
Universidade de Santiago de Compostela

ESCOLA TÉCNICA SUPERIOR DE ENXEÑARÍA

App4Refs
Mobile application to enhance refugees

integration in Greece

Autor:
David Campos Rodríguez

Titor:
José Varela Pet

Grao en Enxeñaría Informática

July 27, 2018

Traballo de Fin de Grao presentado na Escola Técnica Superior de Enxeñaría da
Universidade de Santiago de Compostela para a obtención do Grao en Enxeñaría

Informática

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0
International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons,
PO Box 1866, Mountain View, CA 94042, USA.

cba
The attached source code is licensed under the Apache License 2.0. To view a copy of

this license, visit: https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the

License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific

language governing permissions and limitations under the License.

Special thanks

To my parents, as this is their achievement rather than mine.
Without their efforts I would not be making this project today.

To José Varela Pet, for the support received during the
elaboration of the project, and in a more general sense to all
the teachers who, along my life, helped me to find my way.

Finally, to all those friends who are always there, holding me
up when I fail to find my ground.

Contents

1 Introduction 1
1.1 Context . 1
1.2 The project and my participation . 2
1.3 This document . 3

2 Technologies 5
2.1 The web technologies . 5
2.2 About the back-end . 7
2.3 Building the front-end: Gulp . 8
2.4 Integrated development environments and documentation 9

3 Project management 11
3.1 Project charter . 12
3.2 Scope management . 13

3.2.1 Work Breakdown Structure . 13
3.2.2 Description of scope . 14
3.2.3 Out of the scope . 14
3.2.4 Project restrictions . 14

3.3 Project life cycle . 15
3.4 Configuration management . 16
3.5 A short note on the requirements . 17
3.6 Use case point analysis . 18
3.7 Cost management . 21
3.8 Schedule management . 23
3.9 Risk management . 25

3.9.1 Risk measures . 25
3.9.2 Risk palliation strategies . 29
3.9.3 Risk specification . 29

4 Requirements capture 39
4.1 Context study . 39

4.1.1 Current situation . 39
4.1.2 Project vision and opportunities 40

v

4.1.3 Interested parties . 41
4.1.4 Systems to interact with . 42

4.2 Requirements specification . 42
4.2.1 Stakeholders of the system . 42
4.2.2 Goals . 43
4.2.3 General vision of the proposed solution 44
4.2.4 Use cases . 49
4.2.5 Functional requirements . 58
4.2.6 Non-functional requirements 63
4.2.7 Conceptual data scheme . 77

5 Design 81
5.1 General structure of the system . 81
5.2 Back-end: The database . 83

5.2.1 Entity-relationship model . 83
5.2.2 Relational model . 87

5.3 Back-end: The API . 88
5.3.1 Interface design . 88
5.3.2 The architecture . 90
5.3.3 Domain layer and view Layer 91
5.3.4 Managing errors . 93
5.3.5 Data layer . 96
5.3.6 Transactions execution . 98

5.4 Front-end: The PWA . 104
5.4.1 The pages . 105
5.4.2 Application, routing, resources and navigation bar 107
5.4.3 Grid pages . 111
5.4.4 Items, periods and the list page 112
5.4.5 API connection . 114
5.4.6 Map page . 117
5.4.7 Geo-locating the user . 118

6 Implementation and testing 121
6.1 The file structure of the project . 121
6.2 Back-end . 122

6.2.1 The database . 122
6.2.2 Initial data . 123
6.2.3 The API . 124
6.2.4 Auto-loading the classes . 125
6.2.5 Redirection . 126
6.2.6 Other implementation details 126
6.2.7 Unitary tests . 127

6.3 Front-end . 128

vi

6.3.1 File structure . 128
6.3.2 Precache and dynamic caching 129
6.3.3 Grouping periods . 134
6.3.4 Saving the application to the home screen 137
6.3.5 Deployment . 138

6.4 General testing . 139

7 Conclusions and future work 141
7.1 Satisfied requirements . 141
7.2 Improvements to be made . 141
7.3 Future work . 143

A Technical manuals 145
A.1 Database deployment . 145
A.2 Importing the initial data . 145
A.3 API deployment . 146
A.4 Adding new URLs to the API . 147
A.5 Building and deploying the PWA . 149

A.5.1 Gulp tasks . 151

B User manual 153
B.1 What can be done with App4Refs? 153
B.2 Home screen . 153

B.2.1 Navigation bar . 154
B.2.2 List pages . 155
B.2.3 The maps page . 156

Bibliography 159

vii

viii

List of Figures

2.1 Classical web and AJAX comparison 6
2.2 Example of Gulp execution . 8

3.1 Work breakdown structure . 13
3.2 Gantt diagram (I) . 26
3.3 Gantt diagram (II) . 27
3.4 Gantt diagram (III) . 28

4.1 Home screen and help area mock-ups 45
4.2 Information, leisure and services area mock-ups 46
4.3 Example of list area . 47
4.4 Maps mock-ups . 48
4.5 General use case diagram of the system 49
4.6 Conceptual data scheme of the system 78

5.1 General structure of the project . 82
5.2 Entity-relationship model of the database 83
5.3 Data flow over the three tiers of the API 90
5.4 Class diagram of the domain and view layers of the API 92
5.5 Sequence diagram of the URL matcher 94
5.6 Sequence diagram attending a request 95
5.7 Class diagram of the API exceptions hierarchy 96
5.8 Class diagram of the data layer of the API 97
5.9 Sequence diagram of the transaction to get categories 98
5.10 Sequence diagram of the transaction to get items 99
5.11 Sequence diagram of mapping an item 100
5.12 Sequence diagram of the transaction to delete an item 101
5.13 Sequence diagram of the transaction to create a new item 101
5.14 Sequence diagram of the transaction to update an item 102
5.15 Page and navigation bar . 105
5.16 Class diagram of the pages hierarchy 106
5.17 Class diagram of the main classes of the PWA 108
5.18 Sequence diagram navigating to a new page 110
5.19 Class diagram of the grid pages . 111

ix

5.20 Class diagram of the list page . 113
5.21 Class diagram of the API service from the PWA 115
5.22 Sequence diagram getting categories through AJAX 116
5.23 Class diagram of the map page . 117
5.24 Class diagram of the geolocator . 119

6.1 File structure of the API source code 124
6.2 File structure of the PWA folder . 128
6.3 Example of hashed files in the service worker 130
6.4 Sequence diagram of the network-first handler 131
6.5 Sequence diagram of the cache-first handler 132
6.6 Sequence diagram of the “fastest” handler 133
6.7 Pseudo-code for the period-grouping algorithm 135

x

List of Tables

3.1 Project charter . 12
3.2 Actors complexity evaluation . 19
3.3 Use case complexity evaluation criteria 19
3.4 Use case complexity decided values 19
3.5 Technical factors score . 20
3.6 Environmental factors value . 21
3.7 Estimated effort per role . 22
3.8 Estimated costs per role . 22
3.9 Final estimated cost . 22
3.10 Project schedule . 24
3.11 Risk exposition measurement . 29

5.1 Entities dictionary . 84
5.2 Relations dictionary . 85
5.3 Attributes dictionary . 87
5.4 Resources of the API . 89

7.1 Status of the non-functional requirements 142

xi

xii

Chapter 1

Introduction

Since I wrote my first line of code when I was eight years old in a real-time, strategy
game, I realised there was something very powerful behind that bunch of chips. Since
that, I have always seen technology, and specifically computer science, in two main ways.
On the one hand, I see them as an unstoppable, incredibly complete access to creation,
since computers allow us to create unimaginable things which go far beyond what any
other previous form of creation did. Inside a computer, we can create highly-complex
universes with its own internal rules, the limits are only in the imagination. On the other
hand, I perceive computer science as a medium to take those universes out of the
screens and change the real world around us, to solve the problems we face day by day,
helping humanity step by step to get a bit closer to a higher level in our existence.

The reason for which I studied this degree is because I think there is some kind of
power, maybe even magic, behind what we, engineers, do and I believe we can use
our knowledge to make life better for everyone around. Said this, the project I have
been working on aligns perfectly with my vision of information technologies, as it has an
important social implication and can improve the lives of many people.

In this section the context of the project, its general objectives and some related infor-
mation will be explained to give a rough, general idea about the system, its implications
and its motivations. Also, the contents of this document and structure are clarified.

1.1 Context

In the past years, Europe has been facing a massive increase in the immigration affluence,
caused partially (but not exclusively) by the outbreak of the war in Syria [5]. More than
three hundred sixty thousand migrants risked their life to get to Europe in 2016 and
more than one thousand had drowned in the Mediterranean at July 3, 2018, according to
UNHCR [24]. One of the most common ways for people to arrive is through the eastern
Mediterranean, refugees coming mostly from Syria make their way along Turkey and
cross the sea to Greece. Although applying for asylum can be a lengthy procedure, many

1

2 CHAPTER 1. INTRODUCTION

applications are been received, many more than the countries are accepting so far. In
2015, EU countries offered asylum to 292,540 refugees, in contrast with the more than a
million ones who applied for it on the same year [19].

As indicated in the presentation of the UNINTEGRA project (further explanation later),
more than fifty thousand refugees and asylum appliers are blocked in Greece and live
in precarious conditions. In September 2017, the European relocation program of two
years ended. As UNHCR reports, only a few refugees are able to leave Greece and
move to a third country. The long time living in refugee camps or in irregular places
have affected negatively these refugees in social and psychological terms. Despite of
the efforts of the Greek and international authorities, the projects of the NGOs and the
volunteers, refugees do not have complete access to the basic social and health services
yet. There is a clear need of innovative projects to help refugees to get back into an
active life, looking for a social integration and inclusion and putting special attention to
special necessities like LGTB people, children in risk or mothers which are alone with
kids.

It is because of this that the University of Santiago de Compostela (Spain) [26]
leads, since 2017, the project UNINTEGRA [25], in collaboration with the National and
Kapodistrian University of Athens (Greece) [20], Universidade do Minho (Portugal) [27],
Fundació Acsar (Spain) [9], Fundació Universitària Balmes (Spain) [10] and Concello de
Santiago de Compostela. The UNINTEGRA project is also co-funded by the Asylum,
Migration and Integration Fund (AMIF) [6] of the European Commission. This project
has the main aim to intervene in the migration process by providing people in refugee
sites and centres with the necessary resources to empower them, encouraging their
participation in the host community. The duration of the project is 24 months and its
period of implementation runs from 1st December 2017 to 30th November 2019, and it
is divided in six work packages which affect different areas inside the general objectives.

The project this document treats about corresponds to the fourth work package: the
App4Refs application. This working package is led by the Fundació Acsar and counts
with the collaboration of the Department of Electronics and Computer Science in the
University of Santiago de Compostela, who offered it as a final project.

1.2 The project and my participation
The objective of the project is to develop an application to support social participation,
inclusion and integration of refugees, and the way to achieve this is by handing them free
and useful tools for field-detected needs through a cell phone app. There are three main
areas the app will turn around: legal information, useful local resources location and
community interaction. Due to technical and financial reasons, the scope of the project
will be reduced to the metropolitan area of Athens in first place, but never discarding to
progressively extend its use to a wider scope, eventually reaching the whole Europe.

The smart phones have a crucial importance for refugees and they are, in fact, one
of their most precious possessions, not only because they allow them to keep in contact

1.3. THIS DOCUMENT 3

with their acquaintances in their origin countries, but also because they are the most
powerful tool to move around in an unknown, unfamiliar country. App4Refs has the
intention to exploit this technology they already use in a daily basis to provide them
with the information they need to manage in their situation, allowing them to feel more
empowered and increasing their security and the security of those around them.

My participation in the project consists in the complete development of the application
following the requirements specification which Javier Ideami [15], working for the Fundació
ACSAR, provided me and always under his supervision. The process requires designing
the code and implementing it, as well as helping in its deployment. Although I am
obligated to work in the project till October, this final degree project has to be deposited in
July. Given this, it will be elaborated, in a first version, treating only about the alpha version
of the application, the general planning of the whole project and how the development is
taken in these first months (since this alpha version should be released in July, coinciding
this with the final data to deposit my final project of the degree). This documentation is
intended to be extended at the end of my labour in order to be also a useful reference to
future developers working on the project.

The developed application consists of a progressive web application (commonly
named by their acronym, PWA [13]) programmed in the HTML5 environment and sup-
ported by a server back-end compound of a relational database and a JSON API [7]
which provides access to it. The project includes working with languages like HTML, CSS,
JavaScript, PHP, MySQL or Python and making use of a wide variety of modern libraries
and technologies like Bootstrap [3], AJAX [29], npm [21], gulp, MariaDB [18], PHPUnit
or the Google Maps API [12]. It requires also of some knowledge of object-oriented
design and programming, how modern web pages work, how to design responsive
designs and connect them with an online API or how to design and access databases
in web environments. Although a little bit of knowledge about web security is involved
in the project (as it will count on an administration panel which will allow to modify the
contents of the application through internet, requiring then the implementation till some
level of OAuth2.0 [14] in the API and some care for the dangers that user input into an
internet-exposed application entails), this knowledge is not completely reflected here
since the implementation of this panel is beyond the scope of the alpha version, so the
exposure to attacks is somehow reduced by now.

The decisions about the required functionality, the design of the interface or related
processes have been done by the Fundació ACSAR together with the responsible engi-
neer (previously mentioned, Javier Ideami) and it is out of my hands to change anything
of them. Still, I have actively participated, suggesting changes and improvements and
providing some feedback based on the studies I am about to complete.

1.3 This document
The purpose of this document, as previously stated, is not only to serve as a memory of
my final degree project, but also as a reference for future implicates in the project so they

4 CHAPTER 1. INTRODUCTION

can check it to understand some questions of the design and development. It is, then, a
complete documentation of the work I developed in the project and the decisions that
have been made (only until the release of the alpha version, in this first elaboration of the
document). Together with this document, the complete code is delivered with extensive
comments which explain the low-level details of the implementation, including standard
ways of code documentation as, for example, phpDocumentor [22]. Diagrams and other
figures are present to clarify the key aspects of the text, always as a supporting content
but never replacing the textual description. Each chapter is preceded by a very short
paragraph explaining what the chapter contents will be, intended to facilitate the search
of concrete information on the whole document.

Chapter 2

Technologies

In this chapter the technologies involved in the development of the project will be specified
and explained to provide a base for the rest of the document.

2.1 The web technologies

The Internet was a revolutionary idea, the concept of a global communicated world with
access to any information we could need. We owe a lot to internet, half of our lives pass
searching and learning information in it, but old/classic web pages were quite limited.
When I started programming web pages, before my degree, very few standards existed.
The web was a slow, quite-ugly thing which nobody trusted to do serious, really interactive
stuff.

Times change, nowadays we all have an smart phone with very small capabilities
in our pockets, doing almost all the stuff we need through the Internet. The web has
became faster, more reliable and much more standardised. It could not be other way, this
continuous evolution of the web applications getting closer and closer to the native ones
would end, some way or another, leading to a complete blurring of the limits between
ones and the others. With the birth of the Progressive Web Apps, we are finally living
the end of the separation between web and native applications.

The progressive web applications are just web applications, developed in the classical
technologies of the web (HTML, CSS and JavaScript) but with the capability to run in
your device camouflaged like native applications. They are able to store information,
access some device features that used to be considered only available to native apps,
keep running on the background when they are not visible and much more. All of this
is possible thanks to a big effort to provide the web with modern technologies able to
dissipate those differences and make the web more powerful. The main advantage of
this technology is clear: they have a really high portability, as they can run wherever a
compatible navigator can run. Moreover, they allow our web page, our mobile application
and our desktop application to share a unique code, giving the user the chance to choose

5

6 CHAPTER 2. TECHNOLOGIES

Figure 2.1: At the left, the classical way to make web applications. At the right, the
architecture of the webs designed with AJAX.

how they would like to be able to use them, installed on the device or accessing them
through the web browser.

The traditional architecture of a web application consists in a client and a server
exchange. The client connects to the server through an internet connection, using the
HTTP protocol, and receiving back HTML documents which the browser can interpret
to show the web page. This HTML documents can include, embedded or referenced,
several other kinds of code. The most common ones are CSS and JavaScript. CSS
allows us to specify the style of the display for the web page, while JavaScript allows us
to script the page (since HTML is just an structural language), allowing us to achieve
a more complete interaction with the user. The classical flow of request for complete
pages and answers has a small flaw: we have to receive a new complete document each
time we want to change the content of just a part. This breaks the user experience and
makes the movement through the web slow. To solve this, we use AJAX.

AJAX, acronym for Asynchronous JavaScript And XML, is a technology designed
to allow the creation of web pages with asynchronous connections to the server which
run in a back layer, allowing the user to keep a consistent, fluid experience. Over the
years, despite of preserving the name, the use of XML has been drastically reduced
and the most common format for the data exchange is now JSON (this is why our API
in the back-end will provide, in principle, a JSON interface). The figure 2.1 shows the
difference between the classical mode to make web pages and the AJAX method.

To get to the progressive web applications using only AJAX is not enough, there are

2.2. ABOUT THE BACK-END 7

still a couple of barriers to break. Not only a fluid experience is necessary, we also need
the option to keep the application running in the background or installing it to launch it as
a native application. This can be achieved thanks to the Service Workers introduced in
the recent versions of JavaScript and the manifest of the web page, a JSON file which
allow us to control how the application will behave when installed as a native one (where
will it appear, which images use as the icons, etc). Also, to imitate the behaviour of
native apps certain UI design decisions should be taken: the web should be responsive,
adapting to the user’s behaviour and environment based on screen size, platform and
orientation.

All of this technologies are used in our system.

2.2 About the back-end

The back-end of the system consists of a server which will provide the data for the app
to work with through the API. The reasons to choose this structure are explained in the
section 5.1. The PWA can be served by the same server which serves the API or by a
completely different one, since both codes have been developed on separated structures.
In our case, to simplify the deployment the server which provides the PWA will be the
same which provides the access to the data.

The server used in the back-end will be Apache. Apache is currently the most
common software to serve web applications. This position in the market makes it a really
good choice as we can expect any future engineer which would work with the project to
have knowledge (at least a basic one) into the technology. Our application, anyways,
would be easy to port to any other server able to interpret and run PHP with only a couple
of adjustments in some specific files.

As mentioned above, we will use PHP to develop our application. PHP is a very
known language which was conceived as a template language for web pages in C, but
which ended being a programming language powerful enough to develop complete
systems (without programming C at all). Despite of its bad fame, PHP is a very powerful
language to create functional web pages with a low-medium complexity in short times
of development. Some years ago, PHP started to accept its condition of complete
language incorporating object-oriented capacities and some other sophisticated features.
Nowadays, it is a multiparadigm language in continuous improvement which offers an
easy initiation for beginner programmers at the same time it gives tools for professional
programmers to work with. This object-oriented characteristics were crucial to be chosen
as a technology of development, since there was interest in making an object-oriented
design of the system to develop.

The data will be provided by a relational database and the language under use will
be MySQL. There are several database servers able to work with MySQL or a subset of
the MySQL instructions nowadays and all of them will be able to run our system (with
maybe a few adaptations, but without big compatibility problems). In the case of our

8 CHAPTER 2. TECHNOLOGIES

deployment, we will use MariaDB, as it is a very famous server developed by the original
developers of MySQL and guaranteed to stay open source.

2.3 Building the front-end: Gulp

As previously explained, the web applications turn around three main, very closely related
technologies: HTML, CSS and JavaScript. To get a professional, comfortable way to
work with our application it is desirable, once we get to a certain complexity, to have
the ability to separate the final result served to the client from the development. For
example, we would like to have different JavaScript files for each class we manage, but
we better serve only one minified (without any unnecessary characters or any comments)
JavaScript file to the client in order to save connection resources and reduce the loading
time of the page. For this one and many other similar building tasks we use Gulp. This
software is built in JavaScript, it runs over Node.js and allows us to define a series of
rules to build our project, deciding how to process the files to generate a final distribution
folder. We use this technology to minify the HTML, CSS and JavaScript of our page, as
well as some other minor tasks. One important, very special task, is the one performed
by babel, a plugin designed to translate modern JavaScript (ECMAScript 6) into older
JavaScript code, making our application tons of times more compatible to different users
while allowing us to program with a modern, more optimal tool. The figure 2.2 shows an
example of execution of Gulp in a terminal to build a project, it is possible also to find a
detailed tutorial on how to build the PWA in the section A.5.

Figure 2.2: Example of execution of Gulp to build a project.

2.4. INTEGRATED DEVELOPMENT ENVIRONMENTS AND DOCUMENTATION 9

2.4 Integrated development environments and documen-
tation

To develop the application the main-used development environments were PhpStorm
and PyCharm from IntelliJ and Notepad++ developed by GNU. To try the web application
in a local server XAMPP was used, and to transfer the files for deployment FileZilla was
the FTP client. To create this documentation, StarUML and LATEX (with the web page
Sharelatex) were used.

10 CHAPTER 2. TECHNOLOGIES

Chapter 3

Project management

In this chapter all the relevant subjects relative to the management of our project will
be explained. The requirements specification made as part of this project management
is shown in the next chapter. First we will display the project charter which represents
the act of constitution of the project, then we will show the scope management, defining
the scope of the project in general lines (as it will be precised in the requirements
specification) and including a diagram of the Work Breakdown Structure (WBS). We will
define the project life cycle and schedule all the necessary tasks, providing a Gantt chart
to help to visualise them. We will also make an evaluation of the expected cost of the
project and finally elaborate a risk analysis to define strategies to confront the different
possible risks.

11

12 CHAPTER 3. PROJECT MANAGEMENT

3.1 Project charter

Table 3.1: Project charter.

3.2. SCOPE MANAGEMENT 13

3.2 Scope management

3.2.1 Work Breakdown Structure

Figure 3.1: Work breakdown structure of the project.

To give an initial idea of the scope of the project we use a work breakdown structure
which can be seen in the figure 3.1 and defines clearly the processes the project has
to go through from my entrance to the project until the end of it. As indicated in [23],

14 CHAPTER 3. PROJECT MANAGEMENT

the WBS gives a global vision from the most general to the most specific of the project
scope and shows the necessary work to complete the project. In this sense, one thing
has to be clarified: although I have only until the 28th of July to present my final degree
project, I will work for the project until October. For this reason, my final degree project
refers to the alpha version of the software exclusively, whose elaboration corresponds to
this period of time (check section 3.8 about schedule management). Despite of this, the
project management and requirements capture, which are elaborated previously, cover
the whole project (it is not the case of the design and implementation chapters, which
refers only to the alpha version). In the WBS, the alpha, beta and final release parts and
the work to do on each of them are separated clearly.

3.2.2 Description of scope

The system to develop is going to be a mobile application with the capacity to provide
useful information for the refugees in Athens, Greece, about their situation and how
to move around and integrate into the community. The project is limited to the mobile
application (which might be a web page or a native application) and the server to provide
the information for it. The system will also provide a control panel where it will be possible
(for authorised users) to upload new data or update the existent one in the application.

3.2.3 Out of the scope

It is out of the scope of this project to gather the information to display, while we decide
the information which will appear in big groups, it is a Greek team of people the one
which will search the concrete information about the places and services displayed. It is,
however, part of the project to load this initial information into the system to be displayed.

3.2.4 Project restrictions

There are a few restrictions the project, in general, has to accomplish:

• The application will work on mobile phones, both Android and iOs. It might as well
work on browsers if we finally decide to make a progressive web application.

• All the project should be oriented by the focus groups in Athens.

• The project will be finished by the end of October 2018.

About the part which I, as developer, will make on the whole project there is an extra
constraint: I have to adapt to the interface designed by Javier Ideami and stick to it. I
may, however, propose alternatives and suggestions whenever I consider it necessary.

3.3. PROJECT LIFE CYCLE 15

3.3 Project life cycle
We will follow an adapted rational unified process (RUP) to accomplish the project. The
rational unified process is a software development process compound by 4 phases: the
inception, the elaboration, the construction and the transition; and defines the following
six best practices for modern engineering:

• Develop iteratively, with risk as the primary iteration driver.

• Manage requirements.

• Employ a component-based architecture.

• Model software visually (UML).

• Continuously verify quality.

• Control changes.

It is an adaptable process which suggest an incremental approach at the lower level.
In consequence, the project will be developed in an incremental approach. In each
iteration we design, develop and test a series of functionality. There are three main
releases: the alpha, the beta and the final release. After each release, we will work with
a focus group testing the application and providing feedback from the release, which we
will use to correct mistakes from the previous version in the following one. It also will allow
us to decide whether to add or not new functionality to the system. More information on
RUP can be found in [17]. We chose it because it is adaptable to our necessities and
very commonly used in big projects (that is why it is studied during the degree). It also
fits better with a final degree project by the documentation it generates.

Although the project is initially presented in a “classic” project management philosophy
and methodology and because of this we will stick to the basic principles in project
management described in [23], we take some ideas from the Agile philosophy to keep a
fluid, change-receptive environment. The main characteristics that we want to take are:

• Develop close to the “business people”: we will work very close on each version
with the director of the Fundació ACSAR, Jordi Tolrà, to make sure we are going
in the right direction. Several meetings will be planned (depending on his agenda)
and we will make use of video-conference and chat technologies to keep in contact
with him the whole time of the development. For this reason, Jordi is included as a
member of the team in the project charter.

• Self-documented code: despite of elaborating this complete documentation be-
cause it is a final degree project, we advocate for a self-documented code. The
code will be intensively commented and as clear as possible to ensure future
developers which might need to work on the project will be able to do so producing
effective code in a very short period of time.

16 CHAPTER 3. PROJECT MANAGEMENT

• Face-to-face conversation as the most efficient and effective way to communi-
cate: as previously stated, meetings and the use of video-conference and chat
technologies will be fundamental for a good communication.

• Working software is the primary measure of progress.

• Continuous attention to technical excellence and good design.

Still, and even though we would like to have means of doing it, we do not have a
common place of work, available schedules and other requirements to follow a complete
Agile philosophy (even more, this extensive documentation that is, with reason, required
to evaluate a final degree project goes, in essence, against the Agile principles somehow),
so we want to leave clear we are not following an Agile method (like they could be Scrum,
XP, CI...), and in consequence there will not be in this document user stories, planning
poker or other Agile-specific methodology. More information on the Agile philosophy can
be found in [1]. Notice the sixth edition of [23] includes now an “Agile Practice Guide”,
too.

The inception phase, the stage we are currently dealing with, will allow us to plan
project, elaborate the requirements, have a clear vision of what we want to do in a
general sense and preview times, costs and risk. The elaboration and the construction
phases, dedicated to the conceptual design of the whole system and the corresponding
implementation respectively, will be split into the two main components of our system
(the DB with the API and the front-end application). Since the API can be developed
without the front end and the front end still needs some discussion, we prefer to break
both phases into two halves and design and implement the back end first and then design
and implement the front end. The transition phase will consist on the beta testers work
and the final corrections to get the product to the final users, as well as taking the system
through an evaluation period after the final release (which will be in October).

3.4 Configuration management
The configuration management allows us to ensure the integrity of the products of our
work. It is, in consequence, an essential part to elaborate any project. We have to keep
control of the documentation of the final degree project (which is, at the same time, the
documentation of the development of the project) and the code itself.

To control the code itself we use one version control mechanism of the several options
available in the market. In our case, we have chosen Git since it is the one which all
the members of the team are used to and it is really comfortable. To avoid loosing the
data we will keep our local git repository synchronised with GitHub1. The three marked
releases (alpha, beta and final) will be tagged in the repository so they can be accessed

1The url of the GitHub repository is https://github.com/david-campos/app4refs and it will
be publicly available at some point in time, probably before the final release.

https://github.com/david-campos/app4refs

3.5. A SHORT NOTE ON THE REQUIREMENTS 17

easily at any point in time. Although the project will be developed by only one person,
Git is a reliable tool to develop in team.

