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Abstract: The neural crest is a multipotent cell population that develops from the dorsal neural fold
of vertebrate embryos in order to migrate extensively and differentiate into a variety of tissues. A
number of gene regulatory networks coordinating neural crest cell specification and differentiation
have been extensively studied to date. Although several publications suggest a common role for
microRNA-145 (miR-145) in molecular reprogramming for cell cycle regulation and/or cellular differ-
entiation, little is known about its role during in vivo cranial neural crest development. By modifying
miR-145 levels in zebrafish embryos, abnormal craniofacial development and aberrant pigmentation
phenotypes were detected. By whole-mount in situ hybridization, changes in expression patterns
of col2a1a and Sry-related HMG box (Sox) transcription factors sox9a and sox9b were observed in
overexpressed miR-145 embryos. In agreement, zebrafish sox9b expression was downregulated by
miR-145 overexpression. In silico and in vivo analysis of the sox9b 3′UTR revealed a conserved
potential miR-145 binding site likely involved in its post-transcriptional regulation. Based on these
findings, we speculate that miR-145 participates in the gene regulatory network governing zebrafish
chondrocyte differentiation by controlling sox9b expression.

Keywords: microRNA; neural crest; gene regulatory network; embryonic development

1. Introduction

The neural crest (NC) is a transient, multipotent stem cell-like population whose
formation occurs early in development at the border of the neural tube. After closure
of the neural tube, NC cells (NCCs) experience an epithelial-to-mesenchymal transition
in order to delaminate and migrate away to some of the most distant positions of any
embryonic cell type [1]. NCCs differentiate into a variety of derivatives, including neurons
and glia of the enteric, sensory, and autonomic nervous system, pigment cells, chromaffin
cells, bone and cartilage of the face, endocrine cells, cardiac structures, smooth muscle
cells, and tendons [2]. Several well-characterized gene regulatory networks (GRNs) govern
NC development, which when disrupted can lead to various neurocristopathies such
as craniofronto-nasal dysplasia, DiGeorge syndrome, and certain forms of cancer [3,4].
Some actors critical for cellular regulation of gene expression are microRNAs (miRNAs),
one type of small endogenous noncoding RNAs important in post-transcriptional gene
silencing. MiRNAs bind to target mRNAs and regulate protein expression by repressing
translation and/or promoting degradation of the target mRNA at the post-transcriptional
level through the RNA-induced silencing complex [5]. MiRNAs comprise 1–2% of all
genes in animals, and since each miRNA is predicted to regulate hundreds of targets, it is
thought that half of protein-coding genes are under their control [5]. MiRNA’s biological
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roles are widely diverse, becoming active players in developmental embryogenesis, cell
differentiation, organogenesis, growth, and programmed cell death, as well as stem and
germ cell maintenance, disease, and evolution [6].

The process of NC diversification initiates with the activation of differentiation path-
ways in subpopulations of migratory cells [4]. These pathways operate under a positive
feed-forward loop where initial NC regulators function together with locally activated
differentiation effector genes [4,7]. In order to arrive at the proper target region, NCCs
have to interpret multiple environmental signals that directly influence the place to which
they migrate to settle and differentiate. The Sry-related HMG box (Sox) transcription
factors Sox9 and Sox10 are major players regulating effector genes that provide specific
characteristics to cells. While Sox9 is first expressed during NC specification in premi-
gratory and early delaminating cells, Sox10 is detected in delaminating and migrating
NCCs [1,7]. Sox9 also plays an essential role in cartilage development and chondrocyte
differentiation at multiple steps; it regulates the expression of the Col2a1 gene, which
encodes the major extracellular matrix protein, type-II collagen, in gnathostome vertebrate
cartilage [8,9]. SOX9 defects in humans lead to campomelic dysplasia characterized by
major defects in cartilage and bone [10]. Although much is understood about how SOX9
regulates cartilage matrix synthesis and hence joint function, less is known about the mech-
anisms controlling its own expression [11,12]. Some evidence suggests that miR-145 targets
and suppresses the expression of Sox9, inhibiting chondrogenic differentiation of murine
embryonic mesenchymal cells, as well as critically affecting human articular chondrocyte
function [13,14]. As a result, miR-145 has been used as a metric to qualitatively assess the
efficacy of this differentiation process [15]. On the other hand, miR-145 has been involved
in other processes mainly related to cancer and embryonic stem cell differentiation [16,17].
Regarding cancer, mir-145 was reported to act as a tumor suppressor and has been shown
to be downregulated in several cancer types [18–25]. Consequently, miR-145 was proposed
as a candidate biomarker for cancer diagnosis, monitoring, and prognosis in humans [17].
In human embryonic stem cells, increased levels of miR-145 inhibit self-renewal, repress
the expression of pluripotency genes, and induce lineage-restricted differentiation [16].

During zebrafish development, miR-145 is strongly expressed in gut smooth muscle
and regulates its formation [26]. In addition, miR-145 is expressed in vascular and visceral
smooth muscle cells and promotes their differentiation [27]. Other data uncover a cascade
of molecular events where miR-145, together with other factors, governs lateral plate
mesoderm differentiation and intestinal smooth muscle cell development in zebrafish [28].
Another study in zebrafish revealed that miR-145 regulates embryonic liver size by con-
trolling hepatocyte proliferation. In this process, miR-145 directly targets progranulin
A-dependent hepatic outgrowth during embryonic development [29]. In addition, miR-145
and several regeneration-associated factors have been involved in an early panretinal
induction of octamer-binding transcription factor 4, which is essential for Müller glia
reprogramming and cell cycle exit in zebrafish [30]. Finally, miR-145 and other miRNAs
assist Müller glial cells of the zebrafish retina in reprogramming and forming progenitors
essential for regeneration upon injury [31]. Altogether, data collected during zebrafish
development suggest a common role for miR-145 in molecular reprogramming for cell cycle
regulation and/or cellular differentiation, mainly over NC derivatives [32]. Supporting this
notion, it has been shown that metformin, a popular antidiabetic drug, interferes with NCC
determination by deregulating the canonical Wnt axis and a set of miRNAs, among which
is miR-145 [33]. When murine embryonic stem cells are differentiated into NCCs in the
presence of metformin, miR-200c and miR-145 show more than 5-fold upregulation over
other miRNAs. Studies in different mouse and human cultured cells confirmed that Sox9
is a direct target of miR-145 [13,14,33,34], though the regulation of this pathway during
embryonic development has not been assessed yet. In the present study, we analyzed
in vivo the role of miR-145 during embryonic development, focusing on its action upon
NC formation and differentiation using zebrafish as an animal model. Functional experi-
ments indicate that miR-145 is involved in proper pigment cell differentiation, craniofacial
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development, cellular apoptosis, and expression patterns of cranial NC genes, likely by
impairing the post-transcriptional regulation of sox9b during zebrafish NC development.
The strikingly high degree of miR-145 conservation throughout evolution suggests that its
role in mammalian cell culture is conserved in zebrafish development.

