specific Aims .. 97
3.5. My Approach .. 98
4. Methodology ... 100

4.1. Overview ... 100

 3

4.2. History of Design-Based-Research (DBR) in a Nutshell 100
4.3. DBR and Traditional Methods .. 104
4.4. DBR in This Study .. 106
4.4.1. Developmental Dimension (Tool design) .. 109

4.4.2. Usage Dimension (Tool use) .. 109
4.5. Qualitative Research Methodology... 110
4.5.1. Semi-structured Interview ... 113
4.5.2. Participant Observation ... 115
4.6. Research Setting.. 117

4.6.1. Participants .. 117
4.6.2. Implementation ... 118

4.7. Methods for Data Collection ... 121

4.8. Methods for Data Analysis ... 124
4.9. Summary ... 126
5. The Evolution of the Computer-Based Domain 127
5.1. Overview ... 127
5.2. The Development of the Domains of Abstraction in a Nutshell 129

5.3. Iteration One – Treemenders ... 131
5.3.1. My Approach - Treemenders .. 133
5.3.2. Pen & paper task – Iteration One .. 136
5.3.3. Tool design – Treemenders ... 144

5.3.4. Tool use – Treemenders ... 147
5.3.5. Discussion – Treemenders .. 158

5.3.6. Issues & conjecture(s) for the next Iteration 163
5.4. Iteration Two – Spirals and Blank box ... 167

5.4.1. Overview ... 167
5.4.2. My Approach – Spirals ... 173

5.4.3. Pen & paper task – Iteration Two ... 176
5.4.4. Tool Design – The Blank-Box and the AVDA environment in Spirals

 .. 177

5.4.5. Tool Use – Spirals .. 193
5.4.6. Discussion – the Blank-box, Spiral and the AVDA environment .. 211

5.4.7. Issues & conjecture(s) for the next Iteration 217
6. Iteration Three – Tool design of the Treebuilder............................. 221

6.1. Overview ... 221
6.2. My Approach – Treebuilder ... 222

6.3. Tool design – Treebuilder and the AVDA environment 232
6.3.1. The main page of the Treebuilder domain of abstraction 235
6.3.2. Making a forest – Treebuilder domain of abstraction 236
6.3.3. Blue strategy – Treebuilder domain of abstraction 238
6.3.4. Red strategy – Treebuilder domain of abstraction 243

6.3.5. Your tree – Treebuilder domain of abstraction 246
6.4. Functioning features of the tool design ... 249
6.4.1. Functioning aspects in the Spirals domain 250
6.4.2. Functioning aspects in the Treebuilder domain 250

6.5. Summary ... 251
7. Iteratin Three – Tool Use of the Treebuilder 253
7.1. PART ONE – Spirals Domain .. 254

7.1.1. Simon‟s account on the Spirals domain – Iteration Three 254

 4

7.1.2. George & Peter‟s account on the Spiral domain – Iteration Three ... 266
7.1.3. Discussion of George & Peter‟s account on the Spirals – Iteration

Three .. 274
7.1.4. Richard and Philip‟s account on the Spirals domain – Iteration Three

 .. 278
7.1.5. Discussion of Richard and Philip‟s account on the Spirals – Iteration

Three .. 281
7.2. PART TWO – Students‟ Accounts on the Treebuilder domain 284
7.2.1. Simon‟s account on the Treebuilder domain 284

7.2.2. Richard and Philip‟s account on the Treebuilder domain 300
7.2.3. George & Peter‟s account on the Treebuilder domain 313

7.3. Findings and Results of the Third Iteration 327

7.4. Summary ... 331
8. Discussion and Conclusion ... 332
8.1. Overview ... 332
8.2. Summary of major findings of the research 332
8.2.1. Students‟ Knowledge of Recursion (Thinking-in-change) 333

8.2.2. Design constructs .. 336
8.3. Discussion ... 337
8.3.1. Students‟ thinking-in-change in AVDA ... 338
8.3.2. Recursion: A difficult concept .. 338

8.3.3. Delegatory Control Passing (DCP) ... 341
8.3.4. Terminating Confusion (TC) .. 342

8.3.5. Recursion vs. Iteration (RI) ... 343
8.3.6. Confluence of Tail and Embedded Recursion 343

8.3.7. Functional abstraction ... 344
8.3.8. Mental Model Evolution (MME) .. 344

8.3.9. Mental Compiling Process (MCP) .. 347
8.3.10. Elements of Mental Model of Recursion .. 348
8.4. Limitations of the study .. 354

8.5. Implications... 355
8.6. Final reflections .. 358

Reference... 361
Appendix A ... 381

 5

Table of Figures

Figure 1- A beautiful image of the Mandelbrot set on the front cover of Chaos

and Fractals .. 19

Figure 2- Divide and Conquer strategy for going on holiday 30
Figure 3- Divide and Conquer strategy for factorial function........................... 31
Figure 4- D&C strategy for determinant of a matrix of order „n‟ 31
Figure 5- The process of approaching and touching base case in computational

view ... 37

Figure 6- Visual aspect of meeting base case 0! = 1 ... 38

Figure 7- Final value for 4! after reaching the base case 38

Figure 8- The outcome of the above procedure in Logo programming

environment... 40
Figure 9- A binary tree, the output of the above procedure in Logo environment

 ... 41
Figure 10- Koch curve fractal ... 51

Figure 11- Rasmussen‟s taxonomy of the purpose of mental models

(Rasmussen 1979) ... 69
Figure 12- Kim‟s model of the relationship between knowledge acquisition and

mental models ... 71

Figure 13-Modelling of a mental model ... 76

Figure 14- The interaction between major components of design for abstraction

 ... 107
Figure 15- The process of conceptualization of a concept by researcher and

phenomenalization of it by students .. 107
Figure 16- The Camtasia recorder version that I have employed in this research

 ... 113
Figure 17- The participation classification of Gold (1969) 115
Figure 18- Three iterations of this research in the DBR framework............... 128

Figure 19- The cycle of design-test-modify and emerging issues-design....... 128
Figure 20- The images of the trees ((a) on the left, (b) on the right side of the

page) in iteration one ... 134

Figure 21- Image of the Koch curve in iteration one 135

Figure 22-The main interface of the Treemenders .. 135
Figure 23- Feng‟s experiment with angles (both 60 degrees) 150
Figure 24- Infinite loop by taking the length of the size of new stems equal to

the length of the main trunk (lines 92-94 Sarah and Jin) 154
Figure 25-The main interface of Spirals (AVDA approach) 170
Figure 26- The blue technique (iterative procedure) 170
Figure 27-The red technique (recursive procedure) .. 171
Figure 28-The comparison module (AVDA approach) 171

Figure 29- The blank-box module ... 172
Figure 30- Joshua tree in the pre-questionnaire task 176
Figure 31-The spiral shape patterns in the pre-questionnaire task 177

Figure 32-The interface of the blank-box module... 181
Figure 33-Control box in the blank-box module ... 182
Figure 34-Main page of the Spirals domain ... 184

 6

Figure 35- The order of execution of the modules in the Spirals domain by the

students .. 185
Figure 36-The blue technique (iterative)... 186
Figure 37-The red technique (recursive)... 188

Figure 38- The comparison page and AVDA innovation in the Spirals domain

 ... 189
Figure 39-The colour-codes in the iterative technique in the AVDA

environment... 190
Figure 40-Animation and the colour codes in the tail recursive procedure in the

AVDA environment .. 191
Figure 41-The box for showing the length of the last segment which was being

drawn by the turtle .. 192

Figure 42-The images of the pre-questionnaire task 194
Figure 43-The main interface of the Treebuilder domain 221
Figure 44-The main interface of the making a forest module 223
Figure 45-The main interface of the your tree module 224
Figure 46-The main interface of the red strategy module............................... 224

Figure 47-The main interface of the blue strategy module 225
Figure 48-The modules of the Treebuilder domain of abstraction 232
Figure 49- The main page of the Treebuilder domain of abstraction 235
Figure 50- The interface of the making a forest module 236

Figure 51- The interface of the blue strategy module 238
Figure 52- The embedded recursive procedure in the blue strategy 238

Figure 53- The shadow turtles alongside the main turtle, (a) when the main

turtle started to draw new red branches to the left (red colour), (b) when the

main turtle started to draw new branches to the right (yellow colour), (c) the

main interface of the blue strategy when the turtle was trying to draw some

yellow branches. The background colour of the box of the size is yellow 240
Figure 54- The interface of the red strategy module....................................... 243
Figure 55- Running the procedure with 110 as an initial value, and the

procedure is waiting for the student to press the continue button to run the first

recursive call ... 244

Figure 56- A new copy of the original procedure is generated and the turtle has

drawn the new stems after the continue button has been pressed twice 245

Figure 57- The AVDA approach to generating the new copies of the original

procedure and the way that the turtle draws the branches 246

Figure 58- The interface of the your tree module ... 246
Figure 59- The commands of the incomplete procedure which were given to

the students .. 247
Figure 60- The order of the modules in the third iteration 253
Figure 61- Simon was struggling to describe the recursive call 258

Figure 62- Simon was pointing to those commands that the recursive call was

calling .. 258
Figure 63-Simon was pointing to those commands that while „n‟ was greater

than one, were being executed by the procedure .. 259

Figure 64- Simon‟s evolution of tail recursion mental model after working with

the red and blue techniques (before his experience with the AVDA innovation)

 ... 260

 7

Figure 65- The interface of the blue technique in the comparison module, when

Simon was running it in the step mode ... 261
Figure 66- Simon was pointing to the colour codes of the commands of the

blue technique, which were being executed by the procedure in the comparison

module ... 261
Figure 67- The colour codes and animation of the commands of the red

technique in the AVDA environment of the comparison module 262
Figure 68- Simon‟s evolution of the mental models of the concept of tail

recursion after working in the AVDA environment 264

Figure 69- The stopping condition in the red technique 269
Figure 70- The recursive call in the red procedure ... 270

Figure 71- The second red within the red procedure (two reds)..................... 270

Figure 72- When the procedure reached its stopping condition and began to end

the instantiations ... 271
Figure 73- The end command that George mentioned in line 103 272
Figure 74- The commands that George said are being done while „n‟ is greater

than 1 ... 272

Figure 75- The commands that were being done after each time calling the red

procedure ... 273
Figure 76- George and Peter‟s evolution of the tail recursion mental model

after working with the red and blue techniques .. 277

Figure 77- The final output of the blue technique (a) and the red technique (b)

with n = 100 .. 279

Figure 78- Richard was pointing to the recursive call as re-definer of the value

of „n‟ .. 280

Figure 79- Richard and Philip‟s evolution of tail recursion mental model after

working with the red and blue techniques (before their experience with the

AVDA innovation) .. 282
Figure 80- Richard and Philip‟s evolution of the tail recursion mental model

after working with the red and blue techniques (after their experience with the

AVDA innovation) .. 283
Figure 81- The main interface of the making a forest module 284

Figure 82-Simon was pointing to the first branching point 286
Figure 83- The written commands for the embedded recursive procedure to

generate a binary tree in the blue strategy and the colour codes (red and yellow)

for the recursive calls .. 288

Figure 84- The interface of the red strategy after running it in the step mode290
Figure 85- The commands above the first recursive call that Simon was

pointing to are shown in the red box in this picture .. 291
Figure 86- Simon‟s evolution of embedded recursion mental model after

working with the first three modules of the Treebuilder domain 294

Figure 87- The main interface of the your tree module 294
Figure 88- Simon was pointing to the second vertical stem in the ternary tree

 ... 295
Figure 89- Simon‟s first attempt to complete the incomplete embedded

procedure by putting two lines in the first empty box 295
Figure 90-Simon was pointing to the last stem to the left in the middle part of

the ternary tree... 295

 8

Figure 91- Simon was pointing to the last stem to the left in the left part of the

ternary tree .. 296
Figure 92- The result of the amended procedure .. 296
Figure 93- Simon pointed to the first branching point to show the location of

the turtle after moving forward „n‟.. 297
Figure 94-Simon pointed to the new location of the turtle after the left 30

command ... 297
Figure 95- Simon ran the procedure without putting anything into the empty

boxes ... 297

Figure 96- Simon is pointing to the location of the turtle after going left 30 and

right 60 .. 298

Figure 97- (a) is the amended procedure by Simon and (b) is the output of the

amended recursive procedure .. 298
Figure 98- Simon was pointing to the location of the turtle, after his remarks on

line 61 .. 299
Figure 99- The tree that Richard made by taking both angles equal to 30 301
Figure 100-(a) Richard took the angle to the right zero and (b) The output of

the procedure with one angle zero .. 302
Figure 101- (a) The maximum values for the angles to the right and left, (b) the

output of the procedure with those initial values .. 303
Figure 102- The written embedded recursive procedure in the blue strategy, the

first and second recursive calls are shown by red and yellow colour codes

respectively ... 303

Figure 103- Richard was pointing to the number moving alongside the turtle to

show the length of the stem which was being drawn by the turtle 305

Figure 104- Richard and Philip‟s evolution of mental models of recursion after

their experience with the first three modules of the Treebuilder domain 306

Figure 105- (a) the image of the ternary tree at the bottom right corner of the

main interface of the your tree module in the Treebuilder domain, (b) the given

commands and two empty boxes to be filled by them 307

Figure 106- Richard was pointing to the slider showing the initial value of the

size... 307

Figure 107- Richard entered the command „forward „n‟ divided by three‟ into

the first box ... 308

Figure 108- Richard was pointing to the first stem into the left direction 308
Figure 109- Richard was pointing to the stem in the right direction 309

Figure 110- Richard and Philip‟s second attempt at completing the procedure

 ... 309
Figure 111- The output of the amended recursive procedure 310
Figure 112- Richard added a new stopping condition into the second box 311
Figure 113- The output of having one more stopping condition in the second

box ... 312
Figure 114- George was pointing to the main trunk and the stems which were

drawing to the left direction .. 314
Figure 115- The spiral-like part that George saw in the structure of the tree is

shown by the black colour in the above image ... 314
Figure 116- The shadow turtle shows that the main turtle is going to boost new

branches to the left with the colour yellow ... 315

Figure 117- The angles to the left and right changed to 50 by George. 315

 9

Figure 118- The image of the tree that George made by making both angles to

the left and right equal to 50 ... 316
Figure 119- George is pointing to the little stems on the right side of the tree

 ... 317

Figure 120- (a) angles to the right and left were chosen 18, (b) shows the final

output of the tree ... 317
Figure 121- Peter was pointing to the size of the stems until they got less than 5

and stop ... 318
Figure 122- George was pointing to the commands after the first recursive call

(the red line) after it got to its stopping condition, and he appreciated that the

procedure was resuming those suspended commands 319

Figure 123- George was pointing to the first branching point as the turtle was

about to start drawing the yellow branches to the left 320
Figure 124- George was pointing to the last stem which was drawn by the turtle

with the yellow colour to the left .. 320
Figure 125- George was pointing to the first red branches to the left and stated

that they look like a spiral ... 321

Figure 126- George was pointing to the little yellow branches to the right on

the top of the red branches .. 321
Figure 127- George was pointing to the movements of the turtle in the red

strategy with the initial value of n = 9 .. 322

Figure 128- The copies of the procedure which were being generated in the

AVDA environment in the red strategy .. 322

Figure 129- The spiral shape branches that George pointed in the red strategy

 ... 323

Figure 130- Turtle was drawing the little stems at the end of the branch to the

left and George pointed to it as a detailed part of the stem 323

Figure 131- When the procedure was doing the second recursive call it is

shown that the first recursive call is also called and it helped George to point to

it in the above image ... 325

Figure 132- As George mentioned, the procedure was calling the second

recursive call and he pointed to it in this image .. 325

Figure 133- The position in which George predicted that the new stems would

be drawn by the turtle .. 326

Figure 134- George was pointing to the branching point where he thought the

next branch would be drawn ... 326

Figure 135- The branch was drawn by the turtle from the branching point that

George predicted ... 326
Figure 136- George was pointing to the little stems at one of the end points and

explained that the same thing is going to be done by the turtle at the other

ending point ... 327

Figure 137-The pattern for the evolution of the students‟ mental models of

recursive procedures in the third iteration before using AVDA 330
Figure 138-The pattern for the evolution of the students‟ mental model of

recursive procedures in the third iteration after using AVDA 331

Figure 139- The developing path of evolution of students‟ mental models of

recursion .. 334
Figure 140- Integrated model of recursion from a functional abstraction

standpoint .. 351

 10

Figure 141- Coordinated Pyramid for Integrated Mental model of Recursion

(CPIM) .. 352

 11

Table of Tables

Table 1- Separation of tool design and recursion from functional abstraction

view ... 64

Table 2-Functional issues to distinguish the student‟s mental model and its

conceptualisation by the researcher .. 77

Table 3- An outline of the developmental and usage of the three iterations... 120

Table 4- The major issues were considered in development of tools in three

iterations .. 130

Table 5-Some interesting result from Sarah and Jin‟s experiment with

Treemenders .. 155

Table 6- The order of the tasks in the second iteration 174

Table 7-The outline of the design-purpose features of the task in the second

iteration ... 179

Table 8-The design features of the three modules of the Spirals domain of

abstraction ... 180

Table 9- The order of the tasks in the second iteration 230

Table 10- The design features of the four modules of the Treebuilder domain

of abstraction ... 234

Table 11- A functional abstraction perspective for the findings of this study on

the elements of mental models of recursion .. 349

 12

Table of Programs

Program 1- A tail recursive Logo procedure to make a spiral 39

Program 2- An embedded recursive procedure in Logo programming language

 ... 40

Program 3- An iterative Logo program to calculate factorial of a natural

number „n‟ .. .53

Program 4- A recursive Logo program to calculate factorial of a natural

number „n‟ ... 54

Program 5-The embedded recursive procedure in the Treemenders 136

Program 6-The incomplete recursive procedure and the blank-box 182

Program 7-The iterative procedure to generate a spiral in the blue technique 187

Program 8-The tail recursive program to generate a spiral in the red technique

 ... 188

 13

Table of Flowcharts

Flowchart 1- The control passing mechanism in a tail recursive procedure ... 227

Flowchart 2- The mechanism of flow in an embedded recursive call 228

Flowchart 3- the delegation of control between two recursive calls 229

 14

Abstract

The purpose of my research is to examine and explore the ways that

undergraduate students understand the concept of recursion. In order to do

this, I have designed computer-based software, which provides students with a

virtual and interactive environment where they can explore the concept of

recursion, and demonstrate and develop their knowledge of recursion through

active engagement. I have designed this computer-based software environment

with the aim of investigating how students think about recursion. My approach

is to design digital tools to facilitate students‟ understanding of recursion and to

expose that thinking.

My research investigates students‟ understanding of the hidden layers and

inherent complexity of recursion, including how they apply it within relevant

contexts. The software design embedded the idea of functional abstraction

around two basic principles of: „functioning‟ and „functionality‟. The

functionality principle focuses on what recursion achieve, and the functioning

dimension concerns how recursion is operationalised. I wanted to answer the

following crucial question: How does the recursive thinking of university

students evolve through using carefully designed digital tools?

In the process of exploring this main question, other questions emerged:

1. Do students understand the difference between recursion and iteration?

2. How is tail and embedded recursion understood by the students?

3. To what extent does prior knowledge of the concept of iteration

 15

influence students‟ understanding of tail and embedded recursion?

4. Why is it important to have a clear understanding of the control passing

mechanisms in order to understand recursion?

5. What is the role of functional abstraction in both, the design of

computer-based tools and the students‟ understanding of recursion?

6. How are students‟ mental models of recursion shaped by their

engagement with computer-based tools?

From a functional abstraction point of view almost all previous research into

the concept of recursion has focused on the functionality dimension. Typically,

it has focused on procedures for the calculation of the factorial of a natural

number, and students were tested to see if they are able to work out the values

of the a function recursively (Wiedenbeck, 1988; Anazi and Uesato, 1982) or if

they are able to recognize a recursive structure (Sooriamurthi, 2001; Kurland

and Pea, 1985). Also, I invented the Animative Visualisation in the Domain of

Abstraction (AVDA) which combines the functioning and functionality

principles regarding the concept of recursion. In the AVDA environment,

students are given the opportunity to explore the hidden layers and the

complicated behaviour of the control passing mechanisms of the concept of

recursion.

In addition, most of the textbooks in mathematics and computer sciences

usually fail to explain how to use recursion to solve a problem. Although it is

also true that text books do not typically explain how to use iteration to solve

 16

problems, students are able to draw on to facilitate solving iterative problems

(Pirolli et al, 1988).

My approach is inspired by how recursion can be found in everyday life and in

real world phenomena, such as fractal-shaped objects like trees and spirals.

This research strictly adheres to a Design Based Research methodology (DBR),

which is founded on the principle of the cycle of designing, testing (observing

the students‟ experiments with the design), analysing, and modifying (Barab

and Squire, 2004; Cobb and diSessa, 2003). My study was implemented

throughout three iterations. The results showed that in the AVDA (Animative

Visualisation in the Domain of Abstraction) environment students‟ thinking

about the concept of recursion changed significantly. In the AVDA

environment they were able to see and experience the complicated control

passing mechanism of the tail and embedded recursion, referred to a delegatory

control passing. This complicated control passing mechanism is a kind of

generalization of flow in the iterative procedures, which is discussed later in

the thesis.

My results show that, to model a spiral, students prefer to use iterative

techniques, rather than tail recursion. The AVDA environment helped students

to appreciate the delegatory control passing for tail recursive procedures.

However, they still demonstrated difficulties in understanding embedded

recursive procedures in modelling binary and ternary trees, particularly

regarding the transition of flow between recursive calls.

 17

Based on the results of my research, I have devised a model of the evolution of

students‟ mental model of recursion which I have called – the quasi-pyramid

model. This model was derived from applying functional abstraction including

both functionality and functioning principles. Pedagogic implications are

discussed. For example, the teaching of recursion might adopt „animative‟

visualization, which is of vitally important for students‟ understanding of latent

layers of recursion.

 18

1. Introduction

1.1. Overview

This chapter begins with an itinerary perspective, which explains the history of

how I became interested in undertaking research into the concept of recursion.

It then shows the way that the initial ideas of this research program were

shaped, and offers an action plan. This chapter also looks back upon my

previous experiences as a mathematics student – during the time that I was

completing my B.Sc. and M.Sc. in mathematics – as well as my many years of

teaching mathematical courses at university level. The primitive ideas available

during those years were mainly environs of how we can use graphical

presentation and related electronic gadgets to develop our learning skills as

students. In other words, to what extent and to what degree would we be able

to use, computers and digital gadgets to facilitate thinking about and

understanding of mathematical concepts?

My own personal statements here will be followed by a more pedagogical and

epistemological point of view relating to the concept of recursion.

1.2. My story toward recursion

Everything started by seeing a picture...

My journey into the world of recursion was triggered by a book called Chaos

and Fractals by Peitgen, Jurgens and Saupe (1992). At the time I had just

 19

finished my M.Sc. in Pure Mathematics. There was a fascinating image on the

front cover of the book that attracted me to delve further into it.

Figure 1- A beautiful image of the Mandelbrot set on the front cover of Chaos and

Fractals

Later, I was to realise that the image is called the Mandelbrot set after

Mandelbrot, who first introduced them in 1974. Whilst skimming quickly over

the content I noticed that a very serious and strong type of mathematics was

introduced in a simple and tangible style. When I was studying mathematics

during my first degree, and then later during my M.Sc., I always believed that

using computers and digital tools would help me to have a lucid intuition about

the concepts which were being studied. For instance, as a student on a calculus

course I noticed that those calculus books which contained graphical images to

illustrate the limits, integrals, derivatives, etc. played a significant role in the

accretion of my ability in meaning-making and understanding concepts.

 20

This realisation persuaded me to consider applying computer and digital tools

and using fractals to facilitate the teaching and learning of mathematical

concepts.

There were two reasons behind this idea, the first being that computers can act

as a facilitator for constructing new knowledge by providing tangible

presentation in an interactive environment. The second was based on using

fractals as convincing and persuading objects for students to work with

mathematical concepts before knowing them. Moreover, my teaching

experiments with university level students convinced me that using computers

and digital tools could play a significant role in increasing the students‟ ability

to learn mathematical concepts. For example, when they were studying

calculus, some mathematical software packages like MAPLE were very helpful

to give them an appropriate intuition of the functions when they wanted to

calculate limits, integrals or derivatives.

When I encountered these fascinating and wonderful fractal images, it became

apparent to me that only an elementary knowledge about mathematics was

needed to be able to work with them. I believed that they might attract students

because of their amazing beauty and could have the potential to persuade

students to work with mathematical objects. However, this raised an important

question, how can we use these potentials in the world of mathematics.

 In considering the solution to the above question I noticed that fractals

strongly depend on the concept of recursion. In fact, they can only be defined

 21

recursively. So, if you want students to use fractals as a facilitator to learning

other mathematical concepts, perhaps you need to make sure that they have no

problem understanding them at the first stage. Therefore, my focus of attention

switched to the concept of recursion and investigating how students understand

this concept. At first glance, it seems that the concept of recursion has no

problematic part, but I soon realised that the complicated mechanism of the

concept is not recognised easily by students. The next section concentrates on

the pedagogical issues related to the concept of recursion.

1.3. Pedagogical account

The concept of recursion is one of the subjects, which is fundamentally

difficult in mathematics and related disciplines. The reasons for this difficulty

can be seen from two perspectives. The first is the lack of analogies in

everyday experiments and intuitions of the concept of recursion. The second is

rooted in its inherent complicated mechanism of recursion. The gap between

formal mathematical concepts and everyday life analogies is of great

importance from a pedagogical perspective. It is particularly visible for the

concept of recursion as a consequence of the aforementioned problems with the

concept of recursion. Finding links and bridges between formal explanations of

recursion and informal analogies in everyday life seems to be a difficult task.

It is also hard to find a definition of the concept of recursion which is

acceptable for most researchers and authors in text books. In addition,

traditional teaching methods of recursion, teaching it with emphasis on

 22

examples, rather than explaining its main components, also make it a difficult

concept for the students to learn.

If we argue that the difficulty of the concept of recursion is due to its inherently

complicated mechanism, which underpins the challenges of mathematical

pedagogy, the next important issue is which specific meanings we would like

students to acquire. Perhaps these difficulties will be significantly reduced if

we can find an appropriate way to uncover the roots of these difficulties. This

might be considered as a starting point in employing the digital tools and

computers to reveal the hidden layers of complexity of the concept of

recursion. The next section of this introduction will describe the

epistemological issues of the concept of recursion.

1.4. Epistemological issues

From an epistemological point of view, the concept of recursion lies in the

intersection of different disciplines. Basically, it is widely used in mathematics

and computer sciences. The concept of recursion is considered as an

interdisciplinary concept. The first danger for interdisciplinary concepts is the

challenge for a comprehensive definition. Lack of any commonly accepted

definition of recursion for each of the disciplines is one of the biggest

epistemological challenges for interdisciplinary concepts like recursion. In

particular, the lack of a clear and comprehensive definition of the concept of

recursion, which distinguishes the characteristics of mathematical and

computer sciences, is a major difficulty in introducing this concept in both

disciplines.

 23

In both mathematical and computer science disciplines, recursion is usually

defined in a stereotypical way. Most mathematical text books define recursion

by introducing a recursive sequence or function. Similarly, the computer

sciences mainly define it by presenting the classical example of a factorial of a

natural number. A lack of a clear definition in both disciplines is noticeable.

The nature of recursion, and its components in mathematical topics, is also

different from computer sciences. Therefore, it seems that each of these

disciplines declares its own epistemology for the concept of recursion. On the

one hand, mathematics (a conceptual view) regards recursion as a function
1

which is applied within its own definition. This application has an end point if

and only if the function has a limit. On the other hand, computer sciences (a

procedural view) consider recursion as a procedure which starts with an initial

program and uses itself as its sub-procedure. And the calling process will be

terminated when the procedure meets its stopping condition. The starting and

terminating processes in mathematics and computer sciences are different and

they need distinct epistemological perspectives for the concept of recursion.

Yet, at the higher and more advanced level of mathematics, we find more exact

formal and symbolic definitions of recursion for one and more independent

variable functions
2
. In both procedural and conceptual views, recursion is

defined by introducing two main components, base case(s) and recursive

call(s). There is a subtle difference between these components in the

mathematical and computer science disciplines. The base case in mathematics

1
 The term function in this sentence is used as a mathematical concept.

2
 Bloch (2003) is a good reference for more information about higher level mathematics and

recursion.

 24

is mainly considered as the starting point or initial value. However, in

computer sciences, it is actually the stopping condition, and without having it

the recursive procedure will never stop and the result would be an infinite loop.

For instance, the Fibonacci sequence is a recursive function, starting with two

initial values (base cases):

a1 = 1, a2 = 1

The recursive part of the Fibonacci sequence is:

an = a(n-1) + a(n-2) for any n 3.

Most of the text books in both mathematics and computer sciences define and

introduce the concept of recursion by the providing examples of recursive

functions or procedures rather than a certain and clear definition of the concept

and its components.

The main focus in this thesis is the procedural view of the concept of recursion

and the reason is again rooted in my interest in employing fractals in

mathematics education. From this perspective recursion is considered to have

two main parts, the base case and the recursive call. The base case in this

approach operates as the stopping of the procedure and the procedure will be

terminated when all the recursive calls as well as the original procedure meet

the base case.

The following section will concentrate on the research themes of this study.

 25

1.5. Research Themes

This study addresses the themes presented in this chapter. Focus is placed on

the design of an environment in which students can articulate their own

knowledge of the concept of recursion by active engagement with computer–

based tools. In this context, computer-based tools are defined as, using

computers and designing dynamic environments or situations to provide

students with an interactive window
1
 with which to build their own new

knowledge based on their previous quasi-shaped knowledge. By quasi-shaped

knowledge I refer to the previously gained or understood and accepted

information about the concept which is being learnt, which obviously might not

be true. The design process of computer–based tools and digital gadgets in this

study is based principally on Papert‟s idea of computer-based tools and their

potential for presenting mathematical concepts, that is, recursion in the case of

this study.

My interest in fractals and using them in mathematics education led me to use

fractal-shaped objects such as trees and spirals for this research. These objects

were also chosen for two more reasons. Firstly, they can only be defined

recursively. Secondly, they can be used to bridge formal and informal

mathematics. My experiences in teaching mathematical courses at university

level revealed a huge gap between the formal mathematical concepts and the

informal mathematics that students were using in their everyday lives. Nunez et

1
 I used this term as Prof. Pratt has used it in 1989 “as a metaphor to describe the way in which

the computer screen offers insights” into the student‟s meaning-making as they use the tools. In

this study these computer-based environments are called domain f abstraction for abstracting

the concept of recursion by some on screen objects.

 26

al, (1993) term this “street mathematics versus school mathematics”. Thus I

decided to use trees and spirals as everyday examples of recursion to

phenomenalize the concept of recursion and bridge the gap between formal and

informal mathematics. The term phenomenalize is adopted from Pratt (1998)

and by that I mean the explanation of the students‟ understanding of the

contextualisation of a concept within a computer-based environment. Research

supporting this view will be presented in the next chapter when I review the

literature related to the concept of recursion.

The main conjecture that is examined in this PhD research program is that

students can become aware of the hidden layers and the inherent complexities

of the concept of recursion through active engagement with interactive

computer–based tools. In other words, how does the recursive thinking of

university students evolve through the use of carefully designed digital tools?

And what is the role of computer-based tools in this thinking evolution?

Therefore, the general approach of the study will be to design the computer–

based tools as a window to find out how students think about recursive

procedures and their indispensable components. Having set out the above

issues concerning students‟ perceptions of the concept of recursion, I also

intend to investigate how their perceptions are shaped and formed by the tools

that were designed and provided for them.

1.6. Structure of the Thesis

This section explains the structure of the thesis. Chapter One provides a brief

overview. Chapter Two reviews the previous research in the domain of

 27

recursion in further detail. It identifies some important gaps in the knowledge

of the concept of recursion. It also presents the aims of the research which will

emerge from a detailed review of the literature. Chapter Three outlines the

approach to and the aims of the study. The method and methodological issues

are discussed in Chapter Four. Chapter Five mainly investigates the design of

computer-based tools for studying students‟ thinking when they articulate

meanings about the concept of recursion through active engagement with

computer-based tools for the first and second iterations. It also reports on the

data of early phases of the study in iteration one (the Treemenders). This

section will be followed by the emergent issues from the data for the first

iteration and conjecture which will be reported to the second iteration‟s domain

(the Spirals). In defining the term domain I reference what is called the

domain of abstraction which is used for interactive computer-based tools.

Similarly, the second iteration will also be discussed from both design and the

students‟ thinking in this chapter. This will be followed by the emergent issues

and the conjectures, which will be reported in the final stage.

The final phase of the research will be presented in Chapters Six and Seven.

Chapter Six focuses largely on the tool design of the third iteration – the

Treebuilder. The main design features of the modules and tasks of the

Treebuilder are also discussed. Chapter Seven examines a number of student

accounts of the final phase of the computer-based tool. It reveals how they

construct and evolve their own mental models of the concept of recursion.

Chapter Seven is divided into two major parts. Part One is basically a re-

consideration of the Spirals tool and focuses for the most part on the students‟

 28

accounts of its three tasks. The second part of Chapter Seven is predominantly

about the students‟ accounts of the four modules of the Treebuilder.

 Finally, Chapter Eight summarises the findings of Chapter Seven and develops

these into new theoretical perspectives. It also discusses the wider implications

of this research, and finishes by presenting some pedagogical implications and

future steps.

 29

2. Review of the Literature

2.1. Overview

This chapter reviews the literature in the domain of the concept of recursion.

The literature review is divided into three parts. In the first part, I review the

research that has been undertaken into the essential components of recursion.

The second part addresses the difficulties students have in understanding and

applying the concept of recursion. Finally, the third part, examines the

cognitive science approach on how students understand recursion and its

crucial components. My investigations into the research that has been carried

out regarding the idea of mental models of recursion are also included.

PART ONE

2.2. Recursion and its Essential Components

Recursion is an interdisciplinary concept between mathematics and computer

sciences. It is not only a mathematical concept but also a programming

technique. It can also be considered as a problem-solving strategy both in

programming and mathematical modelling (Sooriamurthi, 2001; McCracken,

1987). As a problem-solving strategy, recursion falls into the category of the

Divide and Conquer (D&C) problem solving strategy. This strategy is a top

down approach or top down strategy of problem-solving, which means that to

solve a problem it needs to be broken down into a number of smaller sub-

problems. The final answer to the original problem is the combination of the

 30

solutions of all the simpler sub-problems. For instance, to plan to go on

holiday, first we need to tackle a number of small sub-problems in order to

achieve the main goal, e.g. choosing the place to go, type of transport (personal

car, public transport, air, coach, etc.), booking hotels, and the cost, etc.

The following diagram shows how an original problem is connected to its sub-

problems. It is clear that some of the sub-problems of „going on holiday‟ are

different to the original problem itself. Which means the nature and structure of

booking a room is different from choosing a place to go or estimating the cost

of holiday.

Going on holiday

Choosing the place Financial issues

 …

 Choosing transport Booking hotel

Figure 2- Divide and Conquer strategy for going on holiday

However, in recursion the sub-problems have the same nature and structure of

the original problem on a smaller scale. This makes recursion a special case of

D&C problem solving strategy. In the case of recursion, the sub-problems of

the original problem have the same structure as the original problem.

 31

The following two examples show this special form D&C strategy in the case

of recursion. The first example is to find „n!‟ for a natural number „n‟. To solve

this problem we need to find „(n – 1)!‟ and to do that, we need to find „(n – 2)!‟

and so forth.

 n! = n (n – 1)!

(n – 1)! = (n – 1) (n – 2)!

.

.

.

3! = 3 2!

2! = 2 1!

1! = 1

Figure 3- Divide and Conquer strategy for factorial function

It is clear that all the sub-problems have the same structural nature of the

original problem, but with smaller natural numbers. The second example is

computing the determinant of an „n n‟ matrix. The D&C process is shown

below:

 Computing the determinant of a given matrix of order „n n‟

Computing the determinant of „n‟ sub-matrices of order „(n – 1) (n – 1)‟

Computing the determinant of „n . (n – 1)‟ sub-matrices of order „(n – 2) (n – 2)‟

.

.

.

Computing „n.(n – 1).(n – 2). … . 4.3‟ sub-matrices of order „2 2‟

Figure 4- D&C strategy for determinant of a matrix of order „n‟

 32

A number of researchers in mathematics and computer science have tried to

provide a satisfactory and convincing definition of the concept of recursion

(Gersting, J. L., 2007; Harvey, 1997; Wiedenbeck, 1988; Kessler and

Anderson, 1986). Unfortunately, we do not have a comprehensive and perfect

definition for recursion yet. The interdisciplinary nature of the concept of

recursion makes it more difficult to attain a transparent definition of this

concept in both mathematics and computer science. From a mathematical point

of view, recursion can be considered as an inductive process with no stopping

condition. In contrast, from a computer science perspective, recursion is a

computational technique, which needs to be stopped at some stage to avoid

infinite loops. This highlights the major difference between the structure of

recursion in mathematics and computer science.

Some researchers like Harvey (1997) and Kahney (1985) defined recursion

from a computational perspective. Harvey (1997) defined it as a process or

function which is able to recall itself, or use itself as its sub-process. The

struggle of researchers and authors can be easily seen. Kahney (1985) defines it

as follows:

“A process that is capable of triggering new instantiations and

back from terminated ones.” (p. 235)

Whereas some other researchers for example, Gersting (2007) tried to provide

a more universal picture of the concept. Gersting (2007) defines it as:

 33

“A definition in which the item being defined appears as part of

the definition is called an inductive definition or a recursive

definition
1
.” (p. 129)

She was aware of the fact that this definition is not a satisfactory definition and

hence adds:

“At first this seems like nonsense – how can we define

something in terms of itself?” (p. 129)

This statement shows that Gersting (along with many other researchers)

struggles to formulate an articulate definition. Her efforts to make the

definition as clear as possible cause more shortcomings regarding the definition

in those two mathematical and computational aspects. Gersting (2007)

continues:

“This works because there are two parts to a recursive

definition:

1. A basis, where some simple cases of the item being defined are

explicitly given

2. An inductive or recursive step, where new cases of the item

being defined are given in terms of previous cases

Part 1 gives us a place to start by providing some simple,

concrete cases; part 2 allows us to construct new cases from

1
 Emphasis in original

 34

these simple ones and then to construct still other cases from

these new ones, and so forth.” (ibid, p. 129)

In the latter part of the definition Gersting (2007) stated that „the base‟ in

recursion provides us a starting point. It indicates her tendency towards a

mathematical approach rather than a computational one. In a mathematical

approach there is no concern of moving towards infinity. However, in a

computational programming approach having a stopping condition is a must, to

avoid infinite loops.

Most mathematical text books define recursion in a stereotypical way.

Predominantly they use some stereotype examples like factorial of a natural

number or the Fibonacci sequence to define recursion. These examples are

explained in the following.

 Factorial function:

1! = 1 the base case

n! = n (n – 1)! the recursive call

 Fibonacci sequence:

121 aa

)2()1(nnn aaa for 3n .

 1, 1, 2, 3, 5, 8, 13, 21, ...,)()2()1(nnn aaa , …

There is no transparent explanation of the crucial components of recursion and

also the differences between two mathematical and computational approaches

 35

for recursion. The differences are almost overlooked by many authors and

researchers.

Tung et al, (2001) described this stereotypical approach to recursion by

distinguishing between understanding of the semantics of recursion and

applying it. They suggested that using examples and applying the concept

facilitate understanding of the semantics of it.

“Recursion seems to be an exception. Most learners are

required to write recursive programs before fully understanding

their behaviours. Due to the stereotypical nature of many

recursive programming problems, instructors usually use

example of recursive programming problems augmented with

„canned‟ problem-solving strategies to teach students” (p.

286).

Separation of „applying recursion‟ and „understanding recursion‟ is

what is called functional abstraction. Functional abstraction is about the

difference between „what‟ and „how‟ it will be done. This is discussed

in the second part of this chapter. This separation seems to have been

neglected in the literature that is available and will be focused on later

in this thesis.

The next section of the first part addresses the literature on the main

components of recursion.

 36

2.2.1. Essential Components of Recursion

Each recursive process or function whether in mathematics or computer

science (computational aspect) has two main components, base case(s) and

recursive call(s). Some recursive processes might have more than one base case

and recursive call. It has been mentioned above that base case has different

interpretation in mathematics and computer science. This makes this

component of recursion an important element of the definition of recursion in

both mathematics and computer science disciplines. Theoretically, it is called

the simplest form of the problem.

Broadly speaking, the base case is another dilemma in defining recursion in

mathematical and computational perspectives. As has already been mentioned

above, the base case is the first and simplest step in the process, which reduces

the problem to a manageable form that can be directly solved. In this style, the

base case can be considered as a trivial form of the problem. The problematic

issue is that the base case is not necessarily a starting point from a

computational view. For instance, in the Fibonacci sequence above, the base

cases are the starting point and they are the first two terms of the sequence. The

Fibonacci sequence is not a convergent sequence – which means that it does

not have any limit; this is quite natural from a mathematical point of view.

However, from a computational perspective, we need to consider a stopping

condition to avoid an infinite loop. Ginat and Shifroni (1999) argue that

“Recursion is an essential and unique tool for computational

problem solving. It encapsulates decomposition of a problem

 37

into sub-problems of the same kind. Although such

decompositions logically sound, it is not easily comprehended.

The problem solver has to carefully specify decomposition to

sub-problems and composition of the sub-problem solutions.”

(p. 127)

They also add that

“[…] the key emphasis in enhancing recursion formulation

should be at the abstract level of problem decomposition. That

is, divide – and – conquer at „the problem level‟ irrespective of

the machine implementation.” (p. 128)

From a computational point of view, after each time calling of the recursive

call the new sub-problem should approach nearer to the base case – which is

going to operate as a stopping condition. For instance, to calculate 4! one needs

to track the following steps:

 4! = 4 3!

3! = 3 2!

2! = 2 1!

1! = 1 0!

 0! = 1 the base case is touched so

1! = 1 1 = 1

2! = 2 1! = 2 1 = 2

3! = 3 2! = 3 2 = 6

And finally

4! = 4 3! = 4 6 = 24

Figure 5- The process of approaching and touching base case in computational view

 38

Figure 6- Visual aspect of meeting base case 0! = 1

Figure 7- Final value for 4! after reaching the base case

 39

2.2.2. Tail and Embedded Recursion

As mentioned above, the recursive call(s) is one of the indispensable

components of recursive procedures. There are two sorts of recursive processes

regarding the location of the recursive call(s) in recursive procedures. They are

called tail and embedded recursive processes. In tail recursion, the recursive

call appears in the last line of the procedure, before the „end‟, whereas in

embedded recursion, the recursive call(s) can be located at any other line of the

procedure. The following two Logo programs described these two types of

recursive procedures by making spiral and binary trees. The first program is a

tail recursive procedure to create a spiral.

To Spiral :size

If :size < 5 [STOP]

Forward :size

Right turn 60

Spiral :size / 2

End

Program 1- A tail recursive Logo procedure to make a spiral

Base case

Recursive call

 40

Figure 8- The outcome of the above procedure in Logo programming environment

The next program is an embedded recursive procedure with two recursive calls

to make a binary tree.

To Tree :size

If :size < 5 [STOP]

Forward :size

Left turn 30

Tree :size / 2

Right turn 60

Tree :size / 2

Left turn 30

Back :size

End

Program 2- An embedded recursive procedure in Logo programming language

First recursive call

Second recursive call

Base case-Stopping condition

 41

Figure 9- A binary tree, the output of the above procedure in Logo environment

Thus far, I have introduced the concept of recursion and its essential

components. In addition, some of the important shortcomings of the definition

of the concept of recursion as well as the interpretation of the base case in two

mathematical and computational perspectives have been described. In the next

part of this chapter I review the literature with regard to students‟ difficulties in

understanding the concept of recursion. This review for the most part

concentrates on the computational perspective of the concept of recursion. The

predominant reason behind this tendency, anchored in designing and using

computer-based tools for the concept of recursion, is the central theme of this

thesis.

PART TWO

2.3. Students‟ Difficulties with Understanding Recursion

It is widely acknowledged that recursion is one of the most difficult concepts

for students. Many students find recursion difficult to understand and to apply

in their problem-solving activities (Levy and Lapidot, 2002; Sooriamurthi,

 42

2001; Wanda, 2001; Segal, 1995; Harvey, 1993; Wiedenbeck, 1988; Kurland

and Pea, 1985; Anazi and Uesato, 1983). Levy and Lapidot (2002) summarise

this view:

 “It is generally accepted that recursion is one of the most

complicated and difficult-to-learn concepts for novice

programmers” (p. 89)

 Henderson and Romero (1989) also argue that

“[…] we have found that recursion is a very difficult concept for

student to learn.” (p. 27)

Students‟ difficulties with this concept are due to several reasons, which are

categorised as follows:

 Declarative vs. Imperative thinking;

 Inherent complexity of the concept;

 Need for a comprehensive definition and its components;

 Lack of everyday analogies;

 Recursion vs. Iteration;

 Flow of control;

 Functional abstraction.

There are a number of articles concerning the concept of recursion and its

structure – base case, recursive call, flow of control, etc. – which will be

discussed in more depth in this chapter (Sooriamurthi, 2001; Muramatsu and

 43

Pratt, 2001; Segal, 1995; Wiedenbeck, 1988; Kurland and Pea, 1985; Anazi

and Uesato, 1983). However, there are only few articles concerning the

definition of the concept of recursion (Harvey, 1997).

2.3.1. Declarative vs. Imperative programming

In the computer sciences, Declarative is used as opposed to Imperative (also

referred to as procedural) programming. Imperative programming is a sequence

of instructions for the computer to be executed one by one. In contrast,

declarative programming describes what something is like, rather than how it is

going to be created. In other words, in imperative programming, a program

specifies an algorithm to reach a goal in an explicit way. In contrast, in

declarative programming a program specifies the goal or state that needs to be

achieved and leaves the implementation of the appropriate algorithm to the

support software. The complex mechanism of recursion is more like

declarative routine than procedural style. For instance, a spreadsheet is

declarative while Logo procedural programs are imperative. Sooriamurthi

(2001) argues that:

 “It is important to emphasize that a recursive routine is to be

understood in one declarative reading of the routine. If one

starts to manually unravel the recursion then one is doing too

much work. The key is not to think too hard!” (p. 28)

 44

He also argues that the problems with understanding the concept of recursion is

rooted in “[…] insufficient exposure to declarative thinking in programming

context” (p. 25).

2.3.2. Inherent complexity of Recursion

Broadly speaking, due to its complex and uncommon structure, recursion is a

difficult concept to apprehend. Velazquez (2000) states that the

“[…] difficulty in learning recursion does not come from the

recursion concept itself, but from its interaction with other

mechanisms of imperative programming.” (p 310)

Sooriamurthi (2001), meanwhile, argues that the difference between

declarative and imperative strategies is one of the reasons for the complicated

nature of the concept of recursion particularly for programming as a new way

of thinking. He also adds that:

“In the world of mathematics, students are normally concerned

about the declarative “what part” and not so much (if not at

all) on an imperative “how part.” (Sooriamurthi, 2001)

This point, again, raises the necessity of distinguishing between mathematical

and computational dimensions of the concept of recursion.

 45

2.3.3. Need for a comprehensive definition for Recursion

Although many researchers and educators have researched around this concept

on a very wide range of issues, there is still no all-inclusive definition of

recursion. Leron and Zazkis (1985) distinguished between mathematical and

computational aspects of the concepts of recursion. He states that from the

mathematical view recursion is very close to mathematical induction and from

the computational view he considered recursion as a programming technique.

Ginat and Shifroni (1999), meanwhile, explain that:

“Recursion is an essential and unique tool for computational

problem solving. It encapsulates decomposition of a problem

into sub – problems of the same kind. Although such

decomposition is logically sound, it is not easily

comprehended.” (p. 127)

Wiedenbeck (1988) has further argued that a lack of lucid separation between

mathematical and programming forms of recursion confused students.

With regard to the appreciation of the essential components of recursion, the

base case is one of the most difficult parts of any recursive process or function.

Recognition of the base case is one of the most problematic aspects of

recursion (Haberman and Averbuch, 2002; Sooriamurthi, 2001; Kurland and

Pea, 1985).

The base case can be considered as a stopping condition and also as a trivial

part of the problem to be solved. The term “trivial part” is the simplest form of

 46

the problem in the Divide and Conquer problem–solving strategy. Haberman

and Averbuch (2002) distinguish between how the base case informs

mathematical and computational points of views as follows:

“There are two aspects of base cases. The first is based on a

declarative, abstract approach that treats base cases as the

smallest instances (in terms of problem size) of the problem for

which we know the answer immediately, without any efforts. It

may be the smallest concrete entity, a boundary value, or a

degenerated case. It also presents the “smallest” possible input

of the problem. The second aspect is based on the procedural

approach, and refers to the base case as a stopping condition.

In this sense, it represents the end of decomposing the problem

to smaller similar problems. In order to get a comprehensive

view of the role of base cases in recursion formulation, one

should adopt both the declarative and the procedural

approaches.” (p. 84)

Distinguishing between these two aspects of the base case, Haberman and

Averbuch (2002) ascertained the difficulty of this component of the concept of

recursion. However, this matter needs to be further investigated. The base case,

even as a stopping condition, can be considered in declarative routine. It is not

necessary to see the base case as a stopping condition in procedural

programming. Our example of the factorial of a natural number shows that in a

declarative perspective, the base case operates as a stopping condition. The

 47

base case in that declarative approach represents the end of decomposing the

problem into smaller and similar problems which can be considered as a

stopping condition. In this case, in each step of decomposition, one should

ensure that each recursive call of the problem approaches the base case. As

soon as the condition 1!0 is reached, the process stops all the previous

instantiations (Figures 6 and 8).

This process of approaching the base case after each time the recursive call is

called shows the subtle inter-relationships between the base case and the

recursive call within recursive procedures. These hidden internal mechanisms

make the concept of recursion hard to understand. The students‟ difficulty with

the other indispensable component of the concept of recursion, recursive

call(s), is anchored in their mental model of the recursion or mixing recursion

with iteration. Ginat and Shifroni (1999) describe this phenomenon as follows:

“The difficulties revealed in our study demonstrate that students

adhere to the iterative pattern of “forward accumulation”, due

to their confidence with the iteration construct, but lack of trust

and full understanding of the recursion mechanism.” (p. 130)

They pointed to the students‟ confidence with the iteration construct and their

lack of trust with recursion‟s mechanism. However, in their research there is

insufficient evidence regarding this natural tendency of the students. Anderson

et al, (1988) argue that the duality feature of the recursive call(s) is another

problematic aspect of the concept of recursion:

 48

“Another source of difficulty (especially in LISP) is the duality

of meaning in recursive procedure call. On the one hand the

call produces some resultant data; on the other hand it specifies

that an operation be carried out repeatedly. […] It can be data

or complex operation, depending on your view.” (pp. 162-63)

They also add that:

“Because students often perseverate on one view of recursion,

they are often blinded to solutions that could be easily attained

from the other view.” (ibid, p. 163)

It seems that one of the reasons for students‟ confidence with iterative

processes compared to recursive ones is their intuitions and everyday life

experiments, which are described in the next section.

2.3.4. Everyday analogies and Recursion

Finding everyday life analogies for the concept of recursion is a very difficult

task. There are some researchers who have taken into account the role of lack

of everyday analogies in learning and applying recursion (Levy and Lapidot,

2002; Wiedenbeck, 1988; Pirolli and Anderson, 1985; Kurland and Pea, 1985).

Wiedenbeck (1988) argues that students can run and perform iteration easily

because in their everyday life they have seen and experienced plenty of

iterative analogies. However:

 49

“Part of the problem may be that students gain some initial

understanding of programming concepts from analogies to

everyday activities and their knowledge of the use of language,

whereas in the case of recursion few everyday analogies exist.

Those which are frequently used (seeing one‟s image reflected

in a row or mirrors, the painter painting a picture of himself

painting a picture of himself, etc.) … Thus, students are unlikely

to learn about recursion from analogy unless the analogies

come from programming itself. (p. 275)

Wiedenbeck argued that it is unlikely that students learn about recursion from

analogy. Yet, in my opinion, fractal-shaped objects – like spirals and trees –

can be considered and used as everyday analogies to facilitate student learning

of the concept of recursion. Wiedenbeck also notes that Anderson et al,

(1984) point out that although analogies might help students to learn about

recursion, they must be introduced carefully as they might cause a wrong

mental model of the concept of recursion. This is a very interesting point as it

relates the learning issues about the concept of recursion to the mental model

of the concept. “Anderson et al, [1984] found that novices often learn to

compose recursive programs by analogies to worked out recursive examples.