To keep track of the documentation you are reading, and since it is created with LATEX,
we elaborate it in ShareLaTeX, which is an open-source online service and will keep our
files even if we suffer from some computer breakdown. Other files related to the project
are preserved by the Fundació ACSAR, and also in the personal Google Drive of the
developer. Each important communication is performed through email to keep a register
of them.

3.5 A short note on the requirements
Although the requirements capture was elaborated at this point in the project inception
phase, it is long enough to require of its own chapter. For this reason, we decide to move
the requirements capture document to the chapter 4. In the following analysis we will
make use of the use cases specified during the analysis, but by now we will not explain
them in detail. We will introduce here only their brief-style description for it to serve as a
previous introduction. For a detailed explanation on the use cases, refer to the section
4.2.4.

This section serves as a quick-reference to check the purpose of each of the use
cases of the system. There are 10 main use cases and 3 other ones which are different
versions of the same main one (3.1, 3.2, 3.3). All the use cases displayed are based on
the meetings established with the Fundació ACSAR director and the engineer directing
the project.

UC1. Get category items: Actors: User, Greek Team Member. The system
back-end receives a request for the items of a specified category and it returns the list of
the solicited items.

UC2. Get subcategories: Actors: User, Greek Team Member. The system back-
end receives a request for the subcategories of a specified kind and it returns the list of
the categories of that kind.

UC3. Check locations: Actors: User, Maps Provider. The users choose the
type of categories they want to check, so the categories are shown to them. After this,
they pick a category to see the items inside it. They can pick an item to check its position
on the map and how to get there or check the position of all the items in the category.
This use case is a generalisation of 3.1, 3.2 and 3.3.

UC3.1. Get general information: Actors: User, Maps Provider. This is a child
use case for UC3. Check locations, in this case the user chooses to visualise
locations which can provide him/her with general information.

UC3.2. Get services: Actors: User, Maps Provider. This is a child use case for
UC3. Check locations, in this case the user chooses to visualise locations which
can provide him/her with services (like WiFi places, showers,...).

UC3.3. Find leisure places: Actors: User, Maps Provider. This is a child use
case for UC3. Check locations, in this case the user chooses to visualise locations

18 CHAPTER 3. PROJECT MANAGEMENT

where he/she can spend his/her spare time and integrate with the cultural activity of the
city.

UC4. Check links: Actors: User. The user is offered some categories to pick one,
when one is picked the items of that category are shown. No map available, only web
links and the other information about the item.

UC5. Check online help: Actors: User. The user is offered some categories of
different topics he/she may need help with. When picking one he/she is redirected to a
web page where he/she can find that kind of help.

UC6. Make emergency call: Actors: User. The user clicks the emergency call
button and a call to the emergency services is started.

UC7. Update item: Actors: Greek Team Member. The member of the Greek
team, logged into the control panel, selects the items he/she wants to update. He/she
can change the values of the items and the associated opening hours as he/she pleases
(except the item identification, which remains invariable) and finally the system validates
and stores the data.

UC8. Delete item: Actors: Greek Team Member. The member of the Greek
team, logged into the control panel, selects the items he/she wants to delete. After a
confirmation dialog the items are deleted.

UC9. Add item: Actors: Greek Team Member. The member of the Greek team,
logged into the control panel, selects to add a new item. He/she fulfils a form with all the
required data and add all the opening hours periods they wish. He/she also provides an
image for the item. The system validates the data, re-sizes and crops the image into the
right format and stores everything.

UC10. Log in: Actors: Greek Team Member. A member of the Greek team,
introduces a user name and a password to access the control panel. The system
registers a session for this user and certifies them they are logged in.

3.6 Use case point analysis

In this section we will make the UCPA to estimate the effort required by the project. This
is a usual process to forecast the software size when developing systems in UML in the
context of a rational unified process. We start this by assigning to each actor a weight as
defined in the table 3.2 and add them all together for each use case in accordance with
the following formula2:

UAW =
∑

a∈actors
weight(a)

Our system has three actors, two of them humans (User and Greek Team Member),
so we assign them a weight of 3. We assign 1 to Maps Provider cause map providing
systems have clear specifications. So our final UAW is 7.

2UAW stands for unadjusted actor weight.

3.6. USE CASE POINT ANALYSIS 19

Complexity Weight Criterion
Simple 1 Another system which offers an API
Medium 2 Another system with another kind of interface
Complex 3 Human interaction

Table 3.2: Actors complexity evaluation and criterion.

Complexity Weight
Criterion

Work GUI Entities
Simple 5 Simple Simple 1
Medium 10 Medium Medium 2
Complex 15 Complex Complex >2

Table 3.3: Use case complexity evaluation and criteria.

Now we need to evaluate the complexity of our use cases, to do this, we use as
reference the table 3.3. With the help of said table, we assign a punctuation of 5, 10
or 15 to each use case based on its complexity. This complexity comes determined
by the complexity of the work, the GUI and the number of entities implicated. When
we have all the values we add them up to get the UUCW3. The table 3.4 shows the
values considered for each of the factors in the criteria and the final use case complexity
decisions, as well as the final UUCW.

Use Case Work GUI Entities Final Weight
UC1 Medium Medium >2 Medium 10
UC2 Medium Simple >2 Medium 10
UC3 Medium Complex >2 Complex 15
UC4 Medium Medium >2 Medium 10
UC5 Simple Medium >2 Medium 10
UC6 Simple Simple 0 Simple 5
UC7 Simple Simple 2 Simple 5
UC8 Simple Simple 2 Simple 5
UC9 Simple Simple 2 Simple 5
UC10 Complex Medium ? Medium 10

UUCW: 85

Table 3.4: Complexity and values decided for each use case.

3UUCW stands for unadjusted use case weight

20 CHAPTER 3. PROJECT MANAGEMENT

Then, we proceed with the calculation of the technical complexity factor (TCF). To
make this calculation we need to assign a score between 0 (the factor is irrelevant) and
5 (the factor is essential) to each of the elements of the list of 13 factors described in the
table 3.5. The final TCF factor is calculated with the following formula:

TCF = 0.6 +
∑

f ∈ factors weight(f) × score(f)
100

The table 3.5 shows the assigned scores and the resulting sum, too.

Factor Description Weight Score weight × score

T1 Distributed system 2 0 0
T2 Performance 1 2 2
T3 End user efficiency 1 3 3
T4 Complex internal processing 1 2 2
T5 Reusability 1 3 3
T6 Easy to install 0.5 4 2
T7 Easy to use 0.5 5 2.5
T8 Portability 2 5 10
T9 Easy to change 1 4 4
T10 Concurrency 1 0 0
T11 Special security features 1 1 1
T12 Direct access 3rd parties 1 2 2
T13 User-training facilities 1 0 0

Total: 31.5

Table 3.5: Technical factors to estimate the TCF.

As the table shows, the sum of all the weights multiplied by the scores is 31.5, so our
final TCF is 0.6 + 31.5/100 = 0.915.

Last, but not least, we have to obtain the environmental complexity factor. This
value takes into account all the factors relative to the project, context, etc. that are
not manageable and can influence the project. There are eight factors which we must
evaluate from 0 to 5. These values are multiplied by the given weights and added up to
obtain the environment factor (EF). The final ECF is calculated with the following formula:

ECF = 1.4 + (−0.03 × EF)

The table 3.6 shows our calculation for the environmental complexity factor, with
the 8 factors defined by the method. We assign a value of 2 to the familiarity with the
development process because it is something the developer has studied deeply along
his degree, but it is not something he has experience with. We assign 2 also to part-time

3.7. COST MANAGEMENT 21

Factor Description Weight Value weight × value

E1 Familiarity with development process 1.5 2 3
E2 Part-time workers -1 2 -2
E3 Analyst capability 0.5 4 2
E4 Application experience 0.5 3 1.5
E5 Object-oriented experience 1 4 4
E6 Motivation 1 5 5
E7 Difficult programming language -1 2 -2
E8 Stable requirements 2 3 6

Total: 17.5

Table 3.6: Weights and values for the environmental factors to calculate the ECF.

workers because the developer will be a part-time worker for a bit more than the first third
of the project. We assign 4 to the analyst capability, 3 to application experience (since the
developer has been working on the domain, the web applications, for more than 10 years
already, with some pauses to attend other preferences), 4 to object-oriented experience
because object-orientation is a topic which is very long treated during the degree, a 5 in
motivation because it is a really motivating project given its social implication, 2 to the
E7 because the used programming languages are very wide-known and common, but
still not 0 or 1 because JavaScript is a little bit tricky and finally 3 to stable requirements
because although there is a very documented project specification, the meetings with
the director suggest there is a wide margin for changes. With all of this, we obtain a final
ECF of 1.4 + (−0.03 × 17.5) = 0.875.

To obtain the final UCP for the project we apply the formula: UCP = (UUCW+UAW)×
TCF × ECF, which in our case corresponds to a final UCP of (85 + 7) × 0.915 × 0.875 ≈
73.66.

We can estimate now the effort for the application. If we take a value of 22 man hours
per use case point (this value should be adjusted in base of previous projects where this
estimation was applied), we obtain a final effort of 1620.52 man hours.

3.7 Cost management

To estimate the costs of the project we will take our estimation of the effort as the basis.
First of all, we will estimate an effort per role of the team taking a percentage of the total
effort, as shown in the table 3.7. We estimate most of the work in this case will be for
the developer, while designer and supervision will be a 30% and direction a 15%; thus,
we estimate for the developer an effort of 55%. This makes sense because most of the
tasks are assigned to him.

22 CHAPTER 3. PROJECT MANAGEMENT

Role % Effort Hours
Project director 15% 243.078 h
Designer & supervision 30% 486.156 h
Developer 55% 891.286 h

Total: 1,620.52 h

Table 3.7: Estimated effort for each of the roles.

Then, we define a cost per hour for each of the roles in our team, as shown in the
table 3.8. We estimate the social security and other associated taxes as a 40% of the
net salary, and workplace as a fixed cost of 200 €. We include in this fixed cost all the
immobilised material relative to the workplace, such as the wear of the table, computer,
cleaning, etc.

Role Net salary ×Effort SS & others Wrkpl. Cost
Project director 12.6 €/h 3,062 € 1,224.80 € 200 € 4,486 €
Designer & supervision 10 €/h 4,862 € 1,944.80 € 200 € 7,006 €
Developer 8 €/h 7,130 € 2,852.00 € 200 € 10,182 €

Total: 21,674 €

Table 3.8: Estimated costs for each role.

We multiply add to the result a 15% more of structural expenses (like water, electricity
and similar indirect costs) and a 10% for contingencies. Resulting in a total of 27,000 €,
as shown in the table 3.9.

Cost Structural Contingencies Final
21,674 € 3,251.10 € 2,167.40 € 27,092.50 €

Table 3.9: Final estimated cost of the project.

Time after the estimation shown above, we decided to contract to the maps service
an extra limit of 100 € / month over the 200 $ that Google4 gives you for free, until May
2019. Since the release of the application, in October 2018, it makes a total period of 8
months. We estimate that this quantity of connections is hardly reachable and that we
will have more than enough this way5. In the worst case, 8 months with 100 € / month
is still totally inside the 2,000 € estimated for contingencies, so the cost of the project
remains unchanged.

4Later in the project, we decided to use Google Maps to display the maps in the application.
5Google Maps API has now a pay-as-you-go billing model, so you pay in function of the number of

requests attended. The price for each request to the Directions API is 0.005 USD. Google allows for an
initial margin of 200 USD per month, which is equivalent to 40,000 requests.

3.8. SCHEDULE MANAGEMENT 23

3.8 Schedule management
When planning the schedule of our system we have to keep in mind we are strictly re-
stricted by some external impositions on the required dates and the expected functionality
for them, which in the end cause the project to be a bit unbalanced over time. The first
release, the alpha counts with too much functionality and overlaps with the developer
finalisation of studies (which have a very huge workload) so it gets really heavy, while the
final release counts with a very relaxed month dedicated to minor corrections and (maybe)
some extra required functionality lately discovered when testing the first two releases with
the focus groups. Some of the releases already have a group of functional requirements
associated. The imposed dates and associated requirements are as following:

• The alpha release, on August 1, 2018. It should include the complete implementa-
tion of FR-1, FR-2, FR-7, FR-8, FR-9, FR-10, FR-11, FR-12, FR-13, FR-14.

• The beta release, on September 1, 2018. It should include the complete imple-
mentation of FR-3, FR-4, FR-5, FR-6. Posterior modifications amplified this with
the functional requirement FR-15 (check the risk RS-13 in the section 3.9.3 for
more information).

• The final release, on October 1, 2018.

• The project end data, on October 31, 2018.

As described in the section 3.3, our project is divided into the common four phases
of RUP, inception, elaboration, construction and transition, but the two central parts
(elaboration and construction) will be made for each component (the API and the front-
end) at each time and divided along the different releases. We organised the periods
as represented in the table 3.106. We assign around a 10% of the whole available time
to the inception, around an 80% for elaboration and construction and a bit more than
the 10% to the transition at the end. We start the table on May instead of April because
it is when the developer really enters the project (although it technically starts in April,
previous time was spent trying to arrange the initial meetings).

For the inception phase we have three tasks: the requirements capture, project
management, and the study of the technologies. We assigned most of the time to
requirements capture and project management as they are considerably larger. We are,
at the moment of writing these lines, in this stage of the project.

The alpha version will contain only the API and the front-end. The API has less
functionality and it requires, in consequence, a bit less dedicated time. Also, we estimate
the Greek team gathering the data should have the initial data ready around the time
to implement the front-end, so we need certain time to load this data into the system.
Testing has very few time dedicated, since after each release there is a long period of

6Although the project runs, in fact, from much sooner, we start the schedule in the dates when I, the
developer, start to work on the project.

24 CHAPTER 3. PROJECT MANAGEMENT

Stage Component Task ≈Duration Dates

Inception
Requirements / proj. mgm. 14 days 01/05 - 18/05
Study on the technologies 3 days 21/05 - 23/05

Alpha

API
Design 10 days 24/05 - 06/06
Implementation 10 days 07/06 - 20/06

Front-end
Design 10 days 21/06 - 04/07
API data loading 2 days ∈(09/07 - 15/07)
Implementation 12 days 04/07 - 22/07

API+FE
Testing 7 days 23/07 - 31/07
Finish documentation 5 days 23/07 - 27/07

Beta

API+FE Testing & correcting alpha 23 days 01/08 - 31/08

API
Design log in 3 days 01/08 - 03/08
Implementation 5 days 06/08 - 10/08

Panel
Design 5 days 13/08 - 17/08
Implementation 7 days 20/08 - 28/08

API+Panel Testing 3 days 29/08-31/08

All
Testing & correcting beta 20 days 03/09 - 28/09

Final
Design 10 days 03/09 - 14/09
Implementation 10 days 17/09 - 28/09

Transition Transition 23 days 01/10 - 31/10

Table 3.10: Project planned schedule. Some of the tasks will be executed in parallel.

testing with the focus group in parallel with the development of the next one, also unitary
testing development time is counted as part of the implementation. In consequence, the
testing indicated at the end of each of the parts is a prerelease testing which does not
need a lot of time but just some checks. Towards the beta release, the control panel
has to be added to the system. We give most of the available time to this because the
other parts should only require of a few adaptations and to complete a bit. We put testing
and correcting bugs with a period of four weeks, meaning this will be done in parallel
with the other tasks along the whole month and should not require too much time. We
also assign a bit more of time for the API as adding the control panel will require to
implement the log in with OAuth. In the final release we give around a 50% of the time
to elaboration and 50% of the time to construction, but this should be a relaxed stage
cause it depends mostly in whether the previous tests show new functionality needs to
be added or changed.

Finally, we reserve the last 4 weeks, the last month, for the transition. We will make
use of all the period that comes after the final release to make a general diagnosis of the

3.9. RISK MANAGEMENT 25

project and follow its results in the first month, maybe applying some extra bug fixes.
The figures 3.2, 3.3, 3.4 show the Gantt diagram of the planned schedule, it has

been split into three parts (because of the paper limitations) and rotated so it can be
read better, the numbers of the rows are preserved in each fragment to facilitate reading,
allowing to keep track of the task we are on.

3.9 Risk management
To finish this chapter of project management, we perform a risk analysis. This is of
vital importance for any project, and specially for such a long and complex one. A bad
management of unexpected risks can cause the project to be cancelled so it is important
not only to identify the possible risks, but also to define effective methods to prevent,
eliminate or minimise their impact. This point is crucial to avoid getting out of the budget
or missing the deadlines.

3.9.1 Risk measures
To evaluate the different identified risks, we will use the following measures during their
analysis and cataloguing:

• Likelihood: whether and how much the risk is likely to happen or not. We will
assign the following values:

– Unlikely: the risk is very unlikely to ever happen.
– Possible: the risk probability is between a 30% and a 70%.
– Likely: the risk is very likely to happen.

• Impact: an evaluation of the extra time, effort or costs which the risk would suppose
to the project development. We will assign the following values to this measure:

– Tolerable: the repercussion of the risk would be almost unnoticeable. Only
small variations on the planning would be needed. The final product shall be
unaffected.

– Severe: the repercussion of the risk is important for the project. It can cause
big variations on the planing or the resulting product.

– Critical: the repercussion of the risk can cause the cancellation or complete
failure of the project.

• Exposition: a combination of the previous factors to try to give an associated
priority to each one of them. We will evaluate it with a number from 1 to 5. The
table 3.11 shows the combinations of said measures and the resulting value for
each of them.

26 CHAPTER 3. PROJECT MANAGEMENT

Figure 3.2: Gantt diagram, part I.

3.9. RISK MANAGEMENT 27

Figure 3.3: Gantt diagram, part II.

28 CHAPTER 3. PROJECT MANAGEMENT

Figure 3.4: Gantt diagram, part III.

3.9. RISK MANAGEMENT 29

Likelihood
Unlikely Possible Likely

Impact
Tolerable 1 2 3

Severe 2 3 4
Critical 3 4 5

Table 3.11: Risk exposition measurement given the probability and the impact of a risk.

3.9.2 Risk palliation strategies

Four kinds of strategies will be applied to each risk, depending on the risk itself and the
situation:

• Prevention: these strategies try to preview the apparition of the risk before it
happens.

• Minimisation: these strategies are intended to minimise the impact of the risk
when it appears.

• Contingency plan: these strategies shall enter in action once the risk has already
happened with the aim to nullify or reduce it.

• Acceptation: the risk is assumed with its consequences, this applies to any of
the risks when no other strategy has the expected effect.

3.9.3 Risk specification

Finally, we present the risk specification, sorted by exposition and likelihood. We include
some indications on the risks which have appeared and a brief description of what has
been done about them.

30 CHAPTER 3. PROJECT MANAGEMENT

RS-1 Impossible functionality Exposition: 5
Description: The current web technologies do not allow to implement some

of the required functionality.
Indicators:

• A functionality cannot be implemented because it is not
possible in web applications.

Contingency plan: Try to reformulate the functionality to provide a similar one, in
other case discard it.

Happened on 17/07/18 On FR-12, it is not possible to start a call directly from a
web page in many phones, the system will only show the call
window with the telephone of emergencies, but another click
will be required to make the call to the emergency services.
NFR-13 is still accomplished.
Likelihood: Likely Impact.: Critical

RS-2 Excessively optimist planning Exposition: 4
Description: The planning assigns too short time to the tasks and, in conse-

quence, a delay in the development appears. It is especially
likely to happen during the development of the alpha release.

Indicators:
• Tasks extending further than the planned time.

• Non-implemented requirements on the release dead-
lines.

Minimisation: Check planning at the end of each week and readjust.
Contingency plan: Postpone requirements to next release, cancel them or com-

pensate with another parts of the planning.
Happened on 22/07/18 Front-end implementation has gone a bit further than planned

and documentation for the final project needs still a lot of work.
We did not move any functionality to the beta release but the
testing will be performed only between the 30 and 31 of July.
Likelihood: Likely Impact.: Severe

3.9. RISK MANAGEMENT 31

RS-3 Complications on deployment Exposition: 4
Description: The access to the deployment server is not complete or there

are problems with the URLs to serve the application or related
issues.

Indicators:
• The deployment generates lots of problems and a big
loss of time.

Prevention: Design both the API and the PWA in a way that it is easy
to deploy, add configuration elements to allow the system to
adapt to the deploy environment.

Happened on 02/07/18 Complications with the deployment of the database because
of incompatibilities due to an old version of MariaDB in the
server. The deployment of the database delayed for some
days more than expected.

Happened on 18/07/18 Problems with the Service Worker which provides the pre-
cache and dynamic cache because of a misconfiguration in
the redirection at the root of the domain. Solved given access
to the root of the domain to the developer.
Likelihood: Likely Impact.: Severe

RS-4 Undetected risks Exposition: 4
Description: Something bad happens and the risks specification did not

have it in account.
Indicators:

• New risks appear during the evolution of the project

• A negative situation which affects the development ap-
pears and it is not contemplated in the risks manage-
ment.

Prevention: Perform a rigorous revision of the risks identification.
Contingency plan: Id it has not happened yet, edit the risks management adding

the new detected risk as soon as possible.
Happened on 12/7/18 New risk RS-8 added.

Likelihood: Possible Impact.: Critical

32 CHAPTER 3. PROJECT MANAGEMENT

RS-5 Excessive schedule pressure Exposition: 4
Description: The schedule makes excessive pressure over the developers

getting to affect the quality of the product. This requirement
is suggested by Capers Jones as one of the most serious in
[16].

Indicators:
• The developer suffers from serious stress problems
caused by the project.

• The designs or the code loose their quality.

• Sticking so hard to the planning that the topic of the time
bounds interrupts the realisation of the other processes.

Prevention: Do not stick too hard to the planned schedule.
Contingency plan: Stop the process. Remake the schedule. Do extra hours.

Take some time away from the project (maybe leave some
task to do for the weekend).
Likelihood: Possible Impact.: Critical

RS-6 Compatibility problems Exposition: 3
Description: The functionality does not work on some of the required sys-

tems in the way it should.
Indicators:

• The focus groups show certain functionality does not
work on certain systems.

Prevention: Make use of highly-standardised technologies for every vi-
tal functionality. Use tools to enhance CSS and JavaScript
compatibility.

Contingency plan: Correct the compatibility problems.
Likelihood: Likely Impact.: Tolerable

3.9. RISK MANAGEMENT 33

RS-7 Incorrect data format for importing Exposition: 3
Description: The Greek team gathering the initial data did not respect

correctly the indicated format.
Indicators:

• The automation on loading the data fails.

Prevention: Give clear and concise indications about the format of every
field in the document and the image files names.

Contingency plan: Correct the data manually.
Happened on 12/07/18 The data provided by the Greek team did not follow the indi-

cations they were given correctly. There is a lack of images
in some elements and the naming convention has not been
strictly followed. They have been corrected manually.
Likelihood: Likely Impact.: Tolerable

RS-8 Unavailable information Exposition: 3
Description: Some of the information required for the application might not

be found.
Indicators:

• There is one or more categories with no content.

• There is one or more items with no address, coordi-
nates, schedule...

• There is one or more items with no image.

Contingency plan: Discard the categories or the items, try to look for them man-
ually in Athens, look for alternatives or, in the case of the
images, make placeholder images.

Happened on 12/7/18 There are no items for the Transport category, we changed
this category to be a link pointing to Google Maps.

Happened on 12/7/18 There are no icon images for some of the items gathered,
placeholders have been made.
Likelihood: Likely Impact.: Tolerable

34 CHAPTER 3. PROJECT MANAGEMENT

RS-9 Illness Exposition: 3
Description: The developer is ill and he cannot continue developing the

project for some time.
Indicators:

• The developer suffers a sick leave.

Minimisation: Keep the hygiene and security standards on the working
place.

Contingency plan: Re-plan the project as possible. Pact with the team a new
distribution of the functionality over the releases, new release
dates or/and extra hours.

Happened on 05/07/18 Stomach problems. Two days away from work, compensated
working harder on the weekend. The stomach continued
hurting for two weeks more, but much less so it was possible
to work anyways.
Likelihood: Possible Impact.: Severe

RS-10 Release out of time Exposition: 3
Description: One of the planned versions is released later than planned.

This would be totally unacceptable since public meetings are
already arranged.

Indicators:
• A version of the application should be released 3 days
ago and it is still unreleased.

Prevention: Adjust requirements for the releases as the project advances.
Likelihood: Unlikely Impact.: Critical

RS-11 Failures in data leading to dangerous places Exposition: 3
Description: The data stored in the system includes physical locations

and the project will be working with people in risk of social
exclusion. The failures in the locations or the routes could
lead the users to dangerous places for them.

Indicators:
• A user is led to a place which suppose danger to his
integrity by he application.

Prevention: Check the data of the application before the release, make
sure no dangerous places are given by mistake.

Minimisation: Use a legal disclaimer rejecting the responsibility over the
data and the consequences of its use.
Likelihood: Unlikely Impact.: Critical

3.9. RISK MANAGEMENT 35

RS-12 Change in the deadlines Exposition: 3
Description: The imposed deadlines are changed to a sooner date, reduc-

ing the time available and invalidating the project plan.
Indicators:

• The director indicates the deadlines for the releases
have changed.

Minimisation: Develop tasks in the minimum (reasonable) time possible. If
we go quicker than planned readjust the plan to leave space
later for changes.

Contingency plan: Re-elaborate the planning, change the functionality assigned
to each release or make extra-hours if necessary.
Likelihood: Unlikely Impact.: Critical

RS-13 Requirements amplification Exposition: 2
Description: The director demands new requirements or the focus groups

show some kind of unexpected functionality is needed.
Indicators:

• There are new functionality required by the director or
focus groups.

Minimisation: Try to keep close contact with the director to assimilate
changes as soon as possible. Construct a good design with
high tolerance to changes.

Contingency plan: Design and implementation. There is time for new function-
ality development contemplated in the initial planning before
the final release.

Happened on 08/06/18 During database implementation it was decided not to check
one of the constraints of the relational model in the database,
and let it to the control panel interface, adding a new require-
ment to ensure this is achieved. More information in the
section 6.2.1.
Likelihood: Possible Impact.: Tolerable

RS-14 Hardware failure Exposition: 2
Description: The hardware used for the development suffers some break-

down and it is not available.
Indicators:

• The system used for the development does not work.

Minimisation: All files of the project should be backed-up externally.
Contingency plan: Call to the technical service, use public-accessible computers.

Likelihood: Possible Impact.: Tolerable

36 CHAPTER 3. PROJECT MANAGEMENT

RS-15 Bad requirements specification Exposition: 2
Description: The requirements are ambiguous or too far from the director’s

perception of the application expected functionality.
Indicators:

• Difficulties or misunderstands appearing when talking
about the requirements.

• Undesired/unexpected functionality presented to the
director.

Prevention: Elaborate requirements in a detailed, exhaustive way. Keep
close contact with the director about the product development.
Talk explicitly about all the requirements with him.

Contingency plan: Correct the requirements making sure they are adequate and
clear now.
Likelihood: Unlikely Impact.: Severe

RS-16 Incorrect design Exposition: 2
Description: The design created for some part of the system contains

mistakes which difficult the implementation.
Indicators:

• Design smells.

• Ambiguous/confusing diagrams.

• Something results impossible to implement in the way
it is designed.

Prevention: In the inception phase, ensure a complete and clear analysis
of the domain and give a clear general idea of the solution.
Check several times all the diagrams of the design in detail.
Make usage of design patterns.

Minimisation: Keep the diagrams clear, simple and readable. Implement
the application with people with deep knowledge on the envi-
ronment to be able to find alternative solutions to mitigate the
problem.

