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Abstract
Few current methods are efficient  to detect a high number of lysosomal storage disorders (LSDs) in newborn screening. 
Therefore, we propose a stepwise procedure that starts with the use of paper borne urine samples (Berry–Woolf specimen) for 
the inexpensive detection of elevated lysosomal content and the identification of which of the three majors biochemical groups –
mucopolysaccharides, oligosaccharides, and glycosphingolipids – is detected. Urine samples are preferable to blood samples because 
of their higher concentrations of the relevant analytes. Subsequent steps would precisely determine which enzyme deficiency is 
involved. As a summary, following our previous papers on the detection of elevated oligosaccharides and mucopolysaccharides, 
here we describe how elevated urinary glycosphingolipids (GSLs) could be fluorometrically detected using the reagent 5-hydroxy-
1-tetralone (HOT) and subsequently identified with precision by continuous thin layer chromatography or other techniques. We 
also outline the steps required for the validation of this procedure for its introduction in newborn screening programs.

Keywords: Newborn screening, lysosomal storage disorders (LSDs), urine samples impregnated in paper, Berry–Woolf specimen, 
glycosphingolipids.

Introduction

Lysosomal storage disorders (LSDs) comprise a heterogeneous 
group of approximately seventy [1] inborn errors of metabolism 
(IEMs) caused by the absence or malfunction of hydrolases 
required to degrade certain complex substrates into simpler 
molecules inside cellular lysosomes. Owing to this enzymatic 
malfunction, the undegraded substrates (lipids, sulfates, complex 
carbohydrates, etc.) accumulate inside certain cell types, which 
can affect multiple organs and tissues [2]. The majority of these 
disorders are typically inherited in an autosomal recessive 
manner, many of them resulting from the mutation of a gene 
encoding for an essential lysosomal enzyme. Although the 
isolated prevalence of each disorder is low, the joint prevalence 
of LSDs at birth has been reported as around 1 in 7,500 [3, 4]. 

According to the nature of the abnormal accumulation 
of lysosomal contents, LSDs can be classified as 
mucopolysaccharidoses, GM2 ganglisidoses, glycoproteinoses, 
neutral glycosphingolipidoses, mucolipidoses, leukodystrophies, 
glycogen storage diseases, disorders of neutral lipids, or 

disorders of protein transport or trafficking [5]; other more 
detailed classifications can be made [1]. Alternatively, just three 
major groups can be distinguished, mucopolysaccharidoses, 
oligosaccharidoses, and glycosphingolipidoses.

Since some LSDs can now be treated (e.g., by means of stem 
cell therapy, enzyme replacement therapy, substrate reduction 
therapy, or bone marrow transplantation [6] or with CRISPR/
Cas9 genome editing as a promising further possibility [7, 8] and 
other genetic and pharmacologically chaperone therapies [1]), 
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calls for their early detection in newborn screening programs have 
been increasing, with a view to preventing the accumulation of 
pathogenic substrates through the early initiation of treatment [9].

However, current methods for LSD detection are ill-suited 
to newborn screening as they are costly and have a limited or 
nonexistent multiplexing capacity [10]. A more cost-efficient 
procedure, preferably one that fits easily into existing newborn 
screening programs so as to take maximum advantage of the 
existing relevant infrastructure, is urgently needed.

Most current newborn screening programs are based on 
the use of paper borne heel prick blood samples introduced by 
Guthrie in the early days of screening for phenylketonuria (PKU). 
Consequently, most LSD detection methods have likewise been 
designed for dried blood samples. They include the fluorometric 
analysis of enzymatic activity developed by Chamoles for 
α-L-iduronidase (deficient in type I mucopolysaccharidosis) 
[11], α-galactosidase (deficient in Fabry disease) [12], and β-D-
galactosidase (deficient in GM1 gangliosidosis) [13] as well 
as immunochemical methods targeting lysosomal proteins 
[14] and the determination of enzymatic activity deficit by 
tandem mass spectrometry (MS/MS) [5, 9, 15–19]. However, 
the dependence of these methods on dried blood samples is 
misguided because LSD relevant analytes are excreted in urine 
at concentrations several times higher than those reached in 
blood [20], as stressed by authors who have used both matrices 
[14, 15] and have accordingly criticized the absence of urine 
samples in newborn screening programs. Furthermore, blood 
spot–based enzymatic analyses require a separate disk of blood 
impregnated filter paper for each LSD.