However,

“[…] in relying on analogy to examples there is the inherent

danger that students may develop inadequate or incorrect mental

models of what recursion does” (ibid, p. 275).

 50

Therefore, although the use of everyday analogies is helpful in assisting

learners to master recursive procedures, if the analogy is not correct, this might

cause more problems by allowing students to develop incorrect interpretations

and form wrong mental models of the concept of recursion. This is a very

important point that needs to be considered carefully and is discussed in the

third part of this chapter. My conjecture is that using fractal-shaped objects

might not only develop the students‟ ability in understanding and programming

recursion, but also assist them to form a viable mental model of the concept of

recursion. The next section of this part presents a brief introduction of fractals

and fractal-shaped objects.

2.3.5. Fractals

These mathematical objects were discovered by Mandelbrot in the 1970s.

Computers played a very important role in the discovery of fractals. They

provide us with an efficient work place to figure out patterns which had been

hidden before. Perhaps the question of “What really is a fractal?” is the most

challenging question about fractals since their conception in the 1970s by

Mandelbrot. In fact, there is no comprehensive definition for fractals, but

luckily they have some common characteristics which are accepted by almost

all experts in this realm. An object is called a fractal when:

 It is self-similar – it means that the object can be divided into certain

pieces, such that each of those small pieces are a copy of the original

one but in the smaller scale;

 51

 The object has a complex and multifaceted structure in the microscopic

scale;

 The object has a non-integer dimension – which means that despite

Euclidean geometry in which we have integer dimensions for the

objects – Line is one-dimensional, plane is 2-dimensional, space is 3-

dimensional, etc., fractals have non-integer dimensions which, shows

the degree of their complexity (Mandelbrot, 1982).

Figure 10- Koch curve fractal

For example, the Koch curve fractal (Figure 10) that was used in the first

iteration of this research is a fractal and its dimension is 1.26. From a

complexity perspective this number shows that this geometrical object is

somewhere between a line and a plane, because a line is a one-dimensional and

plane is a 2-dimensional and 1 < 1.26 < 2.

 52

Nowadays, you can easily see the footprints of fractals everywhere. This is

evident when looking at natural pattern, the complicated electronic patterns of

Internet networks, astronomical research on the distribution of galaxies, the

structure of DNA, and the shape of coastlines; clearly, fractals have a

significant role in modelling nature and so provide an appropriate situation for

learning by exploration. Fegers and Jonson (2002) have stated that fractals are

“[…] visual, relevant to many disciplines, very naturally lend

themselves to computer supported activities, and can be

understood (at some level) by students with relatively little

mathematical background.” (p. 70)

Recursion is one of the indispensable cornerstones of fractal geometry.

Fundamental elements of fractal geometry are recursions and self-similarities

instead of lines and circles, which are the basic elements of Euclid‟s geometry.

This is the main bridge between the subject of this study and fractals.

2.3.6. Recursion vs. Iteration

 The relationship between recursion and the concept of iteration is another

crucial aspect of the concept of recursion which is going to be discussed in this

section. Distinguishing between iteration and recursion is one of the most

common difficulties that students have in understanding and applying recursion

and it is one that many researchers have studied (Wanda, 2001; Ginat and

Shifroni, 1999; Turbak et al, 1999; Harvey, 1997; Wiedenbeck, 1988; Anazi

 53

and Uesato, 1982; Kurland and Pea, 1985). An iterative process is an

accumulation process; one stage starts after the previous stage ends. In

contrast, recursion is a process where one procedure (as a sub-procedure of

itself) begins and ends before its previous procedure ends. Turbak et al, (1999)

also explain a syntactical difference between loops and iterations:

“We use „iteration‟ to describe a step-by-step computational

process that determines the next values of a set of state

variables from their previous value. A „loop‟ is a particular

control structure, denoted by special syntax, for expressing

iteration, such as Java‟s WHILE and FOR constructs.” (p. 86)

The following programs calculate the factorial of a natural number „n‟ first

iteratively and then recursively.

To iterative-factorial :n

Make “I 1

Make “n! 1

While [:I < n + 1][make “I I + 1 :n! = :n! * I] (The repeating part)

Output :n!

End

Program 3- An iterative Logo program to calculate factorial of a natural number „n‟

 54

To recursive-factorial :n

If :n = 0 [output 1]

Output :n * recursive-factorial :(n – 1) (The recursive call)

End

Program 4- A recursive Logo program to calculate factorial of a natural number „n‟

They also stated that iteration is a tail recursion. For them, iteration is a

particular pattern of recursion:

“[…] all iterations are expressed via tail recursion, a particular

form of recursion.” (p. 88)

The influences of iteration and recursion have been of interest to many

researchers. Anazi and Uesato (1982) argue that having a prior understanding

of iteration facilitates a deeper understanding of recursion. They worked with

88 students in two groups of iterative–recursive and recursive–iterative. Their

research shows that 64% of the students who had prior experiments with

iteration were able to formulate the factorial function recursively. However,

only 33% of the students with no prior experiments with iteration were able to

implement the factorial function recursively. They therefore conclude that:

 “Recursive procedures may be acquired based on learning of

the corresponding iterative procedure.” (p. 100)

 55

They also make the point that the above conclusion is based only on an

appreciation of factorial function as a mathematical definition, not as a

computer program:

“We should be cautious when we try to extend the consideration

to more complex domains such as computer programs.” (p.

102)

Wiedenbeck (1988) criticized their work by using the factorial function

(mathematical view). She repeated their study by adding two more groups of

iterative – iterative and recursive – recursive. Wiedenbeck‟s results did not

support Anazi and Uesato‟s study. However, she carried out another study

using computer programs instead of a mathematical approach. Wiedenbeck

concluded in the case of computation that having prior experience of iteration

facilitated understanding recursion. Further support for Wiedenbeck‟s results

has been presented in Kessler and Anderson (1986). They focused on

transferring skills between performing iterative and recursive procedures. They

conclude that although writing procedures on iterative and recursive functions

does not facilitate writing procedures on recursion functions, having prior

experience of similar iterative procedures enabled increased sophistication in

dealing with “flow of control”, which is needed for understanding recursion.

The flow of control is deliberated in the next section. Kessler and Anderson

(1986) also claim that this result occurs because students have developed a

weak mental model of recursion, and this poor mental model of recursion

 56

hampers their study of iteration. Mental models of recursion will also be

discussed later in this chapter.

Ginat and Shifroni (1999) stated that discovering iteration is much easier than

recursion. They also explained that although decomposition of a problem into

its sub-problems of the same kind is logically coherent, it is not easily

understood by learners. Another learning difficulty which is related to the

composition of solutions to sub-problems is to achieve a global solution for the

original problem. Kurland and Pea (1985) explained that most of the students

view all forms of recursion as iteration. Some researchers believe that the

functioning of tail recursion is easier than embedded recursion (Leron and

Zazkis, 1985; Wiedenbeck, 1988; Turbak et. al, 1999):

“Recursion may be learned gradually, by bits, starting from

graphics-based tail-recursion.” (Leron and Zazkis, p. 28)

Turbak et al. (1999) also pointed that iteration is easier than recursion:

“Iterations expressed via tail recursion are often easier to read,

write, and reason about than loops. The rigid structure of

looping constructs makes it tricky to express iterations that may

terminate under multiple conditions, especially if some of the

conditions occur in the middle of a loop body or require

finalization actions”. (Turbak et al, p. 89)

 57

Turbak et al, also add that:

“The tail recursive approach is expressible in all general-

purpose programming language.” (ibid., p. 90)

Harvey (1997) points out that in iteration the procedure always repeats a

certain number of commands without any changes, whereas in recursion, the

procedure itself is called by one of the recursive calls with some new initial

values.

The literature that has been reviewed thus far demonstrates the problematic

inter-linkage between the two concepts of iteration and recursion, which needs

to be focused on from a closer perspective. My conjecture is that by comparing

and testing the similarities and differences in tail recursion and iteration, we

can reduce students‟ problems with embedded recursive procedures.

2.3.7. Flow of Control

The process of control passing is one of the most important factors in

understanding recursive procedures. In the above section, it was mentioned

that the flow of control is essential to understanding recursion (Sooriamurthi,

2001; Kessler and Anderson, 1986; Kurland and Pea, 1985). A clear

understanding of the flow of control in recursion has a direct relationship with

the functioning aspect of recursive calls. Having a coherent understanding of

the flow of control requires a lucid understanding of the concept of functional

 58

abstraction. Functional abstraction, in short, is the separation between what

needs to be done and how it will be done. This concept will be discussed in

more detail in the next section. The term flow of control can be looked at both

syntactically and semantically.

From a syntactical viewpoint, it is a control structure in the procedure. For

instance, as mentioned before, “[...] loop is a particular control structure,

denoted by special syntax” (Turbak et al, 2001). Semantically, this explains

the order of execution of the commands within a given procedure. In Logo,

programs will be executed line by line. However, it has the ability to run

recursion elegantly. As soon as the recursive call is encountered, the computer

inserts all the lines that have been called and suspends the execution of the rest

of the lines until the base case is reached. After reaching the base case, the

computer resumes execution of the lines that had been suspended.

These instantiations of going forward and halting the execution and going back

to execute the lines which have been called by the recursive call and then

resuming the lines that had been halted is called a „passive‟ flow of control

over the procedure by Kurland and Pea (1985). They performed a study with

students who had one year of Logo programming experience, noting that:

“When a Logo program is run, if a procedure references itself,

execution of that procedure is temporarily suspended, and

control is passed to a copy of the named procedure. Passing

control is “active” in the sense that the programmer is

 59

explicitly directing the program to execute a specific procedure.

However, when the execution of this instantiation of the

procedure is finished, control is automatically passed back to

the suspended procedure, and execution resumes at the point

where it left off. Passing of control in this case is “passive”

since the programmer did not need to specify where control

should be passed in the program.” (p. 237)

The situation in an embedded recursive procedure is almost the same.

However, there is a subtle difference in passing the control between the

recursive calls. Kurland and Pea have stated that

“[…] When a procedure is executed, if there are no further

calls to other procedures or to itself, execution proceeds line by

line to the end of the procedure. The last command of all

procedures is the END command. END signifies that the

execution of the current procedure has been completed and that

control is now passed to the procedure from which the current

one was called. END thus 1) signals the completion of the

execution of one logical unit in the program, and 2) directs the

flow of control back to the calling procedure so the program

can carry on.” (ibid, p.237)

They conclude that students have difficulty in running embedded recursive

procedures because they have a tendency to think in terms of iteration, rather

 60

than recursion. They state that “[t]he children were fundamentally misled by

thinking of recursion as looping” (ibid, p. 240). Students become more

confused when they notice that having a looping strategy is adequate and

satisfactory to work with “active” tail recursion, while it is not suitable

“[...] for embedded recursion, which requires an understanding of both

active and passive flow of control. The most pervasive problem for the

all children was this tendency to view all forms of recursion as

iteration.” (ibid, p. 240)

The control passing mechanism in the recursive procedures was referred to as

passive control passing by Kurland and Pea (1985). The term passive has been

used by them to describe the continuous moving back and forward between the

recursive calls and the stopping condition. I think this is a significant

movement in separating and distinguishing between the two different

mechanisms of control passing between iterative and recursive procedures.

However, I personally do not think that the term passive is a good choice for

this advanced, complicated control passing in recursive procedures. The term

passive seems to have a negative implication, rather than showing this

advanced control passing system.

The more the literature is reviewed, the greater the need for access to the latent

and hidden layers of the complicated mechanism of recursive procedures

becomes apparent. To understand this, we need to present and introduce it in

more sophisticated and highly developed strategies. To do so, having a high

 61

level of knowledge of the concept of functional abstraction is absolutely

necessary. In the next section I focus on the concept of functional abstraction

and its role in understanding recursion.

2.3.8. Functional abstraction

Functional abstraction is a very subtle concept which is considered a vital part

of any design task by many researchers (e.g. Sooriamurthi, 2001). In short, it

is about the ability to distinguish between functioning and functionality levels.

Papert (1985) in Mindstorms describes it as the difference between the ability

to drive a car and knowing how the engine works. The concept of functional

abstraction is central to both understanding and applying the recursive

procedures and functions. It is also vital in any design process (Sooriamurthi,

2001; Muramatsu and Pratt, 2001; Ginat and Shifroni, 1999, Kurland and Pea,

1985).

Sooriamurthi (2001) has studied the difficulties of undergraduate students in

understanding recursion. He attributes this to an“… inadequate appreciation of

the concept of functional abstraction” (p. 25).The key idea is that programming

is a new way of thinking, and it is more about design and problem-solving than

the syntactical perspectives of programming languages. Moreover, in

programming, the management of complexities is vital. Sooriamurthi (2001)

argues that when you cannot master the complexity, you need to handle it by

using a divide and conquer strategy or abstraction. Abstraction is simply

focusing on what needs to be done and, for the short-term, suspending how it is

 62

going to be done. Most students have difficulty in distinguishing the “what”

part and the “how” part. Sooriamurthi (2001) argues that:

“The issue is simply separation of concerns: the separation of

what needs to be done from how it will be done. We observed

that students normally have a hard time comprehending

recursion because they don‟t clearly differentiate between these

two forms of knowledge (the what vs. the how) and worse, tend

to focus on the latter – the how. The key to comprehending any

form of abstraction including recursion is to focus on the what

and down play the how.” (p. 25)

From this perspective, we can make a link between functional abstraction and

declarative – imperative programming paradigms that have already been

mentioned in this chapter.

The aforementioned declarative programming paradigm is about „what

something is like‟ rather than how it is going to be created. Anderson, Pirolli

and Farrell (1988) have also pointed to this important issue in tracking the flow

between the recursive calls. They suggest that “[…] it is often useful to

determine what has to be done to the result produced by a recursive call in

order to get a result for the current function call” (p. 163). The difference

between these two levels (the „what‟ vs. the „how‟) is vital and important. I

think focusing on this concept from the point of view of the learning and

design of computer-based tools needs to be further pondered. What I am trying

 63

to say is that to drive a car, a learner does not necessarily need to know

anything about the engine and its function. However, knowing about the

functioning of the engine might help the learner to develop his driving skill

regarding the engine‟s response in different driving situations. Therefore, to

acquire a certain skill in general, it is not necessary to know about the how.

Instead, one needs to know about the what.

When it comes to learning a particular mathematical concept, we are not

generally able to understand the concept by focusing only on the what. This is

the case with some mathematical concepts like dividing fractions (“turn upside

down and multiply”), or mathematical induction (“check that p(n) is true for

some natural n, now if for any natural n, p(n) implies p(n+1) then p(n) is

always true”). From a problem-solving perspective, one should bear in mind

whether our purpose is the final answer or whether the process of reaching it is

the key issue. Nevertheless, if finding the final answer to the question is the

purpose of a problem-solving strategy, there would be no place for the

functioning dimension of functional abstraction. For instance, acquiring the

skill of dividing two fractions can be grasped instrumentally (Skemp, 1976) in

a very quick and exact way i.e. turning it upside down and multiplying it. It is

very difficult and hard to say that the learner will have a clear understanding

about (½) ÷ (¼), which equals two. It may also be that finding the final answer

is not as easy as the above example.

Solving the questions by using recursion as a problem-solving strategy is one

of those situations in which reaching a final answer without having a proficient

 64

knowledge of the functioning level is not an easy task. Thus, the major point

regarding the concept of functional abstraction is to what extent one should

focus on the functioning level and to what extent the focus should be on

functionality in the learning and teaching of mathematical concepts.

Concentrating on this query is beyond the scope of this research. However,

with regard to the concept of recursion, due to its complex character, like its

complicated control passing process, one needs to ponder on the functioning

level, as well as its functionality.

Another essential issue in this realm is distinguishing between the design of the

computer-based tools and the learning and understanding of the concept of

recursion (Table 1).

Table 1- Separation of tool design and recursion from functional abstraction view

One might consider it as an obvious and trivial issue, but there are vital

differences between them. From a computer-based design stance there is

usually no need for the students to know anything about the functioning aspects

of the tool design, or, how the tool works, but inevitably it is important that the

 functioning functionality

Computer-based

tool design

How it is designed What is it going to do

Concept of

recursion

How it works What it does

 65

student learns its functionality; what the tool does. Sooriamurthi (2001) stated

that:

Functional abstraction is a corner stone strategy in good

software design. To master recursion is to master and acquire a

fundamental understanding of functional abstraction. (p. 25)

At this stage I would like to consider the literature from a wider perspective.

This helps me to analyze the students‟ thinking about the concept of recursion.

Also, it enables me to investigate the role and impact of computer-based tools

in teaching, learning recursion. In doing so, it is necessary that I review the

literature on students‟ mental models of recursion, situated cognition and

conceptual changes. These are the issues that are explained in the next part of

this chapter.

PART THREE

This part of the review of the literature is divided into two sections. The first

section concentrates on a brief review of the history and research that has been

taken on mental models in general. The second section focuses on the research

that undertaken on the mental models of recursion in particular.

 66

2.4. A Brief Introduction to Mental Models

The term „mental model‟ was cited as early as 1943 when Craik published

“The Nature of Explanation”. Craik (1943) recognized that knowledge and

understanding can be thought to operate as the application of “working

models” of particular phenomena in an individual‟s mind. A few years after,

the cognitive scientist, Johnson-Laird (1983) used and developed the concept

of “working models” as a small-scale model of reality. Basically, Craik (1943)

and the few other contemporary researchers at that time were using the concept

of recursion as a concept which had been accepted and used mainly based on

an intuitive feeling by the researchers rather than a strong epistemological

view. Therefore, for a long period of time there was no sign of any attempt

towards introducing a comprehensive and explicit definition of the concept of

mental model.

A few years after as a result of the symbioses combination of cognitive

psychology and computer sciences, some cognitive scientists like Johnson-

Laird, Stevens, and Gentner in 1983 produced two books which were mainly

focused on mental models from a cognitive science perspective. This shows

that although precedent researchers were using and working with mental

models over the twenty years following 1943, the mental model was first

introduced by Craik (1943) but there were no substantial movements on the

concept until the 1980s when the cognitive scientists began to use the concept.

However, it seems that despite many valuable efforts, the dilemma of defining

the concept of the mental model and its borders and intersections with some

 67

other similar concepts is still open. To achieve an acceptable and practical

definition of what the concept of a mental model is, and then to move towards

its interpretation and utility for recursion as a mathematical concept, the rest of

the section concentrates on introducing the pivotal characteristics of the mental

models from a cognitive science point of view. This will be followed by the

presentation of an almost plenary and precise definition of the concept of the

mental model.

2.4.1. Main Characteristics and Definition of Mental Models

The main focus of study of the concept of the mental model from a cognitive

perspective is to see how people interact and understand the world or the

system that they encounter. In order to present a definition of a mental model

which encapsulates the wide range of situations that the term „mental model‟

will be used to describe, the first objective is to find the major characteristics of

the concept from a cognitive perspective.

Norman (1983) characterised the human‟s mental model characteristics as

sloppy, indistinct knowledge, incomplete, and messy. His characteristics seem

to present a very clear image of the inaccuracy of mental models. However, the

predictability of these sorts of mental structures is another major characteristic

of humans‟ mental models that has apparently been overlooked in Norman‟s

explanation. He has also added that due to the abovementioned characteristics,

these models are more likely to be deficient because they might contain some

flawed, probably contradictory, and perhaps unnecessary concepts.

 68

Medin et al, (1990) describe mental models as a kind of knowledge structure

which will be employed by people to understand the world. Generally

speaking, one can sum up the main characteristics of students‟ mental models

as follows:

 They are inaccurate, incomplete, and messy interpretations of reality,

which means that based on these mental models whatever the student

thought is true might not be necessarily true in reality;

 These models are much simpler than the concept they present;

 These mental structures have to be predictable, which means that they

allow students to predict the possible future phases of the system at

hand.

People interact with systems and the world using their mental models.

However, accepting this logical necessity of the existence of mental models

does not eliminate conceptual and practical difficulties. Therefore, in studying

mental models, one must answer some fundamental questions like: what forms

do mental models take? How does their form affect their usage? Is guidance in

the use of models as important as their form? How can and should designers

and researchers attempt to affect and find out more about the student‟s mental

model?

Answering these questions illuminates the components of students‟ mental

model about the systems that are trying to learn, observe or study. However,

available research and literature does not seem to be able to adequately answer

these questions.

 69

In moving forward towards definition of a mental model Rasmussen (1979)

states that students generate and form mental models of systems to describe

why a system exists and what it looks like. These models also enable students

to explain the present state of the system. Using these models, students can also

predict the possible future states of a system. The following model shows the

connections between the three characteristics of mental models and their

purpose, state, function, and form.

 Purpose Why a system exists

Describing

 Function How a system operates

Explaining

 State What a system is doing

Predicting

 Form What a system looks like

Figure 11- Rasmussen‟s taxonomy of the purpose of mental models (Rasmussen 1979)

Kim (1993) also points to the difference between knowing „how‟ and knowing

„why‟. People acquire knowledge about the world by making their own mental

models. Kim (1993) distinguished between two forms of acquiring knowledge,

 70

“(1) the acquisition of skill or know-how, which implies the

physical ability to produce some action and (2) the acquisition of

know-why
1
, which implies the ability to articulate a conceptual

understanding of an experience.” (p. 38)

Knowing why a system exists enables students to understand and apply

their learning about the system; knowing how it operates shows what

they learnt about the system. Kim (1993) respectively termed these two

levels of acquisition of knowledge operational and conceptual learning.

At the operational level, students are basically involved with

implementations and observation of the system. However, at the

conceptual level, they are mainly focused on assessments of the

implementations and designing new approaches to be implemented and

observed.

Kim (1993) manipulated the connection between these two levels of

knowledge acquisition with two components of mental models: frameworks

and routines. For Kim, the operational level represents procedural learning in

which students learn the steps to complete a specific task. This is the know-

how level and will be routinely captured in students‟ mental models.

“Filling out entry forms, operating a piece of machinery, handling

a switchboard, and retooling a machine” can be considered as

1
 Italics in original

 71

some examples of routines that form part of a part of student‟s

mental model.” (p. 40)

At the conceptual level, however, is

“Thinking about why things are done in the first place […]

[leads] to new frameworks in the mental models. The new

frameworks in turn can open up opportunities for discontinuous

steps of improvements by reframing a problem in radically

different ways.” (ibid, p. 40)

Kim‟s model of the relations between the knowledge acquisition levels and the

components of mental models is demonstrated in the following table.

 Knowledge acquisition levels Mental model‟s components

Conceptual:

Operational:

Figure 12- Kim‟s model of the relationship between knowledge acquisition and mental

models

Kim‟s (1993) separation of know-why and know-how, and also Rasmussen‟s

(1979) taxonomy of mental models, illustrate the role and importance of the

Assess Design

Observe Implement

Frameworks

Routine

s

 72

concept of functional abstraction in the study of students‟ mental models. In

other words, distinguishing between the functionality and functioning of the

components of mental models holds great importance in the search for an

integrated form of the mental model of a system and in this thesis an integrated

model of mental models of the concept of recursion.

Mental models are not necessarily wholly accurate and they are also not

complete, but at the same time they are still useful for understanding processes.

Mental models which have formed in individual‟s minds are strongly based on

their beliefs. They will only be changed when new knowledge which ultimately

changes people‟s beliefs and understanding comes to light. Researchers in

various fields place differing interpretations on the concept of the mental

model. For example, Senge (1990) describes mental models as

“Deeply ingrained assumptions, generalizations or even pictures

or images that influence how we understand the world.” (p. 8)

In this way, Senge asserts that the individual‟s understanding of their

environment is made up of their knowledge, beliefs, experiences and

perceptions, and is also affected by their political, economical, social and

cultural backgrounds.

In the context of understanding physical systems, Gentner and Stevens (1987)

avoided directly defining mental models, but they explained that mental model

research is

 73

“[...] being characterized by careful examination of the way

people understand some domain of knowledge” (p. 1)

Johnson-Laird (1983) considered mental models as a representation of

understating. In this way, Johnson-Laird (1983) stated that

“[a] mental model can vary from a simple image or picture to a

very complex abstract or conceptual archetype built through

more detailed understanding.” (p. 8)

Two years later, Johnson –Laird (1983) mentioned that each individual mental

model is only one of a number of possible models which could be, and are used

in a particular context. As Spicer (1998) notes, Mantovani (1996) makes the

point that differences between mental models can occur at different levels of

context. That is, two people can observe the same event with different mental

models and describe it differently because they have noticed different details.

Evans (1989) recognises this as “selective perception”.

To some extent, the above explanation explains the function and structure of

mental models. Using these characteristics and functions, it is possible to

present a definition of a mental model as follows. Mental models are mental

mechanisms that people make to describe the purposes and forms of a system,

to explain the functioning and observing the state of it, and finally, to predict

the future state of the system which is being studied, learnt, or observed.

 74

Rasmussen‟s categorisation of mental models (1979), did not distinguish

between the researchers‟ and students‟ mental models. However, Norman

(1983) developed a new taxonomy of mental models by introducing the term

„conceptual model‟ for the researcher‟s mental model of the system being

studied. Norman (1983) asserted that students‟ view of the world, of

themselves, of their own capabilities, and of the tasks that they are asked to

perform, or topics they are asked to learn, depends heavily on the

conceptualizations that they bring to the task. But, how did they conceptualize

a system and how did they realize this process of conceptualization of a

particular system in the first place?

Norman (1983) introduced the idea of conceptualization. He differentiates

between the mental models of the expert and the novice. Norman (1983)

considered four things to model people‟s mental models: the target system (t);

the conceptual model of the target system (C(t)); the user‟s/ student‟s mental

model of the target system (M(t)); and, the researcher‟s conceptualization of

that model (C(M(t))). A conceptual model is the model which is invented by

the researcher as a supposedly accurate and consistent representation of the

system which is being studied, observed, or learnt – the target system. Mental

models are by nature evolving models in the mind of the user/ learner. They

evolve through interactions with the target system. Norman (1983) employed

the term „conceptual model‟ to delineate the model which is made by the

researcher.

 75

Norman (1983) also articulated that student‟s mental models will continuously

be modified and evolved towards an integrated and workable state through

interactions with the target system (t) and the conceptual model it (C(t)).

Though it seems that the terms „conceptual model‟ and „mental model‟ are

synonymous, Norman (1983) distinguished between them by separating

educational purposes and everyday life activities.

“[c]onceptual models are devised as tools for the understanding

or teaching of physical systems. Mental models are, what people

really have in their heads and what guide their use of things.” (p.

12)

He also introduced the term „conceptualization of a mental model‟, by which

he meant a model of a mental model. Thus, the researcher‟s conceptualization

of the student‟s mental model is the model of the student‟s mental model of the

target system.

Although it seems that there should be a direct relationship between the

conceptual and mental models, all too often there is not. Obviously, a student‟s

mental model reflects his/her beliefs about the system. Yet, what is not readily

seen is that sometimes the student‟s beliefs about the system do not necessarily

correspond with the conceptual model of the designers. Norman‟s model of

modelling of a mental model can be seen as follows:

t: the target system;

C(t): researcher‟s conceptual model of the target system;

 76

M(t): student‟s mental model of the target system;

C(M(t)): conceptualisation of the student‟s mental model of the target system

Figure 13-Modelling of a mental model

To understand students‟ mental models, one needs to observe their experiments

and interactions with the system and the conceptual models of the system. To

do so, Norman (1983) introduced three functional factors that can apply to both

mental and conceptual models: belief system, observability, and predictive

power. These factors are used to distinguish the components of the student‟s

mental models of the target system (M(t)) and the researcher‟s

conceptualisation of those mental models (C(t)). This separation is a direct

consequence of distinguishing C(t) – the conceptual model of the target system

– and M(t). Conceptualization of the student‟s mental model of the target

system is actually a model of a model. The following table describes the

differences between M(t) and C(M(t)) by using of the abovementioned three

functional factors (Norman, 1983, pp. 10-12).

t

M(t)

C(M(t))

C(t)

 77

M(t)

C(M(t))

Belief system

student‟s beliefs about the

target system acquired through

observation, instruction, or

inference.

Should contain a model of the

relevant parts of the student‟s

belief system.

Observability

There should be a

correspondence between the

components and states of the

mental model and the aspects

and state of the system that the

student can observe.

There should be a

correspondence between

components and observable

states of the C(M(t)) and the

observable aspects and states

of the target system.

Predictive

power

Model must have predictive

power either by applying rules

of inference or by procedural

derivation (in whatever

manner these properties may

be realized in the student)

Must include a knowledge

structure that makes it possible

for the person to use a mental

model to predict and

understand the physical

system.

Table 2-Functional issues to distinguish the student‟s mental model and its

conceptualisation by the researcher

Norman (1983) summarises that:

“[p]eople‟s mental models are apt to deficient in a number of

ways, perhaps including contradictory, erroneous, and

unnecessary concepts. As designers, it is our duty to develop more

coherent, useable mental models. …we must develop appropriate

experimental methods and discard our hopes of finding neat,

elegant mental models, but instead learn to understand the messy,

sloppy, incomplete, and distinct structures that people actually

have.” (p.14)

 78

This leads me on to explaining how and why mental models are relevant to

understanding of recursion. Study of students‟ mental model of recursion

provides me the way they think about recursion and would apply it in different

problem solving situation. The next section of this chapter focuses on the

research undertaken on the mental models of recursion.

2.5. Mental Models of Recursion

Recursion is one of the mental activities which is categorised as a highly

unfamiliar activity for students. This mental unfamiliarity causes students to

have difficulty in understanding it as a mathematical concept and applying it as

a problem-solving technique (Gotschi, et al, 2003). It has earlier been

mentioned that students/novices and researchers/experts differ in their mental

models of a system (Norman, 1983). Particularly, research on mental models of

recursion shows a significant difference between students‟ models and

researchers‟ models (Kahney, 1983, Gotschi, et al, 2003). Students show

possession of various inadequate models of recursion which mainly tends

towards an iterative/loop model. Kahney (1983) in his seminal work on mental

models of recursion asserted that novices and experts substantially differ in

their own models of the concept of recursion. Kahney (1983) defined a model

of recursion as

 “A process that is capable of triggering new instantiations of

itself, which control passing forward to successive instantiations

and back from terminated ones.” (p. 235)

 79

He showed that novices‟ models of recursion mostly differ from experts‟ viable

models of recursion, and he termed this a „copies model‟. Kahney (1983)

mentioned that it is not necessary for students to have a correct and viable

model of recursion, instead it is important that a student possesses a model,

even if it is an inadequate one, because this model can be considered as a base

that can be debugged to form a correct model.

His interpretation shows that Kahney (1983) believed in the evolving nature of

mental models. This evolution can progress through active engagement with

the concept and debugging the possible errors in the learners‟ mind.

Furthermore, it has been noted that novices‟ models tend towards the more

familiar concept of iteration (Kahney, 1983; Kurland and Pea, 1984). Kahney

(1983) noticed that experts have a „copies model‟ of recursion whilst novices

have a „loop model‟ of the concept of recursion. What he meant by the loop

model was an iterative interpretation of recursion. Based on this hypothesis,

Kahney focused on the student‟s possession of a copies model as a viable

model of recursion versus iteration as an inadequate model of recursion.

However, in his research, Kahney (1983) found that students have more than

one deficient models of recursion. He categorized these mental models of

recursion into five categories:

1. Copies model;

2. Loop model;

3. Null model;

4. Odd model;

5. Syntactic model.

 80

And he added that the only viable and correct model of the concept of

recursion is a copies model and the other models are incorrect and inaccurate

models which needed to be developed. A „copies‟ model of recursion is one

which is always viable and enables the possessor of the model to recognise the

forward flow of control in execution of the commands in the recursive

procedure in a sequential way, then suspending a few commands of the

procedure after each time calling of recursive call(s) which invokes new

instantiations of the original procedure, and then backward control passing

from the invoked copies of the procedure to their parents to terminate the

execution of the procedure.

By „loop‟ model, Kahney (1983) meant a deficient model of recursion which

bases itself iterative interpretation and ignores the process of generation of new

copies of the original procedure after each time calling of the recursive call(s).

A student using a loop model disregards the backward control passing from the

invoked copies to their parents. Kahney (1983) categorised students who do

not show possession of any kind of model for recursion into the category of

having a „Null‟ model of recursion. He used the term „odd‟ model to describe

those students who were not able to predict the behaviour of the system, and

had various misunderstandings of the recursion process. For instance, a

misunderstanding of STOP in the stopping condition of the procedure with the

END command which means the total termination of the procedure. The term

„syntactic‟ or „magic‟ model categorised those students who did not know how

recursion works, but they were able to recognise some segments of the

recursive procedure. These students were able to predict the future of the

 81

procedure based on their recognition of the syntactical segments of the

procedure, rather than having a clear understanding of mechanism of recursion.

Gotschi et al, tried to improve Kahney‟s (1983) categorisation of mental

models of recursion in 2003. They defined a student‟s mental model of

recursion as his/ her knowledge of recursion, and that this mental model is

feasible and practicable if enables students to follow the recursion procedure

truthfully and consistently. However, Gotschi et al, (2003) did not take the

forward and backward flow into account in their definition of the viable copies

model of recursion, by using the terms „truthfully and consistently‟, they tried

to cover those vital aspects and characteristics of a correct model of recursion.

Gotschi et al, (2003) acknowledged Kahney‟s categorisation of mental models

of recursion, but they added a few more models by distinguishing the nature

and mechanism of the active and passive control passing in the recursive

procedures. They identified further mental models employed in understanding

the concept of recursion as follows:

1. Step model;

2. Return-value model;

3. Algebraic model.

Those students who demonstrate possession of a „step model‟ evaluate

recursion as IF-THEN-ELSE. They have no idea of the mechanism of control

passing in the recursive procedures. Students with a „return-value model‟

consider the recursive call(s) as the instantiations to generate values which are

going to be evaluated and stored, and then combined to give the final answer.

Finally, those who demonstrate possession of the „algebraic model‟ manipulate

 82

the recursive procedure as an algebraic problem. Gotschi et al, (2003) asserted

that students with „syntactic/magic‟ and „active‟ models need only a little help

to be able to construct a viable copies model of recursion, whereas those with

the „step‟ and „return-value‟ models had many misconceptions about the

essential components and characteristics of recursion.

Ultimately, Gotschi et al, (2003) developed Kahney‟s study, and furthermore

they tried to measure the distance of knowledge of non-viable models of

recursion from the viable models of recursion. They defined a viable model of

recursion as follows:

“A student‟s mental model is viable if it allows them to

accurately represent the mechanics of recursion. Non-viable

mental models are constructed if students have misconceptions

about the mechanisms of recursion or have misconceptions

about concepts fundamental to recursion.” (p. 349)

What none of these researchers considered, however, is the „order‟ and

frequency of occurrence of these different models in the mind of students, or the

hierarchy of predominance of certain models over others in students‟ thinking.

What has been ignored is which none-viable model will be formed in the mind

of students first, and then how does it evolve into an integrated viable model of

recursion.

 83

Tung et al, (2001) supported Kahney‟s idea that having mental models – even

incomplete or deficient one, is better than having no model, because an

incomplete or deficient mental model of recursion has the potential to evolve

and change during experimentation and the debugging. Based on the potential

evolving nature of the mental models, Tung et al, (2001) tried to present an

explanation, albeit an imperfect one, of the hierarchy of forming mental models

in the minds of students as follows:

“Successful learners can acquire better problem solving skills

and advance gradually from the naive loop model, to the

intermediate syntactic, and finally to more sophisticated

analytic or analytic/synthesis models.” (p. 292)

What they meant by an analytic model derived from the idea of “[t]he solution

for a programming problem by analysing its input – output behaviour” (p.

292). This provides us with a primitive model of evolution of mental models of

the concept of recursion from the phase of the looping model to what they

called an „intermediate‟ syntactic model and then towards more sophisticated

models. The idea of the hierarchical evolution of mental models of recursion

will be elaborated later on in this thesis within a computer-based domains

environment.

Wu et al, (1998) even further developed Norman‟s (1983) idea of the

conceptualisation of a model of recursion. They differentiate between the

abstract and concrete conceptual models and try

 84

“[…] to understand how different types of conceptual models

and cognitive learning styles influence novice programmers

when learning recursion.” (p. 292).

They conclude that, “[c]oncrete conceptual models are better than

abstract conceptual models” for teaching recursion to novice

programmers (p. 292). They also conclude that

“[i]ndividuals with an abstract learning style tend to perform

better in learning programming.” (p 295)

Having reviewed the above literature on mental models of the concept of

recursion, from a functional abstraction point of view, it becomes apparent that

there is also a need to address the „functioning‟ dimension of the recursion.

The review revealed a big gap in the literature on the functioning aspect of

recursion.

It is clear that researchers have categorised the students‟ mental model of

recursion from the exclusive viewpoint of „functionality‟. Although this

categorisation is an appropriate base point from which start research the

functionality aspect of the students‟ mental model of recursion, there is

potential for further analysis and research to delve into this area from a

functioning dimension.

 85

In the final section of this chapter, I would like to review previous research

which has been undertaken in the area of using computer-based tools in the

monitoring of students‟ mental models of recursion. This is important to my

research and my design of a computer-based domain to monitor students‟

thinking about recursion.

2.6. Computer-based Approach to Recursion

This section focuses on the idea of using interactive computer-based tools to

introduce mathematical concepts. Schon (1983) stated that the interactive

computer-based tools are constructed to represent a virtual version of the real

world. In the computer-based conceptualisation, students are not only able to

develop their understanding of the concept which is being studied, but they can

also view and reflect on their work through the computer screen as a window

into the components of the concept.

Schon (1983) asserted that students‟ understanding of the concept could be

improved in interaction between their actions with the tasks in the computer-

based tools and the act of reflecting on their work. Reflecting on tasks they

have been involved in enables students to think about their attitudes and

assumptions, as well as their failures, which helps them to develop their

knowledge about the concept. In Mindstorms, Papert (1980) stated that

computer-based tools are appropriate environments in which students can learn

from their failures, and in which they are able to build up their knowledge

 86

about the concept in a gradual style. These environments also enable students

to link formal and informal knowledge. Papert (1980) explained that students

 “Learn to transfer habits of exploration from their personal

lives to the formal domain of scientific theory construction.” (p.

117)

Papert (1980) considered theses tools as “incubators for knowledge” (p. 121).

In this environment, learners are able to acquire knowledge through their own

efforts. Lakoff and Nunez (2000) argued that embodiment saturates all human

thinking. Papert (1980; 1993; 1996) continually asserts that computer-based

tools are appropriate tools for embodying mathematical concepts. A computer-

based tool puts students in a situation in which they can learn from their

experiences.

In her seminal work on the relationship between context and cognition, Lave

(1988) introduced the concept of „situated-ness‟. She elaborates on the

relationship between context and cognition, suggesting that cognition is a

socially situated activity. Therefore, artificial laboratory settings are not

appropriate for the study of cognition because they are separated from the

everyday context. For Lave, interactions with everyday situations deeply shape

the learning process. Situated cognition is a major shift from an individualistic

approach to a heuristic interaction within the context. In this study in particular,

this contextual interaction is designed in a computer-based tool environment.

 87

Lave‟s point of view led us to the idea that a student‟s knowledge of a

mathematical concept is an integrated form of small elements which have

already been gained in different situations. This important idea has been

developed by diSessa (1998). He called these pre-existing elements of

knowledge, which are acquired in different situations, „p-prims‟, a short

abbreviation for phenomenological primitives. In his seminal work „What

change in Conceptual change?‟ diSessa (1998) stated that a student‟s

knowledge of a phenomenon is based on well-structured pieces of knowledge –

or p-prims.

Collins (1988) summarised the benefits of acknowledging the fundamental role

of situation in cognition for the learning process as follows:

 Students learn in what conditions and situations they can apply the

knowledge;

 Various situations and settings put students in a creative problem-

solving state;

 Students will be able to see the implications and logical relationships

between the concepts in different situations;

 Students build their own knowledge and work with it in a structural

way. This way of building knowledge will allow them to apply and

modify their knowledge in later use. (Collins, 1988, pp. 1-3)

Computer-based tools can provide us with a valuable environment which can

be helpful in examining these sorts of heuristic issues. Papert (1980) stated that

Logo as an educational programming language provides an outstanding

 88

environment in which to investigate problem-solving strategies. For him,

Logo-based tools proved exceptionally advantageous in examining a wrong

answer to a problem or incorrect approaches towards new knowledge:

“Typically in math class, a child‟s reaction to a wrong answer

is to try to forget it as fast as possible.” (p. 61)

In contrast, in the computer-based tools environments, students are given the

opportunity of learning from their mistakes. This process can take place by

constructively using the error messages or unexpected feedback. The process

of debugging is a fundamental part of problem-solving and understanding a

procedure. Students in Papert‟s Logo-based tools are able to work with „the

new‟ subject to be learned or „the new‟ problem to be solved, and make

connections to „the old‟ subjects, which have already been acquired or „the old‟

problems that have already been solved. Thereby, in a progressive way forward

„the new‟ anchors in the mind and, in turn, becomes the „old‟ when you want to

move on to explore other new problems.

2.6.1. Pedagogical Aspects of Computer-based Tools

Edwards (1995) asserted that computer-based tools can also be used as

representational systems to embody particular mathematical concepts. In this

research I intend to use computer-based domains as a window to embody and

introduce the concept of recursion to the students by designing appropriate

tools.

 89

Noss and Hoyles (1996) stated that computer-based tools act as a window

through which students are able to look at their own thinking about

mathematical concepts. This window provides the researcher with the ability to

observe and investigate the students thinking, mental models, and construction

of meaning.

“[…] the computers, as we shall see, not only afford us a

particular sharp picture of mathematical meaning making;

they can also shape and remould the mathematical

knowledge and activity on view.” (p. 5)

This window provides the researcher an opportunity to observe the process and

evolution of „meaning-making‟, and see how student thinking forms and is

shaped through interaction with the computer-based tools. Computer-based

tools can be used to embody the concept of recursion and act as a window for

students when they are thinking about recursion through:

 Using before knowing – this gives the opportunity to experience a

concept and to work with its components in an interactive environment

before knowing its semantics. Thus, students have the opportunity to re-

create and re-build the knowledge; this is what Papert (1996) referred

as the power principle:

“The principle is called the power principle or "what comes first,

using it or 'getting it'?" The natural mode of acquiring most

 90

knowledge is through use leading to progressively deepening

understanding. […] The power principle re-inverts the

inversion.” (p. 98)

Students are able to use the concept before knowing it and, therefore,

they are able to construct and re-construct their own knowledge of

mathematical concepts through interaction with the digital

environments;

 Tools to think with – Papert (1980) asserted that computer-based tools

can be considered as tools that students can use to think about

mathematical concepts in depth. He also called the environment „math-

land‟; a space in which students are able to live with mathematical ideas

and objects, and by experiencing and thinking about them, develop their

knowledge about the mathematical concepts;

 Bridges formal and informal – by appropriately de-contextualizing

the formal mathematical knowledge and “phenomenalizing” (Pratt,

1998). By incorporating appropriate examples of everyday phenomena,

computer-based tools can provide an environment in which students

can bridge the gap between the formal and informal. In other words,

computer-based tools can be employed to make a bridge between the

abstract and concrete. Pratt‟s (1998) idea of „phenomenalizing‟

concerns designing meaningful tasks in which the computer-based

environments not only affect the representation of the mathematical

 91

concept, but also the process of interacting with it. I will develop this

idea more thoroughly below, when I talk about Purpose and Utility.

The most common interpretation of mathematical abstraction is the de-

contextualisation of mathematical concepts. An example of this can be

found in working with 3-D spaces in Linear algebra as triples, and

defining binary operations to add and product them. This interpretation

of abstraction serves to highlight the huge gap between formal

mathematics and informal mathematics. Pratt (1998) points to the need

for thinking about this gap by „phenomenalizing‟ the mathematical

concepts. Noss and Hoyles (1996) also mention distinguishing between

the process and the final product. Computer-based tools which provide

an interactive environment in which students evolve their understanding

of mathematical concepts gives the researcher tools with which to

observe this process, as well as the final result.

Wilensky (1993) considered abstraction as akin to „connections‟.

According to him, concrete-ness is not a property of a concept, but

rather a property of a person‟s relationship to a concept. Therefore, the

degree of concrete-ness of a concept depends on the number of

connections made between it and other concepts; the less connections

made by a student, results in the formation of a more abstract concept in

their mind. Noss and Hoyles (1996) develop Wilensky‟s idea of

abstraction when they refer to the term „web of connections‟ (p. 105).

This term is taken from a well known term, in the world of the Internet,

„World Wide Web‟ to articulate the idea of the webbing of connections

 92

in mathematical concepts. Noss and Hoyles (1990) state that students

construct mathematical ideas through making connections by using the

computer-based tools and webbing ideas together (pp. 220-227).

 Purpose and utility – it has been mentioned above that Pratt (1998)

explored the idea of „phenomenalizing‟ to design meaningful computer-

based tools and tasks through which we can make a bridge between the

utility provided and the purpose of doing those tasks. Ainley and Pratt

(2002) argue that when students engage in interaction with a purposeful

computer task, they can build and re-build their own knowledge, and

see the catalyst components of knowledge. Therefore, the engagement

factor is very important in the learning process. Computer-based tools

enable the researcher not only to provide students with an environment

in which they can engage and interact with the concept to be

learnt/studied through the utility that has been provided, but in order

that they can also see a glimpse of the purpose of doing that activity.

Ainley, Pratt, and Hansen (2006) assert that the purpose-utility is an

important factor in the designing of computer-based tools. They state

that engaging with purposeful computer-based tasks allows students

“to understand not simply how to carry out a technical, but

how and why that idea is useful, by applying it in a

purposeful context.” (p. 20)

 93

 Thinking-in-change – Pratt (1998) asserts that students can shape and

form their understanding of a concept through interaction with the

computer-based environments. This process is called „thinking-in-

change” by Noss and Hoyles (1996). They state that the thinking-in-

change process

“demands that we devote at least equal attention to what is to be

learnt, as well as the meanings the learner draws from the

educational experience.” (p. 10)

Computer-based tools provide the environment for the researcher to

investigate through the thinking-in-change process and observe how

students evolve their thinking about mathematical concepts.

2.7. Summary

In this chapter, I reviewed literature in three parts. The first part of the chapter

relates to the concept of recursion and its indispensable components. The

second part of the chapter concerns students‟ difficulties with the concept of

recursion and examines the different interpretation of recursion in

mathematical and computer science disciplines. It reveals that an appreciation

of the flow of control has a central role in understanding the complicated

mechanism of this concept. The literature mainly looks at the „functioning‟

aspects of the concept of recursion and its components. Consequently, the need

for focusing on the „functionality‟ aspects of recursion was one of the major

 94

gaps that have been revealed. The last part of the literature review mainly

concentrates on mental models and mental models of recursion. The

categorization of mental models of recursion is reviewed in this section, and

the chapter finishes by reviewing the literature on the role and importance of

computer-based tools in a students‟ learning process. This section discusses on

the role of computer-based tools to embody the mathematical concept through

using-before-knowing, bridging formal and informal by phenomenalization of

mathematical concepts with some on screen objects.

In using and designing computer-based tools as a way of examining and

monitoring students‟ thinking of recursion, I hope to develop and explore the

concept of recursion from a functional abstraction standpoint by investigating

both functioning and functionality aspects. I want to highlight the idea of

cognition and move forward to examine students‟ mental modes of recursion.

This will shed light on new theories and information about recursion which

will contribute towards the progress of research in this area. These ideas will be

developed in more detail in the following chapters.

 91

3. Aim of Research

3.1. Overview

This chapter explains the aims and objective of this research. It begins with a

brief section about the theoretical view followed by a review of the aims of this

research. This research concentrates on two related overarching themes:

1. The articulation of certain principles and heuristics to describe the

design of a computer-based domain for abstraction of recursion, and

2. The way that the students shape, change, and modify their thinking

about the concept of recursion.

One of the major intentions of designing such computer-based domains is to

see whether it is possible to plan an approach which introduces the formal

interdisciplinary concept of recursion into informal computer-based tools. The

observation of students‟ evolving thought in such a carefully designed

computer-based domain may provide a better understanding of how they shape

and modify their thinking about the concept of recursion by active engagement

with the specific features of those domains.

A review of the literature on the computer-based tools provided the basis to

suggest that such an approach might be possible. Computer-based domains

provide the environment where a formal mathematical concept like recursion

can be presented by informal everyday life objects like fractals and fractal-

 92

shaped objects on the screen. The term domain refers to the domain of

abstraction (Pratt et al, 2008). In such domains, it was necessary to provide

students with a purposefully designed computer-based environment for the

concept of recursion. From now on, in this thesis the terms „domain of

abstraction‟ refers to a computer-based tool for abstraction of the concept of

recursion. These domains provide students an environment, in which they

could think about the process of producing the final product throughout the

computer screen window. In order to expand upon my approach it is useful to

refer to Pratt‟s (1998) opinion which distinguishes between the process of

design and its final product.

“The approach draws its inspiration from the notion that it should be

easier to analyse and make sense of the design process as it is acted out

rather than through an examination of the final product.” (p. 66)

A design based research methodology will allow me to develop the computer-

based domains gradually and progressively, allowing me to observe how the

students express their thinking about recursion when engaging with, and using

the tools. Obviously, I cannot observe their actual thinking about recursion, but

I am able to measure and analyse the way that they use the tools and react to

certain features of the domains. and the way that they connect the process of

producing the final answer. Noss & Hoyles (1996) who introduced the notion

of a „window‟ to describe how computer-based tools can work to enable us to

see the way things are done, stated that

 93

“[…] the computer can help to make explicit that which is implicit, it

can draw attention to that which is often left unnoticed […] the

computer, as we shall see, not only affords us a particularly sharp

picture of mathematical meaning-making; it can shape and remould the

mathematical knowledge and activity on view.” (p. 5)

As the researcher, the computer-based domains acts as a window, into the

students‟ thinking about the concept of recursion and its indispensable

components. Simultaneously, these computer-based domains can act as a

window through which the concept of recursion can be observed by the

students. My aim is to design a transparent window through which students can

view and work with recursion and in doing so, encourage them to express their

thinking. It will assist me to gain more meaningful and detailed data.

Furthermore, throughout the active engagement with the computer-based

domains, the students are able to make new connections with their previous

knowledge about recursion. In this sense, my research is based on the idea of

„webbing‟, as described by Noss & Hoyles (1996). I have explored and

analysed the responses students make about the structures which they consider

to be useful for expressing the concept of recursion.

Taking into account the literature that has been reviewed, it can be seen that

students already possess certain heuristics and initiatives regarding recursion

and its components, for instance, iteration. Thus, one of the aims of my study is

to explore how students‟ initial intuitions, even incorrect ones, emerge,

develop, and change when they are placed in the interactive environment

 94

within computer-based domains. I want to focus on the students‟ thinking-in-

change process and how their own experiments and feedback shape their own

mental models of recursion. Distinguishing students‟ mental models of

recursion within computer-based domains enabled me to develop a

taxonomical model of students‟ evolution of their mental models from both

functioning and functionality dimensions.

3.2. Theoretical stance

This research focuses on the students‟ thinking about the concept of recursion

and its components. It is also aimed to examine how they change their thinking

and evolve their mental models of recursion in a computer-based environment.

Given the complexity of recursion and its two interrelated dimensions of

functionality and functioning, it was necessary to offer students some ideas

about the mechanism of control passing in recursion. Constructionism offers

some ideas about how such tools might be designed.

 Using – before – knowing:

To employ this idea in the research, I envisaged students writing

programming code or designing animated representations (Using)

in order to gain new insights into those functioning and

functionality dimensions (Knowing);

 Phenomenalizing:

 95

To phenomenalize the concept of recursion, I will need to create on

screen instantiations, so that the students might uncover the hidden

layers of the concept of recursion;

 Purpose & Utility:

Ainley & Pratt (2002) recognise that the computer-based tool acts

as a window in which the students find the task purposeful, and in

turn, this might lead to the students‟ appreciation of the utility of

recursion.

Although my design ideas are heavily shaped by constructionist literature, I do

not propose that this study is constructionist per se. Constructionist theory

advocates an approach towards teaching and learning, in which students are

encouraged to be in control of their learning and to take ownership of that

process.

Given the constraints of my research study, my intention is to research how

students‟ thinking about recursion changes and how this impacts on my

thoughts regarding the design of the computer-based domains. The lessons I

learned from the constructionist literature will enable me to develop an

effective window on that thinking-in-change, but my overall aspiration does

not lean towards a programme for teaching and learning.

