
molecules

Review

Ternary Quantum Dots in Chemical Analysis. Synthesis and
Detection Mechanisms

Raybel Muñoz 1, Eva M. Santos 1 , Carlos A. Galan-Vidal 1, Jose M. Miranda 2 , Aroa Lopez-Santamarina 2 and
Jose A. Rodriguez 1,*

����������
�������

Citation: Muñoz, R.; Santos, E.M.;

Galan-Vidal, C.A.; Miranda, J.M.;

Lopez-Santamarina, A.; Rodriguez,

J.A. Ternary Quantum Dots in

Chemical Analysis. Synthesis and

Detection Mechanisms. Molecules

2021, 26, 2764. https://doi.org/

10.3390/molecules26092764

Academic Editor:

Takahiro Kusukawa

Received: 29 March 2021

Accepted: 6 May 2021

Published: 8 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Area Academica de Quimica, Universidad Autonoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km.
4.5, Mineral de la Reforma, Hidalgo 42184, Mexico; raybel_munoz@uaeh.edu.mx (R.M.);
emsantos@uaeh.edu.mx (E.M.S.); galanv@uaeh.edu.mx (C.A.G.-V.)

2 Laboratorio de Higiene Inspección y Control de Alimentos, Dpto. de Quimica Analitica, Nutricion y
Bromatologia, Facultad de Veterinaria, Pabellon, 4 p.b. Campus Universitario, Universidad de Santiago
de Compostela, 27002 Lugo, Spain; josemanuel.miranda@usc.es (J.M.M.);
aroa.lopez.santamarina@usc.es (A.L.-S.)

* Correspondence: josear@uaeh.edu.mx; Tel.: +52-771-717-2000 (ext. 2202)

Abstract: Ternary quantum dots (QDs) are novel nanomaterials that can be used in chemical analysis
due their unique physicochemical and spectroscopic properties. These properties are size-dependent
and can be adjusted in the synthetic protocol modifying the reaction medium, time, source of heat,
and the ligand used for stabilization. In the last decade, several spectroscopic methods have been
developed for the analysis of organic and inorganic analytes in biological, drug, environmental, and
food samples, in which different sensing schemes have been applied using ternary quantum dots. This
review addresses the different synthetic approaches of ternary quantum dots, the sensing mechanisms
involved in the analyte detection, and the predominant areas in which these nanomaterials are used.

Keywords: ternary QDs; FRET; PET; enhancement; analytical methodologies

1. Introduction

Colloidal nanocrystals of semiconductor materials, or most commonly referred to as
quantum dots (QDs), are inorganic fluorescent nanoparticles with sizes in the range of 1 to
20 nm (dimensions smaller than the exciton Bohr radius), generally coated with an organic
ligand [1]. At these dimensions, QDs exhibit unique spectroscopic properties such as broad
absorption and narrow emission spectra, high extinction coefficients, high quantum yields
(QY), photostability, and large surface area, characteristics that are not observed in the bulk
materials [2].

Quantum dots are tunable in their spectroscopical properties; therefore, it is possible
to adjust their absorption and emission maximum wavelength in the visible and near
infrared spectrum by modifying their size during the synthesis [3]. This characteristic
along with their possible surface interactions with different compounds make them useful
to develop chemical sensing strategies. In this sense, several analytical methodologies have
been proposed for detection of a large number of analytes contained in different kind of
matrices: drug, biological [4], food [5], environmental [6], etc.

Different QDs have been synthesized through the years, but the most used in chemical
analysis methodologies are binary QDs. They are composed mainly of Cd (II) or Pb (II) and
a chalcogenide such as S, Se, or Te. Unfortunately, since these metal ions contained in the
nanoparticles exhibit high toxicity to humans and cause contamination to the environment,
it is necessary to find alternative materials with similar advantages [7].

An alternative to Cd- and Pb-based quantum dots are I-III-VI Ternary Quantum Dots,
which are semiconductors with a multicomponent structure composed of three different
elements: a metal of the IB group (Cu or Ag), a metal of the IIIB (commonly In, Sn, Al,
or Ga), a chalcogen of the VIA group (S, Se, or Te), and a ligand to stabilize the structure
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in aqueous media. These nanomaterials present similar optical properties with lower
toxicity [8]. Nanomaterials such as CuInS2, AgInS2, or CuInSe2 have been recently studied
and they showed the same size-dependent spectroscopic properties. Different synthesis
protocols have been proposed to obtain the desired optical properties [9].

The use of ternary QDs in analytical applications has increased in the last decade.
When a methodology is designed, different variables need to be considered as the spec-
troscopical properties’ characteristics and the interactions with the analyte [10]. Different
protocols have been proposed for the synthesis of aqueous ternary quantum dots, in which
the precursors or components react to form the nanoparticle with the desired size (therefore,
the spectroscopic properties) and surface ligand. The synthetic reactions can be performed
by hydrothermal, solvothermal, or microwave conditions. The synthesis protocol confers
different physical and chemical properties [11].