2. Materials and Methods
2.1. Zebrafish Care

All zebrafish were handled according to relevant national and international guidelines.
All procedures using zebrafish from the Calcaterra lab were authorized by the Comité
Institucional para el Cuidado y Uso de Animales de Laboratorio of the Facultad de Cs.
Bioquímicas y Farmacéuticas-Universidad Nacional de Rosario, which has been accepted
by the Ministerio de Salud de la Nación Argentina (files N◦ 6060/374 and 207/2018). Adult
zebrafish were maintained at 28 ◦C on a 14:10 h light:dark cycle as previously described [35].
Matings usually involved crossing three males and four females in the same spawning
tank. For mutant embryos, one female and one male were set up in crossing tanks. All
embryos were staged according to morphological development in hours or days post-
fertilization (hpf or dpf, respectively) at 28 ◦C [36]. Except for the CRISPR experiment
(Section 2.3), embryos were injected at the one-cell stage into the yolk immediately below
the cell using a gas-driven microinjection apparatus (MPPI-2 Pressure Injector, Applied
scientific Instrumentation; Eugene, OR, USA).

2.2. In Silico Analysis of miR-145 Gene and Targets

Mature and stem-loop sequences of mir-143 (30 species) and miR-145 (25 species) were
obtained from miRbase release 22 [37] and aligned with the Clustal Omega tool [38]. Loci and
flanking regions (human: chromosome 5: 149,406,689–149,432,835 [+], GRCh38:CM000667.2;
zebrafish: chromosome 14: 38,743,941–38,744,053 [+], GRCz11:CM002898.2) were obtained
from Ensembl release 99 [39]. Synteny between human and zebrafish miR-145 was analyzed
by comparing adjacent genes in terms of chromosome conservation. Putative targets for
zebrafish miR-145 were obtained from TargetScanFish release 6.2 [40] and analyzed for Gene
Ontology [41,42] and KEGG pathway [43] enrichment with DAVID [44], PANTHER [45], and
g:Profiler [46]. RNA folding prediction was performed with RNAfold [47] and NUPACK [48].

2.3. MiR-145 Over- and Downregulation

For the overexpression experiments, the genomic region of zebrafish miR-145 (chro-
mosome 14: 38,743,647–38,744,217) was amplified and cloned into a pSP64T-dsRED vector,
using EcoRI-XhoI restriction sites (primer sequences in Supplementary Table S1, restriction
sites in lowercase). To produce mRNA for microinjection, the plasmid was linearized with
BamHI (Invitrogen, Carlsbad, CA, USA) and transcribed with mMESSAGE mMACHINE®

SP6 (Invitrogen), alongside a no-miRNA control-dsRED vector. One-cell embryos were
microinjected with 1.25 ng of the transcripts and incubated at 28 ◦C until collection.

Pure commercial 1-1Dimethylbiguanide hydrochloride (metformin; Sigma-Aldrich,
St. Loius, MO, USA FG:165.62) was used for all the incubation experiments at LC50 = 7.5 mM
concentration [49]. Dilutions were carried out using autoclaved reverse osmosis water.
Embryos were obtained and allowed to develop until the 512-cell stage in osmosis water,
then they were selected and incubated in the presence of metformin.

For the generation of CRISPR mutants, target selection and sgRNA design were per-
formed using the browser extensible data track [50], “CRISPRs” track on the ZebrafishGe-
nomics track hub) and CRISPRScan [51]. To disrupt the miR-145 gene, a pair of gRNAs
(100 ng each, Supplementary Table S1) targeting the miRNA sequence were prepared by
PCR and in vitro transcription [52], and then mixed with 5 µg of Cas9 protein (Truecut,
Invitrogen). The gRNA complexes were mixed with the Cas9 protein and incubated for
10 min at 37 ◦C to form the ribonucleoprotein (RNP) complex. The RNP complexes were
injected (3 nL) into the animal pole of one-cell stage embryos.
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2.4. Zebrafish DNA Extraction, Genotyping, and Characterization of the
CRISPR/Cas9-Induced Mutation

Adult fish were anesthetized with 0.04% tricaine methanesulfonate (MS222). PCR-
ready genomic DNA was isolated from whole zebrafish embryos (24 hpf) or tail fin clips
of adult zebrafish. Briefly, tissue samples were incubated in a thermal cycler with 70 µL
of extraction buffer (10 mM Tris pH8, 50 mM KCl, 1.5 mM MgCl2, 0.3% (v/v) Tween20,
0.3% v/v NP-40) at 94 ◦C for 20 min, then 2.5 µL of 20 mg/mL Proteinase K were added
and further incubated at 55 ◦C for 1h, ending with 94 ◦C for 20 min. For genotyping, PCR
reactions (20 µL total volume) were prepared using Taq Pegasus (PB-L, Buenos Aires, Ar-
gentina) according to the manufacturer’s instructions (primer sequences in Supplementary
Table S1) and visualized with 3% (w/v) agarose gel electrophoresis stained with Gel Green
(Biotium, Freemont, CA, USA). To characterize the knockout mutation, DNA samples were
analyzed by Sanger sequencing.

2.5. RT-qPCR

RNA from 35 embryos was obtained with TRIzol® reagent according to the man-
ufacturer’s instructions (Invitrogen) and treated with DNAse RQ1 (Promega, Madison,
WI, USA). Retrotranscription was performed with Mu-MLV RT enzyme (Promega) and
oligo(dT) primers. Quantitative PCR was done with Taq Platinum as per the manufac-
turer’s instructions (Invitrogen), using SYBR Green (Sigma-Aldrich), on an Eppendorf
RealPlex4 thermocycler. For miRNA detection, specific stem–loop primers were added to
the retrotranscription reaction [53]. Rpl13 and ef1α were used as endogenous controls [54].
All primer sequences are detailed in Supplementary Table S1. Data analysis was performed
with qBase software v2.2 and statistical analysis with GraphPad Prism 7, following MIQE
guidelines [55].