The absence of urine samples in newborn screening 
programs is widespread but not universal. Urine was the matrix 
employed in the original newborn screening programs [20], 
and paper-borne urine samples (Berry–Woolf specimens) are 
still used in our, laboratory to screen for amino acids disorders, 
sugar disorders [21], and in recent years, two groups of LSD: 
mucopolysaccharidoses and oligosaccharidosis. Their collection 
and use are at most, marginally more demanding than those of 
blood spots [22], and their introduction in screening programs 
that are currently and exclusively blood spot based would not 
be difficult. It may be noted that 21 hydroxylase deficiency (the 
major form of congenital adrenal hyperplasia) is another IEM 
that is more efficiently screened for in urine than in blood [22].

The procedures we employ in screening for 
mucopolysaccharidoses and oligosaccharidosis [23–28] form 
part of a general efficient screening strategy for LSDs that 
combines the above-noted advantages of urine samples with the 
specificity of other methods for individual LSDs [29]. In the first 
instance, we apply inexpensive, high throughput absorptiometric 
methods to Berry–Woolf specimens to detect any elevation of 
relevant analytes and identify whether the elevated substances 
are mucopolysaccharides or oligosaccharides; these results are 
obtained on the day of sample receipt. Positive tests at this stage 
prompt the precise identification of the elevated metabolites by 

continuous thin layer chromatography (cTLC) [25–31] (though in  
view of the low number of false positives [FPs], other methods 
could be used at this stage with little effect on overall efficiency). 
When desirable, the genetic alteration is identified by DNA 
sequencing. Then inexpensive, high throughput, sensitivity 
oriented first stage analysis follows only when necessary by 
procedures that can identify specific LSDs; this approach 
contrasts those of authors who, while supporting the use of 
urine samples, use them only to identify a single disease [32].

In this paper, we describe how the above strategy can 
be extended to the third of the three major groups of LSDs, 
glycosphingolipidoses. For the first stage (the detection of 
elevated generic glycosphingolipids), we propose adapting the 
technique developed by Watanabe et al. [33], which is based on the 
fluorometric determination of the complex formed in the presence 
of sulfuric acid by the reaction between glycosphingolipids and 
5-hydroxy-1-tetralone(HOT) (Figure 1). 

Figure 1. HOT
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As far as we know, this method has never been implemented 
in 96 well microtiter plates for high throughput newborn 
screening. Following a description of the proposed adaptation, 
we indicate possibilities for the second (identification) stage of 
the procedure, outline the necessary validation procedures for 
the effective introduction of this strategy in newborn screening 
programs, and conclude with a number of general remarks. 

Urine Specimen Collection and Elution

In our screening program, Berry–Woolf specimens are taken 
from newborns simultaneously with blood samples (Guthrie 
specimens) on the third day of life [34]. Each urine sample 
(generally, as a result of reflex urination upon heel prick) is 
impregnated in a slip of Whatman 903 or Munktell TFN sorbent 
paper that is included in the sample collection kit issued for 
each newborn in Galicia (NW Spain) [22].

Once the urine samples arrive at the laboratory (by hand or 
via ordinary mail), eluates are obtained from each sample by 
stirring four disks 6 mm in diameter (or sixteen disks 3 mm in 
diameter) in one well of a 96 well microtiter plate containing 300 
μL of ultrapure water per well. Transferring glycosphingolipids 
from the paper borne urinary sediment to the eluate requires a 
10-minute ultrasound application (e.g., by means of a 96-probe 
ultrasound device).

Determination of Glycosphingolipids

Watanabe et al.’s [33] method for determining glycosphingolipids 
can be adapted for newborn screening essentially as follows1:

	y Transfer 20 μL of the urine eluate to an acid resistant black 
quartz microtiter plate.

	y Mix the eluate with 200 μL of the HOT reagent (0.1% HOT 
in 80% H2SO4 solution) for 10 min at 120ºC.

	y Cool the reaction mixture to 0ºC and measure the fluorescence 
with excitation and emission wavelengths of 475 and 530 nm, 
respectively.

