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Abstract
This study focuses on the optimization of a refinery scheduling process with the help 
of an adiabatic quantum computer, and more concretely one of the quantum anneal-
ers developed by D-Wave Systems. We present an algorithm for finding a global 
optimal solution of a MILP that leans on a solver for QUBO problems, and apply it 
to various possible cases of refinery scheduling optimization. We analyze the incon-
veniences found during the whole process, whether due to the heuristic nature of 
D-Wave or the implications of reducing a MILP to QUBO, and present some experi-
mental results.

Keywords  Refinery scheduling · Quantum annealing · Mixed-integer programming · 
Column generation

1  Introduction

Since the first quantum algorithms, the range of problems where quantum computers 
can be applied have grown over time. Efforts have progressed in two fronts: to design 
algorithms that solve practical problems and to have operational quantum machines. 
In the first front, previous works on this matter that aimed to solve real-life problems 
with the help of a quantum annealer include Bauckhage et al. (2020), Calude and 
Dinneen (2017) and Venturelli et  al. (2015). These articles consider a wide range 
of problems: the broadcast time problem, the job-shop scheduling problem and the 
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max-sum diversification, respectively. However, all of them solely have binary vari-
ables in their formulations.

In the second front, the possibility of exploiting the advantages of quantum com-
putation over classical computers has begun to take form. The standard gate-based 
quantum computing is more natural for computer scientists and is the one used in 
most textbooks (Nannicini 2020). Adiabatic quantum computers are equivalent and 
they are well suited for optimization problems (Aharonov et al. 2008). Various com-
panies, and more especially D-Wave Systems (D-Wave 2016), have been researching 
a way to physically implement these new computing paradigms prophesied by Feyn-
man (1982) and Born and Fock (1928). Although the debate of whether the D-Wave 
machine really exploits quantum phenomena continues generating controversy, the 
fact that these supercomputers are especially predisposed to solve quadratic optimi-
zation problems with binary variables is indisputable (Calude and Dinneen 2017; 
Syrichas and Crispin 2017; Venturelli et al. 2015).

Our aim is to take a problem of industrial interest and to follow the whole pro-
cess of adapt it in order to solve it with a quantum annealer. We have choosen the 
scheduling of the arrival of vessels to the harbor in an oil refinery, the unloading of 
its contents into tanks, and also to get the most of them during the whole refining 
process. This classical problem in the oil and gas industry presents the advantage 
that its simpler version as mixed-integer linear problem (MILP) still retains the prac-
tical meaning (Lee et al. 1996). Surveys of representative works on optimization in 
the oil and gas industry can be found in Khor and Varvarezos (2017) and extensively 
in Furman et al. (2017). Mathematically, this kind of problems usually take a huge 
amount of constraints and variables (Karuppiah et al. 2008; Lee et al. 1996; Mouret 
2010), a feature that clearly complicates the finding of the global solution within a 
reasonable amount of time.

The problem of finding the global optimum of a MILP is an NP-Hard problem, 
and appears in multiple scenarios and applications. Our contribution and the main 
objective behind this work is to solve a specific MILP, the aforementioned schedul-
ing problem, defined by binary and continuous variables with the help of a quan-
tum annealer developed by D-Wave (see D-Wave (2016) for more details). To take 
advantage of the capacity of such computer, a decomposition technique is presented 
in this work. The approach we have developed consists of a combination of column-
generation algorithms such as the Dantzig–Wolfe decomposition (Dantzig and Wolfe 
1960) and a branch-and-price method that correctly obtains an integer solution for 
the binary variables (Gamrath 2010). It is precisely the part that calculates the new 
columns the one that requires the solution of a binary linear problem, known as 
BLP, ZOLP or 0-1LP, where we can take advantage of the capacity of such quantum 
annealer. Although the refinery problem formulations, the column generation and 
the decomposition techniques present in this work are not novel, our contribution 
resides in using those techniques for separating the real part from the binary part 
of those problems and solving the latter one with a quantum annealer. Other hybrid 
methods that exploit the complementary strengths of quantum and classical comput-
ers can be consulted in Ajagekar et al. (2020) and Ajagekar (2020).