2.6. Pigment Quantification

In order to observe the reflecting iridophores, 35 larvae of 72 hpf were photographed
with an Olympus MVX10 stereoscopic microscope and Olympus C-60 ZOOM digital
camera, over a dark background and with 45◦ incident light. Reflection intensity was
measured with Quantifish software [56] and statistical analyses were performed with
GraphPad Prism 7.

2.7. Alcian Blue staining

To analyze the effect on cranial structures, 40 larvae of 5 dpf were fixed with 4% (w/v)
paraformaldehyde in PBT 1X (PBS 1X with 0.1% (v/v) Tween-20) overnight at 4 ◦C, washed
4 times with PBT 1X, and stained as detailed elsewhere [57]. Pictures were taken with an
Olympus MVX10 stereoscopic microscope and Olympus C-60 ZOOM digital camera. The
different cranial cartilage parameters were measured as reported elsewhere [4] with ImageJ
software (National Institute of Health, Bethesda, MD, USA) [58].

2.8. Acridine Orange Staining

Twenty-four hpf embryos were manually dechorionated and stained with Acridine
Orange to detect apoptotic cells as reported elsewhere [59]. Fifty fluorescent embryos
were photographed with an Olympus MVX10 stereoscopic microscope and Olympus C-60
ZOOM digital camera. Fluorescence levels were quantified with QuantiFish software [56]
and analyzed with GraphPad Prism 7.

2.9. Whole-Mount In Situ Hybridization (WISH)

Embryos were staged as previously described, manually dechorionated (for em-
bryos under 72hpf), fixed with 4% (w/v) paraformaldehyde in PBT 1X overnight at 4 ◦C,
washed 3 times with PBT 1X, and stored in methanol at −20 ◦C. The staining protocol was
performed as detailed elsewhere [60]. Riboprobes were labeled with Digoxigenin-UTP
according to the manufacturer’s instructions (Roche Diagnostics, Mannheim, Germany).
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Embryos were imaged with an Olympus MVX10 stereoscopic microscope and Olympus
C-60 ZOOM digital camera.

2.10. Reporter Assays

The d4EGFPn-3′UTR reporters were constructed using specific primers for the sox9b
3′UTR genomic region (primer sequences in Supplementary Table S1, restriction sites in
lowercase). Two different fragments (1 and 2) were separately amplified, purified, and
cloned into a pGEM-T Easy Vector System (Promega). Then, both fragments were separately
sub-cloned at the XhoI site of the pSP64-T-d4EGFPn vector, and the direction of insertion
confirmed by sequencing. Positive plasmids for each construction were cut with SmaI and
used as a template for transcription with mMESSAGE mMACHINE® SP6 according to the
manufacturer’s instructions (Invitrogen). Empty pSP64-T-d4EGFPn was used as a control.
Transcripts were microinjected into one-cell embryos at 1.5 ng together with 1.25 ng of
either miR-145-dsRED or control-dsRED transcripts. D4EGFPn fluorescence was observed
at the 50 epiboly stage. Embryos were imaged with a Leica MZ16F stereoscopic microscope
and a Nikon DS-Fi1 digital camera. Fluorescent levels were examined with QuantiFish
software [56] and statistical analyses were performed with GraphPad Prism 7.

3. Results
3.1. MiR-145 Is Conserved throughout Evolution

Zebrafish miR-145 is a single copy gene, as was detected for human and other vertebrates.
Importantly, the miR-145 sequence has not been found in nonvertebrate genomes, suggesting a
specific clade function. To infer miR-145 gene structure, both human and zebrafish pri-miR-145
were searched for in the Ensembl database in the corresponding genomes. Zebrafish miR-145
is located on chromosome 14 (GRCz11 14: 38,743,941–38,744,053 [+]) while human miR-145
is located on chromosome 5 (GRCh38 5: 149,430,646–149,430,733 [+]) (Figure 1a,b). In both
species, miR-145 is organized in long noncoding RNAs (CARMN in humans and BX088707.3
in zebrafish, Figure 1a,b), demonstrating a structural genomic conservation; nevertheless, the
lncRNAs themselves show low sequence conservation (46.62% identity). The search for the
miR-145 gene sequence led to the identification of an evolutionarily conserved miR-143–145
cluster both in zebrafish and humans (Figure 1a–c), showing a structural genomic conservation
among vertebrates, which is in agreement with previous information [61]. Although some
degree of shuffling was observed, gene synteny analysis revealed preservation of several
blocks ranging from two to four genes upstream of the miR-145 locus and in the same order
between the two species. Downstream of the miR-145 locus, the order of syntenic genes was
less preserved, although several genes were still found to be conserved between chromosomes
of the two species (Figure 1c). Therefore, in addition to the conservation of the gene structure,
the genomic contexts have also been conserved in the two species. In order to explore
conservation of pre-miR-145 and pre-miR-143 sequences, a broader group of species was
compared. First, pre-miR sequences from mammalian, amphibian, and teleost fish species
were collected from miRbase and their pairwise identities determined with Clustal Omega,
with identity percentages ranging from 61.54% to 100% (average 90%) for miR-145 and from
71.29% to 100% (average 92%) for miR-143 (Figure 1d, Supplementary Figures S1 and S2,
Supplementary Tables S2 and S3). Data showed that miR-145 and miR-143 mature sequences
are remarkably conserved among vertebrates. Furthermore, the seed region, a key element in
target recognition and translation inhibition, is 100% conserved in both miRNAs, suggesting
that not only the targets but also the functions of the two miRNAs have been conserved
among vertebrates.

Both in humans and zebrafish, the miR-145-5p strand is the form predominantly
detected (miRBase). Therefore, from now onwards, we refer to this form as “miR-145”,
unless stated otherwise. A list of 2997 putative miR-145 target zebrafish genes identified by
means of TargetScan (Supplementary Table S4) was analyzed for Gene Ontology and KEGG
pathway enrichment. Firstly, we analyzed those genes with a context+ score under −0.2,
and then we explored the full list (Figure 2, Supplementary Table S5). A total of 23 and
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34 biological process terms were found to be over-represented with DAVID (p-value < 0.05,
FDR test) for the short and full gene list, respectively. Likewise, 12 and 59 terms were
found with PANTHER (p-value < 0.05, FDR test). With g:Profiler, the full list was analyzed,
since the order of the query list was taken into consideration, and 190 terms were found
(padj < 0.05, g:SCS threshold, ordered query as context+ score). Regarding KEGG pathways,
four (short list) and 15 (full list) pathways were detected as over-represented with DAVID
(p-value < 0.1, FDR test), and 27 with g:Profiler (padj < 0.05, g:SCS threshold, ordered query
as context+ score). Focusing on embryonic development, multiple terms related to the NC
and its derivatives were found to be statistically enriched.