Contingency plan: Correct the design during implementation.
Likelihood: Unlikely Impact.: Severe

3.9. RISK MANAGEMENT 37

RS-17 Silver bullet syndrome Exposition: 2
Description: There is the belief that the next big change in the procedures

or resources will miraculously solve all the current problems of
the project. This requirement is suggested by Capers Jones
as one of the most serious in [16].

Indicators:
• The management insists that some given functional-
ity will change completely the success of the product
between the focus groups.

Prevention: Pay attention to the results with the focus groups and establish
direct and realistic solutions to each of the detected problems.

Minimisation: Keep a realistic vision of the project and its limitations.
Likelihood: Unlikely Impact.: Severe

RS-18 Problems to understand the technologies Exposition: 1
Description: The developer has problems to understand some of the em-

ployed technologies, delaying the development process.
Indicators:

• Some technology required to implement the system is
not well understood.

Prevention: Take advantage of the time indicated in the planning to get
deeper in the knowledge about the technologies with which
the team feels less comfortable.

Contingency plan: Check reference books or online help on the topic. If the
technology affects a small section of the project, look for
alternatives.
Likelihood: Unlikely Impact.: Tolerable

38 CHAPTER 3. PROJECT MANAGEMENT

Chapter 4

Requirements capture

In this chapter we will analyse the context of the application and the requirements it
should accomplish. It will allow us to have a general vision of the solution, also described
here, and provide us with the necessary elements to correctly evaluate our progress
through the development as well as orientating us towards a more adequate solution to
satisfy all the parties involved.

4.1 Context study

The study of the context of our system is a previous step before starting defining all
the requirements for it. We need to make sure we have a clear understanding of the
circumstances which surround the project and how they can influence the success or
failure of our final system.

4.1.1 Current situation

As the director of the ACSAR foundation indicated, and based on the enquiries made
in-place in Athens, the refugees are currently using their smart phones for their everyday
life. The main application they use is Google Maps, which allows them to move around
in the city (and, as some of them told us, even helped them to cross some borders). The
main problem they suggest is the lack of an application which gathers together all the
information they need to face the problems which being a refugee in a foreign country,
and more specifically in the city of Athens, entails. Searching on Google can be a very
hard task, as information can be too few, making it very difficult to find meaningful results,
or too much, making it very difficult to filter it and pick the reliable, better one.

To this, we have to add that the refugees suffer from a deep isolation from the rest
of the society. There are some serious problems of racism and their conditions living
in irregular places aggravate the situation making it even harder for them to integrate.
They need not only an app to provide them with access to the general information about

39

40 CHAPTER 4. REQUIREMENTS CAPTURE

their situation and useful resources, but also with some kind of point of access to start
integrating with the community, participate in recreational stuff and be closer to the other
citizens.

Finally, the refugees need some tool to make them feel more empowered, as their
conditions in the host country have had a negative psychological influence on many
of them. Having the right information at their fingertips would allow them to feel more
confident, which at the same time would increase their approach to the rest of the society
around them and take them back to a more active, participatory life in the host country.

4.1.2 Project vision and opportunities

Our project is intended to be that app that will provide the refugees with the necessary
information to feel safer, empowered and integrated in their new environment, getting
them closer to common activities. To this purpose we need the application to be as simple
to use as possible, since we want the users to quickly adapt to it. We should not forget
we are dealing, in most of the cases, with people living in very hard conditions which
need an application to help them rather than something to learn how to use and waste
time on. In this same sense, it would be nice for the application to be understandable
by any person without the need of a specific language, since we worked in place with
people from very different countries with completely different languages and cultures.
We have to be really careful in this sense, as some symbols might be misunderstood by
some people depending on their culture and traditions. The application is also expected
to have the ability to run correctly in many different devices.

There are a couple of points where we have the opportunity to improve the experience
of our target users:

• The information provided, since right now they have no trustworthy, official font of
information available. Our application will be recommended in the refugee centres
and NGOs, we count with the collaboration of some institutions in the city and the
support of the European Union. In this sense, our application offers an initial point
of confidence which we can enhance keeping very up-to-date, well filtered and
reliable information.

• A close work with the refugees. Other existing systems failed mainly because
they did not count with their target users during the development of the system.
Our system development will be completely oriented by the enquiries and tests
made in-place with the real target users. We want them to feel comfortable with
the application, achieve an easily understandable interface and to know what their
real needs are.

This two main points are crucial to the success of our project.

4.1. CONTEXT STUDY 41

4.1.3 Interested parties
In this section we will try to identify all the parts interested on our system and what is
their role and interests in the project.

• The refugees: they are clearly interested parts, as they are the target users of our
application. Their role in the system is to be the final users. Their main interest
is to improve their situation and life, getting access to more specific, reliable and
useful information.

• The other citizens: they are indirectly interested, since the use of the app will
improve the approach between the refugees and the rest of the society, improving
the peace and quality of life for both of them.

• The NGOs: they are needed to provide the information and the real help our
application gives access to. Their role in our system will be to provide information
and to attend the refugees which will get to them through our system. Their main
interest is to make their labour more effective and accessible.

• The Greek Forum of Migrants: their role will be to recollect the necessary infor-
mation to the first release of the application and to keep the information updated
through an administration panel that we have to design in the latest versions of the
system. They are interested because helping refugees is a main part of their job.

• The Athens/Greek government: they are both politically and economically inter-
ested in improving the situation of the refugees. Both because they need to give a
good, solidarity image and because they are interested in the increase of the level
and quality of life of their citizens. Their role will be also to provide information for
the system and answer the requests of the refugees who get to them using our
application. Their interest is to achieve a better coexistence between citizens and
refugees, and get these last ones to participate more in the social activity, creating
economical and social wealth for everyone.

• The European Union: the project can have big implication, and its scope can be
gradually increased to reach the whole Europe. Because of this, the European
Union is also an interested party. They are the main font of financing (through the
AMIF) of the project.

• The Fundació ACSAR: they are the ones who led the working package designed
to develop the app. Their role is to take all the major decisions and provide the
team with the general vision, the context and all the necessary information. They
are interested because helping refugees is the main intention for the creation of
the foundation.

• The Universidade de Santiago de Compostela: the university of Santiago de
Compostela is the leader of the whole UNINTEGRA project, in which this project is

42 CHAPTER 4. REQUIREMENTS CAPTURE

embedded. In this application, in concrete, its role is to provide a team to perform
the implementation of the application. It is interested because it is an educational
institution and so it watches over the advance and improvement in the quality of
life for everyone.

• The development team: our role is to perform the implementation of the application
following the guidelines stated by the Fundació ACSAR to turn the application into
a real thing. We are interested because we want to help people with my job and,
in my case, because it is my final project which (hopefully) will allow me to get my
degree too.

4.1.4 Systems to interact with

Our system will dispose of all the required information, only needing to interact with
Google Maps to display the location information in a way the users are already used
to. It will need also to redirect to the pages of the NGOs or the public services in some
concrete cases.

Google Maps API provides a really simple interface for several platforms which will
allow us to show high-quality, interactive maps in our project with a very low programming
effort.

4.2 Requirements specification

Now that we understand the context of our system, we can define the requirements
for it. We will start by the stakeholders, then define the objectives of the system, the
general vision and how it fits with our proposed solution, the functional and non-functional
requirements and finally a conceptual data scheme to work with in the design phase.

4.2.1 Stakeholders of the system

We understand here stakeholders as those interested parties directly related to the use
of the system. We want to know who they are and what they expect from our system to
develop the right solution for them. To get the cooperation of the stakeholder we need
to keep in mind that a person will only use a software if the reward for using it is bigger
than the cost, and the identification of this two elements is the main aim of this section.
The following ones have been identified based on the interested parties of the context
analysis:

• The refugees: they are the final user of the application. They expect the system
to be easy to use and to provide reliable, useful information they can understand.
The reward for them is really big, since they get to move around and integrate in

4.2. REQUIREMENTS SPECIFICATION 43

the unknown city they are now faster, while the cost will be as low as we get the
interface to be simple and easy to understand.

• The greek forum of migrants: they will be the people who will use the administration
panel to keep the information in the system up to date. This is crucial to provide the
final users with useful information. They expect the system to be easy to use an
to allow them to modify the categories, links and other information of the system.
The reward for them is to expand their work and reach more people in a more
effective way. The cost to pay will be learning how to use the system. In this sense,
the system will succeed if they find it easy to use and flexible enough to offer the
information they want to provide in a clear way.

• The Fundació ACSAR: they are the leaders of this project. They expect it to be
cheap and to be developed fast and effectively. The main reward for them is the
project itself, while the cost depends on the time of development.

For the sake of simplicity, we decide to group all the refugees under a single group,
although there are lots of different people with subtle differences in their interests. This
shouldn’t suppose a problem since they all share the main interest and cost.

4.2.2 Goals
We describe now the objectives of the system. It is important for this goals to be SMART1:
specific, measurable, achievable, relevant and time-bounded.

1. Providing the refugees with useful, updated information: all the information
for the system should be valid in the moment it is accessed, all outdated information
should be out of the system. The users should declare the information to be useful
in the enquiries. The information should be available from the same moment the
application is released and cover, at least, the following aspects:

• Relevant places location: public office for social service, unemployment,
insurance, etc. Also other relevant places decided with the help of the Greek
Forum of Migrants.

• Information after arrival: how to get a tax number, insurance, how to open a
bank account, how to get a health insurance, etc.

• Geo-located services: food, clothes, showers, health, LGTB+ information,
children services, women, disability...

• Leisure information: free activities where users can enjoy their time with their
family and participate in the life of the city they are in. Divided in different
areas (like cultural activities, educational activities, open places, sports...).

1There are several definitions of SMART, depending on the author, we will stick to the indicated ones.
The differences between them are minor and they share a common vision of the task.

44 CHAPTER 4. REQUIREMENTS CAPTURE

• Links to useful resources on the web about education, refugee information,
public and emergency phones and sites, established communities, etc.

• Quick button to access the emergency number in case of needing it.

2. Offering the information in the most international way possible: using writ-
ten languages should be avoided whenever possible. Iconography and imagery
should replace the text. When writing is unavoidable several languages should
be available, at least English, Greek and Arab. In the enquiries after the release
all the users should declare to have understood all the sections and items of the
system without any problem.

3. General use by part of the refugees: we expect, at least, a 30% of the refugees
in Athens to make use of the application in the two months following the release of
the application.

4. Refugees integration and inclusion: we expect, in the six months after the
release of the system, the statistics of refugees inclusion and integration to get
a substantial increase. We expect also the numbers of refugees in precarious
conditions to be reduced at least a 10% in the same time.

4.2.3 General vision of the proposed solution

Based on the data and guidelines provided by the Fundació ACSAR and the previous
stated information, the following system structure is proposed: a Progressive Web
Application implemented in JavaScript and HTML5 which uses AJAX to connect with
the back-end, a server with all the information of the application, stored in a relational
database and provided through a JSON interface. Using a PWA will have a number of
key advantages:

• The app will work in all devices: mobile phones (iPhone, Android, etc), laptops,
desktops, etc.

• The app can be accessed from any web browser without having to install anything.

• The app can be added to the home screen of the device to interact with it as a
native app would do.

• Using the cache features, the app can be used offline when there is no internet
connection.

During the focus group, it was found that most refugees have phones that are less
than two years old. This means that their mobile phone web browsers are mostly updated
to recent versions and will work well with this technology.

4.2. REQUIREMENTS SPECIFICATION 45

The app front-end will have the following main areas. We include some mock-ups
provided by Javier Ideami, designer of the interface and supervisor of the project, to
indicate how the resulting product should look like at first2.

• Home page: The home page will be composed of 6 icons that link to the main
6 areas: Information, services, help, leisure, links and the emergency call page.
Responsive design will be needed to ensure the icons fit nicely distributed in one
single screen on any device, both in portrait and landscape configuration. The
figure 4.1a shows the intended appearance of this screen.

• Emergency call page: This will be a confirmation screen with a large button.
Clicking that button should trigger a phone call to the 112 emergency phone
number.

(a) Example of home
screen.

(b) Example of help area.

Figure 4.1: Home screen and help area mock-ups.

• Top bar: On the top of all the categories and location areas there is a bar that
always contain the same options:

– On the left, a left arrow button to go to the previous screen.

2The icons and some other minor details have changed a lot along the development, these are the first
projected screens to give an indicative idea

46 CHAPTER 4. REQUIREMENTS CAPTURE

– On the right, a home icon which takes the user back to the home screen.

– On the right of the left arrow button, a text which contains the title of the
current section. It is important for this text not to extend beyond the available
space, using ellipsis when necessary.

• Help area: It will contain a grid of icons linking directly with the web pages the
Greek team will provide. When clicking on these icons, external web pages will
open on separate tabs of the browser. The figure 4.1b exemplifies the desired look
and feel for this screen.

• Information, services and leisure areas: These pages will display a grid of icons
which represent different categories. When clicking one of these categories, you
access a page which displays each location that fits with the category. The figure
4.2 shows the expected look of these three screens.

(a) Example of information
area.

(b) Example of services
area, if the screen is not
able to fit all in an scroll bar
should appear.

(c) Example of leisure
area.

Figure 4.2: Information, leisure and services area mock-ups.

The locations will be displayed with the following format:

4.2. REQUIREMENTS SPECIFICATION 47

– An icon, an image in square format and small size. The Greek team will
provide this images. When developing the control panel for the Greek team to
keep the information updated back-end code will be needed to automatically
re-size and format the uploaded images to be used as icons for the locations.

– The name of the location, displayed on the side of the icon.
– The address of the location, displayed just below the name.
– Some icons indicating whether the service provided in the location is free or

not and the supported languages in the link (see below).
– A web link under the icons, clicking on them should open an external tab

on the web browser with that link.
– The opening hours of the place, displayed in a human-readable format.

When it is not possible to get opening hours (because it is purely virtual, for
example) this line will be substituted by a phone number to call to require an
appointment.

– A map button, clicking on it will open the embedded Google Maps screen
showing the location and how to get there.

Figure 4.3: Example of list area, please notice the icons to indicate payment and language
were not added yet.

48 CHAPTER 4. REQUIREMENTS CAPTURE

At the end of the list of locations, there will be large map button. Clicking that
button will open the Google Maps screen displaying in a single map all the locations
of the category. The expected appearance of this screen can be seen in the figure
4.3.

• Google Maps screen: When clicking on the individual map buttons, a map of
Athens with the route to reach the location will be displayed, as shown in the
figure 4.4b. Clicking it again, it will immediately display step by step instructions
about how to get to the location. The figure 4.4c exemplifies this behaviour. When
clicking on the large button below the list of locations all the locations should be
displayed on it, as shown in the figure 4.4a.

(a) Example of embedded
map displaying several lo-
cations.

(b) Example of embedded
map displaying the route to
a given location.

(c) Example of indications
screen inside maps.

Figure 4.4: Maps mock-ups.

During the focus group test in Athens, all the participants agreed that they would
prefer to see Google Maps embedded inside the app rather than leaving the app
to see the maps. So this screen should embed the map into the application. In
all of the maps, the user should be able to zoom, move around and use the main
Google Maps features.

• Links page: The links page works exactly like the previous areas but with no
maps involved. When clicking on the web link of the location, an external web
page will open.

In the final version, the system will also count with a very simple administration panel
which will allow to update, remove and add locations with all their relative information.

4.2. REQUIREMENTS SPECIFICATION 49

4.2.4 Use cases
Now that we have a general idea of the proposed solution, we will specify all the re-
quirements for our system to be considered complete and correct. We start defining our
use cases to make sure we are taking into account all the possible uses when defining
the requirements, defining this way the scope of our project as indicated in the Volere
requirements template [2].

General use case diagram

Figure 4.5: General use case diagram of the system.

The figure 4.5 shows the elaborated use case diagram of the system. Colours have
been used to help to visually group related use cases. The Maps Provider actor

50 CHAPTER 4. REQUIREMENTS CAPTURE

is specified with a slightly alternative notation, only to indicate that it is not a human
actor. The use cases 3.1, 3.2 and 3.3 make reference to the described different location
accesses, and they include getting the corresponding subcategories and, later, getting
the different items3 for one of those categories. The use case 4 is related to the links
section, where we will not use maps. The use case 5 includes getting subcategories
but not getting the category items, since they will be the own categories themselves the
ones which will point to the different web locations. The use cases 1, 2, 7, 8, 9 and 10
have been grouped under back-end to try to give some more meaning to the diagram,
indicating that these use cases are the ones that are strongly related with the back-end
of our system.

Actors

We identified three main actors which will interact with the system:

• User: this actor includes all the habitual users of the application. They will be
mainly refugees in Athens looking for some kind of concrete help. They have
access to all the information the application but they cannot modify it.

• Greek Team Member: this actor corresponds to an arbitrary member of the Greek
team, responsible for updating, deleting and adding the items. The members of
this team are allowed to modify the items in the application to keep the data up to
date.

• Maps Provider: the maps provider is an external actor we will have to interact
with to provide our users with maps displaying the locations they are checking.

Complete specification

Now we define in a detailed, more complete way all the use cases of the system, with
their main scenario and the possible alternatives of their execution. The use cases are
also assigned a priority, which can be low, medium or high, and a list of preconditions
which should be met before the use case main scenario.

3From now on, we will use the term item to refer to any of the basic elements of information that our
application manages. For more detail on what is an item check the section 4.2.7.

4.2. REQUIREMENTS SPECIFICATION 51

Id: UC1 Name: Get category items Priority: High
Actors: None
Preconditions: None
Main scenario:

1. The system receives a request for a list of items given the iden-
tification of a category

2. The system returns the items of the category
3. End.

Alternative scenario 1: (1)
The category does not
exist

2. The system indicates through an error there is no such category
3. End.

Alternative scenario 2: (1)
There are no items in the
given category

2. The system returns an empty answer
3. End.

Id: UC2 Name: Get subcategories Priority: High
Actors: None
Preconditions: None
Main scenario:

1. The system receives a request for a list of categories of a speci-
fied kind

2. The system returns the categories
3. End.

Alternative scenario 1: (1)
There are no categories
of the given kind

2. The system returns an empty answer
3. End.

52 CHAPTER 4. REQUIREMENTS CAPTURE

Id: UC3 Name: Check locations Priority: High
Actors: User, Maps Provider
Preconditions: None
Main scenario:

1. The User chooses to check some kind of locations.
2. The system displays the available categories for this kind of

locations (UC2).
3. The User picks a category of the ones given by the system.
4. The system displays the items for that category (UC1).
5. The User can check all of them. He chooses to see one item

on the map.
6. The system connects with the Maps Provider
7. The system displays the item location on the map, the user

location and a route to get to the item location.
8. The user chooses to check the instructions of the route.
9. The system shows the instructions step by step to follow the

given route.
10. End.

Alternative scenario 1: (2)
There are no categories
of the given kind

3. The system shows that there are no categories.
4. End.

Alternative scenario 2: (4)
There are no items in the
picked category

5. The system shows that there are no items in the category.
6. End.

Alternative scenario 3: (4)
The picked category is a
direct link

5. Instead of displaying the locations, the system opens the link in
a new tab.

6. End.

Alternative scenario 4: (6)
The user chose to see all
the items on the map

7. The system displays all the items locations on the map, as well
as the user location.

8. The user may pick one of the items.
9. Back to step 7.

Alternative scenario 5: (1)
In any moment, the user
decides to finish the in-
teraction

2. End.

Id: UC3.1 Name: Get general information Priority: High
Actors: User, Maps Provider Generalisation: UC3
Preconditions: None
Description: The locations to display provide general information. By now, it

behaves exactly like UC3.

4.2. REQUIREMENTS SPECIFICATION 53

Id: UC3.2 Name: Get services Priority: High
Actors: User, Maps Provider Generalisation: UC3
Preconditions: None
Description: The locations to display provide services. By now, it behaves exactly

like UC3.

Id: UC3.3 Name: Find leisure places Priority: High
Actors: User, Maps Provider Generalisation: UC3
Preconditions: None
Description: The locations to display are places to spend leisure time. By now,

it behaves exactly like UC3.

Id: UC4 Name: Check links Priority: High
Actors: User
Preconditions: None
Main scenario:

1. The User chooses to check some web links.
2. The system displays the available categories for links (UC2).
3. The User picks a category of the ones given by the system.
4. The system displays the items for that category (UC1).
5. The User can check all of them. He clicks on the link of one

item.
6. The system opens the link in a new tab.
7. End.

Alternative scenario 1: (1)
In any moment, the user
decides to finish the in-
teraction

2. End.

54 CHAPTER 4. REQUIREMENTS CAPTURE

Id: UC5 Name: Check online help Priority: High
Actors: User
Preconditions: None
Main scenario:

1. The User chooses to check some online help.
2. The system displays the available categories for help (UC2).
3. The User picks a category of the ones given by the system.
4. The system opens a web page with help in a new tab.
5. End.

Alternative scenario 1: (1)
In any moment, the user
decides to finish the in-
teraction

2. End.

Id: UC6 Name: Make emergency call Priority: High
Actors: User
Preconditions: None
Main scenario:

1. The User chooses the emergency call.
2. A call to the emergency services is started.
3. End

4.2. REQUIREMENTS SPECIFICATION 55

Id: UC7 Name: Update item Priority: Medium
Actors: Greek Team Member
Preconditions: The Greek Team Member is logged in the system.
Main scenario:

1. The Greek Team Member wants to update an item and picks
the type of categories in which the category of the item he wants
to change is.

2. The system shows the subcategories for the type he chose
(UC2).

3. The Greek Team Member chooses one category of the dis-
played ones.

4. The system shows the items of the category (UC1).
5. The Greek Team Member chooses an item and edits any data

in the item, included the opening hours and except the identifi-
cation of the item, as they please.

6. When the item is correct, the Greek Team Member indicates
this to the system.

7. The system stores the information.
8. End.

Alternative scenario 1: (1)
In any moment, the user
decides to finish the in-
teraction

2. End.

56 CHAPTER 4. REQUIREMENTS CAPTURE

Id: UC8 Name: Delete item Priority: Medium
Actors: Greek Team member
Preconditions: The Greek Team Member is logged in the system.
Main scenario:

1. The Greek Team Member wants to delete an item and picks
the type of categories in which the category of the item he wants
to delete is.

2. The system shows the subcategories for the type he chose
(UC2).

3. The Greek Team Member chooses one category of the dis-
played ones.

4. The system shows the items of the category (UC1).
5. The Greek Team Member chooses an item.
6. The system asks the Greek Team Member if he/she is sure.
7. The Greek Team Member agrees.
8. The system deletes the item from data store.
9. End.

Alternative scenario 1: (7)
TheGreek TeamMember
denies.

8. Back to step 4.

Alternative scenario 2: (1)
In any moment, the user
decides to finish the in-
teraction

2. End.

4.2. REQUIREMENTS SPECIFICATION 57

Id: UC9 Name: Add item Priority: Medium
Actors: Greek Team member
Preconditions: The Greek Team Member is logged in the system.
Main scenario:

1. The Greek Team Member wants to add a new item.
2. The system shows a form where they can fill all the attributes of

the item, included the opening hours or the category it belongs
to.

3. The Greek Team Member fills the form and chooses to save.
4. The system stores the new item.
5. End.

Alternative scenario 1: (1)
In any moment, the user
decides to finish the in-
teraction

2. End.

Id: UC10 Name: Log in Priority: Medium
Actors: Greek Team member
Preconditions: The Greek Team Member is not logged in the system.
Main scenario:

1. The Greek Team Member wants to log in.
2. The system shows a form where he/she can fill his/her name

and password to access.
3. The Greek Team Member fills the form and chooses to submit.
4. The system checks the password and name match.
5. The user is logged in.
6. End.

Alternative scenario 1: (4)
Name and password do
not match

5. The system displays an error which contains no information
about the real password or even if the user exists.

6. Back to step 2

Alternative scenario 2: (1)
In any moment, the user
decides to finish the in-
teraction

2. End.

58 CHAPTER 4. REQUIREMENTS CAPTURE

4.2.5 Functional requirements

We proceed now with the functional requirements. Both functional and non-functional require-
ments in this document follow an adapted version of the Volere requirements shell described in
[2]. This shell includes the following parameters:

• Requirement: it indicates the requirement identification.

• Type: it indicates the type (section) of the requirement in the Volere template.

• Use cases: use cases that need the requirement.

• Description: a one sentence statement of the intention of the requirement.

• Rationale: a justification for the requirement.

• Fit criterion: a measurement of the requirement such that it is possible to test if the solution
matches the original requirement.

• Customer satisfaction: degree of stakeholder happiness if the requirement is successfully
implemented. It is scaled from 1 (uninterested) to 5 (extremely pleased).

• Priority: a rating of the customer value. In this document we will rate priority from 1 to 5,
to keep the scale of the customer satisfaction and dissatisfaction described in the Volere
template, meaning 1 the lowest priority and 5 the highest one.

• Customer dissatisfaction: degree of stakeholder unhappiness if the requirement is not
part of the final product. It is scaled from 1 (hardly matters) to 5 (extremely displeased).

We divide them between back end and front end because we want to specify concrete
functionality for each of them.

Back-end

Requirement: FR-1 Type: 9a. Functional requirements Use cases: UC1

Description: Users can obtain items for a given category

Rationale: We want to show and manipulate those items in the front-
end.

Fit criterion: The system should output all the items for the required
category with its opening hours, available languages, etc.

C. satisfaction: 4 Priority: 5 C. dissatisfaction: 5

4.2. REQUIREMENTS SPECIFICATION 59

Requirement: FR-2 Type: 9a. Functional requirements Use cases: UC2

Description: Users can obtain categories of a given type of item

Rationale: We need the subcategories to choose one to check the
items in it.

Fit criterion: The system should output all the stored categories for the
given item type.

C. satisfaction: 4 Priority: 5 C. dissatisfaction: 5

Requirement: FR-3 Type: 9a. Functional requirements Use cases: UC10

Description: Log into the system

Rationale: Only authorised people should be able to edit the data, we
need to check them.

Fit criterion: Authorised users shall be able to make log in and receive
access to the control panel.

C. satisfaction: 3 Priority: 4 C. dissatisfaction: 5

Requirement: FR-4 Type: 9a. Functional requirements Use cases: UC7

Description: Authorised users can update items

Rationale: Authorised people needs to update the outdated data or
correct the incorrect ones.

Fit criterion: The system shall allow the authorised, logged-in users to
choose any item of the system and modify its data (except
the data that identifies the item).

C. satisfaction: 3 Priority: 4 C. dissatisfaction: 5

60 CHAPTER 4. REQUIREMENTS CAPTURE

Requirement: FR-5 Type: 9a. Functional requirements Use cases: UC8

Description: Authorised users can delete items

Rationale: Authorised people needs to delete the outdated or incor-
rect data sometimes.

Fit criterion: The system shall allow the authorised, logged-in users to
choose any items of the system and delete them.

C. satisfaction: 3 Priority: 4 C. dissatisfaction: 5

Requirement: FR-6 Type: 9a. Functional requirements Use cases: UC9

Description: Authorised users can add items

Rationale: Authorised people needs to add new data to the system.

Fit criterion: The system shall allow the authorised, logged-in users to
add new items to the storage.

C. satisfaction: 3 Priority: 4 C. dissatisfaction: 5

Front-end

Requirement: FR-7 Type: 9a. Functional requirements Use cases: UC3.1

Description: The application allows the users to find places to get gen-
eral information about their situation.

Rationale: This is one of the main motivations of creating the appli-
cation.

Fit criterion: The system should display these places in a clear, inter-
cultural way.