The embedding of the binary problem into D-Wave requires transforming it into 
a Quadratic Unconstrained problem. However, it cannot be directly solved even in 
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that case, since the available number of qubits is quite limited and the topology 
of the Chimera graph is rather specific. In this work we study the use the Qbsolv 
library (Booth et al. 2017; D-Wave Systems Inc. 2017) to overcome this difficulty 
and its extra cost in iterations. Due to the requirement of having a global solution in 
several steps of the algorithm, we have also checked that the solution has this prop-
erty. Finally, we have tested the program with reference problems within the field of 
oil and gas.

This paper is organized as follows: in Sect. 2, we present the scheduling problem 
from an applied point of view. In Sect. 3, we describe the column generation tech-
nique that best suits our goal, and the branch-and-price method that completes the 
algorithm to decompose our problem in the mixed and binary parts. In Sect. 4, we 
describe more specifically how to solve the BLP part of the algorithm with a quan-
tum annealer. Finally, in Sect. 5 we present some experimental results: we solve a 
small refinery problem with an actual quantum annealer, the D-Wave 2X processor 
based in the University of Southern California.

2 � Overview of a refinery scheduling process

First, we introduce the main mathematical problem behind the optimization of the 
refinery scheduling process, which can generally be modeled as a MILP. As the main 
objective of this work consists in optimizing the scheduling process of a refinery 
with the help of a quantum annealer, we have to separate the real-valued variables of 
the problem from the integer ones. For this purpose we shall use the Dantzig–Wolfe 
decomposition, which we explain in the next section.

The refinery model has to take into account the variables and parameters involved 
in the refinery scheduling operations, such as the unloading of the vessels and the 
charging and storing into the tanks. It also has to define the sets that include all 
physical units: vessels, tanks, resources, etc. The model we have used as a basis 
for our algorithm can be found in Lee et al. (1996). This is a classical problem of 
inventory management of a refinery that imports several types of crude oil which 
are delivered by different vessels. The problem involves bilinear equations due to 
mixing operations. However, the linearity in the form of a MILP is maintained by 
replacing bilinear terms with individual component flows. This exact linear reformu-
lation is possible since this scheduling system involves only mixing operation with-
out splitting operation. More details about this problem and other possible reformu-
lations can be seen in Mouret (2010) and Vyskocil and Djidjev (2019).

The scheduling problem consists of a multistage system composed of NV vessels, 
NS storage tanks, NC charging tanks and ND distillation units, with NC key compo-
nents of crude oil, as illustrated in Fig. 1.

For 1 ≤ � ≤ NV , the � th ship arrives at time TA,� with a volume of crude at initial 
time of VV ,�,0 . The cost of unloading a vessel per time unit is CU , and the cost of 
waiting in the sea per time unit is CS.

For 1 ≤ i ≤ NS , the ith storage tank has a volume of crude at initial time of 
VS,i,0 and its load can vary from a minimum of VS,i,min to a maximum of VS,i,max , 
whereas the crude transferred from the � th ship to the ith storage tank can vary 
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from FVS,�,i,min to FVS,�,i,max . The inventory cost for the storage tanks per unit of 
time and volume is CIST.

For 1 ≤ j ≤ NC , the mixed crude in the jth charging tank has an initial volume 
of VC,j,0 and it can vary from VC,j,min to VC,j,max , having a demand of Dj . The crude 
transferred from the ith storage tank can vary from FSC,i,j,min to FSC,i,j,max . The 
inventory cost for the charging tanks per unit of time and volume is CICT.

Finally, for 1 ≤ l ≤ ND , the crude transferred from the jth charging tank to the 
lth distillation unit can vary from FCD,j,l,min to FCD,j,l,max . In a distillation unit the 
changeover of crude from a charging tank to another has a cost CC ≥ 0.

