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ABSTRACT

The objective was to develop solid-state nuclear magnetic resonance
(NMR) homonuclear correlation experiments for half-integer quadrupolar nu-
clei so as to study atomic proximities and connectivities in disordered materials.
Nearby nuclear spins are coupled through space via their magnetic dipole mo-
ments. Dipolar broadening is removed by magic angle spinning (MAS) for
isolated spin pairs. However, the noncommutation of the electric quadrupolar
interaction with the dipolar interaction means that the latter will not be re-
moved by MAS. This interplay between the dipolar and quadrupolar inter-
actions, combined with the effects of multiple noncommutating homonuclear
dipolar couplings, was investigated by observing spin-echo dephasing curves as
well as magnetisation transfer in 2D spin diffusion experiments. Polycrystalline
lithium diborate samples were synthesised to act as model compounds. The
preparation of samples with differing 11B isotopic abundances enabled a com-
parison of samples with either predominantly isolated spin-pairs or multiple
coupled nuclei.

Spin diffusion experiments probed 11B–11B correlation at three mag-
netic field strengths, 80% and 25% 11B isotopic abundances, MAS rates from
4427 Hz to 7602 Hz and under DOR. Enhanced magnetisation transfer was ob-
served for the higher 11B isotopic abundance and at slower spinning speeds. The
latter dependence was reproduced by four-spin computer simulations. Second-
order quadrupolar broadened spin diffusion cross-peaks under MAS had a mixed
positive and negative appearance for the 80% 11B sample. A similar effect was
previously observed for four dipolar-coupled I = 1/2 nuclei.

Spin-echo dephasing curves were recorded for 5%, 25% and 100% 11B iso-
topic abundances and MAS rates of 5 kHz to 20 kHz. Depletion of 11B isotopic
abundance prolonged the coherence dephasing time because of a reduction of
noncommuting homonuclear dipolar couplings. Faster dephasing was observed
for the smaller CQ = 0.51 MHz site; four-spin computer simulations showed this
is consistent with the reintroduction of the dipolar coupling being most efficient
when the MAS rate and first-order quadrupolar interaction are of the same
magnitude. Speeding-up the MAS rate prolonged the dephasing time for the
CQ = 2.56 MHz site but not for the CQ = 0.51 MHz site because of an interplay
between the quadrupolar and multiple dipolar interactions. Through-bond J-
couplings between 11B nuclei were not detected, setting an upper bound of 2JBB

<3 Hz in polycrystalline lithium diborate.
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ACRONYMS

2DAC 2-Dimensional Anisotropy Correlated

3Q Triple Quantum

6Q Six Quantum

COSY Correlation Spectroscopy

CP Cross Polarisation
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DQ Double Quantum
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EFG Electric Field Gradient

EM Electromagnetic
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FAM Fast Amplitude Modulation
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SYMBOLS
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CHAPTER 1

Historical Context and Overview

1.1 The Development of NMR

1.1.1 Early Days

Nuclear magnetic resonance (NMR) has now been flourishing for two-thirds of

a century, but is a field that has come from centuries of scientific development.

Esteemed fellows such as Pieter Zeeman (Nobel Prize, 1902) and Sir Joseph

Larmor (knighted 100 years ago in 1909) worked on magnetism, charge and

radiation long before intrinsic angular momentum was hypothesized or even

the proton was discovered.

In the 1920s significant progress was made toward the discovery of nu-

clear magnetic resonance (NMR). Otto Stern (Nobel Prize, 1943) and Walter

Gerlach found quantised angular momentum of molecular beams and measured

the electron magnetic moment. George Uhlenbeck and Samuel Goudsmit intro-

duced the concept of a spinning electron with a quantised angular momentum

of h̄/2, together with a magnetic dipole arising from this spin. Wolfgang Pauli

(Nobel Prize, 1945) developed a framework of electron spin and quantum me-

chanics as well as suggesting that some nuclei may possess spin (along with a

parallel magnetic moment).

Otto Stern found this nuclear spin in 1933, by using his molecular beam

1
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technique to measure the magnetic moment of the proton. Isidor Rabi (Nobel

Prize, 1944) is credited with being the first person to observe nuclear magnetic

resonance. He added to Stern’s technique a loop of wire, capable of generating

an RF field over the atomic beam. When tuned to the Larmor frequency of the

nuclei Rabi registered an absorption on his atomic-beam detector indicating the

spins were flipping. By knowing the magnetic field strength and the frequency

of the irradiation the magnetic moment of the nuclei in question can be calcu-

lated [2]. Rabi made another important discovery, the small electric quadrupole

moment on the deuteron. A fuller historical perspective of these fundamental

events, as well as further technical details, are retold by Rigden [3].

Technological advances in radio made during World War II allowed Fe-

lix Bloch and Edward Purcell (both shared the Nobel Prize, 1952) to invent

a simpler method of magnetic resonance. With a sample placed in a strong

homogeneous magnetic field, tuned radio waves were applied and the electro-

magnetic induction caused by nuclear reorientation was detected by a suitably

wound coil of wire around the sample.

Toward the end of 1945, Purcell, Torrey and Pound obtained their first

positive results from protons in paraffin [4]. Bloch, Hansen and Packard found

their results in water, a few weeks later [5]. Their groups were separate and

it was not immediately clear they had observed the same phenomenon, Purcell

naming the effect “resonance absorption by nuclear magnetic moments” and

Bloch “nuclear induction.” Bloch’s fascinating and detailed historical account

can be found in his Nobel lecture [6]. Pound provides a similar recount, from the

other camp [7]. A 157-page comprehensive account, including 1099 references,

on the development of NMR can be found in the first article of the Encyclopedia

of Nuclear Magnetic Resonance [8].

In the late 1940s and 1950s, when the techniques were unified under the

moniker of nuclear magnetic resonance, much of the theoretical groundwork was

prepared; interactions were discovered, NMR experiments for chemical charac-

terisation were developed and commercial companies were incorporated. The

stage was set for the revolutionary discoveries that made NMR spectroscopy

the technique that we know today.
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1.1.2 Modern Era

Andrew and Lowe took the first steps into the modern era, around 1958, by in-

troducing magic angle spinning (MAS) [9–11]. Rotating the sample at a certain

angle (54.74°) to the static magnetic field removed the dipolar broadening and

enhanced resolution (see §2.4). This paved the way for solids to be as accessible

to NMR as liquids. The basic idea of suspending and spinning a rotor using

compressed air is central to solid-state NMR today.

Around this time, Lowe and Norberg were the first to Fourier transform

the resulting NMR signal after an RF pulse [12]. However, it was Ernst (No-

bel Prize, 1991) and Anderson that provided a full treatment of the Fourier

transform method (§3.6) and realised the dramatic implications for sensitivity

enhancement this entailed [13, 14].

Pulsed NMR took another leap forward with Haeberlen and Waugh’s

treatment on coherent averaging effects [15]. This seminal paper demonstrated

RF could be used to remove specific interactions and sowed the seeds of phase

cycling. Double-resonance techniques allowed previously unconnected spins to

interact via RF irradiation [16]. Pines, Gibby and Waugh used this interac-

tion to great effect when they cross-polarised (CP) an isotopically rare nuclear

species (13C) using the magnetisation of abundant spins (1H) [17, 18]. During

the 1970s, the combination of CP with MAS by Schaefer, Stejskal and Buchdahl

[19] introduced the modern era, with pulsed NMR under MAS being favoured

over continuous-wave static experiments [20]. A factor of ∼1000 improvement

in signal gained by FT-CPMAS has undoubtably changed the world of organic

chemistry, amongst other fields, forever. Despite their importance, heteronu-

clear experiments play only a secondary role in this thesis.

Homonuclear correlation experiments can arguably trace their beginnings

back to one of the first 2D NMR experiments invented; a three-pulse sequence

by Jeener et al. that is popularly known in the solution-state NMR world as

NOESY [21]. The sequence marked the birth of exchange spectroscopy and

detail about this experiment is forthcoming in §3.7.

Two-dimensional experiments of the time had a complex problem regard-

ing the shape of the peaks, which reduced the resolution of the spectrum. The



1.1. The Development of NMR 4

precise cause and solution is covered in §3.6 thanks to the pioneering work of

States, Haberkorn and Ruben [22] as well as Marion and Wüthrich [23] in the

early 1980s. Shortly after these developments pure-absorption-mode exchange

spectra began to appear, heralding the new age of quantitative exchange spec-

troscopy [24].

Also at this time pulse sequence development gained maturity, aided by

the groundbreaking paper of Sørensen et al. that introduced product-operator

formalism to describe experiments [25]. Another seminal work, this time by

Bodenhausen, Kogler and Ernst, gave the different pulse sequences a unified

picture by describing them graphically according to their coherence-transfer

pathways [26]. This key concept is described in §3.2, as all NMR experiments

in this thesis are presented in this manner.

1.1.3 High Resolution Spectra of Half-Integer Quadru-

polar Nuclei

It was noted that recording a spectrum where the spectral width was equal to

the magic-angle spinning speed gave a lineshape devoid of sidebands and thus

mimicked spinning infinitely fast [27]. Whilst this gave very narrow and feature-

less lineshapes for spin I = 1/2 nuclei1, half-integer quadrupolar nuclei suffered

from second-order quadrupolar broadening—an effect explained in §2.10.1. This

broadening significantly decreased the spectral resolution, starting the quest for

high-resolution NMR of half-integer quadrupolar nuclei.

Ganapathy, Schramm and Oldfield provided theory, simulation and ex-

perimental data on the effects of this broadened lineshape when the rotor was

spun at different angles to the “magic” one [28]. Their variable angle spinning

(VAS) approach reintroduced the first-order dipolar broadening MAS sought

to remove, but in certain cases the resolution was improved. Lefebvre et al.

continued this study, noting an angle (43.5°) at which all lineshapes had the

same width regardless of the quadrupolar asymmetry2 [29].

A breakthrough occurred in 1988 when Llor and Virlet realised there are

complementary angles in the first- and second-order broadening mechanisms.

1Spin and the quantum number, I, are explained in §2.1.
2Denoted ηQ as per Eq. (2-42).
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They reasoned that if the rotor was spun at one angle for a certain time, then

rapidly switched to its complementary angle for another time, they would ob-

tain an isotropic spectrum—free of dipolar and quadrupolar broadening. Thus

dynamic angle spinning (DAS) was born [30]. The technical feat was performed

in the following years by Alex Pines’ group, showing the amazing enhancement

of resolution that DAS provided, compared to static, MAS and VAS lineshapes

[31, Fig. 11].

At the same time Samoson, Lippmaa and Pines were working on another

technique for high-resolution lineshapes that required spinning at two angles si-

multaneously [32, 33]. The theory of how double-rotation (DOR) averages away

the first- and second-order interactions is explained in §2.10.2. The technique

produces the same impressive resolution enhancement as DAS, as we shall see in

experiments below (e.g. Fig. 2-10). Considering the mechanics of spinning one

rotor inside another, it is astounding that the technique is physically possible

at all. Any spinning object has a tendency to maintain its orientation unless a

torque is exerted upon it. Trying to rotate this spinning object around another

axis would therefore require a large torque, continually robbing the outer rotor

of its angular momentum. Nevertheless, there is a special condition depending

on the inertia and angles of the two rotors that gives a tolerably low torque for

a given ratio of spinning speeds [34]. Whilst DOR has enjoyed some success

over the past twenty years, simultaneously spinning at two angles still remains

technically challenging to perform and the equipment is not commonly avail-

able. Perhaps a reason for this is due to another major advancement in the

quest for high-resolution NMR of half-integer quadrupolar nuclei.

In 1995, Frydman and Harwood published their landmark paper on

multiple-quantum MAS (MQMAS) [35]. Their insight was to realise that the

fourth-rank second-order broadening of the quadrupolar lineshape could be re-

focussed in a 2D experiment whilst MAS removes the second-rank portions of

the first- and second-order quadrupolar interactions in both dimensions, as ex-

plained in §3.8. The experiment is inherently two-dimensional and by taking

a certain projection—or shearing—of the 2D spectrum, an isotropic 1D spec-

trum can be obtained [36]. The mechanically challenging demands of DOR

were ousted at the expense of reduced sensitivity in exciting multiple-quantum
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coherences and the longer experimental times required to acquire a 2D dataset.

Satellite-transition MAS (STMAS) is a similar experiment to MQMAS

in that it is a 2D experiment designed to provide an isotropic spectrum of

quadrupolar lineshapes [37–39]. STMAS is more sensitive than MQMAS (by

≈3–7) but depends critically upon the magic angle being accurately set to within

0.003°. Little more shall be said about STMAS in this thesis. Instead, DOR

and MQMAS are covered in more detail over the forthcoming chapters as the

chosen techniques to achieve high-resolution NMR of half-integer quadrupolar

nuclei.

1.2 Thesis Overview and Motivation

A long-standing problem in physics is to characterise and understand the struc-

ture of disordered materials. Glasses can have extremely interesting properties

and have different macroscopic characteristics (e.g. density) to their crystalline

phases. Noncrystalline solids have long been studied with NMR techniques

[40], which are suited to probing atomic length scales without requiring long-

range order. However, at these shortest length scales oxide glasses and their

crystalline phases have similar structures. The crystalline phase corresponding

to glasses of interest can therefore be used as a model compound to help de-

velop homonuclear correlation experiments for solid-state NMR—an approach

adopted in this thesis.

The introduction to NMR given in Ch. 2 will provide the fundamen-

tal physics knowledge for understanding the experiments and conclusions con-

tained herein. Chapter 3 will concentrate on the specific implementation of

this physics, introducing techniques and pulse sequences. A review of solid-

state NMR correlation experiments for quadrupolar nuclei is then delivered in

Ch. 4. Special attention is given to homonuclear dipolar correlation. Then fol-

lows Ch. 5 containing the experimental and simulation parameters. Chapter 6

deals with materials science aspects of alkali borates. In these materials the

existence of a borate anomaly and presence of superstructural units underlines

the motivation of this thesis—to study the local structure of disordered ma-

terials. There are experimental details on lithium borate synthesis and select
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characterisations that help to cement understanding of borates, as well as the

important differences between crystalline and disordered materials. Initial NMR

results are also presented in Ch. 6, with a focus on the problem of relaxation in

crystalline borates. Using the well characterised lithium diborate compound,

Ch. 7 then shows NMR observations of spin diffusion between dipolar-coupled

nuclei of the same type. This through-space homonuclear correlation is studied

in detail, under a variety of conditions. Chapter 8 studies the coherence de-

phasing of boron in lithium diborate. Interesting differences in dephasing rate

are seen as a function of MAS rate and isotopic enrichment. A different kind

of homonuclear correlation—through-bond—could in principle be detected by

these experiments. The absence of the effects of J-coupling put an upper limit

on the strength of this coupling. Backing up the experimental data are exten-

sive simulations, presented in Ch. 9, from which we can pick through the tangled

web of nuclear interactions to gain understanding about the spin dynamics in-

volved. Factors affecting spin diffusion can be varied systematically, revealing

correlations that would be difficult to uncover in complicated real-world exper-

iments.

By studying spin diffusion and spin-echo dephasing via a combined exper-

imental and simulation approach, a greater understanding of the quadrupolar

and dipolar interactions can be achieved. This understanding provides the

foundations for the development of future NMR experiments to probe the prox-

imities and connectivities between half-integer quadrupolar nuclei in disordered

materials.



CHAPTER 2

Introduction to Solid-State NMR

2.1 Spin and the Density Operator

The angular momentum—or spin1—of subatomic particles is a conserved quan-

tity as we observe classically, but in the world of quantum mechanics it is also

quantised. This unintuitive fact implies that changes in angular momentum

can only come in quanta of h̄. The lowest allowed nonzero spin number is

consequently I = 1/2, as the difference between spin up (+h̄/2) and spin down

(−h̄/2) is h̄. In theory, any half-integer value of I is allowed as the Pauli ma-

trices that represent spin can have half-integer eigenvalues [41]. The exact spin

a particular isotope has depends on its nuclear structure, which can be roughly

explained by the nuclear shell model [42]. Only nuclei with non-zero spin can be

manipulated by NMR. NMR is sensitive to the energy of nuclear spins, which

can be affected by various magnetic and electric interactions. The total energy

of a spin under these interactions, as the spin moves through time and space,

is described by the nuclear spin Hamiltonian:

Ĥ = ĤZeeman + ĤChemical Shift + ĤDipolar + ĤJ + ĤQuadrupolar + . . . (2-1)

where the exact form of the interaction Hamiltonians will be covered below.

1Like mass and charge, spin is an intrinsic property of the hadrons that constitute atomic
nuclei. The term spin is used as this property behaves like classical angular momentum.

8
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The energies and angular momenta are always quantised in units of h̄.

Redefining the Hamiltonian to correspond to energies with the dimension of

angular frequency (ω, rad s−1) allows us to drop a factor of h̄ in subsequent

equations for simplicity and readability.

The wavefunction of a spin, ψ, completely describes its quantum mechan-

ical state, e.g. for spin I = 1/2, a linear superposition of spin-up and spin-down

each multiplied by a complex phase. We can define a density operator to de-

scribe the ensemble average of the entire spin system:

ρ̂ = |ψ〉 〈ψ| (2-2)

Combining this operator with the time dependent Schrödinger equation:

∂
∂t
|ψ(t)〉 = −iĤ |ψ(t)〉 (2-3)

we arrive at the Liouville–von Neumann equation [41, §5.2]:

∂
∂t
|ρ̂(t)〉 = −i

[
Ĥ , ρ̂(t)

]
(2-4)

which has a highly relevant solution:

|ρ̂(t)〉 = |e−iĤ t ρ̂(0) eiĤ t〉 (2-5)

Equation (2-5) says that if we know the initial density operator, ρ̂(0),

and the interaction Hamiltonian, Ĥ , then we can find the density operator at

any arbitrary point in the future by inserting the appropriate value of time, t.

Further information about propagating density matrices is given elsewhere [43,

Ch. 8].

Several visualisations of this abstract density operator have been pro-

posed, the most helpful of which depends on the spin number, I, and the number

of coupled spins. A straightforward representation is a vector, which represents

the bulk magnetisation of an ensemble of uncoupled spins.

A more powerful portrayal, at the expense of a slight abstraction, is prod-

uct operator formalism [25]. In this formalism the longitudinal magnetisation

is represented by Iz, and coherent x- and y-magnetisation is represented by Ix

and Iy, respectively. These act as vectors too, but in Hilbert space, where the

total energy of the system is given by the Hamiltonian [44].
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Finally, we can represent the density matrix as an actual matrix [45]. In

the Zeeman basis2 the elements corresponding to longitudinal magnetisation are

along the diagonal, whilst off-diagonal elements represent ideas such as coherent

x- and y-magnetisation as well as harder to visualise quantum spin phenomena.

The density matrix describes the spin system completely, which can then be

used directly in Eq. (2-5); a process that is well suited to numerical simulation

[46].

2.2 Irreducible Spherical Tensors

Generally, a spin Hamiltonian expressed in irreducible spherical tensor operators

can be given as [47, Eq. (59)]:

ĤΛ =
2∑

`=0

CΛ
`

+∑̀
m=−`

(−1)`−mAΛ
`,mT̂`,−m (2-6)

where A is an irreducible spherical tensor representing the spatial component of

a certain interaction, Λ, in the laboratory frame. T̂ is an irreducible spherical

tensor operator representing the spin part of the Hamiltonian, determined by

its rank, `, and order, m. C is an interaction-specific constant.

From the previous section, we know that if we can write down the Hamil-

tonian we can completely describe the spin dynamics of the system. We also

know the spatial tensors of the various possible interactions (see below), which

are diagonal in the principal axis system of the interaction. The trick now is to

transform the spatial tensor from the principal axis system (AP) to the molec-

ular frame, then to the laboratory frame (AL)—additionally via a rotor frame

for an MAS experiment—before we can match theory with experiment3.

The spin tensor operators [48, 49] are not affected by frame transforma-

tions, which justifies separation of the space- and spin-components in Eq. (2-6).

2A particularly convenient, complete and orthogonal basis set in Hilbert space, see §2.5.
3An illustrative graphic showing this frame transformation is available [47, Fig. 8].
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2.3 Frame Transformation and Angular Depen-

dencies

Irreducible tensors in spherical coordinates, such as AP, are straightforward to

transform under rotations [50]. The task calls for three parameters to specify

the rotation and the most useful description is in terms of Euler angles; α, β,

γ. The following explication is based upon Rose [51, Ch. IV].

We can create a rotation operator, R̂(α, β, γ), which is a product of three

operators. The rotation operations are successive, with each one defining a new

coordinate system and the rightmost operator, R̂α, operating on the tensor first.

R̂(α, β, γ) = R̂γR̂βR̂α = e−iγÎz′′ e−iβÎy′ e−iαÎz (2-7)

Explicitly, the steps in Eq. (2-7) are:

(i) A rotation is made about the z-axis through an angle α;

the new coordinate axes are x′, y′, z′.

(ii) A rotation is made about the y′-axis through an angle β;

the new coordinate axes are x′′, y′′, z′′.

(iii) A rotation is made about the z′′-axis through an angle γ;

the new coordinate axes are x′′′, y′′′, z′′′.

Because of the unitary transformation properties of R̂ in general, we can

express R̂γ in the coordinate system that results after R̂β has been performed.

Similarly we can express R̂β in the coordinate system that results after R̂α has

been performed. The rotation operator then becomes:

R̂(α, β, γ) = e−iαÎz e−iβÎy e−iγÎz (2-8)

Equation (2-7) describes4 a rotation, R̂, carried out by three successive

Euler rotations; α about z, β about y′, then γ about z′′. Whereas Eq. (2-8)

shows that these rotations may be carried out in the same coordinate system if

the order of the rotations is inverted; γ about z, β about y, then α about z.

4Graphical descriptions of the Euler angles are readily available [52, Fig. 2.10].
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A consistent coordinate system enables us to determine a rotation matrix

to describe the operator R̂. This matrix is called a Wigner D-matrix and is

shown here acting on an arbitrary spherical tensor:

R̂(α, β, γ)A`m =
∑
m′

D`
m′m(α, β, γ)A`m′ (2-9)

Now instead of calculating the effect of a rotation operator on a tensor

we can simply multiply by a matrix. Interestingly, the Wigner D-matrices are

related to spherical harmonics, which may aid visualisation of their effect in

three-dimensional space [53].

D`
m0(α, β, 0) =

√
4π

2`+ 1
Y *

`m(β, α) (2-10)

For the purposes of frame transformation of interaction tensors in NMR,

here is a general example of an `th-rank tensor, going from the principal axis

system (AP
`m′) to the laboratory frame (AL

`m):

AL
`m =

∑̀
m′=−`

D`
m′m(αPL, βPL, γPL) AP

`m′ (2-11)

Note that a rotation does not change the rank of a tensor. Similarly, a

double frame transformation can be written as:

AL
`n =

∑̀
m=−`

∑̀
m′=−`

D`
mn(αRL, βRL, γRL) D`

m′m(αPR, βPR, γPR) AP
`m′ (2-12)

which describes transforming AP to an intermediate “R” frame5, then on to AL.

The Wigner D-matrices may seem abstract in this form, but they can be

reduced to exponentials depending on α and γ that sandwich a Wigner d-matrix

that has an angular dependence only on β:

D`
m′m(α, β, γ) = e−im′α d`

m′m(β) e−imγ (2-13)

where some forms of d`
m′m(β) are given in §A.3. In general Wigner matrices can

be looked up in a table as their calculation is rather involved [54]. Pleasingly,

where NMR is concerned often m = m′ = 0 (e.g. in Eq. (2-61) below) and the

reduced Wigner d-matrices relate to Legendre polynomials like so:

d`
00(β) = P`(cos β) (2-14)

5A frame fixed to a spinning rotor, used for the explanation about magic angle spinning.
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Figure 2-1. Graphical plot of the second (red) and fourth (blue) order Leg-
endre polynomials of cos θ, which can be found in Eqs. (2-15) and (2-16) re-
spectively. Note the roots of each function never coincide. The magic angle of
θ = arctan

√
2 ' 54.74° is the first root of P2(cos θ). The roots <90° for P4(cos θ)

are ' 30.56° and ' 70.12°.

The β-angle in Eq. (2-14) is relevant to NMR as when tranforming from

a certain frame (e.g. the rotor or principal axis frames) it describes an angle

(referred to generally as θ) between this frame and the z-axis of the laboratory

reference frame. The first Legendre polynomial of interest is P0(cos θ) = 1. With

no angular dependence this represents an isotropic factor that is an important

part of the chemical shift as well as the second-order quadrupolar interaction

in §2.10. The second-order, ` = 2, Legendre polynomial is:

P2(cos θ) =
1

2
(3 cos2 θ − 1) (2-15)

Finally, the ` = 4 Legendre polynomial is:

P4(cos θ) =
1

8
(35 cos4 θ − 30 cos2 θ + 3) (2-16)

These latter two Legendre polynomials are plotted in Fig. 2-1, in which

is indicated a very special angle in NMR: The magic angle.

2.4 Magic Angle Spinning

Before we get to the magic part, consider a second-rank interaction tensor—

in particular, its angular dependencies. For a powder sample6 there will be

6A very large number of small single crystals, or crystallites.
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β

α
−ωrt

Figure 2-2. Under magic angle spinning (MAS), the solid sample is rotated
quickly at a ‘magic’ angle of β = arctan

√
2 ' 54.74° to the static magnetic field.

MAS rates can be as quick at 60 kHz (3.6 million rpm). Another Euler angle, α,
is perpendicular to β and introduces a time-dependency if the rotor is spinning.

interaction vectors covering all angles. These vectors can be decomposed into

components parallel and perpendicular to the rotor axis. Note the rotor itself

is tilted relative to the laboratory frame.

To find the energy perturbation in the laboratory frame we must perform

the double frame transformation described in Eq. (2-12). For ease of notation

we can contract the Eulers angles like so:

αRL, βRL, γRL = ΩRL (2-17)

From Eq. (2-12), the D-matrix going from frames P to R to L for a

second-rank tensor (` = 2) is:

D2
m′n(ΩPL) =

2∑
m=−2

D2
mn(ΩRL) D2

m′m(ΩPR) (2-18)

Hence there are five terms to calculate. We focus on the Wigner D-

matrix that takes us from the rotor frame to laboratory frame where we make

our observations, D2
mn(ΩRL), and note that we can reduce this term using the

relation given in Eq. (2-13):

D2
mn(ΩRL) = e(−imαRL) d2

mn(βRL) e(−inγRL) (2-19)

Physically, the βRL angle is between the rotor frame and the static mag-

netic field (laboratory frame) and αRL describes an angle perpendicular to the

βRL angle—see Fig. 2-2. γRL is a phase-offset of the αRL angle.

Recall at the start of this section we thought about the interaction vec-

tors being decomposed to have a component perpendicular to the rotor axis.
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When the rotor is spun, these vectors rotate along with it and the α angle

that describes them becomes time-dependent according to the spinning speed;

α = −ωrt, as shown in Fig. 2-2.

Let us define a rotor period, tr = 2π/ωr, and average over the time-

dependent part of Eq. (2-19):

1

tr

∫ 2π/ωr

0

e(imωrt) dt =


2π

ωrtr
= 1 m = 0

cos(m2π)+i sin(m2π)−1
imωrtr

= 0 m = ±1,±2, . . .

(2-20)

When m, one of the indices in Eq. (2-19), is zero then the time-dependent part

equates to unity only after one rotor period has elapsed. This means that only

the D2
0n(ΩRL) terms from Eq. (2-18) survive. When m = ±1,±2, . . . the time-

dependent part evaluates to zero after precisely one rotor period. This is part

of the magic nature of MAS and can be visualised by imagining the vector

components perpendicular to the rotor axis being averaged to zero after one

rotor period, so only the components parallel to the rotor axis remain.

Averaging over a complete rotor period, the five terms have been reduced

to one:

D2
m′n(ΩPL) = D2

0n(ΩRL) D2
m′0(ΩPR) (2-21)

Referring back to Eq. (2-12) we see this term corresponds to AL
2n. Under

the high-field secular approximation, only diagonal terms of the matrix are

nonzero, which is equivalent to considering only the AL
20 term. In this case

Eq. (2-21) becomes:

D2
m′0(ΩPL) = D2

00(ΩRL) D2
m′0(ΩPR) (2-22)

Now only one angle describes the transformation of the parallel compo-

nents from R→L. Following the relations described in Eqs. (2-13) and (2-14)

the angular dependency of the D2
00 term is the P2(cos θ) Legendre polynomial:

1
2
(3 cos2 θ − 1). The second magic part is because when the rotor is spun at

θ = arctan
√

2 then 1
2
(3 cos2 θ − 1) = 0, thus this final term is also removed.

Magic angle spinning will average any second-rank interaction to zero

after one rotor period because of this mechanism. Importantly for this thesis,

the dipolar (§2.7) and first-order quadrupolar (§2.9) interactions are second-

rank.
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2.5 Zeeman Interaction

Having introduced the mathematics of spin, frame transformations and MAS,

the physics of the electric and magnetic interactions can now be presented. We

start at a fundamental level, with the strong Zeeman interaction.

Consider an angular momentum operator, Îz, the exact state of which

can be specified by two familiar quantum numbers, ` andm. Where ` can be any

half-natural number (0, 1/2, 1, 3/2, . . .) and m can be any number between ±` in

integer steps (−`,−`+1,−`+2, . . . ,+`). These can be written in eigenequation

form:

Îz |`,m〉 = m |`,m〉 (2-23)

such that the eigenvalue of the angular momentum operator along the z-axis is

m, called the azimuthal quantum number. For example, if the quantum number

of a spin was I = 3/2 then the allowed values of m would be +3/2, +1/2, −1/2 and

−3/2. These represent quantised angular momentum projections on the z-axis.

NMR is conducted in strong7 static magnetic fields, allowing us to define

a z-axis such that B = (0, 0, B0). The Zeeman interaction quantises the nuclear

spins along this axis, i.e. Îz = m. The Zeeman Hamiltonian tells us the energy

of this interaction:

ĤZ = −γB0Îz (2-24)

where γ is the gyromagnetic ratio between the nuclear magnetic moment, µ̂,

and the spin angular momentum, Î:

µ̂ = γÎ (2-25)

The strength of the Zeeman interaction is indicated by the precession

frequency of the magnetic moment of the nucleus in a magnetic field (note the

minus sign):

ω0 = −γB0 (2-26)

The Larmor frequency, ω0, is in rad s−1, the gyromagnetic ratio, γ, is in

rad s−1 T−1 and the magnetic field strength, B0, is in T. The Zeeman interaction

lifts the degeneracy8, by splitting the 2I + 1 energy levels so they are spaced

7Typically five orders of magnitude stronger than the Earth’s natural magnetic field.
8Without a magnetic field, spin-up and spin-down would have no meaning and their en-

ergies would be degenerate.
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−3/2

Figure 2-3. An energy level diagram of a spin I = 3/2 nucleus in a magnetic
field. The otherwise degenerate energy levels split into 2I + 1 separate levels,
spaced ω0 apart according to Eq. (2-26).

apart by a frequency difference equal to ω0. For example see Fig. 2-3 for a spin

I = 3/2 nucleus.

Crucially, each NMR-active isotope has a different Larmor frequency.

This important fact allows NMR to discern between different isotopes, which

makes the technique valuable for characterisation of materials. The gyromag-

netic ratio is very important as it affects both the frequency and the intensity

of the resonance [55]. Furthermore, we can define a receptivity of a nuclear

species to be:

Γ = γ3 × Natural Abundance× I(I + 1) (2-27)

A plot of receptivity against Larmor frequency for naturally-abundant

NMR-active isotopes is given in Fig. 2-4, showing the variation of Larmor fre-

quencies.

How strong is the Zeeman interaction? For an 11B nucleus9 in a magnetic

field of 14.1 T, the energy gained by changing from opposing the magnetic field

to aligning with it is h̄γB0 = 1.276× 10−25 J. Compare this with the thermal

energy available to the room-temperature spin; kBT = 4.045× 10−21 J. We

find that the energy benefit of magnetically aligning is swamped nearly 32 000

times over by the thermal energy. Therefore, the equilibrium magnetisation

is only a tiny fraction of the total magnetisation available to the spins. This

small paramagnetic component will be preferentially aligned along the z-axis,

the defined direction of B0. This longitudinal magnetisation is the equilibrium

9γ(11B) is given in Tab. 5-1.
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Figure 2-4. A log-log plot of receptivity as a function of Larmor frequency for
naturally-abundant NMR-active isotopes.

state of the spins and forms the initial density operator for use in Eq. (2-5) [56]:

ρ̂(0) ∝ Îz (2-28)

where for the remainder of this thesis the constant of proportionality is set to

one.

This nuclear paramagnetism is very weak. For example, in water the

diamagnetism due to the electrons is four orders of magnitude larger than the

paramagnetism due to the protons [57]. Observing the nuclear paramagnetism

directly would be extremely challenging experimentally, which is why resonant

techniques are used to manipulate this bulk magnetic moment, giving rise to

the name; nuclear magnetic resonance.

Despite the Zeeman interaction being relatively weak as far as interac-

tions go, it is normally the strongest interaction where NMR is concerned and

the other interactions can be treated at perturbations.

2.6 Chemical Shift

If the Zeeman interaction was the only mechanism for altering the energy of a

nuclear spin in a magnetic field then NMR would not be the major chemical
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Powder Pattern

Individual Crystallites

Figure 2-5. A single crystallite has only one Larmor frequency, giving a single
sharp spectral line. A powder pattern is the sum, over a sphere, of all these
individual crystallites. The exact width and shape depends on the chemical shift
anisotropy parameters; ∆ and η.

characterisation technique it is today; as each isotope would precess at its own

Larmor frequency giving, spectroscopically, just one line per nuclear species.

Charged particles in a magnetic field are subject to a Lorentz force. For

bound electrons, this induces a current as electrons circulate within their re-

spective orbitals. This circulating current generates a small magnetic field that

adds to, or subtracts from, the large static magnetic field already present at the

nucleus. Consequently, the Larmor frequency of the nucleus is shifted slightly

depending on the electronic environment that surrounds it—a phenomenon that

has changed the world of chemistry forever.

For our purposes it is sufficient to say that the chemical shift allows NMR

to clearly discern the difference between, say, a boron atom with three bonds

and that of four bonds. The strength of the induced current is proportional to

the applied field, B0, as shown by the interaction Hamiltonian:

ĤCS = γÎ · δB0 (2-29)

where the second-rank tensor, δ, can be diagonalised by choosing a particular

principal axis system. In this frame we can define isotropic (δiso) and anisotropic
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(∆) components of the tensor:

δiso = 1
3
(δxx + δyy + δzz)

∆ = δzz − δiso

η =
δyy − δxx

∆

(2-30)

with the principal elements labelled and ordered according to |δzz − δiso| ≥

|δxx − δiso| ≥ |δyy − δiso|. This is the Haeberlen convention [58] and is the

same convention used by NMR simulation programs such as SIMPSON and

pNMRsim.

The angle between the principal axis system and the static magnetic field

provides an orientation dependence10 on the chemical shift. For a single crystal

there is only one frequency so the spectroscopic line remains sharp. In a pow-

dered sample all angles are present, turning the sharp line into an information

rich powder pattern spectrum, as shown in Fig. 2-5. Duer has further described

the interesting theory and application of chemical shifts, that is beyond the

scope of this thesis [59, Ch. 3].

2.6.1 Under MAS

Although the static powder pattern contains orientation information, when

many spectral lines are close to each other the overlapping lineshapes can hinder

analysis of the spectrum. As discussed in §2.4 magic angle spinning can average

a second-rank interaction, such as δ, to zero over one rotor period. However,

the MAS rate must be much greater than the strength of the interaction for

this averaging to result in only a single NMR resonance peak. Commonly in

solid-state NMR the spectrum consists of a spectral line at the isotropic fre-

quency and a series of spinning sidebands separated by the MAS frequency, νr,

from this line [27]. A concise explanation of these features is given by Edén [60,

§6.5.1]. It is noted that these spinning sidebands can be removed by acquiring

in a rotor-synchronised fashion.

10Given by Eq. (2-15) for the η = 0 case.
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2.7 Dipolar Interaction

The dipolar interaction plays a pivotal role in this thesis as one of the main

interactions by which spins can be correlated. (The other important inter-

spin interaction being the J-coupling, which is of less relevance to this thesis.)

The easily visualised classical analogue is one of two bar magnets held near

each other. When one rotates the other also moves to minimise its energy.

Calling upon the correspondence principle, we can use the classical energy of

interaction between two point magnetic dipoles to form our dipolar interaction

Hamiltonian:

ĤD = −µ0

4π

h̄γIγS

r3

(
Î · Ŝ− 3(Î · r)(Ŝ · r)

r2

)
(2-31)

where r is the internuclear vector and Î and Ŝ are related to their magnetic

moments as given by Eq. (2-25). The scalar factor is called the dipole-dipole

coupling constant :

bjk = −µ0

4π

h̄γIγS

r3
(2-32)

from which we can construct the spatial spherical tensor for the dipolar inter-

action, in its principal axis system:

AP
20 =

√
6 bjk (2-33)

Under the secular approximation, this is the only non-zero term. The

corresponding spin spherical tensor operator is:

T̂20 =
1√
6
(3ÎzŜz − Î · Ŝ) (2-34)

Making the nuclear spin Hamiltonian in the principal axis system:

Ĥ P
D = AP

20T̂20 = bjk(3ÎzŜz − Î · Ŝ) (2-35)

We note that transforming to the laboratory frame using Eq. (2-11) re-

quires looking up only one Wigner D-matrix:

AL
20 = AP

20D
2
00 = AP

20
1
2
(3 cos2 θ − 1) (2-36)

where θ is the angle between the two nuclei. As mentioned above, by considering

only the AL
20, this is the secular approximation—valid for high field strengths



2.7. Dipolar Interaction 22

where the dipolar interaction can be considered as a small energy perturbation

of the Zeeman interaction.

Digressing to change notation; Î · Ŝ is defined as ÎxŜx + ÎyŜy + ÎzŜz,

which makes
(
3ÎzŜz− Î · Ŝ

)
=
(
2ÎzŜz− (ÎxŜx + ÎyŜy)

)
. The angular momentum

operators in terms of raising and lowering operators are: Îx = 1
2
(Î+ − Î−) and

Îy = 1
2i
(Î+ + Î−). Hence, (ÎxŜx + ÎyŜy) = 1

2
(Î+Ŝ− + Î−Ŝ+).

The full dipolar spin Hamiltonian in the laboratory frame for a static

sample is:

Ĥ L
D = bjk

1
2
(3 cos2 θ − 1)

(
2ÎzŜz − 1

2
(Î+Ŝ− + Î−Ŝ+)

)
(2-37)

The ÎzŜz term represents longitudinal magnetisation and since the secu-

lar dipolar Hamiltonian must commute with the Zeeman Hamiltonian, the total

longitudinal magnetisation must be conserved. But while the total magnetisa-

tion remains constant, individual spin pairs can exchange magnetisation via

energy-conserving flip-flops. The presence of raising and lowering operators11

represent the flip-flop exchange of magnetisation as one spin is simultaneously

raised (Î+) as the other is lowered (Ŝ−). Spin a can exchange with spin b,

then b with c and so on. Local imbalances in population may be transported

throughout the system and with enough coupled spins this stochastic process

gives rise to spin diffusion [61].