 96

3.3. Main Themes

The literature reviewed I have reviewed for this research shows that using

everyday analogies to explain recursion has been neglected. For instance,

Wiedenbeck (1988) in her seminal work pointed that one of the reasons for

students‟ difficulty with the recursion is lack of everyday analogies. This gap

in the literature inspired me to fractals and fractal-shaped objects in order to

conceptualise the concept of recursion in a computer-based environment.

Having a clear understanding of the main components of recursion is an

essential factor in understanding and applying recursion (Kurland & Pea, 1984;

Anazi & Uesato, 1982; Sooriamurthi, 2001). My aim is enhance students‟

knowledge of these components in a computer-based domain.

As it mentioned before, the literature I have reviewed concentrates on the

functioning aspect, which reveals a big gap regarding the functionality of

recursion. This has convinced me to pay special attention to the functionality

aspect of recursion. Also, using computer-based domains to monitor and study

on the structure and evolution of mental models is another area that has been

overlooked in the literature. Gotschi et al, (2003) briefly mentioned the

advantages of having some non-viable models of recursion in the process

forming and shaping a viable model, but apart from this, there has not been a

serious attempt at using a computer-based tool to study student‟s mental

models of recursion, and to identify a hierarchical method of forming and

shaping mental models in students‟ minds.

 97

The other principal issue in my design is the role and importance of

visualisation techniques, like visual codes and animation. Providing students

with a visual platform for understanding the complex mechanism of recursion

will assist in the development of their knowledge and provide a suitable

method for me to analyse their experiments. Although some researchers like

Tung et al, (2001) and George (2000) worked on the visualisation of the

concept, there was no evidence of them investigating the functionality and

functioning aspect of recursion, by designing computer-based domains and

distinguishing between tail and embedded recursion.

3.4. Specific Aims

The explicit aims of my research are as follows:

1. How can design of computer-based domains reveal the latent layers of

the concept of recursion?

2. How can my tool design operate as a bridge between formal and

informal mathematical concepts, and recursion in particular?

3. Does the design of computer-based tools support students‟ perceptions

of the concept of recursion and its components?

4. How will the student‟s engagements with purposeful computer-based

domains allow them to shape, modify, and evolve their mental models of

the concept of recursion?

 98

5. To what extent can computer-based domains simplify and support

students‟ appreciation of recursion‟s functionality aspect regarding

control passing mechanism?

3.5. My Approach

The approach is to design a specific and purposeful computer-based domain to

act as a double opening faced window (Pratt 1998; Noss & Hoyles, 1996).

Through this window, I will be able to look at the process of the students‟

thinking about the concept of recursion.

I intend to use computer-based tools for probing university level students‟

thinking about recursion. The computer-based domains will be tested, modified

and re-designed using design based research (DBR) methodology (Cobb et al,

2003). DBR and its main characteristics will be discussed thoroughly in the

next chapter. However, broadly speaking, it is a process of designing, testing,

modifying and retesting the computer-based domain over a few stages – each

of these stages called iteration.

Each stage of the computer-based domain is based on how well the design

worked in the previous iteration. The first stage was based on the insights

gained from the literature and my own conjectures about the concept of

recursion. The next stages of tool design will be shaped by observation of

students using the tools, alongside insights gained from reflecting on the whole

design effort up to that point. I presented the initial results of each of the

 99

iterations at conferences and departmental seminars at Warwick University.

During these presentations, I had the opportunity to discuss the results with

other researchers. Some parts of the results have been, or are being, published

by the research conferences or in journals.

Having stated the major aims of the study, the next chapter of the thesis

focuses on the methodology that has been employed to implement this study.

 100

4. Methodology

4.1. Overview

This chapter explains the methods and methodologies that have been employed

to implement this research. The chapter is divided into nine sections. Sections

two, three, and four are dedicated to examining design based research

methodology; its history, and the way that I have employed it in this study. In

section five, I explain how I have also used qualitative research methodology.

These sections are followed by the research setting section and the methods of

collecting and analysing the data. The chapter concludes with a summary of its

sections, which leads to the next chapter which concentrates on the evolution

of the computer-based domains that have been invented and employed in this

research.

4.2. History of Design-Based-Research (DBR) in a Nutshell

Design Based Research (in short DBR) has recently received considerable

attention from many researchers in educational studies (Brown, 1992; Collins,

1992; Cobb et al, 2003; Design-based collective, 2003). It is considered as an

emerging framework that is able to lead to better educational research. The

fundamental assumption here is that cognition will occur during an interaction

between students‟ activities and a computer-based domain as the environment

in which the learning process takes place. Ann Brown (1992) and Allan Collins

(1992) referred to DBR as design experiments research methodology. diSessa

and Cobb (2004) described DBR as

 101

 “iterative, situated, and theory-based attempts simultaneously

to understand and improve educational processes” (p. 80).

DBR can be described as a continuous/ongoing cycle of design, testing,

analysis, modification, and re-design.

Design based research provides the researcher with an environment in which

he/she is able to study the student's learning process in a practical and realistic

learning situation. The researcher's involvement with the situation allows

him/her to track an evolving set of evidence in a systematic way. DBR has both

pragmatic and theoretical orientations, but it is mainly a dynamic, collaborative

approach. Cobb et al, (2003) have described it as follows:

“Design experiments are pragmatic as well as theoretical in

orientation in that the study of function – both of the design and

of the resulting ecology of learning – is at the heart of the

methodology”. (p. 9)

According to Ann Brown (1992) and Alan Collins (1992), one of the salient

characteristics of DBR is its provision for allowing the design and

contextualisation of research in practical situations, in collaboration with the

participants. Cobb et al, (2003) state that,

“Design experiments entail both „engineering‟ particular forms

of learning and systematically studying those forms of learning

 102

within the context defined by the means of supporting them. This

designed context is subject to test and revision, and the successive

iterations that result play a role similar to that of systematic

variation in experiment.” (p. 9)

Cobb et al, (2003) identify five interweaving characteristics of DBR. The first

characteristic is that,

 “The purpose of design experiments is to develop a class of

theories about the process of learning and the means that are

designed to support that learning.” (p. 10)

The learning process is not only about absorbing knowledge, but it is about the

way that students construct and evolve their mental models about the concept

which is being studied. The second characteristic of DBR describes it as a

 “highly interventionist nature of the methodology. Design studies

are typically test-beds for innovations. The intent is to investigate

the possibilities for educational improvement by bringing about

new forms of learning in order to study them.” (p. 10)

The third characteristic of DBR is that,

 103

“[d]esign experiments create the conditions for developing theories

[…] thus design experiments always have two faces: prospective

and reflective” (p. 10).

 DBR is prospective in the sense that design implementation begins,

“with a hypothesized learning process and the means of supporting

it in mind in order to expose the details of that process to scrutiny”

(p. 10).

DBR is reflective because it is a conjecture-driven method.

 “The initial design is a conjecture about the means of supporting a

particular form of learning that is to be tested. During the conduct

of the design study, however, more specialized conjecture are

typically framed and tested” (p. 10).

The forth characteristic of DBR is a result of its prospective-reflective feature,

which makes it as an iterative design. The iterative process requires the

researcher to be alert to observing and understanding evidence in a systematic

way. Finally, Cobb et al, (2003) stated that,

 “theories developed during the process of experiment are

humble not merely in the sense that they are concerned with

 104

domain-specific learning process, but also because they are

accountable to the activity design” (p. 10).

And this point can be interpreted as the fifth characteristic of DBR. Reeves

(2006) outlines three underpinning principles of DBR as follows:

“Addressing complex problems in real contexts in collaboration

with practitioners; integrating known and hypothetical design

principles with technological advances to render plausible

solutions to those complex problems; and conducting rigorous

and reflective inquiry to test and refine innovative learning

environments as well as to define new design principles.” (p.

58)

Therefore, the principle aim of DBR is to create a strong bridge between the

real world and educational research. I compared DBR with more traditional

research methods, and favoured to employ DBR in my research.

4.3. DBR and Traditional Methods

In 1992 Collins explained that in DBR students are not treated as subjects that

need to be directed, but instead, they are treated as co-designers and

participants. Students can be considered to be co-designers in DBR because

their interactions with the design create further ideas either for forming new

conjectures or modifying existing ones. Students are considered as participants,

 105

because DBR provides an environment in which the researcher-student, student-

student, student-computer, and finally, student-computer-researcher interact and

make a contribution to the final results.

One difference between DBR and traditional research methods is the ability of

DBR to focus and concentrate on the complex situations in real world

experiments. DBR is flexible, and due to its iterative nature, the researcher is

able to test and modify the possible errors and inadequacies, as well as

conducting in-depth observation through the iterations, which helps him/her to

surmount the complicated nature of the real situations. Reeves (2000) stated that

DBR is an action research oriented method, in the sense that the researcher has

to make changes throughout the iterations. The other thing is that DBR is

situated, which means that it mainly involves researching in naturalistic

contexts (Barab and Squire, 2004). Cobb et al, (2003) mention that,

 “Prototypically, design experiments entail both „engineering‟

particular forms of learning and systematically studying those

forms of learning within the context defined by the means of

supporting them.” (p. 9)

However, DBR can often produce contextual output which is not necessarily

appropriate in broader contexts, and these theories need to be confirmed with

the other traditional research methods. Succinctly, DBR produces ontological

innovation (diSessa and Cobb, 2004), local instructional theories (Cobb et al,

2003), and design knowledge (Edelson, 2002).

 106

It has been mentioned above that the ultimate goal of DBR is to make a link

between the real world and educational research. Using DBR and its iterative

research cycles, not only enables the researcher to evaluate an innovative design

and intervention, but he/she can move forward to run systematic attempts to

improve the innovative design. This is cyclical. The next section of this chapter

focuses on the conjectures and how they are embodied in the DBR approach.

4.4. DBR in This Study

This research concentrates on the student‟s understanding of the concept of

recursion and the way that they construct their mental model of this concept.

Recursion is an interdisciplinary concept and research on recursion is also

interdisciplinary research. It needs to draw on multiple theoretical perspectives,

which helps me as researcher and designer to build my understanding and

insights into the nature of students‟ learning process and the way they construct

and develop meanings for the concept of recursion. DBR fits into my research

perfectly because it encapsulates a series of approaches within a practical

learning based setting, rather than a single fixed approach. It is an appropriate

framework to connect real world phenomena and mathematical concepts,

bridging formal and informal. I decided to use fractals and fractal-shaped

objects to contextualize the concept of recursion in a DBR framework.

Through the collaboration of contextual practices and theory, DBR allows me to

move beyond merely observing, to become involved with the student‟s learning

activity. Pratt et al, (2008) describe this process as design for abstraction. They

 107

state that design for abstraction can be viewed from three angles: the designer

and his/her design perspective; the design process and abstraction of the

mathematical concept; and, finally, students and their interaction and

interpretation of the design. The figure below shows the interrelations between

the crucial components of design for abstraction.

Figure 14- The interaction between major components of design for abstraction

The figure below shows the process of meaning-making of a mathematical

concept through design for abstraction and phenomenalization of that concept

within the design.

Figure 15- The process of conceptualization of a concept by researcher and

phenomenalization of it by students

Based on the above plan, I decided to design a computer-based domain

approach using a DBR framework research method. My research aims to

Researcher/ designer

Students Design process

Mathematical concept

Design for abstraction

Phenomenalization of concept

Students‟ meaning-making

 108

investigate students‟ understanding of recursion through active engagement

with the computer-based domains. To do so, based on the above scheme, I

decided to design a domain to abstract and phenomenalize the concept of

recursion. This will give the opportunity for students to engage with the crucial

components of recursion. Also the design provides me with the opportunity to

observe the way they think about recursion and form their own mental models

of the concept. This takes place within a DBR framework. My approach was

prospective as I started the research with some assumptions and hypotheses

about student‟s difficulties with the concept of recursion, based on the literature

that I had reviewed. My other motive for employing DBR in this research was

the prospective and reflective nature of it, which is reasonably fitted to the

progressive modification of the computer-based domains in different stages.

The next stages of the research were carried out based on the additional

conjectures that emerged through student-tools-student, students-tools-

researcher interactions. The conjectures that emerged from each of the iterations

were embodied in the design of the next iteration, and were modified and

developed based on the reflective results of the design. Therefore, my approach

is aligned with the nature of DBR because it is prospective – in the sense of

starting with a hypothesis, and reflective, in the sense of employing a conjecture

driven method.

Within the DBR framework I also employed several qualitative methods to

delve into the inner levels of students‟ thinking about the concept of recursion

and its indispensable components. These qualitative methods are described from

 109

both generic and particular aspects later on. However, in the next two sections

of this chapter, I describe the developmental and using dimensions of the

iterations within the DBR framework.

4.4.1. Developmental Dimension (Tool design)

The developmental dimension of each one of the iterations, apart from the first

iteration, shows the process of designing a new iteration by modification and

development of the previous iteration based on the issues that emerged from

the students‟ usage of it. The first iteration that was an exploratory stage was

designed based on the assumptions and hypothesis that arose from the review

of the literature and my own conjectures. The second and third iterations were

designed based on the emerging and additional conjectures.

4.4.2. Usage Dimension (Tool use)

This dimension is more about the interactions of the student-tool-student,

student-tool-researcher within each one of the iterations. The connections that

they make, the way that they use the tool, the results and their reaction to those

results, their explanations and utterances about the concept of recursion are all

part of the usage dimension. The usage dimension is the data for the research

that needed to be collected and analysed.

 110

4.5. Qualitative Research Methodology

This study is conducted in a qualitative paradigm. Basically, in this study, due

to the nature of DBR methodology in computer-based approach, I did not

encounter solid and certain data like fixed numbers or structured interviews to

be quantified to work with. The need for in-depth interviews alongside

observing students working with the domains of abstraction, to find out how

they think about the concept of recursion and how they change their thinking

(thinking-in-change process), convinced me that a qualitative method was most

appropriate for my research plan.

Qualitative research usually begins in a relatively open-ended way and

gradually narrows down to the research questions. This method usually

involves a range of methods: informal interviews (semi-structured), direct

observation, participation in the students‟ activity, collective discussions,

analyses of the personal documents produced by the students, and self-analysis.

Thus, although the method is generally characterized as qualitative research, it

can (and often does) include quantitative dimensions. Bryman (2001) states

that in a qualitative approach we start with a general research question, then by

choosing appropriate subjects we move towards collecting and interpreting the

relevant data, and this is followed by the theoretical and conceptual stages. The

conceptual and theoretical work will provide us with a “tighter specification of

the research question(s)” which might demand the collection of further data

and then a return to the interpretation level. After doing this cycle of collecting,

 111

interpreting, theorizing, and specification of research questions, we can go onto

the final writing of the findings and conclusion (Bryman, 2001, pp. 267-269).

Therefore, a qualitative research approach is a cyclic progressive process. A

process of observing and collecting things, thinking about them, interpreting

them, coding and theorizing them, and finally specifying how they meet the

research questions. Showing how events and patterns unfold over time is often

a concern when using a qualitative approach. Pettigrew (1997) states that

qualitative research methodology tends to view the students‟ responses in terms

of process. He describes a process as

“a sequence of individual and collective events, actions, and

activities unfolding over time in context” (p. 338).

This emphasis on the process can be chromatically seen in a DBR framework.

Bryman‟s (2001) qualitative research steps are reminiscent of iterations of the

DBR methodology. In fact, we need to do the above steps in each one of the

iterations of DBR. The next issues are the means of collecting data and the

interpretation of it, which are going to be explained in this chapter.

According to Bryman (2001) among all the methods of collecting data in

qualitative research methodology, interviewing and participation are the most

well-known and commonly used ones. Regarding the nature of my research

questions which are about the way in which students think about the concept of

recursion, as a researcher I wanted to create an active situation and atmosphere

 112

to persuade the students to talk; the more they talk about their understanding of

the concept the more clear I would become about what they really think about

the concept. In doing so, interviewing is a very appropriate qualitative method

and has been used by many researchers. The other dimension of this research

which has to be carefully observed is the way in which students work and

engage with the designed computer-based domains. Observing students‟

interaction with the domains of abstraction provides a view from their

perspective:

“[…] many qualitative researchers express a commitment to

viewing events and the social world through the eyes of the

people that they study.” (Bryman, 2001, p. 277)

This provided a great opportunity for me as a researcher to ponder on the

deepest parts of the students‟ minds to see how they think about the concept

and how they change their strategies in their learning-understanding process,

and finally how they make meanings for the concept being studied. To observe

the students‟ interactions with the computer-based domains, I decided to use

participant observation, which I describe as a qualitative data collection

method later on in this section. I also recorded the students‟ actions and

utterances by using a portable tape recorder as well as using Camtasia recorder

software (Figure 16).

 113

Figure 16- The Camtasia recorder version that I have employed in this research

When students work with the tools, they do not always give any verbal

explanation; they sometimes just make some movements with the mouse or

type something on the screen, modify it or even delete it. Recording and

reporting these moments is one of the most challenging parts of data collection

tasks in this research. However, in such situations, Camtasia is of great help as

this software records every one of the students‟ actions on the screen as well as

recording their utterances.

The data related to this research were mainly collected through semi-structured

interviews and participant observation. The following two sections of this

chapter describe the qualitative data collection techniques that were employed

in this research in a generic style.

4.5.1. Semi-structured Interview

Basically, an interview is a conversation between two or more people. The

questions are asked by the interviewer and the answers are given by the

interviewees. Interviews can also be employed as a research instrument in

which the interviewee and interviewer interact with each other. Research

 114

interviews are conducted based on certain goals which have to be clear before

embarking on the interview.

I mentioned before that interviewing is one - and probably the most widely

employed - of the data collection methods in qualitative research. Bryman

(2001) distinguishes between two sorts of interviewing methods in qualitative

research, the unstructured interview and the semi-structured interview. He

describes the unstructured interview as follows:

“There may be just a single question that the interviewer asks

and the interviewee is then allowed to respond freely, with the

interviewer simply responding to points that seem worthy of

being followed up.” (p. 314)

He continues to describe the semi-structured interview as:

“The researcher has a list of questions or fairly specific topics

to be covered, often referred to as an „interview guide‟, but the

interviewee has a great deal of leeway in how to reply”. (p.

314)

In the semi-structured interview, there is no need to follow the questions in

order. In addition, the interviewer might ask some questions which are not even

in his/her guide. Therefore, it is possible to adjust the emphasis of the research

as a result of significant issues which might emerge during the interviews or

 115

observations. However, in the case of both the unstructured and semi-

structured interview, the atmosphere of the interview is flexible. Qualitative

research generally tends to be more unstructured and adaptable and seeks rich

and detailed answers. Questions in the qualitative research methods are

normally open-ended, probing questions. In this research I use semi-structured

interviews, which will be explained further on in this chapter.

4.5.2. Participant Observation

I mentioned in 4.5 that participant observation is another important and widely

employed method of collecting data in qualitative research. It is also one of the

most demanding methods of data collection in qualitative research. Participant

observation can be defined as a method of collecting information and data

simply by participating in people‟s everyday lives and activities. Gold (1969)

bases the degree and extent of the participation of the observer as a researcher

and the peoples‟ activities, classified participant observation into the four

classes of complete participant, participant-as-observer, observer-as-

participant, and complete observer (Figure 17).

Figure 17- The participation classification of Gold (1969)

 116

Gans (1968) categorises them in the three following classes:

 Total participant;

 Researcher – participant;

 Total observer.

By total participant he meant that the researcher “is completely involved in a

certain situation and has to resume a researcher stance once the situation has

unfolded” (Bryman 2001, p. 300). This can be considered as the complete

participant of Gold. By research-participant he meant that the researcher has a

dual role in certain situations. Gans (1968) also refers to this as a semi-involved

role, which is a sort of combination of participant-as-observer and observer-as-

participant of Gold‟s classification. Finally, Gans‟s third class is total observer,

in which the researcher has no involvement in the situation. This is almost the

same as Gold‟s last class, complete observer. By total participation he meant

that the researcher is “in a certain situation and has to resume a researcher

stance once the situation has unfolded” (p. 300). Gold also added that by using

participant observation, the researcher immerses his/herself in the subject to be

studied. In this way, they can perceive the subject more deeply than through

other methods like questionnaires. This method, through a concentrated

involvement with subjects in their natural environment, allows researchers to

gain a close awareness of the students and their practices. In this method, the

researcher becomes a participant in the context being observed. So, it implies

an immersive experience in a real world. On the other hand, the researcher

must observe the subject to be studied, which needs a scientific approach to

knowledge.

 117

4.6. Research Setting

One of the main cornerstones of the design of the computer-based domain in

this research was some of the constructionist ideas. For instance, to design the

tools for this research purposes, Papert‟s power principle, purpose and utility,

thinking-in-change, and bridging formal and informal mathematics with

regards to the concept of recursion were considered (Pratt et al, 2008).

I approached such a setting by designing a computer-based tool using Imagine

Logo, a powerful version of the Logo educational programming language,

published by Logotron. This computer-based tool is designed to model binary,

ternary trees and spirals as examples of fractals and fractal-shaped objects.

These everyday life examples were employed in this research with the purpose

of conceptualising the concept of recursion. The purpose of the computer-

based tool was to uncover the latent layers of the concept of recursion for the

students. The other purpose was to provide me as a researcher with a window

into the way that students shape and form their own mental models of the

concept of recursion.

4.6.1. Participants

The first iteration of this research was implemented during August 2005 using

five student volunteers. The volunteers were studying in their first and second

years of mathematics and computer sciences degrees at the University of

Warwick. They were aged 18-20 and were tutored by me. I interviewed them

in groups of two pairs and one individual. The second iteration was performed

 118

during February and March 2006 with seven volunteer mathematics students

aged 18-22. They were interviewed in groups of three pairs and one individual.

And finally the last iteration of the research was implemented in October and

November 2006 using 17 volunteer students aged 18-22, who were studying at

the University of Warwick in their first and second year of a mathematics and

computer sciences degrees. They were interviewed in groups of seven pairs and

three individuals.

Selection of students at university level was based on the following reasons.

The first reason is, there is an advantage of working with university level

students which is anchored in a pedagogic context. In spite of the importance

of the concept of recursion in mathematics and computer sciences, there is

almost no place for the concept of recursion in curricular material and text

books used within university courses in mathematics and computer sciences.

The second aspect is fixed from a pragmatic and technical perspective. The

research needed to examine students‟ ability in understanding and applying the

concept of recursion in a computer-based environment. So, to challenge their

ability and knowledge in employing recursive strategies required them to have

a basic knowledge of mathematics and programming at an undergraduate level.

4.6.2. Implementation

This research was implemented within the DBR framework throughout three

iterations. The first iteration was designed during Jan-Feb 2005 and tested with

the students in August 2005. Iteration two was designed during Sep-Dec 2005

 119

and tested in Feb-Mar 2006. Finally, the third iteration was designed during

Aug-Sep 2006 and tested with the students in Oct-Nov 2006. Students who

volunteered to participate in this study were working with the computer-based

tasks either in groups of two or individually. Attention was essentially paid to

the collaboration of student-tool-student, student-tool-me as researcher. The

domains of abstraction for the three iterations are called Treemenders, Spirals,

and Treebuilder respectively.

These computer-based tools were designed and programmed by me as

researcher and designer and Professor Pratt as co-designer. The design of the

Treemenders – for the first iteration - was a result of regular meetings and

discussions between myself and Professor Pratt on the possible ways to

embody the initial conjectures of the computer-based tool Treemenders. The

initial conjectures were largely based on the extensive literature that I had

reviewed and my idea about employing the binary trees as an everyday life

example as well as employing fractals to reveal the hidden layers of the

concept of recursion. Additionally, the design of the other two domains –

Spirals and Treebuilder – for the second and third iteration was also a result of

the regular meetings between me as researcher/designer and Professor Pratt as

co-designer.

However, the designs of these two domains of abstraction were chiefly based

on the emerging conjectures from the previous iteration(s) as a result of the

student-tool-student and student-tool-me as researcher interactions. I carefully

discussed these new ideas and conjectures with Professor Pratt for validity

 120

issues and also concerning ways of embodying them into the design of the next

iteration. Inviting colleagues and departmental members to share and discuss

the results and emerging issues of the iteration provided me with more ideas

and insights. I also presented the results to the public in a number of seminars

and conferences, and a journal paper which made the results more accessible

for many researchers (Ammari-Allahyari, 2005, 2006; and a journal paper in

the Journal of Learning (in press)). The following table presents a sketch of the

developmental and usage aspects of the three iterations in this research within

the DBR framework.

Table 3- An outline of the developmental and usage of the three iterations

6
 This time does not include the period of the data analysis.

Developmental aspect

Iteration 1

Iteration 2

Iteration 3

Time

(design and test)
6

Jan-Aug 2005

Sep 2005-

March2006

Aug-Nov2006

Usage aspect

Pre – questionnaire Yes Yes Yes

Interview 3 x 1.5 hours 4 x 1.5 hours 10 x 1.5 hours

Number of students

5 students

(2 pairs and

one individual)

7 students

(3 pairs and

one individual)

17 students

(7 pairs and

3 individual)

 121

4.7. Methods for Data Collection

As a qualitative researcher, I was searching for an understanding of: students‟

behaviour when they engaged with the domains, the way in which they think

about the concept of recursion, and the way in which they develop their

knowledge through active interaction with the tools. Therefore, as mentioned

above, the main data collection methods that I needed to employ were semi-

structured interviewing, participant observation, and a combination of both

techniques.

The rationale for combining these two methods was that there were some

aspects of the students‟ behaviour that could not be revealed by only observing

their interaction with the computer. There were also some issues that could not

be uncovered by merely interviewing the students. For instance, their

interpretations and reactions after seeing the animations used in the domains of

abstraction cannot be grasped even by semi-structured interview; this was

totally dependent on the impact of the visual presentations on the students‟

interpretation of the concept, which was not accessible in the interview

sections.

The study was implemented in three iterations in a DBR methodology

framework. The first iteration was at an exploratory level, so the tool was

designed based on the primitive conjectures and some issues regarding

students‟ difficulties with the concept of recursion. Due to the lack of clear

understanding about possible student difficulties, I decided to employ the

 122

following stages for collecting the data. First, a semi-structured interview using

a semi-structured pre-questionnaire to see how the students think about the

recursion by seeing the pictures of trees and Koch curve – a mathematical

fractal – the interview guide for this semi-structured interview is located in

appendix A. Then as a participant observer I asked the students to start work

with the domain immediately after finishing the pre-questionnaire. The role of

participant observer and semi-structured interviewer helped me to examine the

deeper layers of students‟ knowledge of the concept of recursion and its

essential components. This also enabled me to provide considerable emphasis

on the contextual understanding of the students‟ behaviour.

Regarding the above mentioned classifications of participant observation, I can

identify my role as a researcher-participant. This dual role allowed me to

observe the students‟ interaction with the computer-based tool as well as

interjecting if a student was pondering about some unexpected issue, or when

the students seemed to be stuck and there would not be any progress if I didn‟t

intercede. Being a participant observer provided me with access to gathering

information regarding the students‟ experiments with the concept of recursion

through closely working with the tool. This method has also allowed me the

privilege of flexibility for deliberation and consequently deepening the

students‟ way of thinking about recursion. As a participant observer I

encountered and was involved “in a continual process of reflection and

alteration of the focus of observations in accordance with analytic

developments” (May, 2001, p. 159).

 123

The data collection methods in the second iteration were almost the same as in

the first iteration. The only difference was related to the design of the tool.

Having done the first iteration, there were some issues that emerged from the

students‟ utterances and working with the first iteration‟s tool which informed

the design of the second iteration‟s tool. Apart from this slight difference in

design aspect, the data collection methods were the same as those in the first

iteration. The students were asked to answer the semi-structured pre-

questionnaire first and then immediately after finishing it start their experiment

with the computer-based domain.

Collecting data in the final iteration was implemented only by participant

observation of the students‟ engagement with the tools. Thus, by adopting the

role of participant observer, I was able to observe and track the students‟

actions in different situations during they work with computer-based tools.

Sometimes they were quite silent and just worked with the buttons and cursor

on the screen. By recording their movements on the screen by Camtasia

recording software along with the qualitative questioning techniques and

asking such questions as Why did it happen? What do you think about it? Why

have they done a certain action? What would happen if something different

happened? What do they mean and how they relate to particular relationships

and actions? I was able to record those silent moments to be analysed (May,

2001, pp. 156-165).

In all these three iterations, the semi-structured interviews with the students

and participant observing of the students‟ interaction with the tools were

 124

recorded both on the tape and digitally using Camtasia recording software. This

recorded data and my own hand written notes were presented as the data for

this study to be analysed and discussed. I wrote intensive field notes including

important and crucial moments in student-tool-student and student-tool-me as

researcher collaborations as well as the new ideas and insights which were

triggered in my mind for the next stage of design while I was working with my

participants. These notes and the transcripts of the semi-structured interviews

and the results of the pre-questionnaires were all taken into account as the

unprocessed material to be coded and considered as the data which needed to

be analysed for the next stage of the research. The next section of this chapter

concentrates on the methods used to analyse the data in this study.

4.8. Methods for Data Analysis

Qualitative data analysis is a process which is similar to the DBR approach in

the sense that it has a cyclic nature. Qualitative data analysis by nature is a

progressive process. All the interview sessions concerning the iterations were

tape-recorded as well as using Camtasia recording software. The latter allowed

me to re-observe the scenes in accordance with the students‟ utterances after

finishing the interview sessions. All the recorded data was transcribed. The

interview transcriptions and the students‟ experiments with the tools were

treated as the data to be analysed for this research. Analysing the data focused

on two prevalent qualitative analysis methods, progressive focusing and

coding. Progressive focussing guarded me against pre-assumptions. It can be

considered as a method of interaction between research issues and the field

 125

activities. Progressive focussing allowed me to focus on the research issues

gradually as they were emerging through each one of the iterations under

observation. Stake (1981) states that

“Progressive focusing requires that the researcher be well

acquainted with the complexities of the problem before going

to the field, but not too committed to a study plan. It is

accomplished in multiple stages: first observation of the site,

the further inquiry, beginning to focus on the relevant issues,

and then seeking to explain.” (p. 14)

I mixed the coding analysis method with the progressive focusing. This method

of analysing the data allowed me to have reliable results based on the students‟

utterances.

In his seminal work „Analysing Qualitative Data‟, Gibbs (2007) categorises the

codes into two categories of descriptive and analytic codes. This categorization

actually allowed me to form my thinking about the data and analyse them.

Descriptive codes are more concentrated on the detailed transcriptions. I also

sought to classify the students‟ descriptions. However, the analytic codes are

focused more on a wider perspective. Therefore, compared with the descriptive

codes, the analytic codes are more generic and defined in such a way so as to

contain a broad-spectrum of the descriptive codes. The progressive focussing

acted like a transitional catalyser between the descriptive and analytic codes.

 126

4.9. Summary

In summary, this chapter is comprised of seven key sections. The first section

concentrates on introducing the DBR; its history and characteristics, and the

way in which it has been employed in this research. Then I discuss qualitative

research methods, followed by the research setting and the way the design of

the computer-based domain of abstraction has been implemented in this

research as well as how I collected the data for this research. The latter in

particular describes how the domains were implemented into the different

stages of this research. Having explained these methodological issues, the next

chapter of the thesis presents the path of the evolution of the computer-based

tools from the exploratory tool of the first iteration into the more sophisticated

domain of abstraction of the second iteration. The above mentioned techniques

were practically applied for this transition as well as collecting data about and

analysis of the final iteration, which is discussed through Chapters Six to Eight.

 127

5. The Evolution of the Computer-Based Domain

5.1. Overview

This chapter outlines the different stages of the development of the computer-

based domain of abstraction throughout three iterations within the DBR

framework in this study.

This outline is developed from two major perspectives: the design development

of the computer-based tools and the usage of those tools by the participants.

Thus, the chapter starts by describing the path of designing the computer-based

domains, based on some constructionist‟s ideas of bridging formal and

informal, phenomenalizing of the concept by fractals and putting the students

in the situation of using recursion before knowing its mechanism, at the same

time aims to uncover the students‟ responses and thinking about recursion in

the domain of abstractions for recursion.

The domain of abstraction design in this research is developed throughout three

stages, and is here referred to as three iterations. These iterations were

designed, tested, and modified within the DBR framework. The domain of

abstractions in these three iterations are called the Treemenders, the Spirals,

and the Treebuilder respectively for the first, second and third iterations. The

first two iterations (the Treemenders and Spirals domains) of my research are

thoroughly discussed in this chapter. The third iteration, the Treebuilder

domain, will be discussed in the next chapters. The emerging issues and the

conjecture which inform the next iteration are also described after each one of

 128

those iterations. The chapter finishes by reporting the emerging issues and

conjecture(s) for the final iteration, which is explained in Chapters Six and

Seven. The following diagram sketches out how my study is performed

throughout three iterations within a DBR framework.

 Tool design

Iteration 1 New conjectures

 Tool use Issues for the next iteration

 Tool development

 Iteration 2 New Conjectures

 Tool use Issues for the next iteration

 Tool development

 Iteration 3 Further Prospects

 Tool use Results and discussion

Figure 18- Three iterations of this research in the DBR framework

The figure below shows the cycle between the tool design, tool use, and the

issues which emerge to modify and design the next iteration.

Figure 19- The cycle of design-test-modify and emerging issues-design

Designing the

Computer-based

domain

(Tool design)

Testing the tool

with students

(Tool use)

 Emerging issues

and conjecture(s)

for the next

iteration

 129

5.2. The Development of the Domains of Abstraction in a

Nutshell

The first iteration, the design of the Treemenders domain, was based on the

initial hypotheses and conjectures that arose from the literature and on my own

instinctive feeling about the concept of recursion. The second iteration, the

Spirals was a direct result of my new conjectures based on the emerging issues

received through testing and analyzing the first iteration. Finally, the third

iteration‟s computer-based domain, the Treebuilder, was a combination of the

emerging issues all the way through the previous two iterations, which allowed

me to frame a few additional conjectures and embody them in the Treebuilder.

The following table summarises the main themes which were considered

through developing the tool in the three iterations within the DBR framework.

 130

 Iteration 1 Iteration 2 Iteration 3

Computer-based

tool

Treemenders Spirals Treebuilder

Participants

2 pairs and 1 individual

(2 Maths and 3 Computer)

3 pairs and 1 individual

(all Mathematics)

7 pairs and 3 individuals

(all Mathematics)

Main focus Embedded recursion Tail recursion

Embedded and Tail

recursion

Functional

abstraction

Functionality

Functioning and

functionality

Functioning and

functionality

Technical

eminent

Interactive computer

environment

Animative Visualisation Animative Visualisation

Underpinning

ideas

My initial conjectures and

literature

My additional

conjectures and ideas +

the emerging issues

from the previous

iteration

My additional conjectures

and ideas + the emerging

issues from the previous

iteration

Pre-questionnaire

before working

with the tool

Yes Yes No

Table 4- The major issues were considered in development of tools in three iterations

The next section of this chapter concentrates on the design development and

tool-use perspectives of the first iteration of my research.

 131

5.3. Iteration One – Treemenders

The Treemenders domain was designed based on what arose from the review

of the literature which focused on students‟ difficulties in understanding and

utilizing recursion. This iteration focused on discovering the students‟ actual

reaction in working with recursion and to evaluate it with the issues that came

out of the literature I had reviewed. The literature provided me with a first

impression and insights into how mathematics and computer sciences students

might work with recursion. The main attention in this iteration was paid to

inspecting students‟ difficulties in understanding and applying the concept of

recursion and their appreciation of the crucial components of the concept of

recursion, the base case(s), recursive call(s), and flow of control.

These ideas were embodied in the Treemenders domain by designing and

programming an environment in which students were able to generate binary

trees by using an embedded recursive procedure. It has already been mentioned

that, binary trees were chosen in this research as examples of fractals to

provide a natural learning environment for students. From a functional

abstraction view point, the focus in Treemenders was based mainly on the

functionality aspect. The students who participated in the first iteration were

able to change a few parameters in the procedure to generate their own binary

trees. But, the domain failed to inform the students about the functionality

aspect of recursion, to show them how the tree was being generated.

 132

The parameters were purposefully chosen to allow the students to track and

recognize the main components of the recursive procedures, such as the base

case, stopping condition, and the recursive calls. In this way, they were able to

make different binary trees, and by observing the shape and structure of those

trees to work out the mechanism of a recursive procedure. However, after and

during the testing of Treemenders, I was convinced that this version of the

software did not have much to offer in terms of the functioning aspect of the

learning. In other words, the participants were able to see what they were

looking for and what was the result of the procedure by changing those

parameters, but the software was not equipped with appropriate devices and

design techniques to provide them with an understanding of how the recursive

procedure works.

At this point it is possible to explain the main conjecture that was intended to

investigate in the first iteration of my research as follows: By exploring key

parameters in a recursive procedure, students will be able to contact the visual

output from the procedure to procedure‟s code.

The next sections of this chapter discuss my approach in this iteration, tool

development, and tool use of Treemenders domain to investigate the

aforementioned.

 133

5.3.1. My Approach - Treemenders

Theoretically, the main approach to the design of the domain of abstraction in

this research is to provide a window by which one can understand the

participant‟s thinking and the way that frames and shapes their mental model of

the concept of recursion. Taking that into account, the approach of collecting

data in iteration one was through using two common qualitative research

methods, participant observation and semi-structured interviews. It has been

mentioned in Chapter Four that these two qualitative data collection methods

allowed me as the researcher to work out the participant‟s understanding of the

concept of recursion and its essential components by looking through the

window of the Treemenders (Bryman, 2001; Wilkinson, 2000; Barab and

Squire, 2004).

Five volunteer students participated in this iteration, two first year mathematics

students and three second year computer sciences students. Except one of the

mathematics students, the rest were familiar with Logo programming. In the

case of that mathematics student who had no familiarity with Logo

programming language, I gave them a brief instruction about the commands

that were used in the embedded recursive procedure. As a participant observer

I avoided as far as possible any judgment based on my understanding of the

utterances of interviewees, and just encouraged the students to give clear and

transparent reasons for their decisions by asking open-ended questions as well

as some questions about what they were thinking to figure out the way that

they shape and form their understanding of the concept of recursion. All the

interviews were audio taped.

 134

Each of the interview sessions lasted about one hour. The interview sessions

were started by giving students a pen and paper task (the pre-questionnaire) in

the format of a semi-structured interview
1
. In those tasks, students were given

photographs of two trees (Figure 20) and a mathematical fractal, Koch curve

(Figure 21), and were asked to describe the shapes and their structures. The

purpose and objective of this pre-questionnaire was to see whether they could

see any structural parameters like symmetry or self-similarity in those pictures.

I also asked them how they would have gone about modelling and making a

tree if they wanted to program it. This open-ended question was designed to

evaluate the student‟s mentality about the concept of recursion in the fractal

structures – because these structures can only be defined recursively – and also

the student‟s ability to apply recursive procedures in problem-solving

situations. Regarding the Koch curve task in this module, the students were

expected to describe how such a shape can be constructed and if they wanted to

program it how would they do it and what are the essential components for

such a computer-based task.

Figure 20- The images of the trees ((a) on the left, (b) on the right side of the page) in

iteration one

1
 Pen and paper tasks are located in appendix A

 135

Level1:

Level 2:

Level3:

Figure 21- Image of the Koch curve in iteration one

Then the students were asked to start to work with the domain of abstraction –

Treemenders – the main interface of the Treemenders is shown in Figure 22.

The other rationale for using fractals stemmed from Wiedenbeck‟s (1988)

study of the role of everyday life analogies in students‟ understanding of the

concept of recursion. Wiedenbeck (1988) and Harvey (1997) mention that

having everyday analogies might facilitate students‟ understanding of the

concept of recursion.

Figure 22-The main interface of the Treemenders

 136

The embedded procedure that was given to the students in Treemenders is

shown below.

To Tree :size :left-turn :right-turn

If :size < 3 [STOP]

Forward :size

Left turn :left-turn

Tree :size / 2 :left-turn :right-turn (the first recursive call)

Right turn :left-turn

Right turn :right-turn

Tree :size / 2 :left-turn :right-turn (the second recursive call)

Left turn :right-turn

Back :size

End

Program 5-The embedded recursive procedure in the Treemenders

The next section of this chapter concentrates on the tool design issues of the

Treemenders domain.

5.3.2. Pen & paper task – Iteration One

In the pen & paper task (the pre-questionnaire) the students showed strong

evidence of a tendency to use iterative thinking to describe the given images of

two natural trees and Koch curve (figures 20 & 21). Their prior knowledge and

experiments with iterative procedures caused them to see recursion as iteration.

For instance, the second question on the pre-questionnaire was designed to see

whether the students recognised the recursive structure of the Koch curve.

Students were given the image of the first three levels of making a Koch curve.

This question had two parts: the first part asked about the construction of the

Koch curve, and the second part asked about the how to move from one level

 137

to another (figure 21). First year mathematics students, Sarah and Jin (who

participated as a pair) both responded as follows:

1. I asked: How are these levels related to each other?

2. Sarah: Each level becomes one of the parts of the others. Umm,

level one repeated four times to build the structure of level two,

and level two builds level three, and so on.

3. Jin: If we call level one X, then level four will be four times X

and the other levels can be constructed similarly.

4. Sarah interjected: We can go from level two to level four

directly by repeating the whole of level two on each of these

little pieces to make level four.

Sarah in line 4 directly pointed that level four is twice repetition of level two.

Similarly, in the line 3, Jin described that level four is four times level one!

A second year computer sciences student, Feng (who participated individually)

evidenced a stereotype understanding of the concept of recursion. He initially,

pointed to the complexity of the Koch curve fractal. Feng‟s explanation of the

Koch curve seemed to be based on a naive mathematical analysis. For him

every sharp corner on the Koch curve was a vertex.

5. Feng: It is becoming more complex as we are going down. The

number of vertices is increasing.

6. I asked: What do you mean by vertices?

7. Feng: The sharp points on the curve; this shape is tending to

become a curve with no sharp points - a smooth curve with no

vertices.

When Feng was asked to program the Koch curve, as mentioned above, he did

not use any recursive techniques and he was trying to find a way to draw a

smooth curve. Feng‟s explanation did not give much to see how he thinks

about the concept of recursion. So, I decided to ask him to explain how he

would program the factorial of a given number. His response showed the

 138

stereotypical picture of recursion in his mind as he immediately replied: “the

factorial of a natural number is recursive”. He was not able to recognise any

recursive structure in the Koch curve even though he stated that factorial

programming is recursive:

8. I asked: How would you program the factorial of a natural

number?

9. Feng immediately answered: the factorial of a natural number is

recursive.

10. I asked: What do you mean by recursive?

11. Feng: It calls itself each time.

12. I asked: Do you think we can use recursive here for the Koch

curve?

13. Feng: Umm, I don‟t think so.

I showed him a picture, in which the recursive parts of the Koch fractal were

shown with different colours (Appendix A)
1
. Feng‟s response showed that his

difficulties to distinguish between iteration and recursion as he described the

Koch curve as a FOR loop.

14. I added: What do you do to program it?

15. Feng: It is a FOR loop.

16. I asked: What do you mean by that?

17. Feng: It is repeating the same thing.

18. I asked: What is repeating?

19. Feng: It is like repeating one level in another level and another

level repeats in the next one and so on.

It can be seen from the students‟ utterances that first year mathematics students

(Sarah and Jin) were trying to describe the recursive structure of the Koch

curve as an iterative, repetitive, structure (lines 1-4). Also, the second year

computer sciences student (Feng) also described it as repetition (lines 15-19

and also lines 12-13). However, the situation for the other two second year

1
 It was conjectured that it can be used as a visual presentation of the Koch curve to facilitate

students to recognise the structure of it.

 139

students in computer sciences, Koroush and Yasaman (who participated in a

pair) was a bit different. Koroush and Yasaman indirectly pointed to the

calling process of the recursive call in a recursive structure (Lines: 20, 21, and

24 below):

20. Koroush: You start with the first level and reproduce the whole

thing on each of the smaller segments. And on each edge you do

the same.

21. Koroush also added that: You start with the straight line and

split it into three parts recursively repeating it into new parts.

22. I asked: What do you mean by recursively repeating?

23. Koroush: I mean you can do the same level again but a bit

smaller into another level.

24. Yasaman interjected and added that: Yes, I agree with Koroush

about that. I think it‟s doing the same thing but each time a bit

smaller than the previous one.

The comments made by Koroush and Yasaman above show that they

recognised the recursive structure of the Koch curve. However, they were also

describing the Koch curve by using the term “repeating” (Line 21). I was not

yet convinced whether or not they were distinguishing between repetition

(iteration) and recursion.). To make the distinction more perceptible, I asked

them questions about the features and structure of the images of the natural

trees, which they were given in the pre-questionnaire (figure 20a and 20b) and

asked them to describe them. Initially, they explained the features of each tree

in a descriptive manner.

25. I asked: What are the essential features of these trees if you

want to model them?

26. Yasaman: A tree in the desert, lots of branches, with a big trunk.

The other tree‟s branches look well ordered and a bit lopsided.

27. Koroush interjected: They have no leaves!

28. I asked: What about the structure of the tree?

29. Yasaman: It starts with a big trunk, but gradually become

thinner and thinner at the top. There is a branching structure.

30. Koroush added that: It is symmetric. It looks symmetric from

far away but not exactly. The general shape looks symmetric.

 140

31. Yasaman interjected: It is almost symmetric, but not exactly. It

seems that it has two parts, which are almost similar from far

away.

32. I asked: Do you think these shapes are self-similar as well?

33. Yasaman: What do you mean by self-similar?

34. I answered: Something like a cauliflower, when you divide it

into two parts, each one of those two pieces looks like a whole

cauliflower but a bit smaller, so we can say this object is self

similar.

35. Yasaman continued: I think it is self-similar, because of its

branching system. Each time it makes two new branches and

each of these new branches are going to have another two new

branches, etc.

36. I asked: What if we have three or more new branches at each

one of the branching points?

37. Yasaman: No difference, it is going to generate three or more

new branches each time.

38. Koroush interjected: The main things are the main trunk,

branches and the further branches - and bearing in mind that

they are getting smaller and smaller on top.

At this moment Yasaman‟s remark shows evidence of thinking-in-change

about the structure of the branches and the possible strategy for programming

that tree. Her thinking about the structure of the tree and the branching system

began to be framed earlier, as can be seen in lines 29 and 35-37.

39. Yasaman: The categorization of branches is a bit difficult. A set

of branches and a subset of tree are going to be made again and

again.

40. I asked: What do you mean by a set of branches and its subset?

41. Yasaman replied: Each branch has some new branches and each

of those new branches have some new branches again. So, they

can be considered as a set of branches and the subset of the new

branches.

42. I asked: How do you program it?

43. Yasaman: I would probably use the technique for sorting of a

set of numbers.

44. I asked: Why?

45. Yasaman replied: I would like to sort this set of branches and its

subset of new branches.

46. Koroush interjected: Draw one line here, and draw another line

as its branch. Obviously you can choose a random point on the

line to draw up the new branches and then repeat the whole

process from the end to these branches with different angles.

 141

47. I asked: What about the size of these branches? Are you going

to keep them fixed?

48. Koroush added that: Ok, perhaps decreasing the size of the

branches.

At that moment Yasaman, interjected and pointed to the base case.

49. Yasaman said: I think the base should be one branch and then

make two new branches and then repeat the same process on

each of the new branches. Basically, recursion is different from

iteration, because of the base case. In recursion we start the

process and then we get to the base case at the end. But in

iteration we start with the base case!

50. I asked: Koroush did you consider any stopping condition for

your algorithm?

51. Yasaman interjected: I think considering a base could act as a

stopping condition.

52. Koroush: Umm, it could be. Also, we can put a condition on the

length of size for stopping the algorithm.

It can be seen above that, Yasaman and Koroush explained an algorithm to

model and program the trees. Principally, their algorithm was a recursive

algorithm. However, working with these pen and paper (pre-questionnaire)

tasks did not give me more information about their thinking about the

interrelations of a recursive procedure and the way that control passes

throughout calling recursive call(s) and reaching the base case(s). They also

pointed to one of the crucial components of the concept of recursion, the base

case(s), and its role as a starting point or a stopping condition (lines 49-52). Of

interest point was Yasaman‟s idea of the differentiation between recursion and

iteration based on the different functions of the base case as a stopping

condition or as a starting point respectively.

Feng, another second year computer sciences student, responded to the same

task with two images of trees, explaining them as follows:

 142

53. Feng: This is a tree, it has no leaves, there are quite a lot of

branches, and it‟s only one tree situated in the desert. The other

one tends to the left side. It has smaller branches on the top. It is

not high. The body is quite big.

54. I asked: Is there any symmetry in these trees?

55. Feng: Umm, not really, it‟s like an ellipse.

56. I asked: What are the main components of these trees if you

want to program them?

57. Feng: The first thing is the root. It has the main body. From this

main body you have at least one branch. Also, you can have

more branches.

58. Feng also added that: If I want to make a computer program, I

think of this shape because the tree will grow differently in any

direction. So, in my program the majority of the branches

should tend to the east side. The probability of the branching to

the east should be bigger than in other directions. We need some

coordinates on this graph.

59. I asked: What do you mean by coordinates?

60. Feng: A fixed point to measure the distance to other points on

the tree.

61. I asked: Do you mean something like Cartesian co-ordinations?

62. Feng: Yes, and we also need some angles for branching. For the

branches on the right side we might have the same process with

different angles. Angle is the most common variable. I think we

can chose random points on the main body for branching.

It can be seen that Feng never directly pointed to any recursive structure to

model a tree in his comments. In addition, his remarks show evidence of taking

recursion as iteration in lines. However, in line 62, there is some fragile

evidence of the semantics of a recursive call being used to produce branches to

the left and right by explaining the term „same process‟. Lines 57-59 can be

interpreted as his appreciation of the base case in the recursive structure as a

starting point. However, the pen and paper task, as in the case of Yasaman and

Koroush, cannot give much information about Feng‟s appreciation and

thinking about the process of control passing.

 143

Sarah and Jin, two first year mathematics students who at the start described

the image of trees in slightly descriptive manner, like Koroush and Yasaman.

However, gradually they tried to be more analytical about some structural

aspects, for example, the direction and size of the branches and their angles. I

asked them about the main features that needed to be considered to program

the trees.

63. Sarah: Umm, construct the trunk, and the process of branching.

Also the size of new branches.

64. Jin: The same things.

65. I asked: How about the angle of the branches?

66. Jin: I think for the first branch the angle should be less than 90

degrees and the second branch less than the first branch and so

on.

67. Sarah: Oh yes, I agree with that.

68. I asked: Why do you think so?

69. Jin: The purpose of the tree is growing up and up.

70. Sarah interjected: Yes, in this way the branches growing

upwards.

Line 63 shows that for Sarah and Jin the first challenging part of modelling a

tree was branching. Sarah also pointed to the picture of the tree (a), the picture

below, and added:

71. Sarah: I think this one is a little bit harder to program.

72. I asked: Why do you think so?

73. Sarah: Because the first one has a trunk and then branches.

Whereas, in this photo we have not got trunk and just branching.

Lines 71-72 show a small amount of evidence of Sarah‟s thinking about the

base case as the starting point to draw a tree. Sarah pointed to the main trunk in

the tree in figures 20a and mentioned that the tree in figure 20b has no main

trunk. She also added „this one is a little bit harder to program‟, this gave me

an initial insight into the importance of the base case in dealing with the

concept of recursion for the students. Similar to the other participants, I did not

find very much evidence about flow of control in any algorithm to generate the

 144

tree in the pre-questionnaire task. The next section of the chapter discusses on

the students‟ accounts on the domain of abstraction (the Treemenders).

5.3.3. Tool design – Treemenders

 The Treemenders domain was designed to model the binary trees, to bridge

formal and informal. There were some sliders for setting the initial values for

the size of new stems, angles to the right and left for making new stems, the

size of the main trunk of the tree, and finally a minimum value for the size of

new stems as the stopping condition. Based on the main conjecture of the first

iteration, the components of recursion were phenomenalized using these on

screen objects. It was conjectured that having these sorts of control over these

parameters allow students to appreciate the interrelations between components

of recursion.

For instance, by increasing/decreasing the minimum size of the new branches

in the stopping condition, the number of new stems will be decreased/

increased respectively. Having a new stem means the procedure has called one

of its recursive calls. Therefore, the minimum length of the size of the new

stems as the stopping condition has a reverse relation with the number of times

that the procedure calls its recursive calls. It was conjectured that, providing

this level of playfulness will help students to see the hidden mechanism of the

flow in a recursive procedure.

 145

The Treemenders mainly presented an embedded recursive procedure to

generate binary trees. The embedded recursive procedure contrived in

Treemenders had five variables of: size ,

right and left-turn (for angle to the right and left)

, stopping condition

, and finally the change rate

of the size of the new stems .