Figure 1. MiR-145 is highly conserved across vertebrates. (a,b) Homo sapiens CARMN-209 and Danio rerio BX088707.3-201
transcripts containing miR-143 (in black) and miR-145 (in gray) precursors. Exons are represented with dark blue boxes and
introns with light blue lines. Scale bar represents 1kb. (c) Schematic representation of synteny analysis of miR-143/miR-145
cluster between Homo sapiens and Danio rerio. Blocks of genes in the same order are highlighted in green, while those blocks
that are inverted are in yellow. Only conserved genes are shown. (d) Clustal Omega alignment of miR-145 precursor,
displaying taxonomic tree on the left and aligned sequences on the right. Asterisks at the bottom represent 100% conserved
bases. The mature miR-145-5p sequence is underlined on the left, with the seed sequence highlighted in gray. Some species
that also possess annotated mature miR-145-3p are underlined on the right.

3.2. Expression Analysis of miR-145 during Zebrafish Development

The zebrafish miR-145 developmental expression pattern has already been charac-
terized [26,62]. From 16 to 24 hpf, miR-145 is ubiquitously expressed at very low levels.
Between 24 and 72 hpf, its expression increases specifically in the heart, ear, and pharyngeal
arches [26,62]. At 96 hpf, miR-145 is localized in both the gut and swim bladder, being
stronger within the gut smooth muscle layer [26,62]. As there were no expression records
regarding the early developmental stages, we analyzed miR-145 expression levels from the
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one-cell stage onwards by performing stem–loop RT-qPCR. Results showed that miR-145
is maternally inherited and expressed at high levels during the first stages of zebrafish
embryonic development (Figure 3a). Over the course of development, miR-145 expression
decreases, reaching a minimum around the bud and 10-somite stages. From that stage
onwards, miR-145 expression increases, with the highest expression measured at 3 dpf.

Figure 2. MiR-145 zebrafish target gene analysis. Gene Ontology and KEGG pathway enrichment analysis of genes with
context+ score under −0.2 and the full list. The -log10(p-value) and fold enrichment of selected biological process terms
(left) and KEGG pathways (right) are shown.

A negative correlation is observed when comparing miR-145 (Figure 3a) and sox9b ex-
pression behavior (reported in Dooley et al., 2019 [11]). Indeed, among one to eight somites,
the expression of sox9b is higher and miR-145 is lower. Later on, between 20 somites and
prim-25, the expression of sox9b is low while the expression of miR-145 increases. Both sox9a
and sox9b 3′UTRs have putative target binding sites for miR-145 (Figure 3b,c; TargetScan,
score: −0.28), and both transcription factors are included in several developmental process
GO terms (Figure 2). These observations suggest a role for miR-145 in both sox9a and sox9b
expression regulation during zebrafish development.

3.3. Effects of miR-145 Over- and Downregulation on Neural Crest Derivatives

In order to study the role of miR-145 during development, we performed gain- and
loss-of-function experiments in zebrafish embryos. We microinjected a pri-miRNA in tandem
with a reporter dsRED sequence to increase the miR-145 levels (miR-145-dsRED). As a control,
an mRNA generated from the construct that contained only the dsRED sequence was injected
in the same conditions (control-dsRED). During embryonic development, we assessed both
the presence of reporter protein by fluorescence and the pri-miRNA processing by stem–loop
RT-qPCR. An increase in miR-145 levels in microinjected wild-type embryos was observed
at 24 hpf (Supplementary Figure S3A). As metformin upregulates miR-200c and miR-145
while murine embryonic stem cells are differentiated into NCCs [33], we tested whether
miR-145 levels increased in metformin-treated embryos. Surprisingly, metformin-treated
embryos showed a reduction in the levels of miR-145 at 24 hpf (Supplementary Figure S3A).
For all our experiments, 7.5 mM metformin was used, according to the concentration es-
tablished by FET-test (LC50 = 7.5 mM) [49]. This metformin concentration is lower than
that used in other experiments performed in zebrafish embryos [33] and could explain the
differences observed. For specific loss-of-function experiments, we generated a CRISPR
knockout mutant with a deletion of 44 bp in the miR-145 stem–loop region (Figure 3d and
Supplementary Figure S3B). The CRISPR deletion eliminated the last two nucleotides of
miR-145-5p (CT) and the complete sequence of miR-145-3p (Figure 3d). Even though the se-
quence of miR-145-5p is virtually intact, predictions suggest that a stem–loop structure could
potentially be formed, but Dicer1 processing would result in a shorter miR-145-5p, since part
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of its sequence would be included in the new loop of the stem–loop structure (Supplementary
Figure S3C). Heterozygous miR-145+/− developed normally, being phenotypically indistin-
guishable from wild-type siblings; embryos were raised to adulthood, genotyped for the
deletion, and crossed to generate homozygous mutants. In homozygous miR-145−/−mutants,
initial development appeared morphologically normal up to 5 dpf. Homozygous miR-145−/−

mutants were phenotypically indistinguishable from wild-type siblings; embryos were raised
to adulthood, genotyped for the deletion, and crossed to generate homozygous mutants.
By stem–loop RT-qPCR, the expression level of miR-145 declined up to 96% in miR-145−/−

mutant embryos at 24 hpf (Supplementary Figure S3A), suggesting that pri-miRNA pro-
cessing did not happen. Therefore, in our experimental conditions, miR-145 overexpression
was reached by microinjecting a pri-miRNA in tandem with a reporter dsRED sequence,
while miR-145 downregulation was indirectly achieved by incubating developing zebrafish
embryos in the presence of metformin and directly by using the miR-145−/− zebrafish
knockout mutant.