Our problem considers a scheduling horizon discretized in S time units. Fol-
lowing the previous index notations and for each time unit t, 1 ≤ t ≤ S , some con-
tinuous variables must be determined (see Fig. 2). For the � th ship, we need to 
know the time point when the unloading starts tU,� and ends tD,� . We also have to 
find out at time t,

•	 the volume vV ,�,t that the vessel has,
•	 whether or not the vessel is unloading crude, 0 ≤ xW,�,t ≤ 1,
•	 the volumetric flow rate of crude fVS,�,i,t from the � th vessel to the ith storage 

tank,
•	 the volume of crude vS,i,t and the concentration of the kth component pS,i,k in it,
•	 the volumetric flow rate of crude fVC,i,j,t and the kth component fSC,i,j,k,t from this 

tank to the jth charging tank,
•	 the volume of crude vC,j,t and the volume of the kth component wC,j,k,t in it,
•	 the volumetric flow rate of crude fVD,j,l,t and
•	 the kth component fCD,j,l,k,t from this tank to the lth distillation unit, and
•	 whether or not there is a transition from the jth charging tank to the j′ th one, 

0 ≤ zj,j′,l,t ≤ 1.

Fig. 1   Constant parameters considered in the scheduling problem

Fig. 2   Variables considered in the scheduling problem
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Besides, we must find out several binary variables:

•	 xU,�,t and xD,�,t , with value 1 when the � th vessel starts and completes unloading at 
time t, respectively.

•	 dj,t,l , with value 1 when the jth charging tank is charging into the lth distillation unit 
at time t.

Finally, our scheduling problem is written in terms of the following cost minimiza-
tion problem.

Problem (SP): Find the value of the previous set of variables that optimizes with 
respect to tU,� , tD,� , vS,i,t, vC,j,t and zj,j′,l,t the following MILP:

and, for � = 1, ...,NV , i = 1, ...,NS, j = 1, ...,NC, l = 1, ...,ND and t = 1, ..., S , sub-
ject to the following constraints over binary variables: 

 subject to the constraints over continuous variables: 

(1)

minCU

NV∑

�=1

(tD,� − tU,�) + CS

NV∑

�=1

(tU,� − TA,�) + CIST

NS∑

i=1

S∑

t=1

(vS,i,t − vS,i,t−1

2

)

+ CICT

NC∑

j=1

S∑

t=1

(
vC,j,t − vC,j,t−1

2

)
+

S∑

t=1

NC∑

j=1

NC∑

j�=1

ND∑

l=1

CCzj,j�,l,t,

(2a)
S∑

t=1

xD,�,t = 1,

(2b)
ND∑

l=1

dj,l,t ≤ 1,

(2c)
NC∑

j=1

dj,l,t = 1,

(3a)tD,� ≥ TA,� ,

(3b)tD,� − tU,� ≥
VV ,�,0

maxi FVS,�,i,max

,

(3c)tU,�+1 ≥ TD,� ,

(3d)vV ,�,t = VV ,�,0 −

NS∑

i=1

t∑

m=1

fVS,�,i,t,
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 and subject to the constraints over mixed variables: 