The pre-made program was depicted on the left side of the screen. The students

were able to see the output of the program on the right side of the screen. The

students were able to generate their own binary trees by setting those initial

values and see the output on the screen immediately after running the

procedure using the tools contrived in the Treemenders domain.

The students were not able to change the programming codes and syntax.

However, they were offered to have control over the above mentioned

parameters. The students were required to generate their own binary trees by

changing those parameters. The sliders were designed and contrived in the

software to point to the essential components of a recursive procedure. The

sliders for the size of the main branch and the value for the stopping condition

were contrived to evaluate the students‟ appreciation of the base case as one of

the essential components of the concept of recursion. Haberman and

Averbuch‟s (2002) research ascertained that students have difficulties with

 146

base case(s), whether it is a starting point (the simplest form of the problem), or

a stopping point. The students were expected to realize that changing the

stopping condition value causes a smaller number of new stems and, as a

result, a smaller number of calling of the recursive calls. It was also

conjectured that it might help them to track the flow of control over the

procedure by combining those syntactical commands with the picture of the

binary tree and its structure on the Treemenders window.

The other important issue about student‟s difficulties with the concept of

recursion that was mentioned in the review of the literature was flow of

control. Kurland and Pea (1985) introduced active and passive flow of control,

depending on forward flow, when the procedure is calling the recursive calls,

and backward flow, when the procedure was terminating the already generated

copies of the original procedure. It was conjectured that the students might

appreciate the complicated control passing process in the recursive procedure

by embodying the idea of the connection between the stopping conditions and

seeing the final outcome on the screen. This idea was put into Treemenders by

designing two sliders for the angles to the left and to the right alongside the

stopping condition and the change rate of the new stem sliders. The other

design issue in this iteration was that the students had the opportunity to

observe and scrutinise the interrelationships of those parameters with each

other by changing the sliders.

Using-before-knowing as one of the constructionist ideas in design was also

employed in the design of the first iteration‟s domain. The students have not

 147

been told that they are working with a recursive procedure. They were

expected to work with the phenomenalized tools which enable them to work

with the concept of recursion even though they do not as yet have a good

understanding of it. The next section of this chapter focuses on the usage aspect

of the Treemenders domain. This section discussed the students‟ engagement

with the domain.

5.3.4. Tool use – Treemenders

This section concentrates on the usage aspect (tool use) of the Treemenders.

Working with the Treemenders offered the students the opportunity to work

interactively with a recursive procedure and produce their own binary trees. It

has been mentioned above that they were given control over a few parameters

and variables through sliders, which were designed to attract the students‟

attention to some key components like base case and flow of control. It was

conjectured that an appreciation of these issues is essentially important for

understanding a recursive procedure.

Since the first iteration was an exploratory iteration, the main focus and

emphasis was putting the computer-based approach into action to compare the

reality and the issues from the literature and my conjectures about students‟

difficulties with the concept of recursion. In this way, I was able to work out

the future design issues and the problems on which I needed to concentrate.

 148

In this iteration, the students were given a pre-made embedded recursive

procedure to generate a binary tree, so they had no opportunity to create their

own algorithms for generating a binary tree. Therefore, the design did not give

me much information about the student‟s understanding and thinking about the

way that the trees were being generated by the recursive procedure and also

their ability to apply the concept of recursion as a problem-solving strategy.

These points will inform the next iteration of the design. Through working with

the control sliders, the students succeeded in finding the interrelations between

the crucial parts of a recursive process. However, they still had some

difficulties with recognition of the flow of control, the role of base case, the

position of the recursive calls in the program and their functions.

 The next parts of this chapter focus on the particular aspects of the tool use

aspect of Treemenders. Tool use aspect is discussed in two parts, part one

focuses on the students‟ results in the pre-questionnaire and the second part

examines the students‟ experiment with the Treemenders domain of recursion

abstraction. In accordance with the aims of the study in both those parts the

main attention is on the structure of the concept of recursion. This strongly

depends on the students‟ difficulties with recognition of iteration and recursion.

The students‟ understanding of recursion is classified into two categories of

recursion vs. iteration and the flow of control. These categories are thoroughly

discussed in the next sections of the chapter.

 149

In all three cases, a pair from mathematics, a pair and one individual from

computer sciences, after finishing the semi-structured pre-questionnaire (pen

and paper task), we moved to work with the computer-based tool (the

Treemenders). I began the task by giving them a short and succinct

introduction to the software and the tools. Focus of attention was directed at the

student‟s appreciation of dispensable components of recursion and their ability

to track the control passing process over the given procedure. Whilst working

with the pen and paper, the second year Feng stated that the Koch fractal is a

FOR-loop because „it is repeating the same thing‟ (lines 15-19) and it is not a

recursive structure (line 13). He also displayed a stereotypical image of the

concept of recursion (lines 9-11), when he stated that the factorial of a natural

number is recursive. Having given all these explanations, he started to work

with the explanatory domain of abstraction for the first iteration, the

Treemenders. He had difficulty understanding and applying the recursive calls

in the procedure. So he started with changing the angles which seemed to be

more tangible parameters.

74. Feng: I would like to start with changing the angles.

Both left and right angles equal 50, the stopping condition slider was already

fixed on two, and the rate of change of the new stems was also fixed on two as

the default value (Figure 23).

 150

Figure 23- Feng‟s experiment with angles (both 60 degrees)

Then Feng tried to change the value of the stopping condition from less than

two to less than four

, the result was a

tree with fewer branches . Then he tried it with

a size less than nine, and the final result of the binary tree showed that the

number of the branches decreased . He kept silent

and worked carefully with different values for the stopping condition.

The explanatory domain in the first iteration assisted Feng to recognise some

level of connections between the components of the recursion. The following

lines show how Feng appreciates the connections between the size of the stems

 151

in the stopping condition and number of new stems in engagement with the

Treemenders domain.

75. Feng: I think the bigger stopping condition makes a lesser

number of new branches.

76. I asked: Why do you think so?

77. Feng: I set the angles both equal to 60, when the stopping

condition was two I had five new branches. For a size of less

than four, I had four new branches and now when I set the

stopping condition to less than nine, I only have three new

branches.

78. I asked: Do you think the size of the new branches is important

as well?

79. Feng: Umm, It could be.

In the line 77 Feng directly pointed to that relationship. Then, he tried to work

with the slider of the rate of change of the new stems. He changed it to 4, the

angles to the left and right were fixed at equal to 60 and the stopping condition

was nine . The final output of the tree

only had one new stem . Then he changed the value of the stopping

condition to 4, and the final result had one more stem . Feng continued

to try a few different values for the size of the main trunk and stopping

condition. The following lines show Feng‟s appreciation of the size of tree and

the initial value of the size.

 152

80. Feng: I think by increasing the size to 200 I have bigger

branches and by decreasing the stopping condition I have more

branches, and if I increase the ratio of the size it decreases the

number of branches.

81. I asked: Can you tell me the order of execution of the lines in

the program? [see program 1]

82. Feng: It begins with those three values, the size and the angles.

Then it checks if the size is less than 2 or not, if the size is 100

so it does the rest of the lines.

83. I asked: How about „Tree :size/2 :left-turn :right-turn‟?

84. Feng: Umm, it is just changes the length of the new branches.

Lines 83 and 84 showed that Fend considered the recursive call as a variable to

change the length of the size for the new stems. That can be considered as a

sign of iterative thinking rather than recursive. Feng‟s explanation in lines 81-

84 shows that he has a sequential interpretation of control passing in the given

recursive procedure. It has already been mentioned above that Feng said that

the factorial of a natural number is recursive, but that a Koch fractal is a FOR-

loop. To illuminate his idea about recursion and loops I tried to understand

whether he could see any recursive structure in the given procedure.

85. I asked: You said the factorial of a natural number is recursive.

86. Feng immediate answered: Yes!

87. I continued: Why do you think so? What makes the factorial

recursive?

88. Feng: It calls itself again and again.

89. I asked: What‟s the difference between recursion and a FOR-

loop?

90. Feng: Recursion is a WHILE-loop!

Feng‟s description of the recursion in line 88 and line 90 is evidence that he

has a stereotypical understanding of the concept of recursion. Also, the design

in this iteration was a kind of exploratory domain so it did not allow him to see

the latent layers of the complicated control passing in a recursive procedure.

 153

Sarah and Jin, the pair of Mathematics students, also started to work with

Treemenders in a similar way to Feng. They began by changing the values for

the angles to the left and right and observed the final output with scrutiny. The

interesting point with them happened when they made an infinite loop.

91. Jin: I would like to change the stopping condition to one.

92. Jin: Ok, let‟s change the length of the new branches equal to the

original one. By setting it to size / 1.

93. I said: Let‟s see what the result will be.

94. Sarah and Jin: Oh! It is not stopping at all.

95. Sarah: What if I increase the stopping condition value.

96. Jin: I agree.

97. Sarah: No difference!

98. Jin: When we have size / 1, changing the other values like

stopping condition doesn‟t seem to make any difference.

99. I asked: How about the size?

100. Sarah immediately answered: It makes the bigger circle shape

101. Jin: Yes, let‟s change the angles to see whether they make any

difference?

102. Sarah: Let‟s take size 60, left angle say 120, and right angle 90

103. Sarah and Jin: Oh! That‟s interesting.

Jin‟s innovative idea to make the rate of change of the new stems equal to the

size of the main trunk created a new line to attack the complexity of the control

passing process in the recursive procedures. The idea that I wanted to use at

this stage was that, whether or not they reached the point in the procedure

where these initial values will never call the second recursive call, I wanted to

look into their work to see whether they noticed that by making the size of the

new stems in a recursive procedure the same as the size of the main trunk, the

first recursive call is going to call the whole procedure with the same initial

value again and again.

In fact, I wanted to check whether they realised that control will never pass to

the second recursive call. In lines 92-94, they made the main size equal to 100,

 154

the angle to the left 30, and the angle to the right equal to 60. They also set the

minimum length of the stems equal to one as the stopping condition. The

change rate of the length of the new stems was set the same as the length of the

main trunk. The result can be seen in the below picture.

Figure 24- Infinite loop by taking the length of the size of new stems equal to the length of

the main trunk (lines 92-94 Sarah and Jin)

Then they changed the value of the angles to the left and right. That was a

crucial moment to see whether they recognized the flow of control over the

procedure or not.

The given procedure had two recursive calls to produce the branches to the left

and right. The first recursive call in the procedure was programmed to generate

branches to the left. By those initial values, which were chosen by Sarah & Jin,

the procedure never calls the second recursive call, which means they had not

have any branches to the right. And that is the main reason for having those

anticlockwise polygon-shapes. I looked into their experiment to discover this

point. In lines 102-103, by taking the main size 60, and the angles to the left

 155

and right equal to 120 and 90 respectively, Sarah and Jin achieved an

anticlockwise infinite loop over a triangle ,

. This result, and also their mathematical background,

persuaded them to generate a few more different polygons. The outline of a

few interesting trial and errors made by Sarah and Jin is presented in the below

table.

Initial values

Output

Size 60, angle to the left 90, angle to the right 90

Anticlockwise infinite loop over a

square

Size 60, angle to the left 60, angle to the right 90

Anticlockwise infinite loop over a

hexagon

Size 60, angle to the left 160, angle to the right 90

Anticlockwise infinite loop over a star

Table 5-Some interesting result from Sarah and Jin‟s experiment with Treemenders

104. I asked: What do you think about the value of angles in these

shapes?

105. Sarah: Umm, I don‟t know!

106. Jin interjected: If you consider the square one, the angle is 90

107. I asked: How about the hexagon?

108. Sarah: Well, the angle to the right has no effect on the result.

109. I asked: Why do you think so?

 156

I tried to attract their attention to the role and effect of the angles to the left and

right and to see whether or not they would find that the program never goes to

the right. So, I asked them to explain the role of the angles for me (line 104).

Their immediate answer showed me the square with the degree 90 at all its

vertices (line 106). I referred to the hexagon and Sarah replied that the “angle

to the right has no effect” (line 108), and to justify her answer they moved back

to the square one and tried to change the angle to the right to see the difference.

110. Jin: The result hasn‟t changed at all!

111. Sarah: Yes, I think it doesn‟t make any difference to the result!

112. I asked: Why is it like that?

113. Sarah: Umm, I have no idea!

114. Jin: It has never turned to the right at all! Why is it like that?

115. Sarah: Yes, that is why. But why doesn‟t it turn to the right

then?

116. I replied: Well, that‟s what we are thinking about. What do

you think?

117. Sarah: No idea why it doesn‟t go to the right side by taking

that.

118. Jin: Umm, no idea.

They were stuck and were not able to explain and describe the strange

behaviour of the procedure, which was a direct result of the complicated

control passing process in the recursive procedures.

The following lines show their difficulty in recognition of the recursive call

and the functionality aspect of it. In the line 121 Sarah pointed to the syntax of

the recursive call and that she cannot understand it clearly.

119. I asked: What are the most important parts of this procedure?

120. Jim: I think the size of branching is really important.

121. Sarah: I think this line is dodgy.

 157

Therefore, for Sarah and Jin the most difficult part to pass was to understand

the recursive calls and their function. In lines 110-118, one can see that they

had no idea about the suspension of the execution and jumping back to the

beginning of the procedure, again and again, due to the control passing

mechanism of the recursive procedures. However, lines 119-121 show

evidence that they were aware of their inability to understand the function and

functionality of the recursive call „Tree :size/2 :left-angle :right-angle‟ and that

was the reason that Sarah called this command of the procedure the dodgy one

(line 121). Jin also pointed out that the most important part of the procedure to

be understood is the size of branching (line 120), which is exactly the recursive

call.

In contrast to the other three students, Yasaman and Koroush, a second year

computer science pair, recognised that the given procedure is a recursive

procedure. Semantically, they explained that there are two recursive calls (lines

122-124).

The following lines demonstrate that the Treemenders domain offered Koroush

& Yasaman the environment, in which they could see the connection s and

interrelations between the stopping condition and number of new stems in their

binary tree.

122. Koroush: This is recursive procedure.

123. I asked: What do you mean by that?

124. Koroush: Because it is calling itself.

125. Yasaman interjected: Yes, this procedure is calling itself. I will

go for the angle first. Because, for making branches we should

know how much we must turn to the right or left. So, branching

is very important for me. The other point is that it cannot work

 158

forever and we should consider a limit for it. Therefore, I am

going to consider this limit as a stopping condition.

126. Koroush added that: I would like to get more iteration.

127. I asked: what do you mean by iteration?

128. Koroush immediately answered: By making the stopping

condition small, it will iterate more and basically it gives us

more branches.

Lines 125 and 128 give evidence of their ability to make the connection

between the stopping condition, recursive calls, and the number of new stems.

That was one of the beneficial points of employing the computer-based

domain, which provided them with the opportunity of observing the syntactical

commands and the output simultaneously.

The next section of this chapter discusses the result of the first iteration.

Following that, is the section which introduces the issues which need to be

reported on in the second iteration.

5.3.5. Discussion – Treemenders

I would like to discuss the results of the Treemenders from two parallel

perspectives of design development and the tool use.

1) Discussion on the design development:

Basically, the first iteration was an exploratory level of design. The main

attention in this exploration was paid to the students‟ difficulties in

understanding the concept of recursion and its indispensable components. The

initial hypotheses and conjectures were made based on the extensive literature

reviewed and my own ideas about tackling such a research idea. Although the

 159

computer-based domain in this iteration facilitates the participant‟s recognition

of some interrelationships between the internal parameters of the embedded

recursive procedure, for instance see Sarah and Jin, lines (98-103) and

Yasaman and Koroush, lines (126-128).

However, I was also convinced that Treemenders did not have the material

abilities to resolve students‟ problems with the complicated control passing

process in the recursive procedures. For instance, in Sarah and Jin‟s account

(lines 110-118) they had no idea why the program never drew any branches to

the right, in the other words why the procedure did not call the second

recursive call at all. From a functional abstraction point of view, Treemenders

was mainly based and designed from the functionality (what) part rather than

the functioning (how) part. Hence, the students were able to see what was

going to be done by the embedded procedure, the binary tree, but they were not

able to see and find out how it was going to be done.

That was one of my main concerns in any effort to design the next iteration. It

was also the most challenging part of the design of the next iteration. On the

one hand, I had to improve the weaknesses of the Treemenders, and on the

other hand was my interest in using fractals or fractal-shaped objects as the

everyday life analogies to design an appropriate domain of abstraction. I had to

consider the students and types of material that needed to be contrived into the

software to provide them with an appropriate environment to work with the

concept of recursion. The software needed to provide me as a researcher a

window in which I can see how students think about the concept of recursion

 160

and the way that they form and build their mental model of this concept and its

essential components. Overall, in the Treemenders domain, the concept of

recursion was phenomenalized by modelling a binary tree. Trees were chosen

to bridge a formal mathematical concept with informal fractal objects. This

domain only provided the students with a limited level of playfulness and

control over some parameters. Although it had weaknesses in presenting a

deeper level insights to the students, however, it had a few promising strengths,

the ability to show the connections between the different parameters of the

procedure. It was this that persuaded me to improve it for the next iteration.

2) Discussion on the tool use:

From the tool use perspective, based on the aims of my research the main

attention in this section is paid to the following issues: 1) The students‟ ability

in distinguishing recursion from the familiar iteration concept. This issue is

strongly dependents on their understanding of the mechanism of flow of

control in the pre-made recursive procedure. 2) The students‟ appreciation of

the main components of the concept of recursion.

Regarding the students‟ differentiation between the iteration and recursion,

when they were working with pen and paper tasks (the pre-questionnaire),

except the second year computer sciences pair (Yasaman and Koroush), the

other students considered recursion as iteration. For instance, Sarah interpreted

the Koch curve structure as an iterative structure by saying it is „repeating‟ the

same thing (line 2 and line 4). Also, Feng considered the Koch curve as an

iterative structure rather than a recursive one (lines 16-19).

 161

Feng‟s account showed a kind of stereotypical understanding about the concept

of recursion by saying that the „factorial of a natural number is recursive‟ (line

9). When I asked him what he meant by recursion, he answered „it is calling

itself each time‟ (line 11) and then he continued that the Koch curve does not

have a recursive structure (line 13). His explanations convinced me that based

on previous knowledge, he had some stereotypical idea about recursion – what

is factorial? It is recursion! However, his understanding of the concept of

recursion was not deep. In line 15, Feng added that the Koch curve is a FOR-

loop.

Regarding the crucial components of the concept of recursion almost all of the

students, who participated in the first iteration, appreciated the base case,

although they did not consider it as a crucial component of recursion.

In the account of Sarah and Jin (both year two mathematics), in lines 71-73,

Sarah states that modelling of the image of a tree in figure 20(b) is harder than

modelling the image of a tree in figure 20(a) because it has no main trunk and

starts with branching. Feng (computer sciences year two) also in lines 57 and

60 pointed to the need for having a base case. In both cases, the participants

pointed to the base case indirectly, and also they did not consider it as a

component of a recursive process.

However, in the case of Yasaman and Koroush (working in a pair, computer

sciences year two), the story was a bit different. In line 20 Koroush, and

Yasaman in line 29, pointed to the need for the base indirectly by saying that to

 162

model a tree you need to start with a main trunk, for me that was initial

thinking about the existence of a base. Then, Yasaman in lines 49-51 made an

algorithm for generating a tree and directly pointed to the base case by using

the term „base‟. Moreover, she distinguished between recursion and iteration

through a different interpretation of base case. Yasaman stated that: “[i]n

recursion we start the process and then we get to the base case at the end. But

in iteration we start with the base case”.

Her explanation was important for me in four directions. The first direction

was, for her, iterative procedures and recursive procedures were different. The

second direction was that she had a measure for that separation which was base

case. The third and most important direction was that she considered the base

case as a component of recursive procedures. And the final direction was her

initial idea about the base case in recursive procedure, as she thought that the

recursion ends with the base case. When she stated that “I think considering a

base case could act as a stopping condition”, Koroush replied that “It could be.

Also we can put a condition on the length of size for stopping the algorithm”

(lines 51-52). These explanations also showed me that although they agreed

that in a recursive procedure the base case can act as a stopping condition,

however, they were not sure whether putting a limit on the length of the size is

stopping condition or base case. Their explanations provided me with valuable

insights for the design of the next iteration, which will be discussed in the next

section of this chapter.

 163

The pen and paper task, as already mentioned, said little about the process of

flow of control. The students‟ experiments with the domain of abstraction

(Treemenders) provided me with new intuitions and insights to find an

appropriate embodiment and phenomenalization for the control passing process

in recursive processes in the next iteration. The students had great difficulty in

recognizing the flow in the given embedded recursive procedure. Only

Yasaman and Koroush showed an initial understanding about the flow in the

recursive procedures. The other students considered a sort of sequential flow

over the embedded recursive procedure.

Overall, at this exploratory level, I achieved some insights and conjectures

about the embodiment of the complicated control passing flow in the recursive

procedures and thinking about the functioning aspect (how part) of the design

for designing the next iteration, which is going to be explained in the next

section.

5.3.6. Issues & conjecture(s) for the next Iteration

The results which were achieved by the students through using the

Treemenders were promising for the future work in the next iteration. Because

of the nature of the query, achieving these initial results by using traditional

methods at this stage was difficult, if not impossible.

The design of this iteration supports the accuracy of many issues about

students‟ difficulties with understanding and applying the concept of recursion

 164

that had been reviewed in the literature. Issues include students‟ difficulties in

recognition of the base case, flow of control, and the function of recursive

calls. However, the computer-based tool requires the question of „how‟ the

complicated mechanism of flow in recursive procedures can be visualized and

embodied in the design. How the design can be improved, to allow students in

a domain of abstraction environment, to enhance and develop their

understanding of the concept of recursion. How this understanding can assist

them to frame and shape their own mental models of this concept through

interaction with the tasks contrived in the domain. It was visibly apparent, and

I was convinced that the current domain in the first iteration (Treemenders) did

not guide the students‟ attention towards tracking the complex control passing

process in an embedded recursive procedure.

I decided to concentrate on a more visible visualization of the concept of

recursion. Based on the Treemenders early results relating to the students‟

difficulties in recognition of the relation between recursion and iteration, which

directly stemmed in inadequate knowledge of control passing mechanism in

recursive procedure, I decided to use some fractal-shaped objects, which can be

described both iteratively and recursively, to scrutinize the students‟

appreciation of recursion and iteration. I use the term „fractal-shaped object‟ in

order to distinguish them from fractals. Fractals can only be defined recursively

and that was the reason that I was looking for objects that can be programmed

both iteratively and recursively.

That was one of the crucial challenges of the design of the next iteration. Based

on my initial interest on using fractals and fractal-shaped objects I decided to

 165

use spirals. They look like fractals, but they are not because they can be

described both iteratively and recursively. Students‟ difficulty with tracking the

flow in the embedded recursive procedure was the other major challenge which

needed to be improved in the second iteration. In the case of Yasaman and

Koroush, I noticed that they generally were able to describe the mechanism of

the recursive procedure (lines 122-127). However, when it came to describing

the functioning of the recursive calls in particular – the first and second

recursive calls – they did not have much to say in the first iteration.

Consequently, the new conjecture was the separation of tail and embedded

recursive calls for two reasons. The first reason was that a tail recursive

procedure is very similar to an iterative procedure. So, it would help me to look

through the student‟s mental model about iteration and recursion from a closer

perspective.

Also, based on the initial result of Treemenders it was apparent that students

have less difficulties in working with trees as they already have a kind of pre-

made mentality about them as example of the objects in our everyday life. It

persuaded me to phenomenalize the concept by using spirals, to bridge formal

and informal, and embody and visualise the tail recursive procedures in the

next iteration.

In addition, functional abstraction is a key concept in dealing with recursion.

From this perspective, the other major issue which needed to be considered in

the next iteration was the lack of enough attention on the functioning (how

part) in the design process of the first iteration. I realized that I needed to

 166

employ a more dynamic and interactive domain of abstraction environment to

provide the students with the opportunity of seeing the latent layers of the

complicated control passing process in the tail and embedded recursive

procedures.

I decided to put more focus on the functioning alongside the functionality

dimensions. In light of these results, the next domain, which is called Spirals,

was designed in such a way that students were able to engage with recursion at

two levels, namely „functionality‟ and „functioning‟. It means that, in this

domain of abstraction, the students were able to switch their thinking between

functionality and functioning levels of recursion.

It has been mentioned before that, according to Sooriamurthi (2002), one of the

major difficulties students face concerning the concept of recursion arises from

focusing on the how. In contrast, he believes that they should focus on the what

first, and then focus on the how. The primary result of Treemenders reveals

that only focusing on the what part and ignoring the how part did not give

much chance for the participants to track the flow of control. Hence, I decided

to employ them shoulder to shoulder in the next design of the software.

Therefore, the main issues for the next iteration can be summarized in the three

major issues of: separation of tail and embedded recursion, focus on the

functioning aspect of functional abstraction as well as functionality aspect, and

using spirals for the embodiment of tail recursive procedures in the computer-

based domain of abstraction.

 167

The first design was mainly based on drawing a binary tree using some

parameters. In order to design and make a computer-based domain to act as a

window to look into student‟s thinking and thinking-in-change about the

concept of recursion and its components. Therefore, my main focus was on

creating an appropriate computer-based design which is both purposeful and

dynamic. This responsibility drew my attention to the contextualization of a tail

recursive procedure by spirals. I also designed a new task in which students

have the opportunity to engage with the software by entering their own

commands into the task and observing the results.

Having said the issues above, the conjecture which was reported into the

second iteration can be explained, as follows: By exploring the similarities and

differences between iteration and tail recursion, students will recognise the

flow of control in tail recursion. The aspiration is that awareness of flow of

control in tail recursion may later support appreciation of the flow of control in

embedded recursion.

 I designed and coded the Spirals as the domain of abstraction for the second

iteration. The next section of this chapter concentrates on the second iteration.

5.4. Iteration Two – Spirals and Blank box

5.4.1. Overview

The domain of abstraction in this iteration is called Spirals. In this iteration, the

main attention was paid to the modelling of spirals. The rationale for choosing

 168

spirals stemmed from the initial interest in using fractals and fractal-shaped

objects and also the challenge to find objects that can be modelled both

iteratively and recursively.

I used these fractal-shaped objects to embody the conjectures on the

relationships of the iteration and tail recursion in the computer-based domain

of abstraction called Spirals in the second iteration. I also intended to examine

the possible influence of previous experiments with iteration on the students‟

thinking-in-change process about the concept of tail recursion. This domain of

abstraction acts like a window for me as a researcher to look through the

process of student‟s thinking-in-change and also for the students as participants

to work with this domain and try to frame and shape their thinking and mental

models of recursion through this window. The Spirals domain was designed in

such a way that the students were able to create their own spirals using two

iterative and recursive techniques. These techniques were called blue and red

techniques respectively (Figures 26 and 27), to avoid the creation of any sort of

prejudgments by the participants.

The Spirals domain of abstraction also allowed the students the opportunity to

compare these two techniques in a comparison module (Figure 28). I employed

a few visualisation techniques in the comparison module, like colour-coding

and animation. The main reason to go for this challenging part of the design

was the noticeable need to pay attention to the functioning aspect of the

mechanism of recursion as a result of the first iteration. It was conjectured that

 169

it might provide a better window for the participants to look through the

complicated mechanism of the concept of recursion and its crucial components.

I called this innovative approach towards investigation of the student‟s

thinking-in-change and their own mental models of the concept of recursion,

Animative Visualisation in the Domain of Abstraction, abbreviated to the

AVDA approach. AVDA provided the students a dynamic visual presentation

of the viable copies model of the tail-recursive procedure. Computer-based

environments are appropriate domains of abstractions (Pratt et al, 2008) to use

with the advantage of providing a window to look through the students‟

thinking process about different mathematical concepts. The intention was that,

by designing such windows, I could as a researcher probe the students‟

thinking and thinking-in-change process more easily. Moreover, it might

facilitate students to frame and shape their thinking about the concept through

this window.

The results of this iteration provided me with rich insights into the role of

dynamic visualisations, AVDA, in this study. These results are discussed in the

issues for the next iteration later in this chapter. The pictures below (Figures

25-28) show the main interface of the Spirals computer-based domain of

abstraction for the modelling of spirals.

 170

Figure 25-The main interface of Spirals (AVDA approach)

Figure 26- The blue technique (iterative procedure)

 171

Figure 27-The red technique (recursive procedure)

Figure 28-The comparison module (AVDA approach)

 172

As mentioned above, one of the major concerns in the innovation of AVDA

was to focus on the functioning aspect of the concept of recursion. To do so, I

also designed another domain called the blank-box task. In this domain, the

students were able to program and engage with the computer a bit more

interactively than with Spirals. It was conjectured that the blank-box module

may provide more playfulness to the students. In this module, the students were

given an incomplete recursive procedure to generate a binary tree.

The blank-box module was a relatively demanding task in the sense that the

students were asked to fill a given empty box to complete the recursive

procedure to produce a binary tree. Performing this task requires a clear mental

model and perception of the recursive procedure and its essential components

like the functionality and functioning of the recursive call(s). So, it was

conjectured that the task would provide me with an appropriate window into

the students‟ thinking and beliefs about the recursive procedures.

Figure 29- The blank-box module

 173

The other issue was that the task was designed to probe whether students were

able to make any sort of connection between the tail and recursive procedures.

In other words, the task was designed in such a way that a few given

commands in the incomplete recursive procedure were a tail recursive

procedure to draw a spiral. It was also conjectured that the students might be

able to make some kind of connection to make two spirals in opposite

directions to generate a tree. The main interface of the blank-box task is shown

in the above picture (Figure 29).

My approach to implementing the second iteration, tool design, and tool use

aspects are discussed in the next sections of this chapter.

5.4.2. My Approach – Spirals

I worked with seven volunteer students. They were mathematics specialists

who were studying on a four-year degree program, and were training to be

primary school teachers. The students attended the interviews and participated

in the tasks in three pairs and one individual. Each interview session lasted 1.5

hours. The tasks in this iteration were implemented in a particular order which

is shown in the following table.

 174

Task
Order of

implementation
Purpose

Pre-questionnaire First task

Finding out the students‟ beliefs through

a few open ended questions.

blank-box Second task

Evaluating the students‟ thinking and

thinking-in-change through the window

of the tool.

Spirals Third task

Evaluating the students‟ thinking and

thinking-in-change through the window

of AVDV environment.

blank-box Fourth task

Evaluating the effect of working in the

AVDA environment on the students‟

thinking and thinking-in-change through

the window of the tool.

Table 6- The order of the tasks in the second iteration

In the first place, students were asked to answer the pre-questionnaire task, in

which I was able to see what they believe and think about the natural spiral

structures and binary trees. Then, it was the turn of the blank-box module. I

asked the students to work with this module twice. The first time was when

they finished work with the pre-questionnaire and the second time was when

they finished their experiment with the Spirals computer-based domain

(AVDA approach).

This order of implementing the blank-box module provided me with multiple

windows into the students‟ thinking and thinking-in-change process before and

after their experiments within the AVDA environment. Looking into those

windows enabled me to investigate how the students framed, shaped and

developed their thinking and mental models of the concept of tail recursion. I

 175

was also able to track their thinking-in-change process through the windows

provided by the blank-box module and AVDA.

The students‟ responses to the pre-questionnaire task and also their

experiments with the blank-box task and AVDA environment were recorded

both using an audio tape-recorder and a Camtasia screen recorder. Using a

Camtasia screen recorder allowed me to record every single movement of the

students on the screen while they were working within the AVDA

environment.

The advantage of using such recording software was that, due to the nature of

the tasks, I had to take many research notes while they were working with the

software. Writing the notes, was very difficult and complicated because the

students said nothing and were just moving the cursor on the screen to point to

certain commands or typing something on the screen. The reason for the

complexity of the note-taking in these sorts of situations is that, as a participant

observer, I had to observe and scrutinise every movement. Switching my

attention to write about those non-verbal situations could increase the risk of

losing some valuable observation of the students‟ explanations or movements.

Using Camtasia the screen recorder software helped me to record those non-

verbal situations. Similarly to the first iteration, all the interviews were

transcribed and saved in two stages of plain and interpretive accounts. The

interpretive accounts were treated as data and coded in two stages of

 176

descriptive codes and analytic codes
1
 to be analysed. The analysed data

provided me with some new conjectures and issues which were reported to the

final iteration of this research. The pre-questionnaire task in the second

iteration is discussed in the next session of this chapter. It is followed by the

tool design and tool use sections.

5.4.3. Pen & paper task – Iteration Two

Similar to the previous iteration, I asked the students to start the interview by

answering the pre-questionnaire task. The task contained two open ended

questions. The first question was about modelling the Joshua tree (Figure 30).

Figure 30- Joshua tree in the pre-questionnaire task

The reason for choosing a Joshua tree was the branching structure of these

trees. Joshua trees‟ structure is almost similar to binary and ternary trees. The

second question was about the spiral structures in nature. Students were given

two natural spiral patterns – a snail shell and a flower plant – and a paper made

spiral (Figure 31).

1
 Please see appendix B to see the table of Codes.

 177

Figure 31-The spiral shape patterns in the pre-questionnaire task

Similar to the pre-questionnaire task in the first iteration, the students were

asked to describe the images and explain how they would write an algorithm to

produce these objects. The students‟ responses to these questions are discussed

in the tool use section later in this chapter. The next section of this chapter

concentrates on the key design features of the tool design in the second

iteration.

5.4.4. Tool Design – The Blank-Box and the AVDA environment in Spirals

From the design perspective, the second iteration had a substantial difference

from the first iteration. It has been mentioned above that from the functional

abstraction point of view the computer-based tool for the first iteration had

some limitations. The Treemenders was designed mainly from a functionality

(what needs to be done) point of view rather than functioning (how it will be

done) point of view. Therefore, as shown in the students‟ accounts, for instance

Sarah and Jin lines 104-108 and lines 110-118, the need for focusing on the

how part was a major issue for the next iterations.

One of the main challenges for me was to find a strategy for designing the

domain of abstraction from both functionality and functioning aspects. To do

 178

so, I designed two computer-based tools for the second iteration. The first one,

as mentioned above, is the blank-box module and the second is the AVDA

domain of abstraction. Hence, this section is divided into two major parts. The

first part focuses on the design features of the blank-box task. It is followed by

the key design features of the AVDA environment, which includes three

modules of the red and blue techniques and the comparison module. Table 7

outlines the key design features in the tasks which were designed for the

second iteration.

 179

Computer-

based domain
Design features Purpose

The blank-box

module

An incomplete

recursive procedure

with a given blank-box

to be filled by the

students.

For the

students

Creating a window to investigate both the

functioning and functionality aspects of

recursion

For me as a

Researcher

Figuring out the students‟ thinking and thinking-

in-change about recursion and its components.

A
V

D
A

 e
n

v
ir

o
n

m
e
n

t

B
lu

e
te

c
h

n
iq

u
e

Designing two modes

for executing an

iterative procedure to

produce a spiral –

normal mode and

stepwise mode

For the

Students

To provide students with the opportunity for an

in-depth investigation of the control passing in

an iterative procedure by reflecting the steps and

the correspondence output in one window

For me as a

Researcher

Figuring out the students‟ thinking and thinking-

in-change about iterative procedures.

R
ed

 t
ec

h
n

iq
u

e

Designing two modes

for executing a tail

recursive procedure to

produce a spiral –

normal mode and

stepwise mode

For the

students

To provide students with the opportunity for in-

depth investigation of the control passing in a

tail recursive procedure by reflecting the steps

and the correspondence output in one window

For me as a

researcher

Figuring out the students‟ thinking and thinking-

in-change about tail recursion and the influence

of their previous experiments with iteration.

C
o

m
p

a
ri

so
n

 m
o

d
u

le
 Designing a

representation of a

viable copies model for

the tail recursion and

comparing it with the

iteration, also using

colour-codes for each

command of the

procedures.

For the

Students

To provide students with the opportunity for in-

depth investigation of the control passing in a

tail recursive and iterative procedures and

correspondence output in the AVDA approach

in one window.

For me as a

Researcher

Figuring out the students‟ thinking and thinking-

in-change about tail recursion and the influence

of the AVDA approach on their thinking style.

Table 7-The outline of the design-purpose features of the task in the second iteration

 180

Table 8-The design features of the three modules of the Spirals domain of abstraction

Module Design features

Main

interface

1) blue technique, red technique, and comparison module

The red

technique

1)The control box of the red technique 2)After activating the start button 3)After activating both the start and switch buttons

4)The slider for setting the initial step 5)Move to other pages

The blue

technique

1)The control box of the blue technique 2)After activating the start button 3)After activating both the start and switch buttons

4)The slider for setting the initial step 5)Move to other pages

The

Comparison

module

(AVDA)

1)The control box of the comparison task 2)After activating the start buttons 3)After activating both the start and switch 4)Move to other

pages

5)The sliders for the initial size and speed the control of execution of the procedure

 181

The blank-box module

This module was designed based on two design techniques; Using-before-

knowing, by modelling binary and ternary trees. In the blank-box task, the

concepts of tail and embedded recursion were phenomenalized by using spirals

and trees. The interesting design point in this module was the link between the

tail and embedded recursion (see program 6). The link was embodied by giving

the students an incomplete embedded recursive procedure such that the output

of the given codes was a spiral – a tail recursive part – and they were asked to

complete the procedure to make a tree.

This module was designed to evaluate the students‟ ability to use and apply

recursive procedures in the problem-solving situation. The blank-box module

also assessed their recognition and understanding of the functioning aspects of

the main components of a recursive procedure – recursive call(s) and base case.

The main interface of the blank-box module is shown in the below picture.

Figure 32-The interface of the blank-box module

 182

As shown in picture 33, the key feature of this module was the incomplete

recursive procedure on the left side of the picture. The procedure is

demonstrated below.

To tree :size

If :size < 2 [STOP]

Forward :size

Left turn 30

Tree :size / 1.1

End

Program 6-The incomplete recursive procedure and the blank-box

The students were given a control box – as shown in picture 33 – including two

buttons and one slider (Figure 33). They could run their program by pressing

the run button and clear the screen by pressing the clear

 button to amend their approach. The students also were able to

set the initial size of the main trunk of the tree by the slider which was

contrived in the control box (Figure 33).

Figure 33-Control box in the blank-box module

In this module, the students were able to enter their own commands into the

given box in an incomplete recursive procedure to generate a binary tree. They

were expected to use and work with the recursive procedure before knowing

about it. The first part of the procedure, which was given to them (shown using

The blank box to be

filled with appropriate

commands by the

students

 183

the red colour in Program 2 above) as shown in the above picture, produces a

spiral in the left direction. It was conjectured that the way that the students try

to complete the task would provide me with a rich window towards their

understanding and thinking about the recursion and its crucial components.

One of the key design features of this module was that the students were able

to enter their own commands, which had to include one additional recursive

call, into the given blank box and by seeing the output on the screen reflect on

their work and possibly make amendments and modifications.

This module seemed to be an easy task. However, it was designed in such a

sophisticated way that the students were able to complete the task only if they

had a visible model of recursion and a clear understanding of the functioning of

the recursive call as a vital component of it as well as the functionality of the

components of a recursive procedure. It was conjectured that they would

realize that the procedure needs another recursive call only if they have a clear

understanding of the functioning of recursive call, to generate the branches in

the right direction. It was also conjectured that if the students put the recursive

call in the right place, this would show that they have a clear understanding

about the functioning of the recursive call and the mechanism of control

passing in the recursive procedures. That was the reason which made this

module a challenging module for the students. It provided a rich window for

me to probe students‟ thinking about the concept of recursion. Students‟ results

with this module provided me some promising results, which are discussed

later on in this chapter in the tool use section.

 184

The Spirals computer-based domain and AVDA approach

Figure 34-Main page of the Spirals domain

As earlier mentioned, the AVDA (Animative Visualisation in the Domain of

Abstraction) innovation was designed within the Spirals computer-based tool,

based on the results of the first iteration and my initial interest in using fractal

and fractal-shaped objects to embody the concept of recursion. This domain of

abstraction and AVDA approach were carefully designed to provide me as a

researcher with a window into the students‟ thinking about the tail recursive

procedures and also a window for the students to form and develop their

thinking about the latent layers of the tail recursive procedures.

It was conjectured that the animation technique employed in this domain

provides the students the situation in which they could see and experience the

latent layers of the concept of recursion and its control passing mechanism.

Therefore, AVDA provides students some on screen objects to work with and

investigate on the main components of tail recursion such as functioning of the

recursive call in the comparison module and animation and colour-codes. It

also helped students to see the control passing mechanism of the tail recursive

procedures.

 185

Tail recursion was phenomenalized by using informal fractal-shaped objects

and animative visualisation throughout three modules in the Spirals domain of

abstraction which are discussed later on in this chapter.

Spirals domain contains three modules and a main page (Figure 34). The

students have three choices in the main menu of the tool: the blue technique,

the red technique, and the comparison module. Table 4 outlines the main

design features in these three modules. The students were able to move to each

one of these three modules from the main menu by pressing on each one of the

three buttons, which were contrived in the main page – see the first row of

Table 4. To go to the blue technique, they needed to press the blue

button, to go to the red technique, they needed to press the red button,

and by pressing the red-blue button they were able to move onto the

comparison module. The students were asked to implement the modules in a

hierarchical way as shown in the below diagram.

Figure 35- The order of execution of the modules in the Spirals domain by the students

As shown above, the first task that the students were asked to work with was

the blue technique. Then the students were asked to work with the red

The Spirals computer-
based domain

1) The blue technique 2) The red technique
3) The comparison

module

 186

technique, and finally with the AVDA innovation in the comparison module.

The rationale for designing these three tasks was to see how the students think

about the iteration and tail recursive procedures. Moreover, to see to what

extent they change and develop their thinking about these concepts within the

AVDA approach in the comparison module. In the comparison module, I

created an animative innovation towards functioning aspect of the concept of

tail recursion in the Spirals domain.

Despite the blue and red techniques, which were mainly designed to see how

students think about the iterative and recursive (tail recursive in particular in

the second iteration) procedures, the comparison module was mainly designed

to phenomenalize and embody the viable copies model of the tail recursive

procedure by employing animation and colour-coding. The underlying

principle was to investigate how the students‟ thinking and mental models

about tail recursion is evolved and changed by working in that domain.

The blue technique (iterative)

Figure 36-The blue technique (iterative)

 187

The blue module was the first module with which the students were asked to

work (Figure 36). The blue technique was based on an iterative procedure to

generate a spiral. They students have two choices of executing the procedure in

normal mode or step-wise mode. They could switch between these modes by

pressing the appropriate buttons in the control box – see the third row of Table

8. In the step-wise mode of execution, they needed to press the switch button

 first, and then press the start button , and finally keep

pressing the step button to generate the spiral step by step. They

were also given a slider to set the initial size of the first step, shown in Table 8.

A clear button was also contrived in the control box to allow students

to clear the screen to test and check a new spiral. In the third row of Table 8,

you can see another set of control buttons, number (5), which allow the

students to move onto the other pages by pressing the appropriate buttons. The

iterative procedure that was written to generate the spiral iteratively is shown

below.

 To Blue :n

 While [:n > 1]

 [Forward :n Left turn 30 Make “n :n / 1.1]

 End

Program 7-The iterative procedure to generate a spiral in the blue technique

 188

The red technique (recursive)

Figure 37-The red technique (recursive)

The red technique is similar to the blue technique. The major difference

between these two is the programming technique. The program in the red

technique was a tail recursive to generate a spiral which is shown below. The

program has one recursive call – Red :n / 1.1 – and a base case – If :n < 1

[Stop] – which operates as the stopping condition.

To Red :n

If :n < 1 [stop] Forward :n

Left turn 30

Red :n / 1.1

End

Program 8-The tail recursive program to generate a spiral in the red technique

In picture 37 it can be seen that the students were able to reflect on their work

by observing the output of the procedure on the screen.

Similar to the blue technique, which is explained above, the students have two

choices of running the procedure in the normal or step-wise mode by pressing

 189

the appropriate buttons and a slider to set the size of the initial step – shown in

the second row of the Table 8.

The comparison module and AVDA approach

Figure 38- The comparison page and AVDA innovation in the Spirals domain

The AVDA innovative approach was employed in this module. As shown in

Figure 38, the students were provided with the opportunity to compare the

iterative technique with an embodiment of the viable copies model of the tail

recursion.

The embodiment was created by using animation and colour-coding. The

control box and the buttons that the students were provided to work with are

shown in the fourth row of Table 8. The students were also given one more

slider to control the speed of the execution, the image numbered (4) in the

fourth row of Table 8. It was conjectured that by slowing down the speed of the

execution, the students would have more opportunity to see the mechanism of

control passing when the tail recursive procedure was being executed. The

colour-code was employed in such a way that each command which was being

executed was flashing or changing into the other colour. For instance, when the

 190

blue technique was being executed in the AVDA approach, the colour of each

line of the procedure being executed transferred into the blue colour (Figure 39

a, b, c and d).

a) , b) ,

c) , d)

Figure 39-The colour-codes in the iterative technique in the AVDA environment

Figure 39 (a) shows the iterative procedure before starting the execution.

Immediately, after starting to run the procedure in Figure 39 (b) the first

command of the procedure changed to blue colour when it was being executed.

Then when the control passed to the next part of the procedure, Figure 39 (c)

shows that the colour of the commands which were being executed changed to

blue, and when the procedure finished the execution colour of the last

command of the procedure changed to blue, see Figure 39 (d).

A similar process was employed in the red technique in the AVDA

environment. The only difference was that besides the colour-coding on the

lines of the procedure, the students had the opportunity of seeing the copies of

the original procedure. The animation technique was designed in such a way

that, after each time calling, the recursive call for a new copy, a new copy of

 191

the procedure was appeared on the screen. Simultaneously, in each of the

generated instantiations I employed the colour codes, it can be seen in Figure

40 a, b, c, d, and e. Picture 40 (a) shows the procedure before execution, and

trivially there is no generated copy (instantiation). The pictures numbered 40

(b)-(e) show both generating copies and also the colour codes of those

commands which were being executed at the time. It was conjectured that

seeing the viable copies model for the tail recursion would allow the students

to develop their thinking and mental models of the concept.

a) b)

c) d) e)

Figure 40-Animation and the colour codes in the tail recursive procedure in the AVDA

environment

Technically, apart from the animation and colour codes, I contrived a few more

facilities into the comparison module to facilitate the process of tracking the

mechanism of the flow of control in the tail recursive procedure by the

students. For instance, in Figure 38, the interface of the comparison module,

you can see the box in both blue and red techniques which shows the current

 192

value of the length of the segment which was

being drawn by the turtle. The value shown in this box is also shown on the

screen in which the spiral was being drawn (Figure 41).

Figure 41-The box for showing the length of the last segment which was being drawn by

the turtle

Similar to the red and blue modules of the Spirals domain, in the Comparison

module, the students were also allowed to run the procedures in the two modes

of normal and step-wise. It was conjectured that by step-wise execution of the

procedures the students would be able to follow and track the flow by

observing the syntax and output simultaneously. The link between the syntax

and output is embodied and phenomenalized by using the colour codes of the

commands and animation plus the output which was a spiral being drawn by

the turtle. Therefore, it was conjectured that such a design would assist the

students to bridge the functionality – what needs to be done – and the

functioning – how it will be done (Sooriamurthi, 2002).

Summary of tool design – the Spirals

To sum up, based on the emergent issues and the conjecture from the first

iteration, I designed the domain of abstraction for the second iteration. Based

 193

on the aims of this research, the design was mainly intended to probe the

students‟ thinking about the tail recursion throughout the following issues:

 Emphasizing on functioning aspect of the design,

 Giving more control to the students (playful-ness)

The first part was contrived into the domain of abstraction by using animation

and colour-coding in the AVDA environment. And the second was partly done

by giving the students the opportunity of running the procedures in the step-

wise mode and also adding their own commands in the blank-box module and

see the output on the screen. Therefore, compare with the first iteration‟s

domain, the Treemenders, the domain for the second iteration was more

interactive and playful for the students and also has represented the latent

layers of the mechanism of control passing in the tail recursive procedures.

The next section of this chapter discusses the students‟ use of the tool in the

second iteration.

5.4.5. Tool Use – Spirals

This section concentrates on the usage dimension of the blank-box module and

the Spirals. It is divided into two parts. The first part discussed on the

students‟ accounts on the pen & paper task (the pre-questionnaire) and the

second part is about the students‟ accounts on the blank-box module and the

Spirals domain of abstraction.

 194

Tool use, pen & paper task (the Pre-questionnaire) – Iteration two:

I worked with three pairs and one individual. Each interview lasted 1.5 hours. I

start the tool use section with a brief explanation of the students‟ responses to

the pre-questionnaire (the pen and paper task). As mentioned earlier, the pre-

questionnaire task had two major parts. The first part was an open-ended

question about the Joshua tree (Figure 42 (a)) and the second was about some

natural spiral-shape objects (Figure 42 (b)-(d)).

a) ,b) ,c) , d)

Figure 42-The images of the pre-questionnaire task

The students were first asked to describe the images, and then required to

describe what they could say about their shape, structure, size, and angle.

Finally, they needed to describe the essential features of those images if they

wanted to draw them. In the following part of this section, I am going to

present and discuss two pairs (Tabby and Akilla, and Andrew and Hayley) of

the participants in detail. In this iteration, I also interviewed an individual

student, Kieran, and I compared his explanations with those two pairs. I

pointed to the image of the Joshua tree (Figure 42 (a)) and started the task.

1. I asked: can you describe this image?

2. Kieran: It looks like a bifurcation.

3. I asked: What do you mean by that?

4. Kieran: It is a fractal and each time it stems it is doubled.

5. I asked: What can you say about the size and angle?

6. Kieran: As I said, it is a fractal and the branching angle is 45. It

seems that the length of the new branches is almost half that of

the previous ones.

 195

7. I asked: What are the essential features of the image if you want

to draw it?

8. Kieran: The branching points.

Lines 2-6 show that Kieran is familiar with fractal-shaped objects. He also

mentioned that if he wanted to draw a Joshua tree, the essential part is

branching (line 8). And we know that there are two main issues with regards to

the branching in terms of the components of a recursive procedure. The first

one is recursive call(s), which means to create the new branches you need to

consider a recursive call in your procedure, and also the complicated

mechanism of control passing in the procedure. The latter allows the students

to locate the recursive calls in the right place in the procedure. Regarding the

spiral pictures (Figure 42 (b)-(d)), Kieran responded as follows:

9. Kieran: They are like fossils and sea and plant life objects.

10. I asked: How about the structure of them?

11. Kieran: They look like fractal structures. Regular spirals.

12. I asked: What do you mean by the regular spirals?

13. Kieran: It seems that the distances between the layers of the

spirals are similar.

14. I asked: Can you describe the essential features of them?

15. Kieran: They are circular structures, the spacing between the

lines is an important factor, and the angle seems to be

increasing.

Kieran‟s initial explanations in the pre-questionnaire task show that he

recognised the fractal structure of the Joshua tree (lines 2-4). Moreover, he

thought that the spirals are also fractals (line 11), as we know they are not

because they can also be defined iteratively. Structurally, he described the

Joshua tree as a bifurcation which always produces two branches (lines 2-6).

With regard to the spirals, he was thinking about the space between the circular

lines in a spiral (lines 11-15). He also considered them to be circular objects.

 196

One interesting point was that Kieran‟s first impression of the image of Joshua

tree was that „it looks like a bifurcation‟ (line 2) and the first impression of the

image of the spirals was that „they are like fossils and sea and plant life

objects‟ (line 9).

Tabby and Akilla, another pair of students who took part in this iteration,

responded to the pre-questionnaire module by focusing more on some

quantitative structural parameters like angles and length. They described the

spirals in Figure 42-((b) and (c)) as follows:

16. Tabby: The angle is becoming bigger and bigger and bigger.

You know what I mean?

17. Akilla: Yeah I know, I can see it

18. Tabby: but in this one [Figure 42 (d)] the angle is the same.

19. Akilla interjected: Yeah it is!

20. Tabby: What do you mean by the structure?

21. I answered: What do you think?

22. Tabby: I see a pattern going all the way around. I was just

thinking I can draw a circle with „n‟ but this side slightly goes

out and then carries on the same.

23. I asked: What are the essential features of the images if you

want to draw them?

24. Tabby: I am just thinking of it in terms of a circle. You know to

draw a circle, repeat 360 forward 1, so, maybe…

25. Akilla interjected: We might consider going right back to the

beginning, it goes back.