Spectrally, the dipolar coupling acts to broaden the resonance line. For a

powder of isolated pairs of I = 1/2 nuclei the resonance line will be distorted to

a Pake doublet shape, because of the (3 cos2 θ− 1) angular dependence [62]. In

the more realistic case of a multitude of dipolar coupled spins, the lineshape can

resemble a broad Gaussian [63]. The dipolar interaction can therefore reduce

the resolution of the spectrum [64, Ch. 3]. One of driving forces behind the

development of magic angle spinning was its ability to suppress the dipolar

interaction and regain the resolution.

11Î+ = Îx + iÎy and Î− = Îx − iÎy



2.8. J-Coupling 23

2.7.1 Under MAS

As shown in §2.4, the Hamiltonian can be described under MAS via a double

frame transformation; the result is:

Ĥ L
D =

√
6 bjk

[
1
2
sin2(βPR) cos(2γPR − 2ωrt)

− 1√
2

sin(2βPR) cos(γPR − ωrt)
]
T̂20

(2-38)

The integral of the Hamiltonian over one rotor period is zero, completely

removing the dipolar coupling if the magic angle is perfectly set and there are no

other interactions [27]. For >3 spins in a non-linear arrangement, MAS does not

completely average to zero the homonuclear dipolar couplings and only partial

line narrowing is achieved. The dipole-dipole coupling constant, bjk/2π, can

be large (∼kHz) so it is important to spin (ωr/2π) at least several times faster

than the interaction strength to fully remove the broadening effects. When the

spinning too slow, magnetisation can flip-flop during a rotor period such that

the integral is not zero and hence the dipolar coupling remains.

In a state where molecules are free to quickly tumble around in all di-

rections, the direct dipole-dipole interaction between spins is averaged to zero.

When spin-spin coupling was surprisingly observed in isotropic liquids it was

found to be because of an indirect coupling mechanism involving the bonding

electrons between atoms, and was termed J-coupling [65].

2.8 J-Coupling

Electrons are spin I = 1/2 particles and as such can interact magnetically with

NMR-active nuclei [66]. Imagine two spin-paired electrons (· ↑↓ ·) and introduce

a nuclear spin. If this nuclear spin is aligned parallel with the closest electron

spin the overall energy will be lower (↑ ↑↓ ·) or vice versa higher if aligned

antiparallel (↓ ↑↓ ·). Now introduce another nuclear spin near these electrons.

If this second nuclear spin is antiparallel to the first then the overall energy

will again be lower (↑ ↑↓ ↓). Hence, nuclear spins can magnetically interact via

electrons to perturb the nuclear spin Hamiltonian. This is the basic mechanism

of J-coupling, which operates through bonds rather than through space [57,

p. 215].
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The full Hamiltonian for the J-coupling between spins I and S is:

ĤJ = 2πÎ · JIS · Ŝ (2-39)

where JIS is a second-rank tensor and the only nuclear spin interaction given

with units of Hz; which explains the presence of 2π in the above Hamiltonian.

Note there is no dependence on induced currents or the Larmor frequency with

this interaction, so the J-coupling interaction does not scale with magnetic field

strength (as is also the case for the dipolar coupling). In a liquid, JIS is averaged

to its isotropic form:

Ĥ iso
J = 2πJISÎ · Ŝ = 2πJIS(ÎxŜx + ÎyŜy + ÎzŜz) (2-40)

making the isotropic J-coupling a scalar, equal to the average of the diagonal

elements of the J-coupling tensor:

JIS = 1
3
(Jxx + Jyy + Jzz) (2-41)

The anisotropic part of the full J-coupling tensor has the same form as

the dipolar interaction but is usually much smaller, making the two interactions

hard to distinguish. The anisotropic J-coupling can be safely ignored in this

thesis.

Directly bonded nuclear spins typically give the highest values of J-

coupling. However, it is routine to detect J-couplings over two or three bonds,

denoted 2J and 3J respectively. In these cases the values may depend on the

structural configuration of the bonds (e.g. the dihedral torsion angle), allowing

extra information to be extracted [67, 68].

2.9 First-Order Quadrupolar Interaction

Quadrupolar nuclei are prevalent in NMR; ≈25% of NMR-active nuclei are spin

I = 1/2 and ≈75% are quadrupolar. Hamiltonian theory of the quadrupolar in-

teraction has been extensively covered by Abragam [69, Ch. VI] and Slichter [64,

Ch. 10], both making use of irreducible tensor operators. The Hamiltonian ap-

proach is not the only method for representing the energy of a nuclear spin under

the Zeeman and quadrupolar interactions; it is possible to calculate the energy
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exactly using the Liouvillian directly [70]. Nevertheless, the Hamiltonian ap-

proach was expanded [59, Ch. 5] to account for high-resolution techniques such

as MAS, DOR, DAS and MQMAS. The quadrupolar interaction Hamiltonian

has recently been instructively derived from physical principles by Jerschow

[71] and the irreducible tensor operators have been used by Sanctuary [72] to

helpfully calculate the density matrices for quadrupolar nuclei by solving the

Liouville–von Neumann equation [Eq. (2-4)].

The electric charge of a nucleus can be represented by multipole moments

(` = 0, 1, 2, 3, . . .) which have the same form as s, p, d and f electron orbitals in

a hydrogen atom [57]. The first term (` = 0) corresponds to the electric charge

of the nucleus, which is very important for holding the electrons and nuclei

together, but not directly important for NMR. All odd terms (` = 1, 3, . . .) such

as the electric dipolar moment, have to be zero to conserve parity [71]. The

next term (` = 2) is the electric quadrupole moment, which is only present12

for spins I > 1/2. This non-spherical electric charge distribution interacts with

the electric field gradient to cause a change in energy of the nuclear spin, which

is detectable by NMR13.

We will first cover the environment of the nucleus—the electric field gra-

dient, eq, then the charge distribution of the nucleus—the electric quadrupole

moment, Q.

The quadrupolar interaction is an electric interaction described by a

second-rank (3 × 3) symmetric tensor, V. This tensor comprises nine terms

corresponding to the electric field gradient14 at the nucleus. As with all real

and symmetric tensors, this tensor can be diagonalised. The diagonalised

form corresponds to the principal axis system. These remaining three terms

are conventionally labelled such that |Vzz| ≥ |Vyy| ≥ |Vxx|. Laplace’s equa-

tion for an electric potential shows us that the quadrupolar tensor is traceless

(Vxx +Vyy +Vzz = 0) implying that |Vzz| = |Vxx +Vyy|. So in fact our nine-term

12A consequence explained by the Wigner-Eckart theorem.
13As these multipole moments carry a factor proportional to r`

n/r
`+1
e and the nuclear

electric-charge radius is much less than the electron electric-charge radius (rn � re), the
next non-zero multipole term (` = 4) is very difficult to observe. Nevertheless, the hexade-
capole moment has been detected by NMR [73].

14Vαβ = ∂2Vαβ/∂α∂β
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tensor can be completely described by two parameters:

CQ =
e2qQ

h
=
eQVzz

h

ηQ =
Vxx − Vyy

Vzz

(2-42)

These parameters are a magnitude and an asymmetry. Note that eq = Vzz. The

asymmetry, ηQ, by this definition, is a number 0 ≤ ηQ ≤ 1. The quadrupolar

coupling constant, CQ, is used in NMR as a suitable measure of the magnitude

(in Hz) of the electric field gradient at the nucleus. Where e is the electronic

charge, q is the gradient of the electric field and Q is the isotope-specific nuclear

quadrupolar moment. These moments, which are usually determined with NMR

techniques combined with ab initio calculation, have been tabulated by Pyykkö

in 2001 [74].

The quadrupolar parameters in Eq. (2-42) are important for giving struc-

tural and chemical information about the nuclear site. A low quadrupolar cou-

pling constant, CQ, implies the site is spherically symmetric. For perfect cubic

symmetry CQ = 0. High quadrupolar coupling constants indicate a more planar

arrangement of bonds. If there are more charges in a certain plane than above

or below that plane, a large electric field gradient will exist at the nucleus,

leading to a high value of CQ. Cylindrically symmetric charge distributions will

lead to low values of asymmetry, ηQ, whilst highly asymmetric distributions

give ηQ ' 1.

An alternative definition of magnitude is more relevant in Ch. 9, and is

given here in rad s−1:

ωQ =
2πCQ

2I(2I − 1)
(2-43)

which is widely used [71, Eq. (40)][75, Eq. (1.62)] and is equivalent to χQ in

Ref. [76], but can differ by a scalar factor in other sources. Note that for spin

I = 3/2 nuclei, in Hz, ωQ/2π = CQ/6, as these terms are used interchangably in

Ch. 9.

Now we cover the Hamiltonian for the nuclear electric quadrupolar mo-

ment by taking the ` = 2 term in the multipole expansion. The Hamiltonian

(in J) in spatial spherical tensor form in the principal axis frame is:

Ĥ P
Q =

2∑
m=−2

(−1)mQ̂2,mε̂2,−m (2-44)
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where Q̂2,m is a second-rank spatial spherical tensor operator that describes the

spatial charge distribution of the nuclear electric quadrupole and ε̂2,−m does

the same for the electronic portion. The follow equations closely follow the

approach by Pound [77, cf. Eq. (13)] and Jerschow [71, cf. Eqs. (19)–(38)].

We obtain from the Wigner-Eckart theorem:

Q̂20 = α1
2

(
3I2

z − I(I + 1)
)

Q̂2±1 = ∓ α
√

3
8
(IzI± + I±Iz)

Q̂2±2 = α
√

3
8
(Ix ± iIy)

2

(2-45)

where α = eQ/I(2I − 1).

By the definitions in Eq. (2-42) the electronic terms are:

ε̂20 = 1
2
eq

ε̂2±1 = 0

ε̂2±2 = 1
2
√

6
eqη

(2-46)

Combining Eqs. (2-44), (2-45) and (2-46) the Hamiltonian is explicitly:

Ĥ P
Q = α

√
3
8
(Ix − iIy)

2 × 1
2
√

6
eqηQ

+ α
√

3
8
(IzI− + I−Iz)× 0

+ α1
2

(
3I2

z − I(I + 1)
)
× 1

2
eq

− α
√

3
8
(IzI+ + I+Iz)× 0

+ α
√

3
8
(Ix + iIy)

2 × 1
2
√

6
eqηQ

(2-47)

which, substituting α and multiplying terms, simplifies to:

Ĥ P
Q =

eQeq

2I(2I − 1)

(
1
2

(
3I2

z − I(I + 1)
)

+ 1
4
(Ix − iIy)

2 ηQ

+ 1
4
(Ix + iIy)

2 ηQ

) (2-48)

before finally becoming the familiar15 quadrupolar Hamiltonian (in J) in the

principal axis frame:

Ĥ P
Q =

e2qQ

4I(2I − 1)

((
3I2

z − I(I + 1)
)

+ ηQ

(
I2
x − I2

y

))
(2-49)

15Some texts favour the equivalent notation ηQ
2

(
I2
+ + I2

−
)

= ηQ
(
I2
x − I2

y

)
, e.g. Refs. [71,

Eq. (38)] and [69, Ch.VI Eq. (24)].
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Substituting Eq. (2-42), we can express this Hamiltonian in terms of CQ

in rad s−1:

Ĥ P
Q =

2πCQ

4I(2I − 1)

((
3I2

z − I(I + 1)
)

+ ηQ

(
I2
x − I2

y

))
(2-50)

which translates to spherical tensor form:

Ĥ P
Q =

2π

2I(2I − 1)

(
AP

20T̂20 + AP
22T̂2−2 + AP

2−2T̂22

)
(2-51)

where the spatial tensors in the principal axis frame are based on Eq. (2-42):

AP
20 =

√
3

2
CQ

AP
22 = AP

2−2 =
1

2
ηQCQ

(2-52)

and the relevant spin tensor operators from [48, Tab. 1] are reproduced here:

T̂20 =
1√
6

(
3I2

z − I(I + 1)
)

T̂2±2 =
1

2
I2
±

(2-53)

As our observations are necessarily in the laboratory frame we must

calculate the perturbations on the Zeeman splitting caused by the quadrupolar

interaction, using the laboratory frame Hamiltonian. To match the approach

described above [Eq. (2-6)] for the other interactions, Eq. (2-51) transforms to

give:

Ĥ L
Q =

2π

2I(2I − 1)

(
AL

20T̂20 − AL
21T̂2−1 − AL

2−1T̂21 + AL
22T̂2−2 + AL

2−2T̂22

)
(2-54)

Concentrating on the first spatial tensor initially, we can apply the frame

transformation given in Eq. (2-11):

AL
20 = AP

20D
2
00 + AP

22D
2
20 + AP

2−2D
2
−20 (2-55)

Substituting Eq. (2-52) into Eq. (2-55), the AL
20 spatial spherical tensor

becomes:

AL
20 = CQ

[√
3

2
D2

00 +
1

2
ηQ(D2

20 +D2
−20)

]
(2-56)

The other spatial tensors in Eq. (2-54) can be found the same way. For

a specific case of spin I = 3/2 nucleus these spatial tensors can be combined
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Figure 2-6. An exaggerated energy level diagram showing the effect of adding
the quadrupolar interaction to the Zeeman interaction for a spin I = 3/2 nucleus.
To first order, the central transition is unaffected, as indicated by the arrows.
The satellite transitions are shifted by ±ωQ, the exact amount is orientation de-
pendent. The second-order quadrupolar interaction moves the ±m energy levels
by equal and opposite amounts. Now the central transition is affected and for
a powder with a range of crystallite angles, there is a broadening of the central
transition spectral line.

with the relevant spin tensor operators (listed in Appx.A.1) to form the full

quadrupolar Hamiltonian:

ĤQ =
2π

2I(2I − 1)

√
3


AL

20/
√

2 AL
2−1 AL

2−2 0

−AL
21 −AL

20/
√

2 0 AL
2−2

AL
22 0 −AL

20/
√

2 −AL
2−1

0 AL
22 AL

21 AL
20/
√

2

 (2-57)

When NMR interaction Hamiltonians are displayed in this matrix form

they are usually being expressed in the basis set for which the Zeeman Hamil-

tonian is diagonal. The Zeeman interaction is dominant and we can treat the

quadrupolar interaction as a perturbation. The effect these perturbations have

on the Zeeman energy levels of a spin I = 3/2 nucleus are schematically shown in

Fig. 2-6. We can calculate the first order perturbation using time-independent

perturbation theory.

E(1)
m =

〈
m
∣∣∣ ĤQ

∣∣∣m〉 (2-58)

The first-order perturbation to the Zeeman energy by the quadrupolar

interaction, in practice, involves retaining only the diagonal terms of the Hamil-

tonian. From Eqs. (2-57) and (2-58) we can see the first-order perturbation of
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the m = 1
2

and m = −1
2

levels are equal:

E
(1)
1/2 =

〈
1
2

∣∣∣ ĤQ

∣∣∣ 1
2

〉
E

(1)
−1/2 =

〈
−1

2

∣∣∣ ĤQ

∣∣∣−1
2

〉
= − 2π

√
3

2I(2I − 1)

AL
20√
2

(2-59)

The
∣∣±1

2

〉
↔
∣∣∓1

2

〉
transition is called the central transition (CT) and as

we have just proved, is not affected16 by the quadrupolar interaction to the first

order. Furthermore, from the Wigner D-matrices in Eq. (2-56) we can see there

is the familiar angular dependence, D2
00, to this first-order interaction, that will

affect the satellite transitions (ST), as shown in Fig. 2-6.

2.10 Second-Order Quadrupolar Interaction

Realistically, the quadrupolar interaction can be significantly strong compared

to the Zeeman interaction such that the central transition is affected. This can

be explained by examining the second-order perturbation of the quadrupolar

interaction:

E(2)
m =

∑
m6=n

〈
n
∣∣∣ ĤQ

∣∣∣m〉〈m ∣∣∣ ĤQ

∣∣∣n〉
E

(0)
n − E

(0)
m

(2-60)

Visually, the perturbations are shown in Fig. 2-6, where the Zeeman split-

ting is shown perturbed by the first-order quadrupolar interaction, which is itself

perturbed by the second-order quadrupolar interaction described by Eq. (2-60).

It is even possible to calculate a third-order pertubation, but to see the

effect experimentally requires a very sensitive experiment to observe the small

energy shifts in the satellite transitions [78]. Like the first-order pertubation,

there is no third-order perturbation of the central transition [79].

Expanding out Eq. (2-60), we find the second-order quadrupolar Hamil-

tonian now contains terms proportional to pairs of spatial tensors (e.g. A21A2−1)

and a factor ∝ ω2
Q/ω0. The last factor has an intuitive physical meaning; higher

electric field gradients at the nucleus cause quadratically larger energy level

shifts whilst higher static magnetic fields linearly reduce such energy level shifts.

16Both energy levels shift equally so there is no overall change in frequency.



2.10. Second-Order Quadrupolar Interaction 31

The consequence of multiplying two spatial tensors together depends on the be-

haviour of various multiples of second-rank Wigner D-matrices.

We turn to the Clebsch-Gordan series [51, Eq. (4.25)] and note that,

unlike in the first order case, the rank changes by multiplying two Wigner D-

matrices together. For example:

D2
01D

2
0−1 = −1

5
D0

00 − 1
7
D2

00 + 12
35
D4

00 (2-61)

where the fractional prefactors are multiples of Clebsch-Gordan coefficients,

calculated from the Clebsch-Gordan series and looked up in a table.

This means that the second-order quadrupolar energy shift will, in gen-

eral, depend on three different terms corresponding to zeroth-, second- and

fourth-rank Wigner D-matrices. From Eq. (2-14) we know these have different

angular dependences corresponding to the P0, P2 and P4 Legendre polynomials

of cos θ. The portion of the second-order quadrupolar interaction containing the

P0 factor represents an isotropic effect—an energy shift that is present regardless

of crystallite orientation. The second-rank portion of the second-order quadru-

polar interaction will behave like the other second-rank interactions and can be

suitably removed by MAS. The fourth-rank portion of the second-order quad-

rupolar interaction angularly depends on the P4 Legendre polynomial, which

under MAS is only reduced rather than removed. It is this second-order broad-

ening that gives quadrupolar nuclei a distinctive central-transition lineshape

compared with those of spin I = 1/2 nuclei under MAS.

2.10.1 Under MAS

Whereas other interactions typically have strengths measured in Hz or kHz, the

quadrupolar interaction is typically17 measured in MHz. The broad satellite

transition resonances are split up into spinning sidebands, as shown in Fig. 2-7.

In practice, we rarely observe the whole half-integer quadrupolar line-

shape, concentrating instead on the narrow and more intense central transition.

As Eq. (2-59) revealed, this transition is not broadened by the first-order quad-

rupolar interaction. However, the second-order quadrupolar interaction does

17Except for highly spherically symmetric sites, see §2.9.
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CQ

MAS

Static

~

Figure 2-7. Simulation of a first-order quadrupolar interaction, which is much
larger than the MAS rate. I = 3/2, CQ = 2.65 MHz, ηQ = 0.2, ν0 = 192.5 MHz.
Spectra shown are static, scaled ×10, (red) and spinning at νr = 20 kHz (blue).
The broad features that are split up by MAS are the first-order broadened satellite
transitions. The spikes are separated by the MAS rate, νr = 20 kHz. The central
transition is over three-hundred times more intense and has been cropped from
the figure. 1000Hz Lorentzian line broadening has been applied.

affect the central transition. For half-integer quadrupolar nuclei the second-

order frequency shift for symmetric coherence order (|±m〉 ↔ |∓m〉) under

MAS is given by:

ω
(2)
m,−m = E(2)

m − E
(2)
−m = 2

(3ωQ)2

ω0

(
AI

mQ
0

+BI
mQ

2d2
00(βRL)

+ CI
mQ

4d4
00(βRL)

) (2-62)

where A, B and C are scalar coefficients and Q` collects terms of the same rank:

Q0 = 1 +
1

3
η2

Q

Q2 = d2
00(βPR)

(
1− 1

3
η2

Q

)
−
√

8

3
ηQ d

2
20(βPR) cos 2αPR

Q4 = d4
00(βPR)

(
1 +

1

18
η2

Q

)
+

√
10

3
ηQ d

4
20(βPR) cos 2αPR

+

√
70

18
η2

Q d
4
40(βPR) cos 4αPR

(2-63)

The definition of ωQ from Eq. (2-43) has been used, which requires the

factor of 3 to be included in Eq. (2-62). The scalar coefficients used in Eq. (2-62)
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MAS

QIS

Static

Figure 2-8. Simulation of an NMR powder spectrum, showing the effect magic-
angle spinning has on the second-order quadrupolar interaction, restricted to the
central transition only. I = 3/2, ηQ = 0.2. Varying ηQ changes the lineshape [52,
Fig. 2.14]. For static (red) and spinning at νr = 20 kHz (blue). 20 Hz Lorentzian
linebroadening has been applied. The centre of gravity of the quadrupolar line-
shape is shifted from δiso by the quadrupolar induced shift (QIS), according to
Eq. (2-62).

can be found in Tab.A-1. Scaled18 coefficients are also given in Refs. [80, Tab. 1]

and [52, Tab. 2.4]. αPR and βPR refer to the Euler angles between the principal

axis system and the rotor frame, defined in Fig. 2-2.

The isotropic term causes a shift of the central transition—it moves the

whole lineshape to the right of the spectrum [81]. Since NMR spectra conven-

tionally have reversed abscissae, the right of the spectra are at lower values of

frequency.

The second-rank term angularly depends on the P2 Legendre polyno-

mial and over a complete MAS rotor period will be averaged to zero, as is the

case for each and every second-rank interaction. However, if multiple interac-

tions (e.g. dipolar and quadrupolar) are present simultaneously then MAS will

not completely remove their second-rank terms if the interactions do not com-

mute. Removing the second-rank second-order quadrupolar broadening has a

large effect on the central transition lineshape—it becomes narrower, improving

resolution, and more intense—see Fig. 2-8.

The fourth-rank term angularly depends on the P4 Legendre polynomial

and we can tell from simply looking at Fig. 2-1 that under MAS this term will

be reduced but not removed.

18The scaling difference is due to differing definitions of ωQ.
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β

Figure 2-9. Double Rotation (DOR) spins an outer rotor at the P2 magic
angle. Simultaneously an inner rotor spins at an angle of ' 30.56° relative to the
outer rotor, one of the roots of the fourth order Legendre polynomial of cos θ.
This process can remove second- and fourth-rank interactions simultaneously. An
actual schematic of a DOR rotor can be found in Ref. [34, Fig. 2].

Maricq and Waugh noted that the isotropic second-order quadrupolar

shift is specific to magic angle spinning in the limit ωr � ω2
Q/ω0 but not ωr > ω0

[27]. Hence, the shift vanishes in the limit of extremely fast isotropic rotation,

which is why large shifts in solution-state NMR of quadrupolar nuclei are not

observed. The effect on the spectrum of quadrupolar nuclei under MAS and

VAS was reported by Man [82].

2.10.2 Under DOR

From Eq. (2-62) we can see that, to second-order, there are two βPR angular

dependencies: d2
00(βPR) = P2(cos βRL) and d4

00(βPR) = P4(cos βRL). In a similar

vein to MAS, (where fast rotation around the root of the P2 Legendre polynomial

averages second-rank interactions to zero) we can expect fast rotation around

the root of the P4 Legendre polynomial to average away fourth-rank interactions.

But if we are spinning at a P4 magic angle then the P2-dependent interactions

will not removed. There is, of course, a direct way to remove both the P2- and

P4-dependent interactions at once.

Spinning at both angles simultaneously in a double rotation experiment—

or DOR for short—is mechanically challenging, but achievable for outer rotor

rates of up to 2000 Hz and inner rotor rates up to 8000 Hz [32, 34]. The DOR

rotor is schematically shown in Fig. 2-9. The equation for the second-order



2.10. Second-Order Quadrupolar Interaction 35

perturbation of the quadrupolar interaction under DOR is [83]:

ω
(2)
m,−m = 2

(3ωQ)2

ω0

(
AI

mQ
0

+BI
mQ

2d2
00(βR1R2)d

2
00(βR2L)

+CI
mQ

4d4
00(βR1R2)d

4
00(βR2L)

) (2-64)

where βR2L is the angle between the outer rotor axis and the laboratory frame

and βR1R2 is the angle between the inner rotor and the outer rotor. This equa-

tion is the same as Eq. (2-62) but instead of one, there are two angular depen-

dency factors because of the two axes of rotation.

To remove both the second- and fourth-rank quadrupolar broadening

either P2(cos βR1R2) or P2(cos βR2L) must equal zero whilst simultaneously either

P4(cos βR1R2) or P4(cos βR2L) must equal zero too. Typically the outer rotor

spins at the P2 magic angle of ' 54.74° and the faster inner rotor spins at the

P4 magic angle of ' 30.56° relative to the outer rotor.

With both angular dependencies removed, the second-order broadened

lineshape will be narrowed compared to the MAS spectrum. However, we can

see from Eq. (2-64) the isotropic term will still shift the spectrum, which is

shown in Fig. 2-10. In theory, this isotropic term is the only difference between

a DOR spectrum and a first-order only simulation of the central transition.

The magnitude of the second-order isotropic shift provides information about

the quadrupolar coupling strength and can be separated from the chemical shift

by performing an MQDOR experiment [84]. Except where explicitly mentioned,

the remainder of this thesis refers to MAS only.
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Figure 2-10. Central transition 11B NMR spectra at 14.1 T of two distinct chem-
ical sites—“B3” (blue) and “B4” (green). The B3 site has a considerable CQ =
2.65 MHz and δiso = 18ppm, whilst the B4 has a small CQ = 0.51 MHz and δiso =
2 ppm. a) Under MAS the first-order quadrupolar broadening is removed but the
reduced second-order interaction shifts and broadens the lineshapes, affecting the
larger CQ site more. b) DOR removes both first- and second-order quadrupolar
broadening, making the lineshapes narrower. The second-order isotropic shift
remains—note the centre of gravity of all lineshapes under MAS and DOR are
equivalent. Spinning sidebands are labelled by asterisks. c) A first-order only
simulation of the stated NMR parameters. Broadening is added artificially. Note
the centre of gravity of each peak is at the isotropic chemical shift position, as
there is no second-order quadrupolar isotropic shift (QIS).



CHAPTER 3

Pulsed Fourier Transform NMR

3.1 Radio-Frequency

The Zeeman interaction section (§2.5) was left stating that the nuclear para-

magnetism would be extremely challenging to directly detect, which is why

resonant techniques are used. The part of the electromagnetic (EM) spectrum

corresponding to typical Larmor frequencies of nuclei range from ∼ 100 MHz to

∼ 1000 MHz, placing them in the radio part of the spectrum.

A standard NMR probe1 can be expected to deliver an oscillating EM

field with a maximum magnetic contribution of ∼ 1 mT. This field is several

orders of magnitude less than the static magnetic field and will generally not

interact with the nuclear magnetic moments unless on-resonance. Recall the

Zeeman Hamiltonian from Eq. (2-24) and add a linearly-polarised oscillating

EM field, considering only the magnetic contribution:

Ĥ L(t) = ĤZ + ĤRF

= − γB0Îz − γBRF(t)Î

= ω0Îz + 2ωnut cos(ωRFt+ φ)Îx

(3-1)

where the radio waves are defined by; a carrier frequency ωRF, a phase φ and

an amplitude ωnut = −γBRF, with BRF being the maximum magnetic contribu-

tion to the radio wave. The time-dependent Hamiltonian in Eq. (3-1) cannot be

1Ch. 5 discusses NMR hardware.

37
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solved by the Schrödinger equation for all times and we must make an approxi-

mation. If the carrier frequency is close to the Larmor frequency (ωRF ≈ ω0), as

is the case on-resonance, then an approximation can be made by transforming

into a frame rotating about the z-axis at ωRF:

Ĥ rot
RF = (ω0 − ωRF)Îz + ωnut(Îx cosφ+ Îy sinφ) (3-2)

In this rotating frame the precessing nuclear magnetic moments are, ap-

proximately, stationary and so is the magnetic component of the EM wave.

The spins now act under a different effective static magnetic field, BRF, whilst

the “original” static magnetic field has only a small effect, proportional to the

resonance offset, (ω0 − ωRF).

Without loss of generality, we can apply the oscillating EM field with a

certain phase, such that φ = 0 defines the x-axis. Now Eq. (3-2), for ωRF = ω0,

becomes:

Ĥ rot
RF = −γBRFÎx = ωnutÎx (3-3)

which is analogous to the Zeeman Hamiltonian in Eq. (2-24).

To discover the effect of an on-resonance oscillating EM field we can call

upon the solution to the Liouville–von Neumann equation [Eq. (2-5)] and the

initial density operator [Eq. (2-28)] to propagate this RF Hamiltonian through

time:

ρ̂(t) = e−iÎxωnutt Îz eiÎxωnutt (3-4)

which describes initially longitudinal magnetisation being “rotated” about the

x-axis, hence developing a component along the y-axis:

ρ̂(t) = Îz cos(ωnutt)− Îy sin(ωnutt) (3-5)

Remember this is happening in a rotating frame of reference. In the

laboratory frame a spin, which has angular momentum and is already precessing

around the z-axis, is now being “wobbled” down toward a plane perpendicular

to the z-axis. The classical term for this behaviour is nutation and can be

visualised on gyroscopes and planetary bodies.

In this rotating frame, we can see from Eq. (3-5) that depending on the

duration that the RF is applied, τRF, the magnetisation will be tipped through
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an angle:

θnut = ωnutτRF (3-6)

When ωnutτRF = π/2 we speak of a 90°-pulse, ωnutτRF = π is a 180°-pulse,

and so on.

Using Eq. (3-5), we see the density matrix after an on-resonance 90°-pulse

is entirely −Îy. For an ensemble of spin I = 1/2 nuclei, this pulse has produced

an equally weighted coherence of
∣∣−1

2

〉
and

∣∣+1
2

〉
states. The magnetic moment

of each spin now points in a common direction that, as a whole, creates a

transverse bulk magnetisation. Now in the absence of resonant RF, each spin

will continue to precess around the z-axis as before; but every spin now does so

coherently. This rotating magnetic moment induces an EMF (nowadays) in the

very coil that applied the RF pulse. This signal is called a free induction decay

(FID) and the manner of experimental detection is covered below in §3.5.

Not all pulses generate a coherent response from an ensemble of spins.

After a 180°-pulse the bulk magnetisation will be aligned along the −z-axis and

the populations of the
∣∣−1

2

〉
and

∣∣+1
2

〉
states will be inverted [61].

3.1.1 Hard and Soft Pulses

For spins I > 1/2 there are more than two energy levels and therefore more

possibilities for creating coherences or inverting populations than presented so

far. The representation of the spin state, ρ̂, can no longer be thought of as

a classic vector in a rotating reference frame. The behaviour of half-integer

quadrupolar nuclei under RF irradiation, which can be complicated [85], cannot

be explored now. However, an immediately relevant fact about quadrupolar

nuclei shall be presented.

As shown by the Zeeman-split energy level diagram in Fig. 2-3 the fre-

quency difference between the central transition (CT) energy levels is ω0, which

is the resonant frequency of the applied RF, ωRF. For a double-quantum (DQ)

transition the frequency would be 2ω0; affecting the DQ transition with a CT-

resonant pulse is surely forbidden. However, during the transformation to the

rotating frame in Eq. (3-2) a term was neglected2 containing a magnetic field

2Neglected term is ωnut

(
Îx cos(2ωRFt+ φ) + Îy sin(2ωRFt+ φ)

)
.
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1.00 2.0 3.0 4.0 6.05.0µs

Figure 3-1. The nutation is faster for sites with larger CQ. This array of 11B
spectra shows the effect on lineshape intensity as the pulse length is varied. The
site with large CQ (blue) nutates faster than the site with small CQ (green). See
also theoretical [88, Fig. 9] and experimental [90, Fig. 13] curves.

oscillating at 2ωRF. As this frequency is far from the Larmor frequency it has

a weak effect on the spins and is usually ignored [86]. However, taking the

second-order perturbation of the RF interaction on the energy levels split by

the first-order quadrupolar interaction, it is revealed that a CT-resonant pulse

can affect the forbidden DQ transition [87, Eq. (3)]. Triple-quantum (3Q) and

higher coherences can also be created in this manner.

When a pulse is applied to excite all coherences nonselectively it is termed

hard. These pulses typically have high3 RF power (BRF amplitude) and are

short in duration. For a constant carrier wave frequency, a short-duration high-

power pulse generates a broad range of frequencies. These are more efficient at

affecting the entire CT lineshape as well as exciting forbidden coherences. The

precise behaviour of the spin system depends on the spin (I) of the nucleus and

the frequency separation of ω0 and ωRF [88, §3.3].

Conversely, soft pulses with long duration at low RF power have a narrow

frequency response. These can be used to selectively excite central or satellite

transitions without exciting multiple quantum coherences like DQ or 3Q. Ad-

vantageously, this can enable the response of quadrupolar nuclei to be thought

of as just a single transition, instead of (2I + 1) transitions, allowing the use of

a fictitious spin I = 1/2 operator formalism [89].

Even with a soft pulse, the central transition of half-integer quadrupolar

3ωnut/2π ≈ 100 kHz.
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nuclei are still under the influence of the quadrupolar interaction. This is ap-

parent spectrally—the lineshape is broadened by the second-order quadrupolar

interaction—and via the nutation rate of the spins under RF irradiation. De-

pending on the ratio of ωQ/ωnut, the Î2-3
z magnetisation4 nutates at different

rates [91]. For vanishing ωQ (hard pulse limit), the CT nutation rate is that of

a spin I = 1/2 nucleus. In the (soft pulse) limit ωQ � ωnut, the CT nutation

rate is (I + 1
2
) times faster. This behaviour is shown experimentally in Fig. 3-1.

The repercussion of this effect is that small tipping angles (θnut) must be used

to quantitatively compare lineshapes of differing ωQ [92].

Furthermore, choosing a 180°-pulse length requires the preference of one

range of CQ values over another. Differing nutation rates also explain the dif-

ficulty in spin-locking [93, 94] quadrupolar nuclei that have different values of

ωQ.

3.2 Coherence and Phase Cycling

We have seen how coherence relates to bulk transverse magnetisation caused by

nuclear magnetic moments precessing in synchrony with each other. Coherence

can be generalised to indicate a transition between two spin-states, |r〉 and |s〉,

such that the coherence order is denoted:

prs = Mr −Ms (3-7)

where M is the magnetic quantum number [26].

Transverse magnetisation (e.g. Îx) is a special case where p = ±1. Popu-

lation states (e.g. Îz) and zero-quantum coherence (e.g. Î+Ŝ−) have a coherence

order of zero, p = 0. During free precession the coherence order cannot change—

only pulses can transfer magnetisation between states. A 90°-pulse will excite

all possible coherence orders in a spin system and a 180°-pulse will convert p to

−p.

For quadrupolar or coupled spin I = 3/2 nuclei there are coherence orders

and population states that cannot be visualised as a vector [95]. Using the

irreducible spherical tensor operators developed in §2.9, the density matrix can

4For I = 3/2 the fictitious spin-1/2 operator Î2-3
z =

[
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

]
.
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be visualised as spherical harmonics, both during free precession and RF pulses

[96].

At a basic level we can see that by applying 90°- and 180°-pulses we have

control over the magnetisation of the nuclear spins. But applying RF seems

to be an all-or-nothing approach, exciting or inverting all coherence orders or

none. The method of phase cycling can be used to precisely select the desired

coherence transfer.

The phase refers to the φ term in Eq. (3-2). Not only can the spectrometer

generate RF pulses with different phases, but it can also receive different phases

too. We know that if a coherence is undergoing a change in coherence order

of ∆p then it experiences a phase shift of −∆φ∆p. Matching the receiver

phase with this phase shift (∆φr = −∆φ∆p) allows us to select a particular

coherence, (p) as over the course of a phase cycle the undesired coherences will

experience different phase shifts and be summed to zero. Further information

and examples can be found in Refs. [43, §6.3] and [97, §6.3]. For now, phase

cycles will be discussed when required to explain particular experiments, as a

concrete example can often be more informative than general abstract rules.

Different pulse sequences with certain phase cycling—routing the mag-

netisation along different coherence transfer pathways—are the source of a great

variety of NMR experiments, each designed to make use of specific interactions

to extract information from the nuclei. Each experiment can be represented by

a schematic diagram showing the types of pulses (commonly 90° and 180°) and

the coherence transfers selected by the phase cycling of such pulses. We will

encounter several of these diagrams below, such as in Fig. 3-2.

Determination of phase cycles can be accomplished and optimised by sev-

eral approaches. The conventional method described by Bodenhausen, Kogler

and Ernst [26] can be easily computed and visualised [98] as well as optimised

to give phase cycles of minimum length [99]. This type of phase cycling is

employed in this thesis. Cogwheel phase cycling was invented [100] and opti-

mised [101] by Levitt’s group. Instead of incrementing multiple pulse phases

consecutively in a nested phase cycle, all the pulse phases can be incremented

simultaneously. This can cause a substantial reduction in the number of phase

cycle steps required and, consequently, the duration of the whole experiment.
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Both these methods of phase cycling can be multiplexed, where each transient is

stored separately and processed afterwards to yield the desired coherence trans-

fer pathway [102]. Multiplex phase cycling also reduces the number of phase

cycles required, as well as allowing multiple NMR experiments to be extracted

from the same data set.

Phase cycling calculations are helped by two physical facts. First, only

transverse magnetisation can generate an EMF. As stated above, this corre-

sponds to the specific coherence order p = ±1. We can choose which coherence

(p = +1 or −1) when we sample the induced EMF using quadrature detection5.

The corollary of this first fact is that all coherence pathway transfer diagrams

must end at p = +1 or −1. Secondly, all coherence pathway transfer diagrams

begin in the population state, p = 0, because of longitudinal relaxation return-

ing the system to the equilibrium state of longitudinal magnetisation.

3.3 Longitudinal Relaxation—T1

The spin state at thermal equilibrium was given in Eq. (2-28) as ρ̂(0) ∝ Îz and

we have just seen how RF pulses can convert this longitudinal magnetisation into

transverse magnetisation. The irreversible evolution of a spin system toward

thermal equilibrium is called spin-lattice, or longitudinal, relaxation.

For NMR to be useful the spin system needs to return to thermal equilib-

rium in a reasonable time, ready for the next pulse. Relaxing too fast—around

the µs scale—would damp the FID causing the spectrum to appear very broad.

Relaxing too slowly limits the repetition rate of an experiment as applying RF

pulses before the system has relaxed can lead to saturation of the energy levels

and no FID being received at all. Typical spin-lattice recovery times are of the

order ∼ s, although exceptionally long times of hours or days can sometimes

be found. There are various relaxation mechanisms depending on the state of

matter, nucleus type, sample temperature, paramagnetic purity level, electronic

environment and whether or not external fields are applied, such as radio waves,

micro waves, ultrasound or X-rays.

A basic overview is provided by Levitt [57, §2.6]. Ernst et al. dis-

5See §3.5
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cuss relaxation at four increasingly fundamental levels of physical significance

[97, §2.3]. Two descriptive formalisms are given by Slichter [64, Chs. 5 & 6].