C. satisfaction: 5 Priority: 5 C. dissatisfaction: 5

4.2. REQUIREMENTS SPECIFICATION 61

Requirement: FR-8 Type: 9a. Functional requirements Use cases: UC3.2

Description: The application allows the users to find places to get dif-
ferent kinds of services.

Rationale: This is one of the main motivations of creating the appli-
cation.

Fit criterion: The system should display these places in a clear, inter-
cultural way.

C. satisfaction: 5 Priority: 5 C. dissatisfaction: 5

Requirement: FR-9 Type: 9a. Functional requirements Use cases: UC3.3

Description: The application allows the users to find leisure places.

Rationale: This is one of the main motivations of creating the appli-
cation.

Fit criterion: The system should display these places in a clear, inter-
cultural way.

C. satisfaction: 5 Priority: 5 C. dissatisfaction: 5

Requirement: FR-10 Type: 9a. Functional requirements Use cases: UC4

Description: The application allows the users to find useful web re-
sources.

Rationale: This is one of the main motivations of creating the appli-
cation.

Fit criterion: The system should display links to interesting online in-
formation of associations, NGOs, etc.

C. satisfaction: 5 Priority: 5 C. dissatisfaction: 5

62 CHAPTER 4. REQUIREMENTS CAPTURE

Requirement: FR-11 Type: 9a. Functional requirements Use cases: UC5

Description: The application allows the users to find help to their prob-
lems online in a quick way.

Rationale: There are general tasks that refugees need to do when
arriving to the country which should be very quickly and
easily accessible in the application.

Fit criterion: There should be direct links for tasks like opening a bank
account, getting health service...

C. satisfaction: 5 Priority: 5 C. dissatisfaction: 5

Requirement: FR-12 Type: 9a. Functional requirements Use cases: UC6

Description: Users should have available some button tomake an emer-
gency call.

Rationale: Refugees can be trapped in dangerous situations or need
quick attendance, many of them do not know which are
the emergency numbers in Athens.

Fit criterion: There should be a way to make a call to the emergency
services in the application. This should be also easy to
find.

C. satisfaction: 5 Priority: 5 C. dissatisfaction: 5

Requirement: FR-13 Type: 9a. Functional requirements Use cases: UC1,
UC2, UC3, UC4,
UC5

Description: The system should be able to cache the data received from
the API.

Rationale: We need the system to be able to work without internet
connection.

Fit criterion: The system shall be able to cache the requests to the API
or save the data in some way to use it when accessing
without connection.

C. satisfaction: 4 Priority: 4 C. dissatisfaction: 3

4.2. REQUIREMENTS SPECIFICATION 63

Requirement: FR-14 Type: 9a. Functional requirements Use cases: UC1,
UC2, UC3, UC4,
UC5

Description: The application should give the users the possibility to
install it to the home screen.

Rationale: Some users might want the application installed in their
devices.

Fit criterion: The application should give, whenever it is possible (de-
pends on the system), the chance to install it as a native
application to the home screen.

C. satisfaction: 3 Priority: 3 C. dissatisfaction: 2

Requirement: FR-15 Type: 9a. Functional requirements Use cases: UC7,
UC9

Description: The control panel shall check the items opening hours are
not overlapped for the item the Greek team member is try-
ing to update or insert

Rationale: This requirement was added cause the constraint was not
implemented in the database, more information on this in
the section 6.2.1

Fit criterion: It shall not be possible to create or update any item giving
overlapped periods. The control panel itself should check
this before sending it to the database.

C. satisfaction: 4 Priority: 5 C. dissatisfaction: 4

4.2.6 Non-functional requirements

The non-functional requirements have been classified and defined following the Volere template
described in [2]. They also follow an adapted version of the Volere requirements shell, just like the
functional requirements written in the previous section. For a description of the shell parameters
check the introductory paragraph of the section 4.2.5. These requirements are not separated
between back-end and front-end since they affect both in most of the cases.

64 CHAPTER 4. REQUIREMENTS CAPTURE

Look and Feel Requirements

Requirement: NFR-1 Type: 10a. Appearance Use cases: UC3,
UC4, UC5, UC6

Description: The product shall be a modern-looking system

Rationale: It is important for the system to look modern since it will
enhance the trust on the information it provides to the
refugees.

Fit criterion: Anonymous enquiries should declare the systemmodern-
looking by at least a 70% of the enquired users.

C. satisfaction: 2 Priority: 2 C. dissatisfaction: 2

Requirement: NFR-2 Type: 10b. Style Use cases: UC3,
UC4, UC5, UC6

Description: The product shall have a colourful palette of icons and a
light, calm background.

Rationale: This will make the system have a relaxing, cheerful style
which will be positive to improve the users feel and expe-
rience.

Fit criterion: The colour palette of the icons should have reds, greens,
blues, yellows, violets... The background should be a re-
laxed white or blueish colour.

C. satisfaction: 2 Priority: 2 C. dissatisfaction: 2

4.2. REQUIREMENTS SPECIFICATION 65

Usability and Humanity Requirements

Requirement: NFR-3 Type: 11a. Ease of use Use cases: UC3,
UC4, UC5, UC6

Description: The product shall be used by people with no training, and
possibly no understanding of English nor Greek.

Rationale: Refugees come from a wide variety of origins, with differ-
ent cultures and languages, and have different levels of
formation.

Fit criterion: The usage shall be tested in the tests after the alpha re-
lease, it also has been tested on the prototype with the
focus group.

C. satisfaction: 2 Priority: 5 C. dissatisfaction: 5

Requirement: NFR-4 Type: 11a. Ease of use Use cases: UC3,
UC4, UC5, UC6

Description: All the information except the textual indications for a
route should be at a maximum of three clicks from the
home screen.

Rationale: The director of the Fundació ACSAR imposed this require-
ment, it relates to the simplicity in the use of the applica-
tion.

Fit criterion: Starting from the home screen, we should check we can
get to any item in the application in three or less clicks.
The textual indications of how to get to a place are an ex-
ception to this rule and they will be at 4 clicks.

C. satisfaction: 4 Priority: 5 C. dissatisfaction: 3

66 CHAPTER 4. REQUIREMENTS CAPTURE

Requirement: NFR-5 Type: 11b. Pers. and Intern. Use cases: UC3,
UC4, UC5, UC6

Description: Internationalisation shall not be needed, users should be
able to access it directly without choosing any specific
language.

Rationale: As stated by the director of the Fundació ACSAR, the appli-
cation should have no language, everyone should be able
to understand the classification of the data independently
of their origin language.

Fit criterion: There should be no option to choose language, or if there
is one it should change only very small, almost-irrelevant
texts.

C. satisfaction: 1 Priority: 3 C. dissatisfaction: 3

Requirement: NFR-6 Type: 11c. Learning Use cases: UC3,
UC4, UC5, UC6

Description: The product shall be able to be used by a public who will
receive no training before using it

Rationale: The application, recommended and advertised in refugee
centres, will not have any previous training for the users.

Fit criterion: Tests with the focus groups should certify all the users
can understand the interface and the flowwithout the help
of a previous training.

C. satisfaction: 3 Priority: 4 C. dissatisfaction: 5

Requirement: NFR-7 Type: 11c. Learning Use cases: UC7,
UC8, UC9, UC10

Description: The control panel might require a little previous explana-
tion to the team which will update the information

Rationale: The information update might need a bit of understanding
on how the application works which users do not need to
know.

Fit criterion: The Greek team should confirm they understand the use
of the control panel and what they are supposed to dowith
each option on it.

C. satisfaction: 3 Priority: 3 C. dissatisfaction: 4

4.2. REQUIREMENTS SPECIFICATION 67

Requirement: NFR-8 Type: 11d. Underst. and Pol. Use cases: UC3,
UC4, UC5, UC6

Description: The application should use symbols and icons that are
naturally understandable by users from any community
or culture.

Rationale: Refugees come from a wide variety of origins, with differ-
ent cultures and languages, and have different levels of
formation.

Fit criterion: Tests with the focus groups should certify all the users
can understand the interface and the icons independently
of their origin country.

C. satisfaction: 2 Priority: 5 C. dissatisfaction: 4

Requirement: NFR-9 Type: 11d. Underst. and Pol. Use cases: UC3,
UC4, UC5, UC6

Description: The product shall hide the details of its construction from
the user

Rationale: This is a general requirement for any web application.

Fit criterion: The testing groups include mostly people who are inex-
pert in information technologies, so it should be enough
to test this requirement.

C. satisfaction: 3 Priority: 4 C. dissatisfaction: 4

Requirement: NFR-10 Type: 11e. Accessibility Use cases: UC3,
UC4, UC5, UC6

Description: The application should be accessible to partially sighted
or blind users, as well as deaf ones.

Rationale: Between the refugees we find many people with different
kind of disabilities, blind and deaf users are ones of the
most common.

Fit criterion: The application shall not have any kind of sound, or if it
has one, it should be completely irrelevant for the use. The
icons and all the data should use the specific HTML tags
to make them accessible for blind people as well.

C. satisfaction: 4 Priority: 3 C. dissatisfaction: 3

68 CHAPTER 4. REQUIREMENTS CAPTURE

Performance Requirements

Requirement: NFR-11 Type: 12a. Speed & Latency Use cases: UC3,
UC4, UC5, UC6

Description: Every page content of the application should load in less
than 350ms in any case.

Rationale: Long periods waiting for answer breaks the user’s experi-
ence.

Fit criterion: When communicating with the API from Athens, every re-
quest to the API should receive the answer with a TTFB
(time till first byte) of less than 350ms

C. satisfaction: 3 Priority: 4 C. dissatisfaction: 4

Requirement: NFR-12 Type: 12a. Speed & Latency Use cases: UC3,
UC4, UC5, UC6

Description: Every user interaction should receive an answer in 100ms
as maximum.

Rationale: More than 100ms of reaction from the UI makes the appli-
cation feel slow.

Fit criterion: Every button clicked by the user will trigger some kind of
change in the UI in less than 100ms.

C. satisfaction: 3 Priority: 4 C. dissatisfaction: 4

Requirement: NFR-13 Type: 12b. Safety-critical Use cases: UC6

Description: It should be possible to perform the emergency call in less
than 2 seconds after clicking the emergency button.

Rationale: Time might be very limited when the user is in an emer-
gency, so they need to be able to start the call quite quick.

Fit criterion: From the home screen, it should be tested we can be mak-
ing the emergency call in less than 2 seconds.

C. satisfaction: 5 Priority: 5 C. dissatisfaction: 5

4.2. REQUIREMENTS SPECIFICATION 69

Requirement: NFR-14 Type: 12c. Precision / Accuracy Use cases: All

Description: All the times in the application should be given with a min-
utes precision.

Rationale: The schedules information is accurate enough managing
days, hours and minutes. Seconds precision is unneces-
sary.

Fit criterion: The opening hours of the different items shall be pre-
sented with a precision of minutes.

C. satisfaction: 4 Priority: 3 C. dissatisfaction: 2

Requirement: NFR-15 Type: 12d. Reliability and Availability Use cases: All

Description: The system should be available 24 hours per day, every
day of the year.

Rationale: The system might be needed at any time by the refugees.

Fit criterion: The system should be available 24 hours per day, every
day of the year.

C. satisfaction: 4 Priority: 5 C. dissatisfaction: 5

Requirement: NFR-16 Type: 12e. Robustness and Fault-
Tolerance

Use cases: All

Description: The application should continue working when internet
connection is not available.

Rationale: Many refugees do not enjoy a continuous internet connec-
tion, they might depend on the public WiFi to have inter-
net.

Fit criterion: After the first loading of a page, loading it without inter-
net connection shall display the last displayed informa-
tion. The maps page is an exception to this, it will be the
only one requiring internet connection to load every time.

C. satisfaction: 5 Priority: 5 C. dissatisfaction: 5

70 CHAPTER 4. REQUIREMENTS CAPTURE

Requirement: NFR-17 Type: 12f. Capacity Use cases: UC1,
UC2

Description: The system should be able to attend 10,000 users per day.

Rationale: This requirement comes from Javier Ideami, engineer di-
rector of the project in the Fundació ACSAR.

Fit criterion: The system should be able to attend 10,000 users per day.

C. satisfaction: 2 Priority: 3 C. dissatisfaction: 4

Requirement: NFR-18 Type: 12f. Capacity Use cases: UC1,
UC2

Description: The application should be able to serve 50 users simulta-
neously.

Rationale: Although we do not expect a high amount of users (over
10000 per day), these users might be distributed in certain
peaks along the day. Sometimes there might be a lot of
users connected at the same time.

Fit criterion: Stress tests should be performed before the beta release
to check if the page is able to keep the answer time limit
when serving 50 simultaneous petitions.

C. satisfaction: 2 Priority: 4 C. dissatisfaction: 5

Requirement: NFR-19 Type: 12g. Scalability Use cases: UC1,
UC2

Description: The system should be able to duplicate its maximum num-
ber of users per day each three months during the first
year.

Rationale: This requirement comes imposed by Javier Ideami, engi-
neer director of the project inside the Fundació ACSAR.

Fit criterion: Scalability should be taken into account while designing
the back-end for the data access.

C. satisfaction: 2 Priority: 5 C. dissatisfaction: 5

4.2. REQUIREMENTS SPECIFICATION 71

Operational and Environmental Requirements

Requirement: NFR-20 Type: 13b. Interf. with Adj. Syst. Use cases: UC3,
UC4, UC5, UC6

Description: The system shall work on the last five releases of the five
most popular browsers for mobile phones.

Rationale: During the focus group previous to the elaboration of this
document, it was checked that refugees generally have
quite-recent, updated mobile phones.

Fit criterion: The application shall run correctly on (themobile versions
of) Chrome, Safari, Opera, Samsung Internet and AOSP
(the Android browser)[30]. UC has been excluded because
it is hardly ever used outside China.

C. satisfaction: 4 Priority: 5 C. dissatisfaction: 4

Requirement: NFR-21 Type: 13c. Productisation Use cases: All

Description: The application should be able to be installed to the home
screen to work as a native application would do.

Rationale: This is a requirement of PWAs, the user has the option
to install it and launch it from the home screen of their
phones.

Fit criterion: Themanifest of theweb page shall be correctly configured
to allow this functionality on the phones and browsers
which accept the interface described in [4].

C. satisfaction: 3 Priority: 3 C. dissatisfaction: 1

72 CHAPTER 4. REQUIREMENTS CAPTURE

Requirement: NFR-22 Type: 13d. Release Use cases: UC1,
UC2

Description: Each change in the API interface should keep the compat-
ibility with previous versions.

Rationale: At the moment when these lines are written, there is an
ongoing discussion about the Web App Manifest specifi-
cation related to whether applications should or should
not be able to force updating on the users with installed
versions of the applications. Since at the moment it is not
possible to force the update, and it might never be, we
need to make sure new versions of the API will not break
previous versions of the PWA.

Fit criterion: The fields of the interface offered by the API shall never be
deleted, since it would cause the previous versions using
those fields to fail. When existing fields change format, it
will be needed tomake sure that the format changewill not
cause the previous versions to fail (adding a new, alterna-
tive field when this is not possible). The PWA should be
designed to ignore all the fields in the API answers it does
not know, in order to keep working with future versions.

C. satisfaction: 2 Priority: 4 C. dissatisfaction: 5

Maintainability and Support Requirements

Requirement: NFR-23 Type: 14a. Maintenance Use cases: All

Description: The application code should be highlymaintainable, clean
and easily understandable.

Rationale: The application might be edited by different developers
than the original ones.

Fit criterion: The PHP code should adapt to PSR-2 standard, the whole
code both for the PWA and the back-end should be ap-
proved by the supervisor engineer in the Fundació AC-
SAR, Javier Ideami.

C. satisfaction: 3 Priority: 4 C. dissatisfaction: 5

4.2. REQUIREMENTS SPECIFICATION 73

Requirement: NFR-24 Type: 14c. Adaptability Use cases: UC3,
UC4, UC5, UC6

Description: The application is expected to run under Android or iOs in
mobile phones.

Rationale: Android and iOs are the two most common phone operat-
ing systems.

Fit criterion: The testing groups for the alpha and beta versions should
include users of both of these operating systems.

C. satisfaction: 4 Priority: 5 C. dissatisfaction: 4

Security Requirements

Requirement: NFR-25 Type: 15a. Access Use cases: UC1,
UC2, UC3

Description: Only the Greek team and authorised members should be
able to modify the locations of the application.

Rationale: The application information should be protected.

Fit criterion: The control panel should have an access control by pass-
word or a similar security feature.

C. satisfaction: 1 Priority: 5 C. dissatisfaction: 4

Requirement: NFR-26 Type: 15b. Integrity Use cases: UC1,
UC2, UC3

Description: The system should ensure items are associated to exist-
ing categories.

Rationale: Manual insertion of data usually leads to integrity prob-
lems.

Fit criterion: The system should ensure no item is associated to an
nonexistent category.

C. satisfaction: 3 Priority: 5 C. dissatisfaction: 4

74 CHAPTER 4. REQUIREMENTS CAPTURE

Requirement: NFR-27 Type: 15b. Integrity Use cases: UC1,
UC2, UC3

Description: The system should ensure hours and other kinds of data
are held between their possible maximum and minimum
values.

Rationale: Manual insertion of data usually leads to integrity prob-
lems.

Fit criterion: When introduced, the system shall check the days for the
opening hours of the items are correct, that hours are set
between 0 and 23, minutes between 0 and 59 and check
other logical ranges/options for all the data whenever it is
possible.

C. satisfaction: 3 Priority: 5 C. dissatisfaction: 4

Requirement: NFR-28 Type: 15c. Privacy Use cases: All

Description: The application should be served over HTTPS.

Rationale: Secure HTTP is the base for the protection of the user’s
privacy as well as the integrity of the transferred data.

Fit criterion: The server should serve the page over HTTPS.

C. satisfaction: 1 Priority: 5 C. dissatisfaction: 3

Requirement: NFR-29 Type: 15c. Privacy Use cases: All

Description: If saving cookies to the browser of the users were needed,
a dialog should inform the users about it.

Rationale: Cookies can be used to track users along the way, being
this an attack to their privacy that should be accepted by
them to be legitim.

Fit criterion: If saving cookies to the browser of the users were needed,
a dialog should inform the users about it.

C. satisfaction: 2 Priority: 4 C. dissatisfaction: 1

4.2. REQUIREMENTS SPECIFICATION 75

Requirement: NFR-30 Type: 15e. Immunity Use cases: UC7,
UC8, UC9, UC10

Description: The site should be protected from cross-site request
forgery (CSRF).

Rationale: CSRF is a well-known, common kind of attack for web
pages which consists in fooling the users to perform ac-
tions on your site from another site created by the at-
tacker.

Fit criterion: The system should implement a system of random tokens
generation to try to make sure any request of data modi-
fication comes from the own site, the control panel, and
not from an external site.

C. satisfaction: 2 Priority: 5 C. dissatisfaction: 1

Requirement: NFR-31 Type: 15e. Immunity Use cases: UC7,
UC8, UC9, UC10

Description: The site should be protected from SQL injections.

Rationale: SQL injection is still the most common attack to web
pages which accept user input.

Fit criterion: The develop should be extremely careful when processing
data in SQL statements. Pen-testing tools shall be used to
check there are no possible weaknesses in this sense.

C. satisfaction: 2 Priority: 5 C. dissatisfaction: 1

Requirement: NFR-32 Type: 15e. Immunity Use cases: UC7,
UC8, UC9, UC10

Description: The site should be protected from cross-site scripting
XSS.

Rationale: XSS consists in introducing malicious code through the
user inputs to change the behaviour of the application
with the users.

Fit criterion: The develop should be extremely careful when processing
user input. Pen-testing tools shall be used to check there
are no possible weaknesses in this sense.

C. satisfaction: 2 Priority: 5 C. dissatisfaction: 1

76 CHAPTER 4. REQUIREMENTS CAPTURE

Requirement: NFR-33 Type: 15e. Immunity Use cases: UC7,
UC8, UC9, UC10

Description: The system should be protected against other common
kinds of attacks.

Rationale: More than the literally specified in this requirements, there
are lots of well-known, common attacks performed to web
pages (as DDoS) which may affect our application.

Fit criterion: A well-known, trustful pen-testing tool should be ran
against the final version of the system and prove it to be
non-vulnerable to the attacks tested by the tool.

C. satisfaction: 2 Priority: 5 C. dissatisfaction: 1

Cultural and Political Requirements

Requirement: NFR-34 Type: 16a. Cultural Use cases: All

Description: The data provided by the system should be respectful to
any religious or ethnic groups.

Rationale: Refugees profess many different religions and are part of
different ethnic groups.

Fit criterion: The data provided by the Greek team will be approved by
the supervisor of the project together with the director of
the Fundació ACSAR.

C. satisfaction: 1 Priority: 5 C. dissatisfaction: 5

4.2. REQUIREMENTS SPECIFICATION 77

Legal Requirements

Requirement: NFR-35 Type: 17a. Compliance Use cases: All

Description: The product must comply with the attribution require-
ments of all the libraries and frameworks that are used.

Rationale: Libraries, frameworks and related products usually re-
quire attribution, license references or similar kinds of in-
formation to be displayed on the derived products.

Fit criterion: The product shall provide a place to display the previous
information in its final release.

C. satisfaction: 1 Priority: 5 C. dissatisfaction: 5

4.2.7 Conceptual data scheme

Finally, the general conceptual data scheme (data model) is presented, since it will be the base
for the design process. This scheme together with the description explained in this section work
also as a dictionary of the terms used in the project, what they mean and which attributes and
relations they have. A UML class diagram will be used, accompanied by textual explanations of
the concepts and their relations. The figure 4.6 shows the class diagram in UML displaying the
concepts to be managed by our system.

In first place we have the Categories, there are two main kind of categories based on the
use cases of our application: the online help categories, which link directly to some external web
page, and all the other categories, which are composed of Items, that may also link to web
pages, among other information. These other categories are the services, the leisure places, the
links and the information places. A category should be of one, and only one of all this different
types. All the categories can be identified by a name.

Then we have the Items, which have a name to describe what organism/association/place
in the real world the item is related to, an optional address of the physical place where people
can find that related organism/association/place, an optional link to the web page, an attribute
indicating whether it is free or not, an optional phone number to call, an attribute which indicates
if it is needed to make a call requesting an appointment, an order preference to display in the
application and one or more languages in which people is attended there. Optionally, items can
(and most of them will) be locations, having an optional place id used to associate it with the
maps engine (like Google Maps Places) and latitude and longitude to locate them on the map.

Finally, Items have a series of OpeningHours associated to them. These opening hours
are periods of time when the Item is available (open) to people. As many periods as necessary
can be added to define precisely the desired schedule.

78 CHAPTER 4. REQUIREMENTS CAPTURE

Figure 4.6: Conceptual data scheme of the system in UML, colours have been used to
facilitate reading.

These three kinds of objects are joined by composition relationships, since none of the lower-
level ones can exists without a higher-level one associated. There are a couple of restrictions
which cannot be expressed through UML syntax, which are the following:

1. The primary keys of the items. The categories can be identified by name. The items,
since there is no reason to think it is not possible to have two items with the same name in
the same category, are identified by an internally generated id. The opening hours are

4.2. REQUIREMENTS SPECIFICATION 79

identified by all of their elements together with the item they correspond to.

2. If an item needs a call to get an appointment, it necessarily should have a valid phone
number to call to.

3. If an item does not have any address to reach them, then it needs a call to arrange an
appointment and this way decide a place of meeting.

4. Two periods associated with the same item should not overlap, since doing this would
mean some kind of mistake while defining the schedule.

5. The initial and finishing hours of the periods should be in a range from 0 to 23, since other
values are not valid hours.

6. The initial and finishing minutes of the periods should be in a range from 0 to 59, since
greater values would correspond to one hour more.

7. The initial and last day of the week of each period should be valid days of the week (from
Monday to Sunday).

80 CHAPTER 4. REQUIREMENTS CAPTURE

Chapter 5

Design

In this chapter we will explain how the system is created, which components it is comprised of
and how they communicate. The main design questions and decisions will be explained in detail.
We assume the reader has all the necessary knowledge about the employed pattern designs, so
it is possible that their concrete interaction (e.g. the singleton instantiating) were not detailed in
this document. However, most of them can be found in [11] or [8].

The design is made taking into account all the non-functional requirements and prioritising
the interchangeability and maintenance of the code. In this sense, we will try in every moment
to generate very reusable classes with as low coupling between them as possible. In order to
prevent this document from getting too long, we will not provide a complete specification for
the interaction between the objects of our system through sequence diagrams. We will limit
ourselves to provide diagrams for the most interesting and representative interactions and verbal
descriptions of the other functionality. Some more sequence diagrams can be found in the GitHub
of the project1 in the diagrams.mdj file.

5.1 General structure of the system

As explained in the section 2, our system is divided into three independent components, as it
is usual in modern PWA development. Each one can be served from an independent machine,
and for scalability reasons some of them may be even split in the future into several machines
also. First, we have the relational database, it will provide the system with all the necessary
information, taking control of some of the main integrity constraints for the data. Second, to
have a layer between the database and our PWA, making our front-end independent from the
underlying database system, we have an API with a JSON interface and a Rest-like style. Finally,
our information is displayed to the users through a PWA application running on client side (on the

1https://github.com/david-campos/app4refs, it is not public at the moment of writing these
lines but it will be, eventually, in the coming months.

81

https://github.com/david-campos/app4refs

82 CHAPTER 5. DESIGN

browser of the client). The figure 5.1 shows this general structure of the system.

Figure 5.1: Diagram showing the three main parts of the project and how they communi-
cate to each other.

There is a fourth component, the control panel, whose design and implementation is not
presented in this document. As described in the 3.8 section, this panel will only be present since
the beta release and it will be designed and implemented after finishing this document (as this
covers, because of the deadline to deposit the final project, only the construction of the alpha
version).

The use of the API has several advantages: on the one hand, it is a standard solution which
will provide an stable interface for our front-end, making it independent from the underlying system.
This way, if we ever need to change the DBMS we can do it without having to modify anything
in the code of our PWA. On the other hand, having an API makes it easier for developers to
understand the communication, which is performed in a human-readable format, and allows us to
create several client applications communicating in the same way with the same data source (for
example, we could decide in the future to make an Android application; this application would be
able to communicate with the same API in pretty much the same way our PWA does and display
the information as it were more convenient). In general, this API gives us more control over the
data giving us a central point to access it without having to deal directly with the underlying storing
technology. We make use of a Rest-like API, as explained in 5.3, because Rest approach offers
a very intuitive interface which makes extensive use of the HTTP technology alone.

Advantages of using PWA have been explained in the section 4.2.3. Based on how recent
the smartphones were, in general, in the focus groups previous to the development, PWA was
decided as the best option because of its cross-platform capabilities. With a single code, we
are programming at the same time a web page and an Android, iOs and desktop application.
Modern web technologies allow PWA to perform all our requested functionality.

One of the principles while doing the whole design of the system was always to rely as few
as possible in frameworks and libraries. This was suggested by the engineer in the Fundació

5.2. BACK-END: THE DATABASE 83

ACSAR, Javier Ideami, given the small scale of the project. It comes to special relevance in the
part of the front-end, because PWAs and modern JavaScript in general have a big tendency to
abuse the use of libraries and frameworks. The only framework employed in run-time in the PWA
is Bootstrap, and not even the whole library but only its grid module.

5.2 Back-end: The database

To design the database we start from the conceptual data scheme described in the section 4.2.7
and we make, based on it, an entity-relationship model from which we obtain the final relational
model.

5.2.1 Entity-relationship model

Figure 5.2: Diagram of the entity-relationship model.