26. Tabby added that: It goes back, but it needs to carry on to do

more repeating and avoid going over itself, we need to increase

the angle as well,

27. Akilla agreed by saying: Yeah!

28. Tabby continued: I don‟t know if that is right or not, but that

might make something like that [Figure 42 (d)]

29. I asked: What is the difference between a circle and a spiral?

30. Tabby: When you do a circle, you repeat 360, forward 1,

31. Akilla: For a spiral when you get back to where you started, you

need to slightly somehow increase the angle or something to go

up there and then carry on

32. I asked: At that point are you going to change the angle or do

you want to change the size?

 197

33. Tabby: I would have to change the angle in the first place, so it

does not draw over the circle. The right one [Figure 42- (b)]

would be increasing in angle each time.

34. I asked: Do you think about the size?

35. Tabby: Yes, for example, if you had forward 5, it would mean

just drawing more like this kind of shape [Figure 42-(c)], you

know what I mean? It‟s not very good, you have got more

straight lines in your spiral.

36. Akilla interjected: Yeah,

37. Tabby: Because forward 1 is like the smallest amount of step

you can do, it looks like a circle but you still actually draw little,

little lines and put them together, the angle would be affected,

but how do we repeat iteration?

38. Akilla: I don‟t know!

Lines 24-33 showed that Tabby and Akilla were thinking in terms of iteration

about the structure of the spirals. However, their utterances about the Joshua

tree (Figure 42-(a)) were slightly related to recursion (line 44).

39. Akilla: It is like an up-growing tree. The branches are getting

smaller as you go higher. Do the angles become smaller?

40. Tabby: Not really, the angles are the same thing. They are just

being repeated on top of it on different branches.

41. Akilla: So, the angles are the same?

42. Tabby: Yeah, they are just repeating the same thing.

43. I asked: What do you mean by the same thing?

44. Tabby: It is like the same thing. I was saying the same “Y”

shape is repeating itself somewhere else. And the angle for the

original “Y” is the same, I think.

In line 44, Tabby to some extent pointed to the concept of recursion

semantically. However, it was too early to take this explanation as evidence to

show that her thinking about the structure of a Joshua tree was recursive.

45. Akilla: Yeah, the same “Y” but they are just going up on each

other.

46. Tabby: They go up on each other and again get smaller and

smaller.

47. I asked: Is it also the same when it becomes smaller?

48. Tabby: The same shape, the same angle, just a smaller distance.

49. I asked: What are the essential parts of the shape if you wanted

to draw it?

 198

50. Akilla: The structure of it, the initial “Y”. And then “Y” over

“Y”s becoming bigger like a big “Y”

51. Tabby: But it doesn‟t look like a big “Y” – it‟s just the initial

“Y” and the other “Y”s on top of each other. We don‟t care

what the final shape would be. So, if you look at this image, are

you going to look at the whole thing and then go in, or start at

the smaller one and then go up, that‟s the difference between the

structure and the shape.

Tabby came up with the idea of “Y” shape for the Joshua tree (line 44), a shape

that repeats itself. For Akilla, although she agreed with Tabby about the “Y”

structure, she did think that the final product still looked like a big “Y” (line

50). Tabby did not agree with that and implicitly came up with the idea of the

concept of the base case – to be a starting point or a stopping condition. In line

51, Tabby stated that „you are going to look at the whole thing and go in or

start at the smaller one and then go up‟. I used this idea in the design of the

next iteration, which will be discussed later on in this thesis.

Tool use – the Spirals

Then the students were asked to work with the computer-based domains – the

blank-box task and the Spirals. In these tasks, the main issues that I was

looking at were the way that they think about the iterative and tail recursive

procedures and the influence of them on each other. I also wanted to see how

the students shape, form, and evolve their own mental models of tail recursive

procedures in the AVDA environment. After finishing the pre-questionnaire, I

asked Kieran to work with the blank-box module. After my brief introduction

about the tools he started to work with it.

 199

The following lines demonstrate the difficulties that Kieran showed regarding

understanding the functionality of the recursive calls and the flow of control. In

the line 58 he asked me about a command to send the control backward. His

comment shows his incompetent knowledge about the functioning of the

recursive calls and the control passing mechanism.

52. Kieran: It goes forward in size, the usual value and then left turn

forty five

53. My description: [he changed the angle from 30 to 45, paused a

bit and said]
10

54. Kieran: Can we go backwards?

55. I said: What do you think?

56. Kieran: I mean like, it has gone forwards once, turn 45, can I go

backwards?

57. My description: [paused and changed the ratio of the size of the

new stems size / 2 instead of size / 1.1 and typed the following

commands into the empty box]
To tree :size

If :n < 2 [stop]

Forward :size

Left turn 45

Tree :size / 2

End

58. Kieran: Are there any backwards commands to go back all the

way around?

59. My description: [then he removed the first recursive call and

typed the following commands into the blank box]

10

 The text inside the brackets is my descriptions of his non-verbal experiments.

Forward :size

 200

To tree :size

If :n < 2 [stop]

Forward :size

Left turn 45

End

The commands in the box (line 59) showed that Kieran wanted to have the

command „forward :size / 2‟ repeatedly in the procedure to generate the new

stems. This shows that he knew what he wanted, the new stems, but he did not

have a clear understanding that it could be done by locating a recursive call.

He wondered why he had no branches to the left (line 26). He had removed the

recursive call, which was given outside the box, and instead he located another

one in the box immediately after turning right 90 degrees. That was the reason

for having all the new branches to the right and no new branches to the left.

The blank box task had an important impact on Kieran‟s thinking-in-change

process. Despite his difficulty with flow, in line 64 he described the procedure

as a procedure which is calling itself.

60. Kieran: So that wasn‟t too bad. So, I‟ve got the first two

branches now.

61. My description: [He could make the first branching point and he

added that]

62. Kieran: I was thinking it was only one stand at the beginning

and each time after that I had to make two branches. And I was

wondering why do this part just once!

63. My description: [What he meant by “this part” was two

commands [forward :size Left turn 45]. He was pointing to the

only branch which was drawn into the left (see line 23). Then he

decided to put a new recursive call into the first part of the

procedure].

64. Kieran: It is like calling itself from itself! So, oh that‟s good

actually.

Forward :size / 2

Back :size / 2

Right turn 90

Forward :size / 2

Tree :size / 2

 201

65. I asked: Why do you think so?

66. Kieran: Because we have another tree in here.

Lines 54-59 show that Kieran had difficulty in recognising and tracking the

flow in the tail recursive procedure. There was also some evidence of his

difficulty in recognising the functioning of the components of the recursive

procedure. For instance, in line 59 he used the command „forward :size‟ three

times, and he also deleted the given recursive call and put it in the box in the

wrong place. His utterances in line 60 show that he knew what he was looking

for. When he said “I have got the first two branches now” (line 60), it shows

that he was looking for a binary tree – something similar to the Joshua tree in

the pre-questionnaire.

However, by putting the commands in the wrong places in the procedure (see

lines 57-59), Kieran shows his difficulties with both the functionality and

functioning aspects of the concept of recursion. In line 64, he mentioned that

the procedure is calling itself. This means that he recognized the syntax of the

recursive call, but still had problems with its functioning and functionality.

Tabby and Akilla, the other pair of students who participated in the second

iteration, started with working on the stopping condition in response to the

blank-box.

67. Tabby: Let‟s start with a big number [If :size <85] to see what

the difference is.

68. My description: [They changed the stopping condition to 86 and

the initial value of the size was already chosen to be 85].

 202

To tree :size

If :n < 85 [stop]

Forward :size

Left turn 30

Tree :size / 1.1

End

The following lines demonstrate that Tabby & Akilla also had difficulty in

appreciation of the functioning aspect of the recursive calls and flow of control.

In the lines 72-74 they were trying to send the control to the right, to have few

branches on that side.

69. Akilla: Oh! It‟s only a line, what happened?

70. Tabby: Umm, yes, because 86 is not less than 85, the size is not

less than 85, right, then stop, if not it‟s going to go forward

whatever size we did, turn left 30 and then do it again, do the

tree size divided by 1.1.

71. My description: [Then she changed the stopping condition to 50

and got the below result]

To tree :size

If :n < 50[stop]

Forward :size

Left turn 30

Tree :size / 1.1

End

72. Tabby: I was thinking about a tree with the “Y” shape of the

Joshua tree. But how can I make tree using a spiral? Oh Ok,

I‟ve got a spiral in the left direction [line 71], if you do another

 203

one there to the right and then another one up there on the top

then that becomes a tree, right?

73. Akilla: Yeah, but quite complicated. I don‟t know how to do

that! You know how it turns left 30, if you want another branch

off it, then the angle must be to the right,

74. Tabby: and then how we are going to getting back to that point

where we started? I don‟t know if it‟s gone home, or if we can

do something else.

75. I asked: What do you mean by home?

76. Tabby: I want it to go back to the original size.

To tree :size

If :n < 50[stop]

Forward :size

Left turn 30

Tree :size / 1.1

End

Their explanation in lines 69-71 and line 79 shows that they had difficulty in

completing the task. They appreciated one of the functions of the stopping

condition which can also be used as a factor to control the number of stems in

the spiral. Lines 73-75 also evidenced the implementation of a recursive

procedure. Working with recursive control passing (line 72 -74 and lines 78-

80) in the problem-solving situation was a very difficult and „complicated‟ task

for them (line 73). Tabby and Akilla had difficulty in finding a way to send the

turtle back to the position it started from to draw the first spiral (line 77).

Akilla‟s explanation in lines 78 and 80-83 showed that she had a sort of

instinctive feeling about the functionality of the recursive call which was given

home

forward :size

The new position of the turtle
after running the procedure with

the commands in the box

 204

in the program. However, Tabby was not sure about it, as in line 79 she stated

that, „I am confused!‟

77. Tabby: We need to move the turtle to another point here [she

was pointing to the end of the first trunk]. So, if we just go

forward size.

78. Akilla (interjected): Now we need another tree? Ah! No, we

need a tree at the beginning.

79. Tabby: I am confused! We want tree size to do that spiral, and

then go home, and then you wanted to go forward size, and then

the tree size again? So, what happened then?

80. Akilla: I don‟t know! Probably we don‟t need both trees

here!

81. I asked: What did you expect to have?

82. Akilla: Doing the first part, then the first tree, then going back

home, then going up, and then turning right, and then doing

another tree.

Working with modules of the Spirals domain of abstraction:

The students were then asked to work with the Spirals computer-based domain

of abstraction. In this domain, I mainly wanted to find out how they thought

about the iteration and tail recursion, the possible confluence of the iteration

and tail recursion on each other, and finally the role and importance of the

AVDA in their thinking about those concepts. In other words, I was looking to

see how they could frame, change and evolve their thinking about the concept

of tail recursion and its indispensable components in the AVDA environment.

Tabby and Akilla started to work with the Spirals domain with the red

technique (tail recursive). After a few minutes they moved into the blue

technique (iterative). Their utterances in lines 83-89 show that, before using the

AVDA innovation, they thought that the blue and the red techniques were the

same (lines 93-96) and that there were only some syntactical differences

between them (lines 84-87). Also, in line 83 they pointed to an interesting issue

which was about distinguishing the process and the result (the final output).

 205

Tabby described the red technique as follows after working with the blue

technique.

83. I asked: Can you see any differences between the red and the

blue techniques?

84. Tabby: The commands are different but make the same thing.

Ok, to red, if the step is less than one stop, otherwise, forwards

91, and then turns left 30. And then it does red step divides by

1.1,

85. Akilla: It‟s just like the one that we were doing in the previous

one with a different size!

86. Tabby: Yeah!

87. My description: [They moved back on the blue technique and

Akilla said that:]

88. Akilla: The same thing! In the red if „n‟ is less than 1 it does

that but let‟s see what it does in the blue. It does to blue „n‟,

while „n‟ is greater than 1, same thing! I think only if „n‟ is

greater than one, then it goes forward and then turns left 30,

make? Is that what it means?

89. Tabby: It changes the current value of the „n‟ with „n‟

divided by 1.1.

To find any possible differences between those techniques Tabby and Akilla

concentrated on the final output of the procedures. Akilla paid attention to

counting the number of cycles of the spirals in both techniques.

90. Akilla: When you have like a big spiral, it goes on almost one,

two, and three circles,

 , n=135

91. Akilla added that: But when „n‟ is small it only does one

cycle.

92. Tabby: Let‟s hide the turtle. I think the numbers of steps are the

same, the number of actual things are the same! I‟m not

counting them but you know probably they have to be the same.

First cycle

Second cycle

Third cycle

 206

93. Akilla (interjected): So we have small and big sized spirals.

94. Tabby: Hang on, do the same number on both!

95. My description: [They tried n=20 and n=150 for both

techniques]

96. Akilla: They are the same!

97. Tabby: Yeah!

The lines above show that Tabby & Akilla had difficulty in appreciating the

functioning aspect of recursive calls and the control passing mechanism while

they were working with the blank box task. However, when they started to

work with the tools in the AVDA environment of the Spirals domain, they

began to change their thinking and improve their understating of recursion.

In the AVDA environment, Tabby and Akilla slightly modified their thinking

about the concept of tail recursion (lines 98-103). They described iteration and

tail recursion as “the same” (line 96) when they were working with the red and

blue techniques. However, soon after observing the animation in the AVDA

environment Tabby said:

98. Tabby: What‟s it doing? That one [the animation in the red

technique] is just repeating unless „n‟ is less than 1. Why is it

going back up? Let‟s do it step by step, if „n‟ is less than one

stop, which it‟s not, so it‟s not going to stop. It carries on

forward, then left turns 30, and then it divides that value by 1.1

99. Akilla (interjected): It keeps going unless the value of „n‟ is less

than one.

100. Tabby: But, it‟s going back, isn‟t it?

101. I asked: What do you mean by it divides that value by 1.1?

102. Tabby: It goes forward and then left 30, then changes the value

of „n‟ - n divides by 1.1.

103. Akilla: The same thing as make in the other one [the blue

technique]

104. Tabby: Umm, I don‟t know! It‟s different from that it is going

back on itself!

 207

The animative visualisation employed in the AVDA assisted them to picture

the control passing mechanism in the recursive calls. In the line 105, Akilla

pointed that the procedure is going back on itself. Her comment was very

important regarding appreciation of delegatory control passing. Tabby in the

line 106 also noticed this complicated control passing procedure. They were a

bit confused as it was not a familiar control passing for them (line107).

105. Akilla: It‟s going on until „n‟ is less than 1 and then it goes

back on itself and then stops! I want to reduce the speed to see

what its doing.

106. Tabby: After stop, and when „n‟ is less than 1, it‟s going back

on itself! Why doesn‟t it stop then?

107. Akilla: I don‟t know. I‟m confused! They aren‟t the same, that

one [the blue technique] is straightforward, but I don‟t know

why this one is doing those steps and then, when „n‟ is less

than 1, going back on itself

108. Tabby: Yeah, that one [the blue technique] is much quicker

than this. It‟s complicated!

Tabby and Akilla changed their thinking about the tail recursion when they

were working with the AVDA environment. According to Gotschi (2003), in

lines 98-104, Tabby changed her thinking from a loop model – repeating – to a

return-value model when she pointed to the difference between the make

command in the blue technique and the recursive call in the red technique.

Lines 104-108 show that because of the animation and the process of finishing

all the generated instantiations of the original procedure by going back, they

knew that something was different, but they could not see the reason and the

process of control passing in the tail recursion (line 105). For them, the

iterative procedure was much quicker and more straightforward (lines 107-

108).

 208

They both preferred to work with the familiar and quick iterative technique to

produce a spiral rather than using tail recursive technique.

109. I asked: Which one would you prefer to use if you want to

generate a spiral?

110. Tabby: The red one is harder than the blue.

111. Akilla: I like the blue technique because it finishes quickly. I

don‟t particularly understand it very well, but I think it

finishes the job quickly.

The other pair of students, who participated in the second iteration were

Andrew and Hayley. When they were working with the Spirals domain, before

going to the AVDA environment, they described the red and the blue technique

as the same. In lines 112-116 they described the iterative procedure:

112. Andrew: To blue, while „n‟ is greater than one you go forward

„n‟, left turn 30, and make „n‟, a new value „n‟ over 1.1.

113. Hayley (interjected): Yeah! That‟s right,

114. Andrew (continued): So, it has gone forward 100, and then

left turn 30, at the end of each one is doing a left 30 and then

stops.

115. Hayley: And whatever the length is doesn‟t matter.

116. Andrew: The length is reducing! Because each time „n‟ is

divided by 1.1.

Then they moved to the red technique. And in a similar way to Tabby and

Akilla, they stated that red and the blue are the same. Lines 117-118 show that

their conclusion was mainly based on the output and final result of the

procedure rather than the process.

117. Andrew: So, that‟s the same thing really. The spirals are the

same in both of them.

118. Hayley: Yeah they‟re producing the same thing!

The AVDA environment gave them a clear insight into the mechanism of

control passing in both the iterative and the recursive procedures. Andrew

stated that:

 209

119. Andrew: [In the red technique] While „n‟ is greater than 1

stop! Ignore that, because „n; is 91, it turns left 30, and it tells

you to run the red again with step which is „n‟ divides by 1.1,

so this is „n‟.

120. Hayley: Oh! Right.

121. Andrew: So, it‟s going again!

122. I asked: Can you tell me what this line [red :size / 1.1] does

exactly?

123. Andrew: It tells us to run this procedure again. [He points to

the first three lines of the This is your procedure red

124. Andrew (continued): And this is your instruction to run red,

125. Andrew (continued): The next time it runs, it says „n‟ divided

by 1.1, so, we‟ve got red with this value of „n‟ and it runs it

until it gets to the point that step is less than 1.

Lines 119-125 show that in the AVDA environment Andrew changed his

thinking about the concept of tail recursion and paid more attention to the

process rather than just focusing on the final output. Lines 123-124 evidenced

that he distinguished between the procedure and the recursive call. He

interpreted the recursive call as something outside the original procedure - as

an “instruction” (line 124 and lines 135-137) that tells you to run the

procedure, which is shown in line 123.

The AVDA provided them to see the latent layers of recursion. Andrew in the

line 127 pointed that the control is going back to where it was started. Before,

working with this, he was thinking that both iterative and recursive are the

same!

To Red :n

If :n < 1 [Stop]

Forward :n

Left turn 30

Red :n / 1.1

 210

126. Hayley: Why does it go back?

127. Andrew: It turns back to where it started! The „n‟ hasn‟t

changed. That‟s why it‟s still 50.

128. My description: [They have set the initial value of „n‟ to be

50]

129. Andrew (continued): Because you‟re doing a procedure within

a procedure within a procedure and it only finishes when it

goes back to the first procedure. Do you understand?

130. Hayley: Oh yeah!

131. Andrew (added that): [he pointed to the end command in the

blue technique and said that] This one finishes here! What

you do, you start off with a procedure say A1, you do X,

because it has not reached stop it goes to A2, and then A2

does X, it has not reached to stop, it goes to A3 and then A3

does X , and eventually you go to An and then An reaches

stop, so that doesn‟t carry on and goes back to A3 and that

stops, it goes back to A2, stops, and A1 stops and that‟s why

you go back to the „n‟ you started with. When it goes back , it

starts finishing each of the previous procedures.

132. I asked: Therefore, what is the difference between these

techniques?

133. Andrew: This one [the red technique] is using two procedures.

134. My description: [he pointed to the procedure which is shown

in line 123 and said]

135. Andrew: This is one procedure. This is sort of saying we are

going to take this here, and then we are going to run the

procedure. And then we will have another procedure outside

of this procedure.

136. My description: [whilst saying that he was pointing to the

recursive call and described it as another procedure outside

of the red technique]

137. Hayley (asked Andrew): You mean the blue is different from

the red?

138. My description: [He pointed to the blue technique and said]

139. Andrew: Yeah! Actually there is nothing here to tell us to run

itself it runs itself continuously until „n‟ is less than 1.

140. Andrew: The red goes through, creates some and goes back,

goes through, creates some and goes back. You need to keep

running the procedure over and over again. The blue is doing

the same thing but within the procedure, and by doing it in

that way [the red] you can use this procedure [the procedure

which is shown in line 123] somewhere else if you wanted to!

Line 131 shows that Hayley was struggling to see the differences between the

two techniques. Lines 129-140 show that although Andrew described the

mechanism of control passing in the tail recursion, his model of a tail recursion

 211

from a loop model transferred to the syntax model (line 138) and then a naive

version of the copies model. I called his model at this stage a naive version of

the copies model because he did not appreciate the recursive call as a

component of the tail recursive procedure. For him, the recursive call was

another procedure to call the original procedure (line 135).

Like the other students Andrew & Hayley would also preferred to use Iterative

technique to make a spiral rather than recursive technique. The iterative

technique for them was easier and straightforward (lines 142-144).

141. I asked: Which one would you prefer to use if you want to

generate a spiral?

142. Hayley: The blue one I guess, because it is straightforward.

143. Andrew: I think the blue one is easier to understand. What is

happening in the totality. In the absolute totality they‟re both

the same! They both achieve the same result. But the way they

achieve it is different. I think understanding the blue one is

probably easier. To understand the red one is more difficult

because you have to go back to finish the procedure that

logically you thought you finished. I think this way is hard to

comprehend.

5.4.6. Discussion – the Blank-box, Spiral and the AVDA environment

In this section of the chapter, I discuss the students‟ responses while they were

working with the blank-box module and the Spirals and AVDA environment.

The discussion is mainly around two perspectives, the students‟ thinking about

the concept of recursion and the design of the domain of abstraction. . The

students‟ thinking about the concept of recursion is discussed in three

categories. The first category is the appreciation of the main components of the

tail recursion, and the confluences between iteration and tail recursion.

 212

Secondly, the role and importance of the AVDA environment as a window into

the students‟ minds and the way they think about the concepts of tail recursion

and iteration to generate spirals. Finally, observing and investigating the

students‟ thinking-in-change process within the AVDA domain.

Discussion on the students‟ results on pre-questionnaire:

Before working with the Spirals and the AVDA environment, the pre-

questionnaire task described the structure of the spirals and Joshua tree in a

iterative and circular way. For the students, those objects (Figure 42 (a)-(d))

had repetitive structures. For instance, in lines 22-24, Tabby and Akilla stated

that they thought about those pictures “in terms of a circle” (line 24, Akilla).

They also described the Joshua tree‟s branches as “[…] just being repeated on

top of different branches” (line 40, Tabby).

From their results in the pre-questionnaire task, it appeared that the main

difficulty of the students to describe and also implement the recursive

structures was the functioning and functionality of the recursive calls which

had a direct effect on their appreciation of the control passing mechanism. For

instance, when Tabby wanted to describe spiral patterns she stated that, “ […] it

looks like a circle but you still actually draw little, little lines and put them

together, the angle would be affected, but how do we repeat iteration?” (line

37, Tabby). However, in the two cases of Kieran, and Tabby and Akilla the

outcomes show a kind of naive description of the recursive structures. Kieran

in lines 2-15 pointed out that the images given in the pre-questionnaire task

 213

(Figure 42 (a)-(d)) are fractals, he also added that the Joshua tree is „a

bifurcation‟ (line 2) because „each time it stemmed double‟ (line 4).

Also, in Tabby and Akilla‟s case, Tabby described the Joshua tree as a „Y‟

shape structure which „repeats itself somewhere else‟ (line 44). Afterwards, in

lines 49-51, they pointed to an immature, nevertheless important, issue. Akilla

described the Joshua tree as a „Y‟ shape structure, „and then „Y‟ over „Y‟s

becoming bigger like a big „Y‟‟ (line 50). Although it was not developed

enough, that was an important description. In other words, Akilla intuitively

saw the recursive calls as triggering the whole thing („Y‟s) but in a smaller

scale until reaching final output (the big „Y‟) at the end. Tabby stated the

Joshua tree (Figure 42-(a)) as a whole does not look like a big „Y‟. However, it

has „Y‟s in its structure. She distinguished between bottom-up and up-bottom

approaches by saying, “if we look at this image, are you going to look at the

whole thing and then go in or start at the smaller one and then go up?” (line

51, Tabby).

One of the key design features in the second iteration was to focus more on the

functioning aspects of the components of the recursive procedures. To do so,

the blank-box module and the AVDA innovation within the Spirals computer-

based domain were designed and tested. As mentioned before in Table 7, the

second task that the students were asked to work with was the blank-box

module. They could only finish the module successfully if they had a clear

understanding about the mechanism of control passing in the recursive

 214

procedures. In other words, they had to be aware of the functioning and

functionality of the recursive calls.

The module was designed in order to provide students with the opportunity to

create and implement a recursive procedure on their own rather than working

with pre-made procedures. It was designed in such a way that, the students

have had the opportunity to use and work with the concept of recursion and its

components. Thus, it provided me as a researcher a rich window into their

mind to see how they think about the concept of recursion and its essential

components like the recursive call(s) and the base case(s). The results of the

students‟ working with the blank-box module revealed that they had a major

difficulty with tracking the flow of control in the recursive procedure. For

instance, Kieran tried to send the turtle back to where it started to draw a spiral,

but he did not know how to do that (lines 54-57). His second try in line 58

showed that he had a sequential model in his mind to complete the task, by

repeating the commands forward :size / 2 twice and deleting the given

recursive call. Lines 60-64 also reveal that he had difficulty with the

functioning (how part) of the recursive calls. The reason is he knew what he

was going to generate (functionality, the what part) because in line 60 he said,

“I have got the first two branches now”. But he did not know how to make the

other branches on top of it by sending the turtle back to the right stems. In line

53, he asked why the turtle drew the first two branches only once. This showed

me that he did not have enough understanding about the functioning of the

commands that he entered into the blank box.

 215

In the case of Tabby and Akilla, it revealed that they had difficulty with the

functioning of the main components of recursion. Tabby and Akilla made a

good connection between the length of the last stem (the stopping condition)

and the number of the stems. In line 68-69, the result that they had was only the

main trunk of the tree that they wanted to make. Similar to Kieran‟s account,

Tabby and Akilla also had difficulty tracking the flow and sending the turtle

back to where it was started (lines 70-74). As an example, when Tabby (line

72) said “I consider a „Y‟ shape structure for tree, something like a Joshua

tree”, Akilla responded “But it‟s quite complicated‟ (line 73). Altogether, the

results show that this module was a very challenging module for the students as

they needed to consider both functioning and functionality for the components

of the recursive procedure in their mind simultaneously (lines 72-74 and 77-

80). The students‟ thinking and mental models of the iterative and tail recursive

procedure were scrutinized and observed through the window that the AVDA

innovation provided me within the Spirals environment.

There is strong evidence to show that, at the beginning, both iterative and tail

recursive procedures were considered to be the same for the students who

participated in this study. For instance, in lines 83-88, by focusing on the final

output instead of the process of making that output, both Tabby and Akilla

stated that both techniques made the same things. By paying more attention to

the commands in the red and blue procedures, Akilla pointed to some

syntactical differences between those two techniques. She stated that those two

techniques are the same thing and pointed to the difference between the

stopping condition in the red and blue technique (line 88). Working in the

 216

AVDA environment helped them to develop their thinking about the

differences between the mechanisms of those two techniques. Their utterances

in lines 98-104 showed that they considered the recursive call to be a command

which generates a new value for the „n‟. Tabby described the red technique in

line 98 as a repetitive, or loop, mechanism. However, she was not sure about

the functioning of the recursive call as a “returning value” model of thinking

about recursion (Gotschi, 2003).

Andrew and Hayley, the other pair of students, also responded in a similar

manner to Tabby and Akilla‟s account. In lines 114-118, they stated that the

red and blue techniques are the same. But, soon after working in the AVDA

environment, they recognised some syntactical differences (lines 119-125). In

line 123, Andrew described the recursive call as an instruction to run red.

Therefore, within the AVDA environment, they developed their thinking from

a loop model to the syntax model – by recognising the syntactical differences –

and then eventually a sort of naive version of the copies model of recursion in

lines 126-135. Lines 126-131 evidenced that Andrew‟s description of the red

technique was very close to the viable copies model of recursion. However, he

did not consider the recursive call to be an essential component of the red

procedure. Instead, he considered the recursive call as „another procedure

inside of the red procedure‟ (lines 132-135).

There is strong evidence in the results to show that all the students would

prefer to use the iterative technique to generate a spiral rather than the tail

recursive technique. The students stated that the blue technique (iterative) is

 217

much quicker, more straightforward, and easier to understand. On the contrary,

the red technique (tail recursive) was characterised as harder, more

complicated and more difficult to understand (for instance, see lines 108-111

and lines 141-143). Andrew, in line 143, described the tail recursive technique

as follows: “It is more difficult because you have to go back to finish the

procedure that logically you thought you finished”.

The students‟ accounts of this iteration also provided me with a few more

important insights into the design of the next (and final) iteration of this

research, which is explained in the next section of this chapter. The third

iteration, the Treebuilder computer-based domain, is thoroughly discussed in

the next chapter of this thesis.

5.4.7. Issues & conjecture(s) for the next Iteration

The results obtained from this iteration were quite promising and insightful for

the design of the next stage of this study within a DBR framework. The

computer-based domains in the second iteration, the AVDA innovation within

the Spirals domain of abstraction and the blank-box module, were designed

based on the results that gained from the first iteration. The Spirals domain had

a significant difference with its precedent in the first iteration the Treemenders.

The above discussion on the students‟ explanation and experiences with the

domain showed that the Spirals presented the hidden layers of the mechanism

of the control passing in the tail recursion to the students. Although, the

students showed some difficulties in handling the flow in the tail recursive

 218

procedure, but the Spirals helps them to change their mind and appreciate some

differences between tail recursion and iteration.

The Spirals domain depicted the latent layers of the control passing mechanism

in a tail recursive procedure by employing animation techniques and colour-

coding. The analysis of data in the previous section evidenced a significant role

of AVDA innovation in students‟ thinking-in-change process regarding tail

recursion.

From functional abstraction perspective, the Spirals domain successfully

presented both functionality and functioning aspects of the components of the

tail recursive procedure by modelling spirals. Although the first two modules

of the Spirals domain – the red and blue modules – were mainly focused on

functionality aspect of the concept, but there were some signs of functioning by

giving the students the opportunity of running the procedure in the step-wise

mode.

The comparison module was depicting both functioning and functionality

aspects together in one screen. The students could see the final output of the

procedure on the screen (the functionality – what part). Also, they could see

and observe the animative approach contrived in AVDA visualisation besides

the colour-codes on the lines of the procedures to realise and appreciate how

the control is passing around the procedure (the functioning aspect).

 219

After doing these two iterations, the concept of embedded recursion could now

be tackled. The results in the first iteration convinced me to focus more on the

functioning aspect of the essential parts of the concept of recursion, and to

create and design more visible visualizations to uncover the mechanism of the

control passing in the recursive procedures.

Hence, I decided to focus on the tail recursive procedures. I embodied the

conjectures that emerged from the first iteration by using spirals in the AVDA

environment. The results of the second iteration convinced me that using

animative visualization can acts as a dual window. On one hand, it provided

me as a researcher with an opportunity to look into the students‟ minds and

observe how they think about the concept of tail recursion, and also to explore

their thinking-in-change process through that window. Conversely, it offered

the students a window through which they could look into the latent layers of

the concept of tail recursion and its complicated control passing process.

Consequently, the following conjectures can now be discussed and reported on.

This leads to the final stage of the design as follows:

 By using objects that instantiate the output from a recursive procedure,

students will attend to the functionality of the recursive procedure,

 Having experience of the flow of control in iteration and tail recursive

procedure students will be able to recognise the flow of control in

embedded recursion.

 220

However, I decided to develop both the AVDA and the blank-box tasks for the

next iteration of the embedded recursive procedures. My attention was drawn

towards embodying and phenomenalizing the emerging conjectures by

contextualization of the embedded recursive procedure by using binary and

ternary trees. To maintain the focus on the functioning aspect of the concept of

recursion, I also designed a developed version of the blank-box module for the

next iteration. Having taken into account the above issues, I designed and

programmed Treebuilder as the final computer-based domain of abstraction for

the third iteration of this research within a DBR framework. There were several

innovations in the Treebuilder computer-based domain which are discussed

thoroughly in the next chapter.

 221

6. Iteration Three – Tool design of the Treebuilder

6.1. Overview

The present chapter discusses the design aspects of the third (and final)

iteration of this research within a DBR framework. The computer-based

domain of abstraction which was designed for this iteration is called

Treebuilder. Figure 43 (below) shows the main interface of this computer-

based tool.

Figure 43-The main interface of the Treebuilder domain

The first iteration – the Treemenders – was mainly an exploratory phase.

During this phase, the primary focus was on discovering the problematic issues

regarding students‟ thinking about the concept of recursion from a functionality

perspective. The second iteration – the Spirals – was designed based on post-

 222

hoc issues, results, and conjectures emerging from the first iteration. At this

stage the focus was for the most part placed on tail-recursive processes and

their relationship with the iterative process from both functioning and

functionality perspectives. Based on the vital results that emerged from the

second iteration, the third iteration was designed with a special focus on the

functioning aspect of the embedded recursion and its components. Further

discussion of this aspect is detailed later in this chapter.

I begin this chapter by explaining my approach to this, third and final iteration.

This section also includes a description of the complicated control passing

mechanism in the recursive procedure. This is illustrated using flowcharts

which appear later in this chapter. The chapter continues by describing the tool

design of the Treebuilder domain of abstraction. Subsequently, the functioning

aspects of those modules are discussed, and finally the chapter finishes with a

summary. The tool use of the third iteration, which concentrates on explaining

and discussing the students‟ accounts, is discussed in the next chapter.

6.2. My Approach – Treebuilder

To implement the Treebuilder, I worked with 17 student volunteers. They were

mathematics specialists who were studying on a four year degree program, and

were training to be primary school teachers. They attended the interviews and

participated in the tasks. There were seven pairs and three individuals. Each

interview session lasted 1.5 hours.

 223

The domain of abstraction in this iteration – the Treebuilder – was a direct

result of the previous iteration – the Spirals – and the AVDA innovation.

Regarding the results of the second iteration, I decided to employ and develop

that approach (AVDA) for the embedded recursive procedures. The

Treebuilder domain of abstraction was designed with four modules; making a

forest, the blue strategy, the red strategy, and your tree. The pictures below

(figures 44-47) show the main interface of the modules of the Treebuilder

computer-based domain of abstraction for the modelling of binary trees.

Figure 44-The main interface of the making a forest module

 224

Figure 45-The main interface of the your tree module

Figure 46-The main interface of the red strategy module

 225

Figure 47-The main interface of the blue strategy module

After designing the third domain – the Treebuilder – I decided to combine it

with the Spirals computer-based domain. This decision was made based on the

interconnections between the tail and embedded recursion concepts. The

resulting conjecture initially emerged after the first iteration, the Treemenders.

During the activity, students showed immense difficulty in tracking the flow of

control over the procedure (iteration one: Feng, lines 11-15 & Sarah & Jin,

lines 110-118). This observation gave me the initial insight to study tail and

embedded recursive procedures separately. Combining the Spirals and the

Treebuilder in the third iteration provided me with a more concise picture of

how the students‟ were developing their thinking in response to the tools and

therefore the concepts of tail and embedded recursion.

The intricate mechanism of the control passing structure of embedded and tail

recursive procedures is shown in the flowcharts below. The first flowchart is

 226

designed to show the control passing mechanism in a tail recursive procedure.

The procedure described by flowchart one was used in the red technique

(recursive) within the Spirals domain. The second flowchart is designed to

show the control passing mechanisms of the embedded recursive procedure

which was used in the first and third iterations, the Treemenders. Finally,

flowchart three describes the mechanism of passing control between the two

recursive calls in an embedded recursive procedure.

 227

Control passing process in a tail recursive procedure

 Yes

 No

Flowchart 1- The control passing mechanism in a tail recursive procedure

The original procedure N

N < 1

Go forward N

Stop

30 degrees to the left

End

End all the generated copies of

the original procedure

Copy of the original procedure

Change N to N / 1.1

 228

Control passing mechanism in an embedded recursive procedure

 (18 > 5) No

 (9 > 5) No

 Yes

 Yes

Flowchart 2- The mechanism of flow in an embedded recursive call

Tree 18

N < 5

Commands

Call copy of Tree, Tree 9A

Commands

Call copy of Tree, Tree 9B

Tree 9B will continue execution

exactly as Tree 9A including

copies Tree 4.5AA and

Tree 4.5 AB before control is

returned below

End

1st Copy

Tree 9A

N < 5

Commands

Call copy of Tree, Tree 4.5A

Commands

Call copy of Tree, Tree 4.5B

End of the 1st copy

2nd Copy

Tree 4.5A

Tree 4.5B

Stop

Stop

 4.5 < 5

 4.5 < 5

End of the 2nd copy

 229

Control passing mechanism between two recursive calls

 4 3 2 1

Flowchart 3- the delegation of control between two recursive calls

Original procedure- initial vale N

Calling 1
st
 recursive call - N/2

Calling 2
nd

 recursive call - N/2

N < 5

End

End all the generated copies of

the original procedure called by

the 1
st
 recursive call

Stop

End all the generated copies of

the original procedure called by

the 2
nd

 recursive call

 230

The tasks and modules of the Spirals and the Treebuilder computer-based

domains in the third iteration were implemented in the following order as a

direct result of the second iteration:

Module
Order of

implementation
Purpose

S
p

ir
a

ls

blue technique

(Iterative)
First task

Evaluating the student‟s thinking and

thinking-in-change about the iterative

procedure in the window of the tool.

red technique

(Recursive)
Second task

Evaluating the student‟s thinking and

thinking-in-change about the tail

recursive procedure in the window of

the tool.

Comparison Third task

Evaluating the student‟s thinking and

thinking-in-change through the window

of the AVDA environment.

T
re

e
b

u
il

d
er

Making a forest Fourth task

To embody the conjecture about the

functionality of recursion.

blue strategy Fifth task

Evaluating the students‟ ability to track

the flow of control in the AVDA

environment over the output as well as

to employ colour codes for the

recursive calls – a link between

functionality and functioning.

red strategy Sixth task

Evaluating students‟ thinking about the

embedded recursive procedure in the

AVDA environment using a step-wise

animative approach over the commands

of the procedure.

your tree Seventh task

Figuring out the students‟ thinking and

thinking-in-change about embedded

recursion and its components.

Table 9- The order of the tasks in the second iteration

 231

Table 9 is divided into two main sections. The first part is about the order of

implementation and purpose of the Spirals domain‟s modules and the second

part presents the order of implementation and purpose of the Treebuilder

domain‟s modules in the third iteration.

In the first place, during the activity, the students were asked to work with the

Spirals modules, which enabled me to see their thinking and mental models

regarding the iterative and tail recursive procedures through the AVDA

environment within the Spirals domain of abstraction. Then, they were asked

to work with the modules of the Treebuilder, which were mainly designed to

investigate the students‟ thinking and thinking-in-change process about the

embedded recursive procedures. The students were asked to start working with

the modules of the Treebuilder domain of abstraction in the order that is

explained in Table 9.

The students‟ activities and reactions while they were working with the

modules of the third iteration were recorded using a Camtasia screen recorder.

Camtasia enabled me to record their utterances during working with the

modules. It allowed me to record all the non-verbal moments while they were

working with those modules. As a participant observer, I carefully observed

their responses and reactions. I only intervened in their experiments to ask

open-ended questions like: What do you think? Why is it working like that?

What if it is working like that? The students‟ responses to these sorts of

questions enabled me to have more of an opportunity to understand how and

what they thought about the concept of recursion and also how the thinking-in-

 232

change process was shaped and framed in their mind. The next two sections of

this chapter concentrate on the key features of the design development and tool

use of the modules of the third iteration.

6.3. Tool design – Treebuilder and the AVDA environment

 The key design features of the modules of the Treebuilder domain of

abstraction resulted from the conjectures that emerged from the previous

iteration. From a design perspective, the final iteration was the continuation of

the substantial innovation of AVDA in the second iteration within the Spirals

domain of abstraction. As mentioned above, the Treebuilder has four modules.

The following diagram shows the modules of the Treebuilder domain of

abstraction.

Figure 48-The modules of the Treebuilder domain of abstraction

The prominent feature of the Treebuilder domain of abstraction employs the

animative techniques of AVDA in the output of the embedded recursive

procedure while it is being drawn by the turtle. This technique is fully

described later on in the blue strategy section.

Treebuilder

Making a forest Blue strategy Red strategy Your tree

 233

Table ten summarises the design aspects of the four modules of the

Treebuilder. The first row of the table shows the control box of the main menu

of the Treebuilder domain (Image 1 & 2). This control box contains four

buttons. On activation, each button is highlighted on screen to help the students

to keep track of which button is currently activated. In the second row, the

control box of the making a forest module is shown (Images 1-3). The third

row of the table shows the control box of the blue strategy module (Image 1)

and the sliders which were designed for the length of the initial size and the

angles for branching to the left and right (Image 2). Images 3 & 4 of the third

row also depict a box that shows, the current value of the size of the new stems,

which were being drawn by the turtle. The background of the box (red and

yellow) shows the colour codes which were used for the branches to the left

and right respectively. Image five, in the third row shows the colour codes (red

and yellow) which were used for the first and second recursive calls in the

given embedded recursive procedure. Images 1, 2, & 3 in the fourth row of the

table show the control box and the slider for setting the initial size in the red

strategy module. Finally, the fifth row of the table shows the control box and

the slider for the initial size of the tree in your tree module in the Treebuilder

domain of abstraction.

 234

Table 10- The design features of the four modules of the Treebuilder domain of abstraction

Module Design features

Main

interface
1) blue strategy, red strategy, your tree, and making a forest 2) blue strategy button is activated

Making a

forest

1)The control box of the making a forest 2) The clear button is activated 3) The Main page button is activated

4) The turtle plants a new tree 5) A tree which is planted by the turtle

blue strategy

 1)The control box 2) The sliders in the control box to set angles and size

 (yellow background) (red background)

3)The box for the size of a yellow branch with its colour code 4) The box for the size of a red branch with its colour code

5) The red and yellow colour codes for the first and second recursive calls (branches to the left – red colour and to the right – yellow colour)

red strategy
1)The control box of the red strategy 2) After activating the step button

5)The slider for the initial size

your tree

1) the control box 2) The slider for the initial size

 235

In the following part of this chapter, the technical aspect of each of the above

mentioned modules of the Treebuilder domain of abstraction are explained.

6.3.1. The main page of the Treebuilder domain of abstraction

Figure 49- The main page of the Treebuilder domain of abstraction

Figure 49 shows the main page of Treebuilder. Four buttons were created on

this page in accordance with the four modules of this computer-based domain.

Students were able to move to each one of the quadruplet modules of

Treebuilder. Technically, both the blue and red strategies in this domain of

abstraction were used to provide an appropriate window for the students to

look through and think in-depth about the embedded recursive procedures and

see the mechanism of control passing in these procedures. The your tree

module is a developed version of the blank-box module in the second iteration.

In the following part of this chapter, the tool development of the modules of

the Treebuilder is discussed.

 236

The first module that the students were asked to work with was making a

forest. To activate the making a forest module, the students were required to

press the button. The button

becomes highlighted as if pressed down after activation. Design features of this

module are discussed in the next section of this chapter.

6.3.2. Making a forest – Treebuilder domain of abstraction

Figure 50- The interface of the making a forest module

The interface of the making a forest module is shown in the above picture. The

students who participated in this module were supposed to type the term „tree‟

on the command line at the bottom of the screen and press the „enter‟ button to

see an image of a tree on the screen. The design features of this module were

realised by addressing the following issues. The first issue was designing a new

shape for the turtle (image (4) second row of Table Two). This new shape

 237

for the turtle was designed to be a metaphor representing a seed which will

grow in to a tree. The other design issue was the ease of use and movement of

the turtle. The students were able to change the turtle‟s location by clicking on

it and dragging it to a new place to draw a new tree. As shown in Table Two of

this module, the students were given two clear and main page buttons. By

pressing the clear button, they could wipe the screen for another test, and by

pressing the main page, button they could move to the main page of the

Treebuilder domain of abstraction.

The purpose of this module from a design perspective, for students, was to

provide a window to make some bridge between the functionality i.e. what they

want to have and the functioning, how it will be done, and what are the crucial

components of its structure. The purpose of the making a forest module from a

design perspective for me, as researcher, was also to provide a window into the

students‟ minds to investigate how they think about a recursive structure. I was

then able to examine their explanations when they were looking at a recursive

structure, a binary tree on the screen, before seeing and knowing anything

about the program behind it. The students needed to describe the crucial parts

of the binary tree shape that they produced on the screen by typing the term

„tree‟ on the command line. A full tool use account for this module is discussed

in the tool use section of this chapter. The next section concentrates on the blue

strategy module from a design perspective.

 238

6.3.3. Blue strategy – Treebuilder domain of abstraction

Figure 51- The interface of the blue strategy module

Figure 51, shows the main interface of the blue strategy. This module provides

the students with an embedded recursive procedure with two recursive calls to

model a binary tree.

Figure 52- The embedded recursive procedure in the blue strategy

First recursive call – red

(Branches to the left)

Second recursive call – yellow

(Branches to the right)

 239

In this module, I used the colours red and yellow as colour codes for the two

recursive calls respectively (Figure 52). The other substantial design feature for

this module was employing the AVDA innovation over the output rather than

the procedure. I previously mentioned that the AVDA innovation was invented

in the second iteration in which I used animative visualisation to show the

generation of the new copies of the original procedure to the students. In this

module, I employ the AVDA animative approach on the tree which is being

drawn by the turtle rather than the procedure. Therefore, this module is an

output-based AVDA approach. The idea emerged from the explanation of one

of the students in the previous iteration, „you are going to look at the whole

thing and going to start at the smaller one and then go up‟ (Tabby, line 51,

Chapter 5). I designed two shadow turtles to move alongside the main turtle

over the tree (Figure 53, (a) & (b)).

 240

a) , b) ,

c)

Figure 53- The shadow turtles alongside the main turtle, (a) when the main turtle started

to draw new red branches to the left (red colour), (b) when the main turtle started to

draw new branches to the right (yellow colour), (c) the main interface of the blue strategy

when the turtle was trying to draw some yellow branches. The background colour of the

box of the size is yellow

The shadow turtles indicate that the main turtle is about to draw a new tree in

either a left or right direction. The directions to the left or right correlate with

the recursive calls on the codes of the procedure. The pattern colours of the

shadow turtles were also chosen in accordance with the colour codes of those

recursive calls in the procedure. The shadow turtle to the left shows a red,

lopsided tree to the left, which coincides with the colour code of the first

recursive call. The one to the right shows the same thing to the left, in the

colour yellow, in accordance with the second recursive call. The shadow turtles

Background

colour is yellow

Shadow turtles alongside

the main turtle

 241

were designed in such a way that as soon as the program reaches one of the

recursive calls, they appear on the screen alongside the main turtle. The

students are thus enticed to launch a new tree which is a whole copy of the

procedure but with a smaller initial value for the size, and in a different

direction. It was conjectured that they would provide a global picture of the

tree and the process of branching to the right and left each time, calling these

recursive calls.

Another design characteristic of the blue strategy module was contriving a box

on the screen to show the length of the branch which is being drawn by the

turtle on the screen (Figure 53, (c)). As shown in the picture, the background of

this box switches between the colour red and yellow, in accordance with the

colour code of the branches. The background colour is red

 when the main turtle draws a red branch, and is yellow

 when the main turtle draws a yellow branch.

In this module, I contrived three sliders

 so that the students were able to

control the size of the angles to the right and left. To run the procedure, the

students were given the opportunity to choose between two modes: colour

mode and normal. They could switch the modes by clicking on the buttons

labelled run and colour . By clicking on the run button, the

final output of the procedure, the binary tree, was drawn on the screen without

 242

any animation. This mode was designed to provide the students with possible

vantage points to bridge their initial embryonic opinion about the tree in the

previous module (the making a forest) and the written codes behind its exterior

output. However, as mentioned above, the colour mode was designed based on

employing the AVDA approach and colour codes to draw the final output. The

students were also able to go to the main page of the Treebuilder domain of

abstraction or to the next module (the red strategy) by clicking on the buttons

labelled main page and red tree , respectively.

The above-mentioned design features in these modules were specifically

designed to facilitate students‟ being able to work out the control passing

mechanism in the embedded recursive procedures. In Chapter Two, reference

is made to Kurland and Pea (1985), who distinguish between the iterative

control passing from recursive flow of control by introducing active and

passive flow of control. I noticed that, using the term passive to describe the

complicated mechanism of the control passing in a recursive procedure is not

informative enough for that complicated mechanism. In order to avoid the

verbal impression of the term passive, as well as giving a more descriptive

terminology, I decided to call it the „delegatory‟ control passing mechanism

instead. Having said that, to provide an efficient window through which

students can look into the concept of recursion and its components, I designed

another module for the Treebuilder domain of abstraction, called the red

strategy. The next section of this chapter focuses on the design features of the

red strategy module.

 243

6.3.4. Red strategy – Treebuilder domain of abstraction

Figure 54- The interface of the red strategy module

The main interface of this module is shown in the above picture. In similar

fashion to the blue strategy, I used AVDA innovation in this module. The blue

strategy (the previous module) was an output based module in which the focus

was on employing the animative techniques of AVDA on the tree which was

being drawn by the main turtle and was accompanied by two shadow turtles to

show the appropriate colour codes. However, in this module, I principally

focused on making use of the AVDA innovation in the original program and

using an animative approach to represent the generation of the new copies of

the original procedure after each time calling one of the recursive calls. As

shown in Table 2, in this module students were given a control box

,

to run the procedure. Also, similar to the previous module, the students had a

choice between two modes of execution: step-wise or normal. When they chose

to run the procedure in the step-wise mode, a new button labelled continue

appeared . So, the

 244

students could see each step, each time calling one of the recursive calls, by

pressing the step button . The other design feature that was

incorporated in this module was showing the length of the current stem which

was being drawn by the turtle on the screen alongside the turtle. The students

were able to choose the initial length of the main trunk using the slider

, which was contrived on the control box.

As well as using the AVDA visualisation, I also used colour codes for the lines

and commands of the procedure. The colour of each command would change

to red as it was being executed. It was conjectured that this would facilitate the

students‟ appreciation of the flow of control, as well as providing them with a

better means of tracking the delegatory flow. To be more precise, in this way, a

numerical label moved alongside the main turtle, to show the current size of the

stem which was being drawn. This mechanism provided the students with the

precise backwards movement of the last small stems. The following pictures

show the connection between the numerical label –showing the length of the

stem – and the colour codes over the procedure.

a) , b)

Figure 55- Running the procedure with 110 as an initial value, and the procedure is

waiting for the student to press the continue button to run the first recursive call

 245

From the pictures above, it can be seen that the first recursive call is shown in

red, which means that this is the line which is going to be executed by pressing

the continue button. When the student clicks the continue button, the following

sequential results appear on the screen.

a) , b) , c) , d)

Figure 56- A new copy of the original procedure is generated and the turtle has drawn

the new stems after the continue button has been pressed twice

Figure 56(a) shows that the second copy of the original procedure is waiting to

run the first recursive call. Figure 56(b) shows the output which is drawn by

the turtle. Figure 56(c) shows that the third copy of the original procedure is

waiting to run the second recursive call as the turtle reaches the stopping

condition and starts to draw the branches into the right side. Figure 56(d)

shows that the turtle is heading 30 degrees to the right, which means that it has

done two left turns 30, whereas in figure 56(b) the turtle is still heading 30

degrees to the left. The next pictures show the process of calling the first and

second recursive calls, the direction of the turtle, and the way that turtle draws

the branches.

 246

a) , b) , c) , d) , e)

Figure 57- The AVDA approach to generating the new copies of the original procedure

and the way that the turtle draws the branches

The design issues of the your tree module of the Treebuilder domain of

abstraction are considered in the proceeding section.

6.3.5. Your tree – Treebuilder domain of abstraction

Figure 58- The interface of the your tree module

The picture above shows the main interface of the your tree module. This

module is a developed version of the blank-box task in the second iteration.

Similar to the blank-box task, the your tree module design was based on

 247

completion of an incomplete given embedded recursive procedure to generate a

ternary
11

 tree.

The students were expected to fill two empty boxes

with appropriate commands to complete the procedure. The students were also

given some part of the procedure in three groups of commands in three green

boxes, which are shown in the pictures below.

a) , b) , c)

Figure 59- The commands of the incomplete procedure which were given to the students

The first empty box, as seen in picture 16, was located between Figures 59(a)

and 59(b), and the second empty box was located between Figures 59(b) and

59(c). Similar to the other modules of the Treebuilder domain, I contrived a

control box in this module for students. As shown in the fifth row of Table

Two, the control box contains two buttons labelled run and clear

to run the procedure and clear the screen. There are also some buttons to move

on to the main page or the other modules . And also,

a slider , to set the initial size of the first

step in the procedure with a numerical label showing the value of the initial

size.