Abragam covers many of the mechanisms [69, Ch. IX], of particular interest

is §II where the relaxation mechanism is caused by fixed paramagnetic impu-

rities. Abragam and Goldman elaborated the description of this mechanism

[103, Ch. 6]. Goldman has recently described a formal theory of spin-lattice

relaxation using Hamiltonian theory and the Liouville–von Neumann equation

(given above in §2.1), which leads to the synthesis of a master equation describ-

ing spin-lattice relaxation [104].

Van Kranendonk had previously discussed quadrupolar relaxation [105]

and this work was continued by Andrew and Tunstall [106]. More experimen-

tal detail of quadrupolar relaxation came from nuclear quadrupolar resonance,

where the Van Kranendonk mechanism was vindicated, but only for low6 tem-

peratures [107]. The Van Kranendonk mechanism was shown not to apply

for quadrupolar nuclei in amorphous materials, where another quadrupolar re-

laxation mechanism is much more efficient at relaxing the nuclei [108, 109].

Multiexponential quadrupolar relaxation was expected and Jaccard et al. ex-

perimentally and theoretically studied this mechanism [110].

The materials studied in this thesis are insulating crystals or glasses,

therefore the main relaxation mechanisms are either due to paramagnetic im-

purities or various forms of quadrupolar relaxation. Specific mechanisms are

discussed below in §6.4 but for now it is appropriate to discuss the most basic

level of formalism; the phenomenological Bloch equations.

If an ensemble of NMR-active nuclei with no initial magnetisation is

suddenly subjected to a B0 field, the magnetisation is given by:

Mz(t) = Meq

(
1− e−t/T1

)
(3-8)

where Mz is the bulk magnetisation along the z-axis at time t and Meq is the

bulk magnetisation at equilibrium, that is, fully relaxed. The key parameter is

the longitudinal, or spin-lattice, relaxation time constant, T1.

At time t = T1 the magnetisation will be only 63.2% relaxed, at 5×T1

the magnetisation will be a more complete 99.3% relaxed. From a standpoint

6<90 K for the case of observing chlorine nuclei in K2PtCl6.



3.3. Longitudinal Relaxation—T1 45

of reproducibility in quantitative studies, the spin system should be left to relax

at least 5×T1 between phase cycle steps.

Multiexponential relaxation can be accommodated by using a weighted

sum of
(
I + 1

2

)
exponentials [109]:

Mz(t) =

I+1/2∑
n=0

Mn
eq

(
1− e−t/T n

1
)

(3-9)

3.3.1 The Saturation-Recovery Experiment

We have seen how the Zeeman interaction (§2.5) splits the nuclear magnetic

energy levels and how we can use radio wave pulses (§3.1) to generate coherences

(§3.2) between these energy transitions. Now is an appropriate time to bring

together all these ideas to describe a basic NMR experiment that can measure

the T1 relaxation time of a given nuclear species in a sample. The saturation-

recovery experiment is shown in Fig. 3-2, in the form of a pulse sequence and

coherence transfer pathway diagram.

The pulse sequence starts with a series of high-power pulses, called a pulse

comb. As the duration between the pulses is much less than the relaxation

time (T1) all the energy levels of the resonant nucleus will be saturated. No

coherences or population states will exist after the pulse comb. This highlights

the necessity of waiting for a suitable duration between phase-cycle steps.

After the pulse comb the spin system starts to relax back to equilibrium.

For spin I = 1/2 nuclei, the longitudinal relaxation was given by Eq. (3-8). For

long relaxation times the magnetisation of the spin system will be entirely in

the population state Iz, which corresponds to p = 0, as shown in Fig. 3-2.

Next, a 90°-pulse is applied. The RF will excite all coherences for the spe-

cific resonant nuclei. All other spins are unaltered. In some cases, e.g. double-

resonance experiments, there would be more than one coherence transfer path-

way diagram corresponding to the separate RF channels. Despite the presence

of all coherences, quadrature detection only detects the p = −1 pathway—a fact

elucidated in §3.5. The magnitude of the detected signal is directly proportional

to the amount of resonant nuclei, making NMR a quantitive technique. After

a suitable duration of detection time (∼ ms) the experiment can be repeated.

If the t1 time was fixed, every subsequent 90°-pulse will be acting on the same
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t1

pulse comb

t2

+1
0
−1

p =

Figure 3-2. Pulse sequence (top) and coherence transfer pathway diagram
(bottom) of the saturation-recovery experiment. The black rectangles signify RF
pulses whilst the durations in between are periods of free precession, labelled t1
and t2. Pulse sequence diagrams are schematic and not to scale. Actual RF
pulses typically last around a µs, whereas t2 is measured in ms and t1 in s. See
§3.3.1 for further details.

starting magnetisation and the experiment will be consistent throughout.

The T1 time of the resonant nuclei in a sample can be measured by

repeating the experiment shown in Fig. 3-2 several times, each with a different

t1 duration. When t1 is near zero we expect very little signal. When t1 is much

longer than T1 we expect a full signal. Values of t1 in between these extremes

will map out a curve according to Eq. (3-8), hence by fitting this curve the

value of T1 can be ascertained. The form of the “signal” does not matter for

this experiment and is covered below in §3.5.

For solution-state NMR, longitudinal and transverse magnetisation re-

laxation times can be similar. Rarely though, does the longitudinal relax faster

than the transverse [111]. For solid-state NMR, the transverse magnetisation

almost always decays long before the longitudinal magnetisation has relaxed

because of the dephasing of transverse magnetisation.

3.4 Transverse Relaxation—T2

In addition to T1, another relaxation time constant is T2. The coherence de-

phasing time can be imagined using the vector model as individual precessing

magnetic moments falling out of synchronisation with each other. This can be

visualised as many vectors in the rotating frame initially pointing along a single

direction in the x-y plane. As time progresses the vectors spread out evenly

across the whole x-y plane to give zero net transverse magnetisation.

Ideally, the bulk magnetisation of fully relaxed nuclei after a perfect 90°-
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pulse and no other interactions is described below, in the laboratory frame:

Mx(t) = Meq sin(ω0t)
(
e−t/T2

)
My(t) =−Meq cos(ω0t)

(
e−t/T2

) (3-10)

Equation (3-10) describes an exponentially damped bulk magnetic mo-

ment, precessing with angular frequency ω0 in the x-y plane.

In reality, there will be a spread of precession frequencies causing a broad-

ening of the spectrum. This obviously has a detrimental effect on the resolution

but also masks the informative interactions and true transverse relaxation with

equipment-specific dephasing. The experimentally measured peak width in a

spectrum will be ∝ 1/T *
2 . The true transverse relaxation (T2) along with the

interaction and equipment-specific dephasing (T
′

2 ) contributions make up the

measured dephasing time like so:

1

T *
2

=
1

T2

+
1

T
′

2

(3-11)

Most often in solid-state NMR T
′

2 � T2, therefore the true transverse

relaxation is rarely measured and the explanation of its cause is not required

here. The T
′

2 term encompasses factors such as imperfect apparatus and nuclear

spin interactions, e.g. the residual heteronuclear dipolar interaction not removed

by 1H decoupling and multiple non-commuting homonuclear dipolar couplings.

A spin-echo can be used to measure T
′

2 by removing or refocusing the

inhomogeneous broadening caused by the equipment as well as chemical shift

offsets. Only the factors that incoherently dephase the transverse magnetisation

remain, such as the true transverse relaxation and, e.g. the heteronuclear dipolar

interaction. But as stated above T
′

2 � T2, henceforth the assumption will be

that spin-echo experiments measure T
′

2 .

3.4.1 The Spin-Echo Experiment

A spin-echo experiment is shown in Fig. 3-3. After a suitably long relaxation

delay the magnetisation will be fully longitudinal. A 90°-pulse excites a single

quantum (SQ) coherence, chosen by phase-cycling. The magnetisation pre-

cesses according to Eq. (3-10), but there is a spread of ω0 values—some spins

are “fast” and some are “slow”. After a duration of τ/2 a 180°-pulse is applied,
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τ/2 τ/2 t2

+1
0
−1

p =

Figure 3-3. Pulse sequence and coherence transfer pathway diagram of the
spin-echo experiment. See §3.4.1 for details.

which reverses the direction of the precession. Now the fast spins are quickly

“undoing” their previous evolution whilst the slow spins slowly undo theirs.

After another τ/2 all the respective evolutions of the spins are back where they

started and detection of the signal begins. The coherent dephasing effects7 are

refocussed by the 180°-pulse, but any irreversible dephasing from interesting

spin-spin interactions8 will cause a reduction in signal. By repeating the ex-

periment with varying τ duration, the coherence dephasing time
(
T

′
2

)
of the

nucleus under study can be determined. If varying experimental conditions

changes the dephasing time then additional information about the interactions

can be extracted.

Mathematically, the features of coherence transfer echoes are discussed

below (§3.8) with regard to refocussing the fourth-rank portion of the second-

order quadrupolar interaction. Application of the given theory can be elemen-

tarily applied in this case of single-quantum coherences with equal evolution

and detection times.

Modifications to this basic spin-echo theory for application to quadru-

polar nuclei involves modifying Eq. (3-10) to accommodate multiexponential

relaxation. In addition, the multiple quantum coherences are best dealt with

using a density matrix formalism rather than the vector model [112].

There are many practical uses for a spin-echo beyond measuring T
′

2 . For

rapidly dephasing transverse magnetisation (from natural broad spectral lines),

a spin-echo can remove the signal loss and phase problems by avoiding the

spectrometer dead-time after a pulse. A series of echoes can enhance sensitivity

of quadrupolar lineshapes, in what is termed a QCPMG9 experiment [115]. As

7E.g., magnetic inhomogeneity, chemical shift offsets.
8E.g., noncommuting homonuclear dipolar couplings, quadrupolar-dipole interactions.
9This quadrupolar experiment is a modification to the eponymous pulse sequence invented
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the J-coupling is not refocused by a spin-echo, detection of a cosinusoidal factor

to the exponential decay can reveal this interaction [116].

3.5 Signal Detection

We have seen that by applying an RF pulse—that is not exactly 180°—to an

ensemble of spins we will have converted some of the longitudinal magnetisa-

tion (p = 0) to transverse magnetisation (p = ±1). As this bulk transverse

magnetisation precesses in the static magnetic field, RF is detected in the coil

surrounding the sample. A typical wavelength of a, for example, 300 MHz, radio

wave is '1 m. The coil that envelopes the sample is on a scale 100 times smaller

than this wavelength. Therefore, the idea that the NMR signal is predominantly

caused by coherent spontaneous emission (radio waves) is incorrect. The NMR

signal can be explained as a near-field phenomenon by Faraday’s law, as a rotat-

ing magnetic moment induces an electromotive force (EMF) in a nearby open

circuit [117, 118].

This current is the aforementioned signal, which contains a wealth of

information as the exact frequencies present disclose the active spin interactions.

After preamplification, the signal is mixed down with the carrier wave frequency

so the electronics only have to deal with frequencies up to ∼ 0.5 MHz instead of

∼ 500 MHz. This is conveniently equivalent to viewing the interactions in the

rotating frame.

Disregarding relaxation, the bulk transverse magnetisation propagates

according to eiωt, which can be written as cos(ωt) + i sin(ωt). Both real and

imaginary components must be measured to separate +ω from −ω. This is

achieved by using two phase-sensitive detectors set 90° out of phase, such that

one effectively measures the x-axis magnetisation and the other measures the

y-axis magnetisation. A schematic bulk magnetic moment propagating in time

is shown in Fig. 3-4, along with projections that represent the phase-sensitive

detectors.

Referring back to §2.1, we know that the magnetisation is physically ob-

servable and proportional to an expectation value, either 〈Î−〉 or 〈Î+〉. This

by Carr, Purcell [113], Meiboom and Gill [114].
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Figure 3-4. The black curve follows the tip of the bulk magnetisation vector
as it precesses in time. The quadrature detectors are represented by the two
projections shown in green and blue. It is clear that if there was only one detector
it would not be possible to determine the direction in which the magnetisation
was precessing. Figure calculated in Mathematica™.

might be alarming as for an individual spin we cannot know the magnetisation

(quantised angular momentum) in the x and y directions simultaneously. How-

ever, the current in the coil is caused by the bulk magnetisation from the spin

ensemble and hence this macroscopic property avoids violating Heisenberg’s

principle.

The signal can be calculated10 by taking the trace of the scalar product

between the density matrix and the appropriate11 physical observable:

s(t) =
〈
Î†−

∣∣∣ ρ̂rot(t)
〉

= Tr
[
Î+ ρ̂rot(t)

]
= Tr

[
ρ̂rot(t) Î+

] (3-12)

In the following spin I = 1/2 example, the initial density matrix is set

to Îx =
[

0 1/2
1/2 0

]
and the Hamiltonian is only a frequency offset, Ĥ = ΩÎz =

(ω0 − ωRF)Îz. Propagation using Eq. (2-5) gives ρ̂(t). Then taking the scalar

product with the raising operator gives:

ρ̂rot(t) Î+ =

 0 1
2
e−iΩt

1
2
eiΩt 0

 ·

0 1

0 0

 =

0 0

0 1
2
eiΩt

 (3-13)

10See, e.g. Ref. [75, Eq. (2.15)].
11We choose Î− which corresponds to p = −1 coherence. The expectation value is the

transposed and conjugated detection operator, which in this case is Î†− = Î+. In §5.3, pN-
MRsim simulations are introduced where we have to specify a detection operator. Choosing
Ip (Î+) accomplishes the selection of p = −1 coherence [119, Eq. (17)].
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Our quadrature detected signal is therefore, according to Eq. (3-12):

s(t) = 1
2
eiΩt = 1

2
(cos(Ωt) + i sin(Ωt)) (3-14)

which is what we see in a complex oscillation—two signals separated in phase

by 90°. These two signals are digitised at a sampling rate given by the required

spectral width. To transform these complex signals into a spectrum we can

apply a discrete-time Fourier transform operation.

3.6 Fourier Transform

The Fourier transform has a long history in NMR [12, 13] and has been covered

extensively in textbooks, [69, p. 114], [120, Ch. 3.10], [121, Ch. II].

The signal is a digitised list of complex numbers, s[n], where n goes from

zero to the number of acquired points, TD. The discrete-time Fourier transform

is then used:

S(ω) =
TD−1∑
n=0

s[n] e−iωn (3-15)

As an ideal case we can use a signal, at frequency Ω, with relaxation rate

R = 1/T2. Such a signal is described by:

s(t) = eiφ eiΩt e−tR (3-16)

where eiφ is an arbitrary phase factor.

Fourier transforming this ideal signal, where φ = 0, yields a complex

spectrum that comprises of two parts, historically termed absorptive and dis-

persive:

S(ω) = A(ω) + iD(ω) (3-17)

where

A(ω) =
R

R2 + (Ω− ω)2

D(ω) =
(Ω− ω)

R2 + (Ω− ω)2

(3-18)

The lineshapes described by Eq. (3-18) are Lorentzian, centred at fre-

quency Ω. The absorptive lineshape has a full-width at half-maximum of

2R = 2/T2 (in rad s−1) = 1/πT2 (in Hz).
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t1 t2

Preparation Evolution Mixing Detection

Figure 3-5. Defining times in a two-dimensional experiment. During the prepa-
ration time RF pulses and/or delays generate the desired coherences. These
coherences evolve for variable time, t1, which is incremented in a series of oth-
erwise identical experiments. This forms what is called the indirect dimension.
Further RF pulses and/or delays mix, or convert, the evolved coherences into
a detectable coherence. This signal is then acquired during the second variable
time, t2, or direct dimension.

The arbitrary phase factor, caused by instrumental factors, has the effect

of mixing the absorptive and dispersive components of S(ω). This is easily

corrected by multiplying the signal by e−iφ, with the aim of obtaining a purely

absorptive spectrum—a process referred to as phasing.

For two-dimensional (2D) experiments there are two periods of evolution,

shown in Fig. 3-5. Ignoring phase factors and relaxation the form of the signal

is:

s(t1, t2) ∝ eiΩ1t1 eiΩ2t2 (3-19)

which Fourier transform to give a 2D spectrum:

S(ω1, ω2) ∝ (A1 + iD1)(A2 + iD2)

∝ (A1A2 −D1D2) + i(A1D2 +A2D1)
(3-20)

The real part of this spectrum is a product of absorptive and dispersive

components that cannot be separated by multiplying the signal with a corrective

phase factor; it is a phase-twisted lineshape and shown in Fig. 3-6b. The D1D2

component has especially broad wings and therefore undesirably reduces spec-

tral resolution. As mentioned in the introduction, there are two methods that

extend the idea of quadrature detection to a second dimension. One method is

termed time proportional phase increment (TPPI) and is described elsewhere
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[23]. The 2D spectra presented in this thesis use the States-Haberkorn-Ruben

method, or “States” for short [22]. A prerequisite for this method is an am-

plitude modulated experiment, the hallmark of which is that both +p and −p

coherences are allowed to evolve during t1
12. The t1 duration along with other

defining times in a two-dimensional experiment were given in Fig. 3-5.

The acquired signal of an amplitude-modulated experiment, ignoring re-

laxation, is similar to Eq. (3-19) but with two contributions from the t1 evolution

period:

scos(t1, t2) ∝
(
eiΩ1t1 + e−iΩ1t1

)
eiΩ2t2 = 2 cos (Ω1t1) eiΩ2t2 (3-21)

Unlike Eq. (3-19) the modulation in t1 is governed by a cosine term rather

than a phase term—the spectrum is modulated in t1 in amplitude rather than

phase [122, §2.3.2]. Note that a Fourier transform of this signal will give purely

absorptive lineshapes, but is unable to determine the sign of Ω1 as only a single

indirect detection has been used.

The pseudo-quadrature States detection appears when the whole exper-

iment is repeated, with the preparatory portion (as defined in Fig. 3-5) phase-

shifted13 by eiπ/2 = 90°. The signal for this experiment is:

ssin(t1, t2) ∝
(
eiπ/2 eiΩ1t1 + e−iπ/2 e−iΩ1t1

)
eiΩ2t2 = −2 sin (Ω1t1) eiΩ2t2 (3-22)

Fourier transforming the t2 dimension for each experiment gives:

scos(t1, ω2) ∝ 2 cos (Ω1t1) (A2 + iD2)

ssin(t1, ω2) ∝ − 2 sin (Ω1t1) (A2 + iD2)
(3-23)

which expresses two signals 90° out of phase and almost identical to Eq. (3-14),

which described the quadrature-detected FID. To make Eq. (3-23) equivalent

to Eq. (3-14) we can discard the imaginary parts (iD2) and reverse the sign

of the sine component. Now we can set the real-only sine component to the

“imaginary” channel, which is a neat trick that helps determine the sign of the

frequency, Ω, in the indirect dimension. Thus:

stotal(t1, ω2) ∝ 2 cos (Ω1t1)A2 + 2i sin (Ω1t1)A2

∝ 2 eiΩ1t1A2

(3-24)

12These coherences will propagate as eipΩt1 , which is accounted for by the choice of Ω1.
13Practically the phase-shift depends on the coherence order during t1 evolution and is

given by 90°/|p|, but the receiver phase follows this (see §3.2) hence the acquired signal is
always 90° out of phase as Eq. (3-22) shows.
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a) b)

Figure 3-6. Real components of simulated 2D lineshapes recorded with; a)
amplitude-modulation to obtain pure absorptive mode in both dimensions, b)
single pathway (phase modulation) and complex 2DFT, which gives a phase-
twist lineshape described by Eq. (3-20). Both lineshapes are plotted to the same
scale with 200 Hz Lorentzian broadening. Contours increase by ×2 from a base
of 3% of the maximum intensity.

a final Fourier transform of the t1 dimension gives:

S(ω1, ω2) ∝ (A1 + iD1)A2 (3-25)

The spectrum described by Eq. (3-25) has a real part that is purely ab-

sorptive and has the Ω-frequency sign-discriminated. A comparison of this,

much narrower, lineshape to the phase-twisted lineshape described by Eq. (3-20),

is presented in Fig. 3-6.

3.7 The Spin Diffusion Experiment

The spin diffusion experiment is the base on which the results of Ch. 7 stand.

The origins of the term spin diffusion can be traced back to §5 of Bloembergen’s

1949 article on spin-lattice relaxation [123]. However, the kind of spin diffusion

covered in this thesis involves an exchange of magnetisation between inequiva-

lent spins and is termed spectral spin diffusion. This is because the process can

be considered as diffusion in frequency space [124, 125].

Spectral spin diffusion can be used to obtain spatial proximity infor-

mation in solids. This is similar to nuclear Overhauser effect spectroscopy

(NOESY) in solution-state NMR, in fact, the pulse sequences are identical; cf.

Fig. 3-7 and [21, Fig. 1]. However, it is the fast tumbling motion of the molecules
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in a liquid that cause the NOE—an incoherent relaxation phenomenon not found

in solids [120, §5.12]. Another cause of spin diffusion that will not be pursued is

chemical exchange, whereby an atom physically moves to another chemical site

and in doing so has a different chemical shift but no magnetisation is actually

transferred [126].

Spin diffusion requires some kind of energy conserving process if the

magnetisation is to hop between spins. To explain this, first consider two de-

generate transitions—overlapping spectral lines—and the flip-flop part of the

dipolar Hamiltonian,
(
Î+Ŝ− + Î−Ŝ+

)
given in Eq. (2-37). Magnetisation will

oscillate between the nearby spins because it costs nothing to do so. However, if

there are additional interactions then this oscillation may be strongly damped.

Now, if the two spins have different resonance frequencies then the flip-

flop process is not energy conserving, therefore an additional source of energy

has to be present to enable spin diffusion to continue [127]. These sources are

many and varied, including: an abundance of strongly coupled high-γ nuclei

(proton-driven spin diffusion), a radio frequency field (RF-driven spin diffusion),

macroscopic rotation (rotational resonance), any interaction (Λ) where the spin-

part of the irreducible spherical tensor operator (T̂Λ) does not commute with

the spin-part of the homonuclear dipolar coupling operator14 (T̂20), multiple

strong and non-coincident homonuclear dipolar couplings.

This last mechanism is responsible for broadening proton spectra [128,

129]. The effect on most other nuclei is negligible under MAS, but broadening

can be seen for moderately high-γ nuclear species if sufficiently abundant, e.g.

11B NMR spectra in Fig. 6-9. This broadening appears in 2D spin diffusion

spectra as well and plays a part in driving the spin diffusion. Multiple noncom-

muting homonuclear couplings truncate the dipolar interaction by dominating

the weak couplings between far-apart nuclei. This effect causes difficulty in

quantitative distance measurements, even for three spin I = 1/2 nuclei [130].

Additional spin-diffusion mechanisms that can be disregarded for the

remainder of this thesis include; molecular tumbling (applicable to liquids),

CSA-driven (does not usually dominate in quadrupolar cases [27, 131]) and

14Given in Eq. (2-35)
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Figure 3-7. Pulse sequence and coherence transfer pathway diagram of the
spin-diffusion (NOESY-like) experiment. See §3.7 for details.

quadrupole-dipole interaction cross-terms15 (typically small, but because of the

presence of an isotropic component cannot be removed by spinning around any

axis [132, 133]).

With an understanding of the various mechanics of spectral spin diffusion

we can now introduce a 2D NMR experiment to probe this phenomenon. The

pulse sequence and coherence transfer pathway diagram of the spin diffusion

experiment is shown in Fig. 3-7. There are various phase-cycling schemes to

achieve this coherence transfer pathway. Only two of the three pulses need to

be phase-cycled. This can be achieved by phase-cycling the last two pulses and

using TPPI [24, Tab. 1]. However, as the experiment is amplitude-modulated,

States can be employed. A phase cycle where the first and third pulses are

cycled instead of the latter two was used in this thesis. The phase cycle is given

in Tab.A-2.

For application to half-integer quadrupolar nuclei, soft pulses are used

and the system can notionally be thought of as fictitious spin I = 1/2 nuclei

[89]. Of course, the quadrupolar interaction is still present and may even be

driving the spin diffusion, but multiple-quantum coherences do not need to be

considered as they are not selected by the phase cycling. The spin diffusion

experiment only correlates single-quantum with single-quantum and, contrast-

ingly, we shall see below (§4.1) homonuclear correlation experiments that seek

to correlate different quanta.

The first 90°-pulse in the sequence, and subsequent t1 time, allows the

single-quantum (SQ) magnetisation to precess at a characteristic frequency and

is similar to the one-pulse experiment described in §3.3.1. The second 90°-pulse

15Cross-terms here are second-order entities and do not refer to the noncommutation of the
quadrupolar and dipolar interactions separately.
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converts the SQ coherence into a population state. This state is maintained

for a duration, τmix, called the mixing time, as it is during this period that

the individual spins can exchange magnetisation. For zero mixing time it is

expected that there will be no magnetisation exchange and for long mixing

times it is expected that the magnetisation will reach an equilibrium between

the different chemical sites. After the mixing time a third 90°-pulse is applied,

the spins once again precess at their characteristic frequencies and a signal is

detected. This procedure is repeated as many times as required to satisfy the

phase-cycle with States and to acquire a suitable number of t1 times for the

indirect dimension.

After a Fourier transformation of both t1 and t2 time dimensions is per-

formed, a 2D spectrum is obtained. Magnetisation that has not been exchanged

will have precessed at the same characteristic frequency during both times, giv-

ing rise to a peak on the diagonal of the spectrum. Magnetisation that has been

exchanged between chemically inequivalent sites will have precessed at one fre-

quency during t1 and another during t2. A peak will appear off-diagonal in the

spectrum and at the direct-dimension chemical shift of the spin where the mag-

netisation has finally resided. These two cases give rise to diagonal auto-peaks

and cross-peaks, respectively [124].

Seeing a cross-peak in a spin-diffusion spectrum provides two pieces of

information:

(i) Magnetisation has exchanged between chemically inequivalent sites that

are close in space.

(ii) There exists an energy-balancing mechanism to allow such an exchange to

occur.

Further information can be extracted about (i) by performing the spin

diffusion experiment multiple times with varying mixing time. Integrating the

cross-peak area and plotting as a function of mixing time yields a buildup

curve, potentially containing information about the average distance between

the spins16. But we know for τmix � T1 there will be no signal as the spin system

16This is theoretically true assuming no chemical exchange, otherwise the experiment mea-
sures kinetic rate constants.
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will have fully relaxed and dephased. Such longitudinal relaxation will occur

during the mixing time, affecting the whole signal. To produce a “normalised”

buildup curve, the integrated cross-peak areas can be divided by the auto-peak

areas. Then, for long mixing times before total dephasing, the magnetisation

is seen to equilibrate between the spins, as expected from a stochastic diffusion

process.

To be confident that the distance information obtained is accurate the

cause of (ii) should be known. There are ways to help determine this cause.

For example, if there are protons in the sample, does decoupling17 reduce or

remove the cross-peaks? If changing to different static magnetic field changes

the rate of buildup then the CSA or second-order quadrupolar interaction might

be the mechanism, rather than the first-order quadrupolar interaction that is

not B0 dependent [131, Tab. 1]. However, with a different field the spectral

lines will be separated by a different frequency, which could cloud matters if

rotational resonance is involved. Changing the spinning speed will also give

information about this cause, but as nearly all the mechanisms depend on spin-

ning speed the outcome may be tricky to interpret. As the dipolar interaction

is coupling the spins we know that increasing the MAS rate will certainly affect

the spin diffusion, with very fast MAS removing the interaction—and there-

fore cross-peaks—entirely. In a multiple noncommuting homonuclear dipolar

coupled system, increasing the MAS rate will suppress the effective dipolar

coupling monotonically. Therefore, if the buildup rate peaks at a certain spin-

ning speed then the energy-balance mechanism at this point could probably be

an incoherent resonance between an anisotropic interaction (e.g. quadrupolar)

or a coherent resonance due to the rotation of the sample [134].

At a rotational-resonance condition the energy difference required18 to

balance the spin flip-flop is taken from the coherent mechanical rotation of the

sample around the magic angle [127, §V.D]. Such conditions occur when the

difference in isotropic chemical shift19 is equal to an integer multiple of the

spinning speed, i.e. ∆δiso = nνr. The special case of n = 0 rotational-resonance

corresponds to overlapping lineshapes. For the other conditions, n > 0, the

17Disrupting the heteronuclear dipolar field using RF pulses.
18In frequency units this is equal to the chemical shift difference.
19∆δiso = |δiso,1 − δiso,2|
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behaviour of magnetisation transfer can be approximated as if the inequivalent

spins were actually overlapping lineshapes.

The rotational-resonance conditions for dilute spin I = 1/2 nuclei (e.g.

13C nuclei) are comparatively narrow, ∼ 10 Hz wide [135, Fig. 3]. Consequently,

two lineshapes can be completely enveloped by the rotational-resonance condi-

tion and, in this case, rapid oscillatory exchange of longitudinal magnetisation

occurs between the sites. The time evolution of the oscillation can be used for

measuring internuclear distance (up to 5 Å) between the sites with considerable

accuracy [136]. The method has aided structural characterisation of, amongst

other compounds, an enzyme-inhibitor complex, a membrane protein structure

and a receptor-bound neurotransmitter embedded in its native membrane en-

vironment [137–139].

If there are more than two peaks in the spectrum then it is likely that only

two will fall under the rotational-resonance condition. For a 2D experiment this

will enhance their respective cross-peak and without sensible interpretation such

an enhancement could be misconstrued to mean these sites were much closer

than they are in reality.

Because of the narrowness of the rotational-resonance condition, second-

order broadened half-integer quadrupolar lineshapes are unlikely to be com-

pletely covered by the condition. This either precludes the use of rotational

resonance to deliberately enhance the spin diffusion between half-integer quad-

rupolar nuclei, or could lead to distorted cross-peaks. Nijman et al. proposed

a method for using rotational resonance on half-integer quadrupolar nuclei

whereby the MAS rate is swept to achieve a broader coupling condition [140].

They also note that only the central transitions of the coupled nuclei signifi-

cantly contribute toward the magnetisation transfer, justifying the decision to

use soft pulses in spin diffusion experiments.

There is a state in which half-integer quadrupolar nuclei are not second-

order broadened; under DOR. In such an experiment the rotational-resonance

effect could be fully used to enhance spin diffusion. However, changing the

spinning speed to match the condition is severely limited by the narrow range

at which the DOR outer rotor can spin (500 Hz to 2000 Hz). Reciprocally, the

low spinning speed often entails that the homonuclear dipolar coupling is not
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fully averaged away and so spin diffusion proceeds at a swift rate, without the

requirement for a rotational-resonance enhancement.

Spin diffusion experimental details are given in §5.2.3 and spectra can be

found in Ch. 7.

3.8 The Multiple Quantum MAS Experiment

Definitively, a quadrupolar nucleus has more than two energy levels. This

implies—according to Eq. (3-7)—that the spin of a quadrupolar nucleus can

support a coherence order p > 1, termed multiple quantum coherence.

We have seen previously (§2.10.1) how quadrupolar nuclei can suffer from

a second-order broadened central transition. Besides DOR, another method

to remove this broadening is to use multiple quantum coherences to refocus

the second-order quadrupolar interaction. Multiple quantum MAS (MQMAS)

is a technique that operates under similar principles to the spin-echo (§3.4)

experiment, which refocussed evolution under an offset. This refocussing effect

is now put on a firm mathematical footing in terms of the spin interactions and

coherence order present under evolution and detection periods, specifically for

an MQMAS experiment.

For example, consider the two-pulse sequence in Fig. 3-8. The range of

coherence orders considered has been expanded to account for the increased

number of energy levels available to, in this example, a spin I = 3/2 nucleus.

The first pulse prepares triple-quantum (3Q) coherence for the evolution time,

t1. The second pulse mixes the coherences for detection, physically constrained

to be the SQ coherence p = −1. All coherences will be excited by the first hard

pulse and a six-step20 phase-cycle is employed to select only the evolution of the

coherences of interest (±3). The signal [Eq. (3-12)] depends on the Hamiltonian

that has been propagated, according to Eq. (2-5). As we are under MAS con-

ditions, consider just the Zeeman and second-order quadrupolar interactions.

Referring to Fig. 3-8, there is a 3Q evolution time for duration t1 and a SQ

evolution time for t2. In general, for half-integer quadrupolar nuclei, the signal

20 φ1 = 0°, 60°, 120°, 180°, 240°, 300°. φR = 0°, 180°, 0°, 180°, 0°, 180°.
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Figure 3-8. Pulse sequence and coherence transfer pathway diagram of an
MQMAS experiment [36].

will be:

s(t1, t2) ∝ eiω
(2)
m,−mt1 eiω

(2)
m,−mt2 (3-26)

where ω
(2)
m,−m is the frequency shift of the coherence order (|±m〉 ↔ |∓m〉)

caused by the second-order quadrupolar interaction and is given in Eq. (2-62),

which is ∝ ĤQ. Explicitly:

s(t1, t2) ∝ e
i
“
AI

3/2
Q0+CI

3/2
Q4d4

00(βRL)
”
t1

× e
i
“
AI

1/2
Q0+CI

1/2
Q4d4

00(βRL)
”
t2

(3-27)

where, assuming MAS and rotor synchronisation, the middle term containing

d2
00 was averaged to zero after one rotor period and therefore not present in

Eq. (3-27). The isotropic term, Q0, will shift every crystallite equally and does

not contribute to the broadening, but importantly, is not refocussed by the

MQMAS-echo. The fourth-rank anisotropic term, Q4, was given in Eq. (2-63)

and for a certain ηQ and crystallite orientation, evaluates to a scalar. Since we

are at the magic angle d4
00(arctan

√
2) = − 7

18
, evidently a scalar as well.

The scalar coefficients, CI
3/2 and CI

1/2 are given in Tab.A-1. These values

are the key to refocussing the anisotropic broadening as they are the only por-

tions in Eq. (3-27) that differ between the evolution and detection periods. The

fourth-rank portion of Eq. (3-27), ignoring the factors d4
00 and Q4, is:

s(t1, t2) ∝ e

“
CI

3/2
t1+CI

1/2
t2

”
(3-28)

Evidently if CI
3/2t1 = −CI

1/2t2 the whole term would evaluate to unity

and the anisotropic broadening would disappear. For a given t1 duration this
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refocusing would appear at a time in t2 given by:

t2 = −
CI

3/2

CI
1/2

t1 (3-29)

For our example involving a spin I = 3/2 nucleus, C
3/2
3/2 = −3/20 and

C
3/2
1/2 = 27/140, making the ratio −7/9. Substitution into Eq. (3-29) indicates

that a refocussed echo will form when t2 = 7
9
t1. This example corresponds to

the solid-line coherence transfer pathway in Fig. 3-8. Another solution exists

indicated by the dotted line, which forms what is termed an antiecho at time

t2 = −7
9
t1, i.e. before the second pulse21. Consider another example, this time

for a spin I = 5/2 nucleus. Looking up the coefficients in Tab.A-1 we find the

ratio to be 19/12—a different sign to the spin I = 3/2 case. In this case the echo

and antiecho pathways in Fig. 3-8 are reversed and the refocussed echo forms at

positive time t2 = 19
12
t1.

As the MQMAS-echo does not refocus isotropic terms, such as δiso and

those ∝ Q0, inequivalent sites will be separated but appear unbroadened.

As higher-order spins can support higher-order quantum coherences it is

possible to perform MQMAS experiments that evolve under these instead of

the 3Q example presented above [141, 142]. There is a potential advantage in

gaining resolution that must be weighed against the disadvantage of a sensitivity

reduction involved in exciting these higher-order coherences.

Based on §3.5 we might expect to perform this experiment with States

to give purely absorptive peaks in both dimensions because both ±p coherences

are evolving during t1. However, this is not the case as the coherence transfer

pathways are asymmetric22. Two methods to obtain purely absorptive MQMAS

spectra are to record the whole echo [80], or add a z-filter [144]. The pulse

sequence for the latter method is shown in Fig. 3-9.

Using a z-filter achieves symmetric coherence transfer pathways, hence

giving amplitude modulation and pure absorption-mode 2D lineshapes [145].

Further improvements in lineshape and sensitivity can be found by using rotor

21The antiecho can be recorded by adding a single-quantum spin-echo pulse after the MQ-
MAS experiment.

22Generally, purely absorptive lineshapes would fail to be acquired due to the difference of
efficiencies caused by the different change in coherence transfer, ∆p. In the special case of
using 3Q coherence on a spin I = 3/2 nucleus these efficiencies can be matched with carefully
optimised RF power and tipping angle [143, Fig. 4A].
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Figure 3-9. Pulse sequence and coherence transfer pathway diagram of an
MQMAS experiment with a z-filter to provide amplitude-modulation. The first
two pulses should use high-power RF for maximum 3Q excitation and conversion
efficiency. The last pulse should be a selective 90°-pulse.

synchronised acquisition [146].

The spectral lineshapes in these 2D MQMAS experiments still contain

the quadrupolar information in the broadened anisotropic direction. These lines

appear angled on the spectrum, according to the ratio given in Eq. (3-29) [147].

If we wish to have the anisotropic direction parallel to the (direct) F2-axis

and the isotropic direction parallel to the (indirect) F1-axis, then a shearing

transformation must be performed [122, §6.1].

The split-t1 approach circumvents the need for shearing by, as the name

suggests, splitting the t1 duration between MQ coherence evolution and SQ

coherence evolution [148]. This allows the refocussing of the anisotropy to be

fixed at t2 = 0 for any value of t1. The exact ratio of split duration and positions

in the modified pulse sequence depend on the nuclear spin number, I, and which

MQ coherence is being excited.

Since these founding efforts established robust pulse sequences for re-

focussing the second-order quadrupolar broadening, further development has

been toward increasing sensitivity and resolution. To this end there are re-

ports of using rotation-induced adiabatic coherence transfer (RIACT) to en-

hance 3Q↔SQ coherence transfer [149] by spin-locking the magnetisation [150].

Similarly, double frequency sweeps (DFS) can efficiently transfer 3Q→SQ co-

herences [151, 152] as can fast amplitude modulation (FAM) of pulses [153]. A

rotary resonance between the RF field and the sample rotation has also been

used to enhance 3Q preparation and mixing pulses in a scheme called FASTER-

MQMAS [154]. Often these enhancement techniques can be used together [155].
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Figure 3-10. Pulse sequence and coherence transfer pathway diagram of an MQ-
MAS experiment. This variant is amplitude-modulated split-t1 z-filtered 3QMAS
with FAM. As the coherence path lengths are symmetric the experiment is am-
plitude modulated. Split-t1 experiments evolve during the t1 dimension partly
through 3Q coherence and partly through SQ coherence. This avoids having to
shear the spectrum during processing as the isotropic dimension will already be
parallel to F2-axis. FAM provides efficient ∆p = ±2 coherence transfer.

For spectrometers supporting multiplex phase cycling [102] multiple coherence

transfer pathways can be recorded at once and, suitably mixed, provide a sig-

nal enhancement [156]. Recently, comparisons of these—and other—techniques

have been directly compared with regard to signal and resolution enhancement

[157, 158].

As we have seen there are many variants of the MQMAS experiment and

it would be helpful to introduce now the type used later in this thesis, which

is an amplitude-modulated split-t1 z-filtered 3QMAS with FAM. The pulse

sequence is shown in Fig. 3-10 and the 96-step phase cycle can be found in the

literature [80, Tab.A3]. The MQMAS spectrum is given in §6.3.3.