However, optimization will no doubt alter the details of this 
procedure, such as the excitation and emission wavelengths 
used for fluorometry. Furthermore, since the HOT reagent also 
reacts with saccharides and oligosaccharides, calibrating with 
glucose and subtracting the concentration of oligosaccharides 
in the eluate will be necessary (oligosaccharides can be 
determined using an anthrone reagent that does not react with 
glycosphingolipids [25]).

1 In this concept paper, we do not disclose our detailed recipe, hoping 
that others devised by those interested in this proposal will emerge, 
which will most probably require modifications with regard to putting 
them into routine practice. The specimen quantity and elution volume 
are those being used today in the laboratory in Galicia for other detection 
methods sufficient to extend to these and other screening programs.

Thus, oligosaccharides and glycosphingolipids can be 
determined successively in the same eluate. Finally, normalizing 
the measured glycosphingolipid concentration with respect 
to creatinine, which can be measured by the modified Jaffe 
method currently employed in us laboratory [23–25], will be 
necessary. This standardization ensures that the variation in 
analyte concentration from the amount of liquid intake does 
not influence the results.

Identification of Elevated 
Glycosphingolipids

The elevated glycosphingolipids [35, 36] can be identified by 
cTLC. A few necessary cases will depend on the cut of which 
is established. In any case, in our simple procedure, the urine 
specimens are analyzed nine at a time. This technique has many 
variations, some old and outdated. Ours [25–31] uses the same 
reagent as before (HOT) [33] and authentic glycosphingolipid 
samples as references with which to compare the retention 
factor(s) of the sample. If the urine sample must be concentrated 
or diluted, this can be done as described in a paper [28]2. However, 
since at this stage, high throughput is not needed, other analytical 
methods could also be employed, such as blood spot–based 
fluorometric analysis, liquid chromatography–tandem mass 
spectrometry (LC-MS/MS), or nuclear magnetic resonance 
(NMR) techniques. The genetic alteration responsible for the 
elevated glycosphingolipid levels can be identified by DNA 
sequencing [37, 38].

Evaluation, Optimization for Newborn 
Screening, and Validation

Once optimized, the performance of the method proposed for 
the first stage detection of elevated glycosphingolipids must be 
characterized by determining its precision (within and between 
run coefficients of variation), accuracy, recovery, linearity, 
sensitivity, an vulnerability to interference. The potential utility 
of the overall two stage procedure for newborn screening must 
then be evaluated by determining its diagnostic sensitivity and 
specificity, positive and negative predictive values, positive and 
negative likelihood ratios, and diagnostic efficiency using a 
cutoff obtained from a receiver operating characteristic (ROC) 
curve constructed with data from a suitable sample (though the 
use of ROC curves for evaluating newborn screening results is 
questionable [39]). Once a suitably large real series of newborns 
has been screened (e.g., 2,000), a more appropriate cutoff can 
be established (e.g., 90th or 95th percentile) and the diagnostic 
quality parameters recalculated.

2 This concentration method is ten times faster and more practical 
than impregnating and drying the paper ten times or multiplying 
the liquid urine depositions on the chromatographic plate by 10 and 
drying between each deposition.
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Concluding Remarks

The LSD screening strategy proposed in this and previous papers 
is unconventional in two respects. First, it proposes resuming 
the collection of dried paper borne urine samples (a procedure 
never abandoned by our lab). As previously noted, urine is 
preferable to blood for the detection of LSDs (also for congenital 
adrenal hyperplasia) because it has higher concentrations of 
the relevant analytes, whereas the sensitivity and specificity of 
blood spot-based methods are questionable [40–46]. However, 
most of the literature on newborn screening for LSDs (La 
Marca’s review [47] is an exception) assumes that the sample 
must be a blood spot. Conversely, as we have already stated, dry 
urine samples can be collected reliably and easily at a minimal 
additional cost, most probably far less than that incurred as a 
result of the relatively poor specificity of many blood spot–based 
methods, owing to the low concentrations of analytes in blood 
spots. Furthermore, for analysis based on the determination of 
enzymatic activity, blood spots also have a disadvantage in that 
the relevant enzymes are degraded by temperatures higher than 
approximately 24ºC [48], possibly caused by their adherence to 
the fibers of the filter paper [49, 50] (which can also affect the 
epitopes on which immunochemical methods rely [49, 50]). These 
problems do not arise when determining the targeted analytes 
by us methods. No scientifically or economically valid reason 
exists for not using paper borne urine samples to screen for 
disorders in which the appropriate analytes are more abundant 
in urine than in blood.