Figure 3. Measurement of miR-145 expression with stem–loop RT-qPCR. (a) MiR-145 temporal expression levels during
zebrafish development (±SEM, n = 3). (b,c) Schematic representation of sox9a (ENSDARG00000003293) and sox9b (ENS-
DARG00000043293) 3′UTR. Putative miRNA binding sites are shown below each region. MiR-145 sites are enclosed in
purple boxes, with their respective context+ scores. (d) Schematic representation of miR-145 genomic wild-type sequence
(top) and CRISPR/Cas9 mutant sequence (bottom). Mature mir-145-5p and -3p in green and orange, respectively, and
underlined gRNA sequences are shown. Drosha and Dicer1 cleavage sites marked with red and blue arrows, respectively.
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3.3.1. Effects on Pigmentation

Zebrafish pigmentation is characterized by the presence of melanocytes, iridophores, and
xanthophores, three different kinds of pigment cells derived from NCCs [63]. Melanocytes
showing the black pigment melanin are evident by 25 hpf onwards, initiating in the region
just posterior to the otic vesicle [63]. From 28–32 hpf, metformin-treated embryos showed a
reduced number of pigmented melanocytes, as previously reported [33], especially in the
posterior hindbrain region (not shown). By 48 hpf, metformin-treated embryos displayed a
decreased number of melanocytes, as well as decreased melanin levels (visible as grayer,
less black, coloration) in the remaining melanocytes (Figure 4b). At 72 hpf, differences
in the pattern of melanocytes located in the head, lateral stripe, and yolk were observed
in metformin-treated larvae (Figure 4f). No detectable phenotypic defects in melanocyte
differentiation were observed in embryos and larvae microinjected with the miR-145-
dsRED construct nor in miR-145−/− zebrafish mutants (Figure 4c,d,g,h). Importantly, black
pigmentation of the pigmented retinal epithelium (where melanocytes derive from the
brain) was unaffected in metformin-treated fish (Figure 4b,f), suggesting a specific effect of
metformin on black pigment cells derived from the NC.

Iridophores produce the iridescent pigment in the eyes, on the top of the head, scat-
tered amongst melanocytes in the body, and in discrete ‘lateral patches’ above the yolk
sac in the anterior trunk, as seen in 72 hpf control larvae (Figure 4i,j). Phenotypic analysis
in both miR-145-dsRED microinjected and metformin-treated larvae showed a decrease
in the extent of iridophores on the eye and in the lateral patches (Figure 4k–n). On the
contrary, an increase in the iridophore pattern was detected in miR-145−/− mutant larvae
(Figure 4o,p). When quantifying the iridescent pigment, lower levels were detected in miR-
145-dsRED microinjected and metformin-treated larvae, but higher levels in miR-145−/−

mutants when compared with controls (Figure 4q). Putative miR-145 binding sites were
searched in silico in genes belonging to the zebrafish iridophore GRN [64]. The analysis
showed the presence of a miR-145 target binding site in ltk 3′UTR (the receptor tyrosine
kinase leukocyte tyrosine kinase; Figure 4r). These results revealed an unidentified role for
miR-145 in iridophore development that will need deeper exploration.

3.3.2. Effects on Craniofacial Development

Defects in craniofacial development were clearly detected when embryos microin-
jected with miR-145-dsRED were fixed at 5 dpf and stained with Alcian Blue (Figure 5d, see
A for definition of measured parameters). MiR-145 overexpression caused significant short-
ening in the lengths of Meckel (ML), ceratohyal (ChL), and hyosymplectic–palatoquadrate
(PQ) cartilages (Figure 5g; N = 30). The Meckel area (MAr, defined as the triangle shaped
by Meckel cartilages), the distance between ceratohyal cartilage joints and the lateral
fins, and the cranial distance (measured as the distance from the anterior-most M to the
lateral fins) also showed significant reductions (compare Figure 5b with Figure 5d). How-
ever, the angles formed by the Meckel and ceratohyal cartilages were not significantly
modified (Figure 5g; N = 30). For miR-145−/− mutant larvae, a milder phenotype was
observed, detecting only significant reductions in ML and PQ lengths and for Meckel
angle (Figure 5e,h). In the case of metformin-treated larvae, more severe phenotypes were
detected, showing significant reductions in all cartilage areas and lengths (Figure 5c,f;
LC50 metformin concentration). In vivo results suggest a role for miR-145 during zebrafish
craniofacial development, in line with previous records gathered in mouse and human cell
chondrogenesis processes studied in cultured cells [13,14].
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Figure 4. MiR-145 gain- and loss-of-function larvae display pigment developmental phenotypes. (a–h) Representative
images of live metformin-treated (b,f) or miR-145-dsRED microinjected (c,g), and miR-145−/− mutant (d,h) larvae and
control siblings (a,e). Lateral views with head to the left, dorsal uppermost, of 48 hpf (a–d) and 72 hpf (e–h) specimens.
Insets show enlarged regions of the yolk sac (a′–h′) in order to compare melanocyte differentiation phenotype. Scale bar
represents 200 µm in A for a-h. (i–p) Incident light images of 3 dpf larvae showing eye and trunk iridophores (silver
spots) in wild-type sibling (i,j), and metformin-treated (k,l), miR-145-dsRED microinjected (m,n), and miR-145−/− mutant
(o,p) larvae. Pictures in (i,k,m,o) are lateral views while pictures in (j,l,n,p) are dorsal views, head to the left. Scale bar
represents 200 µm in (i) for (i–p). (q) Quantification of iridescent light of miR-145-dsRED microinjected, metformin-treated,
and miR-145−/− mutant larvae with their corresponding controls at 3 dpf. e: eyes; lp: lateral patches. (±SEM, n = 3,
two-tailed Student’s t-test, * p < 0.05; ** p < 0.01). (r): Schematic representation of ltk (ENSDARG00000042681) 3′UTR.
Putative miRNA binding sites are shown below each region. MiR-145 site is enclosed in a purple box, with its respective
context+ score.
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Figure 5. Alcian Blue staining of 5 dpf miR-145-dsRED microinjected, miR-145−/− mutant, and metformin-treated larvae.
(a) Different cranial parameters are measured: Mar: Meckel area; ChL: ceratohyal length; PQ: palatoquadrate length; ML: Meckel
length; CrD: cranial distance; ChD: ceratohyal-to-fin distance; Man: Meckel angle; ChAn: ceratohyal angle. (b–e) Control
(b), metformin-treated (c), miR-145-dsRED microinjected (d), and miR-145−/− mutant (e) larvae. All larvae are positioned
ventrally with head to the left. (f–h) Measurement of cranial parameters corresponding to metformin-treated (f), miR-145-dsRED
microinjected (g), and miR-145−/− mutant (h) larvae compared with their respective controls (WT siblings not treated with
drug, Control-dsRED microinjected, and WT siblings, respectively). Arbitrary units (AU) in the y-axis of length and area
graphs result from standardization of measurement data to the control counterpart of each parameter. Statistically different
parameters have boxplots shaded for easier identification. Two-tailed Student’s t-test, * p < 0.05, ** p < 0.01, *** p < 0.0001. Scale
bar represents 200 µm in (b) for (b–e).