(3e)vV ,�,t = VV ,�,0 −

NS∑

i=1

t∑

m=1

fVS,�,i,t,

(3f)FVS,�,i,min xW,�,t ≤ fVS,�,i,t ≤ FVS,�,i,max xW,�,t,

(3g)
NS∑

i=1

S∑

t=1

fVS,�,i,t = VV ,�,0

(3h)vS,i,t = VIS,i +

NV∑

�=1

t∑

m=1

fVS,�,i,m −

NC∑

j=1

t∑

m=1

fSC,i,j,m,

(3i)VS,i,min ≤ vS,i,t ≤ VS,i,max,

(3j)vC,j,t = VC,j,0 +

NS∑

i=1

t∑

m=1

fSC,i,j,m =

ND∑

l=1

t∑

m=1

fCD,j,l,m,

(3k)VC,j,min ≤ vC,j,t ≤ VC,j,max,

(3l)
ND∑

l=1

S∑

t=1

fCD,j,l,t = Dj,

(3m)vC,j,t = VC,j,0 +

t∑

m=1

(

NS∑

i=1

fSC,i,j,m −

ND∑

t=1

fCD,j,l,m),

(3n)fSC,i,j,k,t = fSC,i,j,t ⋅ pS,i,k,

(3o)fCD,j,l,t pS,j,k,min ≤ fCD,j,l,k,t ≤ fCD,j,l,t pS,j,k,max,

(3p)vC,j,t pS,j,k,min ≤ wC,j,k,t ≤ vC,j,t pS,j,k,max,

(3q)0 ≤ zj,j′,l,t ≤ 1,

(3r)zj,j�,l,t ≥ dj�,l,t + dj,l,t−1 − 1,



1 3

Optimization of a refinery scheduling process with column…

3 � Column generation

In this section, we show how to decompose the previous problem—or more gen-
erally, any MILP problem of its type—into its real and its binary part. We apply 
the Dantzig–Wolfe decomposition (for a more detailed explanation of this decom-
position, see Chvatal 1983 or Dantzig and Wolfe 1960), and then apply to it a 
column generation algorithm. The algorithm evolves around a master problem, 
namely (MP), which is updated in every iteration. Both iterations and the stop-
ping criteria depend on two subproblems, (SP1 ) and (SP2 ), which are also updated 
during every iteration.

Let us write first a generic form for the MILP we want to solve that includes 
the problem (SP). From now on, A matrices and � vectors will describe the equal-
ity constraints, while B matrices and � vectors will do the same with inequal-
ity constraints. Likewise, subindices b and r describe the coefficients associated 
with the binary and continuous variables respectively and � vectors define the 
objective function. The � and � vectors designate the binary and real variables, 
respectively. Expressed as a linear optimization problem, we have the following 
objective function

(4a)
S∑

t=1

t xD,�,t = tD,� ,

(4b)
S∑

t=1

t xU,�,t = tU,� ,

(4c)xW,�,t ≤

t∑

m=1

xU,�,m,

(4d)xW,�,t ≤

S∑

m=t

xD,�,t,

(4e)FSC,i,j,min

(
1 −

ND∑

l=1

dj,l,t

)
≤ fSC,i,j,t ≤ FSC,i,j,max

(
1 −

ND∑

l=1

dj,l,t

)
,

(4f)FCD,j,l,mindj,l,t ≤ fCD,j,l,t ≤ FCD,j,l,maxdj,l,t.

(5)min
�,�

�r ⋅ � + �b ⋅ �,
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subject to the following constraints: 

 for � ∈ ℝ
m1

≥0
 , � ∈ ℤ

m2

≥0
 , �r, �r ∈ ℝ

mr , �b, �b ∈ ℝ
mb , �r, �r ∈ ℝ

mm , Ar,Br ∈ ℝ
nr×mr , 

Ab,Bb ∈ ℝ
nb×mb , Am,Bm ∈ ℝ

n×mm , with n = nr + nb + nm being the number of origi-
nal constraints in the problem and m = mr + mb the number of original variables.

We call this feasible point the first proposal, denoted by the vector �(1) for the 
continuous variables and the vector �(1) for the binary ones. From now on, we will 
denote by k and k′ the number of continuous and binary proposals stored in every 
iteration. These proposals will be weighted respectively in the problem (MP) with 
the additional continuous variables �i and �j . The master problem can be defined 
in its generic form as follows:

Problem (MP):

The previous linear and continuous problem can be solved efficiently with the help 
of a specialized global linear solver. The only information we need each time we 
solve problem (MP) is the dual solution of its constraints, which will be represented 