CHAPTER 4

Review of Correlation Experiments

NMR-active nuclei can be correlated via the dipolar (through-space) or the J

(through-bond) interactions. Correlation between like isotopes is homonuclear,

whilst dissimilar isotopes can have a heteronuclear correlation. Homonuclear

correlation between half-integer quadrupolar nuclei is the main concern of this

thesis. Correlation using the dipolar interaction is covered first. Edén has re-

cently reviewed this field, with a focus on double-quantum dipolar recoupling

[159]. In the concluding section, correlation using the J-coupling is examined,

an area in which Amoureux et al. have reviewed the recent developments [160].

Although often involved in these experiments for half-integer quadrupolar nu-

clei, enhancement techniques (e.g. DFS, FAM, RAPT, HS) have been discussed

in detail elsewhere [161].

4.1 Homonuclear Dipolar Correlation

4.1.1 Effect on 1D Spectra

Whilst perhaps not exactly a true correlation, the dipolar coupling strength

between two half-integer quadrupolar nuclei can be found by examining their

spectral lineshapes, in special cases. As we saw in §2.7.1 for an isolated pair

of spin I = 1/2 nuclei, the dipolar coupling is perfectly removed by MAS after

one rotor period; there will be no dipolar linebroadening. The quadrupolar case

65
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is different. Because the I2
z portion of the first-order quadrupolar interaction

[Eq. (2-49)] does not commute with the I± portion of the dipolar interaction

[Eq. (2-37)] the perfect removal of the dipolar interaction by MAS is thwarted.

This noncommutation leads to a linebroadening as the quadrupolar interaction

is reintroducing, or recoupling, the dipolar interaction that MAS would other-

wise remove. Edén and Frydman noted that this type of dipolar recoupling

is most prominent for overlapping lineshapes that have small CQ and large

Larmor frequencies [76]. Facey et al. also used first-order quadrupolar driven

recoupling to measure 2H–2H distances by observing the broadening of MAS

lineshapes [162]. However, care is needed when fitting lineshapes as several

broadening mechanisms can act at once, not least the noncommutation of mul-

tiple homonuclear dipole interactions [130, §II]. An approach avoiding this pitfall

is to observe the transfer of magnetisation rather than fit lineshapes. Gan was

able to extract 2H–2H distances and tensor orientations for α-glycine via this

method [163].

Linebroadening due to the dipolar interaction also affects the isotropic

dimension in MQMAS experiments. This phenomenon has been used by Duer

to gain structural information on Na2SO4 by simulating the high-resolution

spinning sideband pattern [164]. Wi and Frydman developed the theory of

heteronuclear and homonuclear dipolar coupling between quadrupolar spins and

were able to simulate 11B MQMAS spectra of various boron containing organic

samples [132]. By comparing simulations to experiment, the dipolar coupling

strength between the boron nuclei, and hence the distance, was found. In this

case a diborane complex was chosen as it contains directly bonded boron nuclei

as an isolated spin-pair.

4.1.2 Spin Diffusion

Under MAS, spin diffusion spectra that correlate SQ with SQ (schematically

shown in Fig. 4-1a) will suffer from second-order quadrupolar broadening. How-

ever, by exciting triple-quantum for the t1 evolution period, such that the co-

herence transfer pathway is 0 → ±3 → 0 → −1, the second-order quadru-

polar interaction can be refocussed and the resulting cross-peaks will contain
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Figure 4-1. Schematic energy level diagrams to aid visualisation of homonuclear
dipole correlation between two spin I = 3/2 nuclei; a) shows a single quantum
transfer from one central transition to another, b) shows a double quantum coher-
ence between two central transitions, c) shows a six quantum coherence between
two outer satellite transitions.

information on the relative tensor orientations between the coupled half-integer

quadrupolar nuclei. Comparison with simulation to extract this information

was first presented by Dowell et al. [165, 166] and then by Liu, Deng and Ding

[167]. The report by Liu et al. investigates the effect of pulse strength, dura-

tion and MAS rate on spin diffusion, all of which have significant effect on the

cross-peak lineshape determined by the quadrupolar tensor orientations. Vari-

ous energy-conserving mechanisms were given in §3.7 and their understanding

will now be cemented by a review of published experimental work.

Proton Driven

Recoupling the homonuclear dipolar interaction can be achieved by a strong

heteronuclear dipolar field, such as an abundance of protons. Multiply con-

nected dipolar couplings are not completely averaged to zero after a complete

MAS rotation, but they will be suppressed. This means, like most recoupling

mechanisms, proton driven recoupling is spinning speed dependent [131, Tab. 1].

This effect does not depend on the static magnetic field strength. Proton driven

recoupling also has the advantage of optional suppression by decoupling tech-

niques. Proton driven spin diffusion between spin I = 3/2 nuclei has been

investigated [167, 168], used for tensor orientation information [165, 166] and

locating bound ions (23Na) in organic molecules such as a DNA quadruplex

[169].



4.1. Homonuclear Dipolar Correlation 68

Off Angle MAS

Instead of finding mechanisms to reintroduce the dipolar interaction that magic-

angle spinning removes, an ingenious solution is to not spin at the magic angle

in the first place. This was first demonstrated as a suitable method of corre-

lating half-integer quadrupolar nuclei by Hartmann, Jäger and Zwanziger [170].

Evolution during t1 and t2 times are at the magic angle but for the mixing

time the rotor is switched away from 54.74° by 1°–25°. Joo, Werner-Zwanziger

and Zwanziger call this method 2DAC for 2-dimensional anisotropy-correlated

spectroscopy and have used it to observe spin diffusion in glassy and crystalline

B2O3 [171]. Through comparison of the buildup rates they were able to mea-

sure the fraction of boron in boroxol rings in the glass to be f = 0.66—a topic

discussed further in §6.1.3—thus demonstrating the potential of homonuclear

correlation experiments to provide real structural information about disordered

materials.

By combining spinning away from the P2 magic angle with multiple quan-

tum techniques, Ajithkumar and Kentgens devised a new experiment called

MQP4MAS [172, 173]. This involves spinning the sample at one of the angles

at which P4(cos θ) = 0, namely 30.56° or 70.12° to the static magnetic field. The

fourth-rank second-order broadening caused by the quadrupolar interaction can

then be removed without also removing the dipolar interaction that mediates

spin diffusion. This method also fails to remove the CSA interaction which

the authors argue can be used as an extra structural parameter. Ajithkumar,

van Eck and Kentgens subsequently compare MQP4MAS with a dynamic angle

spinning (DAS) exchange experiment [173]. The advantage of the DAS experi-

ment is that it does not require exciting multiple quantum coherences, so offers

greater sensitivity at the cost of more specialised hardware.

Rotational Resonance

Recoupling the homonuclear dipolar interaction using coherent mechanical ro-

tation was explained above in §3.7. As rotational resonance depends quite finely

on the exact chemical shift difference [135] its application to the broadened cen-

tral transitions of half-integer quadrupolar nuclei might be curtailed. However,
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Nijman et al. recorded a 2D spin diffusion spectrum for 27Al by using adiabatic-

passage rotational-resonance recoupling [140]. This involved sweeping the MAS

rate through the rotational-resonance condition to achieve a broader recoupling

condition and a more complete transfer of magnetisation.

Simulations on the spin dynamics of quadrupolar nuclei at rotational

resonance conditions were presented by Walls, Lim and Pines [174]. Depending

on the relative magnitudes of the quadrupolar interaction strength and the

spinning speed, different transitions contribute to the magnetisation transfer

[175, §5.1]. For the common case where ωQ � ωr only the central-transitions

have significant magnetisation transfer
(∣∣±1

2

〉
↔
∣∣∓1

2

〉)
.

Another important effect of rotational resonance can occur when a small

magic-angle offset broadens the satellite transition peaks, thus changing the

satellite transition rotational-resonance condition and leading to strong effects

on line broadening, spin-echo dephasing and T1 relaxation [176]. If a dipole-

dipole homonuclear correlation technique requires effective dipole interaction

removal by MAS, then precise setting of the magic angle can be critical if the

results are to be meaningfully interpreted.

RF Driven

Spin-locking, or rotary resonance recoupling, involves a coupling between the

energy changes caused by the physical rotation of the sample with the energy of

a RF pulse, e.g. ωnut = nωr [177]. Theory and experiment of rotary resonance

recoupling for half-integer quadrupolar nuclei were investigated by Wi et al.,

where they explored its use for dipolar recoupling [178, 179]. In 2005, Edén

used symmetry-based techniques to recouple the dipolar interaction during the

spin diffusion mixing time [180]. Many symmetry-based homonuclear dipolar

recoupling sequences can be constructed from theory and the evaluation of

such sequences can readily be found in the literature for spin I = 1/2 NMR

[181]. Active recoupling transfers magnetisation substantially faster than would

normally occur due to, say, quadrupolar driven recoupling.
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Quadrupolar Driven

In the absence of more efficient energy-conversing mechanisms, the noncom-

mutation of the quadrupolar and dipolar interactions will provide the energy

balance needed to transfer magnetisation between spins [131, §2]. Whereas

proton- or RF-driven transfers take a few ms, a hallmark of quadrupolar driven

recoupling is that it can take up to 1000 ms for the magnetisation to reach

equilibrium across the coupled spins [131, 132, 182].

Combining the three-pulse spin diffusion experiment with DOR has been

demonstrated by Kentgens et al. for 23Na in Na2SO3 [183, Fig. 6] and by Hung

et al. for 27Al to determine the crystal structure of an aluminium borate [184].

The SQ nature of these experiments is advantageous because of the higher

sensitivity compared with exciting multiple-quantum coherences. Nevertheless,

Edén, Grinshtein and Frydman obtained high-resolution homonuclear correla-

tion spectra using an MQMAS sequence before the spin diffusion mixing time.

The 2D MQMAS plus the τmix dimension makes this a pseudo-3D experiment

[185].

4.1.3 Six Quantum Coherence and DQHDR

To be certain of observing a coherence that has been mediated by the dipolar

interaction, it is sufficient to excite a 4I coherence [175, §5.1.3]. In the spin I =

3/2 case, this is a 6Q coherence as shown in Fig. 4-1c. Duer and Painter presented

a 4I quantum filter experiment that consists of two pulses; one to excite the 6Q

coherence and another to convert 6Q→SQ for detection [186]. The experiment is

simple to use, interpret and using a 6Q coherence indicates correlation between

two dipolar coupled spin I = 3/2 nuclei. In high-resolution applications, a 6Q

coherence can be used as a dipolar filter, allowing only coupled nuclei to appear

in the spectrum [187]. However, by using 6Q coherence, these techniques suffer

from very poor signal-to-noise because of very inefficient 6Q excitation and

conversion, therefore it is preferable to use lower-order coherences instead.

Double quantum homononuclear dipolar recoupling (DQHDR) correlates

DQ coherence between two spins (Fig. 4-1b) with SQ coherence. When applied

to quadrupolar nuclei it is important to be sure the DQ coherence is between
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Figure 4-2. Pulse sequence and coherence transfer pathway diagram of a
Double-Quantum Homonuclear Dipolar Recoupling experiment. Bracketed re-
coupling (spin-lock or symmetry based) fragments are used to excite and recon-
vert DQ coherence. A 180°-pulse, combined with phase-cycling, removes single-
spin DQ coherences. A z-filter and selective readout pulse complete the sequence
[189].

two nuclei and not on a single spin. Initial DQ techniques correlated SQ with

DQ and relied on the fact DQ coherence excitation efficiency peaks for a certain

pulse length. To avoid unwanted SQ coherence, a short period of free precession

was included to filter out the broader SQ signal [188].

A pulse sequence for DQHDR is shown in Fig. 4-2. Note that with the

inclusion of a selective 180°-pulse and judicious phase cycling the single-spin DQ

coherences can be filtered out. This enables efficient homonuclear correlation of

half-integer quadrupolar nuclei, no longer dependent on the inefficient excitation

of 4I coherence.

Initially, spin-locking was used by Mali to excite and convert double

quantum coherences for use in homonuclear dipolar recoupling experiments

[189, 190]. However, spin-locking quadrupolar nuclei under MAS is particularly

tricky [94]. Symmetry-based pulse fragments have been shown to be more effi-

cient at DQ excitation and conversion and are now commonly used in DQHDR

experiments [191–196]. DQHDR has been combined with a 6Q filter by Mali

and Kaučič for improved resolution [187]. More recently Brinkmann et al. have

implemented the DQHDR sequence under DOR [197].

4.2 J-Coupling Correlation

4.2.1 Heteronuclear

Since its discovery and explanation in the 1950s [198, 199], J-couplings have

commonly been used in solution-state NMR to detect connectivities between
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unlike nuclei. In solid-state NMR, the detection of J-couplings involving half-

integer quadrupolar nuclei is not so common, an early example being in 1982

[200]. Massiot et al. have recently reviewed J-coupling in solid-state NMR [201],

noting that while there are numerous experiments involving one quadrupolar

nucleus and one spin I = 1/2 nucleus, very few are between two quadrupolar

nuclei.

Detection of J-coupling can be in the form of a visible lineshape splitting

[202], especially if high-resolution techniques are used [203]. However, the high-

resolution techniques make second-order isotropic shifts due to cross-terms more

significant [133]. Detection can also be accomplished by extracting a modulation

caused by the J-coupling upon a spin-echo dephasing curve, as shown by Hung

et al. for J13C17O and J15N17O [204].

True 2D correlation experiments involving J-couplings are often based

on either the J-HMQC (through-bond multiple-quantum correlation) [205] or

INEPT (insensitive nuclei enhanced by polarisation transfer) [206] techniques

developed for spin I = 1/2 nuclei. The study of the product operators for this

class of experiment involving spin I = 3/2 nuclei [207, 208] assisted the develop-

ment of experiments correlating spin I = 1/2 and half-integer quadrupolar nuclei

[209–212]. Despite issues of resolution and sensitivity, through-bond heteronu-

clear correlations have been performed between two half-integer quadrupolar

nuclei, specifically 27Al and 17O [213–215]. Previously, before these true 2D

methods were developed, researchers had compared MQMAS experiments to

simulation to “detect” a J11B75As-coupling of 650 Hz [216].

4.2.2 Homonuclear—Solution-State NMR

Homonuclear J-coupling has long been observed in liquids through the splitting

of spectral lines, regardless of spin number. In 1971, Odom, Ellis and Walsh

measured J11B11B in B5H9 to be 19.4 Hz± 0.2 Hz directly from the NMR spec-

trum [217]. Anderson et al. executed a study on linked polyhedral boranes and

measured J11B11B in [B5H8]2 to be ' 150 Hz [218]. However, this is a rather

large 11B–11B J-coupling and most studies measure the boron J-coupling in

other compounds to be considerable less. For tetrachlorotetraborane, the spec-
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tral splitting is absent, which, combined with knowledge of relaxation times and

the linebroadening of 10B, led to a result that J11B11B is around 3.0 Hz to 7.5 Hz

in this compound [219]. There are many additional reports of boron–boron

J-couplings in the literature [220, Ch. 8 §3.3][221].

Correlation spectroscopy (COSY) makes use of 2DFT methods to corre-

late nuclei through-bond, in direct analogue with how the NOESY experiment

correlates nuclei through-space. Goodreau and Spencer have presented several

11B–11B COSY spectra revealing the J-coupling in phosphapentaboranes [222].

Clearly, 11B–11B J-coupling in some compounds is straightforward to detect in

solution-state NMR.

Another experiment for detecting nuclei that are connected through-bond

is termed the incredible natural abundance double quantum transfer experiment

(INADEQUATE) and was reported in 1980 by Bax, Freeman and Kempsell

[223]. By cleverly suppressing the overpowering signal from solitary 13C nuclei

they were able to observe the J-coupled 13C–13C signal. Nowadays, phase-

cycling to select a DQ coherence is routine and the INADEQUATE experiment

has enjoyed great success in many forms, both in solution- and solid-state NMR

for spin I = 1/2 nuclei [224]. To date, there have been no reports of a successful

implementation of an INADEQUATE experiment for half-integer quadrupolar

nuclei.

4.2.3 Homonuclear—Solid-State NMR

Spin I = 1/2

Solid-state NMR INADEQUATE experiments use MAS to remove the homonu-

clear dipolar coupling to detect J-couplings between isolated spin pairs. Under

these conditions Fayon et al. measured 2J31P31P in crystalline and amorphous

samples, providing clear structural information and noting that the disorder

does not affect the efficiency of the experiment [225]. This is an important

conclusion for those seeking through-bond correlations in disordered materials.

Spin-echo experiments have been used for many years to measure J-couplings,

also under MAS to remove the dipolar coupling. The solid-state NMR literature

has reports of 1J and 2J values alike, such as 1J15N15N = 12 Hz± 1 Hz in a fully
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labelled organic compound1 [226]. Unlike solution-state NMR, solid-state NMR

can also measure J-coupling between chemically equivalent sites [116, 227].

As the theory of J-coupling is well understood, first principles calcula-

tions can be performed to determine the strengths of J-coupling in heteronuclear

and homonuclear cases for spin I = 1/2 and quadrupolar nuclei alike [228].

Quadrupolar

There have been very few reports of homonuclear J-coupled quadrupolar nuclei

in solid-state NMR [175, §6]. This contrasts strongly with the plentiful J11B11B

reports found in solution-state NMR [220, Ch. 8].

Hung et al. have recently reported a 2JOO-coupling of 8.8 Hz± 0.9 Hz in

17O-labelled glycine·2HCl, which was determined by fitting a spin-echo dephas-

ing curve with an appropriate J-modulated decay function [204]. A spin-echo

experiment in nuclear quadrupole resonance (NQR) of As2S3 has also seen mod-

ulations, in this case from 2J75As75As-coupling [229]. As NQR is static the dephas-

ing curve should be strongly affected by the dipolar coupling, but in this instance

|bjk/2π| <100 Hz, whereas the 2J-coupling was measured to be 122 Hz to 250 Hz.

Wi and Frydman simulated the MQMAS spectrum of a bispinacolate diborate

complex, simultaneously obtaining the quadrupolar parameters, tensor orienta-

tions and a 1J11B11B-coupling of 85 Hz± 20 Hz [132]. They performed the same

treatment for a spin I = 5/2 nucleus, 55Mn, in dimanganese decacarbonyl to

obtain a 1J55Mn55Mn-coupling of 65 Hz± 5 Hz.

There are experiments that succeed in detecting homonuclear J-coupling

by first relaying the through-bond magnetisation via an intermediate spin I =

1/2 nucleus. This homonuclear-heteronuclear single quantum correlation experi-

ment (H-HSQC) was reported by Deschamps et al. in 2008 and consists of back-

to-back INEPT sequences [230]. Deschamps et al. used H-HSQC to correlate

27Al–27Al via 2J27Al31P–2J31P27Al, showing that small J-couplings do persist in MAS

NMR. The H-HSQC experiment was naturally extended by Dechamps and

Massiot to three-dimensions by adding an additional evolution time to encode

the 31P isotropic dimension [231]. The extra information gained comes at the

1N-
(
{[5-(phenylamino)methylene]-1, 3-cyclopentadien-1-yl} methylene

)
-1,2,4-triazole-4-

amine.
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price of greatly extended experimental duration. Hu, Amoureux and Trébosc

proposed a new, shorter, experimental methodology they call two-dimensional

indirect covariance (2D-IC) [232]. This approach is even more obviously not a

true homonuclear correlation experiment because the technique is to generate

a homonuclear spectrum from a heteronuclear one. In their article, they use a

MQ-filtered refocused INEPT sequence to correlate 27Al–31P before generating

a 27Al–27Al correlation spectrum.

These latter techniques do indeed correlate J-coupled quadrupolar nuclei

in solid-state NMR, but if there are no intermediary spin I = 1/2 nuclei to relay

the magnetisation the experiments will fail. The spin-echo technique seems to be

the most robust for the detection of direct quadrupole–quadrupole J-coupling.

However, there are a notable lack of reports in the solid-state NMR literature.

Important questions remain, such as; why can solid-state NMR readily detect

2J31P31P but not 2J11B11B?

A tentative answer might be that most of the compounds examined so far

have naturally small J-couplings and that, even under MAS, the residual dipolar

coupling is causing rapid dephasing—too fast to reliably extract J-modulation

from a spin-echo curve. With the ability to calculate J-coupling strengths

from first principles we can show that previous negative results are due to J-

couplings being undetectably small. We can also search for compounds to study

that should have significant J-coupling strength, such as the small molecules

studied by Wi and Frydman. However, this latter approach will not particularly

assist the immediate search for homonuclear correlation of disordered materials,

such as technologically useful glasses.



CHAPTER 5

NMR Experiment and Simulation

Details

5.1 NMR Experimental Hardware

Cutting-edge nuclear magnetic resonance research, capable of studying atomic

structures, characterising chemicals and discovering dynamic processes, is an

expensive enterprise. The superconducting cryomagnets that are used to create

very strong and highly homogeneous magnetic fields can cost over £1 000 000.

Spectrometer consoles, which synthesize and amplify RF pulses with nanosec-

ond timing of duration and phase, typically cost over £100 000. Another costly

component is the probe that fits in the bore of the magnet, containing a deli-

cate nest of electronics and pneumatics to deliver high-power RF to the sample

whilst it rapidly rotates at speeds up to 2× 106 rpm.

The technology, engineering and physical principles that have gone to-

ward designing such equipment is extremely interesting and there are numerous

texts on every aspect. Unfortunately it is beyond the scope of this thesis to

present even the most fascinating facet of this area. Instead, for a general intro-

duction to NMR hardware, the following general references are given, in reverse

chronological order; [120, Ch. 3], [57, Ch. 4], [52, Ch. 3], [121, Ch. IV], [55, Ch. 2].

76
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Table 5-1. Static magnetic field strengths with associated proton and
boron Larmor frequencies and specific spectrometer consoles used. γ(1H) =
26.752 212× 107 rad s−1 T−1, γ(11B) = 8.584 704× 107 rad s−1 T−1 [233].

B0 in T ν0(
1H) in MHz ν0(

11B) in MHz Console

7.05 300.09 96.30 Varian Infinityplus
11.74 500.01 160.45 Bruker Avance III
14.09 599.98 192.53 Bruker Avance II+

14.10 600.14 192.58 Bruker Avance IIIa

aLocated at the University of St Andrews

5.1.1 Magnets and Consoles

11B solid-state NMR experiments were carried out at static magnetic field

strengths of 7.05 T to 14.10 T and on various spectrometers, listed in Tab. 5-1.

Probe-specific room temperature shims were used to ensure optimal magnetic

field homogeneity. λ/4 cables were RF matched for maximum signal sensitivity.

All NMR experiments were performed at room temperature.

Referencing

11B chemical shifts were calibrated using boron phosphate, BPO4, (−3.6 ppm)

or sodium borohydride, NaBH4, (−42.06 ppm) as secondary references [234].

The primary reference for 11B is boron trifluoride diethyl etherate, BF3·Et2O

[233].

5.1.2 Solid-State NMR Probes

MAS experiments were performed using Bruker wide-bore 3.2 mm or 4 mm MAS

probes. DOR experiments at 14.1 T used a Samoson-built probe. Some probes

use boron-nitride stators, which give a boron background signal if not refo-

cussed. For these spectra the background was removed by subtracting the signal

from an empty rotor. The high-Q RF circuit contained in the probe was tuned

to a specific frequency corresponding to the Larmor frequency of the desired

isotope for a given static magnetic field. The frequencies for 1H and 11B are

given in Tab. 5-1. Tuning was achieved by slightly varying the capacitance of the

circuit, the effects of which were visible as a absorption peak of reflected power
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on a network analyser. The capacitance of the RF circuit was then fine-tuned

in situ by minimising the power reflected back from the probe during a pulse,

using an in-line directional coupler connected to an oscilloscope. For experi-

ments involving spinning, pressurised dried air was used from a storage tank;

to damp pressure waves from the air compressor. For MAS, the spinning speed

was detected optically and regulated by Bruker spinning-speed controllers, with

typical pressures for a 4 mm rotor to spin at 10 kHz being ' 3× 105 Pa for the

bearing and '1× 105 Pa for the drive. These automatic units allow precise and

stable (±1 Hz) spinning speeds to be achieved almost indefinitely. For DOR the

spinning speed was detected part-optically, part-acoustically and also computer

controlled.

5.1.3 Sample Preparation For NMR

Hygroscopic samples (see §6.2) were kept in a vacuum desiccator until required.

The samples were then finely ground in either a porcelain or agate mortar and

packed into a zirconia rotor with a Kel-F®1 cap. Once packed the samples are

protected from atmospheric moisture. Proton NMR revealed negligible signal

from a sample packed over two years previously.

5.2 Pulsed Experiments

Computer software controlling the spectrometers were Spinsight and TopSpin

for Infinityplus and Avance spectrometers, respectively. Both spectrometer

control software programs allow precise ns-control of RF amplitudes, phase

and duration, giving infinite flexibility for “spin-engineering”. The saturation

spin-echo (SATSE, see §5.2.5) experiment was self-written for Infinityplus and

Avance spectrometers. All other pulse sequences were pre-programmed.

5.2.1 Spin-Lattice Relaxation—T1

Measuring the T1 time can be achieved by several experiments [97, §4.6.1]. The

saturation-recovery experiment was explained above in §3.3.

1Polychlorotrifluoroethylene
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11B MAS NMR saturation-recovery experiments were performed at 14.1 T

on vitreous and polycrystalline lithium diborate (see §6.2), containing no param-

agnetic doping, to determine their respective T1 times. Ninety-nine hard pulses

1 µs apart were used for the pulse comb, followed by a variable relaxation delay

and a further hard pulse to convert the current population state to an observ-

able coherence. The pulse duration used was 0.8 µs. The spectral width was

rotor-synchronised to 10 kHz. The relaxation time was doubled between exper-

iments, ranging from 10 ms to 81.92 s for the glass sample and 40 ms to 81.92 s

for the crystalline sample. The results are presented in §6.4.

90°-pulse-recovery experiments were performed on copper- and cobalt-

doped polycrystalline lithium diborate at 11.74 T. The solid-90° pulse duration

was 4.65 µs giving νnut = 61.5 kHz. The spectral width was rotor-synchronised

to 10 kHz. The relaxation time was doubled between experiments, ranging

from 0.1 ms to 409.6 s for the cobalt-doped sample and 0.1 ms to 3276.8 s for the

copper-doped sample. A recycle delay of 70 s or 360 s was used for the cobalt-

and copper-doped samples respectively. The results are presented in §6.4.

5.2.2 MQMAS

Based on the theory explained in §3.8, the MQMAS pulse sequence shown in

Fig. 3-10 was performed on polycrystalline barium diborate. The excitation

pulse was optimised starting from a hard 270°-pulse. The FAM pulse duration,

number of FAM cycles and z-filter pulse duration were subsequently optimised.

The spectrum and further experimental details are given in §6.3.3.

5.2.3 Spin Diffusion

The spin diffusion experiment was introduced above in §3.7. Two-dimensional

spin-diffusion 11B MAS spectra were recorded using the pulse sequence shown

in Fig. 3-7. Unless otherwise stated all spin diffusion spectra were recorded on

polycrystalline lithium diborate, Li2O·2B2O3, under the following conditions.

Experiments were performed in a rotor-synchronised fashion, that is, the spec-

tral width was set equal to the MAS frequency in both dimensions. Incorrect

baseline correction can lead to baseline roll, which manifests itself as small
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positive or negative intensity at frequencies outside the lineshape regions. An

8-step phase cycle was used, as shown in TabA-2, to select ∆p = ±1 on the

first 90°-pulse and ∆p = −1 on the last 90°-pulse. Sign discrimination was

achieved in the F1-dimension using the States method [22]. The magic angle

was set with KBr or deuterated oxalic acid. The transmitter frequency was

placed at 6 ppm—between the two peaks in lithium diborate. Soft pulses were

used, νnut ' 6 kHz. The recycle delay was 28 s. In t2, 512 points were acquired

with a digital filter, co-adding 8 transients for each of 256 t1 slices. Both di-

mensions were Lorentzian broadened by 20 Hz. The spectra were plotted with

8 contour levels starting at 2% of the maximum intensity and increasing by a

factor of 1.75 between adjacent contours.

A diverse selection of spin diffusion spectra are presented in Ch. 7, at

different fields, MAS rates, mixing times and isotopic enrichments. DOR spin

diffusion spectra recorded by Dr Ivan Hung at 14.1 T are presented in §7.3. The

outer magic-angle rotor rate was 1.5 kHz, the inner rotor rate was 5 kHz, the

spectral width was 10 kHz in both dimensions, moderately soft 3.75 µs pulses

were used and the recycle delay was 2 s. In t2, 512 points were acquired with

a digital filter, co-adding 32 transients for each of 512 t1 slices. Odd-ordered

sidebands were suppressed [33]. The spectra are plotted with 8 contour levels

starting at 40% of the maximum intensity and increasing by a factor of 1.14

between adjacent contours.

5.2.4 DQHDR

Double quantum homonuclear dipolar recoupling was introduced above in §4.1.3

and a pulse sequence and coherence transfer pathway diagram was shown in

Fig. 4-2. DQHDR was performed with the assistance of Dr Ivan Hung on vit-

reous and polycrystalline lithium diborate, at 14.1 T and 10 kHz MAS rate.

The spectral widths were rotor synchronised in both dimensions. Selective 90°-

pulses of 22 µs duration bracketed the dipole-interaction recoupling spin-locks.

A suitable weak spin-lock was found by optimising the RF power level. The

mixing duration lasted one rotor period. The selective 180°-pulse was twice the

duration of the selective 90°-pulse. A 10 ms z-filter duration was used. The
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States method achieved sign discrimination in the indirect dimension.

For the glass the recycle delay was 1.5 s. In t2, 256 points were acquired,

co-adding 32 transients for each of 64 t1 slices.

For the crystal the recycle delay was 15 s. In t2, 256 points were acquired,

co-adding 48 transients for each of 128 t1 slices.

Both dimensions were Lorentzian broadened by 50 Hz. The spectra are

plotted with 8 contour levels starting at 5.6% of the maximum intensity and in-

creasing by a factor of 1.5 between adjacent contours. The results are presented

in §7.6.

5.2.5 Spin-Echo Coherence Dephasing—T
′

2

11B MAS NMR spin-echo experiments were carried out at 14.1 T on polycrys-

talline lithium diborate of varying 11B isotopic abundance and MAS rate. The

samples contained no paramagnetic doping.

The measurement of the coherence dephasing time required multiple ex-

periments with varying durations of rotor-synchronised dephasing time, τ/2.

Plotting peak integrated intensity against τ and fitting the results to Eq. (3-10)

determined the T
′

2 time. For this measurement to be accurate, each experiment

must start from the same initial conditions. With crystalline materials the T1

time is inconveniently long, as we shall see in §6.4. Repeating the experiment

faster than approximately 5×T1 distorts the spin-echo dephasing curve, leading

to inaccurate measurements of T
′

2 , as the starting bulk magnetisation would be

different for each experiment. As the usual route of letting the system fully re-

lax between pulses would take too much time and the signal from 11B is strong

enough to detect even from a 25% relaxed2 sample, the spin-echo pulse sequence

was modified by adding a pulse comb. This pulse sequence is shown in Fig. 5-1

and herein termed SATSE.

The SATuration-Spin-Echo experiment uses a pulse comb to saturate the

magnetisation; the energy levels become equally populated and no bulk mag-

netisation exists for this spin species. The system then relaxes for a fraction

of the T1 time before the 90°—τ/2—180°—τ/2 echo sequence begins. This en-

2Corresponding to 0.3×T1
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τ/2 τ/2 t2

+1
0
−1

p =

Figure 5-1. Pulse sequence and coherence transfer pathway diagram of the
saturation spin-echo experiment. Following a pulse comb (to saturate the mag-
netisation) and consistent recycle delay, a 90°-pulse excites a SQ coherence state.
After a duration of τ/2, a refocusing 180°-pulse is applied and a spin-echo forms:
detection starts τ/2 after the refocusing pulse, coinciding with the echo top. By
repeating the experiment with varying τ duration, the transverse decoherence
can be studied. Note that τ/2 needs to be rotor-synchronised and will be of the
order of ms, whereas the RF pulses are much briefer, ∼ µs.

sures each echo experiment starts from the same initial conditions so comparing

intensities between experiments is meaningful.

A 16-step nested phase cycle was used [235], as shown in Tab.A-3. The

first pulse selects ∆p = +1 with a 4-step cycle. This also selects ∆p = −3,

but with a short pulse length and low νnut, 3Q excitation efficiency will be very

low. The second pulse selects ∆p = −2, also with a 4-step cycle. Technically,

the ∆p = +2 coherence transfer is also selected, but realistically the tiny 3Q

coherence will undergo an inefficient conversion to the observable SQ coherence

as 3Q→SQ conversion-pulse lengths are optimal for <90°, not 180°, tipping

angles in the case of spin I = 3/2 nuclei [141].

For the results presented in Ch. 8, thirty-three hard pulses 11 µs apart

were used for the saturation comb, followed by a relaxation delay of 32 s. Hard

pulses had 90°-pulse duration of 2.1 µs giving νnut = 120 kHz. The soft 90°-

pulse duration was 12.5 µs, half the refocusing 180°-pulse duration, giving νnut =

20 kHz. The spectral width was 50 kHz. Spectra were baseline corrected before

integration. Transients were acquired with a digital filter and co-added 96, 384

or 640 times for 100%, 25% and 5% 11B samples, respectively. The τ/2 durations

were integer multiples of the rotor period, which avoids the unwanted introduc-

tion of modulation from chemical shift anisotropy [236]. If the magic angle is

mis-set even by ≈0.5° the T1 and T
′

2 times will be increased for lineshapes at

the n = 0 rotational resonance [176]. The magic angle was set as accuractely

as possible by maximising the number of spinning sidebands of KBr.
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5.3 Simulation

Computer simulations have long been used to model all manner of physical

systems. In NMR, the Hamiltonians that describe the energy of a nuclear spin

system are very accurately known [64]. By propagating these Hamiltonians on

an initial density matrix the state of the spin system at any point in the future

can be determined [47]. This principle was described generally in §2.1.

The size of the initial density matrix depends on the spin, I, and number,

n, of coupled nuclei, such that the matrix will consist of (2I + 1)n × (2I + 1)n

elements. For example, four 11B nuclei are described by a 256×256 matrix with

65 536 elements. If an extra 11B nucleus is added to the system, the number

of matrix elements jumps to over a million. Hence, the size of system these

simulations can model is limited by current computational resources.

SIMPSON is an open-source program for accurate numerical simulation

of solid-state NMR experiments. SIMPSON has been in serious academic use

for over a decade and thoroughly tried and tested by the NMR community

[119]. However, for large systems, especially those involving quadrupolar nuclei,

SIMPSON can be inefficient.

pNMRsim performs mostly the same tasks as SIMPSON, but often sig-

nificantly faster [237]. However, as this modern software is still being improved

upon, all important results are cross-checked against SIMPSON.

Both simulation programs can model spinning systems, used commonly

for MAS simulations [238]. Vitally, the programs can repeat the calculations

with different angles between the spin system and the static magnetic field

[239]. This approach corresponds to the powder average seen in solid-state

NMR experiments. The simulations were powder-averaged according to the

ZCW scheme [240–242]. Broader lineshapes require that more crystallites are

calculated to accurately simulate the experimental lineshape, thus taking longer

to compute. The simulation programs take an input file specifying the spin

system, interactions, experimental variables and the various pulses and delays

that make up a specific NMR experiment. Unlike experimental NMR, there is

no need to implement phase cycling as the coherences can be filtered from the

density matrix as required, greatly shortening the computational time. Another
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Figure 5-2. Buildup curve simulation comparing different detection matrices in
pNMRsim. Two spin, 1st order, I = 3/2, ωr/2π = 10 kHz, ∆δiso = 0, CSA = 0,
CQ = 2560 kHz, ηQ = 0, bjk/2π = −1 kHz, parallel quadrupolar tensors perpen-
dicular to dipolar vector. Direct I1z → I2z simulation is shown in red. For
pulsed I1z→ I2c simulation, t90 = 1.25 µs making νnut = 200 kHz, and is shown
in blue.

key difference is the lack of relaxation in the simulations—the nuclei never

return to thermal equilibrium and are unperturbed by the true T2 relaxation

such that simulated FIDs continue forever. Other dephasing phenomena can

still be simulated, such as multiple noncommuting dipolar couplings, but the

standard approach is to artificially damp the FID to broaden the simulated

lineshapes—a process known as apodisation.

An example input file for pNMRsim of a 2D MAS NMR simulation for a

spin diffusion experiment involving two dipolar coupled 11B nuclei is shown in

§C.1. Simulated FIDs are processed in the same manner as experimental data;

with suitable broadening and Fourier transformation.

Full 2D spin diffusion experiments can be simulated. However, if only the

magnetisation transfer is of interest then an input file can be constructed to start

with z-magnetisation on one spin, evolve in time and detect z-magnetisation on

the other spin. By detecting Iz on a spin, the program reads off the trace of

the Hamiltonian density matrix in a similar manner to Eq. (3-12). This trace

includes the satellite transitions, which are usually not present in experiment

because of the smaller excitation bandwidth of the readout pulse. A more

realistic simulation would include the effect of a soft 90°-pulse at the end of

the mixing period, followed by normal central-transition (Ic) detection. The
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difference between these detection regimes is shown in Fig. 5-2. There is a good

comparison between the direct transfer and the pulse-detect variant simulations.

Despite the added realism, the Hamiltonian for an RF pulse contains

off-diagonal elements (as compared to a free evolution Hamiltonian). A dis-

proportionate amount of computational time must then be spent diagonalising

the matrix, prolonging such simulations considerably [243, §2.2]. As the results

show a strong consistency between both detection methods the simulations pre-

sented herein will be of the direct z → z sort and not involve a pulsed readout.



CHAPTER 6

Borate Crystals and Glasses

6.1 Introduction To Borates

6.1.1 Practical Value and General Uses of Boron Com-

pounds

Boron is a critical constituent in borosilicate glass, primarily added to improve

thermal shock resistance and aid melting. Pyrex® is probably the most famous

example of borosilicate glass, a material which has not escaped the scrutiny of

NMR [244]. Other practical uses for boron can be found in sodium borohy-

dride, a versatile reagent discovered by English chemist Herbert Brown (Nobel

Prize, 1979) [245, 246] and utilised in solid-state NMR as an 11B chemical shift

reference.

Because of the excellent hardness, thermal and chemical stability of boron

nitride, various forms are used in high-temperature equipment [247], to coat

heavy-duty tools instead of chrome-plating and to construct stators and rotor

caps in some NMR MAS probes. Alloyed with neodymium and iron, boron pro-

duces the strongest permanently-magnetic material known [248]. Boron doped

diamond electrically conducts, allowing sensors to operate in environments in

which no other material could survive [249]. The proximity of 11B nuclei in

diamond has been studied with spin diffusion NMR experiments [250].

86
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The other stable isotope of boron, 10B, is an excellent neutron absorber

and used in the control rods of some nuclear reactors as a moderator. The

nuclear industry is also familiar with borosilicate glass for the immobilisation

of high-level nuclear waste [251]. Molten alkali borosilicates are very corrosive,

efficiently dissolving nuclear waste, which can be readily vitrified to immobilise

the waste for, hopefully, æons. Such an unalterable configuration—important

to avoid clustering or leaching of radionuclides—is not possible in real crystals,

where atoms can move along dislocations.