The analysis of all the results obtained so far revealed that metformin treatment
broadly affects pigment cell and craniofacial NC derivatives whereas specific miR-145 over-
and downregulation seem to affect iridophore and craniofacial structure development.
The phenotype observed for iridophore development is striking and should be studied
further. Previously reported results for zebrafish [33], along with the data described here,
suggest that metformin treatment could not only alter miR-145 expression and melanocyte
differentiation, but also affect other developmental processes by apparently additional
complex unrelated activities of the drug. As a result, we decided to not test metformin-
treated embryos any further.
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3.4. MiR-145 Over- and Downregulation Induces Apoptosis during Zebrafish Development

In zebrafish organogenesis, miR-145 regulates liver size by controlling hepatocyte
proliferation [29]. As noted above, both miR-145-dsRED microinjected and miR-145−/−

mutant fish show an apparent decrease in the size of the head and craniofacial cartilages.
We wondered whether the smaller head size was due to increased apoptosis of cephalic-
most cells. To test this, we used Acridine Orange staining of apoptotic cells to assess
in vivo cell death in control and treated embryos. At 24 hpf, miR-145-dsRED microinjected
embryos displayed significantly higher levels of apoptosis in the whole embryo when
compared with control-dsRED microinjected embryos (Figure 6a,b; N = 50). MiR-145−/−

mutant embryos also show significantly higher levels of apoptosis at 24 hpf when compared
with WT controls (Figure 6c; N = 50). The increased apoptosis in treated embryos could
explain the phenotypes affecting NC derivatives.

Figure 6. Apoptosis levels are analyzed in miR-145 gain- and loss-of-function embryos. (a) Quantification of Acridine
Orange fluorescence of control-dsRED and miR-145-dsRED microinjected embryos at 24 hpf. (b) Quantification of Acridine
Orange fluorescence of WT control and miR-145−/− mutant embryos at 24 hpf. Student’s t-test, * p < 0.0001. (c–f) Pictures of
control-dsRED (c), miR-145 overexpressing (d), WT (e), and miR-145−/− (f) 24 hpf embryos stained with Acridine Orange.

3.5. MiR-145 Overexpression Affects the Expression of NCC Marker Genes

To deepen the study of miR-145’s role in craniofacial development, we analyzed
by whole-mount in situ hybridization (WISH) the sox9a/b and col2a1a gene expression
patterns in specimens microinjected with miR-145-dsRED. At 13 hpf, control embryos
expressed sox9a in NCCs of the otic vesicle and the somites (Figure 7a,b; regions labeled
with ov and s, respectively). MiR-145-dsRED overexpressing embryos consistently showed
a diminution of sox9a expression in the somites, when compared with controls (black
brackets in Figure 7a,e (85% affected, N = 26)). When analyzing sox9a expression from
the dorsal view, an altered pattern in NC patches was observed (brackets in Figure 7b,f
(85% affected, N = 26)). At 13 hpf, control embryos expressed sox9b in NCCs of the
diencephalic, midbrain, and hindbrain regions (Figure 7c,d; regions labeled with d, m, and
h, respectively). A consistent reduction in sox9b expression territory in the diencephalic,
midbrain, and hindbrain regions was detected in miR-145-dsRED microinjected embryos
at 13 hpf (Figure 7c,d,g,h (78% affected, N = 40)). In conclusion, data indicate that miR-145
overexpression affects both the sox9a and sox9b positive staining territories, suggesting a
regulatory role for miR-145 in their mRNA expression patterns.

Col2a1a expression is required for chondrocyte differentiation [65]. At 24 hpf, embryos
express col2a1a along the notochord vacuolar cells (Figure 7i). No differences in col2a1a ex-
pression were detected in miR-145-dsRED overexpressing embryos (Figure 7n). In control
48 hpf specimens, col2a1a expression was detected in presumptive craniofacial structures
and the notochord. At this stage, cartilage begins to differentiate morphologically, and it
is possible to visualize early pre-cartilage condensations in the developing parachordals,
which form the neurocranium together with the ethmoid plate and trabeculae, and the
ceratohyal and the notochord (Figure 7j,k). In miR-145-dsRED overexpressing embryos,



Genes 2021, 12, 1023 13 of 21

a clear diminution of col2a1 expression in the parachordals and ceratohyal was detected
(Figure 7o,p (75% affected, N = 32)). At 72 hpf, col2a1a expression was detected in the
presumptive neurocranium, pectoral fins, and pharyngeal skeleton of wild-type larvae
(Figure 7l,m). Regarding miR-145-dsRED overexpressing larvae, col2a1a expression defects
were detected in the parachordals, ethmoid plate, and trabeculae, while col2a1a expres-
sion in the developing pharyngeal skeleton was less altered (Figure 7q,r (88% affected,
N = 34)). A putative miR-145 binding site was detected in silico in the col2a1a 3′UTR
(Figure 7s), suggesting a direct regulatory role for miR-145 over Col2a1a expression during
chondrocyte differentiation. These results confirmed the abnormal development of cran-
iofacial structures when miR-145 levels are modulated and allow us to speculate that the
facial cartilage formation is dependent on normal miR-145 expression during zebrafish
embryonic development.

The expression patterns of myod1, egr2b, and tbxta in both miR-145-dsRED and control-
dsRED microinjected embryos were similar, thus ruling out possible nonspecific effects of
the treatment (Supplementary Figure S4).

3.6. The Expression of sox9b Can Be Regulated at the 3′UTR Level

Evidence gathered in different in cellulo experimental approaches suggests that miR-145
targets and suppresses Sox9 expression [13,14,33,34], in agreement with the in silico and
in vivo results gathered in this work (Figures 3c and 7g–l).