Commonly, the analytical methodologies are based in spectroscopic changes of QDs
due their interaction with an analyte; therefore, it is important to consider the analyte chem-
istry and the mechanisms of reaction with QDs. Some common changes are: quenching of
the emission signal due to QDs’ changes on the surface, quenching due to an energy trans-
fer from QDs to an acceptor referred to as Foster resonance energy transfer (FRET), and
enhancing of the emission signal due to a passivation of surface traps, among others [10].

This review contains the state-of-the-art of ternary quantum dots application in chem-
ical analysis, including the advantages and disadvantages of the different synthetic pro-
tocols, the interactions between analytes and QDs, their current application on chemical
analysis, and the future trends of these novel materials.

2. Synthesis of Ternary Quantum Dots

There are two approaches to obtain QDs (Figure 1), top-down and bottom-up methods.
The former method involves strategies based on the size reduction of bulk materials
under the influence of a beam [12] (Figure 2). Techniques such as ion beam implantation,
electron beam lithography, molecular beam epitaxy, and x-ray lithography are included
in this first category [13] and allow us to synthesize nanoparticles of InGaAs/GaAs [14],
InGaN/GaN [15], among others. In a typical lithographic process, the QDs are deposited
onto a silicon substrate coated with gold, to further draw a pattern by lithography over the
QDs layer. The excess of QDs is removed using a solvent [16].

Different QDs with specific structures can be obtained applying these technologies,
such as nanowires [17], circular [18], and pyramid-shaped nanoparticles [19] in a large
range of sizes (3–50 nm but commonly of 30 nm). QDs synthesized by these methodologies
are used mainly for photovoltaic applications, optoelectronics (LEDs), and energy storage
in solar cells [16].
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The second approach is the button-up method [13], in which QDs are synthesized
using chemical precursors. This category can be subdivided into vapor phase and wet
chemical methods [20]. Vapor phase methods (VPM, Figure 3) generate precursors in vapor
phase to further condense them atom by atom on a substrate and grow the nanoparticle [21].
Physical and chemical deposition are the most common strategies of VPM in which ternary
QDs, such as InGaAs [22] and InGaN/GaN [23], and binary QDs, such as ZnSe/ZnS [24],
InGaAs/InAs [25], InAs, CdSe, or CdTe [26], have been synthesized by these techniques
and their main applications are in solar cells and optoelectronics [27].

Molecules 2021, 26, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 3. Synthesis of QDs by vapor phase methods. 

In wet chemical methods, the synthesis of QDs occurs in a solvent, through the reac-
tion of precursors at different temperatures. These precursors are either organometallic, 
which requires organic solvents for the synthesis (used in strategies such as the hot injec-
tion, heat-up cluster-assisted methods, microwave assisted synthesis, continuous flow 
method, and solvothermal method), or inorganic, which is mostly used for colloidal aque-
ous synthesis [11]. 

CdS, CdTe, CdSe, ZnS, ZnSe, InP, InAs, PbSe, PbS, PbTe, CdZnSe, AgInS2, CuInS2 are 
examples of QDs synthesized through organometallic synthesis. Compounds such as di-
methylcadmium, diethylzinc, bis(tert-butyldimethylsilyl) telluride, trimethylsilyl, 
trioctylphosphine selenide, indium acetate, tris(trimethylsilyl)phosphine, bis(trimethylsi-
lyl)selenide, lead acetate are common precursors to obtain QDs when these methodolo-
gies are employed [28]. The solvents commonly used are tri-n-octylphosphine oxide, tri-
n-octylphosphine, hexadecylamine, dodecylamine [29]. 

The relevance of these methodologies remains due to the advantages that are pre-
sented such as the high %QY, the lower cost of equipment compared to the top-down 
methods, rapidness of the reactions, the lower size of QDs achieved (few nanometers vs. 
30 nm in top-down methods), and that they can be employed in biomedical applications 
and analytical detections. Unfortunately, the disadvantages of these methodologies are 
the temperature requirements (up to 250 °C) and the presence of solvent residues [11]. 

Aqueous synthesis of ternary quantum dots is based on the reaction of inorganic ion 
precursors with chalcogenides and the stabilization of the resulting nanoparticle with a 
capping ligand. This process requires heating in the presence of inert gas in order to avoid 
the formation of metal oxides. This alternative has been attractive to designing chemical 
analysis methodologies due to the advantages that it presents, such as compatibility with 
sample matrices, lack of contaminant of organic solvents, milder conditions of synthesis, 
and in some cases, higher quantum yields (%QY) [30]. Considering the importance of QDs 
obtained by aqueous synthesis, the following section describes the most common syn-
thetic protocols employed to obtain ternary QDs. 