Second, our proposal is based on relatively unsophisticated 
analytical technology and, if validated, would make LSD 
screening available to communities that cannot afford high 
tech approaches. For a laboratory such as ours that already 
possesses an MS/MS apparatus (for example), its use would be 
reserved for the second LSD identification stage, thus reducing 
costs and freeing the apparatus for other tasks. Perhaps even 
more important for such a laboratory is the relative simplicity 
of our methods, prone to producing fewer issues than complex 
methods.

Finally, agencies still oppose LSD screening on the grounds 
that our understanding of these disorders is insufficient and that 
existing screening methodologies are unproven. Is it necessary 
to insist that the worth of a methodology cannot be proven if 
it has not been tried and that the same goes for therapies now 
available? A paper review lysosomal storage disease [51]. A 
couple of 2018 papers that had dealt with reviews of the issue 
[52, 53] did not deal with analytical procedures; nor did those 
that had dealt with decisions to implement such detection 
methods [54, 55] or those that had dealt with the follow up and 
management of detected cases [56, 57]. Those that had studied 
biomarkers [57, 58] and the consensus guidelines for neonatal 
screening, diagnosis, and treatment [59, 60] as well as those that 
had studied costs [61] did not consider the possibility of using 
what has been exposed, which should improve what has been 
done so far, on a few diseases.

The proposed procedure, being an open method —open the 
window and see who’s passing by; otherwise, it’s usual (if he is 
unknown, you’ll have to identify him; both the known and the 
unknown can be biochemical markers)— cannot establish the 
number of diseases to be detected. The same applies for other 
so called, multiplex methods. We will experiment with cases 
of known pathologies to control and validate the procedure.

The Gelb review [62], which refers exclusively to methods 
using paper dried blood spots (DBS), begins by recognizing 
that positive predictive value (PPV) cannot be used to evaluate 
programs that use enzyme activity measures. Instead, it proposes 
to use positive rates and biochemical markers to greatly reduce 
the number of FPs in the neonatal screening of lysosomal 
deposition diseases and suggests that these methods, after trials 
measuring enzyme activity are more powerful than genotyping 
analysis for the stratification of these diseases. 

The review also refers to the use of MS/MS and Chamoles 
fluorometry in the measurement of enzyme activity. It mentions 
the use of MS/MS in the quantification of disaccharides produced 
by bacterial heparinidase on the glycosaminoglycan substrate 
in the detection of mucopolysaccharidoses, which produces 
many more FPs than the measurement of enzyme activity. In the 
case of Krabbe disease, Gelb says that FPs can be reduced if the 
psychosine biomarker is used in the first step (tier) compared to 
the measurement of enzyme activity, but measuring psychosine in 
DBS by MS/MS is difficult because of its low analytical sensitivity 
in detection, together with the need for high performance liquid 
chromatography (HPLC), which lasts several minutes. So, Gelb 
proposes it as the second tier after measuring enzyme activity 
as the first tier followed by an analysis of the small number of 
positive samples in the first tier.

He says that with similar arguments, glucosylsphingosine is 
used as a biomarker of Gaucher disease and in Niemann–Pick 
A/B, lysosphingomyelin; in this disease, he says that the biomarker 
elevation is modest, suggesting the existence of many FPs if the 
biomarker is used in the first tier. He also says that the lyso Gb3 
biomarker is useful for Fabry disease, but whether this is always 
elevated in the neonatal period is unknown. He comments on 
the use of synthetic substrates, not exactly the same as natural 
ones, and the need for activating proteins in some cases, to the 
extent of enzymatic activities, which can lead to false negatives.