Important and numerous properties of non-crystalline solids, such as bo-

rate glass, are explained by the glass-defining structural disorder—a state in

need of further study. As a local probe of bulk material, NMR is suited to

study the proximities and connectivities in disordered materials. Such a study

will begin on a model compound of known structure, such as a crystal, before

being applied to glasses.

6.1.2 The Glass Transition

Consider cooling a liquid. Regardless of cooling rate, at a well-defined temper-

ature a phase transition could occur (releasing latent heat), whereby the atoms

crystallise to a long-range ordered structure. Alternatively, the molecular mo-

tion of the liquid gets increasingly slower, until the measurement of flow rate

becomes infeasible and the material is left in a metastable state; a glass [252].

Unlike a crystal, glasses have no long-range order and the formation of

glass evolves no latent heat. Furthermore, this peculiar glass transition does

not occur at a well-defined temperature—slower cooling rates lower the tran-

sition temperature, shown in Fig. 6-1. There are numerous other parameters

(temperatures, energies) that describe glass forming [253] but are not pivotal

to the immediate discussion.

Although glasses are disordered, they are not completely random and

bonding between the atoms will be similar to a corresponding crystalline phase.

Zachariasen argued in 1932 that if the internal energies of these two phases are

similar then so are the oxygen polyhedra and hence gave four requirements for

“AmOn” oxide glass formation [255]:
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Figure 6-1. Idealised diagram showing the effect of temperature on the enthalpy
(which behaves similarly to volume) of a glass-forming melt [254, Fig. 1.1]. Ex-
trapolating the cooled-glass and supercooled-liquid lines lead to an intersection
defined as the fictive temperature, where the structure of the glass would be the
same as in the equilibrium liquid.

(i) An oxygen atom is linked to not more than two atoms A.

(ii) The number of oxygen atoms surrounding atoms A must be small.

(iii) The oxygen polyhedra share corners with each other, not edges or faces.

(iv) At least three corners in each oxygen polyhedron must be shared.

Borate glasses obey these rules. Thus for local probes such as NMR, glass

spectra appear similar to those of the corresponding crystal because the bonding

and short-range order are similar. This crucial fact allows us to develop NMR

experiments using model crystalline compounds, then apply the “calibrated”

methods to disordered materials for the extraction of new information.

Diffraction techniques using X-rays or neutrons are reliably used to de-

termine the crystallinity of a sample. However, careful analysis is required to

avoid the mistaken interpretation of extended order when applied to glasses

[256, 257]. But unlike other oxide glasses, such as silicate and phosphate glass,

borate glass does possess a medium range order [258].

The medium range order in borates extends from 5 Å to 15 Å and takes

the form of superstructural units [259]. These rigid units are distributed ran-

domly in a glass and are also found in most borate crystal structures. The

question of why glass-forming liquids like borates solidify into structures far

from a random distribution is still open.
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Figure 6-2. A selection of superstructural units that can exist in borate glasses
and crystals. Three-coordinated boron is shown in blue, four-coordinated boron
is shown in green and bridging oxygen is shown in red. Corresponding N4 fraction
is given, see §6.1.3 for details.

6.1.3 Borate Anomalies and Superstructural Units

Pure B2O3 has been studied by NMR through T1 relaxation [260], MQMAS

[261] and recently DOR [262, 263]. Neutron scattering [264], Raman scattering

[265, 266], mechanical properties [267], infrared spectroscopy [268], molecular

dynamics and density functional theory [269–271] have all helped characterise

B2O3. Despite considerable debate on the existence of boroxol rings [40, §6] the

question is now: what fraction of BO3 triangles are part of these rings? The

answers from NMR and neutron scattering suggest f = 0.6–0.8 [258, 261, 262,

272], with the most recent result provided by DOR giving f = 0.73±0.01 [263].

The boron atoms in B2O3 are solely three-coordinated (B3), which is a

charge-balanced state. Adding conventional network modifiers leads initially

to the formation of BO4 tetrahedra rather than non-bridging oxygens. Hence

unlike “normal” silicate glass, network modifiers act as network strengtheners,

giving rise to increased connectivity. The four-coordinated boron atoms (B4)

are negative-charge centres, which are balanced by interstitial cations. This

dual valence nature of boron is responsible for a wide variety of superstructural

units, some of which are shown in Fig. 6-2 [259]. From energy considerations,

only certain superstructural units can stably exist [273].

Superstructural units were, as recently as ten years ago, an “extremely

controversial” issue [274], but now have been accepted by the borate glass com-

munity in light of increasing evidence [275] and success in explaining various

borate anomalies. These anomalies are often in the form of minima or max-

ima of physical properties as the fraction of alkali doping is increased, such as

thermal expansion [276] or ultrasound velocity [267, 277].
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Further anomalies are seen in the N4 fraction, defined from the quantities

of B3 and B4 atoms as N4 = B4
B3+B4

. This property shows a maximum around ∼

35 mol% alkali modifier [278]. NMR has proved instrumental in the quantitative

determination of the N4 fraction in borates [272, 279–291] but has not yet

been able to directly explore the superstructural units. Neutron scattering

offers a window on superstructural units, determining unit types in addition to

overall N4 fractions for glasses [264, 292–294]. Raman scattering is particularly

well suited to detect the distinct breathing mode frequencies of the different

superstructural units [265, 266, 295, 296], but is not a quantitative technique.

Attempts have been made to correspond the N4 fraction measured by NMR

with the superstructural unit assignments measured by Raman scattering [297].

The study of the medium range order seen in borate glasses is a key

motivator in this thesis, which aims to develop homonuclear correlation ex-

periments for solid-state NMR. Heteronuclear experiments have already been

demonstrated in this area [298, 299]. As the superstructural units are rigid,

the specific boron–boron bond lengths and angles could fingerprint each unit,

allowing quantification. To this end, a model crystalline compound was cho-

sen to develop the techniques with the longer-term aim being application to

disordered materials.

6.1.4 Lithium Diborate

Of all possible alkali metal dopants, lithium is most suited to further investi-

gations. The lithium borate phase diagram has been thoroughly explored, re-

vealing a range of crystalline phases—see Fig. 6-3. This system has been shown

to form glasses over a wider doping range than the other alkali metals [274].

As a glass, the several borate anomalies appear most extremely in the lithium

system, which has the deepest minima in linear thermal expansion coefficient

[276] and is almost1 the only system to show a decrease in molar volume as

the fraction of dopant is increased [302]. Lithium borate samples have a low

density, which reduces the stress on the MAS rotors enabling faster spinning

speeds to be safely reached with this system.

1The potassium system also shows this trend, but to a lesser extent.
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Lithium Diborate

Figure 6-3. Li2O–B2O3 phase diagram [300, 301].

Li2O·2B2O3 was chosen as the model crystalline compound. The lithium

diborate structure is well known [303] and is comprised solely of superstructural

diborate units2, as shown in Fig. 6-4. Structural information about the boron

atoms in Li2O·2B2O3 is given in Tab. 6-1. The diborate group is the only su-

perstructural unit containing equal measures of B3 and B4 [293]. Remarkably,

the structure is a rare example of stable B4–O–B4 bonding, which is normally

energetically unfavourable due to the repulsion between negatively charged BO4

tetrahedra.

Crystalline lithium diborate is worthy of study in its own right as a non-

linear optical material [306], gamma radiation detector [307] and due to its

negative thermal expansion coefficient at temperatures <0 °C [308]. However,

for this thesis, the rigid structural arrangement of the B3 and B4 atoms is the

fundamental factor for examining this model crystalline compound.

2ZnO·2B2O3 and MgO·2B2O3 are also comprised solely of diborate units [293, Tab. 1], but
for reasons stated in the text the lithium system is preferred.
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B3(1)

B3(2)
B4(2)

B4(1)

Figure 6-4. Ball and stick model of the crystal structure of lithium diborate
[304], showing it to consist solely of diborate units. Three-coordinated boron is
shown in blue, four-coordinated boron is shown in green, oxygen is shown in red
and lithium ions are not shown. The labelling of boron atoms used in Tab. 6-1 is
indicated.

Table 6-1. Boron–boron distances, corresponding dipolar coupling strength and
Euler angles between different boron atoms in the diborate group. Bracketed
numbers are used to differentiate between different boron atoms in the same
superstructural group, as indicated in Fig. 6-4.

Nuclei Separationa Dipolar couplingb Euler Angles in degreesc

in Å (−bjk/2π) in Hz α β γ

B3(1)–B4(1) 2.44 848 93.4 119.9 −83.2
B3(1)–B4(2) 2.49 801 49.7 119.3 −150.1
B3(1)–B3(2) 3.58 269 90.0 90.0 −117.1
B4(1)–B4(2) 2.36 937 −90.0 90.0 154.5
B4(1)–B3(2) 2.49 801 130.3 60.7 −150.1
B4(2)–B3(2) 2.44 848 86.6 60.1 −83.2

aDistances were extracted from the known crystal structure [304]
bThe dipole-coupling constants were calculated using Eq. (2-32)
cEuler angles, relative to the c-axis of the crystal file, were determined using mPackages

for Mathematica™[305]
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Figure 6-5. Partially reacted reagents overflowing a crucible because of rapid
water and carbon dioxide evolution. This can cause loss of sample or contamina-
tion. Weight-loss measurements can help detect such losses.

6.2 Synthesis of Lithium Borates

6.2.1 Natural Abundance

Li2CO3 + 2B2O3
heating−−−−−→ Li2O·2B2O3 + CO2 (6-1)

Polycrystalline lithium diborate, Li2O·2B2O3, was prepared by mixing lith-

ium carbonate (Alfa Aesar® #013418, 99%) and boron oxide (Alfa Aesar®

#089964, 99.98%) in the correct stoichiometric ratio (see Tab.B-1 for x = 1/3).

After agitating the mixture to ensure homogeneity the reactants were trans-

ferred to a platinum-rhodium crucible and placed in a normal-atmosphere elec-

tric furnace at 100 °C. The temperature was ramped at 5 °C/min for 3 h to

1000 °C. This temperature was chosen as it is above the congruent melting

temperature of lithium diborate—given as 917 °C± 2 °C [300]. The slow ramp-

ing rate allows time for water vapour and carbon dioxide to evolve, which leads

to foaming. On heating, the (approximately four times) volume expansion

can cause the material to be pushed out of a too-small crucible—see Fig. 6-5.

Weight-loss measurements of the cooled product should indicate at most 4%

weight loss from the desired product, significantly more loss would require re-

making the batch as the stoichiometry might not be as desired. After twenty

minutes at 1000 °C, the melt was poured onto a room-temperature steel plate.

It is noted that if the melt is left in the crucible to cool more slowly, unexpect-

edly, crystallisation does not occur. Because molten glass is a good solvent,
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a b c

Figure 6-6. SEM image of a cross-section of iron-doped lithium diborate that
has been poured from a melt onto a steel plate. a) Contact area with plate,
≈ 70 µm deep, which has quickly cooled leaving the lithium diborate in an amor-
phous state. b) Striated region of intermediary cooling and partial crystallinity.
c) Polycrystalline lithium diborate throughout the sample bulk where cooling
rates were slower.

heterogeneities on the platinum crucible in contact with the melt probably dis-

solve during processing. Hence, when the melt is allowed to cool in the crucible,

glass formation ensues because there are few (if any) heterogeneous particles in

contact with the melt [309, §2.2]. But when the melt is poured, heterogeneous

crystallisation occurs.

Various lithium borate glasses, x = 0–40, xLi2O·(100− x)B2O3, were

also made using the above method and stoichiometric ratios given in Tab.B-

1. Although for x < 0.3 the poured melts readily form a glass, the melts

were splat-quenched between steel plates to ensure this outcome and consis-

tency. Beneficially, the thin glass pieces are easier to grind into powder for

X-ray diffraction and NMR measurements. Confirmation of crystallinity (or its

absence) and phase purity was provided by powder X-ray diffraction. A scan-

ning electron microscope (SEM) image of lithium diborate is shown in Fig. 6-6,

revealing that different cooling rates lead to glass or crystal formation.

6.2.2 Isotopically Altered 10B/11B

Li2CO3 + 4B(OH)3
heating−−−−−→ Li2O·2B2O3 + CO2 + 6H2O (6-2)
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Polycrystalline lithium diborate samples with varying degrees of 11B enrich-

ment were prepared by mixing the powders lithium carbonate (Sigma-Aldrich®

#255823, ≥99.0%), boric-10B acid (Sigma-Aldrich® #426156, 99%) and boric-

11B acid (EaglePicher™ #Bl-EV-95-10, 99.27%) in the correct stoichiometric ra-

tio (see Tab.B-2). The reagents were thoroughly mixed in a 5% gold-platinium

crucible and placed in a normal-atmosphere electric furnace at 1000 °C. Evo-

lution of water vapour and carbon dioxide was rapid, but the mixture quickly

melts so volume expansion was reduced. After fifteen minutes the crucible was

removed and left to cool. The lithium diborate invariably solidified transpar-

ent, indicating an amorphous state. Weight-loss measurements were performed

to check the expected reaction had occurred. The crucible was placed into a

furnace at the higher temperature of 1100 °C to decrease the viscosity of the

melt before pouring. After five minutes the melt was poured onto a room-

temperature steel plate and allowed to crystallise.

6.3 Solid-State NMR of Borates

6.3.1 1D MAS of Li2O·2B2O3

The crystal structure of lithium diborate shown in Fig. 6-4 indicates one chem-

ically distinct three-coordinated boron site and one chemically distinct four-

coordinated boron site. Representative 11B MAS NMR spectra of polycrys-

talline Li2O·2B2O3 are shown in Fig. 6-7 for two different static magnetic field

strengths. The B3 and B4 lineshapes are clearly visible in both spectra and are

distinctly resolved in the high-field case. Integration of the two lineshapes in

quantitative spectra directly provide the value of the N4 fraction. Care must be

taken to include the intensity of the spinning sidebands if the spectra are not

rotor-synchronised.

As the four-coordinated boron is in a tetrahedrally symmetric environ-

ment the electric field gradient at the nucleus will be low and hence the quadru-

polar coupling constant, CQ, will be low too. Conversely, the three-coordinated

boron occupies a site with trigonal planar symmetry. There will be a large

electric field gradient at the nucleus, as there is less charge density above and
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Figure 6-7. 11B MAS (10 kHz) NMR spectra of polycrystalline lithium diborate,
Li2O·2B2O3, recorded at a) 7.05 T and b) 14.1 T. At high-field the B3 (left
lineshape, around 15 ppm) and B4 (right peak, around 2 ppm) sites appear as
distinct spectral lineshapes, whereas at low-field the B3 is broadened such that
the two lineshapes overlap. The broadening is a direct consequence of the 1/ω0

dependence that the second-order central transition energy level has, given by
Eq. (2-62). The fourth-rank portion of the second-order quadrupolar interaction
is not removed by MAS and responsible for the specific spectral lineshapes.

below the trigonal plane, giving rise to a large CQ for the B3 site.

Fitting the 11B NMR spectra to calculated lineshapes allows physical

parameters to be determined, such as the isotropic chemical shift (δiso) and

the quadrupolar coupling (CQ and ηQ). These parameters, obtained from fits of

polycrystalline lithium diborate, are given in Tab. 6-2. Under MAS, the isotropic

chemical shift is always at higher ppm values than the centre of gravity of the

quadrupolar lineshape. As revealed in Eq. (2-62), the central transition of a half-

integer quadrupolar nucleus is subject to an isotropic second-order quadrupolar

shift—an energy change due to the second-order quadrupolar interaction that

is not affected by spinning around any axis. The centre of gravity of an MAS

lineshape is given by:

δcog = δCS
iso + δ

(2)
iso (6-3)

where δ
(2)
iso for a nucleus with spin I is [310, Eq. (2)]:

δ
(2)
iso = − 3

40

(
CQ

ν0

)2(
I(I + 1)− 3/4

I2(2I − 1)2

)(
1 +

η2
Q

3

)
× 106 (6-4)

where ν0 is the Larmor frequency of the nucleus and CQ and ηQ were defined

in Eq. (2-42). The third term, for a spin I = 3/2 nucleus, is 1/3. Compared

with Eq. (2-62), the numerical prefactor reassuringly evaluates3 to that given in

Tab.A-1 for the isotropic second-order shift.

3i.e. 2×−3/40× 1/3 = −1/20 = A
3/2
1/2
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Figure 6-8. 11B DOR NMR spectrum of polycrystalline lithium diborate
recorded at 14.1 T by Dr Ivan Hung. Inner rotor rate was 5 kHz. The outer
magic-angle rotor rate was 1.5 kHz, which was not sufficient to fully remove the
anisotropic interactions, thus spinning sidebands were present in the spectrum
(indicated by asterisks). Sideband suppression was used to minimise the odd-
ordered sidebands [33]. The peak appearing around 14 ppm is the B3 site, with
no second-order broadening. Likewise, the B4 peak is around 2 ppm.

Table 6-2. 11B NMR parameters for polycrystalline lithium diborate, which are
in agreement with published values [311]. δcog was calculated from the first three
columns of data and Eq. (6-3). At 14.1 T, ν0(11B) = 192.54 MHz.

MAS DOR

Site δiso in ppm CQ in MHz ηQ δcog in ppm δobs in ppm

B3 18.2±0.5 2.60±0.05 0.18±0.04 13.9±0.5 13.8±0.1
B4 2.0±0.5 0.50±0.02 0.50±0.50 1.8±0.5 1.8±0.1

6.3.2 1D DOR of Li2O·2B2O3

As understood from §2.10.2, double rotation can remove the second-order quad-

rupolar broadening. A 11B DOR NMR spectrum of Li2O·2B2O3 is shown in

Fig. 6-8. The remaining lineshape broadening of this natural abundance sample

is predominantly caused by multiple noncommuting homonuclear dipole cou-

plings. Under DOR the quadrupolar lineshapes appear at the centre of gravity

of the MAS peak [Eq. (6-3)] rather than the “correct” isotropic chemical shift

of the line. The calculated and observed peak positions are given in Tab. 6-2

and agree well.

Anisotropic interactions and the relative orientations of the quadrupolar

principal axis system can be extracted from spinning sideband intensities in

favourable cases [83]. The DOR spectrum in Fig. 6-8 is reproducible in simu-

lations by choosing an appropriate chemical shift, CQ, ηQ, CSA and effective
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Figure 6-9. 11B MAS NMR spectra of polycrystalline lithium diborate with
varying levels of isotropic enrichment; 5% 11B (red), 25% 11B (orange), 80% 11B
(green) and 100% 11B (blue). Recorded at 14.1 T. MAS rate was 10 kHz. Line
broadening was 10 Hz. Long recycle delays and small tipping angles were used to
provide quantitive measurement. Boron background was subtracted by acquiring
boron signal from an empty rotor with identical experimental settings. Spectra
are normalised to the same vertical height.

dipole coupling between B3 and B4 sites. Knowledge of the effective dipolar

coupling would be beneficial in analysing homonuclear correlation experiments.

However, in this case there are too many variables to extract an unambiguous

set of parameters from the DOR spectrum.

Isotopically Altered 10B/11B

Using the method described in §6.2.2, Li2O·2B2O3 samples were made with 5%,

25% and 100% 11B, to complement the 80% 11B natural abundance sample.

Comparative 1D 11B MAS NMR spectra are shown in Fig. 6-9. Altering

the isotopic abundances has not affected the chemistry or structure of lith-

ium diborate. The 1D 11B MAS NMR spectra show a marked change in line-

shape broadening, as well as a predictable reduction in the signal-to-noise ratio.

The significant remaining (after MAS) broadening mechanisms are due to the

second-order quadrupolar interaction and multiple noncommuting homonuclear

dipolar couplings. The B3 lineshape is principally affected by the quadrupolar

broadening mechanism, showing little variation in width as a function of iso-

topic abundance. The B4 lineshape, with a relatively small CQ, is predomi-

nately affected by the multiple noncommuting homonuclear dipolar broadening

mechanism. With only 25% 11B, the nuclei are significantly spaced apart such

that any neighbouring 11B nuclei can be considered as spin pairs. The 5% 11B
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Table 6-3. Connectivity probabilities for three- and four-coordinated boron
atoms in crystalline lithium diborate for differing degrees of 11B isotope. Proba-
bilities given for no neighbours, exactly one neighbour, and so on. The 25% 11B
composition maximises the chance that an 11B4 will have just one 11B neighbour.
The maximum for the B3 site occurs at 33.3̇% 11B composition.

11B Site Zero One Two Three Four

5% B3 85.7% 13.5% 0.7% 0%
5% B4 81.5% 17.1% 1.4% 0% 0%

25% B3 42.2% 42.2% 14.1% 1.6%
25% B4 31.6% 42.2% 21.1% 4.7% 0.4%

33.3̇% B3 29.6% 44.4% 22.2% 3.7%
33.3̇% B4 19.8% 39.5% 29.6% 9.9% 1.2%

80% B3 0.8% 9.6% 38.4% 51.2%
80% B4 0.2% 2.6% 15.4% 41.0% 41.0%

100% B3 0% 0% 0% 100%
100% B4 0% 0% 0% 0% 100%

sample is a similar case, but with less 11B in general. The 11B nuclei in the nat-

ural abundance sample are necessarily clustered, such that multiple nuclei are

connected by the dipolar interaction. Consequently, MAS failed to completely

remove the dipolar interaction and some broadening remained. This behaviour,

which is well know from 1H MAS NMR [129, 312], was even more pronounced

for the 100% 11B sample.

The probabilities4 are given in Tab. 6-3, revealing two regimes of whether

or not the system can be described by isolated spin pairs. For 5% and 25%

11B isotopic abundances a given 11B nucleus will most likely have one or zero

11B neighbours. For 80% and 100% 11B isotopic abundances, two or more 11B

neighbours are most likely. These two regimes will have important consequences

for homonuclear correlation experiments, as we shall see later in spin diffusion

(Fig. 7-11) and spin-echo (Fig. 8-1) experiments on these isotopically altered

compounds.

For 100% 11B abundance, the root-sum-squared dipolar coupling can be

calculated from Eq. (2-32), the crystal structure [303] and the following equation

4Calculated from binomial probabilities, e.g. for only 25% 11B, the probability an 11B3
will have exactly one 11B neighbour is

(
1
4

)1 × ( 3
4

)2 × 3 = 27
64 . For 33.3̇% 11B, the probability

an 11B4 will have exactly two 11B neighbours is
(

1
3

)2 × ( 2
3

)2 × 6 = 8
27 .
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[129, Eq. (3)]:

brss =

√∑
j 6=k

b2jk (6-5)

Considering out to 10 Å; for the B3 site brss = 1613 Hz and for the B4

site brss = 1818 Hz. The similarity of these values indicates that any residual

dipolar-interaction phenomena (e.g. linebroadening or spin-echo dephasing) will

affect both sites to the same degree.

6.3.3 MQMAS of BaO·2B2O3

Multiple quantum MAS experiments were introduced in §3.8 and yield high-

resolution spectra, similar to DOR, but also retain second-order broadened

lineshapes that can be fitted to give quadrupolar parameters. Li2O·2B2O3 has

only one B3 site and one B4 site, which are resolved in high-field spectra. For

lithium diborate, MQMAS would not provide any more information than a 1D

MAS spectrum. An MQMAS spectrum of lithium diborate has recently been

published [291, Fig. 3]. There have been no reports of performing the MQMAS

experiment on barium diborate, to the best knowledge of the author.

Crystalline barium diborate comprises equal proportions of dipentabo-

rate (B5O11) and ditriborate (B3O8) superstructural units, which share a bridg-

ing oxygen [315, Fig. 1]. As is clear by examining the units themselves, or

referring to the crystal structure as a whole, there are four chemically distinct

B3 atoms and four chemically distinct B4 atoms as well. The barium diborate

system represents a good test case for more advanced homonuclear correla-

tion experiments, where separation of different superstructural units could be

achieved.

As the multiple B3 and B4 sites overlap, a high-resolution spectrum can

help determine which lineshape is caused by which chemical site. An MQ-

MAS spectrum of BaO·2B2O3 is presented in Fig. 6-10. In the top-right of the

spectrum the B4 sites were broadened into each other; a case where reducing

the amount of 11B would enhance resolution. Several B3 sites were clearly dis-

cernible, allowing extraction of quadrupolar parameters. However, the spectrum

could contain more than the four expected B3 lineshapes, which may indicate

a mixture of crystalline phases. Recently a second phase, β-BaO·2B2O3, was
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Figure 6-10. An 11B amplitude-modulated split-t1 z-filtered 3QMAS [80] with
FAM [153] spectrum of polycrystalline barium diborate. The pulse sequence was
shown in Fig. 3-10. Recorded at 14.1 T and 10 kHz MAS rate. The B3 peaks
are blue and the B4 peaks are green. Spectral width was rotor synchronised for
the direct dimension and three times the MAS rate for the indirect dimension.
The excitation pulse was 4.25 µs. Three FAM repetitions were used, with a
FAM pulse duration of 0.9 µs. The selective 90°-pulse duration was 27 µs. The
recycle delay was 5.2 s. In t2, 1024 points were acquired with a digital filter,
co-adding 96 transients for each of 256 t1 slices. The States method achieved
sign discrimination in the indirect dimension. Both dimensions were Lorentzian
broadened by 10Hz. The spectrum is plotted with 8 contour levels starting at
5% of the maximum intensity and increasing by a factor of 1.43 between adjacent
contours. Faded peaks and asterisks indicate spinning sidebands, the origins of
which are detailed elsewhere [313][314, §8].

reported [316]. From this preliminary investigation, the phase purity was not

investigated and further research is required.

6.4 T1 Relaxation of Glasses and Crystals

Saturation-recovery experiments (§3.3) were performed on polycrystalline and

vitreous lithium diborate, to determine their 11B T1 relaxation time in the ab-

sence of paramagnetic species. Experimental details are given in §5.2.1 and the

results are presented in Fig. 6-11. Initial recovery was governed by a power law

(most clearly seen on the log-log scale) as was expected from previous studies

[317]. The glass sample was shown to fully relax, whereas the crystal sample was

still recovering magnetisation at 81.92 s. Saturation-recovery data were fitted

to the function:

S(t) = A
(
p
(
1− e−t/T a

1
)

+
(
1− p

)(
1− e−t/T b

1
))

(6-6)
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Figure 6-11. Room temperature saturation-recovery 11B NMR experiments on
polycrystalline and vitreous lithium diborate recorded at 14.1 T. MAS rate was
10 kHz. No paramagnetic species were present in the samples. The high static
magnetic field allowed separate rates to be calculated for B3 (blue and red) and
B4 (green and orange) chemical sites. Results are plotted a) linearly and b)
on a log-log scale. The disordered material relaxes around thirty times faster,
with little variation between chemical sites. Data were fitted to Eq. (6-6), the
parameters of which are given in Tab. 6-4.

Table 6-4. Parameters fitted to Eq. (6-6) for T1 relaxation in polycrystalline and
vitreous lithium diborate shown in Fig. 6-11. Correlation coefficients are given in
Tab. A-4.

State Site A p T a
1 in s T b

1 in s

Crystal B3 1.46±0.07 0.87±0.01 79.9 ±7.8 1.31±0.14
Crystal B4 1.44±0.03 0.89±0.01 77.6 ±3.5 1.61±0.09
Glass B3 0.98±0.01 0.86±0.04 2.10±0.13 0.25±0.09
Glass B4 0.99±0.01 0.46±0.16 2.66±0.41 1.15±0.15

where S(t) is the normalised integrated intensity of the lineshape, 0 ≤ p ≤ 1

describes the proportion of the slow-relaxation component, A is a normalising

constant and t is the recovery time.

Examination of T a
1 values in Tab. 6-4 reveal that the 11B nuclei in dis-

ordered lithium diborate relaxed 30–50 times faster than the polycrystalline

material. This was in agreement with studies on disordered and polycrystalline

B2O3 [260]. Multiexponential buildup, with 2I components, was expected for

quadrupolar nuclei as they possess 2I energy transitions [106]. However, this

multiexponential behaviour is relatively weak in solid-state NMR [318, §2] and

therefore the multiexponential behaviour arises from the separate relaxation

mechanisms that can exist for quadrupolar nuclei [109]. The presence and com-

parative strength of each mechanism will determine the relaxation behaviour

and suitable fitting function. However, based on the accuracy of the fit ev-
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ident in Fig. 6-11 and previous quadrupolar relaxation studies [319, §IV.B] a

bi-exponential fit was suitable for the glass in this case.

In NMR, shorter recycle delays between phase cycle steps shorten the

total experimental time, as the recycle delay is usually the rate limiting step.

Borate crystals are the model compounds that are to be studied before mov-

ing on to more complicated disordered materials. The long 11B spin-lattice

relaxation, compared to the vitreous phase, inhibits the rapid acquisition of

data. Fortunately, the recycle delays for polycrystalline lithium diborate were

only measured in tens of seconds rather than hours; the latter would render

2D NMR experiments infeasible. Nevertheless, the unsolved problem of long

relaxation in crystals is of broad importance and worthy of some investigation.

The structural differences between crystal and glass cause the nuclei to

relax through different mechanisms, prolonging the T1 relaxation for those in

the crystal lattice. Different relaxation mechanisms were briefly covered in §3.3

but will be elaborated upon here. The dominant cause of relaxation in insulat-

ing crystals, such as lithium diborate, is a two-phonon quadrupolar relaxation

Raman process, first reported by Van Kranendonk [105]. In this process, an

incident phonon is annihilated at the nuclear site, the nuclear spin is flipped

and an energy-conserving phonon is created [260, §2]. The mechanism has a

specific temperature dependence and experiments with chlorine nuclei provide

supporting evidence for this mechanism [107]. In amorphous materials, the Van

Kranendonk mechanism has been shown to be negligible by Szeftel and Alloul

[108]. A more efficient relaxation mechanism is described as being due to the

abundant existence of two-level defects. Bridging oxygen atoms tunnelling be-

tween two potential wells cause a modulation of the electric field gradient at

the nuclear site. This changing field is a more efficient process at relaxing the

nuclear spins than the Van Kranendonk mechanism [320, 321].

To be confident in the assignment of these relaxation mechanisms for

lithium diborate crystal and glass, the temperature dependence of T1 would

need to be sought. Regardless of these mechanisms an additional, overriding,

mechanism can be introduced; relaxation through paramagnetic centres [69,

Ch. IX §II.A].
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Table 6-5. Selected ionic “Shannon” radii [324].

Ion Charge Coordination Spin State Ionic Radius in Å

Li 1+ 4 0.59
Li 1+ 6 0.76
Cu 2+ 4 0.57
Cu 2+ 6 0.73
Co 2+ 4 High Spin 0.58
Co 2+ 6 High Spin 0.65
Co 2+ 6 Low Spin 0.75
Fe 3+ 4 High Spin 0.49
Fe 3+ 6 Low Spin 0.55
Fe 3+ 6 High Spin 0.54

6.4.1 Paramagnetic Doping

The presence of a large electric field, such as that which forms around a para-

magnetic ion, causes rapid relaxation to nuclei that are close enough to dipole-

couple with an unpaired electron spin. Further away nuclear spins then relax

via spin diffusion to the paramagnetic centre [322, §II.B]. Mortuza, Dupree and

Holland have shown that tiny amounts (<0.5 mol%) of paramagnetic impuri-

ties can drastically reduce the T1 time in glasses without affecting the structure

[323]. Relaxation through paramagnetic centres also affects the coherence de-

phasing, with excessive (>2 mol%) dopant causing severe broadening of spectral

lines [297, Fig. 11].

A suitable paramagnetic ion will have many unpaired electrons and be

small enough to substitute for a Li1+ ion. The ionic size of selected ions is given

in Tab. 6-5. For a given coordination number, Cu2+, Co2+ and Fe3+ are small

enough to substitute for Li1+. Sources of these ions can be found in copper(II)

oxide, cobalt(II,III) oxide and iron(III) oxide, respectively. The first and last

compounds melt above the firing temperature of 1100 °C, at temperatures of

1201 °C and 1566 °C. However, the oxides readily dissolve in the corrosive borate

glass melt. Above 895 °C, cobalt(II,III) oxide decomposes into CoO, containing

the cobalt(II) ion:

2Co3O4
heating−−−−−→ 6CoO + O2 (6-7)

If 0.1 mol% of copper(II) oxide provided solely Cu2+ ions, which have one

unpaired electron, there would be at most 0.1 mol% of unpaired electrons con-
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Figure 6-12. 11B MAS NMR spectra of polycrystalline lithium diborate
recorded at 11.74 T. MAS rate was 10 kHz. Various paramagnetic dopants are
shown to have negligible effect on the NMR spectra when present at the 0.1 mol%
level.

tributing to the electronic moment. However, the same amount of cobalt(II,III)

oxide could provide 0.3 mol% of Co2+ ions, which have either one or three un-

paired electrons depending on the spin-state. Therefore, either 0.3 mol% or

0.9 mol% of unpaired electrons could contribute to the electronic moment in

the cobalt-doped case. Iron(III) oxide has five unpaired electrons, therefore

0.1 mol% of Fe2O3 could contribute 1 mol% of unpaired electrons.

Two samples of polycrystalline lithium diborate with either 0.1 mol%

CuO or 0.1 mol% Co3O4 were synthesised using the boric acid method (§6.2.2).

The crystallised solids appeared brown-green and blue for the copper- and

cobalt-doped samples, respectively. Polycrystalline lithium diborate with nomi-

nally 0.1 mol% iron(III) oxide (Sigma-Aldrich, #310050, ≥99%) was synthesised

using the boron oxide method (§6.2.1). Before melting, the well-mixed powders

appeared light pink in colour and after melting the crystallised solid appeared

light brown.

All three paramagnetic-doped lithium diborate samples were investigated

with 11B MAS NMR, using identical experimental parameters. NMR spectra,

with the boron-background subtracted, are shown in Fig. 6-12. Assuming the

samples are otherwise identical, any change in linewidth is attributable to relax-

ation (coherence dephasing rather than spin-lattice) through the paramagnetic

centres. The full-width at half-maximum for the B4 peaks were: iron-doped

322 Hz± 12 Hz, copper-doped 318 Hz± 12 Hz, cobalt-doped 386 Hz± 12 Hz.
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Figure 6-13. Room temperature saturation-recovery 11B NMR experiment at
11.74 T and 10 kHz MAS rate. The semi-log plot shows the recovery curves of the
B4 site for 0.1 mol% cobalt- and copper-doped polycrystalline lithium diborate.
The data were fitted to Eq. (6-8), the parameters of which are given in Tab. 6-6.

Table 6-6. Fit parameters for T1 relaxation in 0.1 mol% copper- and cobalt-
doped polycrystalline lithium diborate. Only data for the B4 site are given and
were fitted to Eq. (6-6). Correlation coefficients are given in Tab.A-5.

Dopant A T1 in s c

Cobalt 0.79±0.02 82.9± 6.4 0.18±0.01
Copper 0.69±0.01 145.5±10.9 0.30±0.01

6.4.2 T1 Relaxation of Doped Crystals

90°-pulse-recovery experiments were performed on 0.1 mol% copper- and cobalt-

doped polycrystalline Li2O·2B2O3 to determine their 11B T1 relaxation time.

The data are shown in Fig. 6-13, fitted to the mono-exponential:

S(t) = A(1− e−t/T1) + c (6-8)

where A and c are variables that vertically scale and shift the function. The

significant magnetisation at short relaxation times was accommodated the c

term. Compared to Eq. (6-6), c can be thought of as a second component that

recovers extremely fast.

The signal at very short (0.1 s, not plotted) relaxation durations were

similar to that at 1.6 s for both samples. Careful baseline correction excludes

an artificial explanation for such significant signal intensity. The rapid recovery

could indicate that some paramagnetic ions are present near 11B nuclei. The

presence of such a baseline offset does not affect the determination of T1 times,

as indicated by the low correlation of the c variable in Tab. A-5.

The overriding result was that both the copper- and cobalt-doping failed
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to reduce the T1 relaxation time significantly. The cobalt-doped lithium dibo-

rate had a slightly wider B4 lineshape and faster relaxation than the copper-

doped sample. Cobalt was a slightly more effective relaxation agent than cop-

per, arguably because the cobalt(II,III) oxide provided more unpaired electrons.

By this argument the iron-doped sample should be the most effective of three

dopants, but the linewidth of the iron-doped sample in Fig. 6-12 was similar to

that of the copper-doped. T1 relaxation data was not collected for the iron-

doped sample, but preliminary tests indicated the relaxation time was the same

order of magnitude as the cobalt- and copper-doped samples.

The metal oxides effectively dissolved in the melt, as seen in cases where

the melt forms a glass. Additionally, the dopant ions had a high probability

of being in paramagnetic states. If these points hold true, then the simplest

explanation for the lack of significant relaxation seen in Fig. 6-13 is that the

crystal lattice does not readily accept these dopants. Plausibly, the 2+ charge

state of the cobalt and copper dopants inhibited their substitution into the Li1+

ion location. For Fe3+, even more so. However, Co2+ and Fe3+ ions have been

shown previously to be accepted into a glass matrix [297].

Once again, a difference between glasses and crystals becomes apparent

as the ionic acceptance is explained by the much greater disorder in the glass

network. In a rigid crystal lattice such ions could be restricted by the valence

imbalance. It is briefly noted that, even in a glass, the chance of Fe3+ substitut-

ing for B3+ can be neglected based on the large difference in metal-oxide bond

length. As paramagnetic species were included in the crystal synthesis but not

detected near most of the boron nuclei, a question is raised as to the location

of the paramagnetic species.

Scanning electron microscopy (SEM) was used to observe the surface

of polycrystalline lithium diborate doped with 5 mol% Fe2O3. The results are

shown in Figs. 6-14 and 6-15. The SEM results indicated that a significant

amount of the iron oxide did not enter the crystal lattice and remained in

clusters of varying microscopic size. As most boron atoms were very far from

the paramagnetic centres this result largely accounts for the lack of enhanced

spin-lattice relaxation.

Further investigation could, potentially, successfully introduce param-
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Figure 6-14. SEM image of a shard of 5 mol% iron-doped polycrystalline lithium
diborate. The white box indicates the region shown in Fig. 6-15.

a

Figure 6-15. Magnified SEM image of Fig. 6-14. Patches of different material,
such as (a), are clearly visible on the surface. Energy-dispersive X-ray spec-
troscopy indicates these are composed of mostly iron oxide. In between these
regions, negligible elemental iron was detected on the surface.



6.4. T1 Relaxation of Glasses and Crystals 109

agnetic centres into polycrystalline material to reduce the nuclear spin-lattice

relaxation time. Further methods, not involving paramagnetic centres, involve

creating defects in the crystal lattice. However, this ultimately will transform

the crystal into an amorphous material, which cannot function as a model com-

pound for investigations on homonuclear correlation between half-integer quad-

rupolar nuclei.



CHAPTER 7

Homonuclear Correlation Experiments

Using polycrystalline lithium diborate as a model compound, homonuclear cor-

relations involving the half-integer quadrupolar nucleus 11B were investigated.

Two-dimensional spin diffusion experiments (§3.7, §5.2.3) are used to observe

the transfer of nuclear magnetisation, mediated by the dipolar interaction. An

intricate interplay of dipole and quadrupole effects means the interpretation

of such spectra is not always straightforward. In the two-site case of lithium

diborate, there are three potential correlations: B3–B4, B3–B3, B4–B4. As

the B3 site has significant second-order quadrupolar broadening there is op-

portunity to detect spin diffusion between inequivalent B3 sites by observing

cross-peaks between the singularities of the B3 lineshape. Any cross-peaks be-

tween inequivalent B4 sites would be hidden under the featureless auto-peak.