To further study the consequences of miR-145 overexpression, we evaluated sox9b
expression during zebrafish development. The relative amount of sox9b mRNA measured
by RT-qPCR assays was significantly lower in miR-145-dsRED microinjected embryos at
all developmental stages analyzed (Figure 8a). To test the potential role of the miR-145
binding site identified in silico (Figure 3c) in this regulation, the sox9b-3′UTR sequence was
cloned in two fragments downstream of a destabilized GFP coding sequence (d4EGFPn,
named dGFP). The dGFP-sox9b-3′UTR-1 (sox9b-3′UTR-1; sequence in exon 3, from−2 bases
to +1035 bases from the stop codon’s last base) contains the first 1000 bp and no putative
miR-145 binding sites while the dGFP-sox9b-3′UTR-2 (sox9b-3′UTR-2; sequence in exon 3,
from +1073 to +2014 bases from the stop codon) contains the second 1000 bp and a pu-
tative miR-145 binding site (Figure 8b). A third chimera fusing the dGFP-coding region
to the SV40-poly(A) sequence was constructed to test as a control. The three constructs
(sox9b-3′UTR-1, sox9b-3′UTR-2, and control) were used to synthesize in vitro their corre-
sponding mRNAs, which were independently co-injected with either miR-145-dsRED
or control-dsRED mRNAs in one-cell zebrafish embryos (Figure 8c). Injected embryos
were allowed to develop until 50 epiboly and both the dGFP and dsRED fluorescences
were assessed under the microscope; the dGFP expression was measured by green fluores-
cent quantification while red fluorescence was used to normalize the signal in each assay
(Figure 8d). The presence of either miR-145-dsRED or control-dsRED mRNAs did not affect
the levels of dGFP synthesized from control or sox9b-3′UTR-1 sequences. However, the
co-injection of sox9b-3′UTR-2 mRNA with miR-145-dsRED led to a significant reduction in
the levels of green fluorescence when compared with fluorescence measured in embryos
co-injected with control-dsRED mRNA. Both sox9b-3′UTR-1 and sox9b-3′UTR-2 have been
analyzed out of the endogenous genomic context; therefore, the existence of an artificial
mRNA decay cannot be ruled out. However, the finding that the decrease in fluorescence
relative intensity was detected only in the case of sox9b-3′UTR-2 suggests that any part of
this fragment contains elements potentially involved in miR-145-mediated sox9b expression
regulation. Our data suggest that, in developmental stages wherein NC migration and
differentiation are taking place, sox9b is post-transcriptionally regulated by miR-145.
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Figure 7. MiR-145 upregulation affects the expression of NCC marker genes. (a–h) Whole-mount in situ hybridization of
sox9a (a,b,e,f) and sox9b (c,d,g,h) performed on 13 hpf miR-145-dsRED microinjected embryos. Lateral views are dorsal
to top (a,e,c,g); dorsal views are anterior to left (b,f,d,h). In (a) ov: otic vesicle; s: somites. In (c) d: diencephalon; ov: otic
vesicle; nc: neural crest. Scale bar represents 200 µm in (a) for (a–h). (i–r) Whole-mount in situ hybridization of col2a1a
(ENSDARG00000069093) in miR-145-dsRED microinjected specimens at 24 hpf (i,n), 48 hpf (j,k,o,p), and 72 hpf (l,m,q,r).
Lateral and dorsal views are head to left. In (k) ch: ceratohyal; pc: parachordals. In (l,m) et: ethmoid plate; tr: trabeculae. (s)
Schematic representation of col2a1a 3′UTR. Putative miRNA binding sites are shown below each region. MiR-145 site is
enclosed in a purple box, with its respective context+ score. Scale bars represent 200 µm in (i) for (i,n); and in (j) for (j–m)
and (o–r).
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Figure 8. MiR-145 controls sox9b expression. (a) Relative levels of sox9b mRNA in miR-145-dsRED microinjected and control
embryos; bars represent values measured at each developmental stage normalized to the amount of the corresponding
mRNA measured in controls at 13, 26, 48, and 72 hpf (±S.E.M., n = 4). Two-tailed Student’s t-test, * p = 0.03; ** p = 0.012;
*** p = 0.002. (b) Schematic representation of the cloning of sox9b 3′UTR fragments 1 and 2, with putative miRNA sites
marked with colored lines and miR-145 enclosed in a purple box. (c) Schematic representation of the experimental strategy
followed for the study of dGFP expression. (d) Quantification of dGFP in embryos co-microinjected with miR-145-dsRED or
control-dsRED and different 3′UTRs (n = 4). Two-tailed Student’s t-test, * p = 0.006.

4. Discussion

Several studies have revealed a role for miRNAs as essential modulators of devel-
opment and disease. Mir-145 is a highly conserved single-copy small RNA that is co-
transcribed with miR-143 as a cluster [66]. Our in silico analysis uncovered that miR-145
structural and functional features have been conserved throughout evolution (Figure 1).
Mir-145 pri-miR sequences show high conservation between mammalian, amphibian, and
teleost fish species; also, human and zebrafish miR-145 genomic organization and context
have been conserved. The absence of miR-145 sequences in the genomes of nonvertebrates
suggests an evolutionary gain in vertebrates and allows us to speculate about a potential
function of miR-145 in biological processes unique to vertebrates. The NC and placodes are
two notable exceptions in vertebrates that do not derive from populations of evolutionarily
ancient cells (e.g., mesoderm and endoderm). Both NCCs and placodes are responsible
for constructing many of the traits that uniquely define the clade, including the cartilage
and bone of the head and jaw skeleton, neurons and glia of the peripheral sensory nervous
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system, colorful patterns of pigmentation, and much more [67]. A complex and organized
set of genetic interactions and intercellular signaling pathways define the regulatory state
of NCCs from their earliest stages in the neural plate border to their differentiation. Further
studies are required to determine how miR-145 is spatially and temporally involved in the
NC regulatory pathways during vertebrate development.

Here, we found that miR-145 is maternally inherited, thus raising the possibility of
playing a larger role in maternal mRNAs that is not fully understood yet. Additionally,
we confirmed deficiencies in melanocyte development as a consequence of metformin
treatment (Figure 4 and [33]). In melan-a cells (a mouse cell line with normal pigment
production), miR-145 overexpression or downregulation led to reduced or increased ex-
pression of Sox9, Mitf, Tyr, Trp1, Myo5a, Rab27a, and Fscn1 [68]. Human melanocytes
transfected with miR-145 displayed perinuclear accumulation of melanosomes with addi-
tional hypopigmentation of harvested cell pellets [68]. However, specific miR-145 over- or
misexpression in developing zebrafish did not produce detectable changes in melanocytes,
suggesting a different regulatory role for miR-145 throughout zebrafish melanocyte GRN
players. The differences could also be explained by taking into account that melan-a are
cultured cells, while our experiments were carried out in a complex multicellular organism.
Of note, effects on iridophores had not been reported before (Figure 4). Based on a combi-
nation of genetic experimentation and mathematical modeling, the GRN associated with
iridophore specification and differentiation has been considerably expanded and refined in
embryonic zebrafish [64]. Recently, we have found a decrease in the extent of iridophores
in the eye and in the lateral patches of zebrafish dicer1sa9205 homozygotes and dicer1 mor-
phants [55]. Here, we explore the hypothesis that iridophore GRN could be modulated
through the activity of miR-145 and possibly with other miRNAs, reaching the proper cell
specification and differentiation. In particular, in silico analysis suggests a putative binding
site for miR-145 in the 3′UTR of ltk, a key player for iridophore differentiation.