In our work, the advantage of neonatal screening is that 
which has been shown following all the steps foreseen with the 
initial urine and blood samples, dried on paper in this order, and 
the positive rate results from dividing the number of positive 
final results by the number of screened newborns. Finding 
false negatives in Galicia after looking at discharge reports and 
other hospital reports, which are computerized, is not difficult; 
we refer not only to reports of discharge from maternity after 
childbirth (if so, neonatal screening would not be needed) but 
also, to those after admission or consultation at any age.

In his review, Gelb recommends normalizing enzyme activity 
measures to the percentage of mean activity of the unaffected 
neonatal population and treats problems, interferences, and 
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others that hinder this normalization. Our approach does not 
have the disadvantage of measuring enzyme activity. With the 
procedures now being used, resorting to biostatistical tools 
to reduce the number of FPs and, even after that, to resort to 
biomarkers for each disease is necessary. This is because of 
a clear covariation with birth weight and gestational age, so 
enzyme activity must be adjusted to these covariations using 
rigorous statistical interpolation methods. This need to resort 
to mathematics to establish a possible positive value tells us that 
we must look for other neonatal screening procedures that do 
not require this step. The review ends by commenting on ten 
lysosomal deposition diseases, for some of which no minimally 
developed neonatal screening program exists.

In the case of metachromatic leukodystrophy, enzyme 
deficiency leads to the massive accumulation of sulfated 
glycolipids, in particular galactosylceramide-3-O-sulphate 
(sulfatide). In this study, the measurement of urinary sulfatides 
(which do not detect “pseudo deficiency”) was used, although 
whether neonatal screening should be considered for this disorder 
is questionable. Several studies exist in the literature on sulfatides 
and lysosulfatides. A recent study [63] employed LC-MS/MS, 
which is currently the “fashionable methodology,”3 and state 
that although plasma sulfates and lysosulfates, which could 
correlate with the severity of metachromatic leukodystrophy and 
be useful in controlling the effects of therapeutic intervention, 
would appear as attractive candidates for biomarkers, the results 
indicated that the determination of these plasma deposition 
compounds being useful in this regard was unlikely. Sulfatides 
are anionic sulfoglycolipids synthesized from their precursor 
galactosylceramide, which is synthesized from ceramides and 
uridine diphosphate galactose (UDP galactose) and is transported 
to the Golgi apparatus before sulfation to sulfatides. 

Sulfatides consist of many molecular species with structures 
that differ in acyl chain length and Hydroxylation and sphingoid 
base. The heterogeneity of the sphingoid base composition 
of Sulfatides should also be considered. The accumulation 
of sulfates in the kidney leads to the increased excretion of 
sulfates in the urine, and the determination of sulfates in the 
urine is a convenient diagnostic tool to confirm metachromatic 
leukodystrophy. A January 2016 article by Spacil et al. [64] on 
mass spectrometry analysis for metachromatic leukodystrophy 
screening in dry blood and urine samples begins by defining it 
as a disorder caused by the deficiency of arylsulfatase A activity, 
which leads to the accumulation of sulfatide substrates, and 
states that diagnostic and monitoring procedures include the 
demonstration of reduced enzyme activity in peripheral blood 
leukocytes or the detection of sulfatides in urine. However, the 
study adds that developing a screening test is difficult because 
of enzyme instability in dried blood samples, the widespread 

3 We use that expression because in most papers in this field and 
others, to analyze biological samples, including human ones, such a 
methodology is used. Our proposal to use fluorometry, which is more 
sensitive, transgresses this line and goes against the current.

occurrence of pseudo deficient alleles, and the lack of urine 
samples available in neonatal screening programs. 

One article [65] describes a procedure in which 3 mL of urine 
is used and arrives at the following conclusion:

Comprehensive and integrated urine screening could be very 
effective in the initial workup of patients suspected of having a 
lysosomal disorder as it covers disorders of sulfatide degradation 
and narrows down the differential diagnosis in patients with 
elevated glycosaminoglycans.