(6a)Ab� = �b,

(6b)Bb� ≤ �b,

(6c)Ar� = �r,

(6d)Br� ≤ �r,

(6e)Amr� + Amb� = �m,

(6f)Bmr� + Bmb� ≤ �m,

min�i,�j

k∑
i=1

(�r ⋅ �(i))�i +
k�∑
j=1

(�b ⋅ �(j))�j,

subject to
k∑

i=1

(Amr�(i))�i +
k�∑
j=1

(Amb�(j))�j = �m,

k∑
i=1

(Bmr�(i))�i +
k�∑
j=1

(Bmb�(j))�j ≤ �m,

k∑
i=1

�i = 1,
k�∑
j=1

�j = 1,

�i,�j ≥ 0.
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from now on as the vector � for the equality constraints and the vector � for the 
inequality constraints. The value of these vectors will be updated each time we solve 
(MP).

It is in the next step of the algorithm where we can optionally use an adiaba-
tic quantum computer, but it is also possible to accomplish it with the help of a 
global nonlinear solver. Two new subproblems are defined for this step:

Problem (SP1):

Problem (SP2):

As can be seen, both subproblems (SP1 ) and (SP2 ) depend on the dual solutions 
obtained from problem (MP) in order to define their objective functions. Problem 
(SP1 ) is linear and continuous and can be solved again as problem (MP) with a LP 
solver. Problem (SP2 ), however, have binary variables and therefore have a stronger 
complexity. Its resolution with the help of an quantum annealer will be explained in 
Sect. 4. For the time being, let us just assume that we have a black box that solves it 
globally.

Remark  An Adiabatic Quantum Computing (AQC) algorithm  (Farhi et  al. 2001) 
is guaranteed to converge to the global optimum of problems but the tempering 
time might grow exponentially and the temperature has to be zero, while a Quan-
tum Annealing (McGeoch and Wang 2013) process is a physical implementation of 
AQC (can be considered as a subcase) with finite temperature implementation and 
no deterministic convergence guarantees. Since our algorithm requires global con-
vergence, an AQC would be suitable for it. However our results were obtained with 
a machine that implements a quantum annealing process, so we had to check that in 
this particular case the global solution was reached, as it is explained in Sect. 5.

The algorithm starts solving an instance of the original (SP1 ) problem after 
dropping the objective function. This way, we will only need to get a feasible 
point for the problem, instead of one of its minima, a much easier achievement 
than its optimization counterpart. In order to complete this task we use the local 
nonlinear optimization solver Knitro (Byrd et al. 2006). See Fig. 3 for a general 
overview of the algorithm.

After both subproblems are solved, it is time to check the first terminating con-
dition of the algorithm. We have to examine the value of both objective func-
tions from (SP1 ) and (SP2 ). If one or both of them are less than 0, the algorithm 

min
�

(Amr� + Bmr�) ⋅ �,

subject to

Ar� = �r,

Br� ≤ �r.

min
�

(Amb� + Bmb�) ⋅ �,

subject to

Ab� = �b,

Bb� ≤ �b.
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comes back to the step where problem (MP) is solved and adds the solution for 
both subproblems (or only for the one whose objective function is less than 0) as 
proposals. In any other case, we rebuild the actual solution for the problem as a 
linear combination of the proposals and the last solution for the weights �i and �j , 
as shown in the next equations:

(7)�
∗ =

k∑

i=1

�i�(i),

(8)�
∗ =

k�∑

j=1

�j�(j).

Fig. 3   Flowchart of the algorithm
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As a final termination for the algorithm, it is time to check if the solutions calculated 
for the binary variables in the previous step are in fact 0s and 1s. If the answer is 
negative for any of the variables, a branch-and-price scheme has to be run over the 
proposals obtained with the column generation algorithm. You can see an overall 
flowchart of the method described in this section in Fig. 3. More information about 
the branch-and-price algorithm can be found at Feillet (2010) and Gamrath (2010).