The complete hierarchy of Category is collapsed into a single entity, with a type attribute
which indicates the type of category it is, we add also an order attribute which will serve interface

84 CHAPTER 5. DESIGN

purposes. We make the same with Item, since most of them will be locations, and move
languages to a new entity to give it more relevance. This will help to prevent mistakes in the
data. Allowing languages to take any value would allow for typos to be accepted, making it some
kind of enumeration field would be a bad idea because we are not really sure about how many
languages we will have (it is not a static set of values). Opening hours remains as it is, but given
the high number of fields of its PK, we decide to add an auto generated periodId field for efficiency
reasons and to make the code simpler and readable when working with them. The diagram 5.2
shows an UML description of the entity-relation model of the database. The names of the entities
are turned into plural, the attributes converted to camel case and some more database-specific
details added (like the types of each element or the primary keys).

Entity Description Number of instances
Categories All the categories of items for

the application. They corre-
spond to a simple classification
of the items directly connected
to the navigation through the
page (Check 4.2.3).

We preview around 50.

Items All the items of the application,
they represent real-life places
or entities like shops, NGOs...

As minimum five per category,
as maximum we can estimate
20 per category. This is, be-
tween 250 and 1,000.

Languages All the relevant, available lan-
guages for the items

We plan to have only English
and Greek. But they might be
more in the future. Probably
never more than 10.

OpeningHours Periods of time in which the
items are opened

Probably five or ten per item
(one or two for each working
day of the week). This means
between 1,250 and 10,000
records.

Table 5.1: Entities data dictionary.

As we can read in the figure, there are a couple of requirements which the diagram itself
cannot express:

1. If an item has callForAppointment set to 1 (TRUE), then phone cannot be a NULL
value.

5.2. BACK-END: THE DATABASE 85

2. If an item has address set to a NULL value, then callForAppointment should be set
to 1 (TRUE).

3. Two records for OpeningHours should never overlap in time.

4. The startHour of the opening hours should be in the range [0, 23].

5. The endHour of the opening hours should be in the range [0, 23].

6. The startMinutes of the opening hours should be in the range [0, 59].

7. The endMinutes of the opening hours should be in the range [0, 59].

8. A category with a link that is not NULL cannot have any associated items.

The model is completely described by the data dictionaries shown in the tables 5.1, 5.2 and
5.3.

Entity Mult. Relationship Mult. Entity

Items
* category 1 Categories
* itemLanguages * Languages
1 openingHours * OpeningHours

Table 5.2: Relationships data dictionary.

Entity / Rela-
tionship

Attribute Description Type N M D Def

Items

itemId {PK} Auto generated id of
the item

Positive integer - - - A.I.

name The name of the rep-
resented entity

Variable character,
100

- - - -

address The physical
address of the
represented entity

Variable character,
255

X - - -

webLink Link to the web
page

Variable character,
255

X - - -

placeId Id to identify the
place in the maps
system

Variable character,
255

X - - -

iconUri The URI of the icon
to display for the
item

Variable character,
255

- - - -

86 CHAPTER 5. DESIGN

isFree Whether the pro-
vided service, the
provided informa-
tion or the access
to the place are free
or not

Boolean - - - -

coordLat The global latitude
to place the item in
the map

Decimal number (8,
6)

X - - -

coordLon The global longitude
to place the item in
the map

Decimal number (9,
6)

X - - -

phone A phone number
to get in contact
with the entity repre-
sented by the item

Variable character,
100

X - - -

callForAppointment Indicates whether a
call to agree an ap-
pointment is needed

Boolean - - - -

orderPreference The preference of
order for the item in
the list of items of its
category

first, second,
third or rest

- - - rest

Categories

categoryCode {PK} The code to identify
the category

Character 10 - - - -

name A name for the cate-
gory

Variable character,
100

- - - -

type The type of items in
the category

service,
leisure, help,
link or info

- - - -

link A link to directly
open in a new tab
instead of showing
the list of items.

Variable character,
100

X - - -

order A number to set the
order the categories
follow in the inter-
face

Positive integer - - - -

Languages langCode {PK} Language code Character, 2 - - - -

5.2. BACK-END: THE DATABASE 87

OpeningHours

periodId {PK} Internal id to identify
the period

Positive integer - - - A.I.

startDay The day of the week
in which the period
starts

mon, tue, wed,
thu, fri, sat or
sun

- - - -

endDay The day of the week
in which the period
ends

mon, tue, wed,
thu, fri, sat or
sun

- - - -

startHour The hour of
startDay in
which the period
starts

Positive integer - - - -

startMinutes The minutes inside
the startHour in
which the period
starts

Positive integer - - - -

endHour The hour of endDay
in which the period
ends

Positive integer - - - -

endMinutes The minutes inside
the endHour in
which the period
ends

Positive integer - - - -

category
itemLanguages
openingHours

Table 5.3: Attributes data dictionary.

5.2.2 Relational model

Converting now this diagram into the corresponding relational graph is quite easy. We converted
it as follows. Notice the underlined attributes specify the primary key of the relations, Refer
indicates a foreign key constraint (also called reference) with another relation, check indicates a
simple check the database should perform on the rows (directly implementable in many relational
databases) and index indicates the creation of an index over the column.

categories (category_code, name, link, item_type, position)
index position

languages (lang_code)

88 CHAPTER 5. DESIGN

items (item_id, name, address, web_link, place_id, icon_uri, is_free,
coord_lat, coord_lon, phone, call_for_appointment, order_preference,
category_code)
Refer category_code => categories::category_code

update cascade, delete restrict

index order_preference

check (¬(call_for_appointment ∧ phone = null))
check (¬(address = null ∧ ¬call_for_appointment))

item_languages (item_id, lang_code)
Refer item_id => items::item_id

update cascade, delete cascade

Refer lang_code => languages::lang_code

update cascade, delete restrict

opening_hours (period_id, start_day, end_day, start_hour,
start_minutes, end_hour, end_minutes, item_id)
Refer item_id => items::item_id

update cascade, delete cascade

check (0 ≤ start_hour < 24)

check (0 ≤ end_hour < 24)

check (0 ≤ start_minutes < 60)

check (0 ≤ end_minutes < 60)

Still, some triggers should be implemented to check the values for the opening hours assigned
to the same item do not overlap between them and to check a category with a link value does not
have any associated items. We have decided to insert indexes in items and categories to
speed up the ordering of these elements.

5.3 Back-end: The API

Now that we have the storage of the data designed, we need to design the REST-like API that will
give access to the data in a human-readable format making use of the HTTP protocol. We say
this is a REST-like implementation because it does not have some of the fundamental parts of
the REST applications (like the hypermedia), but it really does fit to another REST principles like
the concept of resources, the use of HTTP methods to perform operations over these resources,
the stateless communication or the uniform interface with self-descriptive messages.

5.3.1 Interface design

To design our API the first we needed was to identify all the resources of our system and how they
would be accessed. A resource in a REST API is anything that can be named, these resources

5.3. BACK-END: THE API 89

can be accessed through resource representations and over them we can perform certain API
operations. Each resource has an specific resource identifier (URI) which allows us to access the
resource. Based on the conceptual data scheme described in the section 4.2.7 and the storage
we designed on the section 5.2.1, we decided we only need to have two resources in our API:

• Items: The itemswill contain the itemId, name, address, webLink, placeId, iconUri,
isFree, coordLat, coordLon, phone, callForAppointment and orderPreference
attributes described in the entity-relation model in 5.2.1. It also will include, invisible to
the user that this is another entity, all the opening hours of the item with their startDay,
startHour, startMinutes, endDay, endHour and endMinutes attributes, as well
as the codes of the languages the item is related to. The reason to group these entities
under the same resource comes from the use cases and their associated functional re-
quirements, specially UC1, where we can check the items and this "nested" entities will
always be obtained together as a single one. To accomplish the functional requirements
FR-1, FR-4, FR-5 and FR-6 we need to dispose of the four CRUD operations over this
resource. We will need a resource representation to access the items for a given category.

• Categories: The categories will contain the categoryCode, name, link, type and
order attributes. The categories only need to be obtained but not modified, since we do
not have required functionality of editing categories. They need a representation based on
their type cause that is how they will be selected (UC2).

Resource URI Method Description

Item

/categories/:categoryCode/items/ GET Gets the items
for the cate-
gory with code
categoryCode.

/items/:id PUT Updates the item
with id id.

/items/:id DELETE Deletes the item
with id id.

/items/ POST Creates a new
item.

Category /item-types/:type/categories/ GET Gets the cate-
gories for the
given type.

Table 5.4: Resources of the API.

While updating and deleting the items, notice the itemId should not be present in the

90 CHAPTER 5. DESIGN

body of the item. The periods associated to the item shall contain the periodId, and it should
be set to a reserved keyword (e.g. new) for all the newly created periods. While updating the
item, all the periods with specified id shall be preserved and modified, all the ones with id new
should be created and all the absent ones should be deleted.

There is a requirement missing, which is the FR-3. Due to a debate about the kind of access
we are going to give to the Greek Team members to the control panel, and given that the control
panel development corresponds to the beta version of the system, we decided not to design the
API log-in yet, and left it to be discussed in later meetings once we had the alpha to test in Athens.
For this reason, this first version does not have log-in and, although the functionality to modify
items will be designed and implemented already, it will not be available in this first release. The
table 5.4 shows the selection of resources, their representations and the http methods associated
to each operation.

There are two main parts of the API where we would like future changes to be easy: the
input and output formats and the database connection. For this first one we will add two optional
GET parameters2 that the API will recognise: in and out. This values will allow to specify the
input and output formats, respectively, being JSON the default one. The second one is explained
in 5.3.5, but first we need to enter into more detail about the decided architecture for the API.

5.3.2 The architecture

Figure 5.3: Data flow over the
three tiers of the API.

The API will be designed in a three-tier architecture. There
will be a first layer which we will refer as the view, where we
will have the interface-specific details, another layer called
the domain, where the items of our application reside, and a
final layer denominated the data layer, where we will define
the persistent-data accesses and how they are managed.
Dividing the system into this three tiers allows us to have
a better visualisation of the whole system... The view layer
is the one in charge of receiving the input and printing the
output, it will be compound by the input parser and the output
printer (which we called, a bit as a joke, outputter), together
with the factory responsible to generate both of them. The
domain layer will contain the transaction-managing and other
stuff relative to the domain manipulation, for example the URL
matching. Finally, the data layer will contain all the necessary
classes to communicate with our database. The data flow during a request to the API is visually

2The GET parameters are a list of key-value pairs which we can add to the URL we are accessing
through HTTP. They are indicated by a ? symbol and a succession of the pairs in the format key=value
separated by & each one from the other.

5.3. BACK-END: THE API 91

described by the figure 5.3.
Each request we receive will enter to the same file, which we will call the index in this section.

For this reason, server redirection has been needed for the implementation, more information on
this can be found in the section 6.2.3. It is interesting to note, also, that each request will run in a
completely independent process or thread (depends on the server), so they will not be able to
interfere with each other. The execution of each of these request will be performed in a completely
sequential way. Whether including multithreading would improve or not the performance has not
been tested, but literature online suggests it would not. Our request processing is quite short and
straightforward so even though some minor tasks could be paralleled, probably tiny performance
improvements would be obtained. Also, the general parallel processing the server is performing
in a superior layer than our code would make these improvements completely negligible.

5.3.3 Domain layer and view Layer

Since the view layer is very simple in this case, we present the domain and the view layers
together in a unique diagram to ease reading. The following explanation can be read following
the UML class diagram in the figure 5.4 for a better understanding.

The view layer is compound by the body parsers and the outputters (the name we gave to
the objects which output the data generating the HTTP answers). The body parsers receive the
body of a request3 as string and parse into an associative array (also called map), which can
have several nested levels. The outputter objects perform pretty the opposite operation, taking
an associative array and parsing it into a string, but this time they do not return anything. Instead,
they directly output the string to the body of the HTTP answer and set the right headers for it.
They allow to choose the HTTP status in the response, which will be used for error managing,
among other things (more detail on this in 5.3.4). To facilitate the creation of different parser and
outputter objects for the different formats of input and output data we used the factory pattern,
creating a FormatFactory class which provides two methods to instantiate the tight body parser
or outputter, returning two interfaces IApiBodyParser and IApiOutputter, which allows us
to isolate from the exterior the classes for the different formats. We will implement, by now, only
the JSON versions of both the body parser and outputter.

To manage the different operations which the API can perform we use a transaction pat-
tern, encapsulating each transaction in an object of the class of the transaction. This is a
common organisation for the domain layer. The five transactions we need are getting the cate-
gories of a given type (GetCategoriesTransaction), getting the items for a given category
(GetItemsTransaction), deleting the items (DeleteItemTransaction) and, finally, creat-
ing and updating items (CreateItemTransaction and UpdateItemTransaction). These
last two have in common that they need to extract from the parsed body of the request the
right values for the created/updated item. To simplify the implementation of this functionality

3Some HTTP requests, like POST or PUT, include a body which can contain any type of data.

92 CHAPTER 5. DESIGN

Figure 5.4: Class diagram of the domain and the view layers. Setters, getters and some
other less relevant functions have been omitted to simplify reading.

5.3. BACK-END: THE API 93

we generalise them to an abstract ItemParsingTransaction. All of them will implement the
interface ITransaction, which has a method to execute the transaction and two attributes
employed to save the results. All of them will be children of a general, abstract Transaction
class which implements said interface. More detail on the behaviour of the transactions can be
found in 5.3.6.

To instantiate the right transaction for the received request the system depends on the
UrlMatcher. This is a singleton class referencing a set of UrlPattern instances, with amethod
to iterate over them searching for a matching pattern to create the transaction. This behaviour is
shown in the interaction diagram in the figure 5.5. The UrlPattern class is the responsible to
match in an URL each HTTP method to a given class implementing ITransaction. To be able
to perform this, it receives on the constructor an URL pattern4 similar to the ones given in the
table 5.4 and generates from it a regular expression to check against the URL reception of each
request. Since computing regular expressions is a bit more expensive than string comparison, to
improve the efficiency we also save a static prefix, this comes in imitation of the matcher classes
some very known PHP frameworks use. This static prefix is the prefix with all the characters of the
URL which do not change (all the characters before the first parameter). The parameter names
attribute will be used to generate an associative array to pass to the constructor of the transaction
including the parameters extracted from the request URL. Notice we can instantiate the right
transaction object from the class name thanks to the metaprogramming paradigm supported by
PHP.

When the API receives a new request, the index will automatically call the processRequest
method in a singleton class we called ControllerFacade. This class has the aim to process
the requests received, extracting their parameters and coordinating some of the other classes
instances to create the right transaction, executing it and producing the right HTTP answer. This
is achieved making use of the FormatFactory to obtain the right parser and outputter, and the
UrlMatcher to obtain the adequate transaction. The UML interaction diagram in the figure 5.6
illustrates this behaviour.

5.3.4 Managing errors

During the execution of the request processing many things can fail. Some required parameter
might be missed, some value can be incorrect, the data might not be valid... To manage all
this situation we take advantage of the PHP exception handling. We define a hierarchy at the
top of which we have a class called PrintableException. This abstract class possesses a
message and an status and represents an exception which can be safely printed to the user
(because we are sure it does not contain sensitive information). All the possible errors which
may appear processing the request which are not debt to internal malfunctioning should throw
an exception extending this class. It is the responsibility of ControllerFacade to catch all

4More information on the UrlPattern patterns in the section A.4.

94 CHAPTER 5. DESIGN

Figure 5.5: Sequence diagram of the URL matcher matching a request.

5.3. BACK-END: THE API 95

Figure 5.6: Sequence diagram attending a request.

96 CHAPTER 5. DESIGN

the printable exceptions and send them to the printer to be printed, indicating the status of the
Exception as the HTTP status of the answer. It is responsability of the index (the main of our
code, where all request executions will start) to catch all the other exceptions, log them to the
error log and send the user an answer with status code 500 (internal server error). The figure 5.7
illustrates the exception management of the system.

Figure 5.7: Class diagram of the API hierarchy of exceptions.

5.3.5 Data layer

The data layer of our system is the responsible for isolating all the database peculiarities from the
external system, we designed it in a way that can be easily modified in case of needing to change
the database manager of the system. We should keep in mind that, not like other environments,
PHP does not have, in principle, a unified interface to access database systems. Each system
has a different library with a different interface to access it.

We have three data objects we need to access of the database: Period, Category and
Item. These classes are the central part of our system, and possess a method toMap which
allows to convert them to associative arrays with only basic-type values, ready for the transac-
tions to save them into their result attribute to be printed. Each one of these objects can be
created making use of their gateway. The gateway makes a bit the function of the finder of the
row data gateway pattern, but also allows to perform the operations of the gateway in that pattern
(saving and deleting the row). Despite of this, it is not exactly an active record pattern, since the
gateway does not store any information on its own. It simply encapsulates the database code to
isolate it from our data objects. In the case of Category we are only able to get them but not to
update or delete them, since this is the only required functionality for the API in this aspect.

To obtain the right gateway for the database system we are managing, giving the code
an easy way to swap to between storage systems to achieve the desired compatibility and
interchangeability, we make use of the abstract factory design pattern. To do this, first we create

5.3. BACK-END: THE API 97

Figure 5.8: Class diagram of the data layer of the API. The interfaces which wrap the
abstract factory are represented in a light-green colour, while the family of the gateways
for mysqli are presented in blue.

98 CHAPTER 5. DESIGN

an interface for each gateway which allows us to isolate the data objects from the concrete family
of gateways in use. We create then an abstract class which will be the root of a hierarchy of
factory-implementations for each supported family. This class will behave like a singleton pattern,
but instead of instantiating itself it will instantiate the right factory-implementation which will give
us the right gateway. Apart from the different methods to obtain each of the gateways, this class
provides also methods to start and finish the transactions to help keeping the integrity of the
database.

The figure 5.8 shows the UML class diagram for all the described data-layer with an example
of the gateway family for mysqli 5.

5.3.6 Transactions execution

Figure 5.9: Sequence diagram of GetCategoriesTransaction::execute.

5The PHP extension mysqli is a very common extension which allows PHP to connect with MySQL
databases.

5.3. BACK-END: THE API 99

To illustrate a little bit better the way the transactions are processed and how the domain
layer interacts with the data layer we will explain in more detail the interaction of the transactions
of the system described in the section 5.3.3. Each one of them is accompanied by an interaction
diagram which helps to follow the explanation.

The first one, GetCategoriesTransaction, is the transaction which allows us to obtain
the list of all the categories of a given type. It starts, as all of them, when the ControllerFacade
calls its execute method. It obtains the gateway for the categories and indicates to the factory it
wants to start a reading transaction. Then it calls the ICategoriesGateway obtained from the
factory to get the list of categories (notice that the transaction does not know whether it is working
with mysqli or another family). It configures the result as an empty set of objects and iterates
over all the categories to map them to associative arrays that it saves into the same attribute.
Finally, it sets the status to the HTTP OK (200) and commits the transaction with the factory. All
of this can be visualised in the figure 5.9.

Figure 5.10: Sequence diagram of GetItemsTransaction::execute.

The case of getting the items is quite similar, as shown in the figure 5.10, but it has a peculiarity
which needs to be further explained. When mapping the items into associative arrays to save
them into the result we will find something that can be a little bit confusing: when mapping the

100 CHAPTER 5. DESIGN

items, we need to have a field openingHours with all the periods associated to it. We decide
to implement this functionality right in the method toMap of the item, which will perform a lazy
loading of the periods associated to it (using its item id), as shown in the interaction diagram in
the figure 5.11. The item needs to make use of the periods gateway, generating a little bit more
of coupling between Item and those classes. Whether it is better to generate this coupling with
the transaction class or with the item is not clear and depends on the functionality which might
be added later to the API, in our case we chose this option.

Figure 5.11: Sequence diagram of Item::toMap.

Deleting an item is a very simple operation, in fact, since it only requires to obtain the item and
call to removeItem inside it. The item itself will delegate this method to its gateway, which will
delete it from the permanent storage. Notice that thanks to our design of the database (section
5.2.2) deleting the items is enough to get all the associated periods to be removed from storage.
The figure 5.12 illustrates the described behaviour.

The creation of an item, for the same reason as the two before, requires the creation of the
associated periods. This will be performed by the transaction, as we can see in the figure 5.13.
As stated in the section 5.3.1 and since we are creating a new item all the periods should have

5.3. BACK-END: THE API 101

Figure 5.12: Sequence diagram of DeleteItemTransaction::execute.

the new keyword as periodId. The transaction should check it and trigger an error if this is not
the case.

Figure 5.13: Sequence diagram of CreateItemTransaction::execute.

102 CHAPTER 5. DESIGN

Figure 5.14: Sequence diagram of UpdateItemTransaction::execute.

5.3. BACK-END: THE API 103

104 CHAPTER 5. DESIGN

Finally, updating an item is a bit complicated because we have to manage three different
cases for the periods: the ones which were already present, the new ones and the deleted ones.
After getting the gateway and retrieving the item from the database, we set all the values of the
item to the ones received in the body of the request and call to saveItem. Then, we start an
empty list for all the updated periods. As we loop through the periods received in the request
(saved in the field openingHours of the transaction), we check if the received period is new. If
it is, we simply need to create it with the given values and associated to the given item. In the
opposite case we search for the given periodId in the periods of the item. If it cannot be found,
we simply throw an exception. If we do, we update it and save the period in updated periods.
Finally, we iterate all the old periods of the item deleting from storage all those one which have
not been updated, save the item mapped in the result and commit the transaction. Notice the
item will be printed in its updated version of the periods because the periods are loaded from
storage when calling Item::toMap.

5.4 Front-end: The PWA

Finally, the Progressive Web Application design will be explained here. The design was made
keeping in mind it would be implemented in JavaScript, which has a different work flow from the
usual object-oriented designs (it is prototype-based). Keeping this in mind, we decide to take
advantage of its special characteristics in our design. Although this decision makes the system
design a little bit less adaptive to other technologies, this is not a problem since JavaScript is
going to be the client-side web technology for long time (although some new technologies are
appearing, like Web Assembly[28], but it surely will not cause JavaScript to disappear) and it will
allow us to assume in the design some characteristics of modern languages. This characteristics,
anyways, use to be possible to emulate in the classic object-oriented paradigm so it would not be
too hard managing to implement them. Despite of this, we wanted to express our intention to
make use of these features and, in consequence, there are things which UML does not allow us
to express as clearly as we would like. The main example of this (which is our main interest in
this case) can be the callbacks: passing functions as if they were objects so they can be called
by the receiver. We express the format of these callbacks in our UML diagrams making use of
a «callback» stereotype, where the attributes are the expected parameters of the callback.
They are marked in a light green in all the diagrams so they can be easily identified and they all
inherit from Callback. We will also use ... before a final argument name to express a list
of arguments of variable length. We will consider any class or callback to be a descendent of
Object, and if we indicate a parameter is an Object we are meaning that parameter may have
any attributes, being those simple key-value pairs. We can understand an Object in this case as
the generally known as associative array, map or dictionary in another languages. In JavaScript
this is the root for everything in the code (even the functions are Objects).

In other languages with a more classic approach, like Java, we can emulate the callbacks

5.4. FRONT-END: THE PWA 105

feature creating interfaces with a single method, which describes the expected "callback", and
making the class which implements the callback to implement said interface, passing the object
itself as the argument to the desired method (or implementing a complete observer pattern, in
case that many “callbacks” need to be managed).

5.4.1 The pages

The main class of the PWA is the Page. Each Page represents a different screen in our system.
It is an abstract class from which all the pages extend. It possesses a title string to display in
the navigation bar, an indicator of whether that bar should be visible or not when we are in the
page and a visible attribute to indicate if the page is currently rendered to screen or not. In
the figure 5.15 we can see an example of a rendered page and the navigation bar visible.

Figure 5.15: A page with navi-
gation bar displayed on the sys-
tem.

The most important method of every page is render, it
receives as a parameter an element of the DOM that is the
application container to render the pages on, and it “draws”
all the elements of the page on it. All the children classes of
Page should call always the parent’s render method, since
it is there where the visible value gets updated to be true.
The load function is called when the page is loaded by the
application but it has not been rendered yet. Although right
now the page is rendered immediately after it is loaded, we
insert this method because it might be possible that in future
versions the page could be rendered several times but loaded
only once. The resize method is called when the page
is the current page of the application and the window gets
re-sized, this happens when we are visualising the web on
a navigator and we scale the window, or for example when
we rotate the screen on a mobile device. To control when
the page is hidden we add the method onHide, which gets
called when the page is about to be exchanged by another
page. The methods getPageHeight and getPageWidth
allow to obtain the available space (in pixels) for the page to
render and isVisible returns whether the page is visible or
not. The class diagram in the figure 5.16 shows the hierarchy
of page classes in our application.

Each of the page classes has an associated state class (in blue in the diagram). This is used
by the Router to be able to recreate the web we were in before, more information about this class
can be found in 5.4.2. By now, all we need to know is that the state is a basic JavaScript object,
with no functions or class involved, which will allow the page to be restored from the browser
history. The PageState class is the root of all the page states hierarchy. The information about

106 CHAPTER 5. DESIGN

Figure 5.16: Class diagram of the hierarchy of pages.

the visibility of the page is not saved to the state because it would not make sense, when the
page is recreated its visibility will be again false until a call to Page::render is made. To
obtain the current state of a page we can call getState, this method should be implemented in
all the page classes to include their own state information to the one of the parent. When a page
is created, an optional attribute allows to pass in an state to restore the values from it. Notice
we save a string attribute called pageClass, this attribute will allow us to know which class we
should instantiate when restoring the state in the Router, each of the children classes shall

5.4. FRONT-END: THE PWA 107

override this value on their implementations of getState to set their own class names.
As an illustrative example, we can see the class EmergencyPage, which will override the

rendering method to introduce its own rendering. Since it will change the background (it has an
special red background), we add an attribute called savedBackground to save the previous
one. When calling render, the page will change the background of the application to a reddish
colour, it will also change the style of the navigation bar and add the content of the page (a text
which says 112 and a button to perform the call). On the event onHide, the page will restore
the original background. The method getState only needs, in this case, to call the parent
getState method, overwrite the pageClass value with EmergencyPage and return the state.
Notice the static method fromState, this method will appear in every instantiable page class
and is used by the Router.

The GridPage, HomePage and CategoriesGridPage classes are explained in more
detail in the section 5.4.3.

5.4.2 Application, routing, resources and navigation bar

At the top level on the structure of our application we have the class App. This class, designed
with a singleton pattern to make sure it is accessible from any part of the code, is the responsible
for managing all the other classes of the application. It is instantiated when the document loads
and it is responsible, during its construction, of instantiating the router and navigation bar classes.
The App class works as a point of connection between the elements of the application. It will be
called when a navigation to a new Page is required, when the maps API needs to be required or
to clear the container before rendering again. It contains the following methods:

• navigateToPage: it receives a page and a variable number of loading parameters. The
method will perform the transition to the given page making sure the state gets saved
to the browser history. It performs this transition calling to App::loadAndRender. The
sequence diagram of the figure 5.18 displays this behaviour and illustrates some other
methods of this class.

• fakeNavigation: it allows the system to “simulate” a navigation to a new page without
making an actual change of page (but saving a new state to the browser history). This is
used by the MapPage when displaying several items, more information about this can be
read in the section 5.4.6.

• updateCurrentSavedState: updates the state of the current page saved to the browser
history. Notice this will not create a new entry in the browser history but, instead, it will
replace the previous one with a more updated version.

• loadAndRender: It performs the change from the current page to a new one, but this
method does not save the change into the browser history. The method starts by calling
onHide in the current page to allow the page to execute any code it considers necessary

108 CHAPTER 5. DESIGN

Figure 5.17: Class diagram of the App, Router, ResourcesProvider and NavBar
classes. These classes are the ones at the top level in the structure of the PWA. Notice
the interfaces in a darker colour are interfaces provider by the browser.

before getting replaced. After this, it will replace the associated current page and call
load with the given load parameters. If the new page does not display the navigation bar,
it will tell the navigation bar to hide, in the opposite case it will show it, restore it to the
default style and change the title to the one indicated by the page. Finally, it will clear the
page container and call the page to render itself on it.