Studies performed using cultured cells revealed that miR-145 is involved in regulating
critical cartilage extracellular matrix genes (COL2A1 and aggrecan) and tissue-specific
miRNAs (miR-675 and miR-140), being proposed as an important regulator of human
chondrocyte function and a new target for cartilage repair [13]. In cellulo works have linked
miR-145 with cell viability and osteogenic differentiation [69–72]. In addition, experiments
performed in conditional Dicer mutant mice (knockout Cre driven by Pax2 promoter) indi-
rectly suggest that miR-145 plays a role during palatal development [73]. It has been shown
that secondary palatal development in mice becomes morphologically arrested prior to
mineralization with a significant decrease in the expression levels of miR-101b, miR-140,
and miR-145. Nonetheless, in vivo craniofacial defects due to miR-145 up- or downreg-
ulation had not been previously reported. In zebrafish, cranial NCCs from the anterior
midbrain give rise to the medial ethmoid plate; cranial NCCs at the midbrain–hindbrain
boundary forms the trabecular rods and lateral ethmoid plate; slightly more posterior
cranial NCCs are involved in the pterygoid process of the palatoquadrate; while even more
posterior cranial NCCs contribute to the Meckel’s cartilage and palatoquadrate [74–76].
Modulation of miR-145 induced changes in all the cranial NCC derivatives, suggesting
that proper levels of miRNA are required at early NC developmental stages (Figure 5).
Several mechanisms may explain the abnormal NC development observed in zebrafish
embryos over- or misexpressing miR-145. Acridine Orange assays show that high levels
of miR-145 increase apoptosis of zebrafish embryonic cells, suggesting that NCCs may
die before differentiation (Figure 6). This finding agrees with data gathered in embryonic
and cancer cultured cell lines, wherein miR-145 overexpression promotes apoptosis and
reduces cell viability [16,34,69,77,78]. These observations as a whole could suggest that
miR-145 participates in the control of cell death regulation in both normal and pathologi-
cal conditions.

Apart from the role of miR-145 in NC precursor survival, the modulation of miR-145
levels may also hamper gene regulatory control of key NC markers. In vitro evidence
regarding the existence of Sox9 epigenetic regulation by miR-145 during cell differentiation
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has been reported [13,14,34]; however, scant evidence of such regulation has been gathered
in vivo to date. Experiments carried out in this work revealed different defects in the
early somitogenesis stage caused by aberrant sox9a and sox9b gene expression patterns
due to miR-145 upregulation (Figure 7). Results suggest that miR-145 function is not
essential for cranial NC migration in zebrafish, but it collaborates in determining the extent
of the sox9a-expressing cell population. Indeed, miR-145 overexpression leads to strong
downregulation of sox9b expression during development. In addition, our in vivo assay
shows that the presence of miR-145 affects the amount of dGFP for sox9b-3′UTR-2 and
suggests that sox9b expression is regulated by miR-145. In cellulo studies stated that miR-145
represses Sox9 protein translation [13,14,34]. Here, we detected that miR-145-dependent
regulation of sox9b expression occurs at both mRNA stabilization (Figure 7k,l and Figure 8a)
and protein synthesis levels (Figure 8d) in developing zebrafish embryos. Therefore, the
aberrant col2a1a expression detected in miR-145-overexpressing larvae could be due to a
direct regulation by miR-145 over the col2a1a 3′UTR, and/or be a consequence of sox9b
downregulation, and/or synergy of both effects.

The novelty of our work lies in the finding that miR-145 participates in zebrafish
NC development, thus opening new opportunities to address questions regarding the
role of miRNAs in NCC differentiation during embryonic development. It is noteworthy
that, when overexpressing miR-145, fewer silver iridescent cells were observed, while
in miR-145 knockout mutant fish, larger amounts of iridophores were detected. The
craniofacial structures were smaller by either over- or down-expressing miR-145 when
compared with controls. All these results reinforce the notion that miR-145 is involved in
chondrocyte differentiation and craniofacial development, as well as supporting the use of
zebrafish as a valuable tool for disease modeling.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12071023/s1, Supplementary Figure S1: Conservation of miR-143 across vertebrate
species. Pre-miR-143 sequence alignment of 30 vertebrate species using Clustal Omega, showing
taxonomic tree on the left and hairpin sequences on the right. Asterisks represent 100% conserved
bases and the seed sequences for miR143-5p and miR143-3p are enclosed in gray rectangles. Sup-
plementary Figure S2: Conservation of miR-145 across vertebrate species. Pre-miR-145 sequence
alignment of 25 vertebrate species using Clustal Omega, showing taxonomic tree on the left and
hairpin sequences on the right. Asterisks represent 100% conserved bases and the seed sequences
for miR145-5p are enclosed in gray rectangles. Supplementary Figure S3: Measurement of miR-145
levels in 24 hpf treated embryos. A: Effects of metformin treatment, miR-145-dsRED microinjection
and miR-145−/− mutant on miR-145 expression levels. (±SEM, n = 3, two-tailed Student’s t-test,
* p = 0.0026, ** p = 0.0006, *** p < 0.0001). B: miR-145−/− CRISPR/Cas9 genotyping. Left: 3% agarose
gel stained with Gel Green. MWM: Molecular weight marker, Ladder50bp. Right: Representation
of pre-miR-145 (purple), deleted fragment (red) and genotyping primers (green). C: RNA folding
predictions of WT (left) and mutant (right) pre-miR-145 sequences, with their minimal free energy
(MFE) scores. Supplementary Figure S4: Effects of miR-145 in the expression of different marker
genes. Whole-mount in situ hybridization of myoD (A,B,F,G), krox20 (C,H), and ntl (D,I) performed
on 13 hpf miR-145-dsRED or control-dsRED microinjected embryos. Lateral views are dorsal to
right (A,C,D,F,H,I); dorsal views are anterior to top (B,G). Whole-mount in situ hybridization of
ntl in miR-145-dsRED (J) or control-dsRED (E) microinjected specimens at 24 hpf, lateral views are
head to left. Scale bars represent 200 µm in A for A–D and F–I; and in E for E and J. Supplementary
Table S1: Primer sequences for cloning and RT-qPCR. Supplementary Table S2: Sequence identity
matrix of pre-miR-143 of 30 vertebrate species. Supplementary Table S3: Sequence identity matrix of
pre-miR-145 of 25 vertebrate species. Supplementary Table S4: List of zebrafish genes extracted from
TargetScan.org and used for Gene Ontology analyses with context+ score. Supplementary Table S5:
Gene Ontology results.
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