2.1. Aqueous Synthesis of Quantum Dots 
The most common metallic precursors used for the synthesis of ternary QDs (AgInS2, 

CuInS2, and CuInSe2) are silver nitrate, cupric chloride, indium (III) nitrate, and indium 
(III) chloride as the metal source, and sodium sulfide or metallic selenide as the chalco-
genide source, although it is common to use thiourea (CS(NH2)2), due the degradation at 
high temperatures into sulfide ion [31]. 

Figure 3. Synthesis of QDs by vapor phase methods.

In wet chemical methods, the synthesis of QDs occurs in a solvent, through the reaction
of precursors at different temperatures. These precursors are either organometallic, which
requires organic solvents for the synthesis (used in strategies such as the hot injection,
heat-up cluster-assisted methods, microwave assisted synthesis, continuous flow method,
and solvothermal method), or inorganic, which is mostly used for colloidal aqueous
synthesis [11].

CdS, CdTe, CdSe, ZnS, ZnSe, InP, InAs, PbSe, PbS, PbTe, CdZnSe, AgInS2, CuInS2
are examples of QDs synthesized through organometallic synthesis. Compounds such as
dimethylcadmium, diethylzinc, bis(tert-butyldimethylsilyl) telluride, trimethylsilyl, tri-
octylphosphine selenide, indium acetate, tris(trimethylsilyl)phosphine, bis(trimethylsilyl)
selenide, lead acetate are common precursors to obtain QDs when these methodologies
are employed [28]. The solvents commonly used are tri-n-octylphosphine oxide, tri-n-
octylphosphine, hexadecylamine, dodecylamine [29].

The relevance of these methodologies remains due to the advantages that are presented
such as the high %QY, the lower cost of equipment compared to the top-down methods,
rapidness of the reactions, the lower size of QDs achieved (few nanometers vs. 30 nm
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in top-down methods), and that they can be employed in biomedical applications and
analytical detections. Unfortunately, the disadvantages of these methodologies are the
temperature requirements (up to 250 ◦C) and the presence of solvent residues [11].

Aqueous synthesis of ternary quantum dots is based on the reaction of inorganic ion
precursors with chalcogenides and the stabilization of the resulting nanoparticle with a
capping ligand. This process requires heating in the presence of inert gas in order to avoid
the formation of metal oxides. This alternative has been attractive to designing chemical
analysis methodologies due to the advantages that it presents, such as compatibility with
sample matrices, lack of contaminant of organic solvents, milder conditions of synthesis,
and in some cases, higher quantum yields (%QY) [30]. Considering the importance of QDs
obtained by aqueous synthesis, the following section describes the most common synthetic
protocols employed to obtain ternary QDs.

2.1. Aqueous Synthesis of Quantum Dots

The most common metallic precursors used for the synthesis of ternary QDs (AgInS2,
CuInS2, and CuInSe2) are silver nitrate, cupric chloride, indium (III) nitrate, and indium (III)
chloride as the metal source, and sodium sulfide or metallic selenide as the chalcogenide
source, although it is common to use thiourea (CS(NH2)2), due the degradation at high
temperatures into sulfide ion [31].

Different capping agents have been used in the synthesis of ternary quantum dots, but
the thiol-containing compounds are used more frequently. Compounds such as thioglycolic
acid (TGA), 3-mercaptopropionic acid (3-MPA), 2-mercaptoethanol, cysteamine, L-cysteine,
or glutathione (GSH) ensure the stabilization of the nanocrystal in aqueous media through
electrostatic charges, otherwise the quantum dots would aggregate and precipitate [32].

Quantum dot synthesis consists of two main processes, the formation of nuclei, also
called nucleation, which is a fast step, and the growing of the nanocrystal, which is slow and
ruled by an Ostwald ripening [33]. Each process occurs simultaneously in the synthesis and
are promoted by temperature, which is applied in a reflux system, an autoclave, or using
microwave radiation (Figure 4). In QDs, synthesis is important to control the variables
involved in the synthetic protocols (concentration of precursors, concentration of ligand,
time reaction, and temperature) because it affects the morphology, size of the nanoparticles,
and the spectroscopic characteristics [34].
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In a conventional reflux system, the metal salts are added to an aqueous media along
with the capping agent; generally, the pH of the media is adjusted to basic values to promote
the stability and enhance the quantum yield of the nanoparticle. Later, the chalcogenide
is added, and the temperature is applied (generally around 100 ◦C). The reaction time is
dependent on the characteristics required for the quantum dots, but generally does not
require over 4 h. An inconvenience of reflux systems is that they do not permit an efficient
control of QDs shape in their growth [35].