4 � Resolution of an ILP as a QUBO

In order to solve an optimization problem with binary variables like (SP2 ) using a 
quantum annealer, it is necessary first to transform it into an Ising Spin (IS) problem 
or a Quadratic Unconstrained Binary Optimization (QUBO) problem. Both types 
of problems are unconstrained, but a BLP usually has constraints in its formulation. 
A possible way of penalizing the constraints inside the objective function of the IS 
or QUBO problem is described in D-Wave (2016), with the objective of solving a 
generic BLP with a D-Wave machine.

We proceed to explain this transformation and its associated iterative method. 
First, let us suppose that we have a BLP in its generic form:

A possible way of penalizing the constraints A� = � and B� ≤ � in the objective 
function is to express them as quadratic penalties. Due to the binary nature of the 
variables, from now on we will only explain the transformation into QUBO form, 
although the IS counterpart is similar. Here, index i runs over the variables, whereas 
j runs over the equality constraints and k runs over the inequality constraints:

where � is the vector of powers of 2, i.e., [2l,… , 2, 1] and �k is the vector of bits of 
the slack variable �k ; that is, �k = � ⋅ �k . Here l is the number of bits needed to code 
the slack variable. We have introduced new parameters, namely pj and qk associated 
with the weighting of the penalties. However, the value of these parameters cannot 
be calculated a priori. It is necessary to iterate over them until all constraints have 
been satisfied. As stated in D-Wave (2016), a possible way of achieving this would 
be as follows:

with 𝛼 > 0 representing the increase rate of the penalty weighs.

min
�

� ⋅ �,

subject to A� = �,

B� ≤ �,

zi ∈ {0, 1}.

(9)min
�

� ⋅ � +
∑

j

pj(�j ⋅ � − aj)
2 +

∑

k

qk(�k ⋅ � − bk + � ⋅ �k)
2,

(10)p
(n+1)

j
= p

(n)

j
+ � |�j ⋅ �

(n) − aj|,

(11)q
(n+1)

k
= q

(n)

k
+ � |�k ⋅ �

(n) − bk + � ⋅ �
(n)

k
|.
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Figure 4 shows the iterative process needed for solving an ILP as a QUBO. The 
dotted line contains the parts that have to be done by the quantum annealer, and 
represents a part of the algorithm that ideally should be a black box solved in just 
one iteration. However, as will be explained later, current technology does not allow 
for that when the size of the problem is large enough. The part corresponding to “Is 
global solution ensured with certain probability?” depends on the machine we are 
using: with an ideal adiabatic quantum computer, we should have a total assurance 
that the solution obtained is the global optimum; with a quantum annealer, however, 
we have to check with another solver (i.e., Baron) that the solution provided is the 
global optimum. We acknowledge that this is not ideal, but we expect that a quantum 
machine capable of obtaining a global optimum would be available in the future.

Note that decomposing the original refinery problem with the Dantzig–Wolfe 
algorithm rather than with a Benders’ decomposition maintains the structure of 
the original constraints, thus keeping any possible advantage that the problem 
formulation could have at the time of embedding it into the Chimera graph. It 
remains to be seen if Benders’ is a better choice for solving another different sort 
of MILP with a quantum annealer (Verstichel et al. 2015).

Regarding the embedding of the problem into D-Wave, at present the available 
number of qubits and couplings in current technology (1152 and 3360 respectively 
in the case of the D-Wave 2X processor), make non-viable the direct resolution of 
problems with a large number of variables and a huge density in its pairing ups 
derived from its constraints. The company have developed an open-source library 
called Qbsolv with the objective of palliating this weakness while hardware size 
limitations are reduced. With the help of this library, bigger problems can be parti-
tioned and reduced into subproblems that can be solved by the D-Wave system you 
are using. The embedding problem is an NP-complete problem, but as the structure 
of our QUBO problem is maintained during the whole process, we can just solve 
this problem for the first iteration and reuse the solution. More information about 
Qbsolv can be found in Booth et al. (2017) and D-Wave Systems Inc. (2017).