5.4. FRONT-END: THE PWA 109

• requireMapsApi: the method requires the Maps API (which needs the insertion of an
script in the DOM to be included) and stores the passed callback to be called when the
API loads completely. If the API is already loaded the callback is called immediately.

• setMapsAvailable: called when themaps API finishes loading. It will change mapsAvailable
to true, check if there is a callback registered and, if there is one, it will call it.

• clearContainer: simply deletes all the content of the page container to allow a new
page to be rendered.

• getCurrentPage: gets the currently displayed page.

• getContainer: gets the container for the pages to be rendered in.

• getNav: gets the navigation bar object.

The class Router is in charge of loading the right pages having in account the browser
history. The browser history allows us to move inside our single page application as we would do
on a multi-page web and works as a stack of states. The history object available from JavaScript
allows us to save states associated to a title and a URL in the browser history6. When the user
presses the back button in his/her smart phone or the back arrow on the browser, the navigator
offers us an event to listen to this interaction and perform any desired action. It also offers us
a method to emulate this behaviour from code, so we can cause it to be triggered from the
navigation bar back button.

When the App class is instantiated (after finishing loading the document) and it instantiates
the Router, this one checks automatically the browser current state. It is necessary to make
this check because when we are coming from external pages back to our page, the listener to
state popping events (the events triggered when the user presses back) will not be triggered.
After checking the browser state to know in which page we were in case we are coming back, it
registers the listener for the state popping. Notice that our NavBar class will use this mechanism
of the browser to go back, and in consequence it will also trigger the state-popping event. The
listener it registers for this event will be the method onStatePopping of the Router object.

The methods savePage and saveState allow us to save a PageState in the browser
history. The first one requires automatically the necessary information to the given Page, while
the second needs to receive the state and optionally a title and a URL. This last method is
employed by App::fakeNavigation to simulate a navigation that has not occurred. We
can use replaceState to replace the last saved state by a new one of our choice, as the
method App::updateCurrentSavedState does. The method onStatePopping, triggered
when the user presses the back button well in the phone, well in the navigator or well in our
navigation bar, checks for the popped state pageClass attribute and instantiates the right

6The living standard for the History interface can be found in the following web address: https:
//html.spec.whatwg.org/multipage/browsers.html#the-history-interface.

https://html.spec.whatwg.org/multipage/browsers.html#the-history-interface
https://html.spec.whatwg.org/multipage/browsers.html#the-history-interface

110 CHAPTER 5. DESIGN

Figure 5.18: Sequence diagram for App:navigateToPage.

page class, not by calling directly to the constructor but, instead, by calling the static method
fromState. This becomes specially important when popping a MapPageState (for more
information check the section 5.4.6). Once the router has obtained the restored page it simply
calls to App::loadAndRender to display the page without saving a new navigation entry to
the history. If the fromState method returns a null value, the method finishes without calling
App::loadAndRender.

The NavBar class is intended to manage all the stuff relative to the navigation bar of the
application. It provides methods to show the navigation bar, hide it away, change the title, the style
(there is a default style as the one shown in the mock-ups in the services page, for example,
and an only_back style which corresponds to the style of the navigation bar in the emergency

5.4. FRONT-END: THE PWA 111

page: transparent, showing only the back button in a black colour), check if it is hidden, go back
(as it would when clicking on the back-arrow button displayed in the bar) or go to the home screen
(as it would do when clicking on the home button displayed in the bar). The back method makes
use of the navigator history object to make sure it will trigger the state-popping event and will
be listened by the router.

Finally, the ResourceProvider is a class which encapsulates all the access to the resources
of the application. Since this is a web page, generally the resources are accessed by URLs, this
class is responsible for giving the right URLs to obtain all the different resources the web page
makes use of, like the icons for the categories or items, the buttons or the URL for the maps API.

5.4.3 Grid pages

Figure 5.19: Class diagram of the grid pages of the application.

112 CHAPTER 5. DESIGN

Both the home screen and all the screens displaying categories of our application are
organised in a grid-style layout. The rendering of this grid is managed by the class GridPage.
This page receives, apart from the title and displayNav attributes necessary to create the
parent Page class, the number of columns we desire to have in the portrait orientation of the
screen (when the height is bigger than the width) and the icons we want to display. The icons are
received as an associative array of strings, where each key is the id for the icon to be used when
calling the GridPageClickCallback set through setClickCallback and each value is the
URL of the icon we want to display. The GridPage will automatically manage the reorientation
of the screen, adapting the number of columns adequately.

The home screen of the application is rendered by the HomePage class, a very simple class
which provides the six icons for the main screen and responds to the clicks navigating to a
CategoriesGridPage constructed with the right itemType attribute. The only exception to
this is the emergency button, which will cause a navigation to the EmergencyPage, described
in previous sections of this document.

The CategoriesGridPage, while still relatively simple, overrides the load method of
Page to start a call to the ApiService. This call works asynchronously and will perform an
AJAX request to obtain fresh categories for the given item type from the API. Once this call is
finished, if it returns a success, CategoriesGridPage::categoriesReceived will be called
to update the interface with the new categories and update the saved state in the browser history.
This behaviour is illustrated in the sequence diagram of the figure 5.22, in the section 5.4.5.
Please notice that this method, CategoriesGridPage::categoriesReceived, matches
the interface definition of GetCategoriesCallback, required by the ApiService class when
trying to obtain the categories.

The Category interface which can be seen in the diagram represents the interface we
expect the categories received from the API to match. JavaScript can parse the received JSON
automatically and convert it into a JavaScript object or array. The interface Category contains
the attributes we expect to find in each item of the array obtained when parsing the answer for
the API request. More information on the communication with the API can be found in the section
5.4.5.

The icons passed to the parent (GridPage) by the CategoriesGridPage shall have as
keys the ids of the categories, in order to be able to pick the right category when one icon is
clicked to make the app navigate to a new ListPage constructed for the selected category.

5.4.4 Items, periods and the list page

Since the items we receive from the domain and their associated periods are more complex, it
might be necessary, not like the categories, to have a dedicated class inside our application for
them. For this reason, we create the Item and Period classes, which are the representations
inside of our PWA of the items and periods received from the API. This classes appear at the
center-bottom in the class diagram of the figure 5.20. They are constructed directly from the

5.4. FRONT-END: THE PWA 113

Figure 5.20: Class diagram of the ListPage class, Item and Period.

received objects, which are represented in the diagram by the interfaces ItemObject and
PeriodObject. Both classes present a method toObject which allows to obtain the object of

114 CHAPTER 5. DESIGN

creation, this is handy when we want to store them in a state of the browser history, because
saving Items or Periods will cause some browsers to silently store a null value instead of the
passed state. The Period class offers also some methods to facilitate displaying the data they
contain or to compare whether they correspond to the same period of time that another given
Period. This is used by the ListPage to group the events, to obtain more details on how
periods are grouped check the section 6.3.3.

The ListPage class is the page that displays the items in the application. They are disposed
in a list-style layout with the icons at the left and the information at the right7. This page behaves
almost completely in the same way CategoriesGridPage does but managing items, so for
the sake of briefness it will not be explained here (this explanation can be read in the section
5.4.3). We will just point out that the callback used to receive the items from the API is, in this
case, ListPage::itemsReceived.

5.4.5 API connection

Both the ListPage and the CategoriesGridPage make use of the ApiService to commu-
nicate with the API. This class works as an abstraction for every API communication and if new
resources or actions were added to the API in the future, methods to perform those requests
should be added to the ApiService. Since in our application pages make only one request
each, the ApiService manages only one request at a time, cancelling the last one if a new one
is performed. This functionality could be easily extended to manage several queries at a time.
Notice that, since ApiService is not a singleton, several pages can manage several instances
of this class, so no problems of cancellation of request between pages will ever happen.

To communicate with the API asynchronously in the background the XMLHttpRequest

object provided by the browser is needed, but the way this interface works is a little bit odd so we
introduce an intermediate ApiAjaxAdapter specialised in creating the AJAX queries for the
API. Another advantage of this is the possibility to modify in future versions the behaviour of the
queries. If we decide, for example, to use the localStorage of the window object to save some
information about each received query, we can make this is a clean way from the ApiService
while keeping our AJAX logic isolated. This is not, however, the mechanism employed for the
offline mode. To understand that functionality check the section 6.3.2.

The methods provided by the ApiAjaxAdapter allow to make generic requests to a JSON
API, and they could be used to communicate with any other API through AJAX if it were necessary.
Since we only make GET requests from our application, only the get method will be implemented
by now. Each ApiAjaxAdapter manages a new XMLHttpRequest object, trying to start a
new request when another one is in process will throw an error. The ApiAjaxAdapter ignores
completely which kind of objects it is managing, it is the responsibility of the ApiService to

7Check the section 4.2.3 to take a look at the mock-ups of the application and how the layout of the
ListPage shall look like.

5.4. FRONT-END: THE PWA 115

Figure 5.21: Class diagram of the ApiService and ApiAjaxAdapter classes. The
darker interface XMLHttpRequest is provided by the browser.

receive the objects and keep track of whether their interface corresponds to ItemObjects or
PeriodObjects, as well as creating the Item or Period objects before calling the correspond-
ing callback.

The class diagram in the figure 5.21 shows the previously described structure. Only the used
methods and attributes of XMLHttpRequest are displayed8.

Finally, in the figure 5.22 we show an example of a CategoriesGridPage loading and
how it receives the asynchronous answer from the AJAX with the categories. The diagram does
not show the continuation of the receiving method because it would become too small to be
readable, but the method would continue calling the parent method to replace the icons with the
new ones (making use of the ResourcesProvider), calling the App to clear the container and
rendering the page again. Of course, if the page has been already exchanged by another one the

8The complete living standard specification for this interface can be found in https://xhr.spec.
whatwg.org/.

https://xhr.spec.whatwg.org/
https://xhr.spec.whatwg.org/

116 CHAPTER 5. DESIGN

Figure 5.22: Sequence diagram showing how the CategoriesGridPage,
ApiService and ApiAjaxAdapter classes interact to obtain the categories for a
given item type from the API when the CategoriesGridPage load.

5.4. FRONT-END: THE PWA 117

method CategoriesGridPage::categoriesReceived simply finishes without performing
any action.

5.4.6 Map page

Figure 5.23: Class diagram of the MapPage and ItemsMap classes.

The MapPage is the responsible for creating and displaying the map with the items over it.
We will make use of the Google Maps API, and to draw over it we create the class ItemsMap.
This class encapsulates all the logic behind the map behaviour, it manages a list of items and
creates the markers for them, allows to choose one, requests and draws the route to the selected
one, manages the helper panel to print there the directions, notifies information, etc. This way,

118 CHAPTER 5. DESIGN

the MapPage only needs to load the ItemsMap on rendering the page, to call the method to
destroy it in onHide and to listen for picked items to update the state of the page (when we are
seeing a group of items and we pick one, on pressing back we want the application to show again
all the items, not to go back to the ListPage).

There are, still, a couple of things more that MapPage does and we would like to point. On
the one hand, it creates and listens to a Geolocator, which provides it with information about
the user position. The MapPage passes this information to the ItemsMap::placeUserIn

method so this one is able to update the marker position to the right location. The internals of the
Geolocator are explained in the section 5.4.7. On the other hand, the MapPage also controls
when we have came back into the same page and calls to ItemsMap::resetToInitialState.
This behaviour avoids the map to be reloaded when pressing back to see all the items again. To
achieve this, in the ItemsMap::fromState static method we check whether the state to restore
contains exactly the same items as the currently displayed MapPage (if one). If this is the case,
it calls to resetToInitialState on the ItemsMap of the current page and returns a null
value. As mentioned in the section 5.4.2, when receiving a null value back from fromState,
the Router simply does nothing.

The ItemsMap class, as previously stated, encapsulates all the logic for the connection with
the Google Maps map. The use of the classes from Google Maps is complex and this document
would become too big, but more information on the subject can be found in [12]. When calling
load on an ItemsMap, it will automatically call App::requireMapsApi to cause the Google
Maps API to be loaded (if it was not loaded already). Once it has ended loading, the application will
call the callback provided by the ItemsMap, which shall be MapPage::mapsApiAvailable.
Once this happens a google.maps.Map element is created on the container indicated by the
MapPage when calling ItemsMap::load and all the google.maps.Marker for the items are
created. The object will keep track of these items, hiding all the non-selected ones when one
item is selected or showing them when resetting it to the initial state. It will also keep track of
the user location with the periodic notifications from the MapPage and update the user marker
accordingly. If the ItemsMap is created for a single item, the item is automatically selected.
When an item is selected and if the user position is available, a call to the Directions API of
Google Maps is initialised. On receiving the route, it is displayed over the map and the directions
for it are rendered on the directionsContainer element, if it is not null. The route is not
updated until we go back and select an item again, even if we deviate from it, but this was a
design decision because our number of available requests to the Directions API is limited.

5.4.7 Geo-locating the user

Thanks to modern web standards, geo-locating the user is not as hard as it would seem. We
can make use of the interface Geolocation, through the object provided by the browser to
this purpose in navigator.geolocation. This object possesses a method watchPosition
which receives a callback and notifies periodically the position of the user in an object implementing

5.4. FRONT-END: THE PWA 119

the Position interface. It also allows to provide a callback for errors (since this method
requires authorisation by the user of the web browser). When creating a Geolocator object,
this will automatically check if the browser supports the geolocation features. If it does,
geolocationAvailable will be turned to true9. When calling start, the Geolocator will
call the watchPosition method previously described and from then on, it will notify all the
registered listeners each time a position update is received. Calling stop on the Geolocator
will cause it to cancel the watch for the user position.

Figure 5.24: Class diagram of the Geolocator-related structure. Please, notice that
the interfaces with a grey background are provided by the browser.

9Geolocation requires user authorisation and it is only allowed on web pages served over HTTPS.

120 CHAPTER 5. DESIGN

Chapter 6

Implementation and testing

This chapter will describe the implementation process, avoiding excessive low-level details and
explaining the aspects which were not obvious or maybe problematic. We recommend reading
the chapter 5 before this one in order to have a general idea of the application design at a higher
level of abstraction. We will describe also the initial data import very briefly and talk about the
testing of the system.

We would like to point that all the code has been developed paying special attention to obtain
clean, high-quality code. Moreover, we made wide use of commentaries and documented every
class using the automatic documenters for the languages employed (PHPDoc and JsDoc).

6.1 The file structure of the project

The project structure fits with the one of the attached source code and consists of three main
folders, each one of them dedicated to a different and independent part of the project. The DB
folder gives us access to the MySQL scripts which allow to replicate the database of the project
and make some initial insertions. It also contains the script which imports the initial data into the
database. The API folder contains the source code of the back-end API, the structure inside
this folder is explained in the section 6.2. The last one, PWA, contains the source code for the
front-end, single-page, progressive-web application. We decided to organise the structure this
way because these are three very isolated parts corresponding to different stages of the project.
Some thoughts on making a third folder containing the static resources for the web were taken
in consideration, since serving static resources from a different server is a common practice to
keep the system performance and escalate adequately, but it was discarded by now because it
would hinder the static pre-cache for the PWA, further explanation on this can be found in the
section 6.3.

121

122 CHAPTER 6. IMPLEMENTATION AND TESTING

6.2 Back-end

The back-end API elaboration required the implementation of the database and the posterior
construction of the PHP code. While this was a quite-smooth process in general, there are some
details about the employed technologies and the decisions we made that are worth to mention in
this section, given that they would not be represented in other parts of the document.

6.2.1 The database

Respect to the database, the implemented model corresponds directly to the described in the sec-
tion 5.2.2. Two files were elaborated, a creation script (called CREATION_SCRIPT.sql), which al-
lows to create the database structure completely and a insertion script (INSERTION_SCRIPT.sql)
which inserts into the database the languages we are gonna use (English and Greek) and the
categories for the application with the adequate order configuration to match the prototype devel-
oped by J. Ideami. This insertion script contains already the links for the help section indicated
by the Greek team, they were added manually because it was more comfortable given the small
number of help categories.

The only note on the database to be made is about checks. The first implementations on the
database system made use of the MySQL CHECK constraint to make all the checks indicated
in the relational model. To our surprise, none of the checks was being performed. After lots of
small tweaks to the code we found the following in the MySQL official web page: “The CHECK
clause is parsed but ignored by all storage engines”.

This is a common source of errors in MySQL, not only the CHECK but some other clauses
are silently ignored by the engines to maintain compatibility with SQL without implementing the
functionality. Luckily, this has a simple workaround: we implemented all the checks with triggers
on update and insert, and it does the trick perfectly.

About the constraints implemented, please notice we implemented all the ones the relational
model had (checks, indexes, foreign keys...) and also one of those which the model could not
represent: that a category with a link value cannot have any associated items. Still, we decided
not to implement the constraint that requires the item opening hours to not overlap between them,
because we consider this could be a too intensive trigger which could be easily replaced by a
check on the control panel to input the data. For this reason we added the new requirement
FR-15 for the control panel that indicates this. The initial data, given the way it is loaded, is
ensured to have non-overlapping opening hours for the items.

The database creation script contains IF NOT EXISTS clauses, not supported by old ver-
sions of MariaDB (this was noticed while doing the deployment). Just remove them if this is the
case when deploying. More information about deploying the database in the appendix A.1.

6.2. BACK-END 123

6.2.2 Initial data

To import the initial data in a comfortable way into the database, a Python script was created
in order to read it from a CSV file directly into the database. To this purpose, the Greek team
gathering the data was indicated a strict format they should follow while filling the spreadsheet.
To use the script we need to save each page of the spreadsheet as a different CSV so we can
have each item type in one single file. In the attached source code it is given as an example the
initial data we received from the Greek team (which contained several mistakes) and the CSV
files already prepared to import (and with the necessary corrections made). The script simply
reads the files and makes use of the MySQL connector library to insert all the items with their
languages and opening hours associations directly into the database. If it detects any failure in
the data or if some MySQL clause fails, the script stops and the transaction is rolled back so no
data at all is saved.

One tricky part of this was the opening hours. We decided to establish the following context-
free grammar for this field on the document:
OpeningHours → Schedule (";" Schedule)*
Schedule → DayList " " HourRange ("&" HourRange)*
DayList → WeekDay ("," WeekDay)* | WeekDay "-" WeekDay

HourRange → Hour (":" Minutes)? ("am"|"pm") "-"

Hour (":" Minutes)? ("am"|"pm")

Where Hour and Minutes are successions of numeric digits, WeekDay is "Monday", "Tues-
day", "Wednesday", "Thursday", "Friday", "Saturday" or "Sunday"; "|" represents the union, "*"
represents the Kleene closure and A? is equivalent to (A|λ).

This grammar was, of course, explained to the data-gathering team in a less technical/formal
way so they could understand it correctly. The kind of values we expect to find in this field are
of the type “Monday-Friday 9am-1:30pm & 4pm-8pm; Saturday 4pm-10pm” (meaning the item
is available from Monday to Friday, from 9am until 1:30pm and from 4pm until 8pm, and on
Saturdays from 4pm until 10pm) or “Monday,Wednesday,Friday 10:30am-2:30pm” (meaning the
item is available on Monday, Wednesday and Friday from 10:30am until 2:30pm). The script
processes these schedules and inserts the right periods into the database. Alternatively, the field
can contain appointment(number) to indicate that the item requires to be called to ask for an
appointment and the phone number is number.

Respect to the images naming convention, we indicated the images names should correspond
directly to the names of the items in lowercase, without spaces and with extension jpg. All the
special characters not admitted in Windows files should be omitted, as well as the hyphens and
the parenthesis. This way, the name of the icon image for an item with name “Citizens’ Service
Centres (KEP).” should be “citizens’servicecentreskep.jpg”.

Unfortunately, the initial data received contained several mistakes: format errors, impossible
hours, images with incorrect names so they could not be found by the system... All of this had to
be solved manually and several hours of work (days, in fact) were lost in the process.

124 CHAPTER 6. IMPLEMENTATION AND TESTING

6.2.3 The API

To develop the API, we decided to use the folder structure shown in the figure 6.1. As we can see,
we have a public_html folder, which should be set as the document root of our API server.
This way, we get all the files in class or config to be unreachable through direct URLs, in
order to avoid giving public access to them by mistake.

class

exceptions

formats

gateways

gtmysqli

transactions

url

config

config.php

public_html

index.php

.htaccess

unitaryTests

formats

gateways

gtmysqli

url

Figure 6.1: File structure of the API source code. Only relevant files are shown.

6.2. BACK-END 125

6.2.4 Auto-loading the classes

The PHP namespaces have been configured following the folder structure to facilitate class
loading. When using object-oriented PHP, we like to have each class in a separated file, named
with the name of the class, as it is usual in object-oriented environments. But PHP used to require
to manually include the files with include1, include_once2, require3 or require_once4
sentences, so one of the most annoying problems when writing the files is having to write long
lists of these sentences to make sure of including all the related classes. To work around this
PHP 5.0 introduced the class auto-loading.

With auto-loading, when a used class is not defined, PHP will automatically try to find and
include the file for it. Unfortunately, the default auto-load has a weird behaviour which is not
even stable between systems (over XAMPP default configuration in Windows it searched for files
preserving the original casing of the word, while when deploying it to our Linux server it searched
for names in lower case). However, to solve this, PHP provides the option to change the function
which automatically handles the auto-loading. Our version of the auto-loading is written in the
file config.php, visible in the figure 6.1. The code which registers our auto-loader in particular
goes like the following:

1 spl_autoload_register(function ($class) {
2 $paths = explode(PATH_SEPARATOR, get_include_path());
3 foreach($paths as $includePath) {
4 $file = $includePath . DIRECTORY_SEPARATOR
5 . str_replace(’\\’, DIRECTORY_SEPARATOR, $class)
6 . ’.php’;
7 if (file_exists($file)) {
8 require $file;
9 return true;

10 }
11 }
12 return false;
13 });

As we can see, our register simply loops over the registered include paths and searches
for a file with the same name as the class (preserving the upper case letters) in a route of
folders determined by the namespaces (notice the replacement of \ by the directory separa-
tor on line 5). Notice also that we make require, and not require_once in the line 8 for
efficiency reasons, since this function will only be called whenever the class does not exist.
Since all our classes will be in the class directory, we must make sure to include that folder
in the include path (it is done previously, in the same file). Once this is done a class whose
name is gateways\gtmysqli\MysqliItemsGateway would cause the inclusion of the file

1http://php.net/manual/en/function.include.php

2http://php.net/manual/en/function.include-once.php

3http://php.net/manual/en/function.require.php

4http://php.net/manual/en/function.require-once.php

http://php.net/manual/en/function.include.php
http://php.net/manual/en/function.include-once.php
http://php.net/manual/en/function.require.php
http://php.net/manual/en/function.require-once.php

126 CHAPTER 6. IMPLEMENTATION AND TESTING

class/gateways/gtmysqli/MysqliItemsGateway.php when it is used and it was not
already defined.

Finally, we simply need to indicate in index.php to require the config.php file and the
system starts working.

6.2.5 Redirection

To make the API work we need all the requests made to any folder under the API folder to
be redirected to our index.php. Although this should be configured in the server in use, to
provide a quick alternative we add to the source code an .htaccess file, which is an Apache
configuration file, configuring the RewriteEngine to rewrite all the URLs under it and direct
them to our index file.

We have to be careful when redirecting other links into the API, making sure the server will
continue rewriting the links recursively, in another case the API will stop working. Also keep in
mind this redirection when trying to add new php files to the folder where the API is published. In
general, we do not recommend to do this, we suggest to deploy the API into its own folder, with
no other files to be accessed there. If sharing the folder were mandatory, just introduce a new
RewriteCond rule to the .htaccess to avoid rewriting the file you want to allow the access to.
For example, the rule RewriteCond %{REQUEST_URI} !/my_awesome_file.php$ would
prevent the rewrite engine from rewriting the URLs pointing to my_awesome_file.php.

6.2.6 Other implementation details

Since PHP does not provide enumerations, we made a workaround implementing a FakeEnum
class which simply stores a value and can be extended, adding static methods for each of the
enumeration values. As a bonus, we can now create the enumeration values from strings without
long switch-case constructions, which results very useful when parsing data from the database,
as an example take a look at the ItemType implementation:

1 class ItemType extends FakeEnum {
2 protected function __construct($value) {
3 parent::__construct($value);
4 }
5
6 public static function SERVICE() {
7 return new self(’service’);
8 }
9 public static function LEISURE() {

10 return new self(’leisure’);
11 }
12 /* [More similar methods...] */
13
14 /**
15 * Creates the right item type for the given string,

6.2. BACK-END 127

16 * the strings in this class should match the ones
17 * in the database, so we can pass them directly into here.
18 * @param $string string The string to check.
19 * @return ItemType the item type with the given string as value.
20 * @throws UnknownTypeStrException if the given type does
21 * not match any of the types known by the current
22 * implementation of this class.
23 */
24 public static function FOR_STR($string) {
25 if(in_array($string, array(’service’, ’leisure’,
26 ’link’, ’help’, ’info’))) {
27 return new self($string);
28 } else {
29 throw new UnknownTypeStrException(
30 "Tried to create unknown item type ’$string’.");
31 }
32 }
33 }

We also added the IApiInterface class which contains constants relative to the interface
of the API, like the strings used for each field, the base URI where the API is placed, the default
input and output formats, etc.

6.2.7 Unitary tests

To test the functionality of the API several unitary tests were developed along with the code.
These tests are also useful to check everything is fine when we add new functionality to the code.
All of them are placed in the unitaryTests folder5 and their structure is similar to the one of the
source code files. To develop the tests PHPUnit was used, concretely the version 7.1.5. PHPUnit
provides a TestCase class which we can extend to perform all the necessary tests.

One little problem was to make the unitary tests for the mysqli gateways, which we con-
sidered very fundamental. To make them, we needed to make an stub replacement for the real
mysqli object, but the functionality provided by PHPUnit to mock classes was not enough to
make the stub work. The main problem with it was that PHPUnit-generated mocks are not able
to manage references in their methods, so we could not emulate correctly the behaviour of the
mysqli_stmt class6.

When we desire to save the results of a mysqli_stmt, we execute the statement and make
a call to mysqli_stmt::bind_result, passing by reference all the variables we want to make
the bind with. After this is done, we call to mysqli_stmt::fetch to save the values of the
next row returned by the query in the binded variables. Unfortunately, PHPUnit-generated mocks

5When executing all the unitary tests, make sure your working directory is set to this folder, or some
tests may not be able to import the required mocks.

6The mysqli_stmt class is the class which encapsulates all the functionality for the prepared state-
ments in mysqli.

128 CHAPTER 6. IMPLEMENTATION AND TESTING

cannot receive parameters by reference, since they make a copy of the parameters in the process
of mocking up the class, loosing the original addresses. To work around this we finally made our
own extension of mysqli_stmt overriding the methods we needed.

However, the replacement is still a bit uncomfortable to work with. Our mysqli mock needs
to know which exact queries it expects to receive to know which prepared_stmt mock generate,
and this cause all the tests to break when minor changes are made in the queries (e.g. when
changing the order of the fields).

6.3 Front-end

The front end of the system, the PWA, had a more complicated implementation than the API
conditioned by the development environment. This development environment was set up using
npm and gulp.

6.3.1 File structure

dist

out

src

css

ico

categories

costandlanguage

items

mainmenu

map

js

index.html

gulpfile.babel.js

package.json

Figure 6.2: File structure of the PWA source code. Only relevant files are shown.