2.1.1. Microwave Synthesis of QDs

Microwave-assisted synthesis of quantum dots is a technique where electromagnetic
radiation in the wavelength range of 1 mm to 1 m is employed. The synthesis is based on
the dielectric heating, which is the ability of a material (solvent) to convert microwaves
into heat. This process occurs due to high-speed oscillations of dipolar molecules under
the radiation [36]. In a typical microwave-assisted synthesis, metal precursors are mixed
with the stabilizing agent in water, the pH of the solution is adjusted normally at basic
values, and then the chalcogenide salt is added. Most of the microwave systems work
at 0–1000 W power range and at 2450 MHz frequency and the common temperatures of
synthesis are near to the water boiling point (90–110 ◦C). An advantage over reflux systems
is that reaction times are considerably lower, allowing to obtain quantum dots at 5–30 min
of irradiation [37].

Microwave-assisted synthesis allows to develop methods with high reproducibility to
obtain quantum dots with narrow size distribution. This factor is important when QDs are
incorporated in analytical sensing techniques [38].

2.1.2. Solvothermal Synthesis

A third approach in which quantum dots can be synthesized in water is the solvother-
mal technique. In this method, an autoclave reactor is required to increase the pressure
of the system and the boiling point of the solvent [39]. The term solvothermal makes
refence to the reactions that take place at temperatures above the boiling point of the sol-
vent; however, some authors use the term hydrothermal. As it was described in previous
methodologies, the synthetic protocol is based on the mixture of metal precursors with
the capping agent, the adjustment of pH, and the addition of the chalcogenide salt. The
solution is transferred to a stainless-steel autoclave with an excellent sealing system that
ensures the pressure in the medium. The normal conditions of synthesis are at 150 ◦C and
21 h of reaction according to Liu et al. [40].

2.1.3. Transfer of QDs to Aqueous Media

Some synthesis strategies use organic solvents due to the high efficiencies in quantum
yields obtained in the reactions (≈85%), but for chemical analysis purposes, in most cases,
it is necessary to determine the analytes in aqueous matrices. Strategies of transference
from organic solvents to water have been developed through the years and are based in
hydrophilic molecules on the quantum dot’s surface [41].

The exchange of the surface ligand is a common strategy when tri-n-octylphosphine
oxide (TOPO) is used as stabilizer of quantum dots. As the TOPO molecules are not
covalently bonded to the QDs nanoparticles, molecules such as TGA can replace TOPO
molecules on the surface of the nanoparticle. TGA contains a thiol group that is able to bind
to the QDs and a carboxylic acid that can stabilize the nanoparticle in aqueous media. The
method is considered a relatively simple process; nevertheless, it has several disadvantages,
like the time employed in the two-step quantum dot obtention. Additionally, aggregation
and oxidation can occur if the thiol group is not linked properly to the quantum dot surface,
which leads to a reduction of the quantum yield [42].
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2.1.4. Synthesis of Core/Shell Quantum Dots

It is common to add a shell of a second semiconductor material to improve the spec-
troscopic properties of quantum dots; these structures are known as core/shell quantum
dots [43]. Most ternary QDs use a ZnS, which has a larger band gap (3.7 eV [44] compared
with AgInS2 1.87 eV [45] and CuInS2 1.23 eV [46]) to grow the shell to passivate the surface
non-radiative recombination sites. This process prevents photo-blanching and passivates
the surface traps, resulting in a %QY enhancement of QDs [47].

The synthesis of core/shell quantum dots is accomplished in two steps, and any
of the previous hydrothermal methods can be easily used. After a complete formation
of the core, the second metal cation (Zn, Cd, etc.) is added to the system and the time
reaction is extended to ensure the formation of the shell around the core. Generally, when
core/shell QDs are synthesized, the same chalcogenide is used in the core and in the shell,
and therefore is added as excess reactant in the first step of the synthesis. In Table 1 are
presented different conditions of synthesis of aqueous QDs.

Table 1. Hydrothermal synthesis conditions and spectroscopic parameters of ternary QDs.

Quantum Dots Synthesis Strategy Temperature-Time Size (nm) QY (%) λem Max (nm) Ref

CuInS2/ZnS Reflux
95 ◦C

45 min (core)
80 min (Shell)

3.04 ± 0.47 12.3 708 [48]

CuInS2/ZnS Reflux
100 ◦C

30 min core
30 min shell

1.8 ± 0.4 - 500–680 [49]

AgInS2/ZnS Reflux
95 ◦C

45 min core
80 min shell

2.9 49.5 623 [50]

CuInS2 Solvothermal 150 ◦C
23 h - 19.6 ≈400 [51]

CuInSe2/ZnS Reflux
100 ◦C

60 min for core
90 min for shell

4.19 (mean) 17.2 535 [52]

CuInS2/ZnS Microwave
95 ◦C

10 min for core
5 min for shell

8.3 20.4 570 [53]

AgInS2 Hot injection method 90 ◦C
60 min 3–8 - 626 [54]

AgInS2 Reflux 95 ◦C
45 min 2.5 10.3 680 [55]

AgInS2/ZnS Microwave

90 ◦C
30 min for core

100 ◦C
5 min for shell

2.7 60 625 [38]

As was mentioned before, to obtain core/shell quantum dots, a two-step process is
required. For the aqueous strategies mentioned in this review, most of the methodologies
described in Table 1 apply the same temperature in both steps, but the time required
to obtain a stable shell regularly is longer than the time to obtain the core. This can be
explained due the processes involved (nucleation: fast process and growth: slow process).