11

 A tree which has three new stems at each branching point.

 248

From a technical point of view, the module was designed in such a way that

any Logo codes could be accepted as a missing part of the incomplete

procedure. The final output of the procedure was deliberately chosen to be a

ternary tree. This planned tactic was aimed at evaluating the students‟

appreciation of the functioning of the recursive calls as one of the crucial

components of the concept of recursion. I wanted to see whether the students

were aware of the functioning of the recursive call as triggering a new bunch of

branches or a new tree in a smaller scale. To complete the task, the students

needed to have an adequate understanding of the state of the delegatory control

passing in embedded recursive procedures. Therefore, the results of this task

were of importance in testing and evaluating the students‟ appreciation of the

delegatory control passing and functioning of recursive calls. Consequently,

this module may be considered as a means of providing a bridge between the

functioning and functionality of the indispensable components of the concept

of recursion. Thus, this module played a significant role in terms of the concept

of functional abstraction.

First and foremost, the your tree module was designed to provide an

appropriate environment for the students to apply the knowledge and

understanding that they would theoretically gain after working with the

previous modules of the Treebuilder domain. This module opened a window

for me as researcher to investigate in close-up the students‟ thinking and

thinking-in-change process regarding embedded recursion. Their responses to

 249

this module demonstrated their thought process towards the functioning aspect

of the recursive calls, and delegatory control passing. Therefore, I was able to

evaluate the influence and efficacy of the AVDA in order to see how and to

what extent the students developed and constructed their mental models of the

concept of recursion. Additionally, I was able to see to what extent the students

could apply their knowledge in problem-solving situations.

Technically, the students were expected to place an additional recursive call to

generate the middle branch of the desired ternary tree, as well as inputting right

turn 30 to show their understanding of the delegatory flow throughout the

procedure. In the red and blue strategies, they experienced the binary trees.

Based on these former experiments, they were given two recursive calls in the

given codes. From a functioning standpoint, the task was designed to test how

they used and applied the third recursive call for the third middle branch. Of

further importance, was the location of this additional recursive call, as it was

conjectured that it would reveal the students‟ level of appreciation of the

delegatory control passing and the functionality dimension of the recursive

calls.

6.4. Functioning features of the tool design

It was mentioned earlier that „distinguishing between functionality and

functioning in the concept of recursion‟ has almost been overlooked in

published literature on the matter. One of the major aims of this study is to

focus on the functioning features of the concept of recursion and its

 250

components throughout the design of purposeful computer-based tools. The

functioning aspect, which is mainly related to the how part of the mechanism of

recursion, has been considered in both the Spirals and Treebuilder domains of

abstraction. The focus of this section is to explain the functioning features of

the tools and modules in the third iteration‟s modules.

6.4.1. Functioning aspects in the Spirals domain

The functioning aspects of the design in the Spirals domain, was created into

the comparison module. In this module, the students were able to see the

hidden parts of the mechanism of the control passing in the tail recursive

procedures by animation and colour coding techniques. The animative

visualisation contrived into this module shows new copies of the original

procedure which are generated after each successive calling of the recursive

call. It was conjectured that, by colour coding the lines that were actively being

executed, students would track the flow of the procedure efficiently.

6.4.2. Functioning aspects in the Treebuilder domain

The making a forest module provided a situation in which the students could

express their thinking about the relationships between typing the term tree

followed by a number and the final output (a tree on the screen). It was

conjectured that they would have the opportunity to think about the structure

and the way in which the tree would be drawn by the computer. In this way,

they were able to bridge what they saw on the screen and how it was created by

the computer.

 251

The functioning aspect of the design of the blue strategy was based on

revealing how the tree was being drawn by the procedure. Focus on the

functioning aspect was achieved through the creation of two additional turtles

(called shadow turtles see Figure 53 (a & b)). These shadow turtles move

alongside the main turtle. It was conjectured that these shadow turtles would

provide the situation in which the students could see that, after reaching each

one of the recursive calls, the turtle was going to draw a new tree, on a smaller

scale, to the right or left direction in accord with calling the first or second

recursive calls. As mentioned before, the red and yellow colour codes were

also used in this module for the branches to the right and left.

Finally, the functioning aspect of the design in the red strategy module of the

Treebuilder domain is exactly like that of the comparison module in the Spirals

domain. It is based on representing the how part by using animation over the

new copies of the original procedures. From a functioning perspective, the

shadow turtles act like those new copies of the original procedure in that they

show a new tree is going to be drawn, but with a slightly different length.

6.5. Summary

This chapter focuses on the approach that was chosen to implement the third

iteration. The complex control passing process in the tail, embedded, and the

control passing between the different recursive calls within an embedded

recursive call is depicted in the three flowcharts in this chapter. The chapter

ends by describing the design aspects of the modules of Treebuilder.

 252

The next chapter of this thesis focuses on the tool use aspects of the third

iteration, which mainly concentrates on explaining and discussing the students‟

accounts.

 253

7. Iteration Three – Tool Use of the Treebuilder

This section concentrates on how students would quite literally use the tools

within each of the seven modules of the Spirals and Treebuilder domains. The

following diagram outlines the order of the modules which were previously

explained in Table 9.

Figure 60- The order of the modules in the third iteration

As shown in the picture above, the students were asked to start the iteration by

working with the modules of the Spirals domain of abstraction. After

completing of those modules, they were invited to work with the modules of

the Treebuilder domain. Seventeen volunteer students participated in this

iteration. Each interview lasted 1.5 hours. Each of the interviews, were

recorded using Camtasia screen recorder software. The interviews were fully

transcribed and coded. The coded data was analysed and used for extracting the

final result of this iteration. In this section of this Chapter three students‟

accounts are thoroughly examined; those of an individual, and two pairs. These

Third iteration

Modules

PART ONE

(Spirals domain)

1-Blue technique

(Iterative)

2-Red technique

(Tail recursive)

3-Comparison
page

PART TWO

(Treebuilder
domain)

4- Making a
forest

5-Blue strategy

(Embedded
recursive)

6-Red strategy

(Embedded
recursive)

7-Your tree

 254

accounts are examined in two major parts as shown in Figure 60, and in

accordance with the three tasks of the Spirals domain and four modules of the

Treebuilder domain of abstraction.

The accounts of the students, discussed in this chapter, were chosen in

particular because they can be considered as representative of the students who

took part in the third iteration collectively. Their responses clearly reflect the

rest of students‟ approaches to these tasks and modules. I have endeavoured to

present these three accounts in as much detail as possible in order for you, the

reader to see what progress the students made while they were engaged with

those domains. The chapter finishes with the findings section for the third

iteration and a summary.

7.1. PART ONE – Spirals Domain

This section concentrates on the accounts of the five students, Simon, Peter &

George, and Andrew & Hayley, who were all studying on a four year degree

program, and were training to be primary school teachers. The students‟

accounts are explicated into two parts. The first part focuses on the students‟

explanation of the Spirals domain tasks and the second part is about their

account of the Treebuilder domain modules.

7.1.1. Simon‟s account on the Spirals domain – Iteration Three

The first student‟s account examined in this section is that of Simon. He

participated in the interview individually. He started with the blue technique

 255

and decided to run it in the step mode. He checked a few more values to

generate spirals of different sizes. Then he moved to the red technique and

continued to do the same thing that he did in the blue technique. He checked a

few different values for the „n‟ and observed the results carefully.

1. Simon: For „n‟ equals 1 it‟s going to be absolutely tiny, isn‟t it?

2. My description: [to be able to see the little spiral under the

turtle he hid the turtle and added that]

3. Simon: Ah, it‟s just a point, obviously, yeah! Well it wouldn‟t

be a point but it would be very tiny!

4. I asked: Can you explain to me what is going to happen at each

step?

5. Simon: Yes, I think so. „n‟ is 150, then to blue 150, well, while

150 is greater than 1, you go forward 150, left 30, make 150, a

hundred and fifty divided by 1.1. So, it gets smaller by the ratio

of 1.1 each time. So, oh, I see, it goes left 30, smaller by 1.1,

left 30, smaller by 1.1, left 30, divided by 1.1, left 30, divided

by 1.1, and so on, all the way around to there.

6. My description: [he was pointing to the end of the spiral on the

final output on the screen and added that]

7. Simon: Ok, that‟s good.

I was not sure about what he thought about the stopping condition, so I asked

him:

8. I asked: When it is going to stop?

9. Simon: Let‟s get rid of the turtle. Well, it won‟t ever stop

completely. It‟s always going to be slightly greater that one and

so it‟ll actually carry on going and carry on going for ever and

ever! Until it converge at a point with no change! Umm, why is

that then? It should stop.

Therefore, although in line 5 he stated that „while 150 is greater than 1, you go

forward 150‟ also in the same line he added that „it gets smaller by the ration

of 1.1‟ but he still showed some difficulties in making a link between what he

saw and how it was going to be done. We moved to the recursive procedure

(the red technique). Simon again decided to run the procedure in the step mode

 256

and after observing the execution of the procedure in the step mode he ran it

again in the normal mode.

10. Simon: So, „n‟ is less than 1. So, let‟s put it back on 50 to see if

there is any difference. Let‟s change 50 to 100, I should get a

bigger one, that‟s what I am expecting. And at 150 we should

get a bigger one again. Yeah! Perfect.

Simon‟s explanation in the above quote shows that he had no conflict in his

belief and thinking about the function and functioning of „n‟ as the initial value

of the spiral and its role in having a big or a small spiral. Simon‟s first

challenge with the red technique appeared when he wanted to explain the

stopping condition of the recursive procedure.

11. Simon: To red 150, 150 is less than one stop! Is it going to stop

and then go forward 150, or is that stop completely?

12. I said: what do you think?

13. Simon: So, can we put on a value of „n‟ less than 1? Well, we

can‟t because the minimum value of „n‟ here on the slider is 1.

Oh, it says if „n‟ is less than one stops if not forward 150 Ok.

Let‟s take „n‟ equals two. Ah stopped! Ok, because „n‟ is 2 and

2 divided by 1.1 is less than 1. So, let‟s put it a bit bigger „n‟

equals 18. That, will also stops won‟t it?

14. I said; I don‟t know! Why not check it in the step mode?

15. Simon: Ok, switch, and then start and then step!

16. My description: [Simon kept clicking on the step button until the

procedure reached its base case – the stopping condition. Then

he added that]

17. Simon: And then it stops! So, the blue technique never stops.

His above remark was based on his previous experience with the blue

technique when he described the blue technique in terms of “it won‟t ever stop

completely!” (Simon, line 9). But in the red technique (the recursive one), by

taking some different values for the initial value „n‟ and the size reducing

factor of 1.1, he concluded that it stops. Although the result that he achieved

was not a correct model, it shows that the computer-based environment

 257

provided him with a window in which he was able to investigate and examine a

more concealed layer of the recursive procedures.

I wanted to explore the way he thought about the stopping condition in those

techniques, so I asked Simon, why he thought the blue won‟t stop? He moved

back to the blue technique and waveringly stated that:

18. Simon: Oh! It does stop, doesn‟t it?

19. I said: I don‟t know I just asked you to tell me about it!

20. My description: [He changed the initial value of „n‟ equals 18

as it was in the red, and ran the blue procedure in the step mode

and started to count the steps while he was clicking on the step

button]

21. Simon: 1, 2, 3, 4…, 31 steps and stop, and in the red technique,

1, 2, 3, 4 …, 31 again, the same. Then I was wrong! So I was

wrong. Ok, so, what is the difference?

22. I said: What do you think?

23. Simon: I can‟t see if there is one.

24. My description: [He changed the value of „n‟ in the red and blue

technique to 50 and ran them in the step mode and counted the

steps again]

25. Simon: I have to say I can‟t. I‟m struggling to tell the difference.

In the computer-based environment he could see that the procedures would not

work forever. However, he was not able to recognise the difference between

the iterative and recursive procedures yet. To ensure that he had given enough

attention to the procedures as well as the final output, the image of the spiral

that was being drawn by the turtle, I asked him about the written procedures.

He moved back on to the blue technique and stated:

26. Simon: Ok, all the time, the step is greater than 1, forward „n‟,

left thirty, and then make „n‟, „n‟ is divided by 1.1, so

presumably with „n‟ over 1.1 it goes back in to this equation.

27. My description: [He was pointing to the command „forward „n‟‟

and added that]

28. Simon: And it carries on and carried on and carries on. Then on

the red technique, if „n‟ is less than 1 stop, fine. And then if not,

 258

you are going to go forward „n‟, left thirty, and this is a bit I do

not understand now!

29. My description: [He was pointing to the recursive call (see

Figure 61) and added that]

Figure 61- Simon was struggling to describe the recursive call

The following lines of the transcript show the struggle that Simon was

beginning to have with the functionality of the recursive call.

30. Simon: Red „n‟ divided by 1.1 and then finished? It doesn‟t go

around in a loop.

31. I asked: Is that what you think about it?

32. Simon: Well, I don‟t know what that red is? To red, Oh!

Presumably it does mean doing this! [see Figure 62] Because

the procedure red is there.

Figure 62- Simon was pointing to those commands that the recursive call was calling

33. Simon: So, therefore that is the new procedure red using n over

one point one. The only difference between the red technique

and the blue technique is if „n‟ is less than 1 stopped. That

seems to be the only difference.

 259

34. My description: [he moved back to the blue technique and

added that]

35. Simon: Although, actually while „n‟ is greater than 1 do that

(see Figure 63).

Figure 63-Simon was pointing to those commands that while „n‟ was greater than one,

were being executed by the procedure

36. Simon: It means there are no instruction commands in there

[Figure 63] to tell you what happens if „n; is less than 1. So,

presumably, this means it has to stop! So, actually they are the

same!

Simon‟s remark in lines 26-36 show his difficulty in recognising the flow of

control in the recursive procedure and the functioning of the recursive call. His

explanation about the recursive call occurred in line 28 when he stated that, „…

this is a bit I do not understand now!‟ then in line 32 when he added that, „I do

not know what that red is‟.

According to Kahney‟s explanation, at that stage Simon showed possession of

a syntax model of a recursive procedure. However, lines 33-36 show strong

evidence that Simon is in possession of a return-value model of recursion. In

line 33, he directly pointed out that the recursive call is a “new procedure using

„n‟ over 1.1”, then he continued by saying that the only difference in those

techniques is the syntactical difference in the stopping conditions. His response

 260

showed that at this stage his understanding of the functioning of the recursive

call was only as a generator for the new values of „n‟ over (1.1). He did not

realise that this was needed as the initial value of the new copy of the original

procedure. For him the functionality of the recursive call was generating a new

value for „n‟, rather than a new copy of the original procedure.

Therefore, before going to the comparison module and AVDA innovation,

Simon‟s mental model of recursion evolved from a loop model in line 23 when

he stated “I can‟t see any difference”, to a combination of syntactical and

return-value models. The following diagram shows Simon‟s mental model

evolution through working with the red and blue techniques.

Figure 64- Simon‟s evolution of tail recursion mental model after working with the red

and blue techniques (before his experience with the AVDA innovation)

Then we moved into the comparison module. Simon began to work with the

comparison module by running the blue technique in the step mode. Then he

set the initial value for the „n‟ equals to 50 and ran the blue technique.

37. Simon: So, let‟s put „n‟ 50, which was what we have been

using. Ok, let‟s start, we have got „n‟ is greater than 1, so the

current value of „n‟ becomes „n‟ divided by 1.1 and probably

divided by 1.1 again, I‟m guessing. And then step, it goes down

31, 28, 25 ok, 21, 19 , 17, … so it goes all the way around until

it gets to the point that „n‟ divided by 1.1 is less than one, and

then there is no instructions saying what to do and then it stops

there (Figure 65).

Loop model

(Lines 21-23)

Syntax model

(Lines 28 and 32)

Return-value model

(Line 33)

 261

Figure 65- The interface of the blue technique in the comparison module, when Simon

was running it in the step mode

To ensure that he had paid attention to the written procedure and the flashing

blue colour codes for the lines of the procedure I asked his opinion about the

written procedure on the left side of the above picture. He ran the blue

procedure again and tried to describe it for me based on the written commands

as follows.

38. Simon: Starts, we have got while „n‟ is greater than 1, the

procedure is flashing the next step! „n‟ is still greater than 1, and

do that (Figure 66-a below), and is still greater than 1, and do

that, and still do that, and keeps going on and so on. It is still

saying that forward „n‟, left thirty, when you press the button it

gets to the end (Figures 66-b) because it has not got instructions

when „n‟ is less than 1.

a) , b) , c)

Figure 66- Simon was pointing to the colour codes of the commands of the blue technique,

which were being executed by the procedure in the comparison module

The colour codes which were employed in the blue techniques are shown in the

figures above. Figures 66(a), and 66(b) above show how the commands

between the brackets were flashing blue while „n‟ was greater than one in the

 262

blue technique. Figure 66(c) shows that the command end becomes blue when

„n‟ gets less than one.

Then Simon moved on to run the red technique in the comparison module. He

ran the red technique in the normal mode. When the new generated copies of

the original procedure started to move back in the AVDA environment, he

responded by saying that:

39. Simon: Presumably, „n‟ is going to get to less than 1 and stop! It

doesn‟t! Ah, interesting, interesting! Ok, then on the face of it

they look the same but actually they are not! Let‟s find out why

that is?

a) , b)

Figure 67- The colour codes and animation of the commands of the red technique in the

AVDA environment of the comparison module

40. My description: [the animation in the red technique was quite

unexpected when Simon ran the red technique in the step mode

and continued that]

41. Simon: What is going on? So, Ok, if „n‟ is less than 1 stops, „n‟

is 50, so that‟s fine, „n‟ is not less than 1! Ah, right now it‟s

stepping through the procedure. So, the first time you press step

you get „n‟ is less than 1 stop, it forwards „n‟, left 30. Should

work now, yeah it does. And then it makes „n‟, ‟n‟ divided by

1.1 so then nothing happens there. What is it doing now?

42. My description: [at this stage, a new copy of the original

procedure was being generated and the procedure was waiting

for him to press the step button].

43. Simon: Oh, right, it starts again. Left 30, divided „n‟ by 1.1, and

then goes back to top, alright, that‟s right. It does actually cycle

around the procedure, which we didn‟t have to do in the blue

technique. It is a much more rigorous procedure. Ok, fine it

cycles all around the procedure. Let‟s see what will happen

when „n‟ gets down to 1.

 263

44. My description: [he was keep clicking on the step button to see

what happened when „n‟ got to less than 1]

45. Simon: „n‟ is less than 1 stop, still is more than 1, carries on,

forward „n‟, left 30, it does that then red „n‟ divided by 1.1, now

„n‟ becomes less than 1, to red „n‟, if „n‟ is less than 1. To red

„n‟, if „n‟ is less than 1 stop, so it stops. And then what has it

done? Divided „n‟ by 1.1 again! Hasn‟t it? What has it done? If

„n‟ is less than 1 stop, so it should stop, why is it carrying on?

Simon‟s remarks are, in the first place, evidence that the AVDA environment

allows him to evolve his understanding of the differences between the iterative

and tail recursive techniques. In line 39, immediately after seeing the animation

in the red technique, he stated that, “[…] on the face of it they look the same

but actually they are not!” which shows that he was thinking that these

techniques are the same until seeing the way that they produce the spiral is

different. In other words, the AVDA environment provided him with the

opportunity to become aware of the functioning aspect of the recursive call and

its difference with the „make‟ command in the blue technique (line 43). Before

beginning to work in the AVDA environment, Simon thought that the blue and

red techniques were the same. Through working in the AVDA environment, he

gradually evolved his understanding of the concept and his mental model.

Simon‟s mental model of the concept of recursion before his experience with

the AVDA environment - as is shown in Figure 64 - evolved from a loop

model to a syntax model and then to a return-value model.

Simon‟s remarks while he was working with and experiencing the AVDA

environment and the animation and colour codes which were contrived in the

comparison module evidenced his possession of some new models of tail

recursion. Therefore, the diagram of his mental model‟s evolution of the

 264

concept of tail recursion can be amended as follows: From possession of a loop

model, to a syntax model, and then to a return-value model / step model, and

gradually towards the possession of an incomplete version of the viable copies

mental model of recursion which, I called a quasi-copies model of the concept

of recursion.

A possessor of a quasi-copies model of the concept of recursion has knowledge

about the generation of the new copies of the procedure after each time of

calling the procedure. In addition, he/she knows at each calling of the recursive

calls, a new initial value is going to be generated, which is slightly different

from the original initial value. The only difference of the quasi-copies model

compared to the viable copies model of the concept of recursion is that the

possessor of such a model has no notion of the returning flow of control for the

termination of all the generated copies of the original procedure. More

evidence of possession of such a model by Simon is shown below.

Figure 68- Simon‟s evolution of the mental models of the concept of tail recursion after

working in the AVDA environment

46. I asked: Can you explain the similarities and differences

between these two techniques?

47. Simon: Well, they are producing the same things. They have the

same aim, they produce the same shape, the idea of both is

obviously to create a spiral.

Loop model

(lines 21-23)

Syntax model

(lines 23-32)

Return-value model

/

Step model

(line 28, lines 23-38,

and line 48)

Quasi-copies model

(lines 33, 43, and 53)

 265

In the above line, Simon mainly focuses on the functionality aspect of the

techniques and the „what‟ part, which is more stemmed in the final output of

the procedures. Then Simon carried on with more in-depth explanations.

48. Simon: The difference is the blue technique is a lot easier, more

straightforward, a lot better. The red technique is a bit of a

struggle because it has to go in a step by step approach and you

have to do it normally and then at the end remove all the steps

again and it takes you back up to the original value of „n‟ which

is 50 and it is going to be the same for any other value. So, I

would say the blue is a lot easier, a lot better if you want to

create a spiral. The red technique is rather more complicated.

49. I asked: Which parts of those techniques were most difficult to

understand?

50. Simon: The blue technique is quite straightforward, but it does

not make explicit what to do if „n‟ is less than 1. So, I just had to

make an assumption. But then actually in this written part of the

blue technique it says end. So, that is basically saying what to

do if „n‟ is less than 1. So, I think it is a very straightforward

technique. But, the red technique is quite complicated, quite

difficult to get your head around.

51. I asked: Why do you think so?

52. My description: [in response to my question he thoughtfully

paused for a while and said:]

53. Simon: Um … I don‟t know! It makes a lot less sense! If „n‟ is

less than 1 stop, forwards „n‟ and left 30, and red. I think

because you have to remember, I believe you have to remember,

you have to keep substituting in „n‟ over 1.1 each time for the

„n‟ you have got in the equations, or in the instructions. And just

simply to look at it without writing it all down, writing it as a

next step, actually writing it as a new equation, is quite

challenging.

54. Simon: I think if you were actually to sit down and write out

what the program is doing each time… so, if you write down the

next time it does „n‟ over 1.1 and then it turns left 30. And then

next time it does „n‟ over 1.1 squared, left 30, etc. then it is quite

easy to understand. But, the fact is you‟ve simply got to

remember each time you are substituting a different value. This

is tricky a bit.

Simon‟s above remark in line 53 evidenced his possession of the quasi-copies

model of the tail recursive procedures. It is also shows that one of the main

reasons that Simon was not able to make a connection with the process of flow

 266

in the recursive procedures is the lack of everyday analogies, “[…] it makes a

lot less sense!” (Simon, the Spiral domain, line 53).

In that line, he also mentioned that “ […] I believe you have to remember, you

have to keep substituting in „n‟ over 1.1 each time for the „n‟ you have got in

the equations!”. This shows Simon‟s imperfect perception of the flow of

control in the recursive procedures. These, and Simon‟s explanations in line 33

and 53 about „… new procedure …‟ (line 33) and „… writing it as a next step,

actually writing it as a new equations! …‟ (line 53), provide evidence of

possession of a step model and quasi-copies model.

Simon‟s explanations in line 48 about the blue and red techniques support the

results of the second iteration on the Spiral domain of abstraction. The results

of the second iteration reveal that, to create a spiral, students prefer to work

with an iterative procedure because it is much easier and more straightforward

rather than a complicated and time-consuming recursive algorithm.

7.1.2. George & Peter‟s account on the Spiral domain – Iteration Three

As mentioned earlier, the second account is about a pair of mathematics

specialist students on a four year degree program, George and Peter. After a

brief introduction to the software, tasks and modules they started their work

with the blue technique. The first thing that they did was to try a few different

initial values for „n‟ and observe the output which was a spiral drawn by the

 267

turtle on the screen. They set „n‟ equals 99 as the initial value and decided to

run the blue procedure in the step mode.

55. George: Let‟s switch it to the step mode. Oh, Ok, so this is the

value of „n‟, we go forward „n‟.

56. My description: [Peter interjected and by pointing to the

number which was shown by the slider on the screen added

that]

57. Peter: And this is what we say „n‟ and then turn 30,

58. George [continued]: Left turn 30, and then change „n‟ to „n‟

over 1.1. Ok, so it gets smaller and smaller.

In line 58, by using the term „smaller and smaller‟, George shows he has

considered the mechanism of flow as a repetitive mechanism which is

changing the value of „n‟ by „n‟ over 1.1 each time.

59. I asked: Can you see any connections between the written

commands on the screen and those spirals?

60. George: If „n‟ is less than 1 stop.

61. Peter [interjected]: Forward „n‟ left 30, Ok, it stepped with „n‟

over 1.1.

62. George [continued]: Yeah, that‟s right.

Then they moved to the red technique and tried to run it in the step mode.

George tried a few different initial values for the „n‟ and said:

63. George: It is the same as the blue one!

64. Peter [agreed with George and said]: Yes, that‟s right!

65. I asked: Can you explain a bit more about your opinion and

explain why you think they are the same for me?

66. George [immediate response]: They produce the same thing!

The same spirals with both the blue and red techniques.

67. I asked: What do you think Peter?

68. Peter: Um, yes that‟s right they are producing the same thing!

Shall we go to the comparison module?

George‟s remarks on lines 63-66 and Peter‟s comment on line 68 show that

before experiencing the AVDA innovation in the comparison module they

were not able to see any differences between those two techniques and their

 268

attention was mainly focused on the final output of the procedures. At this

stage they showed evidence of possessing an understanding of a loop model of

recursion.

From the functioning aspect, line 61 can be considered to be evidence of

possession of a syntax model by George and Peter. In that line, George directly

pointed to the syntax of the recursive call. This line can also be considered as a

signal of possession of a step model because George pointed out that “[…] it

stepped with „n‟ over 1.1” (line 61). However, from the functionality aspect,

they still thought that they were the same: “[t]hey produce the same thing”

(Line 66).

 In the comparison module they had the opportunity of comparing the red and

the blue techniques in one plus the animative visualisation which was contrived

into the comparison module. In the comparison, George & Peter ran both

procedures in the step mode. When they saw the animative visualisation of the

new generated copies of the original procedure in the red technique (the

AVDA environment) George said:

69. George: Oh! They are going back!

70. Peter [interjected]: They carried on longer,

71. My description: [George continued by pointing to the blue

technique and then pointing to the red technique and said]

72. George [continued]: Ok, so, this is while „n‟ is greater than 1

and this one if „n‟ is less than 1, stop! But, it did not stop! Did it

stop or didn‟t it? I thought it was going to stop when „n‟ is less

than one.

Lines 60 to 72 showed that they were a bit confused by the complicated

mechanism of the delegatory flow of control in the recursive procedure. In line

 269

72, George showed his first sign of possession of a syntax model of recursion

by pointing to the differences in the stopping conditions between the

techniques.

73. George: In the red, each time is a sort of check, forward „n‟, left

30, and then …

74. My description: [he paused for a while and then continued]

75. George [continued]: … when it gets to „n‟ is less than 1, it stops

and then these go back up again. Why does it go that way?

76. Peter [interjected]: So, it goes back on itself. The turtle stopped

going, but it is still going back.

77. George: Yeah, with the red, these would go like red

78. My description: [he was pointing to the three lines of the red

procedure if :n<1 [stop], forward :n, left turn 30 and then he

continued that]

79. George [continued]: and then that would return red, and then it

all shows you what it‟s doing each time.

80. My description: [he was pointing the value of „n‟ which was

showing on the screen and added that:]

81. George [continued]: and this is „n‟ over 1.1 so, when it goes

back on itself …

82. My description: [then they tried to run the blue technique in the

step mode on the comparison module]

83. George: Ok, each time here, it does this while „n‟ is greater than

1

84. Peter [interjected]: It is showing this is blue!

85. George [continued]: And it ends when „n‟ is less than 1. It is not

going to do anything because „n‟ is less than 1.

86. My description: [then they tried to run the red technique on the

comparison module]

87. George: If I do the same here, if „n‟ is less than 1 stop

Figure 69- The stopping condition in the red technique

88. [George moved onto the blue technique and compared the

„make‟ command in the blue technique with the recursive call in

the red technique and continued]: So, this is make „n‟ that, and

this one here red „n‟ over 1.1

 270

Figure 70- The recursive call in the red procedure

89. My description: [George again moved back on the blue

technique and compared it with the red – the recursive call in

the red procedure and added that]

90. George [continued]: So, this makes „n‟, „n‟ over 1.1 here and

this one [the red technique] is red [paused for a while and

continued], so if you got two reds, that‟s like a defining this

again. And this one is like you have got this within itself!

Figure 71- The second red within the red procedure (two reds)

The following lines show that the AVDA visualisation assisted George & Peter

to improve and develop their thinking about the recursive call (lines 91-93).

91. George: So, is that why it goes back on itself! Right, Ok, it does,

doesn‟t it? Again „n‟ over 1.1, and it goes again.

92. Peter: Oh, yes! The turtle goes back on itself

93. My description: [they kept clicking on the step button in the step

mode in the red procedure until „n‟ gets less than 1]

94. George: So, now „n‟ is less than 1.

95. Peter [agreed and added]: Yeah that‟s right

96. George [continued]: Stop, if „n‟ is less than 1 stop. So it goes

there.

 271

a) , b)

Figure 72- When the procedure reached its stopping condition and began to end the

instantiations

They also developed their understanding of the control passing process. In the

lines 97-99 they noticed that the procedure went back on itself.

97. George [continued]: So, it‟s going back on itself, because it

stops doing it, and it just times‟ „n‟ by 1.1.

98. Peter [interjected]: Are there any instructions for the turtle

saying it has to stop here and just doing the cancellation?

99. George [continued]: No there aren‟t! It is not going to go

forward „n‟, left 30 anymore. It just times‟ the value of „n‟ by

1.1 and ends.

Line 99 shows that the visual animative innovation which was employed in the

AVDA environment provided them with the opportunity to see the process of

finishing the already generated instantiations of the recursive procedure.

100. George and Peter [both]: So, it is just reversing the value of „n‟

to what it was at the beginning.

101. George: Yeah, and the then ends it! The program is like

changing itself after doing different „n‟s, and has finished

drawing spiral when „n‟ is less than 1, and then it goes back. It

times‟ „n‟ by 1.1 to get back to what it started with. They are

drawing the same thing but with different programs!

After their experience of working with AVDA, George & Peter admitted that

the tail recursion technique is more complicated when compared with iteration

to generate a spiral (lines 109, 111, and 113).

 272

102. I asked: Which one of those techniques would you prefer to

use to create a spiral?

103. George [who was pointing to the blue technique and said]:

This one here is less complicated!

104. Peter [interjected]: It is so straightforward.

105. George [continued]: While „n‟ is greater than 1 do this, and do

this, and it just checks itself again and then eventually this end

[see below figure].

Figure 73- The end command that George mentioned in line 103

106. My description: [They tried to run the blue procedure in the

step mode again]

107. George: When you switch to step, so each time it does that

[see below figure], and then it just checks and changes „n‟ and

then keeps checking while „n‟ is greater than 1, doing it again

and again and again until it is not.

Figure 74- The commands that George said are being done while „n‟ is greater than 1

Then they began to compare the blue technique with the red one by using the

window that the AVDA environment provided them to see the latent layers of

the control passing mechanism in those techniques.

108. I asked: Can you see any differences between these

techniques?

109. George: Yeah, they are similar things. Just … [paused a

while] I don‟t know, I don‟t know! Interesting, so it‟s like it

starts itself again. To red, it‟s like, does this [see below figure],

 273

and then it starts itself again with a new „n‟ and starts itself

again. So, that‟s why the new things pop up, because it keeps

restarting itself and then goes back again.

Figure 75- The commands that were being done after each time calling the red procedure

At this stage of the activity their responses showed a definite shift in their

appreciation and understanding of both processes. This improved perspective

differentiated between the iterative and recursive procedures.

110. My description: [then George moved onto the blue technique

and continued]

111. George: But this one in here doesn‟t restart itself and just runs

once through.

112. Peter [interjected]: And then it goes to the end!

113. George [pointed to the commands brackets in Figure 75 and

continued]: runs and runs and runs the same thing. [pointed to

the red technique again and added that] But this one here

restarts itself each time.

114. My description: [and to answer the question 102 when I asked

them which one of these techniques they would prefer to use if

they wanted to create a spiral, they continued by saying:]

115. George: I say, in terms of simplicity, probably blue, I would

go for blue.

116. Peter: Because, it just seems so straightforward.

117. I asked: What was the most challenging and difficult part of

these procedures to understand?

118. George: I suppose, with the red one, why it goes like that, you

can‟t just look at the lines and see what is it actually doing, what

it is telling itself to do! It is difficult to know what it is actually

up to!

119. My description: [then he pointed to the blue technique and

continued]

120. George: But this one here is quite straightforward, you can

look at that and see what it is doing. But in the red one in here,

all the windows opening here, you can‟t see why it is doing that

by just looking at it. You can‟t see why it is making hundreds of

copies of itself and then returning back!

 274

7.1.3. Discussion of George & Peter‟s account on the Spirals – Iteration

Three

Line 58 shows that George was thinking about the mechanism of the blue

technique, the iterative procedure, as a repetitive mechanism (loop). Combine

this with his remark on line 63, where he mentions, “they are the same” (while

he was working with the red technique, the recursive procedure) and we can

see that he is in possession of a loop model for the tail recursive procedure

before moving onto the AVDA environment in the comparison page. Lines 66

and 68 show that George and Peter built their mental models mainly based on

the final output of those procedures – which was the same spiral in both

techniques.

In the comparison page, the animative visualization in the AVDA environment

enabled them to begin the process of thinking-in-change and improving their

models. Lines 70-72 show that they were surprised when the red procedure

started to cancel the already generated copies of the original procedure. That

surprise stemmed from the initial mental model that they had for the red and

the blue techniques as loop models. The first pointer towards the syntactical

differences between those techniques appear in line 72, which can be

considered as evidence for a change in their previous thinking about the tail

recursive procedure (thinking-in-change process in the AVDA environment)

from a loop model to a syntax model of recursion.

While they were working with the AVDA environment in the comparison

page, the thinking-in-change process can be clearly monitored. For instance,

 275

when they saw the animative visualization of the tail recursive procedure

contrived in the AVDA, George asked, “Why does it go that way?” (line 75).

Following that question, they tried to carefully observe the way it was working

to find it out why the procedure began to cancel the already generated copies

after reaching its stopping condition (lines 75-88). Then, in line 88, George

pointed to a crucial issue by highlighting the need to have two reds in the red

procedure. And he concluded that “that‟s like defining this again! And this one

is like you have got this within itself” (line 90). He started to compare the

„make‟ command in the blue technique, the iterative procedure, with the

recursive call in the red technique and he concluded that the procedure is

calling itself from within itself.

Therefore, working with the AVDA environment provided George with the

opportunity to think about his previous thinking about the concept of tail

recursion. The result, his thoughts evolved from a loop model to an incomplete

version of the viable copies model of recursion that I called a quasi-copies

model. This is where the owner of the model understands the functioning of the

recursive call, as it is going to call the original procedure within itself, but still

has no idea about the mechanism of delegatory control passing in the recursive

procedures.

A viable copies model of recursion has two main characteristics: the function

of the recursive call as the generator of the original procedure within the main

procedure, and the process of delegatory control passing to terminate all the

already generated copies to end running of the procedure. In the quasi-copies

 276

model of recursion, the student appreciates and recognizes the first

characteristic, but does not have a complete understanding of the delegatory

flow of control in a recursive procedure.

With regard to the case of George & Peter, it become clear that George had

gained the knowledge of the function of the recursive call in the tail recursive

procedure to generate new copies of the original procedure. But, he did not

mention the process of the control passing. He thought that the recursive call

defined the procedure within itself again, and that this is the reason for the

cancellation of the copies of the procedure (line 91). In line 98, Peter was

looking for some instructions for the commands of the procedure to tell the

turtle to start canceling the generated instantiations: “[a]re there any

instructions for the turtle saying, it has to stop here and just do the

cancellation?” (line 91).

This remark from Peter is very important because it means that although he

reached the point at which the recursive call is redefining the original

procedure within itself, he was, however, still looking for some instruction for

the strange behaviour of control passing in a delegatory flow in the recursive

procedure. Line 91 shows how Peter had difficulty in understanding the

declarative nature of the mechanism of the flow in the recursive procedures. At

the beginning, before working in the AVDA environment, they both thought

that the red and the blue techniques were the same. But after working with the

animative visualization which was contrived into the comparison page, they

changed their thinking and understanding of those procedures.

 277

George‟s remark about the techniques in line 109, that “they are similar

things”, is exactly different to the remark that he made before in line 63, saying

that they are the same. George in line 109 does not think that the iterative and

recursive are the same anymore. Line 109 and lines 111-113 show that, George

and Peter significantly changed their thinking about those procedures after

working with the AVDA. George described the recursive procedure (the red

technique) in line 109, stating that “it‟s like it starts itself again. … with a new

„n‟ and starts itself again”. He continues to discuss the iterative procedure (the

blue technique) in line 111, saying that it “doesn‟t restart itself and just runs

once through” and Peter also in line 113 agreed with him. Lines 114-120 show

that to produce a spiral, an iterative structure, they would prefer to use the

iterative procedure rather than the tail recursive procedure as they found the

iterative one to simpler and more straightforward, where as the tail recursive

procedure has a complicated mechanism of control passing.

Figure 76- George and Peter‟s evolution of the tail recursion mental model after working

with the red and blue techniques

Regarding what they explained, the diagram above shows the evolution of

George & Peter‟s mental model for the tail recursive procedure.

Loop model

(Line 63)

Syntax model

(Line 88)

Quasi-copies model

(Line 90-98)

 278

7.1.4. Richard and Philip‟s account on the Spirals domain – Iteration

Three

Similar to the previous students‟ accounts, Richard and Peter began their work

with the Spirals domain after my brief introduction to the procedure. They

started with the blue technique by testing different initial values in the red and

the blue techniques. They worked with the blue technique in the normal mode

first and then they moved on to the red technique. Richard said:

121. Richard: So, this is just a different colour algorithm? Is that

right?

122. I said: What do you mean by a different colour algorithm?

123. Richard: I don‟t know! I am just asking whether they are just

different algorithms or not?

124. I said: What do you think?

125. Richard [set the initial value 123 and continued]: So, if you

take one like that in the red and one in the blue one can you

compare them?

126. I said: You can compare them in the comparison page later

on, but at the moment can you explain to me whether you can

see any similarities or differences between these techniques

before going onto that page?

127. Richard: In the wordings or in the results?

128. I said: both aspects!

129. Richard: Umm, can I look at the blue one again.

130. My description: [he moved to the blue technique]

131. Richard [continued]: while „n‟ is greater than 1, forward „n‟

amount, left turn 30, and then goes forward with the next value

of „n‟ which is „n‟ over 1.1 Ok, I see.

132. My description: [then he moved back to the red one]

133. Richard: And then, this one, if „n‟ is less than 1 stop, if not, go

forward „n‟, left turn 30, red „n‟. That looks like they are almost

the same. But, umm, its like, they do this in different steps, and

also instead of using the „make‟ function, you are naming „n‟

with „red‟, giving it a name so „red‟ is equal to „n‟ over 1.1.

134. I asked [I pointed to the recursive call in the red technique]:

can you explain the function of that line a bit more for me?

135. Richard: That is the same, like, for the next one, use the

operation red, but instead of using red, use „n‟ over 1.1

Richard‟s combined remarks in lines 133-135 to show that he possessed a

return-value model of the tail recursive procedure at that time.

 279

136. Philip [interjected]: And how come in one of them „n‟ is

greater than 1 and in another „n‟ is less than one. Why?

137. Richard: [pointed to the red technique and said] That one is

just like stop, doing it if „n‟ is less than one, stop doing it. That

is the end! [then he moved on to the blue technique and added

that] the other one is saying like, make sure the way is positive

or something like, only do it while „n‟ is greater than 1! So,

essentially they are doing the same thing really, just in different

ways.

138. My description: [Peter tried to run both of the procedures

with the same initial value, Richard suggested taking „n‟ as

equal to 100]

139. Richard: They are pretty much the same.

a) , b)

Figure 77- The final output of the blue technique (a) and the red technique (b) with n =

100

Then they moved onto the comparison page to compare both the techniques in

one page. They started with the blue technique first and then the red technique,

and ran both procedures in the normal mode. Soon after seeing the animative

visualisation in the red technique Richard said:

140. Richard: It seems like the difference between these algorithms,

the red one and the blue one, is that the blue one does it all in

one step, and the red one does lots of repetitions!

141. I asked: What makes those repetitions?

142. Richard: because of the fact that you are redefining red all the

time, or redefining „n‟ as „n‟ over 1.1

 280

Figure 78- Richard was pointing to the recursive call as re-definer of the value of „n‟

143. Richard [pointed to the blue technique and continued]: rather

than here you just say, do it until „n‟ is less than one or do it

while „n‟ is greater than one. But they are producing the same

results. Oh! And then it takes steps back! What is it doing now?

Cancelling the steps?

144. I said: What do you think?

145. My description: [they increased the value of „n‟ from 50 to 70

and they tried to run both techniques in the step mode]

146. Richard: So, effectively, doing blue in the step mode is like

doing red in normal mode. Is that right?

147. I said: Why do you think so?

148. Richard [continued]: Doing blue in step mode is like doing red

because you are doing manual repetitions. I think that, because,

it seems like that! Because, if you do blue like that, and then

you do red normally, it is doing the same thing. Isn‟t it? That‟s

doing automatically what I did over there in blue manually, isn‟t

it?

149. I said: have you considered the colour codes that were used in

the lines of those procedures?

150. My description: [they tried to do the blue and the red in the

step mode again and in the red they said]

151. Richard: If „n‟ is greater than 1, go to the next step, forward

„n‟ and left 30 and now redefine „n‟ [when it gets to the

recursive call] it goes through and then it goes back up and

increase „n‟ to what it was, 70, so with the blue one we don‟t

know what the value of „n‟ was when we started.

152. I asked: If you wanted to create a spiral which one of these

techniques would you prefer to use?

153. Richard: I think doing it automatically, I prefer red. But doing

it manually I prefer blue, because if you do step with red you

have to click a lot! I think the red one is easier because at each

point you can see what the value of „n‟ is, and you get the final

value of „n‟. But I think, with blue is quicker.

154. Philip [interjected]: You can see more information from the

blue.

155. I asked: Are there any differences between these techniques?

 281

156. Richard: Between the red and the blue? What do you mean? In

terms of how to use them? Or, in terms of the results?

157. I said: In any aspects that you think.

158. Richard: Red is probably kind of a more robust algorithm, like

if you made it more complicated blue might fail. Because, it is

quite simple, go forward, go left, and change it, go forward, go

left and change it, etc. But, if you made quite a complicated

algorithm, I think the red would cope with a lot more

instructions, because it is step by step. It is more like a

flowchart. I don‟t know! This one is more like one operation,

but that one is like a flowchart, a kind of questions and answer!

7.1.5. Discussion of Richard and Philip‟s account on the Spirals domain –

Third iteration

In line 127, Richard‟s remark show that he distinguished between the wording

(the syntactical commands in the given procedures) and the result (the final

output of the procedures). This remark evidenced that Richard possessed a loop

model which had evolved into a syntax model. Distinguishing between the

syntax and final output of the procedure is called the difference between the

process and product. From a syntax view, he pointed to the difference between

the stopping conditions in the two techniques in lines 131-133. From the output

view, in line 133 Richard mentioned that “[…] they are almost the same‟ which

evidenced his possession of a loop model of tail recursion.

Richard‟s utterances in line 133 are very important and give rich insight into

how and what he was thinking about the concept of tail recursion. It also

showed how he changed his thoughts while he was working with the tools.

Indeed, he began with a loop model based on the final output of the procedure

and then, based on the syntactical differences, he moved on to a syntax model

of recursion by saying “[…] they are almost the same. But […] it‟s like they do

 282

it in different steps‟. Then in lines (133-135) he continued towards a return-

value model by comparing the „make‟ command iterative procedure (the blue

technique) and the recursive call in the recursive procedure (the red technique):

“[…] instead of using „make‟ function, you are naming „n‟ with „red‟ […] so,

„red‟ is equal to „n‟ over 1.1” (line 133). Therefore, the evolution of Richard

and Philip‟s mental models of the tail recursion before moving on the

comparison page can be categorised as follows.

Figure 79- Richard and Philip‟s evolution of tail recursion mental model after working

with the red and blue techniques (before their experience with the AVDA innovation)

Then they moved on to the comparison page. Soon after seeing the AVDA

innovation on that page, Richard evolved his model into the quasi-copies

model of tail recursion as he mentioned that “[…] the blue one does it all in one

step, […] the red one does lots of repetitions” (line 140). This shows that he

was thinking about the flow in a procedural active process and did not have any

idea about the delegatory behaviour of flow to the new copies of the original

procedure at that stage.

I wanted to see what he thought about those repetitions and asked him what

makes those repetitions. His responses in lines (142-144) shows he had

possession of a mixture of a quasi-copies model of tail recursion and the

return-value model by saying “[…] you are redefining red all the time, or

redefining „n‟ as „n‟ over 1.1” (line 142). However, lines 144-148 show that,

soon after seeing the cancellation process in the AVDA environment, he

Loop model

(line 133)

Syntax model

(line 133)

Return-value model

(lines 133-135)

 283

abandoned his embryonic quasi-copies model of recursion and moved back to a

step model of the tail recursion concept by saying “[s]o, effectively, doing blue

in step mode is like doing red in normal mode” (line 146). Therefore, a diagram

of the evolution of Richard and Philip‟s mental models can be shown as

follows.

Figure 80- Richard and Philip‟s evolution of the tail recursion mental model after

working with the red and blue techniques (after their experience with the AVDA

innovation)

Finally, in lines 152-158, they compared the two recursive and iterative

techniques. Although they did not achieve a viable correct model of the

recursion, Richard‟s remark in line 158 evidenced that they discovered that,

compared with the iterative procedure, the recursive procedure is more

powerful and able to afford much more difficult situations than drawing a

spiral: “red is probably a kind of robust algorithm, like if you made it more

complicated blue might fail. [...] I think red would cope with a lot more

instructions […] it is like a flowchart […] a kind of question and answer” (line

158). This offers very rich information about how he was thinking about the

recursive procedure. When he pointed out that a recursive procedure is like a

flowchart a kind of question and answer, it can be considered as evidence for

his possession of a quasi-copies model. The term “question and answer” which

was explained by Richard, can be taken into account as generating the new

copies of the original procedure.

Loop model

(line 133)

Syntactic model

(line 133)

Return-value model

/

Step model

(lines 133-135)

Quasi-copies model

(line 140)

 284

In the next part of this chapter, the main focus is the students‟ accounts of the

four modules of the Treebuilder domain of abstraction. In the second part, the

accounts of the same students in part one are thoroughly discussed.

7.2. PART TWO – Students‟ Accounts on the Treebuilder

domain

In the first part of this chapter, I discuss three students‟ accounts for the Spirals

domain. In this part of the chapter, I discuss the accounts of the same students

for the Treebuilder domain.

7.2.1. Simon‟s account on the Treebuilder domain

Simon started his experiment with the Spirals domain by working with the

making a forest module. It has been mentioned before that the students were

asked to type the term „tree‟ followed by a number on the command line and

press the button labelled run. The purpose of the task was to see how they build

a connection between functionality and functioning. What I mean by

functionality and functioning is the difference between what needs to be done

and how it will be done.

Figure 81- The main interface of the making a forest module

? Tree 150

 285

Simon started to work with this module immediately after finishing his

experiment with the tasks in the Spirals domain. Hence, he began to work with

the module in a systematic style. First he typed the term „tree‟ on the command

line and when he was putting a number next to it stated:

1. Simon: So, alright, the initial value is going to be „n‟, it is going

to be how big the tree is going to be. So, if I drag this …

2. My description: [He was pointing to the turtle on the main page

of the making a forest module]

3. Simon: I will get a tree initial length 50. Presumably there is a

program.

4. My description: [He examined few other values for „n‟]

5. I asked: Can you say anything about the structure of the trees

that you have made?

6. Simon: Umm, well, I presume in the program you put an angle

in, like 30 degrees either way, and each part in the tree is 50%

of the length of the previous one, I think. It is like a fractal, isn‟t

it? … I‟m sure it has got a limit on the number of steps. They

might not have it and the stems are going on and on but I can‟t

see them.

7. Can you see any relationship between this and the previous

modules in the Spirals?

8. Simon: Um, well, yes! Because each step is reducing the length

of „n‟ each time. The spiral task was reducing the length of „n‟

by a factor of „n‟ divided by 1.1. In this task it looks like you‟re

reducing each „n‟ by 50% each time. But it might not be quite a

percent but it looks like, I‟m not sure! I‟m sure you could write

a program so that reducing it by 0.75 or something like that. So,

yeah, it looks like that on each step the angles are preserved. So,

you could have said 30 degrees and then each stem on the tree

that‟s 30 degrees to the left, that‟s 30 degrees to the right!

9. My description: [He was pointing to the branching points and

the new stems to the left and right directions]

10. Simon [continued]: Then here that‟s 30 and 30 and another 30

and 30. It is a recursive program again. You have probably

written something like let re-substitute back in „n‟ divided by 2,

…

11. My description: [He was pointing to the first branching point]

12. Simon [continued]: For example, into the original formula for

this bit here.

 286

Figure 82-Simon was pointing to the first branching point

Lines 3-12 show that Simon‟s previous experiment with the Spirals domain

gave him a good sense of combining functionality and functioning dimensions.

Also, by looking at the tree he pointed out that the structure is recursive (line

10). I wanted to see what he really thought when in line 10 he mentioned that

the program is recursive! So, I asked him about it.

13. I asked: What do you mean by recursive?

14. Simon: Umm, obviously in the previous one, the spiral one, you

wrote a small program for generating one line, and then the

second line within your spiral, and then you did the program

again. Basically, just plug that back into the equation each time

to generate the next step of your spiral. And I imagine that the

same is true for the tree. You have got something in there

whereby you have created this step here [see Figure 82] you

have told the program to do this and then you have just recursed

it, to set now here, do that the same,

15. My description: [then he was pointing to the second branching

points (see Figure 82) and continued that]

16. Simon [continued]: Well, we have not seen the program so I

don‟t know.

Simon gave a very interesting description of the trees in the making a forest

module. In line 1, he pointed to „n‟ as the initial value for the size of the first

branch. He had not seen any syntactical commands at that stage in the module,

he was just asked to type the term tree followed by a number. From a structural

The first branching point

 287

point of view, in lines 6 and 8 he also pointed to the angles and the size of the

new stems. Simon showed his appreciation of the stopping condition when he

said, “…it has got a limit on the number of steps” (line 6). His remarks in lines

8-16 evidenced the influence of the Spirals domain on his interpretation of the

trees in the making a forest module in the Treebuilder domain. In lines 10-16,

he mentioned that those trees have a recursive program. What he meant by the

term recursion was a kind of re-substitution of the value of „n‟ with a new

value, say „n‟ divided by 1.1 as he had seen in the Spirals domain (line 10).

When in line 14 Simon said “[…] you wrote a small program for generating

one line, and then the second line within your spiral, and then you did the

program again. […] plug that back into the equation each time to generate the

next step of your spiral. And I imagine that the same is true for the tree. […]

you have told the program to do this and then you have just recursed it”, it

evidenced his possession of a quasi-copies model of the recursive procedure,

which was mainly imbued by his previous experiment with the spirals in the

Spirals domain.

After this stage, we moved to the next module, the blue strategy. This module,

as mentioned before, was mainly designed to present an animative visualisation

of the control passing process over the embedded recursive procedure by using

two shadow turtles which were moving alongside the main turtle and also two

red and yellow colour codes for the first and second recursive calls.

 288

Figure 83- The written commands for the embedded recursive procedure to generate a

binary tree in the blue strategy and the colour codes (red and yellow) for the recursive

calls

Simon started to check the written commands of the embedded recursive

procedure on the screen before running it. His utterances in line 17 evidenced

his possession of a loop model of the embedded recursive procedure at this

stage.