6.3. FRONT-END 129

The main folder of the PWA contains the configuration files for the project. The src folder
contains all the code and resources to build the application, while the dist and out folders
are generated when building the application and when generating the JsDoc, respectively. For
information about how to build the application check the section A.5.

The main files to notice of this structure are package.json, gulfile.babel.js and the
index.html. The first one is our “configuration” file for npm, the more important function in our
case is to store the development libraries we use to build the application so it is really easy to
prepare the environment in any computer. The gulpfile.babel.js is the configuration file
for gulp. In this file we write all the tasks we want gulp to configure and how they behave, C
developers can think about this like some kind ofMakefile for web pages and written in JavaScript.
Finally, we say our index.html is one of the fundamental files of the structure because there is
where everything starts. A PWA is, by definition, a single page application (SPA), that means all
the web is accessible through a single "page", there is no navigation between screens and all the
data transferring happens in the background (check section 2.1 for a brief introduction to modern
SPAs behaviour accompanied by explanatory figures).

It is worth to point also that once our web is built, all the JavaScript is concatenated and
minified into a single script, and the same happens with the CSS. This speeds up the page
loading when accessing the page for the first time.

6.3.2 Precache and dynamic caching

To accomplish the functional requirement FR-13 and the non-functional requirement NFR-21, we
need the application to keep at least the fundamental data available even when the phone has
no connection. To achieve this we need to use the cache.

Modern JavaScript includes the concept of service workers. A service worker is just a
JavaScript code which runs in the background, asynchronous from the main code of the page.
This service worker is totally independent and can communicate with the main code through
messages. An interesting characteristic of the service workers is that they are able to listen to http
requests to files under their scope, and intercept them. The scope of a service worker includes all
the files under the folder the service worker is placed, and it can never be placed in a more general
folder than the folder where the service worker is placed. To give an example, if we want to request
a service worker from the file whose URL is https://mydomain.com/my/folder/index.
html, our service worker needs to be placed inside the same folder or in a deeper one, it could
be for example in https://mydomain.com/my/folder/foo/bar/service-worker.js
but not in https://mydomain.com/service-worker.js. If we place the service worker
in https://mydomain.com/my/folder/service-worker.js, its scope would be every
request pointing to files inside https://mydomain.com/my/folder/ or a deeper one. This
is very important when creating re-directions for the application, as we will see in the section
6.3.5. Apart from intercepting the HTTP request under their scope, modern JavaScript offers the
possibility to the service workers to manipulate the cache to save or load requests directly. This

https://mydomain.com/my/folder/index.html
https://mydomain.com/my/folder/index.html
https://mydomain.com/my/folder/foo/bar/service-worker.js
https://mydomain.com/service-worker.js
https://mydomain.com/my/folder/service-worker.js
https://mydomain.com/my/folder/

130 CHAPTER 6. IMPLEMENTATION AND TESTING

is a powerful tool which gives us the key to keep our application working offline and, at the same
time, speed up the page loading7.

Of course, we could implement ourselves the cache functionality and, in fact, it is not really
complicated, but, good for us, Google has created a completely-free, Apache 2.0-licensed library
to help us with this and make our service worker to cache the application really quick to configure
and more powerful. The library we use is called sw-precache and allows us to create an static
pre-cache of the application shell and a dynamic cache for the API requests in question of minutes
(once we have certain domain over its configuration).

The pre-cache allows our site to directly cache the shell, the "skeleton" of our application
in the very moment we access it the first time. We can think about this like a usual application
installation. When building our PWA (check the section A.5), sw-precache will check all the
files we indicated and create for them a hash that it will store in the service worker it generates.
If some of the hashes has changed, the service worker will change in consequence and the
next time users enter our web page it will update in the background. Once it is updated, it will
cache again the files which have changed (and only those ones). This way we reduce the data
consumption drastically. Moreover, we speed up the page loading since every time we load the
page after the first loading, the data will be loaded from cache and not from the network. The
files we decided to pre-cache can be checked in the gulpfile.babel.js file8, and they are
the index.html, the minified JavaScript, the minified CSS, the icons for the home screen and
the categories and the favicon. The figure 6.3 shows an example of hashed files in a service
worker generated by sw-precache.

var precacheConfig = [[
"/alpha/public_html/css/style.min.css", "

dc31e8dc0a2e1ff9600f3a04b64e8e40",
["/alpha/public_html/favicon.ico","324865

c614d2845fa261c27ece9a1a46"],
["/alpha/public_html/ico/categories/help_banka.png","821

e1a79a29f76ca5fec148e88c09f8c"],
["/alpha/public_html/ico/categories/help_disab.png","1

dc50ab348ea89ffbd55d99d86b8e813"],
/*...*/]];

Figure 6.3: Example of hashed files in a generated service worker.

But the shell of our application is nothing without the dynamic data. With dynamic data

7Both the service workers and the cache functionality require HTTPS to work. The browser will not
allow service workers on webs served over plain HTTP. However, they do allow them on localhost to
facilitate the development process. Our application, of course, has been deployed to a server with HTTPS.

8The configuration details for sw-precache are too long and out of the scope of this document.
However, the information is available in the GitHub page of the project https://github.com/
GoogleChromeLabs/sw-precache.

https://github.com/GoogleChromeLabs/sw-precache
https://github.com/GoogleChromeLabs/sw-precache

6.3. FRONT-END 131

we refer here to all the information we obtain from the API of our system. The same library
sw-precache, making implicit use of another library developed by Google called sw-toolbox,
allows us to create another cache for the dynamic content. There are several configurations that
can be done to this dynamic cache9, but the most important and the one we will discuss here is
the handler. The handler defines the politics the cache follows to decide how to respond to the
HTTP requests it intercepts. Notice that the pre-cache is always executed the first time we enter
the page and every time the content is updated, but this dynamic caching intercepts the request
to our API to decide whether to cache them or not, and whether to serve the cached version or
wait for the network answer.

Figure 6.4: Sequence diagram illustrating the interaction between the PWA, the service
worker, the API and the cache when the networkFirst handler is used. In this example
the API is not available for some reason and the service worker sends the request to the
cache.

There are five built-in handlers in the library, corresponding to the most common network
strategies: networkFirst, cacheFirst, fastest, cacheOnly and networkOnly. The

9For more information on configuring the dynamic cache check https://googlechromelabs.

github.io/sw-toolbox/, check also https://github.com/GoogleChromeLabs/

sw-precache for more information about how the sw-toolbox library configuration is integrated into
the pre-cache library.

https://googlechromelabs.github.io/sw-toolbox/
https://googlechromelabs.github.io/sw-toolbox/
https://github.com/GoogleChromeLabs/sw-precache
https://github.com/GoogleChromeLabs/sw-precache

132 CHAPTER 6. IMPLEMENTATION AND TESTING

last two of them correspond to extreme cases with very specific uses (one never uses the network
and the other never uses the cache), so we will centre ourselves in the three first ones.

The networkFirst handler tries to answer the requests fetching them from the network,
if the request succeeds the received data is stored into the cache. When the request fails the
fulfils the request serving from the cache. This way, the application shows always the freshest
data while keeping cached data to supply when the network is not available. A downside of this
comes with very slow networks, since the service worker will wait for the network connection to
fail and, in consequence, loosing time waiting for the unavoidable to happen. This, however, can
be palliated with a timeout configuration for sw-toolbox which will cause the service worker to
give the request by lost when the timeout is exceeded. The diagram in the figure 6.4 illustrates
the case where the network fails to answer the request.

Figure 6.5: Sequence diagram illustrating the interaction between the PWA, the service
worker, the API and the cache when the cacheFirst handler is used. In this example
the cache does not have the requested file, so the service worker sends the request to
the API.

The cacheFirst handler performs exactly the opposite behaviour. It request always the
information to the cache first, if the request matches a cache entry, it responds directly with that.
Otherwise, the request is tried to fetch from network. In case the network succeed, the cache will
be updated with the new information. With this handler, the application will keep serving the same

6.3. FRONT-END 133

data until it gets lost for some reason (the browser can delete the cache always that it considers
it needs the space). This could be useful for very static resources that will never change, and it
allows to save both network usage and battery avoiding unnecessary networks requests at the
same time it reduces drastically the loading times. It could be fine for our categories requests,
since we do not expect them to change, but it is definitely not a good strategy for our items. The
diagram in the figure 6.5 illustrates the case where the cache fails to answer the request.

Figure 6.6: Sequence diagram illustrating the interaction between the PWA, the service
worker, the API and the cache when the fastest handler is used. In this example the
cache has the requested file and answers faster than the API.

The fastest handler is a mix between the previous two, giving us the flexibility to keep an
updated cache while fulfilling the requests really fast. When a request is received, the handler
request both the cache and the network in parallel. Whichever of them is the first to answer, it will
be one used to respond the query. Of course, when the entry is already in the cache the usual
answer will come from there but, still, when the network answer is received the cache will be
updated, so next time we enter the page the information will be already updated. This way, we
get always a network request, even when the resource is cached. The diagram in the figure 6.6
illustrates the case where the cache answers the request first.

Since we would like to keep our items updated, but the changes to them will be usually small
and not so common, we decide to use the fastest handler. Of course, the library allows us to

134 CHAPTER 6. IMPLEMENTATION AND TESTING

configure different handlers for different URL patterns, so we could use a cacheFirst strategy
for the categories requests and a fastest or even nerworkFirst strategy for the items, but
due to the small amount of time available we decide to keep it simple and use only one cache
handler for the whole API by now. In the beta or the final versions this may change or maybe we
will even use a customised strategy.

6.3.3 Grouping periods

While in the database we save the opening hours of the items in a period-by-period format, we
would like to display this to the user in a more human-readable format. For example, imagine we
have the following opening hours for a given item:

Start day End day Start hour End hour
Monday Monday 10:00 14:00
Tuesday Tuesday 10:00 14:00
Wednesday Wednesday 10:00 14:00
Friday Friday 10:00 14:00
Saturday Saturday 10:00 14:00
Sunday Sunday 14:00 19:00

Being this the case, we would like to group all the periods of successive days with the same
starting and finishing hour and display them in a way similar to this one:
Monday-Wednesday 10:00-14:00
Friday-Saturday 10:00-14:00
Sunday 14:00-19:00

To achieve this, we need to scan the periods grouping the ones which are successive and
have the same starting and finishing hour. The algorithm we developed behaves as shown in the
pseudo-code in the figure 6.7.

The precondition for the algorithm is that the periods are sorted ascendant by their ending
and they do not overlap between them. This is not a problem because we simply configure the
API IPeriodsGateway to return them ordered by their ending and they are ensured to not
overlap by the FR-15 because, apart from the initial data, all the other data will be introduced
through the control panel.

We start with an empty list of schedules (this is the name we will give to those “groups” of
periods in the algorithm). While we have periods left to classify we repeat the loop from line 5
until line 36. Inside this loop, we pop the first element of the remaining periods (notice it will
be the one which ends first, and since they do not overlap, also the one which starts first). We
create with this element a new schedule which starts and ends in the same period, and save
also the information about what is the day we expect the next period to start (next_day. The day
we expect the new period to start depends on the hours of the period. If the the period ending

6.3. FRONT-END 135

1 # PRECONDITION: periods is sorted ascendant by end_day, end_hour and
↪→ end_minutes and they do not overlap

2 function groupPeriods(periods):
3 schedules := []
4 # continue while there are periods left to group
5 while count(periods) > 0:
6 next = pop_first(periods)
7 new_schedule = {start_period: next, end_period: next, next_day:

↪→ next_day(next)}
8 found_next := false
9 repeat:

10 found_next = false
11 # expand while some new is found
12 for each period in periods:
13 if hours(period) = hours(next) and start_day(period) =

↪→ new_schedule.next_day then:
14 new_schedule.end_period = period
15 new_schedule.next_day = next_day(period)
16 found_next = true
17 break
18 end if
19 end for
20 while found_next
21
22 # check if this is the previous to another one and join them
23 found_next = false
24 for each schedule in schedules:
25 if hours(schedule.start_period) = hours(new_schedule.

↪→ start_period) and start_day(schedule) = new_schedule.
↪→ next_day

26 schedule.start_period = new_schedule.start_period
27 found_next = true
28 break
29 end if
30 end for
31
32 # it was not, create a new one
33 if not found_next then:
34 schedules.append(new_schedule)
35 end if
36 end while
37 return schedules
38 end function

Figure 6.7: Pseudo-code for the period-grouping algorithm.

hour (and minutes) is later than the starting hour, the day we expect the following period to start
in order for both to be a continuous schedule is the day just after the last day of the period. So,
for example, if the period is Monday 9:00 - Tuesday 22:00, our continuation day would be
Wednesday, since we cannot start at 9:00 on the same Tuesday if we end at 22:00. If the last
day is Sunday, the day after would be, of course, Monday. If the period ending hour is sooner
than the starting hour, then the next day will be the same day the period ends. This way, if hour

136 CHAPTER 6. IMPLEMENTATION AND TESTING

period is Monday 17:00 - Tuesday 3:00, we expect the following period to start on the
same Tuesday (at 17:00). When the period has the shape Monday 17:00 - Monday 3:00, it
might seem the algorithm behaviour is mistaken and that the next day should be the next Tuesday
and not the same Monday. However, notice that this period does not mean from Monday at 17:00
until Tuesday at 3:00, this period means from Monday at 17:00 all the week around until the next
Monday at 3:00, so our algorithm expects the right day.

The loop from line 9 to line 20 simply expands the created schedule each time it finds the
next period to continue the schedule. Notice that, since we take always the first and they are
chronologically ordered and non overlapping, we will never obtain broken schedules inside the
same week. Imagine the case where the periods were not ordered, as following:

Period id Start day End day Start hour End hour
1 Wednesday Wednesday 15:00 20:00
2 Monday Monday 15:00 20:00
3 Tuesday Tuesday 15:00 20:00
4 Friday Friday 15:00 20:00
5 Thursday Thursday 15:00 20:00
6 Saturday Saturday 15:00 20:00

In this case, we would take first the period 1 ending in Wednesday and expand the schedule
adding the periods 5, 4, 6 to be the schedule Wednesday - Saturday 15:00 - 20:00.
Then we would take the new first, which would be the period 2 and make a new schedule
expanding to the period 3, having at the end two periods Monday - Tuesday 15:00 - 20:00

and Wednesday - Saturday 15:00 - 20:00. Starting with them ordered chronologically,
we obtain a single schedule Monday - Saturday 15:00 - 20:00, that is the correct result.

Finally, the last loop from 24 to 30 iterates over the schedules previously saved to check if
some of them was the continuation for this new schedule. This is necessary because week days
are modular, after the Sunday it comes the Monday again. When we order we set the Monday as
the first element and the Sunday as the last one. So imagine a case like the following:

Period id Start day End day Start hour End hour
3 Monday Monday 15:00 20:00
4 Tuesday Tuesday 15:00 20:00
1 Saturday Saturday 15:00 20:00
2 Sunday Sunday 15:00 20:00

The periods are ordered, but if we execute the first part of the algorithm what we obtain is two
schedules like the following: Monday - Tuesday 15:00 - 20:00, Saturday - Sunday

15:00 - 20:00. This is solved by the last loop since it would find the first schedule was the
continuation of the one to add when going to add Saturday - Sunday 15:00 - 20:00 and
it would merge them in consequence.

6.3. FRONT-END 137

Finally, if the schedule has not been merged, we simply insert it into the list and continue
with the remaining periods.

The complexity of the algorithm, being N the number of periods to sort is, in the worst case:

O(loop5−36) × (O(loop9−20) × O(loop12−19) + O(loop24−30)) =

O(N) ×
(
O

(
N
2

)
× O

(
N
2

)
+ O

(
N
2

))
= O(N) ×

(
O

(
N2

4

)
+ O

(
N
2

))
=

O(N) × O
(

N2

4

)
= O

(
N3

4

)
= O(N3)

The internal loops are calculatedd as O
(
N
2
)
because each time they execute there is a period

less (so, in average in the worst case they loop over N
2 periods).

6.3.4 Saving the application to the home screen

The non-functional requirement 21 requires the application to be installable to work like a native
application would do in the systems which allow this functionality. To achieve this, we need to
create a manifest file.

The manifest of our PWA is simply a JSON file which contains some information for the
browser about what we expect it to do with our web page. There we define a name for our
application, a theme color, the launch icon, the initial URL, the scope and some other details.
For the web browser to offer the user the addition of our PWA to the home screen, Google
Developers10 indicates the following criteria11:

• The web app is not already installed.

• The page meets a user engagement heuristic (at the moment of writing these lines and in
Google Chrome this heuristic is that the user has interacted with the domain for at least
30 seconds).

• It is loaded valid web app manifest which includes:

– The short name or the name of the PWA.

– Icons for the launcher, at least the 192 px and the 512 px sized ones.

– An start URL which indicates the initial page to load when launching the app.

– A display value of fullscreen, standalone or minimal-ui (the display value
indicates how we want our application to be displayed to the user when launched
from the home screen).

10https://developers.google.com/web/fundamentals/app-install-banners/

11The criteria varies a bit from one browser to another, but at the moment of writing these lines and after
checking the Edge, Firefox, Opera and Samsung Internet sites we confirmed that the criteria imposed by
Chrome is the most restrictive.

https://developers.google.com/web/fundamentals/app-install-banners/

138 CHAPTER 6. IMPLEMENTATION AND TESTING

• The page is served over HTTPS.

• The web page has registered a service worker with a fetch even handler (i.e., the page
is caching the requests to the network to provide offline functionality).

When this criteria is met and the browser is disposed to allow the addition of our PWA to the
home screen of the user, it triggers a beforeinstallprompt event, giving us the chance to
cancel the prompt of the banner to the user or to save the promise to display it later.

6.3.5 Deployment

In our deployment of the application, since this was an alpha version, we wanted to public the
application in the /alpha/public_html/ folder of our domain. But to give a quick access
through a nice URL to the focus group in Athens J. Ideami wanted to redirect the requests to /a
(and only the requests to /a) to this location. This came with a couple of problems.

The obvious solution would be to create a redirection that causes all the URLs of the format
/a/something to be redirected to /alpha/public_html/something and explicitly tell the
browser to redirect /a to /a/, but at the start of the development J. Ideami preferred not to give
me access to the root of the server, and since I do not have administration permissions (all I had
was the FTP to the /alpha/ folder) I could not change the redirection he had made. This was a
problem because when loading /a, all the relative URLs to scripts, style sheets and images were
understood by the browser to be meant for /. For example, requesting from the HTML something
like <script src="js/script.js"> led the browser to request /js/script.js and the
server to answer with a 404 status (not found).

So the workaround was to include a base URL for the web page, which can be configured
before building and is added to every request in the application (it was not hard to do, given
that we had already the ResourcesProvider described in the section 5.4.2). This worked fine
because it allowed us to establish an absolute base URL like /alpha/public_html/ and it
would work without any problem.

Unluckily, a new problem came when trying to implement the cache and work with the service
worker. As explained in section 6.3.2, the service worker has a defined scope for the requests it af-
fects and these are all the requests under the folder the service worker is placed. In consequence,
since the service worker was requested to /alpha/public_html/cache-service-worker.js
it was not possible for it to cache the request to /a, i.e., the request of the HTML of our page,
and the offline mode did not work at all from the redirection point. To solve this, J. Ideami
finally ended accepting to give me access to the root of the server, where I configured another
redirection. I configured Apache to redirect every request to /cache-service-worker.js to
/alpha/public_html/cache-service-worker.js, and simply programmed the page to
load the service worker from a relative URL, instead of using our application base URL. However,
this did not work at all and the service worker request was continuously answered with a 404.

6.4. GENERAL TESTING 139

It took some time to realise what was the problem: the NGINX static-resources server. The
server of deployment uses a very common configuration to improve the efficiency of the system:
it serves the dynamic files with Apache but introduces NGINX as an intermediary proxy which
automatically serves static files (such as .js). The consequence of this was that our request to
/cache-service-worker.js would never get to Apache for them to be redirected. NGINX
processed the request first and found there was no such file in that directory, returning a 404
answer.

The final solution was to define the same URL rewrite in both the root folder of the server
and the /alpha/public_html/ folder. Both of them redirecting the requests to worker to
/alpha/public_html/cache-service-worker.js. After this, I programmed the page to
request the service worker to the URL worker. Since this URL does not contain any of the exten-
sions managed by NGINX (in fact, it does not contain any extension at all), the request gets intact
to Apache, which in both cases serves /alpha/public_html/cache-service-worker.js,
inducing the browser which requested /worker to think the service worker is, in fact, in the
same folder as the HTML of the page and, in consequence, being able to cache correctly our
application shell.

6.4 General testing
Although some general testing was planned in the initial planning, due to some complications
and delays debt, mainly, to the several mistakes in the initial data document and the very tight
schedules, this general testing has not been possible to automate yet. Some automatic testing
will be developed in the following days after presenting this document.

However, the API counts with several unitary tests and J. Ideami is checking the functionality
of the PWA screen by screen to make sure everything is displayed and works as he designed and
expects. Moreover, we count with a focus group which will test the alpha version of the application
for the whole next month in Greece, so this does not suppose a problem for the evolution of the
project.

140 CHAPTER 6. IMPLEMENTATION AND TESTING

Chapter 7

Conclusions and future work

In this chapter we will analyse which requirements have been satisfied already, what requirements
are left, which improvements could be made to the already implemented system and what is our
plan of future work over the project for the coming months.

7.1 Satisfied requirements

The application functional requirements specified for the alpha version of the project, as stated
in the section 3.8 are the requirements FR-1, FR-2, FR-7, FR-8, FR-9, FR-10, FR-11, FR-12,
FR-13, FR-14. All of these requirements have been, in principle, satisfied, but we have to wait
still for the results of the tests the next month to be completely sure. With this requirements, the
use cases UC1, UC2, UC3, UC4, UC5 and UC6 shall be completed.

The functional requirements FR-3, FR-4, FR-5, FR-6 and FR-15 are still missing and should be
accomplished with the beta release of the application at the end of the coming month. Completing
the implementation for the use cases UC7, UC8, UC9 and UC10.

The current status of all the non-functional requirements is shown in the table 7.1.

7.2 Improvements to be made

The already implemented functionality has some details which can and should be improved. Here
we list some of the improvements we noticed and have in mind.

• The ItemsMap class should be redesigned, dividing its functionality among several more-
specialised classes. It is clearly a too-complex class which performs too many different
actions. Its functionality will be divided between different components collaborating together
so the code is more changeable and maintainable.

141

142 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Requi. Impl. Satisf. Req. Impl. Satisf.
NFR-1 X Not tested NFR-2 X X

NFR-3 X Not tested NFR-4 X X

NFR-5 X X NFR-6 X Not tested
NFR-7 X Not tested NFR-8 X Not tested
NFR-9 X X NFR-10 X X

NFR-11 X Not tested NFR-12 X X

NFR-13 X X NFR-14 X X

NFR-15 X X NFR-16 X X

NFR-17 X Not tested NFR-18 X Not tested
NFR-19 X X NFR-20 X X

NFR-21 X X NFR-22 X X

NFR-23 X X NFR-24 X Not tested
NFR-25 X X NFR-26 X X

NFR-27 X X NFR-28 X X

NFR-29 X X NFR-30 X Not tested
NFR-31 X Not tested NFR-32 X Not tested
NFR-33 X Not tested NFR-34 X X

NFR-35 X X

Table 7.1: Current status of the non-functional requirements of the application. The three
columns mean: requirement, implemented and satisfied.

• The maps still need to show the direction the user is looking at. This is something really
needed because it is very useful to get the right orientations in the map. We need to set up
a google.maps.Symbol with some kind of arrow as the user marker icon so we are able
to rotate it over time. Then, we need to implement an algorithm to combine the information
about the speed given by the Geolocation interface, with the difference between the
previous and the new position and the information from the magnetometer and the gyro of
the phone. This way we would be able to keep the right orientation for the marker.

• It is still needed more control over the side-cases of the geo-location and other features.
We still need to display to the user certain error notifications. At this time, the system
silently ignores cases like the geo-location being denied by the user (it simply does not
display the position, but it does not show any message) or the Google Maps API returning
a request limit error.

• The JavaScript features to check whether the page is visible (on top of the other tabs) or
not could be used to stop the geo-locator and this way save battery.

7.3. FUTURE WORK 143

• The URLs should be correctly updated so a user can share the URL with another user
and they both will see the same page inside the application. Right now the URLs always
add the hash string #not_implemented_yet, no matter the page we are visualising, so
when we share the URL with another user, this other user is taken to the home page.

• The dynamic catcher could use a hybrid, personalised handler which sends a message to
update the GUI when the answer from the network is received, without waiting for the next
access to the page. This should not be too complicated to implement and it would allow
for fresher information on the page.

• Grouping periods can be improved so it does not search further than the next day. Right
now it continues searching until the end of the periods, but since we know the periods are
sorted chronologically, we do not need to keep searching when we overpass the day we
want to find. This would improve the efficiency of the algorithm in the average case.

7.3 Future work
The development of the project will continue following the planning established. The beta release
will be published the first day of September and the final release will be the first day of October.
The coming month the development team will personally go to Greece to interact with the focus
group in person, improving the feedback.

In a more long term, we expect the application to scale and reach to cover many cities from
maybe other countries in Europe. However, this depends on the external financing and the results
of this attempt. From a more local point of view, the application maybe could be amplified in
scope to cover more real-time data like events in the city or other interesting kinds of information
which it does not manage at the moment.

144 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Appendix A

Technical manuals

In this appendix we include some manuals for the technical tasks that could be performed over
the system.

A.1 Database deployment

To deploy the database it is needed some DBMS able to manage MySQL databases. The code
has been checked during development using MariaDB 10.1.19. To get the MySQL database
structure ready in your system simply create an empty database and, with the database selected,
run the commands contained in the attached source code in the file DB/SQL scripts/CRE-
ATION_SCRIPT.sql. It is possible, if you are using older versions of MariaDB or another DBMS,
that you receive an error message caused by the IF NOT EXISTS of the CREATE TABLEs. If
this is the case, simply remove all the IF NOT EXISTS and run the commands again. Everything
should be fine. Make sure your DBMS has the TRIGGER functionality available and running to
keep the database integrity.

If you want to insert the initial data we supply, you will need to run also the commands
contained in DB/SQL scripts/INSERTION_SCRIPT.sql. This will introduce the English and Greek
languages and the categories of the application into the database. This step is required before
executing the data-import script.

A.2 Importing the initial data

To import the initial data supplied by the Greek team (and already corrected), we supply a simple
Python script which can be run from any terminal with Python installed. The script is designed
for Python 3.0 or later and makes use of the mysql.connector library for Python. You can
find this script in DB/Python scripts/data_loading.py. If you are not sure of the version
of Python you have installed or if you have the required library, simply run the script and it will

145

146 APPENDIX A. TECHNICAL MANUALS

detect it and notify you if this is not the case. It will also provide you with a link to download the
mysql.connector if it is not able to find it.

Before running the script, make sure your database is created (see section A.1), running
and accessible from your system. Run the script as any other python script (typing python

./data_loading.py). The script will ask you for the information necessary to perform the
connection to your database: the host, the user, the password and the name of the database.
Once you provided this information you should see a message saying “Connected”. The program
will ask, one by one, for the names of the files for each type of item. The files we provide
have the following names, in the order they are asked by the script: info.csv, leisure.csv,
links.csv and services.csv.