5 � Experimental results

The refinery scheduling problem (SP) can fit in the MILP generic problem just 
identifying its constraints over binary variables (2a)–(2c) with (6a)–(6b), the con-
straints over reals (3a)–(3r) with (6c)–(6d) and the constraints over mixed vari-
ables (4a)–(4f) with (6e)–(6f). Thus, we can use the afore-described algorithm 
with the help of a D-Wave machine to solve (SP).

We have run a program written in C++ that implements the algorithm and calls 
to D-Wave. A first check was conducted using a simple problem (P0) that corre-
sponds to a minimal problem with three continuous variables and three binary vari-
ables. Then the program was tested with the MILP “multmip3” found in the AMPL 

Fig. 4   Resolution of an ILP as a QUBO ▸
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documentation (AMPL Optimization Inc. 2017) and named here as (PM). Finally, 
we have tested the program with problems obtained from article (Lee et al. 1996), 
which is a reference within the field of oil and gas. Its “Problem 2” and “Problem 4”, 
named here (P2) and (P4), gather all the possible difficulties inherent to a refinery 
scheduling problem. Although they may not have the size of a realistic one, their 
size force the program to divide them in treatable subproblems.

Table 1 summarizes the properties of the four problems in terms of number and 
type of variables and constraints. Besides, it also collects the following figures:

•	 The number of iterations for every part of the algorithm applied to them, includ-
ing the number of columns generated for every problem (i.e. the iterations of the 
algorithm described in Sect. 3).

•	 The number of weighting iterations (i.e. the number of times we have to incre-
ment the � value in the penalizing constraints)

•	 The number of iterations of Qbsolv. The total number of calls refers to a quan-
tum annealer like D-Wave 2X, but this final number depends on the number of 
qubits in the chip, presently around 1000; it does contain neither the iterations 
made by the D-Wave machine in order to ensure the correct pairing of mirror 
variables nor the internal solution of the problems made in order to maximize the 
probability of finding the global optimum.

Table 1   Table of iterations and 
calls for every problem

Properties Problems

P0 PM P2 P4

Variables
Real 3 102 546 1776
Binary 3 21 120 270
Total 6 123 786 2046
Constraints
Real 1 29 218 534
Binary 1 3 6 6
Mixed 2 41 155 455
Total 4 73 379 995
Generated columns
Real 4 247 ∼ 1000 ∼ 1000
Binary 2 74 37 50
Weighting iterations
Per column 1 13 2 2
Total 2 962 74 100
Qbsolv iterations
Per weighting 1 1 62 42
Per column 1 13 124 84
Total 2 962 4588 4200
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As a preliminary conclusion, our algorithm seems to be especially predisposed to 
solve problems with the particular structure similar to (P2) and (P4), thanks to the 
proportion between binary, mixed and continuous constraints, and also the grouping 
of binary variables inside the binary constraints. We have also observed that the per-
formance of Qbsolv is not linear in relation to the number of binary variables, as 
can be seen in Table 1, probably due to the heuristical nature of its algorithm.

The purely binary subproblems that have to be solved during the execution of our 
method acts as its bottleneck, and the responsibility of solving them could lie either 
with an specific solver for this kind of problems, or with an adiabatic quantum com-
puter. In our case, we have studied the possibilities of adapting the formulation of 
such subproblems to those that can be solved by the D-Wave quantum annealer. For 
that, it is necessary to transform our subproblems from its BLP format into QUBO, 
equivalent to IS, as it was explained in Sect. 4. Transforming to QUBO or IS could 
be advantageous in a certain kind of problems, and as can be seen in Table 1, the 
number of iterations needed for enforcing the constraints is minimal in the case of 
the refinery problems.

As explained previously, in certain cases the embedding of those QUBO prob-
lems into the D-Wave machine could result in the use of mirror variables that repre-
sent the same variable in the original QUBO formulation, and that have to be con-
nected inside the Chimera graph. In order to ensure that those variables end up with 
the same solution, it is mandatory to strengthen their connection modifying certain 
terms of the QUBO problem; namely, if the qubits i and j represent the same origi-
nal variable, we have to add a certain chain strength weight to the term Qij , but this 
could increase drastically the number of calls to the D-Wave machine until all mirror 
variables match.