Particle size and maximum emission wavelength are related to the reaction time,
showing bathochromic and hyperchromic effects. Nevertheless, microwave and solvother-
mal syntheses allow obtaining nanoparticles with higher %QY values within a couple of
minutes, which is not observed in a reflux system [56]. Time is the critical factor in the
synthesis because it can cause aggregation and oxidation of the precursors, leading to a
decrease of the emission signal [37].

Most of the ternary QDs synthesized by reflux methods require higher reaction times
to obtain nanoparticles below 4 nm. On the other hand, there are microwave methodologies
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that obtain nanoparticles of 8 nm at minor times. An important difference with respect
to binary QDs is that the maximum wavelength emission is not completely related to the
particle size. In this sense, the maximum emission wavelength may differ between particles
and can be tuned in the visible range, although it is common to observe the emission at the
near-infrared [37]. Morphology of ternary QDs is spherical or semi-spherical in most cases
and the concentration of the stabilization agent plays an important role [57].

Among the different methodologies described, microwave synthesis seems to be the
best option to obtain core/shell QDs with higher %QY (60% [38]), narrow size distribution,
and that require less reaction time (minutes) compared to the reflux or solvothermal
systems. Unfortunately, there are few methodologies that allow these %QY values, and it
is important to develop more strategies to improve this parameter.

On the other hand, reflux synthesis allows to obtain QDs with an easier and cheaper
equipment compared to the other two methodologies and even though the size distribution
of the nanoparticles is broad, %QY is still significant for chemical analysis (10–50%). Some
strategies are designed with QDs with relatively low %QY to promote an enhancement of
the emission signal and register the increment of the signal, which cannot be significant in
QDs with high %QY [58].

The use of solvothermal strategies (autoclave) for QDs synthesis has some advantages.
The increment of the water boiling point at high pressure accelerates the QDs’ growth,
and in consequence, the surface defects are reduced [59]. Siyu Liu et al. have synthesized
CuInS2 QDs for 21 h to obtain the emission at near-infrared wavelengths, but it is possible
to control the emission wavelength by reducing the synthesis time [60].

Ternary QD synthesis at a large-scale is still a challenge, due to the parameters obtained
at laboratory conditions differing when they are produced in high amounts. The most
common approach to large-scale synthesis is in pressure cookers, which is a variant of the
solvothermal synthesis in which CuInS2, AgInS2, and CuInSe2 have been synthesized with
a volume obtained of 4 L [61,62].

There are different interactions between the QDs and analytes; therefore, the synthetic
protocol to be employed would depend on the analytical method design, and then it is nec-
essary to evaluate the possible interactions and the changes produced on the spectroscopic
signal [10].

3. Sensing Schemes

Due to their unique spectroscopic properties, ternary QDs have been widely used
for chemical analysis of inorganic, organic, and biological molecules under different sens-
ing schemes, depending on the binary interaction between the QDs’ surface and the
analyte [11]. The objective of QDs as chemical sensors is to produce a change in their
spectroscopic/fluorescence signal (at their maximum emission wavelength) because of
a specific interaction with a given compound, to detect and correlate the changes to the
analyte concentration [63].

The binary interaction between QDs and the analyte may result in a quenching or
enhancing of the fluorescence signal of the nanoparticle due to recombination processes of
the electron-hole pair. Analytical methodologies use these differences in the fluorescence
intensity to quantify an analyte of interest. Therefore, it is important to understand the
mechanism by which the process occurs to avoid possible interferences and make selective
strategies. Quenching mechanisms such as photo-induced electron transfer (PET) and
Förster resonance energy transfer (FRET) are more common in chemical analysis than
enhancement of the signal due to passivation of the surface [64,65]. In the following, the
mechanisms by which the fluorescence signal of QDs can be modified by an analyte are
described

3.1. Photoinduced Electron Transfer

PET is a reversible quenching process where QDs absorb photons to promote an
excited state. At this state, an electron occupies the highest energy molecular orbital
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(conduction band, HOMO) and a hole is formed in the valence band (LUMO), generating
an electron-hole pair. In the PET process, the excited electron is transferred from the
conduction band to an electron acceptor (A) as a reductant or accepts an electron in the
hole from a donor (D) as an oxidant (Figure 5). In order to promote a PET process, it is
necessary to have a difference in the redox potential in the donor and the acceptor energy
levels [10].
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The band gap in QDs is particle size-dependent; therefore, the electron transfer can
be controlled by adjusting this parameter. Decreasing of a QD’s diameter results in an
enhancement of the electron transfer [66]. Distance between the donor and acceptor also
affects the rate of energy transfer. Different molecules can be determined in a direct
way, such as metals and organic molecules with high redox potential. Another strategy
is determination of analytes under an indirect system by recovering the fluorescence
quenched [67].