17. Simon: So, if size less than 5 stop. If the size is greater than 5

you carry on, then it forwards the amount of the size. And then

you did right turn whatever you said the right angle is, and then

you carry on by size divided by 2, same angle each time, the

angles are preserved. It does a left turn and a left turn and then

you carry on again with tree with size divided by 2 and so on.

18. My description: [then he clicked on the run button and ran the

procedure in the normal mode]

19. Simon: Now, it doesn‟t look like it goes more than that, about 3

steps, let‟s change the angles into what I thought it was 30 and

30 and then run it. Yeah, it had only got 3 steps!

Whilst he was working within the AVDA environment and the animative

visualisation in the blue strategy, he noticed that the procedure did not behave

like normal loop as he expected. Instead, each time it was doing its job “[…] in

a few steps” (line 19). Then he ran the procedure in the colour mode and

thoughtfully watched the animative visualisation, which was contrived into the

blue tree module by the shadow turtles and colour codes for the recursive calls.

 289

20. Simon [continued]: I think it is doing four steps to get the size

less than 5 and then stopping. It is going forward 100, 50, 25,

12.5, 6.25 I cannot see the 3.75, oh yes, because when you get at

6.25 you get the size divided by two and you get back into there

21. My description: [He was pointing to the stopping condition line

in the procedure if :size < 5 [stop] and added that:]

22. Simon: And it becomes less than 5 so stops. The only thing we

have had is 1, 2, 3, 4 stems on your tree every time, and then

stop. Regardless of how big the size is. If you do the size equals

20, it is going to be tiny.

23. I asked: Why do you think we are going to have only 4 stems

each time?

24. Simon: Because, the first which is 20, then 10, 5, and then it

stops. If you make it 18, you only will get two stems. Let me

hide the turtle.

25. My description: [Then he hid the turtle to see the little stems]

26. Simon [continued]: Yeah, it has 2 stems to get to 4.5, I like that!

Can I look at the red tree module? Oh, before going there, let‟s

have a quick look to see what happens if we change the angles.

58 degrees for the angle to the right and 28 degrees for the angle

to the left! It just squeezed it one way. Presumably, if we would

do that in the other way, 25 and 61 for right and left, it is going

to be shaped that way.

Simon‟s experience with the AVDA helped him to evolve his initial loop

model of the embedded recursive procedure (line 19) into a step model in line

20. In that line, he also pointed to the syntax of the procedure “[…] you get the

size divided by 2” (line 20), so his explanation can also be considered as

evidence of possession of a syntax model. Simon‟s remarks in lines 20-26

showed he had a good understanding of the parameters of the angles and

stopping condition of the embedded procedure. However, he did not show any

sign of appreciation of delegatory control passing in the procedure at this point.

Next we moved on to the red strategy, which was again another version of

AVDA innovation based on the visualizing of the copies of the original

procedure, similar to the technique I employed in the Spirals domain.

 290

Figure 84- The interface of the red strategy after running it in the step mode

Simon was surprised by seeing the main interface of the red strategy before

running it, as it does not have anything on the screen until the user presses the

run button.

27. Simon: Oh! There is no instruction!

28. My description: [He pressed the run button and ran the

procedure in the normal mode and the copies of the embedded

procedure appeared on the screen [see Figure 84]

29. Simon [continued]: Oh Ok here they are! This is changing, this

is different!

30. My description: [then he started to run the procedure in the step

mode to have a closer look at what was happening on the

screen. He pressed the step button, run button and finally the

continue button to see the result on the screen in the step mode]

31. Simon: Ok, so step, and then run, and then continue, Ok, size is

125, 125 is not less than 1 so we carry on, we go forward 125

and left 30, and then it goes back up to here …

32. My description: [he pointed to the commands above the first

recursive call (see Figure 85)]

 291

Figure 85- The commands above the first recursive call that Simon was pointing to are

shown in the red box in this picture

Simon‟s remark on line 31 is an important remark. This is because he noticed

the control passing mechanism and its relationship with the stopping condition.

Actually, whenever he pressed the continue button, the commands above the

first recursive call were being executed and the first recursive call, flashing in

the colour red, was waiting for him to press continue again. Therefore, the

AVDA innovation allowed him to see that, when the procedure reaches its

limit for the stopping condition, it started to do the suspended commands

below the first recursive call. Simon‟s remark in line 31 evidenced his

possession of a quasi-copies model of recursion. He continued:

33. Simon: Oh, Ok, now we do tree „n‟ divided by 2, right 30, right

30!

34. My description: [when he pressed the continue button the

procedure got to its second recursive call and so it jumped back

up to the original procedure again!]

35. Simon [continued]: Where does that goes? It‟s over there again

36. My description: [he was pointing to the commands above the

first recursive call]

37. Simon [continued]: Alright, it goes back up to here again,

forward „n‟ left 30 then it comes back down to this step and then

it goes to the right 30!

In lines 33-37, he tries to describe the delegatory control passing process

between two recursive calls over the whole procedure. Lines 31-33 evidenced

an evolution of Simon‟s thinking and a transition state from having a loop

 292

model to a quasi-copies model of the embedded recursive. In line 31, he

commented that the procedure is going to go back on the previous 4 commands

after getting to the first recursive call “tree „n‟ divided by 2” and also another

evidence is his utterance in line 33, when he said: “[…] now we do tree „n‟

divided by 2, right 30, right 30” (line 33). In line 37, Simon evolved his

description by interpreting the recursive call as a step which showed his

possession of a step model of the procedure. He was still expecting that the

procedure would pass those steps in a procedural and iterative way. But,

control was passing to the top of the procedure after calling each recursive call.

So, he said:

38. Simon [continued from line 76]: No it won‟t, Oh right, what is it

doing? It‟s building it to the left first! It does all the lefts first.

So, we will get another one, and another one, and it will stop. So

now it goes to right! Let me see, it‟s going forward and then left

30, tree „n‟ divided by 2, back into tree, back into tree, back into

tree, if „n‟ is less than 1 stop, go right 30, right 30, to get back

on the main part of the tree, it goes tree „n‟ divided by 2 and

then go left 30 and then go back by the value of „n‟. I see, it is

pulling you back.

Simon‟s remark in line 38 shows that although he could see that after each time

of calling the first recursive call, the control is passed to the top of the

procedure. The procedure will do this until reaching its stopping condition

limit, which is „n‟ less than 1. In the AVDA environment he also noticed that

after reaching that limit the procedure resumed executing the suspended

commands “[…] go right 30, right 30, to get back on the main part of the tree”

(line 38). However, he had difficulties in describing the similar second

recursive call.

 293

39. Simon: It is pulling you back. If we had different colours we

could probably see it better when it comes back down the tree

and then down to the other spirals!

40. I asked: Which part of the procedure was difficult to

understand?

41. Simon: Umm, the part where you‟ve drawn the tree and you

have all of the steps up to the left hand side, going left, then

because you cannot actually visualize what is going on. Because

nothing seems to be happening to the tree, the procedure re-

traces the steps back along the tree to get the next bit to carry

out, it does that, and comes back again, but it is definitely going

back along the tree, it‟s obvious once you worked out what it is

doing, because it‟s re-tracing the steps.

Simon‟s explanation on line 41 shows the most difficult part of the procedure

for him to trace and understand was the control passing process between the

recursive calls and over the whole procedure. The delegatory control passing

for him was like a black box as he described it thus: “[b]ecause nothing seems

to be happening to the tree, the procedure re-traces the steps back along the

tree to get to the next bit to carry out” (line 41).

42. I asked: What part or parts of the blue strategy was difficult for

you to understand and work with?

43. Simon: The blue is better because it puts it into different

colours. So, we can see, it makes what is it doing a lot clearer,

and the turtle is actually moving along the diagrams - you can

see it is drawing it out and re-tracing the steps all the time to

make sure the correct tree is produced. So I prefer the blue one!

Simon‟s remark in line 43 shows that his main difficulty in understanding and

working with the embedded recursive procedure was tracking the flow of

control over the procedure. This can be seen from his comment when he

pointed out that “[…] it makes what it is doing a lot clearer […] you can see it

is drawing it out and re-tracing the steps all the time to make sure the correct

tree is produced” (line 43). Furthermore, his comments in that line also

evidenced his step model interpretation of the recursive calls. Altogether,

 294

before moving on to the final module of the Treebuilder domain, I can

summarise Simon‟s evolution of mental model as follows.

Figure 86- Simon‟s evolution of embedded recursion mental model after working with the

first three modules of the Treebuilder domain

Finally we moved on to the last module of the task which was the your tree

module. In this module the students were asked to complete an incomplete

embedded recursive procedure. The main interface of this module is shown in

the picture below.

Figure 87- The main interface of the your tree module

The following lines show how Simon engaged with the task in the your tree

module:

44. My description: [Simon started his work with the your tree

module by following the commands in the incomplete embedded

recursive procedure and comparing it with the given image of a

ternary tree at the bottom right corner of the screen]

Loop model

(line 17)

Syntax model

(lines 18-20)

Quasi-copies model

(lines 31-37)

Step model

(line 19)

 295

45. Simon: Ok , it is interesting, forward „n‟ then „n‟ divided by 3,

„n‟ divided by 3 makes a new „n‟ so we go forward again up

here we stay up there and then we have done left 30

Figure 88- Simon was pointing to the second vertical stem in the ternary tree

46. My description: [he moved back to the red tree strategy and

then typed (tree :n / 3) followed by (forward :n) in the first

empty box]

Figure 89- Simon‟s first attempt to complete the incomplete embedded procedure by

putting two lines in the first empty box

47. Simon [continued]: Forward „n‟, and then right 60.

48. My description: [He was pointing to the last stem to the left in

the middle part of the ternary tree and added]

49. Simon: Forward „n‟. We are up here.

Figure 90-Simon was pointing to the last stem to the left in the middle part of the ternary

tree

50. Simon [continued]: I‟m not sure now. Or, are we up here?

 296

Figure 91- Simon was pointing to the last stem to the left in the left part of the ternary

tree

Simon‟s remarks on lines 47-50 show that he did not have a clear

understanding of the delegatory control passing process. He was not able to

figure out the functioning of the first recursive call in the embedded procedure.

As he mentioned in line 45, the recursive call was a step to change the value of

„n‟ into „n‟ divided by 3, which can be considered to be evidence of possession

of a return-value model of the embedded recursive procedure by him to

complete the procedure. Simon ran his amended procedure, shown in Figure

92, and the result was far from the result that he expected.

Figure 92- The result of the amended procedure

He laughed at the result and said:

51. Simon: I cannot work out where I am! So, I must be here.

 297

Figure 93- Simon pointed to the first branching point to show the location of the turtle

after moving forward „n‟

52. Simon [continued]: Tree „n‟, forward „n‟, tree „n‟ divided by 3,

left 30, so, that goes to up there.

Figure 94-Simon pointed to the new location of the turtle after the left 30 command

He moved back on the red strategy and thoughtfully checked the written

command of the embedded recursive procedure on that module and said:

53. Simon: Oh, that one does not do that! That one goes straight

into the tree „n‟ over 2!

54. My description: [actually in the red strategy we were working

with recursive procedure to produce a binary tree. However, in

the your tree module the students were asked to complete the

embedded procedure to produce a ternary tree]

55. Simon: I am totally stuck!

He then decided to remove the commands that he had put into the first box and

ran the procedure with two empty boxes to view the result.

Figure 95- Simon ran the procedure without putting anything into the empty boxes

 298

56. Simon: I am trying to work out what it is doing without my

instructions. Forward „n‟, tree „n‟ divided by 3, left 30, and then

right 60, which is basically right 30, it is going to up there

Figure 96- Simon is pointing to the location of the turtle after going left 30 and right 60

He moved back on the red strategy again and amended the procedure as

follows by typing first forward „n‟ and then tree „n‟ over three into the first

empty box.

a) , b)

Figure 97- (a) is the amended procedure by Simon and (b) is the output of the amended

recursive procedure

57. My description: [he tried to describe what is going on by the

commands that he had put into the first empty box].

58. Simon: So, that one goes forward „n‟, tree „n‟ divided by 3, left

30, forward „n‟, tree „n‟ divided by three, right 60.

 299

Simon‟s explanation in line 58 shows that he had no imagination of the

delegatory flow of control after each time calling recursive calls. I wanted to

know what he was actually thinking about the recursive calls.

59. I asked: Can you describe to me what that forward „n‟ and tree

„n‟ over 3 in the box are going to do for you?

60. My description: [he pointed to the last stem of the left part of the

ternary tree (Figure 98) and said]

61. Simon: Actually at that point we do not need any tree anymore!

And the forward is actually because it is like tree forward „n‟ to

make a trunk. From the beginning you go forward „n‟, then go

„n‟ divided by 3, and then forward „n; again and you went up

there.

Figure 98- Simon was pointing to the location of the turtle, after his remarks on line 61

62. Simon [continued]: Then you go left thirty and that‟s where I

get stuck! Because left thirty means,

At this stage, Simon decided to move on to the blue strategy, in which I has

employed the colour codes for the stems, yellow to the right and red to the left

in accordance with the first and second recursive calls. The AVDA

visualisation in the blue strategy helped him to change his thinking about the

complicated control passing process in the embedded recursive procedure. He

described the blue strategy as follows.

63. Simon: Right, it is going to do all the right turns first, and then it

is doing all the left turns afterwards!

64. My description: [then he pointed to the shadow turtle in the blue

strategy and said]

65. Simon [continued]: So, it is telling it to create a tree on top of a

tree that has already been created. I do understand what it is

doing. But, it doesn‟t make it any easier to put the information

on to tree. It really does not! To tree „n‟, forward „n‟, then tree

„n‟ divided by 3, left 30, it is going to go forward at this point.

 300

66. My description: [he was pointing to the first branching point]

67. Simon [continued]: at this point the length is going to be „n‟

divided by 3. So, you go forward „n‟ divided by 3. That was

what I thought originally!

68. My description: [He typed forward „n‟ over 3 in the first box

and said]

69. Simon [continued]: Ok then, now you have done forward „n‟,

tree „n‟ divided by 3, left 30, forward „n‟ divided by 3, then you

have got to go the right turns! So, you have to say right 60, and

then you do tree „n‟ divided by 3 again.

70. Simon: Oh! That was wrong. The thing is we only define tree

„n‟ as being forward „n‟ that‟s my problem! In the other one we

defined tree „n‟ as being forward „n‟, left 30 or whatever.

71. My description: [Simon was pointing to the difference between

the embedded recursive procedures in the your tree module and

the red and blue strategies]

72. Simon: I am really stuck. I have to say I am totally stuck! I can

see what is it doing but I just cannot do my own. Because I

cannot! The way I do things, the way I always learn stuff and so

on is to look at an example and try to apply that example to the

one that I am doing. In this case, I just can‟t do it. I just can‟t get

my head around it.

Simon‟s remarks on the above lines show that his main problem in completing

the incomplete embedded procedure was his inadequate imagination about the

delegatory control passing mechanism. However, the animative visualisation of

the AVDA in the red and blue strategies helped him to change his thinking and

model about the embedded recursive procedure.

7.2.2. Richard and Philip‟s account on the Treebuilder domain

Similar to Simon‟s account, Richard and Philip also started the second part of

the third iteration by working with the Treebuilder modules. They began their

experience with the making a forest module by testing a few different values.

They tried tree 7, 12, 100, 200 and observed the outputs.

73. I asked: Can you see any relationship between these trees and

the spirals that we already had?

 301

74. Richard: It goes up and it turns left and then it goes forward

again. But, every time it turns left it also turns right,

75. I asked: What do you think Philip?

76. Philip: Yes, that‟s right, it goes in both directions!

77. Richard: Yeah, instead of going forward, left, „n‟, and then

again forward, left, „n‟, it goes forward, and then left and right,

and then forward, and then left and right.

78. Philip [interjected]: It is going forever!

79. I asked: Richard, what do you think? Do you also think that it

goes on forever?

80. Richard: No, I think it is going to stop somewhere. Like spirals

but, it always goes forward, left and right, goes forward, then

left and right, and so on.

Then we moved on to the blue strategy, which was designed to employ the

AVDA visualization combined with the red and yellow colour codes for the

stems to the right and left in accordance with the first and second recursive

calls in the given embedded recursive procedure to produce a binary tree.

Richard set the initial value of the size at 64 and then they ran the procedure in

the normal mode.

81. Richard: You turn 90 degrees to the right, and turn 73 degrees to

the left. Let‟s do 30 and 30, which was the angle of the spiral.

82. My description: [then they set both angles to the left and right

equal to 30]

83. Richard [continued]: That would be a tree like the spiral!

a) , b)

Figure 99- The tree that Richard made by taking both angles equal to 30

After experiencing the normal mode, they decided to test the colour mode

execution of the procedure. The AVDA technique combined with the colour

 302

codes caused them to change their thinking about the way that the tree was

being made.

84. Richard: It does look like a bit of red and then a bit of yellow

85. I asked: Can you describe it for me, what is it doing?

86. Philip: The red is going to right and the yellow goes to the left. I

reckon!

87. Richard: Oh, yes, red is right and yellow is left! Ok, what if I

get one angle zero?

a) , b)

Figure 100-(a) Richard took the angle to the right zero and (b) The output of the

procedure with one angle zero

88. Richard [continued]: That would be very like a one-sided tree,

everything on the left hand side is going to be yellow!

Initially, line 77 showed that Richard was thinking about the binary tree as a

loop model by saying “[…] it goes forward, and then left and right”. But, after

seeing the AVDA visualisation in the blue strategy, he noticed that “[i]t does

look like a bit of red and then a bit of yellow” (line 84). The AVDA

visualisation in the blue strategy opened a window for them to look through

and change and re-shape their thinking about the concept of recursion. Using

this window, Richard changed his interpretation from “forward, left and right”

to „it does look like a bit of red and a bit” which can be considered as a syntax

model of recursion. The reason for this, is that he noticed the recursive calls

which were making the trees to the right and left with different colours.

89. Richard: Can we do it with the maximum value degree like 100?

90. Philip [interjected]: It‟s going to be like an antenna!

 303

91. Richard: Yeah, that‟s right, it is like an antenna!

92. My description: [see the output of the procedure in Figure 101

(a) and (b)]

a) , b)

Figure 101- (a) The maximum values for the angles to the right and left, (b) the output of

the procedure with those initial values

93. Philip: Let‟s put one on 100 and the other on 80 in the colour

mode.

94. Richard: It‟s a kind of parallel and also in the colour mode you

can see which is which.

95. I asked: Can you see any relations between theses shapes and

the written procedure on the screen?

Figure 102- The written embedded recursive procedure in the blue strategy, the first and

second recursive calls are shown by red and yellow colour codes respectively

96. Richard: What do you mean?

97. I said: In what order is the turtle doing those orders?

By asking the question above, I was trying to find out what he really thought

about the flow of control over the embedded recursive procedure.

98. Richard: Umm, forward size and turn right, then tree size

divided by 2. So, this one is red first and then yellow. It‟s just a

kind of spiral.

99. My description: [he was pointing to the tasks he has already

worked with in the Spirals domain]

 304

100. Richard [continued]: It‟s just doing a movement and then

reducing the size, and then doing a movement and a turn and

reducing the size, moving and a turn, reducing the size.

Richard‟s remark on line 100 showed that although his explanation was far

from a delegatory control passing mechanism, it can be considered as a return-

value model. Moreover, he paid more attention to the execution of the

procedure in the colour mode which can be seen in line 101. In that line,

Richard pointed to the little box on the screen which was contrived to show the

length of the stem which was being draw by the turtle at each step. He also

mentioned that “[…] when it‟s shooting the yellow part” (line 101), which

evidenced that the AVDA visualisation in the blue strategy opened his eyes to

the creation of a new tree in different directions by two red or yellow colours.

101. Richard: When it‟s shooting the yellow part, the box is yellow

and when it‟s shooting the red the box is red. Is that right?

102. I said: What do you think Philip?

103. Philip: Yes, I think so. And also the number in the box shows

the length of the stem each time!

Richard also pointed to the shadow turtles and described the relationship

between their background colour and the colour of the stems as follows.

104. Richard: Yeah, and also for those things when the background

is red and the tree shape is yellow, it‟s doing yellow, and when

the background colour is yellow and tree shape is red the turtle

is drawing red.

At this stage, we moved on to the red strategy in which the AVDA

visualization was mainly designed to represent the copies of the original

procedure. Richard‟s first idea was to compare it with the AVDA visualisation

in the Spirals domain.

 305

105. Richard: Oh, this is actually like we were doing with the old

spirals in steps, step by step. Because this is „n‟ less than 1 and

the other one is less than 5, it‟s going to be a lot more precise!

It‟s going to take longer.

106. My description: [he was comparing the stopping condition in

the red and blue strategies in the Treebuilder domain]

107. Richard [continued]: So, it‟s like doing the first 4 stages

automatically and now „n‟ is 1.56 and it‟s still going

Figure 103- Richard was pointing to the number moving alongside the turtle to show the

length of the stem which was being drawn by the turtle

Richard and Philip kept clicking on the continue button and thoughtfully

observed the output.

108. I asked: Can you explain what is happening there?

109. Richard: Each time you press continue it gets as far down the

algorithm as it can and then it goes back again and then starts

from the next branch

110. Philip [interjected]: If „n‟ is less than 1, it goes back.

111. Richard [continued]: Yeah, if it stops it means „n‟ is less than

1. Because that one [he was pointing to Figure 103] went

through like one and a half times, so the tree is „n‟ over 2, so

now it‟s going to go back because „n‟ is 1.56 divided by 2, so

„n‟ is smaller than 1!

Richard and Philip‟s remarks in lines 108-111 shows, a significant change in

their thinking about the embedded recursive procedure. Initially, they thought

about the procedure as a loop, but after their experiences with the AVDA

visualisation, they appreciated the process of flow as a back and forward

mechanism based on the size of the stems and the stopping condition. So, this

can be considered as evidence for possession of a quasi-copies model.

The length of the size

of the current stem

 306

However, I was not sure what they thought about the functioning of the

recursive call itself. So I asked about it.

112. I asked: Can you explain more about the line „tree „n‟ over 2‟

in the program?

113. Philip [immediately answered]: Defining and redefining „n‟

114. Richard: Yeah, it‟s like defining the length of the next stage as

half of the length of the previous one! It‟s like the spirals,

because that was „n; over 1.1 so it is „n; over a bigger number.

Philip‟s remark in line 113 and Richard‟s confirmation in line 114 show that

they consider the recursive call to be the generator of the new values „n‟ over 2

each time. Combining these interpretations with their descriptions in lines 110-

111 in which they mention that soon after reaching the stopping condition the

procedure goes back and starts another branch, evidenced their possession of a

quasi-copies model of the embedded recursion.

115. I asked: What part or parts of the procedure was the most

challenging to work with and to understand?

116. Richard: I do get the basic concept of it. I mean it‟s quite easy

to follow when it‟s here, but explaining what its doing is quite

difficult!

Richard‟s remark in line 116 shows that he had a major difficulty in

understanding the complicated delegatory control passing process and the

functioning of the recursive calls in the embedded recursive procedure.

Therefore, Richard‟s evolution of a mental model for the concept of recursion

can be shown as follows.

Figure 104- Richard and Philip‟s evolution of mental models of recursion after their

experience with the first three modules of the Treebuilder domain

Loop model

(line 77)

Syntax model

(line 87)

Quasi-copies model

(line 110-111)

Step model

(line 105)

Return-value

model

(line 101)

(Line 19)

 307

They moved on to the your tree module, which was the last part of the

Treebuilder domain. As mentioned before, in this model they were asked to

complete an incomplete embedded recursive procedure to produce a ternary

tree.

a) , b)

Figure 105- (a) the image of the ternary tree at the bottom right corner of the main

interface of the your tree module in the Treebuilder domain, (b) the given commands and

two empty boxes to be filled by them

117. Richard: Is it one instruction per box?

118. I said: Not really, you can enter as many instructions as you

want in each one of those boxes.

119. Richard: So, it starts here,

120. My description: [he was pointing to the slider on the bottom of

the screen showing the initial value of the size of the first stem

as „n‟ and also at the same time he was comparing the

commands which were given with the image of the ternary tree]

Figure 106- Richard was pointing to the slider showing the initial value of the size

121. Richard [continued]: And it goes forward „n‟ amount to there

and then it goes left 30, and then it‟s going to go [paused for a

while and continued] oh , hang on, because the others have two

branches and this one has three and each of those angles in there

would be 30 and 30 so it goes

122. Philip [interjected]: left 30,

123. Richard [continued]: Left 30, and then right 60, oh right 60 is

already there, so it goes,

124. Philip [interjected]: It needs to go forward as well

 308

125. Richard [continued]: Yeah, so, that would be, can we just type

in something like forward „n‟ divided by 3 and then it makes it

smaller

Figure 107- Richard entered the command „forward „n‟ divided by three‟ into the first

box

His activity, recorded in line 121 showed that he knew what he needed is to

create a branch in the middle after placing a stem to the left. The reason that he

put „forward „n‟ divided by 3‟ into the first box was that he did not have any

idea of the functioning of the recursive call.

126. Richard [continued]: And then it makes it smaller again. What

do we need to do after? Basically, what you want to do? You

want to go left 30, yeah that‟s fine, then you want to really go

right 30 because left 30 and then right 60 is doing a sort of like

left 30. Left 30 is doing this from here

Figure 108- Richard was pointing to the first stem into the left direction

127. My description: [he was pointing to the first branching point

on the image of the ternary tree and moving along the next stem

on the left]

128. Richard [continued]: and then from there you go on, right 60

is going to do this.

 309

Figure 109- Richard was pointing to the stem in the right direction

129. Philip [interjected]: So, you want to do left 30 and then

change it?

130. Richard [continued]: Yeah,

131. My description: [they removed forward „n‟ divided by 3 from

the first box and then typed left 30 and tree „n‟ by 3 into the

second box].

132. Richard: So, we want to go left 30 here.

133. Philip [interjected]: And then tree „n‟ divided by three

134. Richard: Yeah.

Figure 110- Richard and Philip‟s second attempt at completing the procedure

135. Richard [pointed to the first empty box and said]: So, what do

we put in here? Do we need a tree „n‟ by 3 in there? We have

got forward „n‟, tree „n‟ divided by 3 and then left 30 and then

another tree „n‟ divided by 3, and then right tree divide by tree,

left tree divide by three

136. My description: [then they put tree „n; divided by 3 into the

first empty box]

137. Richard: And what is that size value going to be? I don‟t want

to put a big number, let‟s have 60.

 310

Figure 111- The output of the amended recursive procedure

138. Richard: Pretty close! And also once you have done three

repetitions you want to stop!

139. Philip: Yeah, because „n‟ is going to be smaller than one.

Richard‟s and Philip‟s comments in lines 126-139 showed that the AVDA

environment provided them a window in which, they were able to observe the

ternary tree that they were asked to make and also see the output of their

attempt to amend and complete the incomplete procedure. Richard‟s remark on

line 135 shows a significant change in his thinking about the procedure. This

line showed two important things; first, it showed that Richard‟s interpretation

of the embedded recursive procedure was procedural (loop model). This was

evident when he said “[w]e have got forward „n‟, tree „n‟ divided by 3 and then

left 30 and then another tree „n‟ divided by 3” (line 135). The second one,

which is of importance as well, is that this loop-wise thinking about the

embedded procedure is totally different. It can be considered to be an advanced

form of procedural thinking about the procedure, which was built in his mind

in the AVDA environment. The reason was clear in his remarks when he said

“[…] then left 30 and then another tree „n‟ divided by 3, and then right tree

 311

divide by tree, left tree divide by tree ” (line 135). For Richard to create a new

stem in a new direction, he needed to input the term „tree „n‟ divided by 3‟. His

explanation in lines 140-144 below provides more evidence.

140. I asked: Can you explain to me why you put tree „n‟ divided

by 3 into those empty boxes?

141. Richard: Well, I thought it‟s, like, for each, like, branch, you

want to make it a third of the size of the previous one.

142. I asked: For example, what if you wanted to have a tree with 4

branches?

143. Richard [immediately responded]: You would need to have it

4 times! But we also need [paused]

144. My description: [he paused a while and started to put a

stopping condition into the second box].

145. Richard [continued]: It might be repeated but we want it,

umm, so we want, like, if „n‟ is less than 5 stop really!

Figure 112- Richard added a new stopping condition into the second box

146. Richard: So, what happens then? It makes it a little bit too tall

as well. Let‟s take „n‟ as 50

 312

Figure 113- The output of having one more stopping condition in the second box

147. Richard: Oh that‟s interesting! I don‟t know! It is kind of

seems you‟ve already got it!

148. My description: [he was pointing to the tree „n‟ divided by 3

command that he had typed into the first box and said that]

149. Richard: It just seems that you have got the forward and then

you are reducing the amount by a third of the amount that you

moved.

150. Philip [interjected]: This „n‟ in the next step for the next one is

going to be a third of „n‟ and then left 30.

151. Richard: Yeah, you go forward and then you reduce the size

of „n‟ and then turn left.

Richard‟s and Philip‟s comments in lines 145-151 show that they have had an

inadequate knowledge of the functioning of the recursive calls in the embedded

recursive calls. In line 145, Richard decided to add one more stopping

condition into the second box which was enough evidence to show that he did

not have a clear image of the process of flow of control over the procedure.

Lines 145 and 147 show that the AVDA visualisation caused Richard to say

that putting a stopping condition might be a repetition of something we have

already got in the procedure “[…] it might be repeated but we want it, umm, so

we want like if „n‟ is less than 5 stop” (line 145).

 313

Richard and Phillip did not show any sign of appreciating the complicated

delegatory control passing mechanism in the embedded recursive procedures.

However, they developed their initial loop model of the procedure to a step

model and return-value model by working at the window of the AVDA domain

of abstraction.

7.2.3. George & Peter‟s account on the Treebuilder domain

Similar to the other two accounts, George and Peter started their work with the

modules of the Treebuilder domain with the making a forest module. They

typed the term tree followed by a few different numbers and observed the

output of them on the screen. I asked them about the structure of the trees that

they made.

152. George: Tree 200 is bigger. So, this one is twice as big as the

previous one.

153. My description: [he was pointing to the main trunk of the tree

and comparing the first stem of it]

154. Peter [interjected]: Probably!

155. George: Maybe, I don‟t know.

156. Peter: Let‟s try something in between.

157. My description: [then they tried tree 150]

158. I asked: What are you thinking when you type tree?

159. George: So, this obviously knows the program. Knows what

tree means. There is program knows that what tree means and

then 55 is just …

160. Peter [interjected]: That‟s the length.

161. George [continued]: Yeah, so then I mean it goes up and in,

up and in, until getting very small little tiny branches

162. I asked: Can you see any relationships between them and the

previous tasks you have done?

163. George: So that would be like spirals. So, what would that be

like? It keeps draw this particular line.

 314

Figure 114- George was pointing to the main trunk and the stems which were drawing to

the left direction

164. George [continued]: Turns left, draws this particular line,

turns left, draws this particular line. So, this bit looks a bit like a

spiral

Figure 115- The spiral-like part that George saw in the structure of the tree is shown by

the black colour in the above image

165. George: Ok, then it is going around and then

166. Peter [interjected]: Then for a certain value comes back on

itself!

167. George: And then draws the other of those tiny branches.

168. Peter: This side gets to a certain value and then because they

will have the „n‟ as less than one, and then it does reverse of the

process and then restarts.

169. George [interjected]: and it comes back on itself and then do

another thing and then come back on itself and do another and

again

George‟s and Peter‟s remarks in the above lines show that they saw the

recursive structure from a functioning perspective in the binary trees pictures.

Lines 153-161 show that they appreciated that the number that they typed after

the term tree can be taken as the initial value of the trunk. Also, they noticed

the stopping condition for the procedure; George‟s remark on line 161 can be

considered as evidence for it, when he said that, “[…] it goes up and in, up

and in, until getting very small little tiny branches”.

 315

Then we moved on to the second module of the Treebuilder domain in which

the students were asked to work with an embedded recursive procedure to

generate a binary tree in the AVDA environment combined with the red and

yellow colour codes, respectively for the first and the second recursive calls in

accordance with the branches to the right and left. George ran the procedure in

the normal mode.

170. George: Ok, so let‟s click the run button, oh! That is a tree and

just a bit lopsided because the angles are very different

171. My description: [George changed the values of the angles to

the left and right and switched the mode of execution onto

colour mode. He was surprised by the shadow turtles which

were moving alongside with the main turtle]

Figure 116- The shadow turtle shows that the main turtle is going to boost new branches

to the left with the colour yellow

172. George [continued]: Oh, what‟s he up to?

173. Peter [interjected]: What is he doing?

174. George: Red yellow, red yellow, red yellow.

175. Peter: Colouring!

176. George: Red yellow, red yellow, Ok, so if size less than 5

stops. Let us we put these two the same, so it makes it look like

the last one in the previous task.

177. My description: [then he changed the values of the angles to

the left and right to 50]

Figure 117- The angles to the left and right changed to 50 by George.

 316

178. George [continued]: And then it does a little spiral and then it

sort of comes back on itself a little bit and then back on itself to

make another spiral and then if size less than 5 stop. Otherwise,

forward size, right turn, tree size.

179. Peter [interjected]: and it does 2 branches.

180. George [continued]: Size divided by 2, right angle, left turn

50, and then switches to the yellow part. Ok , and then one more

181. My description: [he was counting the number of branches as

they were being drawn by the turtle].

182. George [continued]: and then goes to stop. So, it does it again,

it‟s, like, running itself within itself again.

Figure 118- The image of the tree that George made by making both angles to the left and

right equal to 50

Experiencing working with the AVDA visualisation combined with the yellow

and red colour codes, plus previous experiments with the Spirals domain

allowed George and Peter to shape their thinking about the embedded recursive

procedure. The way that they described the procedure was by simultaneous

examination of the written program and the output which was being drawn by

the turtle. Lines 178-182 show that they clearly noticed that the procedure was

calling itself. In line 178, George described the delegatory flow over the first

recursive call and then Peter in line 179 mentioned that, “[…] it does two

branches”, which shows that he was pointing to the second recursive call.

Peter‟s remark in line 179 followed George‟s description of the second

recursive call in line 182 when he said “[…] and then it goes to stop. So, it

does it again, it is like running itself within itself again”.

 317

These comments show their possession of a quasi-copies model of recursion.

They continued with the blue strategy and further illuminated their thinking.

183. Peter: And then it keeps going.

184. George: Yeah, it keeps going until it gets to 3.125.

185. Peter [interjected]: Yes.

186. George [continued]: And then left turn and left turn, and then

tree size divided by 2, right angle, left angle. And it redraws

these bits.

Figure 119- George is pointing to the little stems on the right side of the tree

187. George: If you changed these angles it would be a bit

lopsided. … if you have big angles then you‟ve got a bit of a fat

tree, and if you have a small numbers like 18, then we‟ve got a

poor tree.

a) , b)

Figure 120- (a) angles to the right and left were chosen 18, (b) shows the final output of

the tree

188. George [continued]: And then eventually it does right turn,

back size, it just eventually reverses itself, eventually back on

here, reverse on itself, back on here, and it does another 1 and

then one of those over here and then stops, I guess.

189. Peter [agreed]: Yeah.

 318

I wanted to see what, the effect of those colour codes was on the way that they

shaped their thinking and tracked the control passing mechanism over the

procedure. So I asked them about it.

190. I asked: Can you see any relationship between the colours in

the procedure and in the tree?

191. My description: [George was moving the mouse alongside the

stems and said]

192. George: You have got like a red, so red goes up to the right,

and then another red up to the right, and here you have got a

yellow that goes up to the left, and then again yellow goes up to

the left, and then these little branches at the end, yellow and red,

yellow and red.

193. Peter [interjected]: Then right turn,

194. George [continued]: I suppose, because the yellow goes up to

the left. So, it does a left turn and then it does a yellow tree and

then a right turn and then a red tree. I don‟t know!

Then they switched their attention to the little box on the middle of the screen

which showed the current size of the branch that was being drawn by the turtle

 and added that.

195. George: So, it‟s the current value of the size. And it doesn‟t

get any less than 5!

196. Peter: It was 100 and then 50 and then 25 and 12.5 and 6.25

and then 3.125 and then stop!

Figure 121- Peter was pointing to the size of the stems until they got less than 5 and stop

197. My description: [George changed the initial value for „n‟ from

100 to 70 and added that]

 319

198. George: Forward size right turn tree size divided by 2, and

then forward half size right turn, and then forward half size right

turn, and if size less than 5 stops.

199. My description: [then he moved on to the commands after the

first recursive call]

Figure 122- George was pointing to the commands after the first recursive call (the red

line) after it got to its stopping condition, and he appreciated that the procedure was

resuming those suspended commands

George and Peter‟s remarks in lines 196-199, and especially George‟s

comment in line 198, reveal that the AVDA visualisation allowed them to track

the delegatory control passing mechanism for the first recursive call. However,

lines 200-205 show that they did not have a clear understanding of this

mechanism when it came to the interrelations between two recursive calls.

George‟s remarks in lines 200 and 205 show that he considered the delegatory

control passing mechanism for the second recursive to be totally separate from

the callings of the first recursive inside it. These comments again support

possession of a quasi-copies model of embedded recursion by them. George‟s

explanation in line 200 shows that, for him, when the second recursive call got

to its stopping condition, it went to do the last 2 commands of the procedure –

right turn and back size. This means that although on the shape of the tree with

the yellow and red branches he described the complicated control passing, he

was not able to make a bridge between two recursive calls on the program.

 320

200. George [continued]: So, then left turn and left turn, and it does

yellow tree until it gets less than 5 and then right turn and back

201. Peter: Yeah, Ok.

202. George: So, then it runs it until it is too small and then it starts

off again but not as big as it starts off with another 100.

203. Peter [interjected]: It starts off with another half again and

then half again.

204. George [continued]: So, it is like it reverses back to say here

Figure 123- George was pointing to the first branching point as the turtle was about to

start drawing the yellow branches to the left

205. George [continued]: So it has gone back 50, it goes up 50 and

then back and then forward and then eventually it has done all it

can do, and reverses itself back down to end.

206. I asked: Which part of the procedure was more challenging to

work with?

207. George: In terms of writing or understanding?

208. I said: Explain both please!

209. George: I don‟t know! Once it has done the last part here

Figure 124- George was pointing to the last stem which was drawn by the turtle with the

yellow colour to the left

210. George [continued]: Then it starts to draw all over itself again.

Once it is there it reverse back on itself and starts again.

211. My description: [George was pointing to the first few red

branches to the left and added that]

212. George: I suppose, when it does this it does red almost like a

red spiral.

 321

Figure 125- George was pointing to the first red branches to the left and stated that they

look like a spiral

213. George [continued]: Then it goes back and then it goes yellow

and it does like redraw itself, it does yellow and then a red and it

does a red and it does a little yellow spiral to the right again

starting there

Figure 126- George was pointing to the little yellow branches to the right on the top of the

red branches

214. George [continued]: And then curving around and doing the

same thing until it gets to an end!

George and Peter‟s remarks on lines 195-214 above show that they evolved

their mental models of the embedded recursive procedure in the AVDA

environment in the blue strategy module. However, they also had difficulties in

exchanging the control between the two recursive calls.

Then we moved on to the last module of the Treebuilder domain, which was

the red strategy. The first thing that George pointed to was the difference

between the stopping conditions in the red and the blue strategies. They chose

to run the procedure in the normal mode first.

 322

215. George: If „n‟ is less than 1 stop. So, it does it a lot smaller

than „n‟ is less than 5. So, forward „n‟, which, was nine.

Figure 127- George was pointing to the movements of the turtle in the red strategy with

the initial value of n = 9

216. George [continued]: Left 30 and then do a tree, but run itself

with half size and then keep going until „n‟ is less than 1.

Figure 128- The copies of the procedure which were being generated in the AVDA

environment in the red strategy

217. Peter [interjected]: Then it goes back to where it started

drawing that branch.

218. George [continued]: Right 30, right 30, and then left 30 and

then back. And then lots and lots and lots of little ones, until

eventually „n‟ is less than 1.

219. My description: [George‟s above explanation showed that he

just followed the commands in a procedural way without paying

attention to the delegatory control passing. George changed the

value of „n‟ to 30].

220. George: So, it keeps going until it gets to „n‟ is less than 1

again. So you are going to get a little spiral

The commands that George

was pointing to in line 257

 323

Figure 129- The spiral shape branches that George pointed in the red strategy

221. George [continued]: So, now it keeps running through to the

end. Because, here „n‟ is 30 and then 15, then 7.5 and here it‟s

doing a little detailed a bit.

Figure 130- Turtle was drawing the little stems at the end of the branch to the left and

George pointed to it as a detailed part of the stem

222. George [continued]: Probably „n‟ is very close to 3 and then

one and a bit.

223. Peter [interjected]: „n‟ is less than 1 and then goes back on

itself.

224. George: I think it is a detailed tree and it takes a long time to

draw the whole thing. I suppose, with the blue one you get the

nice tree shape pretty quickly. So here the program sort of runs

out a few times and then back on itself a few times, because I

suppose it‟s moving itself back, and then makes a few new ones,

and then goes back again, then a few more.

Again, similar to the previous module, George‟s remark in line 220 shows that

he tracked the first recursive call in a delegatory control passing mechanism.

The AVDA visualisation in the red strategy shows the copies of the original

procedure and uses colour code for the recursive calls (each time after reaching

the first or second recursive call it was flashing red and was waiting for the

 324

user to press the continue button). This helped them to change their thinking

about the interrelationships between the two recursive calls (lines 221-225).

225. My description: [George was pointing to the animated

visualisation of the AVDA over the copies of the original

procedure]

226. I asked: can you see any similarities or differences with the

blue strategy?

227. George: Well, again it is similar, but the blue one just kept

running within itself again.

228. My description: [they moved back on to the blue strategy and

George immediately corrected himself]

229. George [continued]: Oh! No they are the doing the same thing.

230. My description: [he pointed to the recursive calls in the blue

strategy and added that]

231. George [continued]: this running, and rerunning itself again,

tree and tree. That‟s why you don‟t see the windows that are

changing.

That was an interesting remark that George made in the AVDA visualisation

by correlating the windows of the new copies of the original procedure in the

red strategy with the colour coding of the recursive calls in the blue strategy.

The other thing is that in lines 227-231 George stated that the procedures in the

blue and red strategies are the same. In the following lines George & Peter

were trying to work out the control passing mechanism of the procedure. For

instance, in the line 234, they were tracking the angle and direction in which

the turtle was heading.

232. Peter: Yes, it is working, so every time it gets to pop up

another one and then back again.

233. George: So, you see, that stage flashed up and kept going.

 325

Figure 131- When the procedure was doing the second recursive call it is shown that the

first recursive call is also called and it helped George to point to it in the above image

234. George [continued]: So, now to the right 30, right 30, and now

it‟s going to start from here, I suppose.

Figure 132- As George mentioned, the procedure was calling the second recursive call

and he pointed to it in this image

The animative visualisation employed in the AVDA significantly assisted the

students to improve their thinking about the control passing mechanism. In the

lines 239 and 242, George & Peter noticed that the process goes back on itself.

235. George: And do this and then back,

236. Peter [interjected]: Back to where it was left before.

237. George [continued]: Yeah, it was less than 1. Let‟s hide the

turtle to see the little ones.

238. My description: [he hid the turtle and added that]

239. George: you see what it‟s doing, you see the little lines just

appearing and then a few times they are going in different

directions. I suppose in a minute it will come back to here.

 326

Figure 133- The position in which George predicted that the new stems would be drawn

by the turtle

240. George [continued]: Yeah, here we go!

241. Peter: And it will go half and will turn left.

242. George: And then again and again and again and then it‟s

going back on itself, you can see what it‟s doing and then it did go

back, back, back, so now would it be here?

Figure 134- George was pointing to the branching point where he thought the next

branch would be drawn

243. George [continued]: Yeah it is here.

Figure 135- The branch was drawn by the turtle from the branching point that George

predicted

The new branch just

appeared as George

predicted in line 282

 327

244. George [continued]: So then it starts off another one of these.

Figure 136- George was pointing to the little stems at one of the end points and explained

that the same thing is going to be done by the turtle at the other ending point

Lines 232-244 show George‟s thinking about the complicated control passing

in an embedded recursive procedure and the interrelations between the two

recursive calls.

The outcomes of George‟s and Peter‟s experiments were similar to the results

of the other student participants and were examined and recorded in the

previous sections. As such, and to avoid repetition, they are not detailed

further.

The next section of this chapter focuses on the findings and results of the third

iteration with regards to the research questions of this study.

7.3. Findings and Results of the Third Iteration

Having discussed the three accounts of the students who participated in the

third iteration, it is now possible to explain the findings and results of the third

iteration.

 328

First and foremost, I would like to reiterate the main research questions that the

study was designed to address: How does the recursive thinking of university

students evolve through the use of carefully designed digital tools? To address

this question, some related sub-questions were considered. These related

questions were designed to address two aspects of the tool design and tool use

of the tools which were designed and tested in the three iterations. From a tool

design perspective, the most attention was paid to the role of design to reveal

the latent layers of recursion such as the complicated mechanism of delegatory

control passing. It was of value to find out, to what extent design can form a

bridge between the formal and informal (by the modelling of trees and spirals)

to support students to shape and evolve their thinking about recursion. From a

tool use perspective, the focus was on seeing how the modelling of trees and

spirals directed students‟ thinking about recursion and how their engagement

with the purposefully designed tools helped them to construct and modify their

mental models of recursion.

The students‟ accounts in the third iteration revealed that the animative

visualisation (AVDA), which was designed and contrived in the modules of the

domains of abstractions in this research, successfully helped students to shape

and evolve their thinking about the concept of recursion. It also bridged the

formality and complexity of the interdisciplinary concept of recursion with the

informal examples of everyday life analogies (trees and spirals) (See Chapter 7

- PART ONE; lines 11-20, 48-54, 111, 141-143, and also Chapter 7 – PART

TWO; lines 43, 101, 108-14, and 165-169).

 329

Working with some fractals like binary and ternary trees and also some fractal-

shaped objects like spirals was easy for them and none of the students who

participated in the third iteration had a problem with them. This supports the

idea of phenomenalizing the concept of recursion using familiar objects.

From the tool use perspective, the students‟ accounts revealed that to create a

spiral (which can be made both recursively and iteratively), all of the students

who took part in the third iteration would prefer to use the easier and more

straightforward iterative algorithm rather than the complicated and redundant

recursive algorithm. However, as in the case of Richard and Philip they

mentioned that although they would prefer to use the iterative algorithm, it did

seem that the recursive algorithm was more robust and powerful than the

iterative one and would probably work better in more complicated situations

where the iterative one might fail (See Chapter 7 - PART ONE; lines 48, 53,

102-106, 115-116, 118-120, and 158).

The students‟ accounts also showed that tracking and understanding of the

delegatory control passing mechanism is the most problematic and difficult

task in understanding the recursive procedures (both tail and embedded).

However, the AVDA visualisation contrived into the modules and tasks of the

Spirals and Treebuilder domains helped them to shape and change their

thinking about recursion. The results also revealed that the prior experience

with the tail recursive procedures helped students to work with the embedded

ones. However, understanding the mechanism of the delegatory control passing

between the two recursive calls was still problematic for them. The latter

 330

shows that increasing the number of recursive calls makes understanding and

tracking the flow of control a very hard task for the students (See Chapter 7 -

PART ONE; lines 14, 21, 28-33, 36, 38, 40-45, 63-68, 76-77, 83, 133-135 and

also Chapter 7 - PART TWO; lines 29, 33-38, 44-45, 72, 77, 84, 198-111, 196-

199, and 231).

Some tools facilitated the students‟ appreciation of the indispensable

components of the recursive procedure (the stopping condition and recursive

calls) (See Chapter 7 – PART INE; lines 28, 38, 43, 55, 87, 90, 107-109, 111-

113, 135-137, and Chapter 7 – PART TWO; lines 8-12, 17, 145, 147, and

161).

The students‟ accounts of the re-considerations of the Spirals domain and the

Treebuilder modules in the third iteration also revealed the following pattern

for the evolution of their mental models for the (tail and recursive) recursive

procedures.

a) Before their experience with the AVDA visualisation:

Figure 137-The pattern for the evolution of the students‟ mental models of recursive

procedures in the third iteration before using AVDA

Loop model

(lines 21-23,

63, and 133)

Syntax model

(lines 28, 32,

 88, and 133)

Quasi-copies model

(lines 33, 90-98,

and 133-135)

 331

b) After their experience with the AVDA visualisation:

Figure 138-The pattern for the evolution of the students‟ mental model of recursive

procedures in the third iteration after using AVDA

7.4. Summary

In summary, this chapter, which is divided into two major parts, forms a

continuation of Chapter Six, which mainly concentrated on the tool design

aspect of the Treebuilder domain modules. The first part of chapter seven,

discusses the tool use of the three students‟ accounts of the tasks of the Spirals

domain. These three accounts were chosen as they clearly represented the rest

of the students who participated in the third iteration. The second part of the

chapter mainly focused on the tool use of the same students‟ accounts of the

modules of the Treebuilder domain. Those two parts were followed by the

results and findings of the third iteration with regards to the research questions

that the study was designed to address. Based on the results and findings of the

third iteration, a pattern for the evolution of the students‟ mental models of

revolution was also suggested.

The next chapter of the thesis focuses on the final discussion and conclusion of

this study.

Loop model

(lines 21-23,

63, and 133)

Syntax model

(lines 23-32,

88, and 133)

Return-value model

/

Step model

(line 28, 23-38,

 48, and 133-135)

Quasi-copies model

(lines 33, 43, 53,

90-98, and 140)

 332

8. Discussion and Conclusion

8.1. Overview

This chapter discusses the major findings of the research and is divided into

two parts. The first part of the chapter presents a summary of the findings of

the study. The second concentrates on the importance of the findings, and their

relation to prior research conducted in this field. Two perspectives form the

basis of this discussion and they are the knowledge of the concept of recursion

(tool use) and the design constructs (tool design) of phenomenalization of the

concept of recursion. As the chapter continues the limitations of the study are

considered. Then, the possible future developments, and pedagogic suggestions

regarding the concept of recursion are discussed. It culminates with a detailed

record of my reflections.

8.2. Summary of major findings of the research

My research and the inventing of AVDA (Animative Visualisation Domain of

Abstraction) enabled me to study and analyse students‟ thinking-in-change and

to see how they understand and apply recursion. Principally, my focus was on

examining the way that students develop and shape their mental models of

recursion. The AVDA visualisation approach supported this as it sheds light

on new insights for designing domains of abstraction to introduce and present

mathematical concepts, particularly, the concept of recursion.

 333

8.2.1. Students‟ Knowledge of Recursion (Thinking-in-change)

The main findings of my research in the AVDA visualisation environment with

regards to the students‟ knowledge of recursion can be explained as follows.

Firstly, the students‟ results confirmed that, due to the complicated control

passing mechanism of recursion, the concept is a difficult concept to teach.

Also, due to the inherent complexity of recursion, it can be categorised as a

hard concept for students to understand and apply in their problem-solving

activities. The results of this research illustrates that the AVDA approach

suggests important pedagogical issues to diminish the innate complexities of

recursion by employing an animative visualization to reveal the hidden parts of

the concept. The results also brought to light the fact that the students‟ major

problem in understanding and applying recursion was recognising and

mastering the complicated mechanism of flow of control in the recursive

procedures. This complicated control passing mechanism is here referred to as

Delegatory Control Passing (DCP). The continuous back and forward passing

of control over the procedure and between the recursive call(s) confused

students. Further outcomes of the research show that, the AVDA visualisation

approach had a significant role in eliminating this problem for the students. By

showing new generated copies of the original procedure and using colour-

codes, AVDA assists the students to improve their thinking about the concept

of recursion. However, the students still experienced difficulty when trying to

master delegatory control passing. This was especially apparent in the

embedded recursive procedures where it became evident that tracking the flow

between the two recursive calls was a difficult task.

 334

Another related finding of the research is Terminating Confusion (TC). In the

stopping condition, the students had difficulty appreciating the difference

between the STOP command and END command. They were unclear if the

stop command in the stopping condition totally ended the execution of the

procedure, or whether there were still some steps left to be executed.

The results of the research showed clear stages in how the students‟ thinking-

in-change process developed towards a viable mental model of recursion. In

particular, the ways in which students developed from having possession of

initial naive models, which were highly influenced by the iterative image of

recursion as iteration, towards the more sophisticated models. The AVDA

visualisation approach revealed a pattern for this transition from the naive

unrefined models towards the more sophisticated models. The evolution of the

students‟ mental models, and the order of their emergence (in the students‟

thinking-in-change) within the AVDA environment, is shown in the below

figure (See figures: 76 (George & Peter), 68 and 86 (Simon), 104 (Richard &

Philip), and figures 137 & 138).