Double-quantum homonuclear dipolar recoupling experiments are presented at

the end of this chapter, where all three correlations can be detected.

7.1 MAS Spin Diffusion at 14.1T

7.1.1 Varying Mixing Time at Fixed MAS Rate

Two-dimensional spin diffusion 11B NMR experiments at MAS rates of 4716 Hz,

6160 Hz and 7602 Hz are presented in Figs. 7-1, 7-2 and 7-3, respectively.

One-dimensional row slices through the B4 site of all the spectra are

110



7.1. MAS Spin Diffusion at 14.1T 111

20 15 10 5 0 ppm

ppm

20

15

10

5

0
d) 7 ms

ppm

20

15

10

5

0
c) 3 ms

ppm

20

15

10

5

0
f) 30 ms

ppm

20

15

10

5

0
e) 10 ms

ppm 20 15 10 5 0 ppm

20

15

10

5

0
g) 100 ms

ppm

20

15

10

5

0
b) 1 ms

ppm

20

15

10

5

0
a) 0 ms

B3

B4

Figure 7-1. 11B MAS NMR rotor-synchronised spin diffusion spectra of poly-
crystalline lithium diborate. Recorded at 14.1 T. MAS rate was 4716 Hz. The
mixing times were a) 0 ms, b) 1 ms, c) 3ms, d) 7ms, e) 10 ms, f) 30 ms, g) 100 ms.
Contours increase by ×1.75 from a base of 2% of the maximum intensity.
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Figure 7-2. 11B MAS NMR rotor-synchronised spin diffusion spectra of poly-
crystalline lithium diborate. Recorded at 14.1 T. MAS rate was 6160 Hz. The
mixing times were a) 0 ms, b) 1 ms, c) 3ms, d) 7ms, e) 10 ms, f) 30 ms, g) 100 ms.
Contours increase by ×1.75 from a base of 2% of the maximum intensity.
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Figure 7-3. 11B MAS NMR rotor-synchronised spin diffusion spectra of poly-
crystalline lithium diborate. Recorded at 14.1 T. MAS rate was 7602 Hz. The
mixing times were a) 0 ms, b) 2 ms, c) 3ms, d) 7ms, e) 10 ms, f) 30 ms, g) 100 ms,
h) 300 ms. Contours increase by ×1.75 from a base of 2% of the maximum inten-
sity.
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Figure 7-4. Slices taken through the rows (parallel to ω2) at 1.4 ppm in Fig. 7-1.
Recorded at 14.1 T. MAS rate was 4716 Hz. Numbers next to the slices indicate
the mixing time.
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Figure 7-5. Slices taken through the rows (parallel to ω2) at 1.4 ppm in Fig. 7-2.
Recorded at 14.1 T. MAS rate was 6160 Hz. Numbers next to the slices indicate
the mixing time.
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Figure 7-6. Slices taken through the rows (parallel to ω2) at 1.4 ppm in Fig. 7-3.
Recorded at 14.1 T. MAS rate was 7602 Hz. Numbers next to the slices indicate
mixing the time.

presented in Figs. 7-4, 7-5 and 7-6. For maximum consistency, all spectra for a

given spinning speed were recorded contiguously.

Examination of the spectra at zero mixing time revealed all the intensity

was in auto-peaks along the diagonal. Auto-peaks are created by magnetisation

that has not exchanged. Hence, a diagonal slice of a spin diffusion spectrum

at 14.1 T will be representative of the 1D MAS spectrum shown in Fig. 6-7b.

From this we can assign the bottom-left peak to be the large-CQ B3 site and

the top-right peak to be the small-CQ B4 site. The B3–B4 and B4–B3 cross-

peaks were clearly visible for long mixing times at the off-diagonal intersection

of the B3 and B4 auto-peaks. The appearance of cross-peaks indicate there

was a spin diffusion mechanism at work, balancing the energy needed for a

dipolar flip-flop of spins. The bottom-right B3–B4 cross-peak was formed from
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magnetisation that evolved on a B3 nucleus, was exchanged during the mixing

time and detected on a B4 nucleus. The top-left B4–B3 cross-peak was, vice

versa, formed the same way. Intensity was also seen between the singularities

of the B3 lineshape, indicating a B3–B3 cross-peak.

For different MAS rates, there was a difference in broadening of the

peaks, which can be assigned to the effect of multiple noncommuting homonu-

clear dipolar couplings. At 14.1 T and the three MAS rates of 4716 Hz, 6160 Hz

and 7602 Hz, the broadness of the diagonal peaks decreased for faster spinning

speeds. Note the relative widths of the B3 auto-peaks at 0 ms in Figs. 7-1a,

7-2a and 7-3a. As MAS can only completely remove the dipolar interaction

between isolated spin pairs these multiple noncommuting couplings, in effect,

reintroduce the dipolar interaction. Faster MAS suppresses these residual dipo-

lar interactions more effectively [129].

At a MAS rate of 4716 Hz, the B3–B4 cross-peaks were seen to grow

quickly, starting from a mixing time of 3 ms. The B3–B3 cross-peaks appeared

with mixed positive and negative intensity, which grew at a similar rate as

the B3–B4 cross-peaks. The B3–B4 cross-peaks had an interesting shape, also

showing regions of mixed positive and negative intensity. Examination of the

slices in Fig. 7-4 indicated this shape persisted for different mixing times.

The most striking difference at the slightly higher spinning speed of

6160 Hz was that the B3–B3 cross-peaks were only positive in intensity. Yet

the B3–B4 cross-peak shape was the same
(−+
+−

)
pattern seen at a MAS rate

of 4716 Hz. Comparing cross-peak intensities at τmix = 10 ms for 4716 Hz and

6160 Hz MAS rates, the cross-peak buildup took longer at the faster MAS rate.

Also, comparing the slices at τmix = 100 ms, the overall cross-peak to auto-peak

intensity was reduced at the faster MAS rate. However, the B3–B3 cross-peak

intensity was higher than the B3–B4 cross-peak intensity.

At the MAS rate of 7602 Hz a spectrum was recorded for a mixing time

of 300 ms, see Fig. 7-3h. For τmix = 300 ms all cross-peak intensities were greater

than the cross-peak intensities at τmix = 100 ms, showing the transfer of mag-

netisation was still occurring. Comparing cross-peak intensities at τmix = 30 ms

for 6160 Hz and 7602 Hz MAS rates, the cross-peak buildup took longer at the

faster MAS rate.



7.1. MAS Spin Diffusion at 14.1T 117

ppm

20 15 10

B3 autopeak B3–B4 crosspeak

B4–B3 crosspeak B4 autopeak

5 0 ppm
20

15

10

5

0

Figure 7-7. An 11B MAS NMR spin diffusion spectrum of polycrystalline lith-
ium diborate recorded at 14.1 T. The MAS rate was 7602 Hz and the mixing time
was 300ms. Further experimental details were given in §5.2.3. The spectrum is
repeated from Fig. 7-3h.

The spectrum from Fig. 7-3h is enlarged and shown in Fig. 7-7. Labelled

on the figure are the broadly defined auto- and cross-peak regions. Presence of

a cross-peak indicates magnetisation has been transferred between the B3 and

B4 sites, whether the peak is positive or negative. The labelled areas shown in

Fig. 7-7 were volume-integrated in absolute mode to yield total absolute peak

intensity.

A buildup curve can be made by volume-integrating (in absolute mode)

the auto- and cross-peaks of the spectra in Fig. 7-3 for a MAS rate of 7602 Hz.

The magnetisation transfer as a function of mixing time is shown in Fig. 7-8.

Generally, the curve follows the expected behaviour for magnetisation that is

stochastically diffusing. For zero mixing time, there should be no magnetisation

transfer and the finite but small (∼1%) value indicated in Fig. 7-8 is an unfortu-

nate consequence of using a magnitude spectrum for integration—the random

noise in the cross-peak regions are being falsely counted as actual cross-peak

intensity. An area of noise was also integrated to provide an indication of

measurement uncertainty. The integrated intensity of the cross-peaks were nor-

malised to account for relaxation by dividing by the integrated intensity of the
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Figure 7-8. The ratio of absolute cross-peak intensity to absolute auto-peak
intensity under MAS (7602Hz) as a function of mixing time. The spectra were
shown in Fig. 7-3. There was rapid initial buildup, followed by a slower increase
to an eventual plateau around 10% magnetisation transferred. The points are
joined by a spline curve as a guide to the eye.

auto-peaks. Note that in this definition the integrated intensity of the auto-

peaks also include the B3–B3 and B4–B4 cross-peaks, which is a limitation of

this basic approach.

7.1.2 Varying MAS Rate at Fixed Mixing Time

Figure 7-9 shows spin diffusion spectra at the long mixing time of 100 ms for

varying MAS rates from 4427 Hz to 7602 Hz. The slowest spinning speed cor-

responds to 23 ppm, which is slightly larger than the lineshape separation. At

spinning speeds slower than ≈ 4427 Hz, some of the resonances would fall out-

side the rotor-synchronised spectral width. The experimental conditions were

given in §5.2.3. All spectra were processed and displayed equivalently except

for Fig. 7-9a, which had a base contour level of 13% as opposed to 2% otherwise.

Concentrating on the B3–B4 cross-peaks, the
(−+
+−

)
shape appeared to be

present at all tested MAS rates. For the slowest spinning speed, the cross-peak

shape was not so clear, but the cross-peaks were certainly not purely in-phase

absorptive across their entire span. The B3–B3 cross-peaks had roughly the

same relative intensity, regardless of spinning speed. However, for MAS rates

≤5005 Hz the B3–B3 cross-peaks showed mixed positive and negative intensity.

By visual inspection of the contour-level difference between the auto- and

cross-peaks for the slower (Fig. 7-9b) and fastest (Fig. 7-9g) spinning speeds, it
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Figure 7-9. 11B MAS NMR spin diffusion spectra of polycrystalline lithium
diborate. Recorded at 14.1 T. The mixing time was 100ms. MAS rates were a)
4427 Hz, b) 4716 Hz, c) 5005Hz, d) 5582Hz, e) 6160 Hz (Warwick), f) 6160Hz (St
Andrews), g) 7602 Hz. Contours increase by ×1.75 from a base of 2% [a) 13%] of
the maximum intensity.
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Figure 7-10. The ratio of absolute cross-peak intensity to absolute auto-peak
intensity at 100 ms mixing time as a function of MAS rate. The spectra were
shown in Fig. 7-9.

is clear that faster spinning reduced magnetisation transfer. This result was

confirmed by plotting the ratio of absolute cross-peak intensity to absolute

auto-peak intensity as a function of spinning speed, as shown in Fig. 7-10.

7.2 Isotopically Altered 10B/11B Spin Diffusion

In the 2D spin diffusion spectra presented above for lithium diborate at natural

abundance (80% 11B), each 11B nucleus will have several other 11B nuclei nearby.

The consequences of the 11B nuclei not existing as well-isolated spin pairs was al-

ready seen in Fig. 6-9, whereby the multiple noncommuting homonuclear dipolar

couplings caused lineshape broadening [129]. Polycrystalline lithium diborate

with only 25% 11B was synthesised as described in §6.2.2. At this concentration

there was a preponderance of 11B–11B spin pairs—see Tab. 6-3. There were also

less 11B nuclei to detect, so the number of co-added transients was increased

from 8 to 36, such that each spin diffusion experiment took 72 h to acquire.

7.2.1 At 14.1T and 11.74T

For the long mixing time of 100 ms and a spinning speed of 6160 Hz, two spin

diffusion spectra are compared at static magnetic fields of 11.74 T and 14.1 T

in Fig. 7-11. The B3 and B4 lineshapes were distinctly resolved at both of

these magnetic field strengths. The important differences between the spectra
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Figure 7-11. 11B MAS NMR rotor-synchronised spin diffusion spectra of lithium
diborate at a MAS rate of 6160 Hz and long mixing time of 100ms. a) 25% 11B,
11.74 T, b) 25% 11B, 14.1 T, c) 80% (natural abundance) 11B, 14.1 T (repeated
from Fig. 7-9e). Small negative cross-peaks were visible in spectrum (b) between
the B3 and B4 sites. The row slices were normalised to the same B4 peak intensity.

were: the B3 site is narrower at the higher field—as a consequence of the 1/ω0

dependence of the second-order quadrupolar broadening given in Eq. (2-62)—

and there were small, negative, cross-peaks in the higher-field spectrum. The

intensity of B3–B4 cross-peaks in Fig. 7-11a was, if present at all, far below

the 2% base contour level. The B4 auto-peak in Figs. 7-11a and 7-11b, for the

25% 11B sample, much more resembled the theoretical 2D Lorentzian lineshape

shown in Fig. 3-6a.

Further information can be deduced by comparison of Fig. 7-11b and

its natural abundance equivalent in Fig. 7-11c. The reduction in 11B nuclei

near other 11B nuclei had a substantial effect on the cross-peak intensities.

The B3–B4 cross-peaks had noticeably reduced intensity and were negative. A

curious feature of these B3–B4 cross-peaks was their specific location, being

exactly in line with the B4 auto-peak. Compared to the natural abundance

spectrum where the B3–B4 cross-peaks had a
(−+
+−

)
shape, the reduced-11B

spectrum seemed to have purely negative B3–B4 cross-peaks and no mixed
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positive-negative character at all.

7.2.2 Varying Mixing Time at Fixed MAS Rate

6160Hz MAS Rate and 11.74T

For a MAS rate of 6160 Hz, spin diffusion experiments of varying τmix were

recorded at 11.74 T and are presented in Fig. 7-12. With the exception of τmix =

3 ms, spectra are presented for the same mixing times as for the natural abun-

dance lithium diborate at 14.1 T in Fig. 7-2. For consistency, and due to the

increased number of co-added transients, this dataset was collected over 18 days

contiguously.

With 25% 11B, the auto-peaks were significantly narrower. The sparsity

of 11B nuclei greatly reduced the chance of multiple noncommuting homonuclear

dipolar couplings. Cross-peaks were conspicuously absent in this series of spec-

tra. At τmix = 10 ms, the signal still appeared completely along the diagonal, as

in the spectrum at zero mixing time. Compare this result to the equivalent spec-

trum (Fig. 7-2e) for the natural abundance sample (and 20% higher B0), which

had clear indication of B3–B3 and B3–B4 cross-peaks by 10 ms mixing time.

Even for the long mixing time of 100 ms, there was no significant cross-peak

intensity.

7.3 DOR Spin Diffusion at 14.1T

7.3.1 Varying Mixing Time under DOR

From §2.10.2, we know that under DOR the quadrupolar lineshapes are not

broadened by the second-order quadrupolar interaction. A diagonal slice of a

spin diffusion spectrum will be representative of the 1D DOR spectrum in Fig. 6-

8. In this regime, spin diffusion experiments of varying τmix were recorded, as

shown in Fig. 7-13.

Note that the DOR figures are plotted with a relatively high (40%) base

contour level. This was necessary to see the signal peaks above the noise for

longer mixing times where dephasing was a severe issue. For τmix = 1 ms, the



7.3. DOR Spin Diffusion at 14.1T 123

ppm

20

15

10

5

0
d) 10 ms

ppm

20

15

10

5

0
c) 7 ms

20 15 10 5 0 ppm20 15 10 5 0 ppm

ppm

20

15

10

5

0
f) 100 ms

ppm

20

15

10

5

0
e) 30 ms

ppm

20

15

10

5

0
b) 1 ms

ppm

20

15

10

5

0
a) 0 ms

Figure 7-12. 11B MAS NMR rotor-synchronised spin diffusion spectra recorded
at 11.74 T. The MAS rate was 6160 Hz. This polycrystalline lithium diborate had
an 11B to 10B ratio of 25:75, compared to the natural abundance 80:20 ratio. The
transmitter frequency was at 10.8 ppm. As the amount of 11B in the sample was
reduced, the number of co-added transients recorded was increased to 36. Both
dimensions were Lorentzian broadened 5Hz. The mixing times were a) 0ms, b)
1 ms, c) 3 ms, d) 7 ms, e) 10 ms, f) 30 ms, g) 100ms. Contours increase by ×1.75
from a base of 2% of the maximum intensity.



7.3. DOR Spin Diffusion at 14.1T 124

ppm

20

15

10

5

0
b) 5 ms

ppm

20

15

10

5

0
d) 50 ms

ppm

20

15

10

5

0
f) 250 ms

20 15 10 5 0 ppm

ppm

20

15

10

5

0
h) 1000 ms

ppm

20

15

10

5

0
a) 1 ms

ppm

20

15

10

5

0
c) 10 ms

ppm

20

15

10

5

0
e) 100 ms

20 15 10 5 0 ppm

ppm

20

15

10

5

0
g) 500 ms

Figure 7-13. 11B DOR NMR spin diffusion spectra recorded at 14.1 T. The
mixing times were a) 1 ms, b) 5ms, c) 10 ms, d) 50 ms, e) 100 ms, f) 250 ms,
g) 500 ms, h) 1000 ms. Contours increase by ×1.14 from a base of 40% of the
maximum intensity. Dr Ivan Hung is acknowledged for acquiring the DOR data.
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noise ceiling was 4% of the maximum signal, compared to 0.4% in the compara-

ble MAS case. The poor signal-to-noise under DOR was partly circumstantial

(only using a 2 s recycle delay) and partly due to the smaller sample volume

and reduced filling factor available.

For τmix ≥ 50 ms, cross-peaks were clearly present, indicating spin dif-

fusion was occurring. Only the B3–B4 cross-peaks were visible because of the

narrow and featureless auto-peaks of the B3 and B4 sites under DOR. For

τmix < 50 ms, cross-peaks were very weak. This contrasts with the MAS case at

the similar spinning speed of 4716 Hz, where B3–B4 cross-peaks were detectable

after only 3 ms mixing time.

A buildup curve showing magnetisation transfer as a function of mix-

ing time under DOR is shown in Fig. 7-14. The magnetisation transfer un-

der DOR was more complete than under MAS. For the MAS case shown in

Fig. 7-8 the cross-peak : auto-peak ratio was ≈ 10% at τmix = 300 ms. Under

DOR, the plateau of magnetisation transfer was around 100%, meaning that the

cross-peak : auto-peak ratio was balanced and magnetisation had equilibrated

amongst the different sites.

There was an intensity imbalance between the B3 and B4 auto-peaks.

Initially, at τmix = 1 ms, the B4 site had only 84% of the integrated intensity

of the B3 site. By τmix = 1000 ms, this ratio had tipped such that the B4 site

was 274% of the intensity of the B3 site. For τmix = 500 ms, the transfer was

measured to be >100%, which is not a feasible steady-state condition. However,

at this long mixing time the rapidly-relaxing B3 site is markedly diminished

in intensity. This reduction of total auto-peak integrated-intensity artificially

skews the ratio, giving rise to—apparently—greater magnetisation transfer.

7.4 MAS Spin Diffusion at 7.05T

For a fixed MAS rate and long mixing time, an 11B spin diffusion spectrum

of polycrystalline lithium diborate recorded at 7.05 T is shown in Fig. 7-15. A

diagonal slice corresponds to the 1D MAS spectrum in Fig. 6-7a. From this we

can assign the small-CQ B4 site to be peaking around 0 ppm and the singularities

of the large-CQ B3 site around 11 ppm and −9 ppm. The low-intensity tail of
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Figure 7-14. The ratio of absolute cross-peak intensity to absolute auto-peak
intensity under DOR as a function of mixing time, for spectra shown in Fig. 7-13.

the B3 site extends along to the top edge of the spectrum and becomes folded

back in. The B3–B4 cross-peaks are most prominent in the spectrum, appearing

to the top, bottom, left and right of the B4 peak. Although these peaks could

be B3–B3 cross-peaks, such a shape was not seen in the higher field spectra.

The centre of the B3 lineshape also had relatively low intensity, such that the

cross-peaks related to this area would have also had a similarly low intensity.

The strong B3–B4 cross-peaks seen at 7.05 T in Fig. 7-15 were due to

the two chemical sites overlapping. At this n = 0 rotational-resonance condi-

tion, the dipolar flip-flop transition needed no additional energy balance. If the

magnetisation was confined to only the frequency where the lineshapes overlap

then the cross-peaks could only appear under the B4 auto-peak. During the

course of a rotor period an individual crystallite will be changing direction with

respect to the static magnetic field and consequently will be changing frequency

too. This frequency is given by Eq. (2-63) and shows that a given crystallite

frequency will oscillate, moving back and forth through the lineshape. As all

possible angles are represented in the powder pattern there are numerous oppor-

tunities for crossing crystallites to exchange magnetisation and hence spread the

magnetisation across the entire lineshape. Thus, there was efficient exchange

of longitudinal magnetisation between the B3 and B4 sites aided by the n = 0

rotational-resonance condition.

At 7.05 T, even at long mixing time, the B3–B3 cross-peaks were negli-

gible. This result can be explained aided by comparison with similar spectra
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Figure 7-15. An 11B MAS NMR rotor-synchronised spin diffusion spectrum of
polycrystalline lithium diborate. Recorded at 7.05 T. The MAS rate was 10 kHz.
11B nutation frequency was around 50 kHz. The recycle delay was 18 s. In t2, 128
points were acquired and 128 slices in t1 with 2 co-added transients each. The
mixing time was 114ms. Contours increase by ×1.4 from a base of 2% of the
maximum intensity.

at 14.1 T, such as Fig. 7-3h, where B3–B3 cross-peaks were detected. The main

difference in experimental conditions was the static magnetic field strength.

The central transition is not affected by the first-order quadrupolar interaction

[Eq. (2-59)] and there was no change in homonuclear dipolar coupling strength

or the rotational-resonance condition. There was a suppression of B3–B3 cross-

peak intensity going to lower field because the lineshape was broadened and the

isotropic shift was increased. The second-order quadrupolar interaction spread

out the frequencies of the crystallites, making efficient exchange of magnetisa-

tion between them less likely. The same effect has been noted before on pure

B2O3 where B3–B3 cross-peaks were seen at 11.7 T but not 4.7 T [131, Fig. 14].

7.5 Discussion

Spin diffusion in polycrystalline lithium diborate has been investigated under

MAS for varying magnetic field strength, varying spinning speed, varying mixing

time, differing isotopic abundance and under DOR. Spin diffusion was allowed
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to proceed naturally—no attempt was made to actively recouple the dipolar

interaction with RF. To summarise the key experimental observations:

• Spin diffusion (B3–B3 and B3–B4) was reduced by faster MAS rates, both

in the buildup rate and final magnetisation transfer.

• At long mixing times for MAS rates from 4427 Hz to 7602 Hz at 14.1 T,

the B3–B4 cross-peaks had a
(−+
+−

)
shape. Mixed positive and negative

intensity was also observed for the B3–B3 cross-peaks at MAS rates of

4427 Hz and 5005 Hz at 14.1 T.

• At zero mixing time for natural abundance 11B, faster spinning narrowed

the auto-peaks.

• Reducing the 11B isotopic abundance to 25% (where isolated spin-pairs

are predominant) diminished the intensity of the B3–B4 cross-peaks.

• The auto-peaks were much narrower for reduced 11B isotopic abundance.

• Spin diffusion under DOR at 14.1 T was efficient with ≈100% magnetisa-

tion transfer at τmix = 1000 ms.

• The B3 and B4 lineshapes overlap at 7.05 T—the n = 0 rotational reso-

nance condition—giving rise to strong B3–B4 cross-peaks.

• B3–B3 cross-peaks were not evident at 7.05 T.

7.5.1 Spin Diffusion at Long Mixing Time

For the natural abundance sample at long mixing times and 14.1 T, B3–B3 and

B3–B4 cross-peaks were visible at the tested MAS rates and under DOR, as

presented in, e.g. , Figs. 7-1g, 7-2g, 7-3h and 7-13h. The presence of cross-peaks

indicated that magnetisation exchange occurred, implying that the involved

nuclei were close in space and an energy-balancing mechanism was present.

Compared to the high-field natural abundance spectra shown in Fig. 7-2,

at a magnetic field strength of 7.05 T only the B3–B4 cross-peaks were visible

in Fig. 7-15. Thus, the B3–B3 spin diffusion mechanism depended on the field

strength. With depleted 11B a severe reduction of cross-peak intensity was seen
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in Fig. 7-12f, attributable to the diminished probability of 11B nuclei being close

in space. Where strong cross-peaks were seen in other spectra, the potential

spin diffusion mechanisms can be examined. These mechanisms were initially

mentioned in §3.7. For lithium diborate, there were no protons in the sample

so a strong heteronuclear dipolar field was not the spin diffusion mechanism.

The CSA and cross terms1 were negligible. No RF was applied during mix-

ing. The remaining spin diffusion mechanisms were the first- and second-order

quadrupolar interactions, strong noncommuting homonuclear dipolar couplings

and rotational-resonance conditions.

Generally, the shape of the cross-peaks contains information about the

relative tensor orientation between the quadrupolar nuclei [166]. Such an anal-

ysis is beyond the scope of this thesis. Note that DFT calculations have given

the 11B quadrupolar tensor orientations for lithium diborate [325, Fig. 4a].

For the higher field of 14.1 T the B3 and B4 lineshapes did not overlap be-

cause of the decreased second-order quadrupolar broadening and isotropic shift.

An energy balance mechanism must have been involved to explain the presence

of B3–B4 cross-peaks. The spinning speeds used were much greater than the

n = 1 rotational-resonance condition, occurring between 1600 Hz to 2900 Hz

MAS rate. Hence the remaining possible spin diffusion mechanisms were mul-

tiple noncommuting homonuclear dipolar couplings and the quadrupolar inter-

action. The latter mechanism prevents MAS from completely averaging the

dipolar interaction to zero because of the noncommutation of the I2
z term in

the quadrupolar interaction [Eq. (2-53)] with the flip-flop portion of the dipolar

interaction [Eq. (2-37)].

Effect of Isotopic Enrichment

A dramatic effect occurred when the abundance of 11B in the sample was re-

duced from 80% to 25%; this almost entirely removed the multiple noncommut-

ing homonuclear couplings that broaden the auto-peaks and could contribute

to magnetisation exchange. For the same spinning speed and magnetic field

strength two degrees of 11B abundance were presented in Fig. 7-11. Both showed

1Such as Ĥ L
Q×D that arise from the full quadrupolar and dipolar Hamiltonians in the

laboratory frame.
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B3–B4 cross-peaks. For the 25% 11B sample these cross-peaks were much re-

duced in intensity and showed small negative intensity, for the 80% 11B sample

the B3–B4 cross-peaks had a distinctive
(−+
+−

)
shape.

Varying MAS Rate

For a long mixing time, the effect of varying MAS rate was shown in Fig. 7-9.

Both B3–B3 and B3–B4 cross-peaks were detectable at MAS rates of 4427 Hz

to 7602 Hz. The B3–B4 cross-peaks all appeared with a similar
(−+
+−

)
pattern

over the MAS rates tested as well as for different spectrometers2 and additional

samples of polycrystalline lithium diborate, variously doped with iron, copper or

cobalt (not shown). At faster spinning speeds, the B3–B4 cross-peak intensity

was slightly reduced, which hints at an involvement of multiple noncommuting

dipolar couplings as discussed on the following page.

The B3–B3 cross-peaks were positive for MAS rates geq 5582 Hz and

negative for MAS rates less than this, over the experimental range presented.

The absence of negative intensity and increase in cross-peak intensity as the

MAS rate was increased is not characteristic of multiple noncommuting dipolar

couplings. However, the process of forming cross-peaks containing regions of

negative intensity, at certain MAS rates, is not yet understood.

7.5.2 Varying Mixing Time

Having examined spin diffusion spectra at zero and long mixing times, now the

focus will be on the changes that occur during the transition between these

extremes. Three MAS rates and one DOR case were presented in Figs. 7-1, 7-2,

7-3 and 7-13 along with a complementary buildup series at 11.74 T and only

25% 11B in Fig. 7-12. In all cases where spin diffusion was detected, the process

took tens or hundreds of ms to reach an equilibrium. Note that proton- or RF-

driven spin diffusion, which are not acting here, occurs much faster than this,

on the ms timescale. Where detectable, both B3–B3 and B3–B4 cross-peaks

build up over a similar timescale.

For faster spinning speeds the rate of magnetisation transfer was slower.

2Some experiments were performed in St Andrews, still at 14.1 T.
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The first visible3 B3–B4 cross-peaks were at 3 ms for a MAS rate of 4716 Hz,

7 ms for 6160 Hz and 10 ms for 7602 Hz. Quadrupolar-driven spin diffusion and

multiple noncommuting homonuclear dipolar couplings would both be expected

to be affected by a change in MAS rate.

Another, briefly mentioned, mechanism not affected by any spinning is

the quadrupole-dipole cross-term, Ĥ L
Q×D. The terms in this Hamiltonian are

proportional to CQbjk/ω0 [132, Eq. (19)]. As the quadrupolar interaction is not

squared as the other second-order terms are, this mechanism only has a strength

of a few Hz in lithium diborate at this field. Therefore, despite its constant

presence, the transfer of magnetisation is expected to be uninfluenced by such

quadrupole-dipole cross-terms. This mechanism is not further considered.

The effect of varying mixing time under DOR was shown in Figs. 7-13 and

7-14. Notably, the detected B3–B4 cross-peaks were positive throughout. Com-

pare this to MAS, where the second-order quadrupolar broadening is present

and a
(−+
+−

)
shape appeared. Whether or not the second-order quadrupolar in-

teraction is causing the mixed positive and negative intensity under MAS, the

second-order quadrupolar broadening was required to observe the shape of the

cross-peaks. The lack of cross-peak detail under DOR precludes the extraction

of tensor orientations, but does give information on the number and distribu-

tion of sites. In lithium diborate there is just one B3 and one B4 site. If there

were a distribution of B3 sites, such as in vitreous B2O3, they could be clearly

separated and potential spin diffusion between the sites can be detected [263,

Fig. 3].

7.5.3 On The Origins of Negative Cross-Peaks

In a spin diffusion experiment without active recoupling, mixed positive and

negative cross-peaks between quadrupolar nuclei have not been seen before,

to the best knowledge of the author. Concerning 11B, previous reports in-

clude B2O3 at 11.7 T and 10 kHz/14.5 kHz MAS rates [131], BCN at 21.8 T and

10 kHz/16 kHz MAS rates [182], as well as borax at 11.7 T and 20 kHz MAS rate

[250]. Where cross-peaks were seen, none had negative intensity or resemblance

3i.e. cross-peak intensity > 2%
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to a
(−+
+−

)
pattern.

Negative cross-peaks are, however, commonly seen in solution-state NMR

where there is fast molecular motion and it is the nuclear Overhauser effect that

causes the magnetisation transfer [124, §4(a)(i)]. Such a mechanism cannot be

possible in solid-state NMR, where any motion at all would be far from the ns

timescale required.

Regardless of transfer mechanism, zz antiphase magnetisation can exist if

the proximate nuclei also have a J-coupling. For the spin I = 1/2 case this can be

seen in the product operator formalism given in §A.2. Critically, the existence

of a resolved J-coupling between the two nuclei is a sufficient and necessary

condition for the appearance of zz signals [326]. As the J-coupling between the

B3 and B4 nuclei in lithium diborate is negligible4, zz signals are unlikely to

account for the
(−+
+−

)
shape seen in the spin diffusion spectra presented above.

Additionally, comparison with Ref. [326, Fig. 4c] indicates the polarity of the

cross-peak shape caused by this mechanism is reversed from that seen above,

which further reduces the likelihood that this particular mechanism is involved.

It is known that the double-quantum flop-flop Hamiltonian gives rise to

negative cross-peaks. This has been shown for isolated pairs of spin I = 1/2

nuclei where RF pulses were used to disrupt the MAS averaging of the dipolar

interaction and promote DQ coherences [327]. The DQ nature of the mag-

netisation exchange means that cross-peaks from direct exchange have negative

intensity, whilst exchange via a mutual coupling results in a positive cross-peak

[328]. Also, the cross-peaks would appear in several ms rather than tens or

hundreds of ms, because of the efficiency of the RF-driven exchange. RF-driven

exchange between half-integer quadrupolar nuclei also results in negative cross-

peak intensities, because of the DQ recoupling effect [177]. However, in the

experiments above no RF is applied during the mixing time and the phase cycle

explicitly excludes DQ coherences, ruling out involvement from the flop-flop

Hamiltonian.

Without RF-driven DQ recoupling, J-coupling or the nuclear Overhauser

effect, what other mechanism exists to explain negative cross-peaks in the spin

diffusion experiment? A high-order 4-spin process could become dominant if

4The J-coupling magnitude is revealed in §8.2.2.
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the normal 2-spin process is suppressed. This was observed in 19F spectra of

inorganic fluorides, at 4.7 T/8.4 T and 23 kHz/18 kHz MAS rates, respectively

[329]. Simulations of this phenomena are given below in §9.3.

The 4-spin process involves four coupled spins, divided into two groups of

two. Each pair has a similar chemical shift and the groups themselves are sepa-

rated apart. The exchange occurs when both pairs flip-flop simultaneously, e.g.

|αββα〉 ↔ |βααβ〉. Thus, it is the polarisation difference between a spin-pair

that exchanges with another pair. Importantly, the theory of 4-spin exchange

reveals that the pattern of the four cross-peaks has a
(−+
+−

)
shape [329, Eqs. (28)

and (29)]. This is the same pattern as the two-site spin diffusion seen between

quadrupolar nuclei above. In this quadrupolar case, however, the four peaks are

not from four separate spins but two separated sites, one of which has signif-

icant second-order quadrupolar broadening. If two B3 spins and two B4 spins

were in a favourable arrangement, maybe this 4-spin process could occur. The

idea is feasible for certain, instantaneous, crystallite orientations, but the effect

MAS will have—continually changing a crystallite’s frequency—on the process

is unclear at this stage.

The B3–B4 cross-peaks maintained a
(−+
+−

)
shape regardless of mixing

time. This is most clearly seen in the row slices of the spectra shown in Figs. 7-

4, 7-5 and 7-6. The mechanism or mechanisms responsible for this shape appear

to have acted at the same rate during the mixing time.

Furthermore, from the 25% 11B spin diffusion results presented in Fig. 7-

11b there were negative B3–B4 cross-peaks that did not appear in a
(−+
+−

)
shape.

With this level of isotopic abundance the probability of four 11B nuclei in close

proximity is very small (3%), which discounts the spin diffusion mechanisms of

multiple homonuclear dipolar coupling and possibly a high-order 4-spin process.

Notably, for the decreased magnetic field strength of 11.74 T the B3–B4 cross-

peaks disappear entirely. This field-dependent behaviour was seen for the B3–B3

cross-peaks which were determined to be driven by the quadrupolar interaction.

The implication is that the mixed positive and negative B3–B4 cross-peaks are

allowed to be seen by the second-order quadrupolar broadening. Therefore,

the full
(−+
+−

)
shape seen in the spin diffusion spectra of lithium diborate was

a result of the complicated interplay involving various quadrupolar and dipolar
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interactions.

7.5.4 Outlook

Where the spin diffusion mechanism is known, such as in a spin I = 1/2 case with

chemical exchange, the auto- and cross-peak integrals can be used to determine

a rate matrix from just one mixing time [24]. Because of the added complica-

tions imposed by solid-state NMR, the quadrupolar interaction and multiply

connected spins, this quantitative approach was not employed here. Neverthe-

less, by varying the mixing time closer spins will exchange magnetisation faster

for a given spin diffusion mechanism.

Ideally, there would be a quantitative model describing the spin diffusion

between the B3 and B4 sites as well as accounting for the relaxation suffered

during the mixing time. Then, for a given mixing time, the relaxation-corrected

spectrum at zero mixing time could be subtracted leaving only the areas where

magnetisation had transferred. By integrating these areas and fitting the re-

sultant curve to the free parameters of a spin diffusion model, the internuclear

distances could be extracted. In practice, even for a model compound, this

approach is complicated by the intricate interplay of quadrupolar and dipolar

interactions as well as the multiple noncommuting spins. The latter detail in-

hibits a direct application of theory constructed for isolated spin pairs and there

is need for further research.

7.6 Double Quantum Homonuclear Dipolar Re-

coupling

Experiments such as spin diffusion (e.g. NOESY-like) correlate single-quantum

coherences. When integrating volumes it is not obvious how much of a diagonal

peak is auto-peak and how much is a self cross-peak. For lineshapes without

any second-order quadrupolar broadening the entire cross-peak would lie be-

neath the auto-peak, making a through-space correlation impossible to verify.

Double-quantum correlation experiments escape this problem by only recording

magnetisation due to pairs of coupled nuclei; there are no auto-peaks.
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Figure 7-16. 11B MAS NMR double-quantum homonuclear dipolar recoupling
spectrum of a) polycrystalline Li2O·2B2O3 and b) x = 25, xLi2O·(100− x)B2O3

glass. Recorded at 14.1 T and an MAS rate of 10 kHz. Further experimental
details were given in §5.2.4. Spectra were recorded collaboratively with Dr Ivan
Hung.

The double-quantum homonuclear dipolar recoupling experiment (§5.2.4)

was performed on polycrystalline Li2O·2B2O3 and x = 25, xLi2O·(100− x)B2O3

glass. The spectra are presented in Fig. 7-16. All three correlations are clearly

visible; B3–B4, B3–B3, B4–B4. The latter correlation proving conclusively that

the B4 sites in lithium diborate have a through-space dipolar coupling; a fact

hidden by the auto-peak in a spin diffusion experiment.

Comparing the spectra of the glass to that of the crystal, the same cor-

relation peaks are visible. However, the B3–B3 correlation peak is attenuated

for the crystal. This is because the glass structure consists of several connected

superstructural units such as; boroxol, triborate and dipentaborate groups—

shown in Fig. 6-2. These units all contain a B3 atom bonded (via one oxygen

atom) directly to another B3 atom. However, in the crystal structure the B3

atoms are always bonded via B4 atoms and never directly, as can be seen from

the crystal structure given in Fig. 6-4. This increased distance between the B3

sites causes the attenuation of the B3–B3 correlation peak seen in Fig. 7-16a.

The peaks are broader in the spectrum of the vitreous compound because

of the inherent disorder of the glass network. All sites show chemical shift

dispersion, especially the B4–B4 peak that is narrow in the crystal, indicating

a range of bond lengths and angles between the boron and oxygen atoms. The

B3 peaks exhibit a combination of chemical shift dispersion and second-order
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quadrupolar broadening.

Further notable features in the comparison of the spectra are the shift of

the B4 site to higher ppm values upon crystallisation, showing small structural

changes to this high symmetry site. This effect has recently been noted for the

same system studied here, Li2O·2B2O3 [291].



CHAPTER 8

Spin Echoes, Dephasing and J -Coupling

Spin-echo MAS experiments (§3.4) are used here to investigate the refocussed(
T

′
2

)
coherence dephasing time in polycrystalline lithium diborate as a function

of spinning speed and isotopic abundance. Dephasing mechanisms are examined

and parallels to spin diffusion mechanisms were noted because of the similar

involvement of the dipolar and quadrupolar interactions. J-modulation of the

spin-echo dephasing curve, that would reveal through-bond connectivities, was

not seen; a result commensurate with the very small J-couplings as revealed by

first-principles calculations.