Metal ions are common examples of analytes determined by ternary QD systems
under PET principle. Castro et al. employed AgInS2 capped with 3-mercaptopropionic
acid to determine Fe2+ in pharmaceutical formulations. Fe2+ quenched the emission
signal of AgInS2 due to an electron transfer process obtaining a limit of detection of
0.6 mmol L−1 [68].

Liu et al. applied the reversibility of the quenching PET principle to determine
biothiols (glutathione and L-cysteine) in human serum. The assay consisted of a quenching
of CuInS2 QDs by Cu2+ ions due to PET process. The fluorescence was recovered after
the addition of analytes due to the formation of a complex between the Cu2+ ion and the
biothiols. The recovered signal is proportional to the analyte concentration [69].

Although it is common to observe PET process between QDs and a metal ion, it is
possible to determine organic molecules with redox potentials under a PET scheme using
ternary QDs. Shi et al. designed a methodology to determine dopamine employing AgInS2
capped with 3-mercaptopropionic acid. In the process, the AgInS2 QDs are excited with
photons to promote an electron to the conduction band. The QDs, as the donor, transfers
the electron to the dopamine-quinone molecule, inducing a quenching of the emission
signal [70].

3.2. Förster Resonance Energy Transfer

FRET is a non-radiative process where energy is transferred from a fluorescent donor
in its excited state to an acceptor through dipole-dipole interactions (Figure 6). In order
to promote the transference of energy, a proximity between donor and acceptor, generally
under 10 nm of distance, is necessary, along with an overlap between the donor emission
spectra and the acceptor absorption spectra [71].
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QDs can be used as donors and acceptors in a FRET scheme but are preferred as donors
due to their properties such as broad absorption spectra, narrow emission spectra, high
extinction coefficients, high %QY, and the surface chemistry that allow the functionalization
with different molecules. As was mentioned before, the emission of QDs is size-dependent
and is tunable in the synthesis protocol; therefore, it is possible to obtain the desired
emission spectra to promote the overlap required for FRET process. Along with the QD
donors, it is necessary for an acceptor of the energy. In this sense, quenchers such as metal
nanoparticles (AgNPs, AuNPs, etc.) or organic molecules can be used. Alternatives to
quenchers are fluorescent molecules such as organic dyes and some proteins, which can act
as acceptors in FRET systems [72,73].

The use of ternary QDs in sensing methodologies based on the FRET process has
not been fully exploited and just a few articles describe it. Castro et al. developed a
FRET system using AgInS2/ZnS QDs capped with D-penicillamide and gold nanoparticles
(AuNPs) to determine atenolol. In the system, AgInS2/ZnS QDs are induced to an excited
state to transfer energy to AuNPs, which results in an inhibition/quenching of the QDs’
fluorescence. When the analyte is added, it promotes the aggregation of AuNPs inhibiting
the FRET process due to the lack of absorption of AuNPs and recovering of the fluores-
cence of AgInS2/ZnS QDs. Under this scheme, the authors reached a limit of detection
of 1.05 mg L−1 and it was successfully applied for the determination of the analyte in
pharmaceutical samples [74].

FRET systems between ternary QDs and fluorescent dyes have been also reported.
Kuznetzova et al. developed a system between AgInS2/ZnS QDs (donor) and cyanine dyes
(acceptor) Cy3 (3,3′-diethylthiacarbocyanine iodide) and Cy5 (3,3′-Diethylthiadicarbocyanine
iodide) that generates a quenching of the fluorescence emission of QDs [75]. The principle of
the FRET sensing scheme is an opportunity to develop further methodologies of analysis
employing ternary QDs.

3.3. Other Mechanisms

Aggregation of the QDs is a non-reversible mechanism where the analyte interacts
with the capping agent, inhibiting its stabilizing function and leading to a precipitation
of QDs quenching the emission signal. Parani et al. developed a methodology for Cr(III)
sensing employing AgInS2/ZnS QDs capped with glutathione. The interaction between
QDs and Cr(III) resulted in a quenching due to the formation of a complex between the
analyte and the glutathione on the surface of the QDs. The method reached a limit of
detection of 0.51 nmol L−1 and showed a selectivity for the Cr(III) ion [50].
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3.4. Enhancing Mechanisms

Surface chemistry of QDs is a significant factor to be considered when designing
an analysis methodology. A core QD structure consists of (a) inner atoms that retain
the geometry of the nanocrystal, (b) inorganic surface or outer atoms with a different
morphology than the central atoms, and (c) ligand that stabilizes the nanoparticle. While
the inner atoms establish the spectroscopical properties of QDs, the outer atoms can disturb
them, due to the large number of atoms that are located on the surface [76].