A.3 API deployment

To deploy the API you will only need to make a couple of configurations. First, copy all the files
inside the class, config and public_html directories into your deployment server. Make
sure the public_html folder of the API is the only publicly accessible folder of the API through an
URL. One easy way to achieve this is by setting the document root of your server directly to the
public_html folder, but you can do it the way you prefer. Once you have all the files in place, go to
the file class/gateways/gtmysqli/MysqliGatewayFactory.php. In the constructor of
this file you can configure the values for the mysqli connection to your database.

Let’s suppose now that you need to serve your API from a sub-folder of your server, for
example because you have your web in the root folder and so you need it to be served from the
api sub-folder. To do this, you only need to move the contents of public_html into the api
folder and, once there, open the index.php file. At the start of this file you can see two lines
like the following:

// The config file configures the autoloaders for the classes
require(’../config/config.php’);

Edit the require to make sure it includes correctly the config.php file. In our case we
need to set it to be like this: require(’../../config/config.php’);. Great!

If we try to query one of the URLs of the API now, for example to get the categories for the
item type leisure (http://yourhost.com/api/item-types/leisure/categories), we obtain the following
answer:

{
"error": "The URL (’/api/item-types/leisure/categories’) and method

provided do not lead to any valid resource."
}

This is because we have not configured the base URL of our API yet, so the UrlMatcher is
trying to directly match our URL (including the ’/api’) with the set of registered patterns, and since

A.4. ADDING NEW URLS TO THE API 147

none of them contains api at the start, none of them is giving a positive result. To configure this
we need to edit the API interface, stored in the class/IApiInterface.php file.

The first constant of this file, API_BASE_URI, defines the base URI for the whole API. Set
the value to ’api’ and perform the HTTP request again. Everything should be working fine now.

A.4 Adding new URLs to the API
Adding new URLs to the API is a very simple process. Once you have implemented and tested
the ITransaction which you want to be ran when accessing the new URL. Go to the file
class/url/UrlMatcher.php. In this file, look for the private class constructor at the end of
the file. If you are adding new functionality for other HTTP methods in an already existent URL
rather than adding a new URL, add the method and the transaction you want to associate to one
of the existent TransactionMap. If you really want to introduce a new URL, instantiate a new
TransactionMap, add the method and the transaction you want to configure and create a new
UrlPattern in the $this->urls array, indicating the desired pattern for the URL.

The patterns for the UrlPattern are specified as strings and relative to the base URL of
the API (configurable in the interface IApiInterface). The patterns may include parameters
to be taken directly from the URL. To include a parameter, you only need to start it with ’:’, indicate
a name for the parameter (only alphanumerical characters allowed) and a type between ’<’ and
’>’. The accepted types of parameters are the following:

• str: an alphanumerical string with ’_’ and ’-’ accepted.

• int: an unsigned integer, it only accepts numerical digits.

• flt: a floating number, with an optional sign first, one or more digits and an optional ’.’
with one or more digits again.

• hex: a hexadecimal number, with digits or characters from A to F in uppercase or lower-
case.

When the transaction for the URL is instantiated, it receives as the unique argument an
associative array which contains all the parameters of the request. The parameters parsed from
the body are under the body key, the parameters parsed from the URL (and the get parameters)
are placed under the get key. If a parameter of the URL shares name with some of the get
parameters, the value of the URL parameter will be the obtained one. Please, notice that the
types of the parameters are just ’masks’ for the pattern matching. No matter what type the
parameter you declared is, the value will always be passed to the transaction as a string. It is up
to you to parse it to the desired value.

Let’s illustrate all of this with an example. Suppose we want to add a new URL to execute
our new, awesome GetHugsTransaction. We want to execute it under a URL which will

148 APPENDIX A. TECHNICAL MANUALS

allow us to specify the number of hugs we want to get. The first we do is to configure our
GetHugsTransaction to receive this parameter in the URL, as follows:

1 <?php
2
3 namespace transactions;
4
5 use formats\IApiOutputter;
6
7 /**
8 * GetHugsTransaction, it gives you as many hugs as you need!
9 */

10 class GetHugsTransaction extends Transaction {
11 /** @var int */
12 private $hugs;
13
14 /**
15 * GetHugsTransaction constructor. The request params shall
16 * have the following structure:
17 * [’get’ => [’hugs’=>number of hugs], ’body’=>[]]
18 * @param array $requestParams the request params after
19 * all the processing
20 */
21 public function __construct($requestParams) {
22 $this->hugs = intval($requestParams[’get’][’hugs’]);
23 }
24
25 /**
26 * Executes the transaction, has no return
27 */
28 public function execute() {
29 $this->result = [];
30 for($i=0 ; $i < $this->hugs ; $i++) {
31 $this->result[] = [
32 ’name’ => ’hug’,
33 ’affectionLevel’ => rand(50, 100)
34];
35 }
36 $this->status = IApiOutputter::HTTP_OK;
37 }
38 }

Now that we have our transaction, we simply need to make the UrlMatcher to know about
it. To do this we go to the UrlMatcher file and we edit the code of the constructor to be as
follows:

1 /**
2 * UrlMatcher constructor, private because of singleton pattern.
3 * Here we register all the url patterns we want to use.
4 */
5 private function __construct() {

A.5. BUILDING AND DEPLOYING THE PWA 149

6 $tmCategories = new TransactionMap();
7 $tmCategories->put(HttpMethod::GET(), GetCategoriesTransaction::

↪→ class);
8
9 $tmCategoryItems = new TransactionMap();

10 $tmCategoryItems->put(HttpMethod::GET(), GetItemsTransaction::
↪→ class);

11
12 $tmItems = new TransactionMap();
13 $tmItems->put(HttpMethod::POST(), CreateItemTransaction::class);
14
15 $tmItem = new TransactionMap();
16 $tmItem->put(HttpMethod::DELETE(), DeleteItemTransaction::class);
17 $tmItem->put(HttpMethod::PUT(), UpdateItemTransaction::class);
18
19 $tmHugs = new TransactionMap();
20 $tmHugs->put(HttpMethod::GET(), GetHugsTransaction::class);
21
22 $this->urls = [
23 new UrlPattern(’/item-types/:itemType<str>/categories/’,

↪→ $tmCategories),
24 new UrlPattern(’/categories/:categoryCode<str>/items/’,

↪→ $tmCategoryItems),
25 new UrlPattern(’/items/:itemId<int>’, $tmItem),
26 new UrlPattern(’/items/’, $tmItems),
27 new UrlPattern(’/get/:hugs<int>/hugs/’, $tmHugs)
28];
29 }

And that is all! We can now go to the address http://yourhost.com/get/50/hugs/
and get fifty sweet hugs.

A.5 Building and deploying the PWA

To build the PWA the first we need is to install npm. It is the Node.js package manager and it
runs over it, we can download and install both from the official page of npm: https://www.
npmjs.com/get-npm. Once we have Node.js installed and npm ready to go we can go to our
PWA folder through a command window. Then, we just need to run npm install and let npm
do the magic, it will automatically read the package.json file and look for and install all the
development dependencies. Between them, the most important one: Gulp. Gulp is a building
software for JavaScript, it allows us to automate the tasks for building our website so we do not
have to do them manually and it allows us to do it in a very comfortable way: using the same
language we are using to develop our application.

There are four configuration files in our PWA main folder:

• package.json: As previously explained, this is the configuration file for npm, it saves infor-

http://yourhost.com/get/50/hugs/
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm

150 APPENDIX A. TECHNICAL MANUALS

mation about our “package”. Themost relevant for us of all the fields is the devDependencies
array, which contains all the dependencies for the development of our project. To add a
new dependency to the file simply add the argument -D or -save-dev when installing it
with npm. The current development dependencies of our project are the following ones:

– gulp: the building software.

– babel-core, babel-preset-env and gulp-babel: the babel library with all the neces-
sary dependencies to make it work with gulp. This library allows us to write code in
ES6 (a modern JavaScript specification) and it compiles it automatically to “classic”
JavaScript, making our code more compatible. This packacge is the reason for
our Gulp configuration file to be called gulpfile.babel.js. The env preset
configures babel to the latest presets so we do not have to specify them manually.

– gulp-concat: it allows us to automate the concatenation of several files into one. It
is useful to reduce our JavaScript and our CSS to single files.

– gulp-minify-css: it minifies CSS deleting commentaries, line jumps, reducing rules
which can be simplified, etc. We use it to reduce the size of our final CSS file.

– gulp-uglify: it minifies our JavaScript code in the same way gulp-minify-css
does with out CSS. Thanks to this plugin we get to reduce the size of our resulting
JavaScript file considerably.

– sw-precache: this is the library from Google which automatically generates the
service worker for our cache managing. It is configured in the Gulp configuration
file.

– gulp-htmlmin: minifies the HTML removing all the innecessary stuff.

– gulp-sourcemaps: generates source maps for our concatenated and minified CSS
and JavaScript. The source maps allow the browser to map the sentences in the
resulting files to their corresponding sentences in the original ones. This way we
can debug our application easily without loosing the advantages of the minification.

– gulp-replace: it allows us to replace strings inside the files. It allows to do it based
on regular expressions. We use it to set the base URL of the deployment into the
index.html file.

– gulp-clean: it is used to remove files. Used to clean our distribution directory before
certain tasks.

– run-sequence: it simply provides a quick method to run sequences of Gulp tasks.
More information about Gulp task bellow in this document.

– path: a simple but useful tool that allows us to work with paths in a comfortable way
without having to worry about whether a string ends with ’/’ or the other starts with it
or not.

A.5. BUILDING AND DEPLOYING THE PWA 151

– fancy-log: a library needed to configure the log of the sw-precache to the terminal.

– gulp-jsdoc3: the library to generate the jsDoc files for our JavaScript code.

• .babelrc: it contains the configuration for babel. It does nothing more than configuring
it to use the env preset.

• jsdoc.json: configuration file for jsDoc, currently only indicating it where to save the
output.

• gulpfile.babel.js: the configuration file for Gulp with babel. It contains all the tasks
we have programmed to build our site.

A.5.1 Gulp tasks

Our Gulp configuration file has been programmed with fourteen tasks which we can use to
comfortably build our site, and they are the following ones:

• clean-all: it deletes the whole distribution folder dist with all its content.

• dist-javascript: it takes all the JavaScript files listed in a constant defined inside the
gulpfile, called DEV_JS_SRC, concatenates all the files, babelifies them into old JavaScript
and uglifies the result to reduce the size of the final file, which is saved in the JavaScript
folder of the distribution folder (dist/js/). Note: it is important to keep in mind that
only the files listed in DEV_JS_SRC will be concatenated and distributed. When a new
JavaScript file is added, it needs to be added to this list to be distributed. Because of the
way babel transforms the class hierarchies, the order the files appear in this list matters,
and changing the order can cause the resulting distribution file to stop working.

• dist-css: this task will concatenate and minify all the CSS files in the development CSS
directory (src/css) and save the to the distribution CSS folder (dist/css).

• dist-html: it will take our index.html file, replace the application base URL where it is
needed, minify it and save it into the distribution folder.

• dist-manifest: it will simply replace the application base URL inside the manifest of the
application and save the file into the distribution folder.

• dist-other: it distributes some other files associated to the manifest. These are the favicon
and launcher icon files for the different common browsers.

• dist-ico: it copies into the corresponding folder in the distribution directory all the images
and icons of the application (except the icons distributed by dist-other). Basically,
these are all the images in the sub-folders of the src/ico folder.

152 APPENDIX A. TECHNICAL MANUALS

• clean-ico: it cleans the ico folder in the distribution directory (dist/ico/).

• generate-service-worker-dist: generates the service worker which does both the pre-
caching and the dynamic caching for our application. Notice that if the service worker
was previously distributed and a browser has already installed it and downloaded the
precached files, it will not update those files (between them, the JavaScript and the CSS
minified files) until we make another distribution of the service worker (or they loose the
cache for some reason). When you modify some of the precached files, distribute the
service worker again so the browsers of the users can now they should update those files.
Notice this task precaches the files in the dist folder so it needs the dist folder to be already
generated when executing it.

• generate-service-worker-dev: in development environments, it is interesting to have the
service worker caching the requests to check which resources are being cached and when
they are updated, but it is annoying having the service worker serving the cache files cause
it might prevent sometimes our code from being updated. With this task we generate a
service worker which will cache everything just as the distribution version would do but will
always answer with petitions to the network, never from cache. Notice this task precaches
the files in the dist folder so it needs the dist folder to be already generated when executing
it.

• build: it is the default task (the one which will execute if you introduce simply gulp
in your terminal). It performs dist-javascript, dist-css, dist-html, dist-ico,
dist-other and dist-manifest. It basically builds the web without the service worker
(which needs to be generated after the distribution folder has been created to be able to
precache the files correctly).

• clean-build: it executes clean-all (deleting the distribution folder) and, after it, build.

• jsdoc: generates the jsDoc for our JavaScript code. The output will be saved to the out
folder. It is useful to get a quick introduction to the classes of our PWA and how they work.

• watch: it starts “watching” the CSS, JavaScript, HTML, manifest and “other” files so it will
automatically rebuild the corresponding part whenever a change to the files is made.

To run a Gulp task, simply open a terminal in the PWA folder and type gulp task. For exam-
ple, to clean and build the application type gulp clean-build . To completely build the PWA
the first time, simply run the command gulp and, when it ends, run generate-service-worker-dist .
In the dist folder your distribution files will be available.

Appendix B

User manual

We introduce here a preliminary version of the user manual. The current version of the application
(the alpha) can be accessed in https://app4refs.org/a, please keep in mind this version
is still under test (and that it might be already down by the time this document is being read).
Check the root of the domain https://app4refs.org/ for more information about the current
status of development of the project.

B.1 What can be done with App4Refs?

App4Refs is the application which will offer the refugees all the necessary information to move
around in the city of Athens. With App4Refs, any person can find information about locations to
perform the most common and needed tasks: where to make a bank account, where to receive
legal assistance, where to find LGBT+ information or things as simple as where to get a haircut.

B.2 Home screen

The home screen possesses six buttons, giving you access to six different
kind of information. At the right, you can see the screen that is displayed
when you enter the application. The icons (numerated in the image from
1 to 6) correspond to the following contents:

1. Information: this section provides you with places to obtain
information about legal problems, assistance, general official places
or embassies.

2. Help: this section provides you with quick, direct links to get
help with common stuff like banks, social security, asylum, health
and some more.

153

https://app4refs.org/a
https://app4refs.org/

154 APPENDIX B. USER MANUAL

3. Services: lots of places where to get basic services, like WiFi
connection, food, clothes, shelters, language training, simcard...

4. Leisure: information about leisure places where to spend the
free time.

5. Links: useful links to web pages with information about educa-
tion, health, hairdresser, information for refugees, etc.

6. Emergency: gives access to the emergency button, which
gives you the number to call the emergency services in case you
are in danger.

Please, notice the display can be slightly different from the one in the image if you are
watching it in a computer or tablet.

Whenever you choose one of these kinds of information a list of the categories available for
that kind will be displayed. Choose the one you need help about, we included very orientating
icons to suggest what each category is.

B.2.1 Navigation bar

Whenever you are not in the home page the navigation bar will appear at the top of the screen
and it will stand fixed there. In the image above this text you can see the navigation bar marked
in yellow with the three main items it will always contain:

1. Back button: it allows you to go back to the previous page you were seeing. You can,
alternatively, use the back button displayed on your phone controls or the back button of
the navigator if you are opening the application through the browser.

2. Title: the title of the page you are seeing. In the example image we are in the leisure
categories screen.

3. Home screen button: allows to go directly back to the home screen from any page inside
the application.

B.2. HOME SCREEN 155

B.2.2 List pages

Once you have chosen the category you want, the application
will show you a screen like the one you see at the right of this
text. This is the page that lists the information the application
has for the requested category. Notice that depending on the
category or the concrete place you are checking information
about, some of the information may be not shown. For example,
if you chose links in the home screen, the maps buttons will
not appear.

We have marked and numerated each of the elements
which could possibly appear in the list from 1 to 10. These are
their meanings:

1. Name of the place: here you can see the name of the
place being listed. In the example image there are three
places with the names Velos, National Park and Watoto
Africa.

2. Address: the address of the city where you can find
the place. If it is an online place or it is not possible to
show the address for some other reason, this field will
not appear.

3. Link: a link to the web page of the displayed place. It might not appear if it is not available.

4. Opening hours: the schedules of the place so you can now when it is possible to contact
/ visit them. Several schedules (for different days or starting and ending hours) might be
displayed, on per line, they all apply to the location. Some places do not have a predefined
schedule so a call to get an appointment might be needed.

5. Telephone number: if the place does not have a schedule, then a telephone number is
displayed to call the place. If you are on a mobile phone you can click the number to make
the call.

6. Map button: clicking this button will take you to the map page where you can see the
place on the map and, if you give the page access to your location, it will show you the
route on how to get to the selected place (service provided by Google Maps).

7. Item icon: an icon describing the displayed item, in the sample screen shot there are
three places shown with their respective icons.

8. Free icon: an empty, green circle indicates the services offered in the place (or the visit
to the place) are for free.

156 APPENDIX B. USER MANUAL

9. Pay icon: a green circle with the symbol of the euro inside indicates the place requires
payment for some or all of the services it provides.

10. Language icons: the blue circles indicate the languages the item offers attention in. A
circle with the text “EN” means it offers attention in English while “GR” means information
is available in Greek.

At the end of the list you can find a big button like the one over this text which allows you to
open the map page to show all the places of the list on it. From there you will be able to pick one
place to check the route to it.

B.2.3 The maps page

When you click the button to show all the items in the map
page you will see a screen like the this one1.

The service is provided by Google Maps, so the interface is
the same as their interface. Each marker (those red “balloons”
over the map) indicates the position of one place of the list on
the map. You can click them and a dialog like the one which
can be seen in the screen shot will pop up just over the marker
you clicked, indicating you the name of the item. In our case
it was “Cosmos of Culture”. When clicking on the violet button
just underneath the name, the system will provide you with the
route to the selected place.

To display the route to the selected place the location ser-
vice of your phone should be activated and the web page should
have granted the access to it. Notice that if these two condi-
tions are met, the map will also show a blue circle to mark your
current location.

When clicking to get the route to an item (or if you open
the item location through the map button placed under each of

the items), if you have the geo-location service activated in your phone and our page has granted
the access to it, the route will be displayed in a light blue over the map, marking the start of each
of the steps of the route with a white circle.

1The maps page is not available in the offline mode of the application.

B.2. HOME SCREEN 157

Each of the steps of the route can be clicked and it will display a floating message with the
indications for that point. The icon displaying your position gets updated in real time as you move
through the route.

If you wish to see all the indications to get there in a textual form click any empty place on
the map and the indications panel will appear from the bottom of the screen. The indications
given by the indications panel appear in the language selected by Google based on the phone
and browser configuration and the origin of your request.

The maps page displaying a
route.

The indications panel shown
over the maps page.

158 APPENDIX B. USER MANUAL

Bibliography

[1] “AGILE ALIANCE”: Beck, K. et al. The Agile Manifesto [online]. 2001 [visited in July 20,
2018]. Available in: https://www.agilealliance.org/

[2] ATLANTIC SYSTEMS GUILD LTD. Volere Requirements Specification Template [online].
Volere requirement resources [visited on July 10, 2018]. Available in: http://www.volere.
co.uk/template.htm

[3] BOOSTRAP CONTRIBUTORS. Bootstrap project home page [web page] [visited on July
10, 2018]. Available in: https://getbootstrap.com/

[4] CACERES M. (MOZILLA CORPORATION). Web App Manifest. In: W3C [online]. K. R.
Christiansen (Intel Corporation), M. Lamouri (Google Inc.), A. Kostiainen (Intel Corporation),
R. Dolin (Microsoft Corporation), M. Giuca (Google Inc.). W3C Working Draft [visited on
July 15, 2018]. Available in: https://www.w3.org/TR/appmanifest/

[5] ERICKSON, A. 6 basic questions about the war in Syria. The Washington Post [online]. April
15, 2018 [visited on July 7, 2018]. Available in: https://www.washingtonpost.com/
news/worldviews/wp/2018/04/12/syria-explained/

[6] EUROPEAN COMISSION. Migration and Integration Fund (AMIF) [on-
line][visited on July 9, 2018]. Available in: https://ec.europa.eu/

home-affairs/financing/fundings/migration-asylum-borders/

asylum-migration-integration-fund_en

[7] FIELDING, T. Dissertation about representational state transfer (REST) [online]. University
of California, Irvine, 2000 [visited on July 10, 2018]. Available in: https://www.ics.uci.
edu/

[8] FOWLER, M. Patterns of Enterprise Application Architecture. USA: Addison-Wesley, 2002.
ISBN 0-321-12742-0

[9] FUNDACIÓ ACSAR [web page] [visited on July 9, 2018]. Available in: http://www.

fundacioacsar.org/es/

159

https://www.agilealliance.org/
http://www.volere.co.uk/template.htm
http://www.volere.co.uk/template.htm
https://getbootstrap.com/
https://www.w3.org/TR/appmanifest/
https://www.washingtonpost.com/news/worldviews/wp/2018/04/12/syria-explained/
https://www.washingtonpost.com/news/worldviews/wp/2018/04/12/syria-explained/
https://ec.europa.eu/home-affairs/financing/fundings/migration-asylum-borders/asylum-migration-integration-fund_en
https://ec.europa.eu/home-affairs/financing/fundings/migration-asylum-borders/asylum-migration-integration-fund_en
https://ec.europa.eu/home-affairs/financing/fundings/migration-asylum-borders/asylum-migration-integration-fund_en
https://www.ics.uci.edu/
https://www.ics.uci.edu/
http://www.fundacioacsar.org/es/
http://www.fundacioacsar.org/es/

160 BIBLIOGRAPHY

[10] FUNDACIÓ UNIVERSITARIA BALMES [web page][visited on July 9, 2018]. Available in:
https://www.uvic.cat/fundacio-universitaria-balmes

[11] “GANG OF FOUR”: Gamma, E., Helm, R., Johnson, R., Vlissiddes, J. Dessign Patterns:
Elements of Reusable Object-Oriented Software. USA: Addison-Wesley, 1994.

[12] GOOGLE. Google Maps Javascript API Overview [wen page]. Google Maps Platform
[visited on July 10, 2018]. Available in: https://developers.google.com/maps/

documentation/javascript/tutorial

[13] GOOGLE. Progressive Web Apps [web page]. Google Developers [visited on July 10, 2018].
Available in: https://developers.google.com/web/progressive-web-apps/

[14] HARDT, D. The OAuth 2.0 Authorization Framework [online]. Internet Engineering Task
Force (IETF), RFC 6749 [visited on July 10, 2018]. Available in: https://tools.ietf.
org/html/rfc6749

[15] JAVIER IDEAMI. About Ideami [web page] [visited on July 10, 2018]. Available in: http:
//ideami.com/ideami/

[16] JONES, C. Assessment and Control of Software Risks. USA: Prentice Hall, 1994. ISBN
978-0137414062

[17] KRUCHTEN, P. The Rational Unified Process: An Introduction. USA: Addison-Wesley, 1999.
ISBN 978-0321197702

[18] MARIADB FOUNDATION. About MariaDB [web page]. MariaDB.org [visited on July 10,
2018]. Available in: https://mariadb.org/about/

[19] Migrant crisis: Migration to Europe explained in seven charts. BBC [online]. March
4, 2016 [visited on July 7, 2018]. Available in: https://www.bbc.com/news/

world-europe-34131911

[20] NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS [web page][visited on July 9,
2018]. Available in: https://en.uoa.gr/

[21] NPM, INC. npm project [web page] [visited on July 10, 2018]. Available in: https://www.
npmjs.com/

[22] PHPDocumentor [web page] [visited on July 9, 2018]. Available in: https://www.phpdoc.
org/

[23] PROJECT MANAGEMENT INSITUTE. Project Management Body of Knowledge. 6th edition.
USA: PMI, 2017. ISBN 978-1-62825-184-5

https://www.uvic.cat/fundacio-universitaria-balmes
https://developers.google.com/maps/documentation/javascript/tutorial
https://developers.google.com/maps/documentation/javascript/tutorial
https://developers.google.com/web/progressive-web-apps/
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
http://ideami.com/ideami/
http://ideami.com/ideami/
https://mariadb.org/about/
https://www.bbc.com/news/world-europe-34131911
https://www.bbc.com/news/world-europe-34131911
https://en.uoa.gr/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.phpdoc.org/
https://www.phpdoc.org/

BIBLIOGRAPHY 161

[24] UNITED NATIONS HIGH COMMISSIONER FOR REFUGEES. Europe situation [web page]
[visited on July 6, 2018]. Available in: http://www.unhcr.org/europe-emergency.
html

[25] UNINTEGRA. UNINTEGRA project[web page]. Available in: https://unintegra.usc.
es/

[26] UNIVERSIDADE DE SANTIAGO DE COMPOSTELA [web page] [visited on July 9, 2018].
Available in: http://www.usc.es/en/index.html

[27] UNIVERSIDADE DO MINHO [web page] [visited on July 9, 2018]. Available in: https:
//www.uminho.pt/PT

[28] Web Assembly Home Page [web page] [visited on July 23, 2018]. Available in: https:
//webassembly.org/

[29] WIKIPEDIA CONTRIBUTORS. Ajax (programming). In: Wikipedia [online] [visited on July
10, 2018]. Available in: https://en.wikipedia.org/wiki/Ajax_(programming)

[30] WIKIPEDIA CONTRIBUTORS. Usage share of web browsers. In: Wikipedia [online] [visited
on July 15, 2018]. Available in: https://en.wikipedia.org/wiki/Usage_share_
of_web_browsers#Summary_tables

http://www.unhcr.org/europe-emergency.html
http://www.unhcr.org/europe-emergency.html
https://unintegra.usc.es/
https://unintegra.usc.es/
http://www.usc.es/en/index.html
https://www.uminho.pt/PT
https://www.uminho.pt/PT
https://webassembly.org/
https://webassembly.org/
https://en.wikipedia.org/wiki/Ajax_(programming)
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers#Summary_tables
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers#Summary_tables

	Introduction
	Context
	The project and my participation
	This document

	Technologies
	The web technologies
	About the back-end
	Building the front-end: Gulp
	Integrated development environments and documentation

	Project management
	Project charter
	Scope management
	Work Breakdown Structure
	Description of scope
	Out of the scope
	Project restrictions

	Project life cycle
	Configuration management
	A short note on the requirements
	Use case point analysis
	Cost management
	Schedule management
	Risk management
	Risk measures
	Risk palliation strategies
	Risk specification

	Requirements capture
	Context study
	Current situation
	Project vision and opportunities
	Interested parties
	Systems to interact with

	Requirements specification
	Stakeholders of the system
	Goals
	General vision of the proposed solution
	Use cases
	Functional requirements
	Non-functional requirements
	Conceptual data scheme

	Design
	General structure of the system
	Back-end: The database
	Entity-relationship model
	Relational model

	Back-end: The API
	Interface design
	The architecture
	Domain layer and view Layer
	Managing errors
	Data layer
	Transactions execution

	Front-end: The PWA
	The pages
	Application, routing, resources and navigation bar
	Grid pages
	Items, periods and the list page
	API connection
	Map page
	Geo-locating the user

	Implementation and testing
	The file structure of the project
	Back-end
	The database
	Initial data
	The API
	Auto-loading the classes
	Redirection
	Other implementation details
	Unitary tests

	Front-end
	File structure
	Precache and dynamic caching
	Grouping periods
	Saving the application to the home screen
	Deployment

	General testing

	Conclusions and future work
	Satisfied requirements
	Improvements to be made
	Future work

	Technical manuals
	Database deployment
	Importing the initial data
	API deployment
	Adding new URLs to the API
	Building and deploying the PWA
	Gulp tasks

	User manual
	What can be done with App4Refs?
	Home screen
	Navigation bar
	List pages
	The maps page

	Bibliography