Figure 139- The developing path of evolution of students‟ mental models of recursion

Loop model

Syntax model

Return-value model

Step model

Quasi-copies model

Copies model

 335

A related problem that has been revealed by the results of my research is the

students‟ ability to understand and distinguish the differences between

recursion and iteration (RI). Students had a strong tendency to conceive of

recursion as the familiar iteration concept. However, the results showed that

the AVDA visualisation approach played a significant role to improve the

students‟ understanding of recursion by providing visual pictures of the control

passing mechanisms in recursion and iteration

However, the above description of thinking-in-change about recursion in

Figure 139 is too simple. There are much more complex aspects of the process

of thinking-in-change about recursion that are difficult to represent in a basic

diagram. Considering functional abstraction and the difference between what

recursion achieves and how it will be operationalised raises the following

complication for the students‟ evolution of mental models. From the

functionality perspective of functional abstraction, the students either focused

on making sense of the visual output of the procedure or on the semantics of

the programming statements. Whereas, from the functioning perspective, they

either traced the complex pattern that the turtle took or tracked the statements

in the code step by step as they were executed. The students‟ focus of attention

when they were interacting with the AVDA visualisation environment is here

referred as the Mental Compiling Process (MCP).

 336

8.2.2. Design constructs

In this section, attention is turned to the design issues by considering the

influence of the AVDA visualisation approach on thinking-in-change.

The results revealed that the AVDA visualisation approach offered an

appropriate situation or environment to bridge formal (the concept of

recursion) with informal fractal-shaped objects. For the purpose of this

research, I employed spirals and trees as the fractal-shaped objects to

phenomenalize the concepts of tail and embedded recursion respectively. This

visualisation approach permitted the students to develop their own knowledge

about recursion in a dynamic environment. Students were able to observe the

immediate feedback of their experience on the screen, which fed new

conjectures back into the students‟ knowledge. In this situated environment,

they were able to construct, test, modify, re-construct and develop their

knowledge about the concept which was being studied.

The AVDA visualisation environment acted as a window, to reveal the latent

layers of recursion and concepts with innate complexity. During the research,

the concepts of iteration, tail recursion, and embedded recursion were

phenomenalized within the AVDA environment. This visualisation

environment provided a window for the students, in which they were able to

observe the iterative and recursive control passing mechanisms. The design

also provided me, the researcher, opportunity to study students‟ thinking and

thinking-in-change about recursion and its component by observing and

analysing the students‟ experiments with the tools.

 337

In this approach the students were able to work with the recursion concept

before knowing anything about it. In fact, the AVDA visualisation offered a

situation in which the students were able to shape and evolve their knowledge

about the concept of recursion before knowing the functioning and

functionality of the main parts of it (Power Principle of Papert, 1980).

Finally, the idea of the functional abstraction informed me regarding the what

and how parts of the students‟ knowledge of recursion and design construct. In

other words, the concerns were about the way that the design process presented

the concept, and the way that the students shaped their models for the concept

by using that phenomenalization.

8.3. Discussion

The aims of my research principally focused on four areas: 1) The role design

to support students‟ understanding of recursion, 2) The role of design to reveal

the latent layers of recursion, and bridging formal and informal, 3) The ways

that students shape and develop their mental models of recursion, and 4) The

role of design in focus of attention on the functionality and functioning

principles of elements of recursion. This detailed discussion, based on the

findings of the research is divided into two parts: the knowledge of recursion

and design constructs.

 338

8.3.1. Students‟ thinking-in-change in the AVDA

The findings of the thesis ascertain that AVDA plays a significant role in the

students‟ thinking-in-change process about the concept of recursion. The

colour codes and animative techniques which were contrived into the Spirals

and Treebuilder domains offered the students the opportunity of engaging and

experiencing the tail recursion-iteration and embedded recursion in dynamic

environments. The dynamic environment of the second iteration of my

research, the Spirals domain, assisted the students to improve and develop their

thinking and mental models about the tail recursive procedures and its

relationships with iterative processes. The third iteration of my research, the

Treebuilder domain, allowed the students to work with the embedded recursive

procedures in a dynamic environment. Even though most of the students,

initially considered recursion as iteration, gradually, by engaging with the

animative visualisation provided in the AVDA environment, they improved

and developed their understanding of recursion to more sophisticated levels

(See figure 139). The next sections of this chapter show how this thinking-in-

change process took place during the students‟ experiments with the modules

and tasks of those domains.

8.3.2. Recursion: A difficult concept

The results confirm that the concept of recursion is a difficult concept for the

researcher to present. It is also an intricate concept for the students to

understand and apply in programming and problem-solving situations. One of

the challenging parts of designing the domains of abstraction and the AVDA

 339

visualisation approach for me as a researcher and also as designer of the

domains was finding appropriate phenomenalization of the concept of

recursion. . It is a major issue that people have little experience of the concept

of recursion in everyday life. Therefore, trees and spirals were chosen as

fractal-shaped objects in order to bridge the formal recursion concept with the

informal familiar objects.

It is true to say that most people, and in particular the students who participated

in this research, have little experience with recursion in their everyday lives.

My research supports the idea of researchers such as Minsky (1988) who

suggested that it is hard for the human brain to work with recursion (See

Chapter 7- PART ONE; line3 53-54). One of the reasons for this is that we

hardly use recursion in our everyday life activities. This makes the concept of

recursion unfamiliar for our brain. The findings show that, the students either

tried to subjugate the recursive calls or used them stereotypically (See Chapter

7 – PART TWO; lines 38-41, 83-88, and 183-189). The AVDA visualisation

approach allowed the students to realise and recognise the syntactical

differences between recursion and iteration (Chapter 7 – PART ONE; lines 48-

54, 111, 121-135, and Chapter 7 – PART TWO; lines 17-19, 152-163, 188-

194, and line 101). However, recognition of the complicated mechanism of the

recursive procedure was a very hard task for them. For instance, this is clear in

Simon‟ remark about the recursive call: “[…] and this is a bit I do not

understand now!” (Chapter 7 – PART ONE; line 28, and Chapter 7 – PART

TWO; line 116).

 340

The results show that the students were able to see what was happening; this is

referred to as the functionality principle. But, they still had difficulties in

understanding how it was being done by the turtle (the functioning principle).

In the Spirals domain, the AVDA visualisation approach provided them with a

situation in which they could compare iterative and tail recursive procedures to

uncover the hidden parts of the mechanism of tail recursion by syntactical and

semantic exchanges through observing the animative visualisation. It opened a

window for them to look into the latent layers of the mechanism of the

recursion and the how part (see Chapter 7- PART ONE; lines 89-95 and line

109).

It showed how AVDA provided a situation for the students, in which they

evolved and changed their thinking about the concept of recursion. That was a

significant achievement for the AVDA approach to reveal the hidden parts of

the mechanism of recursive calls in recursive procedures. The dialogues of the

participating students mentioned in the research showed that they not only

recognised what the turtle was doing, but they also started to describe how it

was being done. The results and findings of the Spirals domain also

ascertained that the students preferred to use a familiar straightforward

iterative approach to create their own spiral rather than the complicated

recursive approach. They found it to be a quicker and easier way to create the

spiral (Chapter 7- PART ONE; lines 53, 115).

The findings of the research in the Treebuilder domain also showed that the

students were inclined to use procedural and iterative interpretation for the

 341

embedded recursive procedures. Therefore, their tendency to use an iterative

approach triggered their difficulties in tracking the complicated flow over the

whole embedded recursive procedure. This was especially so when the flow

was in transition between two recursive calls, they were not able to understand

it. (Chapter 7 – PART TWO; lines 63-68, 133-135, and 178-182)

In the next sections of this chapter, the main components of the students‟

mental models of the concept of recursion are discussed.

8.3.3. Delegatory Control Passing (DCP)

The results revealed that one of the major difficulties for the students in

understanding both tail and embedded recursion was appreciation of the

complicated control passing mechanism.

The delegatory control passing mechanism was principally based on a

declarative way of thinking, which is about the process of a series of

suspending and resuming processes within the original procedure. In contrast,

the flow of control in a familiar iterative procedure, which is based on an

imperative and procedural way of thinking in which, the commands of the

procedure are executed one by one from the beginning of the procedure to its

end.

The results and findings show that, this complicated control passing

mechanism was a big dilemma for the students to understand and track

 342

(Chapter 7 – PART ONE; lines 41-45, 136-139, and Chapter 7 – PART TWO;

lines 17-19, 108-114, 172-188, and 188-194). It has been mentioned previously

that, in order to avoid the negative burden of the term passive flow introduced

and used by Kurland and Pea (1985) which does not provide adequate

information about the nature of this sort of advanced control passing, it is

rather referred to as the delegatory control passing mechanism in my study.

The term delegatory shows that the control passing mechanism in this case is

not only passive but it is a generalised form of active flow in a declarative way.

The AVDA environment provides a window for students, through which, they

were not only able to see what recursion achieves, but, to picture how it is

operationalised (see Chapter 7 – PART ONE; lines 73-82, 97-99, and Chapter

7 – PART TWO; 108-114).

8.3.4. Terminating Confusion (TC)

Terminating confusion is also related to having inadequate knowledge about

the delegatory control passing mechanism. After calling each recursive call,

when the procedure reached its stopping condition, the students were confused,

whether the STOP command in the stopping condition terminated the whole

execution or if there was still something to be done (For instance see Chapter 7

– PART ONE; lines 72-73). However, the students‟ experiences with the

AVDA visualisation allowed them to see that the STOP command in the

stopping condition was not going to terminate the whole execution as they

could see that the animation was still continuing after that (For instance see

Chapter 7 – PART ONE; lines 73-79).

 343

8.3.5. Recursion vs. Iteration (RI)

The results show that confusing the concept of recursion with the familiar

iteration concept is a very common problem among the students who

participated in my study. This problem is principally related to and originates

from having inadequate knowledge about the function and functionality of the

recursive calls and in particular delegatory control passing mechanism

(Chapter 7 – PART ONE; lines 21-32, 63-68, 69-73, 83-85, and 133-135). The

AVDA environment provided the students with a dynamic situation, in which,

they were able to see some syntactical and semantic differences between the

recursion and iteration, and the difference between mechanisms of control

passing in those structures (Chapter 7 – PART ONE; lines 40-43, 109-114,

140-142, and 148-151).

8.3.6. Confluence of Tail and Embedded Recursion

The results of the third iteration, the Treebuilder domain, show that having

prior experience with tail recursion facilitated the students‟ later experience

with the recursive calls in the embedded recursive procedures. However, the

students still showed difficulty in understanding and mastering the complicated

delegatory control passing between the two recursive calls, tracking the flow

when the first recursive call was called, while the second recursive call was

being executed, in the embedded recursive procedures (Chapter 7 – PART

TWO; lines 6-8, 14, 38-41, 69-72, 105-111, and 178-182).

 344

8.3.7. Functional abstraction

Functional abstraction has a vital role in the design of computer-based tools

and in particular the AVDA environment in my research. By

phenomenalization of the concept of recursion using fractals and fractal-shaped

objects as well as employing some visual techniques such as animation and

colour codes, I tried to work on the functioning mechanism. The students were

also able to see what recursion achieves (functionality) by observing the final

product on the screen.

The following sections of this chapter concentrate on discussing the students‟

mental models of recursion with focus on the functional abstraction

perspective. The above mentioned items of this research are also discussed

from both functioning and functionality perspectives. This approach equipped

me to suggest the integrated mental model of recursion based on both

functioning and functionality later on in this chapter.

8.3.8. Mental Model Evolution (MME)

The findings of my research support the previous works on mental models of

recursion that were undertaken by Kahney (1984) and Gotschi et al, (2003). It

was revealed that, all of the students who participated in the third iteration

initially possessed the incorrect loop model for the concept of recursion.

Kahney (1984) in his seminal work categorised the students‟ mental model of

the concept of recursion. His work was followed and developed by Gotschi et

al, (2003). My research not only ascertained additional support of their works,

 345

but it also extracted a roadmap of the evolution of mental models based on

functioning and functionality principles of the elements of a mental model.

These elements will be explained later on in this chapter. The results of the

study developed upon the previous research on the categorization of the mental

models of recursion by introducing a new model for the concept of recursion

which is called quasi-copies model. The behaviour of those students who

possessed quasi-copies model for the tail and embedded recursive procedures

can be explained as follows.

a) In tail recursion procedures: They realize that in the tail recursive

procedures, they could see the procedure was calling itself within itself.

They also could picture how this process of calling itself within itself

stops when the procedure reached its stopping condition. However, they

were not able to see that the execution of the procedure totally

terminates whenever all the already generated copies terminate one

after another;

b) In the embedded recursion procedures: They showed one of the cases

below:

a. The same performance as they showed with the tail recursive

procedures with regards to the first or second recursive call,

b. The same performance as they showed with the tail recursive

procedures with regards to the first recursive call and ignoring

the second recursive call.

The results show that the students‟ initial mental model of recursion had

evolved and developed in the AVDA environment from both functioning and

functionality dimensions (see figures: 137 & 138, 104, 86 & 68, and 76).

 346

By using animation and colour codes within the AVDA visualisation

environment, the students had the opportunity of experiencing both functioning

and functionality aspects of recursion. As it has been mentioned in the above

sections, the students improved their thinking about the following components

of recursion: 1) confluences of tail & embedded recursion, 2) recursion vs.

Iteration, 3) terminating confusion, and 4) delegatory control passing. These

issues demonstrate a gradual progressive development in students‟ thinking

about recursion. It is here referred to as the spiralling process between the

students‟ interpretations of functioning and functionality principles of the main

components of the concept of recursion, which are discussed later on in this

chapter.

The spiralling process describes how the students begin to work with recursion

using a primitive unsophisticated mental model which was shaped and formed

based on the students‟ previous knowledge and beliefs. This model was not

necessarily a sustainable and viable model for recursion. Then they debug the

possible errors in their model through interaction with the AVDA environment.

Thereupon, they form new models, test and amend them and promote their

preconceived model to a higher level model. The students‟ new models are not

robust because they are shaped as a result of the interaction with the tasks and

modules of the domains of abstraction. These higher level models are playing

a transitional role between the students‟ preconceived initial models and their

possible final viable model of recursion. This final durable mental model of

recursion is here referred to as an integrated mental model of recursion. This

integrated mental model is the ultimate point of the spiralling process of the

 347

interactions between the functioning and functionality of principles of the

concept of recursion, within the AVDA environment. The students‟ integrated

mental model of recursion is formed by putting all the essential elements of

those models that they have already possessed or generated, together into a

whole.

The next section of this chapter focuses on the main elements of the students‟

mental models of recursion.

8.3.9. Mental Compiling Process (MCP)

The students‟ focus of attention while they were working in the AVDA

visualisation environment is here referred to as the students‟ mental compiling

process (MCP). Some of the students put their whole concentration into the

semantics of the procedure commands, whereas others focused holistically on

the visual output of the procedure. MCP describes how the students traced the

pattern that was provided on the visual output of the AVDA animative

visualisation and that was being drawn by the turtle. It also delineates the step

by step tracking of the control passing mechanism of the procedures when they

were being executed in the AVDA environment. MCP is more about the

students‟ approaches to the concept of recursion from a problem-solving aspect

and from both functioning and functionality perspectives (Chapter 7 – PART

ONE; line 127, and Chapter 7 – PART TWO; line 207).

 348

8.3.10. Elements of Mental Model of Recursion

Distinguishing functioning and functionality dimensions for some of the

aforementioned issues was not an easy task. The connections between

functioning and functionality are examined and developed by the students

based on their experiments with the components of the concept of recursion

throughout working with the tools. The functioning and functionality

perspectives can be considered as two ridges of a mountain which has the

integrated mental model of the students‟ about recursion at its apex. That is one

of the crucial aims of the design process, to provide appropriate situations and

environments, which enables the students to make these connections between

the functioning and functionality aspects to support the development of a

viable integrated mental model of the concept of recursion. The following table

describes the functioning and functionality aspects of each element of mental

models of recursion.

 349

 Functionality dimension Functioning dimension

Visibility

(RI)

 Don‟t use recursion in everyday

life;

 AVDA visualisation approach

phenomenalizes recursion

[design].

 Mechanism of the concept of

recursion is obscure / hidden;

 AVDA made the workings

visible [design].

DCP

 Student sees the recursive call

as a longer process –

generalized repeat;

 The recursive call embodies a

black box routine which is in

fact a smaller version of the

main procedure.

 Students attend to the syntax of

how the repeat iterates;

 Focus on the details of the

copies of the procedure, their

inputs, and their outputs.

MCP

 Aappreciating holistically the

picture produced;

 Attending to the semantics of

the programming code.

 Tracing the complex pattern

that the turtle takes;

 Tracing step by step the

statements in the codes as they

are executed.

TC

 The STOP in the main

procedure influences the

‘depth’ of the recursion.

 STOP ends the whole program;

 STOP ends the current copy of

the procedure and returns

control to the copy

construction.

Table 11- A functional abstraction perspective for the findings of this study on the

elements of mental models of recursion

As already mentioned, the students‟ prior knowledge about the concept of

recursion before starting to work with the Spirals and Treebuilder domains of

abstractions, underpinned their initial mental models of the concept of

 350

recursion. For the students, this foundation layer of knowledge constitutes their

initial conceptualization of the concept of recursion, which entirely belongs to

the functionality principle of recursion. The students‟ preconceived knowledge

about the concept of recursion mostly is not a valid and viable model. The

students amended and developed their initial model through their engagement

with the AVDA. The process of reconstructing and amending the previous

knowledge about the concept towards producing more viable and stable models

is considered as the functioning perspective of mental models of the concept of

recursion. From this standpoint, the students‟ previous knowledge and their

own new knowledge of recursion developed and evolved towards a viable and

stable model, within the AVDA environment. These functioning and

functionality aspects of the concept of recursion coordinate a durable meaning

for the recursion in the minds of the students.

The next picture describes the model of the evolution of the students‟

understanding and mental models of the components of recursion from

functioning and functionality perspectives. The arrow on the left shows the

findings related to the functionality principles of evolution of the students‟

behaviour within the AVDA environment. The arrow on the right,

demonstrates the findings related to the functioning principles. The central

arrow shows the coordinated axis for the evolution of the corresponding

students‟ mental models related to those functioning and functionality aspects.

This three-arrowed model shows the gradual process towards having a viable

integrated model of recursion.

 351

Figure 140- Integrated model of recursion from a functional abstraction standpoint

The interesting point is that the development and evolution of mental models

from a functioning aspect can be performed independently of the functionality

aspect and vice-versa. This means that one might have a good understanding of

the functioning of delegatory control passing, but it can still be located in the

low levels of the functionality developing roadmap. Therefore, the

development across each one of these roadmaps can be done independently of

the other. However, there are still some connections between these roadmaps

which were strengthened through students‟ experiments with AVDA.

Functioning

aspect

Functionality

aspect

Integrated mental model of

Recursion

Appreciation of copies

Step by step / Return-value

Delegatory control passing

Recursive calls as black box

Ignoring recursive calls Recursion as iteration

Loop model

Step model /
Return-value

model

Quasi-
copies

model

 352

Strengthening the connections alongside the evolution of the mental models

across the functioning and functionality roadmaps, coordinates the following

model for the evolution of the students‟ mental model of the concept of

recursion towards an integrated viable model.

Figure 141- Coordinated Pyramid for Integrated Mental model of Recursion (CPIM)

The image above, which is called the Coordinated Pyramid for Integrated

Mental model of Recursion (CPIM), illustrates the relationships and

connections between the functioning and functionality aspects of the elements

of mental models of recursion and correspondence model of each one of them

which are evolving towards the integrated mental model of recursion. Each

axis of the CPIM represents the functioning and functionality dimensions of

Towards an integrated mental model of

recursion

MCP

DCP

TC

RI Functioning

Functioning

Functionality

Functionality

Coordinated axe for

the correspondence

mental models

 353

one of the mental models elements as it shown in the above picture. The

vertical axis of CPIM shows the evolution of the corresponding mental models

of each one of those elements.

These axes are evolving towards a coordinated state of a mental model of

recursion on the apex of the CPIM. Previously, most research has placed

emphasis on mental models for the functioning dimension of recursion, with

the copies model seen as the ultimate achievement. However, possessing such

a model is in itself an insufficient achievement, since mastery of recursion

requires a developed sense of the functionalities of recursion.

The AVDA visualisation approach embraced both these dimensions by

enabling students to employ their current model for the functionality of

recursion to support the development of a more sophisticated model of the

functioning of recursion. Similarly, AVDA supported the emergence of a more

sophisticated model for the functionality of recursion through the use of the

students‟ current model for the functioning of recursion. Thus, whilst in

principle functioning and functionalities might develop independently, AVDA

set out to internally bridge these two dimensions to pedagogic advantage. The

findings of the research ascertained that most of the students who participated

in this study developed their mental model of the recursion as the

aforementioned CPIM.

 354

8.4. Limitations of the study

To implement this research program, I was faced with a few limitations. These

can be categorised as: implementation and contextual limits. Implementation

limits, refers to the boundaries that I had relating to designing and

implementing the study. Contextual limits, refers to the constraints that I had

regarding the generalizations of the results.

Time was one of the major constraints of this study. Based on design based

research methodology, I had to design the required computer-based tools

through the three iterations within a limited time frame. The design and

programming of the domains of abstraction was a very time-consuming part of

the research. The other constraint was the time limit for the duration of

interviewing the students who participated in my research to test the domains

in each of the three iterations. On average, each interview lasted 1 – 1.5 hours.

The time that students needed to work with the different modules in each one

of the domains was predicted and in total each interview was expected to be

completed between 1.15 – 1.30 minutes. Longer time periods were limiting, the

main barrier was the availability of the students who participated in the

research. A further issue, which was more about the qualitative interviewing

and participant observation, was that in this case interviews of a longer time

length did not provide further significant findings to this thesis. In contrast, it

risked causing the students to get bored and give unattended responses.

 355

Another limitation for this study was finding volunteer students for testing the

domains in each of the three iterations. The multidisciplinary nature of the

concept of recursion required me to work with students from both mathematics

and computer sciences disciplines. This proved to be testing and time-

consuming resolved only by offering money to prospective participants..

From a contextual perspective, the sensitivity of the findings of the research to

certain features and characteristics of the design is another limitation of this

research. Although the AVDA approach revealed significant and common

problems with how students understand and applied the concept of recursion, I

had to be careful about generalising the findings as they were gained in certain

domains of abstractions, under certain AVDA environment conditions and with

the particular students who participated in this research.

8.5. Implications

This section focuses on the implications of the study from two perspectives:

pedagogic and further research. Implications for further research in this domain

are considered as new conjectures that need to be insightfully investigated in

the future.

The first implication for further studies is the need for a comprehensive

definition for the concept of recursion. There is an evident lack of an all-

inclusive definition of recursion in existing literature and in most mathematics

and computer science text books. This affects the level of prior academic

 356

knowledge that university level students possess in this field. The findings of

this research ascertained that one of the problems of the students in

understanding and using recursion was, not having a clear knowledge about its

crucial components.

In computer sciences and in mathematics the concept of recursion requires two

different definitions. This is a very important step which makes teaching and

understanding this concept easier. It also allows students not to be confused by

the different functions of the components of the concept of recursion in those

disciplines. For instance, the base case, which is one of the main components

of recursion, from a mathematical analysis perspective is a starting point,

whereas, from a computational perspective is a stopping condition. Secondly,

the findings of this research are extracted based on the computational aspect of

the concept of recursion. Presumably there are similar problems with regards to

understanding and applying recursion from a mathematical analysis point of

view, which also need to be investigated.

Finally, the AVDA visualisation approach demonstrated that animative

visualisation has a significant role in revealing the hidden mechanism of the

declarative nature of the concept of recursion. Based on these results, my

conjecture is that designing a smart and precise animative visualisation for

embedded recursion would be an effective and useful method of assisting

students to see the mechanism of delegatory flow between the recursive calls

and over the whole procedure. The design process must be developed in such a

 357

way that it provides more control for the user to engage with it constructively.

In other words, move from domains of abstractions towards microworlds.

The research findings also suggest some pedagogic implications for teaching

and understanding the concept of recursion. Firstly, due to the inherent

complexities of the concept of recursion, in order to uncover and make those

complexities clear, using technology and computer-based tasks is of vital

importance to introduce the concept of recursion. To open such a window for

the students using traditional methods is a very difficult, if not impossible task.

Secondly, avoiding the stereotypical examples to teach and introduce the

concept of recursion is extremely advisable. The risk of using only very

particular examples is subjective. It is possible that the students might simply

echo the teachers‟ language and encapsulation of them without appreciating the

mechanism of recursion. A further danger in using such examples is that the

students might be unable to apply recursion in different and more robust

problem-solving situations. Thirdly, the AVDA visualisation approach

ascertained that using animation has a significant role in revealing the hidden

layers of the concept of recursion, especially the flow of control and delegatory

control passing in recursive procedures. And finally, the results and findings

demonstrated that the students who participated in this research showed no sign

of any difficulties with the phenomenalization of the concept of recursion by

using spirals and binary trees. Therefore, the final pedagogic implication of this

study suggests that using everyday analogies does encourage students to

understand and think about the components of the concept of recursion more

easily.

 358

The next and final section of this chapter concentrates on the final reflections

of this study.

8.6. Final reflections

The last section of this chapter summarises the account of how the research

was shaped and discusses its contributions to increased knowledge in the

domain of the concept of recursion.

Fractals have had a profound effect on my life and way of thinking. At the time

of my study for a Masters degree a single fractal image created a pivotal

moment in my professional career. Upon seeing the fractal image I realised that

they could be used as a vehicle in an educational setting, to inspire others to

experience the joy and beauty of mathematics. By investigating the main

characteristics of fractals, I noticed that they can only be defined recursively.

The characteristics of these fascinating geometrical objects, distinguishes them

from other similar objects.

This inherent characteristic combined with my initial interest in fractals

persuaded me to focus on the concept of recursion. Reviewing the literature

revealed to me that recursion, despite its simple appearance, is a very

complicated interdisciplinary concept to understand and apply. After reviewing

more literature and related works on the concept of recursion, I found a few

crucial gaps in the literature. The main gap in the literature was the separation

of the functioning and functionality aspects of the concept of recursion and its

 359

components. Also, the literature was silent about the separation of the tail and

embedded recursive procedures and their confluences on each other. Another

gap in the literature was about the way that students‟ mental models about the

concept of recursion, evolve from naive and unsophisticated models towards

more viable and sophisticated models. To tackle those gaps and to see how

students think about the concept of recursion, I decided to use computer

assisted tasks and modules to uncover the hidden parts of the complicated

mechanism of delegatory control passing.

The Logo-based tools designed in this study mainly represent a viable copies

model of tail and embedded recursive procedures. They were designed to act as

a window to represent and introduce the crucial components of the concept of

recursion and the mechanism of control passing in the interactive environment

of AVDA visualisation. This design abstraction provided me with deeper

insights to investigate the concept of recursion from a functional abstraction

view point.

The findings of this research provide the following contributions to the body of

knowledge about the concept of recursion. Firstly, the findings support the

work of Kurland and Pea (1985) on the flow of control and develop it by

introducing delegatory control passing mechanism as the generalisation of

what they called active flow. Secondly, the results and findings support the

seminal work of Kahney (1983) and his followers Gotschi et al, (2003) on the

categorization of the mental models of recursion. This study develops their

work by introducing a new kind of mental model for the concept of recursion

 360

which is called a quasi-copies model. The final contribution of the research is

to unfold the road maps of the students‟ understanding of the concept of

recursion from functioning and functionality perspectives, which led me to

sketch the CPIM model to show how the students‟ mental models of recursion

evolve throughout active engagement with AVDA.

 361

References

Aho, A. V., and Ulman, J. D. (1992), Foundations of Computer Science, New

York, NY: W.H. Freeman and Company.

Ainley, J. (1996), „Purposeful contexts for formal notation in a spreadsheet

environment‟, Journal of Mathematical Behaviour, 15(4), pp. 405-422.

Ainley, J., and Pratt, D. (1995) „Planning for Portability‟, in L. Burton and B.

Jaworski (eds.), Technology and Mathematics Teaching: A Bridge Between

Teaching and Learning, Bromley: Chartwell Bratt, 1995, pp. 435-448.

Ainley, J., and Pratt, D. (2002), „Purpose and Utility in Pedagogic Task

Design‟, in A. Cockburn & E. Nardi (Eds.), Proceedings of the 26
th

 Annual

Conference of the International Group for the Psychology of Mathematics

Education, Vol. 2, pp. 17-24, Norwich, UK: PME.

Ainley, J., and Pratt, D. (2006), „Design and Understanding, Digital

Technologies and Mathematics Teaching and Learning: Rethinking the

Terrain‟, The Seventeenth International Commission on Mathematical

Instruction Study, Vietnam: Hanoi University of Technology.

Ainley, J., Pratt, D., and Hansen, A. (2006), „Connecting Engagement and

Focus in Pedagogic Task Design‟, British Educational Research Journal 32(1),

21-36.

 362

Allen, B., and Johnston-Wilder, S. (Eds.) (2004), Mathematics Education,

Exploring the Culture of Learning, Routledge Falmer, London: The Open

University.

Ammari-Allahyari, M. (2005), „Exploring Students‟ Understanding of the

Relationship between Recursion and Iteration, Proceeding of the British

Society for Research into Learning Mathematics, 25(2), pp. 1-7.

Ammari-Allahyari, M. (2006), „The Role of Aesthetics in Mathematics

Education‟, Proceeding of the British Society for Research into Learning

Mathematics, 26 (1), pp. 7-11.

Anazi, Y., and Uesato, Y. (1982a), „Is recursive computation difficult to

learn?‟, CIP paper No. 439, Dept. of Psychology, Carnegie – Mellon

University..

Anazi, Y., and Uesato, Y. (1982b), „Learning recursive procedures by middle

school children‟, Proceedings of the Fourth Annual Conference of the

Cognitive Science Society, Ann Arbor, Michigan, pp. 100-102.

Anderson, J. R., Pirolli, P., and Farrell, R. (1999), „Learning to program

recursive functions‟, in Chi M. T., R. Glaser, and M. J. Farr (Eds.), Hillsdale,

NJ: Lawrence Erlbaum Associates, Inc., pp 151-183.

 363

Anderson, J. R., Farrell, R., and Sauers, R. (1984), „Learning to Program

LISP‟, Cognitive Science, Vol. 8, pp. 87-129.

Barab, S., and Squire, K. (2004), „Design-Based Research: Putting a Stake in

the Ground‟”, The Journal of The Learning Sciences, 13(1), pp. 1-14.

Bhuiyan, S. H. (1992), „Identifying and Supporting Mental Methods of

Recursion in a Learning Environment‟, unpublished PhD thesis, Dept. of

Computational Science, University of Saskatchewan, Saskatchewan, Canada.

Bloch, E. D. (2000), Proof and Fundamentals, Boston: Birkhauser.

Brown, A. L. (1992), „Design experiments: Theoretical and methodological

challenges in creating complex interventions in classroom settings‟, The

Journal of The Learning Sciences. 2(2), pp.141–178.

Bryman, A. (1988), Quality and Quantity in Social Research, London: Unwin

Hyman.

Bryman, A. (2001), Social Research Methods, Oxford University Press:

Oxford.

Burnett, J. D. (1982), LOGO: An Introduction For Teachers, Students and

Other Computer Users New to the Philosophy and Methodology of Logo, New

Jersey: Creative Computing Press.

 364

Carey, S. (1988), „Conceptual differences between children and adults‟, Mind

and Language, 3, pp. 167-181.

Cobb, P., Confrey, J., diSessa A. A., Lehrer, R., and Schauble, L. (2003),

„Design Experiments in Educational Research‟, Educational Researcher, Vol.

32, No. 1, pp. 9-13.

Collins, A. (1988), „Cognitive Apprenticeship and Instructional technology‟,

(Technical Report No. 6899), Cambridge, MA: BBN Labs Inc.

Cotton, J. (1995a), The Theory of Learning Strategies: An Introduction.

London: Kogan Page.

Cotton, J. (1995b), The Theory of Learning: An Introduction. London: Kogan

Page.

Craik, K. (1943), The Nature of Explanation, Cambridge: Cambridge

University Press.

Dale, N. B., and Weems, C. (1991) Pascal (3
rd

 ed.), Lexington, MA: D.C.

Heath.

Davis, R. B. (1984), Learning Mathematics. London: Croom Helm Ltd.

 365

Design-Based Research Collective (2003), Design-based research: An

emerging paradigm for educational inquiry, Educational Researcher, 32(1), 5-

8.

Dewey, J. (1938), Experience and Education, New York: Macmillan.

diSessa, A. A., and Sherin, B. L. (1998), „What changes in conceptual

change?‟, International Journal of Science Education. Vol. 20, Issue 10, pp.

1155-1191.

diSessa, A. A., and Cobb, P. (2004), „Ontological innovation and the role of

theory in design experiments‟, Journal of the Learning Sciences, 13, pp. 77-

103.

Dubinsky, E. (1994), „Reflective abstraction in advanced mathematical

thinking‟, in Tall, D. (Ed.), Advanced mathematical Thinking, Dordrecht:

Kluger Academic Press, pp. 95-123.

Edelson, D. C. (2002), „Design research: what we learn when we engage in

design‟, Journal of the Learning Sciences, 11(1), pp. 105-121.

Edwards, L. (1995), „Microworlds as Representations‟, in Computers and

exploratory learning, diSessa, A., C. Hoyles, R. Noss, With L. Edwards (Eds.),

Berlin: Springer Verlag, pp. 127-154.

 366

Enderton, H. B. (1972), A Mathematical Introduction to Logic, New York:

Academic Press.

Evans, J. (1989), Bias in Human Reasoning, Causes and Consequences,

London: Lawrence Erlbaum.

Fegers, V. G., and Johnson, M. B. (2002), „Fractals – Energizing the

Mathematics Classroom‟, in Fractals, Graphics, & Mathematics Education, M.

L. Frame & B. B. Mandelbrot, New York: The Mathematical Association of

America, pp. 69-105.

Fey, J. T. (1989), „Technology and Mathematics Education: A survey of recent

developments and important problems‟, Educational Studies in Mathematics,

20, pp. 237-272.

Frame, M. L., and Mandelbrot, B. B. (2002), Fractals, Graphics, &

Mathematics Education, USA: The Mathematical Association of America.

Gans, H. J. (1968), „The Participant – observer as Human Being: Observations

on the Personal Aspects of Field Work‟, in H. S. Becker, Institutions and the

Person, Papers presented to Everett C. Hughes, Aldine, Chicago, pp. 300-317.

Gentner, D. (1983), „Structure-mapping: A theoretical framework for analogy,

Cognitive Science 7, pp. 155-170.

 367

Gentner, D., Brem, S., Ferguson, R. W., Markman, A. B., Levidow, B. B.,

Wolff, P., and Forbus, K. D. (1997), „Analogical reasoning and conceptual

change: A case study of Johannes Kepler‟, The Journal of the Learning

Sciences. 6(1), pp. 3-40.

Gentner, D., and Stevens, A. L. (1983), Mental Models, Hillsdale, NJ:

Lawrence Erlbaum Associates.

George, C. E. (2000), „Experiences with Novices: The Importance of Graphical

Representations in Supporting Mental Models‟, in A. F. Blackwell, and E.

Bilotta (Eds.) Proceedings of Psychology of Programming Interest Group 12,

2000, pp. 33-44, Italy.

Gersting, J. L. (2007), Mathematical Structures for Computer Sciences: A

Modern Approach to Discrete Mathematics (6
th

 ed.), New York: W. H.

Freeman and Company.

Gibbs, G. (2007), Analysing Qualitative Data, Los Angeles; London: Sage

Publications.

Ginat D., and Shifroni, E. (1999), „Teaching Recursion in a Procedural

Environmental - How much should we emphasize the Computing Model?‟,

Technical Symposium on Computer Science Education, pp. 127-131.

 368

Gold, R. L. (1969), Roles in Sociological Field observations, in G. J. McCall

and J. L. Simmons (Eds.), Issues in Participant Observation, pp. 30-39,

Reading, MA: Addison-Wesley.

Goldin, G. (1991), „The IGPME working group on representations‟, in F.

Furinghetti (ed.) Proceedings of the XV Conference of the International Group

for the Psychology of Mathematics Education (Volume 1, p. xxii) Assisi,

Italy.

Goodyear, P. (1984), Logo: A Guide to Learning Through Programming,

London: Ellis Horwood Publishers Ltd.

Gotschi, T., Sanders, I., and Galpin, V. (2003), „Mental Models of Recursion‟,

ACM SIGCSE Bulletin, Vol. 35, Issue 1, pp. 346-350.

Greer, J. E. (1987), „Empirical Comparison of Techniques for Teaching

Recursion in Introductory Computer Science‟, unpublished PhD dissertation,

University of Texas at Austin.

Guin D., Rithven, K., and Trouche, L. (2005), The Didactical Challenge of

Symbolic Calculators Turning a Computational Device into a Mathematical

Instrument, USA: Springer.

 369

Haberman, B., and Averbuch, H. (2002), „The case of Base Cases: Why are

they so Difficult to Recognize? Student Difficulties with Recursion‟,

ITiCSE‟02, June 24-26, pp. 84-88, Denmark: Arahus.

Harel, I., and Papert, S. (1993), Constructionism, Norwood: Ablex Publishing

Corporation.

Harvey, B. (1997), Iteration, Control Structures, Extensibility. Computer

Science Logo Style, volume 2: Advanced Techniques 2/e, Cambridge, MA: The

MIT Press.

Harvey, B., and Wright, M. (1994), Simply Scheme. Cambridge, MA: The MIT

Press.

Harvey, B. (1985) Computer Science Logo Style, Volume 1: Intermediate

Programming. Cambridge, MA: The MIT Press.

Henderson, P. B., and Romero, F. J. (1989), „Teaching Recursion as a

Problem-Solving Tool Using Standard ML‟, ACM SIGCSE, Vol.21, Issue 1,

pp. 27-31.

Hoyles, C. and Noss, R. (1987), „Children Working in Structured Logo

Environment: From Doing to Understanding, Researches on Didactiques des

Mathematiques, 8(12), pp. 131-174.

 370

Hoyles, C., and Sutherland, R. (1989), Logo Mathematics in the Classroom,

London: Routledge.

Hoyles, C., and Noss, R. (1992), Learning Mathematics and Logo, Cambridge,

MA: The MIT Press.

Jagcinski, R. L., and Miller, R. A. (1978), „Describing the human operator's

internal model of a dynamic system‟, Human Factors, 20(4), pp. 425-433.

Johnson–Laird, P. N. (1983), Mental Models: Towards a Cognitive Science of

Language, Interface and Consciousness. Cambridge: Cambridge University

Press.

Johnson – Laird, P. N. (2004), „The History of Mental Models‟, in K.,

Manktelow, and M. C. Chung, (Eds.), Psychology of Reasoning: Theoretical

and Historical Perspectives, pp. 179-212, New York: Psychology Press.

Johnston-Wilder, S. J., Johnston-Wilder, P., Pimm, D., and Westwell, J.

(2005), Learning to Teach Mathematics in Secondary School, London:

Routledge Falmer.

Kahney, H. (1983), „What do novice programmers know about recursion?‟,

Proceedings of the CHI ‟83 Conference on Human factors in Computer

Systems, pp. 235-239, Boston, MA.

 371

Kann, C., Lindenman, R., and Heller, R. (1997), „Integrating algorithm

animation into a learning environment‟, Computers Education, 28 (4), pp. 223-

228.

Kessler, A., and Anderson, J. (1986), „Learning Flow of Control: Recursive

and Iterative Procedures‟, Human – Computer Interaction, 2, pp. 135-166.

Kieras, D., and Bovair, S. (1984), „The role of mental models in learning to

operate a device‟, Cognitive Science. 8, pp. 255-273.

Kilpatrick, J., Hoyles, C., and Skovsmos, O. (Eds.) (2005), Meanings in

Mathematics Education, USA: Springer.

Kim, Daniel H. (1993), „The link between Individual and Organizational

Learning‟, Sloan Management Review. pp. 37-50.

Kim, S., and Lee, H. (2006), „The Impact of Organizational Context and

Information Technology on Employee Knowledge-Sharing Capabilities‟,

Public Administration Review, 66(3), pp. 370-385.

Koffman, E. B. (1992), Pascal (4
th

 ed.). Reading, MA: Addison Wesley.

Kolb, D. A. (1984), Experimental Learning – Experience as the Source of

Learning and Development, Englewood Cliffs, NJ: Prentice Hall.

 372

Kurland, D. M., and Pea, R. D. (1985), „Children‟s mental models of recursive

LOGO programs‟, Proceedings of the 5
th

 Annual Conference of the Cognitive

Science Society, session 4, pp. 1-5, New York, NY: Rochester.

Kvale, S. (1996), Interviews: An Introduction to Qualitative Research

Interviewing, Thousand Oaks, California: Sage.

Lakoff, G., and Nunez, R. E. (2000), Where Mathematics Comes From: The

Embodied Mind Brings Mathematics into Being, New York: Basic Books.

Larkin, J. H. (1983), „The role of problem representation in physics‟, in D.

Gentner and A. L. Stevens (Eds.), Mental Models, pp. 75-98, Hillsdale, NJ:

Lawrence Erlbaum Associates.

Lave, J. (1988), Cognition in Practice: Mind, Mathematics, and Culture in

Everyday Life, Cambridge: Cambridge University Press.

Lave, J., and Wenger, E. (1991), Situated Learning Legitimate Peripheral

Participation, Cambridge: Cambridge University Press.

Leron, U., and Zazkis, R. (1985), „Mathematical Induction and Computational

Recursion, Proceedings of the First International Conference for Logo and

Mathematics Education, Hoyles, C. & Noss, R. (Eds.), London.

 373

Levy, D., and Lapidot, T. (1993) „Shared Terminology, Private Syntax: The

case of recursive descriptions‟, Proceedings of the 7
th

 Annual Conference on

Innovation and Technology in Computer Science Education, Denmark pp. 89-

93.

Masingila, J. O. (1993), „Learning from mathematics practice in out-of-school

situations‟, For the Learning of Mathematics, 13(2), pp. 18-22.

Mandelbrot, B. (1982), The Fractal Geometry of Nature, San Francisco: W. H.

Freeman.

May, T. (2001), Social Research Issues, Methods and Process, Great Britain:

Open University Press.

McCracken, D. D., and Salmon, W. S. (1987), A Second Course in Computer

Science with Modula-2 [data structures], New York: Wiley.

Medin, D. L., Goldstone, R. L., and Gentner, D. (1990), „Similarity involving

attribute and relations: judgments of similarity and differences are not

inverses‟, Psychological Science, 1, pp. 64-69.

Minsky, M. (1988), The Society of Mind. London: Picador in association with

Heinemann.

 374

Montovani, G. (1996), „Social Context in HCI: A New Framework for Mental

Models, Co-operation and Communication‟, Cognitive Science Vol. 20, No. 2,

pp. 237-269.

Muramatsu, J., and Pratt, W. (2001), „Transparent Queries: investigation user‟s

mental models of search engines‟, Proceedings of the 24
th

 annual international

ACM SIGIR conference on R&D in informal retrieval, pp. 217-224.

Norman, D. A. (1983), „Some Observations on Mental Models, in Gentner, D.

and A. L. Stevens (Eds.), Mental Models, London: Erlbaum.

Noss, R. (1984), Children Learning Logo Programming, Interim report No. 2

of The Children Logo Project, UK: Microelectronics Education Programme.

Noss, R., and Hoyles, C. (1996), Windows on Mathematical Meaning:

Learning Cultures and Computers, London: Kluwer Academic Publisher.

Nuffield Mathematics Project (1967), I Do, and I Understand, Edinburgh,

London, New York: Chambers; John Murray; Wiley.

Nunez, T., Schliemann, A. D., and Carraher, D. (1993), Street Mathematics

and School Mathematics, Cambridge: Cambridge University Press.

Orton, A. (2004), Learning Mathematics, Issues, Theory and Classroom

Practice, London: Continuum.

 375

Papert, S. (1954), The Construction of Reality in the Child, New York:

Ballantine Books.

Papert, S. (1980), Mindstorms: Children, Computers and Powerful Ideas, New

York: Basic Books.

Papert, S. (1990), „Constructionist Learning‟, in I. Harel, and S. Papert (Eds.),

Constructionism, Cambridge, MA: MIT Media Laboratory.

Papert, S. (1993), The Children‟s Machine: Rethinking School in the Age of the

Computer, New York: Basic Books.

Papert, S. (1996), „An Exploration in the Space of Mathematics Education‟,

International Journal of Mathematical Learning, Vol. 1, No. 1, pp. 95-123.

Peitgen, H. O., Jurgens, H., and Saupe, D. (1992), Chaos and Fractal: New

Frontiers of Science, New York: Springer Verlag.

Pettigrew, A. M. (1997), „What is a Processual Analysis?‟, Scandinavian

Journal of Management, 13(4), pp. 337-348.

Pirolli, P. L., and Anderson, J. R. (1985), „The role of learning from examples

in the acquisition of recursive programming skills‟, Canadian Journal of

Psychology 39, pp. 240-272.

 376

Posner, G. J., Strike, K. A., Hewson, P. W., and Gertzog, W. A. (1982),

„Accommodation of a scientific conception: toward a theory of conceptual

change‟, Science Education. 66(2), pp. 211-227.

Pratt, D. (1998), „The Construction of Meanings In and For a Stochastic

Domain of Abstraction‟, Unpublished PhD thesis, London: University of

London.

Pratt, D. (2000), „Making Sense of the Total of Two Dice‟, Journal for

Research in Mathematics Education, 31(5), pp. 602-625.

Pratt, D., Noss, R., and Jones, I. (2008), „Designing for mathematical

abstraction‟, (in press), The Journal of the Learning Sciences.

Rasmussen, J. (1979), „On the structure of knowledge – A morphology of

mental models in a man-machine system context (Risø-M-2192)‟, Risø

National Laboratory, Electronic Department, Denmark, Roskilde

Reeves, T. (2006), „Design research from a technology perspective‟, in J. V. D.

Akker, K. Gravemeijer, S. McKenney, and N. Nieveen (eds.), Educational

design research, pp. 52–66. New York: Routledge.

Richardson, S., Dohrenwend, B. S., and Klein, D. (1965), Interviewing, Its

Forms and Functions, New York: Basic Books.

 377

Sandoval, W. A. (2004), „Developing Learning Theory by Refining

Conjectures Embodied in Educational Designs‟, Educational Psychologist,

Vol. 39, No. 4, pp. 213-223.

Schon, D. (1983), The reflective practitioner, New York: Basic Books.

Senge, P. M. (1990), The Fifth Discipline: The Art and Practice of the

Learning Organization, London: Doubleday.

Senge, P. M. (1992), „Mental models‟, Planning Review. Vol. 20, No.2, pp. 4-

44.

Sfard, A. (1991), „On the dual nature of mathematical conceptions: Reflections

on processes and objects as different sides of the same coin‟. Educational

Studies in Mathematics 22, pp. 1-36.

Skemp, R. R. (1971), The Psychology of Learning Mathematics,

Harmondsworth: Penguin.

Skemp, R. R. (1976), „Relational understanding and instrumental

understanding‟, Mathematics Teaching, 77, pp. 20-26.

 378

Sooriamurthi, R. (2001), „Problems in comprehending recursion and suggested

solutions‟, Proceedings of the 6
th

 Annual SIGCSE Conference on Innovation

and Technology in Computer Science Education, pp. 25-28.

Spicer, D. P. (1998), „Linking Mental Models and Cognitive Maps as an Aid to

Organisational Learning, Career Development International 3(3), pp. 125-132.

Stake, R. E. (1981), „The Art of Progressive Focussing‟, The 65
th

 Annual

Meeting of the American Educational Research Association, Los Angeles, CA.

Tall, D. (1994), (Ed.) Advanced Mathematical Thinking, Dordrecht: Kluger

Academic Publisher.

Tall, D., and Thomas, M. (2002), Intelligence, Learning and Understanding in

Mathematics: A tribute to Richard Skemp, Flaxton, Australia: Post Pressed.

 Tall, D., and Vinner, S. (1981), „Concept image and concept definition in

mathematics with particular reference to limits and continuity‟, Educational

Studies in Mathematics, 12, pp. 151-169.

Tikly, C., and Wolf, A. (2000), The Maths We Need Now: Demands, Deficits

and Remedies, London: Institute of Education, University of London.

 379

Tung, S. H., Chang, C., Wong, W. K., and J. C. J. Jehng (2001), „Visual

representation for recursion‟, Int. J. Human – Computer studies, 54, pp. 285-

300.

Turkle, S., and Papert, S. (1991), Epistemological Pluralism and the

Revaluation of the Concrete, in I. Harel and S. Papert, (Eds.), Constructionism:

Research Reports and Essays 1985-90, Norwood, NJ, Ablex Publishing, pp.

161-192.

Turbak, F., Royden, C., Stephan, J., and Herbst, J. (1999), „Teaching Recursion

Before Loops in CS1‟, Journal of Computing in small colleges, Vol. 14, No 4,

pp. 86-101.

Van der Veer, G. C., and Felt, M. A. M. (1988), „Development of mental

models of an office system: A field study on an introductory course‟, in G. C.

van der Veer and G. Mulder (Eds.) Human-Computer Interaction:

Psychonomic Aspects, New York: Springer-Verlag, pp. 251-272.

Velazquez, J. A. (2000), „Recursion is Gradual steps (is recursion really that

difficult?)‟, ACM SIGCSE Bulletin, Vol. 32, Issue 1, pp. 310-314.

Welman, C., Kauger, F., and Mitchell, B. (2005), Research Methodology,

Oxford: Oxford University Press.

 380

Wiedenbeck, S. (1988), „Learning recursion as a concept and as a

programming technique‟, ACM SIGCSE Bulletin, 20 (1), pp. 275-278.

Wilensky, U. (1993), „Connected Mathematics: Building Concrete

Relationships with Mathematical Knowledge‟, unpublished PhD dissertation,

Cambridge, MA: MIT Media Laboratory

Wilensky, U. (1991), „Abstract meditations on the concrete and concrete

implications for mathematics education‟, in Harel I. and S. Papert (Eds.)

Constructionism, Norwood, NJ: Ablex Publishing Corporation, pp. 193-203.

Wilcocks, D., and Sanders, I. (1994), „Animating recursion as an aid to

instruction‟, Computer Education, 23 (3), pp. 221-226.

Wilkinson, D. (1998), The Researcher‟s Toolkit, London: RoutledgeFalmer.

Wu, C. C., Dale N. B., and Bethel, L. J. (1998), „Conceptual Models and

Cognitive Learning Styles in Teaching Recursion‟, Proceedings of the 29
th

SIGCSE technical symposium on computer science education, Atlanta,

Georgia, USA, pp. 292-296.

 381

Appendix A

The semi-structured interview guides sample:

Second task of Iteration one:

1-How are these levels related to each other?

- How is each level constructed?

- How can you make level 2 from level 1?

2- Write a procedure to model the above image.

 382

Task 1-Iteration 2

Theme:
Describing a given photograph of a spiral

Aim:
In this task I am going to examine students‟ major problems in working with

iteration as a programming technique as well as a problem solving strategy.

Implementation:
To achieve this goal, students will first be given a photograph of a spiral and

then asked to describe it. Their possible answers are a spectrum from very

general ideas about a spiral to a very sophisticated description of a spiral.

General opinion sophisticated description

The task will be performed in the format of a semi-structured interview.

Questions have been designed to be initially general and gradually more

specific. Most of them are open ended questions, which will be helpful in

maintaining the desired direction of the interview.

My role as a participant observer:
Depending on the participants‟ responses, my role will be different. As a

participant observer, in different situations on the above spectrum, I will

encourage them to give more detail about the structure, shape, size, and angle,

etc. or I will just be an active listener. I will also help them in the case that they

seem to be having difficulty and are not able to progress. Under any

circumstances as a participant observer, I will avoid giving direct references to

iteration or recursion. The students will also be assisted by an explanation or

through some necessary hints when they are confused or stuck. My role is to

note down and record their efforts.

 383

1. Can you describe the above image?

2. What can you say about the shape, structure, size, angle, …

3. Can you draw it in the blank space below?

4. What are the essential features of it when you want to draw it?

a. Structure?

b. Shape? (dimension, colour, …)

c. Angle?

5. How would you go about using a computer program to draw it?

(preferably using Logo)