During the synthesis protocols of QDs, it is usual to have defects on the surface
such as dangling bonds, which create mid-gap states or traps that affect the electron-hole
recombination and lead to a reduced photo-stability and %QYs [77].

Although traps on the QDs’ surface affects considerably the photoluminescence of
QDs, some strategies of analysis exploit this characteristic. Anions and cations on the
surface are vacancies that can be bonded to specific molecules, eliminating the trap sites
and passivating the QDs’ surface, resulting in an enhancement of the emission signal
(Figure 7) [78].
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Bambesiwe et al. developed a methodology in which employed AgInS2 QDs were
capped with thioglycolic acid in order to determine ascorbic acid. After the addition of the
analyte, the emission signal of QDs increased in the interval of 0.6–99 µmol L−1. This can
be explained with the capacity of the ascorbic acid to form chelates with metals such as
silver, which leads to the elimination of dangling bonds on the QDs surface, its passivation,
and enhancement of the emission signal. The methodology reached a limit of detection of
26 nmol L−1 [55].

3.5. Functionalization of QDs

Ligands perform an important role in QD synthesis and define the physicochemical
characteristics. Ligands selected and their concentration can influence the shape and size
of the nanoparticle obtained. In QDs, ligands confer stability in aqueous media through
electrostatic interactions; thiol-containing molecules with amine or carboxyl terminal
groups (such as glutathione, 3-mercaptopropionic acid, mercaptoacetic acid, etc.) are
commonly employed. The sulfide group is bonded to the metal ions on the surface of the
QDs and the terminal group is then free to interact with the analyte [79].

Molecules such as peptides, proteins, aptamers, enzymes, antibodies, and nucleic acid
can be coupled by covalent or non-covalent binding between the terminal group of QD
ligands and a reactive group contained in the biomolecule: amino and carboxyl groups
in peptides and proteins; phosphate, amine, and hydroxyl groups in DNA and aptamers.
Functionalization process allows the promotion of a specific interaction between the QDs
and an analyte, which results in a selective methodology of analysis [80,81].

Functionalization of ternary QDs is recent and there is a small number of articles
that employs this principle for chemical sensing. Tianyu et al. synthesized CuInS2 func-
tionalized with β-cyclodextrin and a selective aptamer by a covalent binding to detect
adenosine-5′-triphosphate (ATP). The interaction between functionalized QDs and ATP
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results in an enhancement of the QDs’ fluorescence, obtaining a linear response from 6 to
1200 µmol L−1 and applied to determine ATP in human serum [82].

Ternary QDs can be functionalized with proteins. Liu et al. synthesized CuInS2
with bovine serum albumin by an amide formation between the carboxyl group from
the 3-mercaptopropionic acid used as a QD ligand and an amine group from the protein.
Functionalized QDs were employed to determine 2,4,6-trinitrophenol. The interaction
between QDs and the analyte leads to a quenching of the fluorescence signal and was used
to develop a methodology with LOD of 28 nmol L−1 [83].

AgInS2 have been used to develop immunoassays. Novikova et al. functionalized
AgInS2/ZnS with immunoglobulin (IgG) selective to folic acid. Interaction of functional-
ized QDs and folic acid results in an inhibition of the fluorescence signal. The methodology
was used to measure folic acid in fruit juice samples, achieving promising analytical
parameters (LOD = 0.1 ng mL−1) [84].

An adequate selection of QDs may improve the analytical parameters of the sensitivity
and LOD of the methodology designed. In general, methodologies based on QDs obtained
lower LOD when using nanoparticles with higher %QY values. As an example, the use of
CuInS2 QDs in the analysis of ascorbic acid reaches a limit of detection of 0.05 µM, while
its analysis employing AgInS2 improves the LOD to 50 nM [55,85]. A similar response is
observed in detection of Cu2+ in which the LOD obtained are 0.1 µM and 15 nM using
CuInS2 and AgInS2, respectively [60,86].

In addition, QDs have been functionalized for biomedical applications. AgInS2 was
functionalized with sgc8c aptamer to sense tumor cells [87], methotrexate for drug deliv-
ery [88], and DNA for potential biomedical applications [89]. Therefore, the functionaliza-
tion of these novel nanoparticles is an opportunity area with several applications.

4. Application of Ternary QDs in Chemical Analysis

QDs have gained attention in developing analysis methods for many analytes in food,
environmental, and pharmaceutical samples, although the binary core/shell of QDs such
as CdTe/CdS and CdSe/CdS allows to obtain better emission signals. Ternary QDs are less
toxic and permit the obtainment of adequate analytical parameters.