Concerning size limitations, if our QUBO problem has a total connectivity within 
its variables (i.e. the problem graph is complete), the heuristic algorithm present 
in the D-Wave libraries can only guarantee the success of the embedding process 
with a probability of 100% up to 33 variables in the case of D-Wave 2X (a dramatic 
reduction if we have into account that the chip has more than one thousand qubits, 
but this is in the worst case scenenario when the graph of the problem is complete; 
with sparse problems, a problem with much more variables could be embedabble in 
the D-Wave 2X). To that effect, D-Wave has developed an open-source library called 
Qbsolv, intended for solving problems that cannot be embedded into the current 
D-Wave chip (whether it is for size limitations or for connectivity density). The 
use of Qbsolv implies several loops in order to ensure a global optimum within 
a certain probability. The final number of calls to the machine depends, among 
other things, of the success of the heuristic used for the partitioning and embedding 
process. We have also noted the existence of a relationship between the number of 
binary variables involved in the strictly binary constrains, and also with the num-
ber of binary variables present in a certain constraint. In the case of the refinery 
scheduling problems, this translates to a dependency over the complexity of the first 
stages of the whole process (i.e. the arrival of the vessels and downloading of their 
contents).



	 J. Ossorio‑Castillo, F. Pena‑Brage 

1 3

The main problem we have found while using Qbsolv libraries or solving cer-
tain subproblems with the D-Wave machine is that finding the global optimum is not 
guaranteed in every case, a necessary condition for the correct execution of our algo-
rithm. In order to avoid problems generated by these limitations, we have checked 
the solution obtained by Qbsolv or D-Wave with the nonlinear solver BARON 
(Sahinidis 2014; Tawarmalani and Sahinidis 2005), which guarantees a global solu-
tion. We have checked that in our problems the result of the algorithm was correct 
and, regarding the time performance, the CPU time reported by the Qbsolv tool for 
decomposing the original problem averages, in our case, between 500 ms and 2 s, 
and the estimation of the D-Wave 2X computation time for each of the subproblems 
(including the connection times) averages 300 ms in the P4 problem. These times 
are coherent with the value of 491 ms of McGeoch and Wang (2013) for an original 
D-wave Two and the range of 10–300 ms for a D-Wave 2000Q, presented in Chiscop 
et al. (2020).

6 � Conclusions and future work

In this paper we have described a possible technique for solving an optimization 
problem with continuous and binary variables, drawing upon a column generation 
scheme supported by the Dantzig–Wolfe decomposition. In this manner, thanks to 
breaking down the problem in its real and its binary parts, it is necessary to solve 
several subproblems, each of them of either a continuous or binary nature, instead 
of a mixed one. Although the algorithm can be used for any generic MILP, our 
interest resided in a certain type of optimization problems: the ones involved in the 
processes of a refinery, and more concretely in the ones associated with the correct 
scheduling of the arrival and discharge of vessels in the harbor.

In problems with a different structure, this algorithm could not be that beneficial 
and the average number of iterations in any part of the algorithm may explode, but 
the complexity in the worst case remains to be seen. A possible way of palliating 
this is to decompose the MILP in various binary subproblems, not just one, using 
Dantzig–Wolfe, maintaining a certain grouping of variables and thus improving the 
performance of the constraint enforcement process.

Other possible difficulties that may arise while solving our problems are related 
to the QUBO formulations. The Chimera graph present in the D-Wave chips have 
some serious limitations either related to the problem size or to the connectivity of 
its variables, proper of a technology that is currently in its early steps. In the mean-
time, in order to solve a QUBO problem with the D-Wave machine it is necessary to 
embed its graph into the Chimera graph, but this process could result in an increase 
in the number of calls to the quantum annealer, as explained in Sect. 4. Those limita-
tions in current hardware may alter the perception of the possibilities of using this 
technique, but we hope that future advancements in quantum computers will make it 
more competitive.
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