Our proposal for newborn screening uses simpler procedures 
with appropriate techniques.

Those used in the quoted study are hardly adaptable to a 
newborn screening program since they analyze the samples 
consecutively with prolonged analysis periods. We clearly believe 
that the proponents of this project point to the necessity of urine 
samples in neonatal screening programs.

We make the following distinctions, some consequences of 
not having carried out the project, and others that clarify some 
circumstances that could generate doubt.

The number of analyzed samples is not given as this is a 
research project. We cannot verify the proposal by analyzing 
samples as we are currently based outside the laboratory and are 
not in collaboration with those in charge of the laboratory, who are 
impeded by limited time as well as personnel and work resource 
cuts caused by the economic crisis and implemented policy.

There are no confirmed babies because this study has not 
been put into practice. Giving the percentage of positive results, 
suggesting the possibility of an LSD for what has already been 
exposed, is not possible. The follow up of positive cases does 
not require repeated urine or blood samples. The initial urine 
samples continue to be used; as expressed below, this is confirmed 
with blood samples received simultaneously with urine samples.

The proposal does not contemplate repeating any sample 
collection, when the family is informed, the disease is already 
confirmed. The percentage of repetition samples received is 
not given as no repeated sampling is applied in the proposal. 
FPs cannot exist since the disease is confirmed before it is 
communicated to the family.

Another issue is the over diagnosis of those who never 
developed the disease, which has already happened with PKU; 
because of that, early detection was not stopped. We cannot 
know about the false negatives since we have not put the proposal 
into practice. Putting the results of the application into daily 
practice (and into a table) should not be difficult.

The handling of both blood and urine samples obtained from 
and received in the laboratory does not suppose any complication 
given the authors’ forty years of work at the Laboratory of 
Galicia in Santiago de Compostela [66]. Fluorometry has been 
introduced in many neonatal screening laboratories for the 
detection of LSD and other pathologies. Also, cTLC would be 
applied in the second step (or tier) for a few samples and is a 
simple and economical analytical method.

The introduction of urine samples does not imply a separate 
program; it avoids the described problem of the lack of sensitivity 
and specificity using the current procedures.
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The proposed procedure is simpler in its execution and more 
economical than current methods. 

Regarding work time, the results for elevated 
glycosphingolipids are obtained the same day as the samples. 
The cTLC results are received the next day, and on the third or 
fourth day, those of the enzymatic study can be taken from blood 
samples using the procedures in programs that perform these 
detection methods. The genomic study could be performed the 
next day using the Ion Torrent. 

This speculative work could be framed in what was once 
called natural philosophy before Kant published the Critique 
of Pure Reason, to be followed by what was called positivism or 
experimental demonstration.

The work of L.I. Woolf –received for publication on January 
1, 1951– has no results and gives few clues as to how to put this 
proposal into practice [67].

This paper revalues urinary neonatal screening programs. 
What is stated here is not contemplated in the 2019 special issue 
of IJNS, “Newborn Screening for Lysosomal Storage Disorders: 
Methodologies for Measurement of Enzymatic Activities in 
Dried Blood Spot” [68], which compares procedures that employ 
enzymatic activity measurement with MS/MS with those that 
employ digital microfluid fluorometry (DMFF). A previous study 
dealt with neonatal detections that do not appear until adulthood 
and other aspects that provoke discussion about the suitability of 
these detection methods [69]. Having read the paper of May 30 
[70], on the effectiveness of newborn screening methods for only 
four lysosomal storage disorders, it is evident that it is necessary 
to break with the approaches to the subject followed until now.

The implementation of the methodology and procedures 
proposed in this project, to incorporate them into the Newborn 
Screening Programs, benefits these programs and therefore, the 
population of newborns, to whom it is applied. The development 
of the project will generate the necessary evidence to justify the 
implementation of what is proposed in the Newborn Screening 
Programs. There’s no previous evidence. The development of the 
project will contribute to improving, simplifying and reducing the 
cost of the Newborn Screening Programs for lysosomal storage 
disorders, which will be broader, more sensitive and more specific.
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