Sensing applications of ternary QDs are described in Table 2. It is shown that AgInS2
and CuInS2 are the predominant QDs employed for the development of analytical appli-
cations. When a core/shell structure is used, the main shell used is ZnS, leading to an
increment in the detection limit reaching the order of nmol L−1 in most of the methodologies
developed. Compared with Cd-containing QDs, core/shell ternary QDs are competitive:
as an example, LOD obtained using AgInS2/ZnS in the determination of folic acid was
(0.1 ng mL−1, 0.226 nmol L−1), while a strategy based on CdTe QDs obtained a LOD of
0.048 µmol L−1 [90]. Uric acid is another analyte which can be determined with CdTe
QDs. In this methodology, the calibration curve was constructed from the emission signal
quenched when the analyte is added, and the LOD reached was 0.1030 mol L−1, which is
higher when CuInS2/ZnS is employed (LOD: 50 nmol L−1) [91].

Ternary QDs have been employed in food analysis to develop methodologies for the
determination of contaminants (glufosinate) and nutrients (ascorbic acid and folic acid).
The methodologies described commonly require pretreatment steps to remove possible
interferents. Methodologies for determination of environmental pollutants have also been
proposed using ternary QDs, mostly for toxic heavy metals (such as Co, Cr, Cd, Pb, Cu,
etc.) and pesticides, in water matrices. Drug analytes are another category in which
methodologies have been developed; in this case, the common matrices are pharmaceutical
formulations and human serum.

Sensing mechanisms are diverse and depend mainly on the analyte determined. Most
of them are based on the quenching of QDs, due to FRET, PET, and aggregation processes,
although there are methodologies that take advantage of the reversibility of the PET
mechanism to recover the emission signal. Enhancing and chemiluminescence are less
used but are important mechanisms that can be exploited in further developments.
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Table 2. Analytical methodologies employing ternary QDs.

Analyte Ternary QDs Sample Interaction Mechanism LOD Ref

Food

Folic acid AgInS2/ZnS Fruit juices

Inhibition of
fluorescence due to an

antigen-antibody
interaction

(Immunoassay)

0.1 ng mL−1 [84]

Glutathione CuInS2 Tomatoes and urine Recovery of the
fluorescence quenched 73 nM [92]

Melatonin AgInS2
Dietary

supplements Chemiluminescence 0.44 mg L−1 [93]

Glufosinate CuInS2 Tea leaves Recovery of the
fluorescence quenched 0.01 mg L−1 [51]

Environmental

Diniconazole CuInS2 Tap water Chemiluminescence 1 nM [94]

Zn2+ CuInS2 Tap water Recovery of the
fluorescence quenched 4.5 µM [95]

2,4,6-Trinitrophenol CuInS2
Tap, spring, and

waste water
Quenching of
fluorescence 28 nM [83]

Cu2+

Cd2+ CuInS2 Tap and pond water Cu2+: Quenching
Cd2+: Enhancement

Cu2+: 0.037 mM
Cd2+: 0.19 mM

[60]

Pharmaceutical

Ascorbic acid CuInS2 Vitamin C tablets Enhancement 0.05 mM [85]

Ciprofloxacin AgInS2
Pharmaceutical

tablets Quenching 0.12 µg mL−1 [96]

Sparfloxacin CuInS2
Pharmaceutical

tablets Quenching 0.5 µg mL−1 [97]

Atenolol AgInS2/ZnS Pharmaceutical
formulations FRET 1.05 mg L−1 [74]

Biological

Doxorubicin
hydrochloride CuInSe2/ZnS Human serum

Quenching due to
surface plasmon
resonance effect

0.05 µM [52]

Adenosine-5′-
triphosphate CuInS2 Human serum Enhancement 3 µM [82]

Heparin CuInS2 Fetal bovine serum Recovery of the
fluorescence quenched 12.46 nM [98]

Histidine (His)
Threonine (Thr) CuInS2 Human serum Recovery of the

fluorescence quenched
His: 0.7 mM
Thr: 2.0 mM [69]

Dopamine CuInS2 Human serum Quenching 0.2 µM [99]

Uric acid CuInS2/ZnS Human serum and
urine

Enzymatic method,
quenching 50 nM [53]

5. Conclusions and Trends

Ternary QDs are novel and promising tools for the development of chemical analysis
methodologies. Their application in food, pharmaceutical, and environmental samples
has grown during the last decade. Aqueous ternary QDs are competitive with binary
Cd-containing QDs in terms of analytical parameters such as limit of detection, although in
quantum yields and photoluminescence performance, there exist some deficiencies (surface
traps, size optimization, and stability) that can be improved in the future.

Interaction mechanism principles between QDs and analytes are well described in the
bibliography, but on occasion, it is difficult to identify the phenomena that is occurring;
therefore, it is important to make efforts to point out and describe them clearly. AgInS2 and
CuInS2 are the main QDs employed; there are still many faces to be exploited for ternary
QDs in their photoluminescence performance, applications, and functionalization.
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