8.1 Spin-Echo Dephasing

Using 11B MAS NMR, spin-echo experiments were performed on polycrystalline

lithium diborate with three degrees of 11B isotopic abundance; 5%, 25% and

100%. The long T1 relaxation time of 11B nuclei in this sample (§6.4) neces-

sitated that saturation pulses were used, as previously detailed in §5.2.5. The

synthesis method of the samples was given above in §6.2.2. Normalised spin-

echo dephasing curves at 14.1 T and 20 kHz MAS rate for these samples are

presented in Fig. 8-1. At 14.1 T the B3 and B4 lineshapes are distinct, as shown

in Fig. 6-7b, hence separate dephasing behaviour can be determined for the B3

and B4 sites. Note that the chief difference between the sites is CQ—2.56 MHz

137
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Figure 8-1. Normalised spin-echo dephasing curves for polycrystalline lithium
diborate at 14.1 T and 20 kHz MAS rate, with varying degrees of 11B abundance;
a) 5% 11B, b) 25% 11B, c) 100% 11B. The high field allows separate dephasing
rates to be measured for the resolved B3 (blue) and B4 (green) chemical sites. For
the shortest τ , times the signal-to-noise ratio was >100 for both B3 and B4 sites
in all samples, therefore the associated uncertainty in the integrated intensity
is well within the shown datapoints. The data were fitted (solids lines) to the
bi-exponential function given by Eq. (8-2) with the fit parameters in Tab. 8-1.

for B3 and 0.51 MHz for B4.

For the 100% 11B enriched polycrystalline lithium diborate sample, spin-

echo experiments were performed at MAS rates of 5 kHz, 10 kHz, 16 kHz and

20 kHz. These spinning speeds correspond to initial1 τ durations of 400 µs,

200 µs, 125 µs and 100 µs, respectively. The normalised spin-echo dephasing

curves are presented in Fig. 8-2. For a given number of measurement points

and final τ value, the number of rotor-synchronised τ points were spaced loga-

rithmically to improve resolution at shorter τ times where dephasing is fastest.

A normalised spin-echo dephasing curve with τ durations up to 250 ms

for 25% 11B polycrystalline lithium diborate at 14.1 T and 20 kHz MAS rate is

1One rotor period
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Figure 8-2. Normalised spin-echo dephasing curves for 100% 11B polycrystalline
lithium diborate at 14.1 T. MAS rates were; a) 5 kHz, b) 10 kHz, c) 16 kHz, d)
20 kHz. For the shortest τ times the signal-to-noise ratio was >200 for both B3
and B4 sites, therefore the associated uncertainty in the integrated intensity is
well within the shown datapoints. The bi-exponential best-fit curves (solids lines)
are parameterised in Tab. 8-2.
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Figure 8-3. Normalised spin-echo dephasing curves for 25% 11B polycrystalline
lithium diborate at 14.1 T, 20 kHz MAS rate, for the B3 site (blue) and the B4
site (green). a) Ill-fitting mono-exponential fit, b) Bi-exponential fit.

shown in Fig. 8-3. Two non-linear curves were separately fitted to the data; a

mono-exponential curve given by Eq. (8-1) and a bi-exponential curve given by

Eq. (8-2).

S(τ) = Ae−τ/T ′
2 (8-1)

S(τ) = A
(
pe−τ/T ′

2a + (1− p)e−τ/T ′
2b

)
(8-2)

where 0 ≤ p ≤ 1 describes the proportion of the faster dephasing component,

A is a normalising constant and τ is the rotor-synchronised spin-echo duration

from the first 90°-pulse to acquisition as described in Fig. 5-1.

There was a poor fit for the mono-exponential decay curve shown in

Fig. 8-3a, especially for the B4 site at longer τ times. A bi-exponential decay

curve fitted to the same data produced very good best-fit curves. Parameters of

the bi-exponential best-fit for the data shown in Figs. 8-1 and 8-2 are given in

Tabs. 8-1 and 8-2. Although T
′

2b—the slow-dephasing component—was small, it

was crucial to fit the data satisfactorily. The correlation coefficients of the fits

are given in Tab. 8-3 revealing a high correlation between p and the T
′

2 times.

Care must be taken when interpreting variations in p between different fits.

Considering Figs. 8-1 and 8-2 as well as Tabs. 8-1 and 8-2, the key obser-
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Table 8-1. Fit parameters to Eq. (8-2) of spin-echo dephasing curves for poly-
crystalline lithium diborate with varying degrees of 11B abundance, at 14.1 T and
20 kHz MAS rate, as shown in Fig. 8-1.

Site 11B A p T
′

2a in ms T
′

2b in ms

B3 5% 1.04±0.02 0.23±0.02 0.6±0.1 92.7±6.6
B3 25% 0.98±0.01 0.11±0.02 7.8±2.1 51.8±1.6
B3 100% 1.02±0.01 0.20±0.05 2.2±0.7 12.1±0.7

B4 5% 1.02±0.02 0.29±0.04 1.9±0.6 37.2±4.2
B4 25% 1.03±0.01 0.35±0.02 1.6±0.1 19.0±0.7
B4 100% 1.07±0.02 0.90±0.07 1.9±0.2 12.4±9.9

Table 8-2. Fit parameters to Eq. (8-2) for spin-echo dephasing in 100% 11B
polycrystalline lithium diborate, at 14.1 T for varying MAS rate, as shown in
Fig. 8-2. Correlation between T

′
2 values and p are all > 0.9.

Site MAS in kHz A p T
′

2a in ms T
′

2b in ms

B3 5 1.19±0.01 0.79±0.12 2.0±0.2 5.8± 1.8
B3 10 1.04±0.01 0.53±0.19 3.8±0.8 10.3± 2.1
B3 16 1.02±0.01 0.52±0.13 4.8±0.8 13.6± 1.8
B3 20 1.02±0.01 0.20±0.02 2.2±0.7 12.1± 0.7

B4 5 1.29±0.04 0.95±0.07 1.6±0.2 9.4±12.5
B4 10 1.11±0.02 0.88±0.10 2.2±0.3 11.4± 8.7
B4 16 1.08±0.02 0.90±0.08 2.1±0.3 13.8±12.6
B4 20 1.07±0.02 0.90±0.07 1.9±0.2 12.4± 9.9

Table 8-3. Correlation coefficients of variables used to fit bi-exponential spin-
echo dephasing curves in Figs. 8-1 and 8-2. 11B column indicates level of isotopic
abundance, MAS rate is in kHz. Values close to ±1 indicate the two param-
eters are correlated, whilst a zero value indicates that the two parameters are
independent.

11B MAS Site Ap AT
′

2a AT
′

2b pT
′

2a pT
′

2b T
′

2aT
′

2b

100% 5 B3 −0.56 −0.72 −0.49 0.97 0.97 0.91
100% 5 B4 −0.50 −0.77 −0.40 0.90 0.94 0.78
100% 10 B3 −0.42 −0.55 −0.37 0.97 0.98 0.92
100% 10 B4 −0.41 −0.63 −0.33 0.92 0.94 0.80
100% 16 B3 0.39 −0.34 −0.53 −0.98 −0.97 0.91
100% 16 B4 −0.34 −0.60 −0.26 0.89 0.92 0.76
100% 20 B3 0.27 −0.29 −0.59 −0.93 −0.89 0.79
100% 20 B4 0.35 −0.28 −0.60 −0.92 −0.90 0.76
25% 20 B3 0.18 −0.22 −0.49 −0.92 −0.87 0.76
25% 20 B4 0.08 −0.24 −0.65 −0.85 −0.70 0.65
5% 20 B3 −0.70 −0.15 −0.74 −0.37 0.23 0.37
5% 20 B4 −0.05 −0.18 −0.56 −0.79 −0.64 0.58
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vations were:

• The B3 site dephased slower than the B4 site in lithium diborate at all

investigated spinning speeds.

• The dephasing time was shortened for both sites as the 11B isotopic abun-

dance was enriched.

• Speeding up the MAS rate from 5 kHz to 20 kHz prolonged the spin-echo

dephasing time for the B3 site much more significantly than the B4 site.

These observations are discussed further in §8.3 after the effects of pulse

duration and strength are presented.

Recalling Fig. 3-1, sites with greater values of CQ nutate faster than those

with lesser values. As the spin-echo experiment calls for a 180°-pulse there is

a choice of which site to optimise. The data shown above were optimised for

the B3 site. With identical experimental variables, except pulse length, the

spin-echo experiments shown in Figs. 8-2a and 8-2d were repeated. A longer

pulse length was used to optimise the 180°-pulse for the B4 site. However, it

was found that the duration of the soft pulse had essentially no effect on the

normalised integrated intensity dephasing curves. In this context, a 16-step

phase cycle ensured only the 0 → +1 → −1 coherence transfer pathways were

selected. Thus, imperfect 180°-pulses are only expected to affect the intensity

and not the rate of coherence dephasing.

The spin-echo experiments above used soft pulses, such that ωQ � ωnut.

The effect on the spin-echo dephasing curve of increasing the RF pulse power to

approach the hard pulse limit is shown in Fig. 8-4. The comparative soft pulse

data from Fig. 8-2d is overlaid.

Hard pulses reduced the coherence dephasing time. The reduction was

greater for the B4 site, which was more in the hard-pulse limit than the B3

site. That is, for the B4 site:
ωQ/2π

ωnut/2π
= 85 kHz

120 kHz
= 0.7, whereas for the B3 site:

ωQ/2π

ωnut/2π
= 426 kHz

120 kHz
= 3.5, which is merely near the hard pulse limit. As hard pulses

can alter the populations of the satellite transitions, conceivably this provides

an additional mechanism through which the central transition coherence can

relax and dephase. As the satellite transitions of the B4 site were more affected
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Figure 8-4. Normalised spin-echo dephasing curves as in Fig. 8-2d—at 20 kHz
MAS for a) the B3 site, and b) the B4 site. The difference between hard (red
and orange) and soft (green and blue) pulses is shown.

by the hard pulses the increase in dephasing was enhanced, compared to the

B3 site. Differences in spin-echo dephasing between the B3 and B4 sites are

addressed by simulations in Ch. 9.

8.2 J-Coupling

8.2.1 Spin-Echo Experiment

Spin-echo experiments could, in principle, detect a 2JBB-coupling via a cosine-

modulation of the dephasing curve that would lead to zero crossings. For the

25% 11B, sample 22 τ points were recorded out to 250 ms. The results of this

75 h spin-echo experiment are presented in Fig. 8-5 on a semi-log plot.

Despite near-ideal conditions a zero-crossing was not seen. This puts an

upper limit on the size of 2JBB to be approximately 1
2τ

= 5 Hz. In fact the

upper limit can be made even smaller than this if the requirement is to detect

even slight J-modulation of the dephasing curve via a least-squares fit. As

no modulation was found it is determined that 2JBB < 3 Hz in polycrystalline

lithium diborate.
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Figure 8-6. A diborate unit, with an extra neighbouring B3 atom, from a
Li2O·2B2O3 crystal structure [303]. All four distinct 2JBB-couplings are indicated.
Three-coordinated boron is shown in blue, four-coordinated boron is shown in
green and bridging oxygen is shown in red.

8.2.2 J-Coupling Calculations

First-principles calculations [228] performed by Dr Jonathan Yates were used to

determine the J-coupling in crystalline lithium diborate. The four distinct two-

bond boron–boron J-couplings are shown in Fig. 8-6. The couplings denoted

i–iii are B4–O–B3, and have values; 2Ji = 2.65 Hz, 2Jii = 0.95 Hz, 2Jiii = 1.20 Hz.

The fourth coupling (iv) is B4–O–B4 with a value of 2Jiv = −0.07 Hz.

8.3 Conclusions

In all spin-echo experiments presented above, the large-CQ B3 site dephased

slower than the smaller-CQ B4 site. Primarily, this effect is not due to the

B4 site having greater dipolar couplings than the B3 site. The brss calculation

given in §6.3.2 showed that the difference between B3 and B4 is not substantial

enough to explain the discrepancy in dephasing times.

Both chemical sites will be subject to the same heteronuclear dipolar
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field as well, which is expected to be negligible in lithium borates. Other negli-

gible differences between the sites include the chemical shift, both isotropic and

anisotropic, as well as motion of the spins. Motion of the spins would appear as

a narrowing of lineshapes [330], not seen in any room-temperature solid-state

NMR of lithium borates. The remaining difference is the quadrupolar coupling.

Using Eq. (2-43) we find for the B3 site, ωQ/2π = 427 kHz and for the B4 site,

ωQ/2π = 85 kHz. These values represent the magnitude of the first-order quad-

rupolar interaction. Edén and Frydman have shown that when ωQ ≈ ωr the

first-order quadrupolar interaction recouples the dipolar interaction [76, §II.A].

The effect on linewidth is pronounced when this is the case. However, the spin-

echo experiments presented above were conducted in the regime where ωQ � ωr

and no linewidth change was seen for the spin-echo spectra under varying MAS

rate. Additionally, this first-order phenomenon would affect the B4 site more

than the B3 site, whereas in experiment the B4 dephasing time hardly changes.

The change in coherence dephasing time as the degree of 11B isotopic

abundance is varied can be explained by the presence of multiple noncommuting

homonuclear dipolar couplings. With 5% 11B the mean probability of a given

11B nucleus being near more than one 11B nuclei is only ≈1%. Increasing the 11B

abundance to 25% the same probability increases to ≈21%, see Tab. 6-3. Hence,

coherence dephasing took much longer with only 5% 11B in the sample because

of the considerable reduction in multiple noncommuting homonuclear dipolar

couplings. This coherence dephasing effect was also seen in lineshapes of Fig. 6-9

where significant multiple noncommuting homonuclear dipolar couplings caused

broadening. The B3 site was still seen to dephase slower than the B4 site for

long τ times.

The lineshape intensity at long τ times was suppressed by irreversible

dephasing caused by multiple noncommuting homonuclear dipolar couplings.

In the absence of this dephasing mechanism, other phenomena can dephase

the coherence; but at long τ times they were hidden by this faster mechanism.

For 100% 11B enrichment every 11B nucleus will be maximally connected to

other 11B nuclei, there being no other isotope of boron present. Multiple non-

commuting homonuclear dipolar couplings were the chief cause of spin-echo

dephasing for this degree of enrichment. The high correlation coefficients in
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this case (Tab. 8-3) showed the fitted function was barely bi-exponential as the

dephasing mechanism was dominated by the multiple noncommuting homonu-

clear dipolar couplings. For 100% abundant 11B the quickness of dephasing

would only allow J-couplings stronger than ∼ 15 Hz to be detected.

The 25% 11B composition had three comparative advantages for detect-

ing a J-modulation of the spin-echo. First, a dramatic reduction of multiple

connected 11B nuclei increased dephasing time from that of the 100% composi-

tion, enhancing the J-coupling sensitivity. Secondly, with five times more 11B

nuclei than in the 5% composition the signal-to-noise ratio was higher, allowing

more τ points to be recorded. Thirdly, the probability of two 11B nuclei bonded

to a mutual oxygen was near-maximal compared to all other compositions. De-

spite these advantages there was no observable J-modulation in the spin-echo

experiments. Based on the first-principles calculations of §8.2.2, the lack of

observed modulation was due to the small 2JBB in the diborate unit.

For 5% 11B, the curves are very clearly not mono-exponential, with dis-

tinct fast and slow dephasing rates visible. The separation of these regimes

is qualified above, by the low correlation between p and the T
′

2 times. From

the shape of the dephasing curve for the 5% 11B enriched sample, as well as

the relevant correlation coefficients, there were clearly at least two mechanisms

contributing to the overall dephasing.

When varying the MAS rate for the 100% 11B sample, the longest de-

phasing time, T
′

2b, increased from 2 ms to 12 ms as the MAS rate was sped-up

for the large-CQ B3 site. This behaviour has been reported before in the case

of proton spectra as the dephasing is primarily caused by the multiple noncom-

muting homonuclear dipolar couplings [129]. T
′

2b for the B4 site was largely

unaffected by the change in MAS rate, having an average of 2 ms dephasing

time—always less than the B3 site over the tested spinning speeds. As the B4-

site dephasing was not dramatically affected by the change in MAS rate, the

primary dephasing mechanism is probably not due to multiple noncommuting

homonuclear dipolar couplings.

Insight into the interplay between the quadrupolar interaction and mul-

tiple noncommuting homonuclear dipolar couplings is provided by simulations

presented in the following chapter.



CHAPTER 9

Simulations of Magnetisation Exchange

and Dephasing

The previous chapters have shown how varying some experimental parameters

can alter spin diffusion and coherence dephasing behaviour. With computer

simulations, the effect of varying different parameters can be systematically

considered. Notably, the intricate interplay of dipole and quadrupole interac-

tions can be investigated.

9.1 Factors Affecting Magnetisation Transfer:

Model 2-Spin Systems

Consider two quadrupolar spins in a strong1 magnetic field undergoing MAS.

To monitor magnetisation transfer experimentally, it is sufficient to frequency

encode the spins in the t1 dimension before converting the bulk magnetisation

back along the z-axis for a mixing time, τmix. Then, a third pulse is required to

convert the z-magnetisation into a detectable single-quantum coherence, where

the spins evolve again to provide frequency information in the t2 dimension. Af-

ter a 2DFT operation any transferred magnetisation will be visible as a spectral

cross-peak, such as those seen in the spectra of Ch. 7.

1ωQ � ω0

147
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With simulation, a direct approach is available by only simulating the

mixing time; z-magnetisation is started on one spin and z-magnetisation is

detected on another spin some time later. This approach removes the need to

simulate pulsing, which would require more computation time. Explicitly, the

start matrix would be I1z and the detect matrix would be I2z. In matrix form

only the diagonal elements would be nonzero. When the trace of diagonal is

taken to determine the signal, elements corresponding to the satellite transitions

will also be included. However, as shown in §5.3, their inclusion had a negligible

effect on the initial buildup rate and final magnetisation transfer.

The following curves, produced by pNMRsim [237], plot the longitudinal

magnetisation transfer from one spin to another, through time. By starting

with the simplest cases and gradually introducing interactions, the nature of

the quadrupolar and dipolar interactions is clarified. The simulations only con-

sidered the first-order quadrupolar interaction of dipolar coupled spin I = 3/2

nuclei. Thus the lineshapes resembled Fig. 2-10c rather than MAS lineshapes of

Fig. 2-10a, since there was no second-order broadening or second-order isotropic

shift of any transition. However, the satellite transitions were still broadened

by the first-order interaction and it follows that different spin numbers, I, pro-

duced different transfer characteristics. The following general simulations were

identical for all spin I = 3/2 nuclei, from 7Li to 201Hg. Neither relaxation or J-

coupling is taken into account. CSA was also absent making these simulations

B0 independent2.

There are a few trivial cases of magnetisation transfer:

(i) With only one spin there is nowhere to transfer the magnetisation.

(ii) Without dipolar (or J) coupling there is no mechanism to transfer mag-

netisation.

(iii) When the dipolar vector is coincident with the quadrupolar (or CSA)

tensors and ∆δiso = 0 there is no transfer as the spins are in chemically

identical sites.

The results presented below start to explore the vast parameter space

remaining, with either two or four spins to avoid case (i), these spins were

2see [131, Tab. 1] for recoupling mechanism dependencies on MAS rate and B0.
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Figure 9-1. Simulated (pNMRsim) z → z buildup curves varying ∆δiso. Two
spin, 1st order, I = 3/2, ωr/2π = 10 kHz, CQ = 0, CSA = 0, bjk/2π = −1 kHz.
∆δiso = 10 kHz (red), 9 kHz (orange), 5 kHz (green).

dipolar coupled together to avoid case (ii) and case (iii) was also easily broken

by setting ∆δiso 6= 0 or rotating the β-angle between the quadrupole and dipole

tensors, βQ→D.

9.1.1 ∆δiso—Isotropic Chemical Shift Difference

The effect of varying ∆δiso with fixed |bjk| and ωr in the absence of a quad-

rupolar interaction are shown in Fig. 9-1. The top red curve had ∆δiso = νr;

magnetisation transfer was very rapid and the two spins quickly reached an

equilibrium, each having 50% of the available magnetisation. This condition

corresponds to n = 1 rotational resonance, which is known—from I = 1/2 solid-

state NMR—to recouple the dipolar interaction [134, 140, 331]. The orange

curve in the middle had ∆δiso = 0.9νr, which still gave a rapid buildup but the

final magnetisation transfer was much reduced, demonstrating the two regimes

(early and late) are not necessarily related. The green curve near the bottom

of the figure had ∆δiso = 0.5νr and gave very little magnetisation transfer.

Evidently, from Fig. 9-1 the initial rate of transfer and final magnetisation

depended on the isotropic chemical shift difference relative to the MAS rate.

This relationship is explored in Fig. 9-2 by monitoring the two regimes sepa-

rately. Initial buildup (Fig. 9-2a) measured the first point of the curve—after

one rotor period. This measure is connected with the rate at which the recou-

pling mechanism (if present) acts. The final magnetisation transfer (Fig. 9-2b)
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Figure 9-2. Analysis of simulated (pNMRsim) z → z buildup. a) Initial mag-
netisation transfer, corresponding to the magnetisation transferred after one ro-
tor period. b) Final magnetisation transfer, taken at 100ms. These are shown
against isotropic chemical shift separation (divided by MAS rate) and are valid
for all I where bjk � ωr. ωr/2π = 10 kHz, CQ and CSA were zero. In a specific
case where I = 3/2 and bjk/2π = −1 kHz, a) peaks at 32% magnetisation transfer
per ms and b) peaks at 50% final magnetisation transfer.

was determined by taking the mean of the last ten points of the buildup-curve—

at 100 ms. These are plotted against varying isotropic chemical shift difference

divided by fixed MAS rate. Only the ratio of these variables is important so

long as bjk � ωr.

Defining n = ∆δiso/νr as in Ref. [331] we can see that the n = 1 rotational

resonance gave the most rapid buildup and the highest final magnetisation

transfer. At n = 2 the final magnetisation was comparable but the buildup took

longer. These two conditions were fairly broad. Higher rotational resonance

conditions exist (and become significant if the spins have finite CSA) but are

narrow and weak [331].

Evidently, when n = 1 or n = 2 there will be enhanced magnetisation

transfer. This effect has important consequences for spin diffusion experiments.

As rotational resonance is narrowband, with two spins there is a choice of ac-

tively recoupling, or not, the dipolar interaction. With three or more spins then

only two spins could be at a specific rotational resonance, giving enhanced mag-

netisation transfer and thus the illusion that these spins are closer in space. For

a given spin system and magnetic field strength the MAS rate must be chosen

wisely to select or avoid rotational resonance conditions and obviate spurious

results.
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Figure 9-3. Simulated (pNMRsim) z → z buildup curves varying CQ. Two
spin, 1st order, I = 3/2, ωr/2π = 10 kHz, ∆δiso = 0, CSA = 0, bjk/2π = −1 kHz,
parallel quadrupolar tensors perpendicular to dipolar vector. CQ = 100 kHz (red),
200 kHz (orange), 800 kHz (green), 1600 kHz (blue), 3200 kHz (purple).

9.1.2 CQ—Quadrupolar Coupling

Figure 9-3 shows the effect of varying the quadrupolar coupling strength of the

two overlapping lineshapes in the regime ωQ > ωr and ∆δiso = 0. The relation

between CQ and ωQ was given in Eq. (2-43). Whereas CQ relates, physically, to

the strength of the electric field gradient, ωQ corrects for the spin number to

describe the general behaviour of all quadrupolar nuclei.

For the values of CQ tested significant magnetisation transfer was seen,

around 30%–50%, indicating efficient dipolar recoupling. The initial magneti-

sation transfer was slower than the no-CQ rotational-resonance cases shown in

Fig. 9-1, occurring over several ms. Increasing CQ for both spins in the ωQ > ωr

regime gradually suppressed both the initial buildup rate as well as the final

magnetisation transfer.

To further explore this enhanced dipole recoupling a plot showing how

initial buildup rate varies with ωQ/ωr is presented in Fig. 9-4. Zero CQ was a

trivial case of no transfer. The fastest initial magnetisation transfer occured

where ωQ/ωr ' 1. After this peak, the initial buildup rate tailed off as CQ

was increased against MAS rate, as shown in Fig. 9-3. Enhanced buildup rate

is indicative of a stronger effective dipolar coupling. When ωQ is of a simi-

lar magnitude to ωr the first-order quadrupolar coupling was more effective at

reintroducing the dipolar interaction removed by MAS.

The previous plot can be expanded to incorporate chemical shift differ-
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Figure 9-4. Analysis of simulated (pNMRsim) z → z buildup. The rate of
initial buildup as a function ωQ/ωr, valid for all quadrupolar nuclei to the first
order. MAS rate was fixed and CQ varied. ∆δiso and CSA are zero and |bjk| � ωr.
a) Linear plot, b) log-log plot.
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Figure 9-5. The rate of initial buildup as a function ωQ/ωr and ∆δiso/νr, taken
from 62 500 pNMRsim z → z buildup simulations. Valid for all quadrupolar
nuclei to the first order. Red values indicate most rapid buildup, in this example
where bjk/2π = −1 kHz, this corresponds to 32% magnetisation transfer per ms.
Eighteen contour levels are linearly spaced from 0% to 32% magnetisation transfer
per ms.

ence. Such a two-dimensional plot is presented in Fig. 9-5. Note the buildup

rate was enhanced for all values of ωQ at the n = 1 rotational resonance condi-

tion. For overlapping lineshapes and very small ∆δiso, introducing quadrupolar

coupling allowed magnetisation to transfer, peaking in effectiveness just after

ωQ/ωr = 1. The first row (∆δiso = 0) slice was shown in Fig. 9-4 and the first

column (ωQ = 0) slice was shown in Fig. 9-2a.

The effect of a small first-order quadrupolar coupling was to enhance

the magnetisation transfer when the quadrupolar coupling (ωQ) strength was of

similar magnitude to the MAS rate (ωr). At this condition, the MAS modulation

of the quadrupolar interaction more effectively recouples the dipolar interaction,
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Figure 9-6. Simulated (pNMRsim) z → z buildup curves for direct comparison
with Ref. [131, Fig. 3]. Two spin, I = 3/2, parallel quadrupolar tensors perpen-
dicular to dipolar vector, CQ = 100 kHz, bjk/2π = −500 Hz, ∆δiso and ωr/2π as
indicated.

allowing enhanced transfer despite the faster spinning speed. For quadrupolar

nuclei, ωQ is usually considerably greater than ωr so this effect is only significant

for fast spinning of nuclei with small CQ.

With the addition of a small quadrupolar coupling, the effect on magneti-

sation transfer as a function of isotropic chemical shift separation and MAS rate

is shown in Fig. 9-6. The figure is presented in the same manner as Ref. [131,

Fig. 3] to aid comparison. The exact resemblance attests to the accuracy of

pNMRsim simulation under the stated conditions. Smaller values of ∆δiso gave

greater magnetisation transfer as there was less energy difference for the spin

diffusion mechanism to compensate. The magnetisation transfer oscillations

proceeded at a frequency almost equal to the chemical shift difference, but

slightly faster due to the additional quadrupolar interaction. The final mag-

netisation transfer was greater for MAS rates of 10 kHz and 20 kHz because of a

“resonance” between the first-order quadrupolar interaction and the MAS rate.
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Figure 9-7. Simulated (pNMRsim) z → z buildup curves varying bjk/2π.
Two spin, 1st order, I = 3/2, ωr/2π = 10 kHz, ∆δiso = 0, CSA = 0, CQ =
200 kHz, parallel quadrupolar tensors perpendicular to dipolar vector. bjk/2π =
−250 Hz (red), −500 Hz (orange), −1000 Hz (green), −2000 Hz (dark blue). a)
Unmodified buildup curves. b) Curves stretched along time axis by amount
(bjk/2π)/−250 Hz.

9.1.3 bjk—Dipolar Coupling

Figure 9-7 shows buildup curves where bjk was doubled for successive simula-

tions. From Eq. (2-32) we can see that doubling the dipolar coupling strength

has the physical corollary of moving the nuclear spins a factor of 3
√

2 ' 1.26

closer. Increasing the dipolar coupling strength affected the buildup curves lin-

early; they kept the same characteristics but the initial buildup is faster and

final magnetisation transfer is enhanced. This is made clearer in Fig. 9-7b where

the curves have been stretched along the time axis. Directly changing the dipo-

lar coupling strength had a linear effect on the initial buildup rate. Therefore,

the initial buildup rate is probably a good indicator of the residual effective

dipolar coupling strength that MAS could not remove.

The monotonic relationship between buildup rate (or final magnetisation

transfer) and the average nuclei separation is the factor that adds value to

dipolar homonuclear correlation experiments; the promise of extracting actual

atomic distances using NMR. However, although the dipolar coupling strength

behaves in a straightforward manner for ∆δiso = 0, the other factors affecting

magnetisation transfer are much more complicated.

9.1.4 βQ → D Angle

For dipolar-coupled spins of identical chemical shift, the initial rate of mag-

netisation transfer is strongly dependent on the β-angle between (coincident)
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Figure 9-8. Analysis of simulated (pNMRsim) z → z buildup showing the
initial magnetisation transfer rate as a function of the β-angle between parallel
quadrupolar tensors and the dipolar vector. CQ and ωr are finite, ∆δiso = 0. The
curve is the same shape for all quadrupolar nuclei.

quadrupolar tensors and the dipolar vector. Fig. 9-8 reveals how the effective

dipolar coupling strength changed as the βQ→D angle was varied. When all the

vectors were coincident (i.e. 0° or 180°) there was no initial transfer and, over-

all, no magnetisation transfer took place. Initial magnetisation transfer rate

peaked at the magic angle, hinting at the involvement of the P2 Legendre poly-

nomial. Varying the spin number, I, or dipolar coupling strength, bjk, did not

change the shape of the curve—only the magnitude. Importantly, this angular

dependence would only be significant in reality for a truly isolated spin pair.

Summary

The following effects magnetisation transfer were observed:

• For CQ = 0, rotational resonance greatly enhanced the efficiency of mag-

netisation transfer, but was only strongly effective around the n = 1 or

n = 2 conditions.

• First-order quadrupolar coupling recoupled the dipolar interaction regard-

less of chemical shift separation but the initial buildup rate and final mag-

netisation transfer were less, compared to a rotational resonance case.

• First-order quadrupolar-driven recoupling of the dipolar interaction was

most effective around ωQ ≈ ωr.
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• The initial rate of magnetisation transfer was directly proportional to

effective dipolar coupling.

• Varying the βQ→D strongly affected the rate of initial magnetisation trans-

fer, especially around the case of coincident vectors.

The most interesting point is that, ignoring rotational resonance, the

effective dipolar coupling was strongest when ωQ ≈ ωr. As the dipolar coupling

causes broadening of the lineshapes and dephasing of spin-echo curves, these

effects are expected to be greatest around this condition. Lineshape broadening

caused by the recoupling of the dipolar interaction by the first-order quadrupolar

interaction was observed by Edén and Frydman [76].

9.2 Comparison to Experimental Magnetisation

Transfer

For a real material it is impossible to change the dipolar and quadrupolar cou-

pling strengths or angular relations between the nuclei. Within limits it is

possible to change the isotropic chemical shift difference by moving to higher

or lower static magnetic fields, but this requires access to another NMR mag-

net. The easiest variable to change experimentally so as to help probe the spin

dynamics of homonuclear dipolar coupled nuclei is the spinning speed. How-

ever, comparing magnetisation transfer at different MAS rates can make it hard

to extract mechanism information because many relations vary simultaneously.

To assist understanding, the MAS rate can be varied in simulation over a much

greater range than experimentally possible.

For typical 11B–11B dipolar couplings, bjk/2π ≈ −1 kHz, in which case

spinning faster than 10 kHz would suppress the dipolar coupling greatly unless

it is recoupled by other interactions. Most NMR of quadrupolar nuclei will be in

the regime where ωQ/ωr � 1. For example, an 11B nucleus with CQ = 500 kHz

equates to ωQ/2π = 83.3 kHz which is much greater than a typical MAS rate of

10 kHz. Referring to Fig. 9-4, this regime is beyond the ωQ/ωr ' 1 peak.

The most significant effect on dipolar recoupling when varying the MAS

rate will be seen at the rotational-resonance conditions, as shown in Fig. 9-2.
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For spin I = 1/2 nuclei there is a definite isotropic chemical shift separation. For

half-integer quadrupolar nuclei there are transitions that are under the influ-

ence of quadrupolar broadening, spreading the lineshapes over a wider spectral

region. Considering the second-order quadrupolar interaction broadened cen-

tral transition of separated sites, the rotational-resonance condition cannot be

met by the whole lineshape at a given instant in time. Thus, such conditions

are expected to be spread out for half-integer quadrupolar nuclei exhibiting

second-order quadrupolar broadening of the central transition.

9.2.1 Two-Spin Simulations

The central transitions of the simulated first-order lineshapes in pNMRsim are

not broadened. Two-spin simulations, based on NMR parameters similar to

those found in lithium diborate at 14.1 T (except without CSA, which is insignif-

icant in this case) are presented in Fig. 9-9, which shows the final magnetisation

transfer as a function of spinning speed. As with previous figures, this involves

calculating separate buildup curves and taking the last point, corresponding to

τmix = 100 ms. As the spectral width is rotor synchronised the (dwell) time

between data points varies as the MAS rate changes. To ensure the last point

is fixed at 100 ms the number of points computed was set equal to a tenth of

the MAS rate. As each point in Fig. 9-9 is a discrete simulation, only a fraction

of the buildup-curve information is represented.

The highest magnetisation transfer occurred at n = 1 rotational reso-

nance, 3080 Hz, where ∆δiso = νr. In a 1D NMR experiment at 14.1 T, con-

sidering the effect of second-order quadrupolar broadening, this would place

the spinning sidebands of one peak over the other. For a 2D SQ–SQ spin dif-

fusion experiment the spinning sidebands for both peaks would appear at the

cross-peak location, preventing the identification of a real cross-peak.

The small peaks either side of the n = 1 rotational resonance were a

consequence of the quadrupolar interaction broadening the matching condition.

The n = 2 rotational resonance at 1540 Hz also showed an increase in final

magnetisation transfer because of the efficient recovery of the dipolar interaction

at that spinning speed. At 6160 Hz where n = 1/2, there was a small region of
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Figure 9-9. Analysis of simulated (pNMRsim) z → z buildup showing final
magnetisation transfer as a function of MAS rate. Two spin, 1st order, I = 3/2,
∆δiso = 3080 Hz, CSA = 0, CQ = 2560 kHz and 520 kHz, bjk/2π = −848 Hz,
parallel quadrupolar tensors were at angle (93.4°, 119.9°, −83.2°) to the dipole
vector. Spin system was representative of B3 and B4 nuclei in a diborate unit,
see Tab. 6-1.

magnetisation transfer. The shape (see inset) of this region was dependent on

the relative quadrupolar tensor angles (results not shown).

The n = 1/2 match condition is suitable for experiment as the spinning

sidebands will be displaced from the cross-peaks, allowing easy measurement of

spin diffusion. Note, however, that these simulations are first-order only and in

a real second-order broadened lineshape only a fraction of the crystallites will

be at the exact n = 1/2 condition. Experimentally, the MAS rate could be swept

to ensure all crystallites experienced the match condition, as demonstrated by

Nijman et al. [140].

9.2.2 Four-Spin Simulations

Simulations were also performed for four spins representative of boron nuclei

in a diborate superstructural group, using dipolar strengths and Euler angles

between the spins as given in Tab. 6-1. The z-magnetisation was started on the

two spins with greater quadrupolar coupling—corresponding to the B3 sites in

a diborate group—and detected on the corresponding B4 spin sites. A direct

comparison with the above two-spin case is revealed in Fig. 9-10, showing final

magnetisation transfer as a function of MAS rate. The four-spin case showed

familiar features to the two-spin case but was slightly broadened as more spins
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Figure 9-10. Analysis of simulated (pNMRsim) z → z buildup showing final
magnetisation transfer as a function of MAS rate for two spins (blue, repeated
from Fig. 9-9) and four spins (red). 1st order, I = 3/2, no CSA. The same ran-
domly generated quadrupolar tensor orientations were used throughout. Dipolar
coupling strengths and Euler angles between spins are taken from the diborate
superstructural unit as listed in Tab. 6-1.
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Figure 9-11. Simulated (pNMRsim) z → z buildup comparing two-spin and
four-spin curves at three different MAS rates. Two- and four-spin parameters
are the same as in Fig. 9-10. Two spin; ωr/2π = 3080 Hz (red), 4600 Hz (orange),
6160 Hz (green). Four spin; ωr/2π = 3080 Hz (light blue), 4600 Hz (dark blue),
6160 Hz (purple).

opened up more pathways for the magnetisation to transfer. Neither the two- or

four-spin case reached a maximal 50% magnetisation transfer, indicating that

the given quadrupolar coupling strengths were not totally effective in recoupling

the dipolar interaction.

As described in §5.3 the four-spin density matrix contains over 65 000

elements. Consequently, the simulations took over 1 h each to run on a 3.6 GHz

Intel® Pentium® 4 processor. Five spin simulations are feasible, but as the
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basis of these simulations is the diborate superstructural unit—which contains

four boron atoms—the simulations were sensibly limited to these four spins.

The full buildup curves for two- and four-spin cases at three specific MAS

rates are presented in Fig. 9-11. Significant magnetisation transfer occurred

only at rotational-resonance conditions. With four spins, the buildup curves

were smoother than the two spin case. These more realistic simulations showed

buildup occurring over tens of milliseconds, as seen experimentally in Fig. 7-8.

The plot of final magnetisation transfer against MAS rate for four spins

shown in Fig. 9-10 only took into account the first-order quadrupolar inter-

action. Without the second-order quadrupolar interaction, the spectrum of

lithium diborate would consist of two sharp Lorentzian lines 16 ppm apart, as

shown in Fig. 2-10c. At 14.1 T this separation corresponds to a frequency of

3080 Hz3, so sharp rotational-resonance lines appeared at precise integer mul-

tiples of this frequency. In reality, the second-order quadrupolar interaction

broadens and shifts the lineshapes, according to Eq. (2-62), so we would ex-

pect the rotational-resonance conditions to be broadened also. To reproduce

the effect of the second-order interaction, the four-spin case in Fig. 9-10 was

convoluted with a second-order broadened lineshape of lithium diborate.

The convolution first assumed the B4 site is a sharp line, shown as the

black vertical line in Fig. 9-12a. The unbroadened B3 site would appear 3080 Hz

away (16 ppm), but with the presence of the second-order interaction, the inten-

sity at this point was very low. Hence, we can expect the rotational-resonance

peaks to no longer appear around 3080 Hz and 6160 Hz. Conversely, the in-

tensity at the point 1900 Hz (shown as the orange vertical line) from the B3

site has jumped from zero to a significant value. Now we can expect rotational-

resonance peaks around 1900 Hz and 3800 Hz. The data in Fig. 9-10 were shifted

by a factor 1900/3080 and scaled corresponding to the intensity at the matching

(orange) point to create a new graph shown as the orange curve in Fig. 9-12b.

Similarly, the shifting and scaling was performed for three other points

1000 Hz (red), 2200 Hz (green) and 2900 Hz (blue) from the B3 site. Their

respective curves are also shown in Fig. 9-12b. Note how the red curve peaked at

1000 Hz and 2000 Hz with much reduced intensity. If all four shifted and scaled

316 ppm × 192.53 MHz ' 3080 Hz
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Figure 9-12. a) The second-order quadrupolar broadened lineshape from which
the correct shift and intensity scaling can be computed. b) Shifted and scaled
curves of Fig. 9-10 corresponding to the points shown in (a).

0 3080

SSB
overlap

6160 9240
0

.bra / refsnarT noitasitenga
M laniF MAS Rate / Hz

0

4000 5000 6000 80007000

50

0
10
20

40
30

Figure 9-13. Analysis of simulated (pNMRsim) z → z buildup, showing final
magnetisation transfer at 14.1 T as a function of MAS rate, approximating the
second-order interaction by convoluting the lineshape of the B3 site shown in
Fig. 6-7 with that of Fig. 9-10. The experimental intensity every 50 Hz from the
B3 site was used to shift and scale an interpolated form of Fig. 9-10 in Mathe-
matica™. These numerous curves were themselves interpolated and the intensity
every 50Hz was summed. See Fig. 9-12 and discussion in text for further details.
Inset is the experimental data repeated from Fig. 7-10.

curves were added together, they would approximate the final magnetisation

transfer against MAS rate graph with the second-order quadrupolar interaction.

Instead of only four points, a multitude of points were taken. By shift-

ing and scaling many curves then adding them all together, a more accurate

approximation, shown in Fig. 9-13, was created. This graph shows a gradual

fall-off in magnetisation transfer as MAS rate was increased, in agreement with

the experimentally observed trends in Fig. 7-10.

The convoluted simulation data reveals that spinning slower than the

n = 1 rotational-resonance condition (3080 Hz) gives strong magnetisation
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transfer and, therefore, cross-peak intensity. However, in this regime experi-

mentally there would be many spinning sidebands, which would overlap with

the second-order broadened peaks under MAS. DOR is capable of spinning an

outer rotor in this regime (500 Hz to 2000 Hz) and has the other advantages of

narrow quadrupolar lineshapes and odd-order sideband suppression. However,

the outer rotor spinning speed can only be varied over a small range compared

to MAS. The cross-peak : auto-peak ratio at long mixing time for DOR was

≈100% (see Fig. 7-14); a case where the outer rotor was spun at 1500 Hz. Un-

der 4716 Hz MAS this ratio was reduced to ≈30% and by 6160 Hz MAS rate,

reduced further to ≈10% (see Fig. 7-10). This trend is in agreement with the

ratio of the comparative simulated transfer in Fig. 9-13.

All of the magnetisation transfer simulations showed positive-only trans-

fer, giving no hint as to the cause of the mixed positive-negative cross-peaks

seen experimentally.

9.3 Spin Diffusion—Ba2MoO3F4

Simulating buildup curves represent just one dimension of a spin diffusion

experiment—the mixing time. Sometimes it is instructive to simulate the com-

plete experiment, to reproduce in two dimensions the lineshapes and patterns

actually seen in experimental data. The power of this approach can be seen by

reproducing the interesting case where Du, Levitt and Grey observed negative

19F cross-peaks in the exchange spectrum of Ba2MoO3F4 [329]. Spinning at

23 kHz greatly exceeds the n = 1 rotational-resonance condition of ' 15 kHz

when in a 4.7 T field. They hypothesise a high-order spin diffusion process

whereby four spins participate simultaneously.

A four-spin pNMRsim4 simulation of this system is shown in Fig. 9-14.

Negative cross-peaks were clearly seen between the outermost spins as well as

the innermost spins, as detected experimentally [329, Fig. 2c]. When only two

spins were simulated the cross-peaks were always positive. That is, adding

together six separate simulations to describe all the dipole-dipole couplings

between the four spins was not equivalent to one four-spin simulation. Separate

4SIMPSON reproduced the same spectrum.
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Table 9-1. NMR parameters for four-spin system representing Ba2MoO3F4.
CSA was determined by lineshape comparison to a 1D MAS NMR experimental
spectrum [329, Fig. 1a], asymmetry was assumed to be zero. Spin labels are
equivalent to those in Ref. [329].

Chemical Shift in ppm −bjk/2π in Hz

Spin Isotropic Anisotropic P2 P3 P4

P1 −24 80 5954 3704 4003
P2 −28 70 2527 3629
P3 −100 35 5426
P4 −104 50

0
0

-120

-120

-60

-60

ppm

pp
m

0 -120-60 ppm

Figure 9-14. A four-spin pNMRsim simulation of a 2D 19F MAS NMR rotor-
synchronised spin diffusion spectrum of Ba2MoO3F4 for comparison with exper-
imental results presented in Ref. [329, Fig. 2c]. Analysis of the crystal structure
[332] gave precise 19F–19F distances for calculation of dipolar coupling strengths
using Eq. 2-32. Spin parameters are given in Tab. 9-1. νr = 23 kHz, ν0(19F) =
188.19 MHz, τmix = 10ms. The entire pulse sequence was simulated (see §C.1) us-
ing ideal pulses and matrix filtering instead of phase cycling. The States method
was used to achieve sign discrimination in the indirect dimension [22]. 200 Hz
Lorentzian linebroadening was applied before the 2DFT. Contours increase by
×1.8 from a base of 2% of the maximum intensity.

z → z simulations of the 19F–19F buildup curves reproduce the correct intensity

and sign of magnetisation transfer only when all four spins are involved. This

evidence supports the high-order spin diffusion process hypothesis.
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Hz
3000 2000 −2000−10001000 0

Increasing CQ

Figure 9-15. Two-spin pNMRsim simulated lineshapes, 1st order quadrupolar
interaction, ν0 = 192.54 MHz, I = 3/2, ωr/2π = 10 kHz, SW = 10 kHz (rotor-
synchronised), ∆δiso = 3080Hz, CSA = 0, ηQ = 0, bjk/2π = −3.2 kHz, 100Hz
Lorentzian broadened. All tensors were perpendicular. CQ = 512 kHz and
512 kHz (red), CQ = 512 kHz and 1280 kHz (orange), CQ = 512 kHz and 2560 kHz
(green), CQ = 1280 kHz and 1280 kHz (light blue), CQ = 1280 kHz and 2560 kHz
(dark blue), CQ = 2560 kHz and 2560 kHz (purple).

9.4 Dipolar Broadening

In the absence of quadrupolar or dipolar coupling, NMR lineshapes will have

the form of a Lorentzian5, as described by Eq. (3-18). For a dipolar coupled spin

pair, adding first-order quadrupolar coupling reintroduces the dipolar interac-

tion, causing broadening that is not removed by MAS. Quadrupolar recoupling

is most effective when ωQ/ωr ' 1, as shown in Fig. 9-4 for initial z → z mag-

netisation transfer rate.

For a given MAS rate where ωQ > ωr, greater CQ made the broadening

more pronounced but did not significantly widen the observed lineshapes, as

shown in Fig. 9-15. Changing ηQ had a minor effect. Varying the βQ→D an-

gle had a large effect, primarily by modifying the effective dipolar coupling as

discussed above in §9.1.4. Random (non-linear) tensor orientations produced

similar lineshapes to those presented in Fig. 9-15.

Strengthening the dipolar coupling drastically increased the broadening,

in a linear fashion, as shown in Fig. 9-16. The high levels (broadening >1000 Hz)

of quadrupolar-driven dipolar broadening were not seen experimentally in 11B

MAS NMR spectra of lithium diborate. The simulation result supports the

root-sum-squared calculations of §6.3.2 by showing that bjk/2π ≤ −1.6 kHz in

5Assuming exponential dephasing.
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Hz
3000 2000 −2000−10001000 0

bjk /2� = −0.8kHz

bjk /2� = −1.6kHz

bjk /2� = −3.2kHz

bjk /2� = −6.4kHz

Figure 9-16. Two-spin pNMRsim simulated lineshapes, 1st order quadru-
polar interaction, ν0 = 192.54 MHz, I = 3/2, ωr/2π = 10 kHz, SW = 10 kHz
(rotor-synchronised), ∆δiso = 3080Hz, CSA = 0, ηQ = 0, CQ = 2560 kHz
and 2560 kHz, 100 Hz Lorentzian broadened. All tensors were perpendicular.
bjk/2π = −0.8 kHz (red), bjk/2π = −1.6 kHz (orange), bjk/2π = −3.2 kHz
(green), bjk/2π = −6.4 kHz (blue).

this system.

The main spectral broadening mechanisms of the 11B nuclei in lithium

diborate are therefore multiple noncommuting homonuclear dipolar couplings

(for high 11B abundance samples) and fourth-rank second-order quadrupolar

broadening. The effects of the quadrupolar interaction recoupling the dipolar

interaction is therefore mostly hidden in the experimental 1D 11B spectra (see

Fig. 6-9).

For a given static magnetic field strength, the second-order broaden-

ing will not be affected. Changing the MAS rate will affect both remaining

broadening mechanisms; multiple noncommuting couplings and the first-order

quadrupolar interaction. However, faster spinning in the regime where ωQ > ωr

(as found in lithium diborate) causes opposing effects. Less effective multiple

noncommuting homonuclear dipolar couplings will weaken the effective dipolar

coupling and as ωr approaches ωQ the first-order quadrupolar interaction will

become more effective at recoupling the dipolar interaction.

The effects of the first-order quadrupolar interaction for isolated spin-

pairs will not only appear in 1D lineshapes. As described in §3.6 linebroad-

ening is inversely related to T
′

2 , therefore, broader lineshapes equate to faster

coherence dephasing.
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Figure 9-17. Simulated (pNMRsim) Inx→ Inc two-spin spin-echo (τ/2–π–τ/2)
dephasing curves, 1st order, I = 3/2, bjk/2π = −500 Hz, ∆δiso = 0 Hz, CSA = 0.
Parallel quadrupolar tensors were perpendicular to dipolar vector. ωr/2π = 5kHz
(red), ωr/2π = 10 kHz (orange), ωr/2π = 16 kHz (green), ωr/2π = 20 kHz (blue).
a) CQ = 2560 kHz, b) CQ = 512 kHz.

9.5 Spin-Echo Dephasing

Quadrupolar-driven recoupling of the dipolar interaction will affect the dephas-

ing of spin-echo curves as well as causing broadened lineshapes. Simulated

spin-echo dephasing curves are presented in Fig. 9-17. The two-spin simulation

parameters correspond to lithium diborate, the experimental spin-echo dephas-

ing curves of which were shown in Fig. 8-2. As in experiment, the simulations

show that the B3 site takes longer to dephase than the B4 site, over the MAS

range investigated. Unlike experiment, speeding-up the MAS rate enhances the

dephasing for both sites.

The difference in dephasing for a given MAS rate depends on the CQ

of the site. The intensity of the spin-echo for very short τmix times (≈ 0.5 ms)

is plotted against ωQ in Fig. 9-18. The swiftest dephasing occurred around

ωQ ≈ ωr. For ωQ = 0 there was no dephasing. The similarities between spin-

echo dephasing and initial buildup rate in magnetisation transfer experiments

(Fig. 9-4) are striking.

For given values of ωQ, the initial spin-echo intensity was plotted as a

function of MAS rate in Fig. 9-19. For typically small values of quadrupolar
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Figure 9-18. Analysis of simulated (pNMRsim) initial spin-echo intensity at
≈ 0.5 ms as a function of ωQ at ωr/2π = 20 kHz. Other parameters as in Fig. 9-
17. Highlighted points at ωQ/2π = 40 kHz and 85 kHz correspond to similar
points in Fig. 9-19, to aid comparison. A lower value of initial spin-echo intensity
corresponds to faster dephasing.
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Figure 9-19. Analysis of simulated (pNMRsim) initial spin-echo intensity at
≈ 0.5 ms as a function of ωr. ωQ/2π = 40 kHz (red), ωQ/2π = 85 kHz (orange,
B4 site), ωQ/2π = 427 kHz (green, B3 site), ωQ/2π = 1000 kHz (blue). Other
parameters as in Fig. 9-17. Highlighted points at ωr/2π = 20 kHz correspond to
similar points in Fig. 9-18, to aid comparison. A lower value of initial spin-echo
intensity corresponds to faster dephasing.

coupling (ωQ/2π = 85 kHz) and greater, spinning faster up to experimentally

feasible rates enhances the quadrupolar-driven dephasing. The dephasing is

more effective for smaller values of ωQ. When ωQ is very large there is only a

small effect on the initial spin-echo dephasing.

The similarities between experiment and simulation—the smaller CQ site

dephases faster—can be explained by the first-order quadrupolar interaction

recoupling the dipolar interaction more efficiently for sites with ωQ/ωr ratios

closer to unity. Some differences between experiment and simulation are due to

the lack of multiple couplings in the simulation.

Multiple noncommuting homonuclear dipolar couplings cause broaden-

ing, as shown in Fig. 6-9. The effects of multiple noncommuting homonuclear

dipolar couplings on spin-echo dephasing were presented in Fig. 8-1. For lith-
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ium diborate comprising of 100% abundant 11B the main cause of T
′

2 dephasing

was from multiple noncommuting homonuclear dipolar couplings. As the MAS

rate was sped-up, the ability of the multiple noncommuting homonuclear dipo-

lar couplings to recouple the dipolar interaction was suppressed, which led to

longer dephasing times for the B3 site as presented in Fig. 8-2. This behaviour is

not seen in the simulation data (Fig. 9-17) as multiple couplings are not present.

The two mechanisms—the first-order quadrupolar interaction and multi-

ple noncommuting homonuclear dipolar couplings—will work against each other

for abundant sites of typical ωQ. The two-spin simulations presented above had

no multiple couplings, such that without the quadrupolar coupling MAS would

perfectly remove the dipolar interaction, giving no coherence dephasing at all.

The importance of multiple noncommuting homonuclear dipolar couplings was

seen experimentally for slow spinning whereby the dipolar interaction dephased

sites almost irrespective of ωQ value, as shown in Fig. 8-2a. For faster spinning

speeds where the multiple noncommuting homonuclear dipolar couplings are

suppressed, the first-order quadrupolar interaction is presumed to be dominant

and causes faster dephasing for sites with ωQ/ωr ratios closer to unity, as seen

in Fig. 8-2d.



CHAPTER 10

Conclusions and Outlook

10.1 Summary

This solid-state NMR study of half-integer quadrupolar nuclei focused on spin

diffusion and spin-echo methods using an experimental and computer simula-

tion approach to provide information about the role of dipolar and quadrupolar

interactions in lithium diborate. Lithium diborate was used as a model crys-

talline compound and this study was enhanced by synthesising samples with a

range of 10B/11B ratios. Specifically, by varying the 11B isotopic abundance, the

effect of multiple homonuclear dipolar couplings was investigated. Crystalline

lithium diborate has two boron chemical sites, with high (B3) and low (B4) val-

ues of CQ, also allowing the effect of quadrupolar coupling on the NMR spectra

to be determined. This variety of known boron environment, combined with

performing NMR under different MAS rates and static magnetic field strengths,

enabled a clearer study of the interplay between the dipolar and quadrupolar

interactions.

An overview of the material in this thesis is now given in the order

presented. The 11B nuclei in glass and crystalline lithium diborate spin-lattice

relax via different mechanisms, with the crystalline form taking 30–50 times

longer. Adding 0.1 mol% of cobalt, copper or iron oxides to the melt failed to

reduce the 11B T1 relaxation time in the crystalline form, presumable due to

169
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incomplete atomic-level mixing.

High levels of 11B isotopic abundance broadened the 11B NMR lineshapes

due to the presence of multiple noncommuting homonuclear dipolar couplings,

with faster MAS rates narrowing the lineshapes. Reduced 11B isotopic abun-

dance not only narrowed the lineshapes but also diminishing the cross-peak in-

tensities in spin diffusion experiments. Spin diffusion between the boron nuclei

was reduced by faster MAS rates, both in the buildup rate and final magnetisa-

tion transfer. Under the slower-spinning DOR, spin diffusion was more efficient

than MAS at the same static magnetic field strength. At the lower field of

7.05 T the B3 and B4 lineshapes overlapped and rapid spin diffusion gave rise

to strong cross-peaks. However, unlike at higher fields, no B3–B3 cross-peak

intensity was evident. Under certain conditions the cross-peaks of lithium dibo-

rate had mixed positive and negative intensity. The origins of the
(−+
+−

)
pattern

were explored, but no firm conclusions were reached.

Spin-echo dephasing curves also revealed the interplay between the quad-

rupolar and dipolar interactions. The dephasing time was shortened for in-

creasing 11B isotopic abundance, because of the enhanced dipolar interactions

present. Over the spinning speeds investigated, the B4 site always dephased

faster than the B3 site because the quadrupolar coupling strength (ωQ) was more

closely matched to the magnitude of the MAS frequency (ωr). In this regime,

MAS was prevented from fully removing1 the dipolar interaction, leading to

faster spin-echo dephasing. No 2JBB-coupling was detected in the modulation

of spin-echo dephasing curves of lithium diborate.

Simulations were employed to model the dependence of magnetisation

transfer over numerous NMR parameters (∆δiso, CQ, bjk, βQ→D, ωr). Rota-

tional resonance conditions were seen to greatly enhance spin diffusion. First-

order quadrupolar-driven recoupling was also shown to be most effective around

ωQ ≈ ωr. First-order simulations could not reproduce the mixed intensity cross-

peaks for half-integer quadrupolar nuclei. However, a four-spin simulation of

19F (spin I = 1/2) spin diffusion in Ba2MoO3F4 accurately reproduced an exper-

imental spectrum showing mixed positive and negative cross-peak intensities.

Simulations of spin-echo dephasing of dipolar-coupled half-integer quadrupolar

1Averaging the dipolar interaction between two spins to zero over one rotor period.
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nuclei matched experiment regarding how ωQ affects dephasing, with closer mag-

nitudes to ωr showing enhanced dephasing. However, when varying the MAS

rate, opposite effects were observed between simulation and experiment. This

discrepancy is explained by the two-spin simulations not representing multiple

noncommuting homonuclear dipolar couplings.

10.2 Outlook

One of the more intriguing results presented in this thesis is that of the
(−+
+−

)
pattern seen in the spin diffusion cross-peaks of lithium diborate. There was a

difference in shape depending on the degree of 11B isotopic abundance. Hence,

a natural extension would be to create more lithium diborate samples with

11B isotopic abundances of 10 % to 90 % and compare the B3–B4 cross-peak

shape as a function of 10B/11B ratio. More theoretical modelling could also be

undertaken, to better understand the spin dynamics of half-integer quadrupolar

nuclei exchanging magnetisation. This is especially important in the case where

ωQ ≈ ωr.

The problem that spin-lattice relaxation times are longer for crystalline

materials than their amorphous counterparts still remains. Atomic-level mixing

needs to be encouraged to avoid the clumping of material seen by microscopy.

Further study into the paramagnetic doping of crystalline materials would look

at a broader range of dopants and different synthesis techniques. For the cobalt-

and copper-doped samples of Ch. 6, preliminary data were collected using a

SQUID2, which would aid such a further study by indicating the level of para-

magnetism in each sample.

The presented simulations were four-spin and only considered the first-

order quadrupolar interaction. Future simulations would include more spins as

computer hardware improves. Further refinement of the simulation programs

could lead to reliable results for dipolar-coupled spins with second as well as

first-order quadrupolar interactions present. These improvements, combined

with greater understanding of the interplay between dipolar and quadrupolar

2Superconducting Quantum Interference Device, used to measure the magnetic suscepti-
bility of a material.
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interactions, should lead to clearer interpretation of the experimental spin dif-

fusion results present in this thesis.

Investigations of J-couplings between half-integer quadrupolar nuclei are

at an early stage. The ability to calculate, ab initio, the value of J-couplings in

materials should deliver good candidates for further experimental investigation.

One such interesting study could compare the differences between the B3-O-B3

2J-coupling in boron oxide (B2O3) with that of B4-O-B4 2J-coupling for dan-

burite (CaB2(SiO4)2). Danburite, along with lithium diborate, is remarkable in

containing joined BO4 tetrahedra, which are usually energetically unfavourable.

From a NMR technique development viewpoint, the DQHDR experiment

described in §7.6 shows particular promise for observing through-space homonu-

clear correlations between half-integer quadrupolar nuclei. The importance of

researching this area is shown by the growing interest of researchers around the

world.

Finally, it must not be forgotten that all these investigations should lead

toward furthering the understanding of the structure of disordered materials,

especially borate glasses. This fertile field of research still has many unanswered

questions—questions that solid-state nuclear magnetic resonance of half-integer

quadrupolar nuclei is more than capable of answering.

A tremendous feeling of peace came over him.
He knew that at last, for once and for ever, it
was now all, finally, over.

Douglas Adams
Mostly Harmless, Ch. 25



APPENDIX A

NMR Theory Supplement

A.1 Spherical Spin Tensors for I = 3/2

T̂20 =

√
3
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A.2 The Spin Diffusion Experiment in Product

Operator Formalism

This approach is for two spin I = 1/2 nuclei. If soft pulses are used, this approach

extends to describing the central transition of coupled half-integer quadrupolar nuclei.

Start with a fully relaxed spin system such that ρ̂(0) = Iz. Apply a 90°-pulse and

allow free precession for duration t1. A weak J-coupling is present, which is the cause

of unwanted zero-quantum coherence.

Iz
(90◦x)IS−−−−→ ΩIt1−−−−→ πJISt1−−−−−→

−Iy cos(ΩIt1) cos(πJISt1) + 2IxSz cos(ΩIt1) sin(πJISt1)

+Ix sin(ΩIt1) cos(πJISt1) + 2IySz sin(ΩIt1) sin(πJISt1)

With the t1 evolution complete the mixing period begins with a second 90°-pulse.

(90◦x)IS−−−−→

−Iz cos(ΩIt1) cos(πJISt1)− 2IxSy cos(ΩIt1) sin(πJISt1)

+Ix sin(ΩIt1) cos(πJISt1) + 2IzSy sin(ΩIt1) sin(πJISt1)

Phase-cycling will select only p = 0 coherence orders.

select p=0−−−−−−→

−Iz cos(ΩIt1) cos(πJISt1) + ZQy cos(ΩIt1) sin(πJISt1)

During the mixing time, due to the dipolar interaction, spins I and S can exchange

longitudinal magnetisation. This can be represented by Iz −→ aIz + bSz, where a

and b will depend on the efficiency of the energy-transfer mechanism as well as the

duration of the mixing time, τm. During the mixing time the unwanted zero-quantum

coherence evolves:

(ΩI+ΩS)τm−−−−−−−→

−aIz cos(ΩIt1) cos(πJISt1)− bSz cos(ΩIt1) cos(πJISt1)

+ZQy cos(ΩIt1) sin(πJISt1) cos((ΩI − ΩS)τm)

−ZQx cos(ΩIt1) sin(πJISt1) sin((ΩI − ΩS)τm)

Finally a third 90°-pulse is applied and the FID is detected:

(90◦x)IS−−−−→
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aIy cos(ΩIt1) cos(πJISt1) + bSy cos(ΩIt1) cos(πJISt1)

+1
2(2IzSx − 2IxSz) cos(ΩIt1) sin(πJISt1) cos((ΩI − ΩS)τm)

−1
2(2IxSx − 2IzSz) cos(ΩIt1) sin(πJISt1) sin((ΩI − ΩS)τm)

where aIy is a purely absorptive auto-peak and bSy is a purely absorptive cross-

peak. Exactly the same treatment can be given to see the origin of auto-peaks

and cross-peaks developing from magnetisation starting on the S spin instead. The

(2IzSx−2IxSz) term is doubly dispersive and stems from the unwanted zero-quantum

coherence caused by J-coupling or if a third spin participates in the spin diffusion.

This term can be ignored if there is negligible J-coupling or the mixing time is suffi-

ciently long enough such that the ZQ terms dephase. The (2IxSx−2IzSz) term does

not induce an EMF in the coil and can be ignored.

Requisit matrix forms of the product operators are given:
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2 0 0 0

0 −1
2 0 0

0 0 −1
2 0

0 0 0 1
2


A.3 Reduced Wigner d-Matrices

d`
m0(β) = (−1)m

√
(`−m)!
(`+m)!

Pm
` (cosβ), m ≥ 0 (A-1)

When m = 0 this reduces to Eq. (2-14):

d`
00(β) = P`(cosβ) (A-2)

For legibility the dependence on β can be made implicit, i.e. d`
m′m(β) ≡ d`

m′m.
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The following relation can be used to calculate related Wigner d-matrices:

d`
m′m = (−1)m−m′

d`
mm′ = d`

−m−m′ (A-3)

` = 1 ` = 0

d1
11 = cos2(β/2) d0

00 = 1

d1
10 = − 1√

2
sinβ d1

00 = cosβ

d1
1−0 = sin2(β/2)

` = 2

d2
22 = sin4(β/2)

d2
21 = −1

2

(
sinβ(cosβ + 1)

)
d2

11 = 1
2(2 cosβ − 1)(1 + cosβ)

d2
20 =

√
3
8

(
sin2 β

)
d2

10 =
√

3
2(sinβ cosβ) d2

00 = 1
2

(
3 cos2 β − 1

)
d2

2−1 = 1
2

(
sinβ(cosβ − 1)

)
d2

1−1 = 1
2(2 cosβ + 1)(1− cosβ)

d2
2−2 = cos4(β/2)

` = 4 (Select terms)

d4
00 = 1

8

(
35 cos4 β − 30 cos2 β + 3

)
d4

20 = −
√

10
128

(
14 cos4 β − 8 cos2 β − 6

)
d4

40 =
√

70
128

(
cos4 β − 4 cos2 β + 3

)
Complete terms for ` = 4, 6 are given in Ref. [54].
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A.4 Tables

Table A-1. Coefficients of the zeroth-, second-, and fourth-rank contributions
to the second-order frequency shift, given in Eq. 2-62.

I m AI
m BI

m CI
m

3/2 1/2 −1/20 −1/7 27/140

3/2 3/20 0 −3/20

5/2 1/2 −2/15 −8/21 18/35
3/2 −1/10 −5/7 57/70
5/2 5/6 5/21 −15/14

7/2 1/2 −1/4 −5/7 27/28
3/2 −9/20 −12/7 303/140

5/2 1/4 −10/7 33/28
7/2 49/20 1 −69/20

9/2 1/2 −2/5 −8/7 54/35
3/2 −9/10 −3 39/10
5/2 −1/2 −25/7 57/14
7/2 7/5 −2 3/5
9/2 27/5 18/7 −279/35

Table A-2. Phase cycle for a spin-diffusion experiment—see Fig. 3-7. The first
and third pulse phases are shown in columns 1 and 2. The receiver phase is in
column 4. The middle pulse is set to zero phase and not shown. Column 3 is the
sum of the phase shifts. Based on the rule ∆φr = −∆φ∆p given in §3.2, if the
receiver is set to column 3 the correct coherence pathway will be selected

∆φ1 ∆φ3 ∆φ1 + ∆φ3 ∆φr

0 0 0 0
180 0 180 2

0 90 90 1
180 90 270 3

0 180 180 2
180 180 0 0

0 270 270 3
180 270 90 1
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Table A-3. Phase cycle for both pulses (columns 1 and 3) and receiver (column
6) for a spin-echo experiment—see Fig. 5-1. Column 2 shows −∆φ1, the phase
shift from a +1 coherence transfer. Column 4 shows +2∆φ2, the phase shift from
a −2 coherence transfer. Column 5 is the sum of these phase shifts. Based on
the rule ∆φr = −∆φ∆p given in §3.2 if the receiver is set to column 6 the correct
coherence pathway will be selected.

∆φ1 −∆φ1 ∆φ2 +2∆φ2 −∆φ1 + 2∆φ2 ∆φr

0 0 0 0 0 0
90 270 0 0 270 3

180 180 0 0 180 2
270 90 0 0 90 1

0 0 90 180 180 2
90 270 90 180 90 1

180 180 90 180 0 0
270 90 90 180 270 3

0 0 180 0 0 0
90 270 180 0 270 3

180 180 180 0 180 2
270 90 180 0 90 1

0 0 270 180 180 2
90 270 270 180 90 1

180 180 270 180 0 0
270 90 270 180 270 3

Table A-4. Correlation coefficients of variables in Tab. 6-4 used to fit bi-
exponential saturation-recovery curves in Fig. 6-11. Values close to ±1 indicate
the two parameters are correlated, whilst a zero value indicates that the two
parameters are independent.

State Site Ap AT a
1 AT b

1 pT a
1 pT b

1 T a
1 T

b
1

Crystal B3 0.39 0.99 0.49 0.28 −0.36 0.54
Crystal B4 0.08 0.99 0.52 −0.04 −0.57 0.58
Glass B3 −0.23 0.45 0.18 −0.88 −0.90 0.72
Glass B4 −0.34 0.43 0.30 −0.98 −0.99 0.94

Table A-5. Correlation coefficients of variables in Tab. 6-6 used to fit bi-
exponential saturation-recovery curves in Fig. 6-8. Values close to ±1 indicate
the two parameters are correlated, whilst a zero value indicates that the two
parameters are independent.

Dopant AT1 Ac T1c

Cobalt 0.56 −0.26 0.39
Copper 0.25 −0.50 0.38



APPENDIX B

Stoichiometry

Table B-1. Stoichiometric ratios of reactants for the synthesis of
xLi2O·(100− x)B2O3 following the method described in §6.2.1. To make a cer-
tain mass of product, measure out the ratios given multiplied by desired product
mass. Valid for natural abundance boron (80% 11B, 20% 10B).

x Li2CO3 : B2O3

0.10 0.1126 : 0.9545
0.25 0.3095 : 0.8748

1/3 0.4369 : 0.8233
0.40 0.5501 : 0.7775
0.50 0.7426 : 0.6997

Table B-2. Stoichiometric ratios of reactants for the creation of Li2O·2B2O3

with varying 11B isotope enrichment, following the method described in §6.2.2.
To make a certain mass of product, measure out the ratios given multiplied by
desired product mass.

11B Fraction Li2CO3 : 11B(OH)3 : 10B(OH)3

5% 0.4448 : 0.0747 : 1.3961
25% 0.4427 : 0.3716 : 1.0969
80% 0.4369 : 1.1737 : 0.2887

100% 0.4349 : 1.4603 : 0.0000

8



APPENDIX C

Example Input File

C.1 Example pNMRsim Input File

spinsys {

nuclei 11B 11B #Two boron-11 nuclei

channels 11B #One RF channel for 11B

proton_frequency 600e6 #Static magnetic field

#in terms of 1H Larmor

shift 1 18p #Chemical shift of 1st B

shift 2 2p #CSA not specified = 0

quadrupole 1 1 25600000 0.2 10 30 82 #Quadrupolar parameters

quadrupole 2 1 512000 0.5 63 12 24 #1st order, CQ = 0.5 MHz

#Eta = 0.5, random tens.

dipole 1 2 -800 93.4 119.9 -83.2 #Coupling between spins

} #1 and 2 of 800 Hz at

#given Euler angles

par {

spin_rate 6160 #MAS rate

sw 6160 #F2 spectral width

sw1 6160 #F1 spectral width

crystal_file 3zcw30 #Load crystallite file

np 256 #Datapoints in t2

9
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ni 256 2 #Slices in t1 (States)

pulseid 5 50e3 y #Ideal pulse of 5us

#with 50 kHz nutation

store pulse90y #Save pulse propagator

delay 10000 #Calculate 10ms delay

store mixtime #Save delay propagator

variable Statesphase {0,90} #Make phase list

start_operator Inz #Initial density matrix

#n = all spins, z = axis

detect_operator Inc #Detect central trans.

filter 10 [0] #ZQ coherence filter

filter 11 [1,-1] #SQ coherence filter

}

pulseq {

prop pulse90y+$Statesphase #Propagate RF Ham. with

#alternate States phase

filter 11 #Filter SQ coherences

acq #t1 acquisition

prop pulse90y #Second pulse

filter 10 #Filter ZQ coherences

prop mixtime #Mixing time

prop pulse90y #Readout pulse

acq -x #t2 acquisition

}

proc {

save $(name).fid -simpson #Store FID of filename

} #in SIMPSON format
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Ernst, “Longitudinal Two-Spin Order in 2D Exchange Spectroscopy (NOESY),” J.
Magn. Reson. 59, 542–550 (1984). Cited on page 132.

[327] M. Baldus, M. Tomaselli, B. H. Meier, and R. R. Ernst, “Broadband Polarization-
Transfer Experiments for Rotating Solids,” Chem. Phys. Lett. 230, 329–336 (1994).
Cited on page 132.

[328] B. Q. Sun, P. R. Costa, D. Kocisko, J. P. T. Lansbury, and R. G. Griffin, “Internuclear
Distance Measurements in Solid State Nuclear Magnetic Resonance: Dipolar Recou-
pling via Rotor Synchronized Spin Locking,” J. Chem. Phys. 102, 702–707 (1995).
Cited on page 132.

[329] L.-S. Du, M. H. Levitt, and C. P. Grey, “High-Order Spin Diffusion Mechanisms in 19F
2-D NMR of Oxyfluorides,” J. Magn. Reson. 140, 242–249 (1999). Cited on pages 133,
162, and 163.

[330] K. Müller, “Spin Relaxation in Isolated and Coupled Non-Integer Quadrupolar Nuclei:
Theory and Application for I=3/2 Nuclei,” Phys. Chem. Chem. Phys. 4, 5515–5523
(2002). Cited on page 145.

[331] M. H. Levitt, D. P. Raleigh, F. Creuzet, and R. G. Griffin, “Theory and Simulations
of Homonuclear Spin Pair Systems in Rotating Solids,” J. Chem. Phys. 92, 6347–6364
(1990). Cited on pages 149 and 150.

[332] G. Wingefeld and G. Hoppe, “Zur Konstitution Von Ba2WO3F4 Und Ba2MoO3F4,”
Z. Anorg. Allg. Chem. 518, 149–160 (1984). Cited on page 163.


	List of Tables
	List of Figures
	Declarations
	Abstract
	Abbreviations
	Chapter 1 Historical Context and Overview
	1.1 The Development of NMR
	1.1.1 Early Days
	1.1.2 Modern Era
	1.1.3 High Resolution Spectra of Half-Integer Quadrupolar Nuclei

	1.2 Thesis Overview and Motivation

	Chapter 2 Introduction to Solid-State NMR
	2.1 Spin and the Density Operator
	2.2 Irreducible Spherical Tensors
	2.3 Frame Transformation and Angular Dependencies
	2.4 Magic Angle Spinning
	2.5 Zeeman Interaction
	2.6 Chemical Shift
	2.6.1 Under MAS

	2.7 Dipolar Interaction
	2.7.1 Under MAS

	2.8 J-Coupling
	2.9 First-Order Quadrupolar Interaction
	2.10 Second-Order Quadrupolar Interaction
	2.10.1 Under MAS
	2.10.2 Under DOR


	Chapter 3 Pulsed Fourier Transform NMR
	3.1 Radio-Frequency
	3.1.1 Hard and Soft Pulses

	3.2 Coherence and Phase Cycling
	3.3 Longitudinal Relaxation - T1
	3.3.1 The Saturation-Recovery Experiment

	3.4 Transverse Relaxation - T2
	3.4.1 The Spin-Echo Experiment

	3.5 Signal Detection
	3.6 Fourier Transform
	3.7 The Spin Diffusion Experiment
	3.8 The Multiple Quantum MAS Experiment

	Chapter 4 Review of Correlation Experiments
	4.1 Homonuclear Dipolar Correlation
	4.1.1 Effect on 1D Spectra
	4.1.2 Spin Diffusion
	4.1.3 Six Quantum Coherence and DQHDR

	4.2 J-Coupling Correlation
	4.2.1 Heteronuclear
	4.2.2 Homonuclear - Solution-State NMR
	4.2.3 Homonuclear - Solid-State NMR


	Chapter 5 NMR Experiment and Simulation Details
	5.1 NMR Experimental Hardware
	5.1.1 Magnets and Consoles
	5.1.2 Solid-State NMR Probes
	5.1.3 Sample Preparation For NMR

	5.2 Pulsed Experiments
	5.2.1 Spin-Lattice Relaxation - T1
	5.2.2 MQMAS
	5.2.3 Spin Diffusion
	5.2.4 DQHDR
	5.2.5 Spin-Echo Coherence Dephasing - T2

	5.3 Simulation

	Chapter 6 Borate Crystals and Glasses
	6.1 Introduction To Borates
	6.1.1 Practical Value and General Uses of Boron Compounds
	6.1.2 The Glass Transition
	6.1.3 Borate Anomalies and Superstructural Units
	6.1.4 Lithium Diborate

	6.2 Synthesis of Lithium Borates
	6.2.1 Natural Abundance
	6.2.2 Isotopically Altered 10B/11B

	6.3 Solid-State NMR of Borates
	6.3.1 1D MAS of Lithium Diborate
	6.3.2 1D DOR of Lithium Diborate
	6.3.3 MQMAS of Barium Diborate

	6.4 T1 Relaxation of Glasses and Crystals
	6.4.1 Paramagnetic Doping
	6.4.2 T1 Relaxation of Doped Crystals


	Chapter 7 Homonuclear Correlation Experiments
	7.1 MAS Spin Diffusion at 14.1 T
	7.1.1 Varying Mixing Time at Fixed MAS Rate
	7.1.2 Varying MAS Rate at Fixed Mixing Time

	7.2 Isotopically Altered 10B/11B Spin Diffusion
	7.2.1 At 14.1 T and 11.74 T
	7.2.2 Varying Mixing Time at Fixed MAS Rate

	7.3 DOR Spin Diffusion at 14.1 T
	7.3.1 Varying Mixing Time under DOR

	7.4 MAS Spin Diffusion at 7.05 T
	7.5 Discussion
	7.5.1 Spin Diffusion at Long Mixing Time
	7.5.2 Varying Mixing Time
	7.5.3 On The Origins of Negative Cross-Peaks
	7.5.4 Outlook

	7.6 Double Quantum Homonuclear Dipolar Recoupling

	Chapter 8 Spin Echoes, Dephasing and J-Coupling
	8.1 Spin-Echo Dephasing
	8.2 J-Coupling
	8.2.1 Spin-Echo Experiment
	8.2.2 J-Coupling Calculations

	8.3 Conclusions

	Chapter 9 Simulations of Magnetisation Exchange and Dephasing
	9.1 Factors Affecting Magnetisation Transfer: Model 2-Spin Systems
	9.1.1 Isotropic Chemical Shift Difference
	9.1.2 Quadrupolar Coupling
	9.1.3 Dipolar Coupling
	9.1.4 Beta Angle

	9.2 Comparison to Experimental Magnetisation Transfer
	9.2.1 Two-Spin Simulations
	9.2.2 Four-Spin Simulations

	9.3 Spin Diffusion - Ba2MoO3F4
	9.4 Dipolar Broadening
	9.5 Spin-Echo Dephasing

	Chapter 10 Conclusions and Outlook
	10.1 Summary
	10.2 Outlook

	Chapter A NMR Theory Supplement
	A.1 Spherical Spin Tensor Operators
	A.2 The Spin Diffusion Experiment in Product Operator Formalism
	A.3 Reduced Wigner d-Matrices
	A.4 Tables

	Chapter B Stoichiometry
	Chapter C Example Input File
	C.1 Example pNMRsim Input File

	References

