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Abstract: One question that often arises is whether a specialized code or a more general code
may be equally suitable for fire modeling. This paper investigates the performance and capabilities
of a specialized code (FDS) and a general-purpose code (FLUENT) to simulate a fire in the commercial
area of an underground intermodal transportation station. In order to facilitate a more precise
comparison between the two codes, especially with regard to ventilation issues, the number of factors
that may affect the fire evolution is reduced by simplifying the scenario and the fire model. The codes
are applied to the same fire scenario using a simplified fire model, which considers a source of
mass, heat and species to characterize the fire focus, and whose results are also compared with
those obtained using FDS and a combustion model. An oscillating behavior of the fire-induced
convective heat and mass fluxes through the natural vents is predicted, whose frequency compares
well with experimental results for the ranges of compartment heights and heat release rates considered.
The results obtained with the two codes for the smoke and heat propagation patterns and convective
fluxes through the forced and natural ventilation systems are discussed and compared to each
other. The agreement is very good for the temperature and species concentration distributions
and the overall flow pattern, whereas appreciable discrepancies are only found in the oscillatory
behavior of the fire-induced convective heat and mass fluxes through the natural vents. The relative
performance of the codes in terms of central processing unit (CPU) time consumption is also discussed.

Keywords: fire modeling; compartment fire; heat and smoke propagation; oscillatory flow; large
eddy simulation; FDS; FLUENT

1. Introduction

Performance-based design (PBD) principles are commonly used to draw up fire protection
plans [1]. In light of the multiplicity of ventilation and fire-fighting systems that may be operational,
both theoretical and empirical studies are frequently made (see, e.g., [2]). The results of the
corresponding tests will help in drawing up protection, extinction and evacuation plans, perhaps
even suggest improvements in the infrastructures themselves [3–5]. As may be expected, the main
inconvenience of this approach is the expense involved in full-scale experiments.

Computational tools have contributed much to PBD in the case of confined areas such as stations,
road tunnels, underground carparks shopping centres and stairwells of high-rise buildings [6–10].
Examples of reviews on field and zone approaches, turbulence, combustion, radiation, soot production
and fire modeling in such scenarios can be found in [11,12].
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However, despite the advances made in computational sciences, numerically modeling fires
in buildings is still far from being an easy task because of the multiple combinations of scenarios
and materials involved, the resulting chemical reactions, turbulent transport of smoke and heat, etc.
As a consequence, numerical models are invariably simplified, although even such simplification
still requires vast computational resources because the wide ranges of scales involved and the
multi-dimensional and unsteady nature of the problem cannot be avoided when analyzing complex
real scenarios.

To simulate compartment fires, the computational codes used include Fire Dynamics Simulator
(FDS), FireFOAM, OpenFOAM, PHOENICS, FLUENT and CFX, among others (see, e.g., [7,10,12–17]).
All these codes have been extensively validated for a great variety of fire scenarios in the case of the first
two and for a very large number of applications in the field of fluid mechanics in the case of the others.
Despite the exhaustive validation of the codes, the uncertainties involved in experimental studies of
complex large-scale fires (associated with data collection and the specification of the fire scenario and
detailed experimental conditions), the variety of simplifications introduced in the governing equations
for modeling turbulent transport and combustion processes, and the multiplicity of possible scenarios
where a fire can occur, among other factors, introduce uncertainty in the assessment of the relative
merits of different simulation tools, whether specialized or general-purpose.

In this work we compare the performance and capabilities of a specialized code (FDS) [18,19],
which is a code specifically designed for low-speed fire-driven flows, developed by the National
Institute of Standards and Technology (NIST), and a general-purpose code (FLUENT) [20] for the
numerical simulation of a fire in the commercial area of an underground intermodal transportation
station. Details on the verification and validation of FDS can be found, respectively, in Volumes 2 and
3 of the FDS Technical Reference Guide [21,22]. Both codes, which are among the most frequently used
in the literature to analyze, respectively, fire-related and general thermo-fluid dynamics problems,
have been thoroughly validated against experimental results (see, e.g., [23–25]). However, the above
mentioned uncertainties involved in large-scale tests, along with difficulties in obtaining well resolved
solutions because of practical computer limitations and inappropriate specification of the numerical
and boundary conditions settings, make it often difficult to assess the accuracy and efficiency of the
codes used to simulate a fire in a particular complex facility. Furthermore, fires can involve a wide
variety of scenarios, with different possible burning materials, which represents a huge challenge
for simulation programs. Precisely for this reason, and in order to make a more general comparison
between the codes considered, less dependent on specific sub-models, and more particularly focused
on the oscillatory behavior of the flow through openings, we have tried to simplify as much as possible
some aspects that determine the evolution of the fire. To this end, the scenario and the fire model
are simplified by reducing the number of factors that may affect the fire evolution. More specifically,
a simplified fire model, which considers a source of mass, heat and species to characterize the fire
focus, is used. In order to investigate whether the simplified model can reproduce the essential aspects
of the fire, it has been first validated with a combustion model using the FDS code. Then, the results
for the smoke and heat propagation patterns and convective heat and mass fluxes through the natural
vents, obtained with the two codes using the simplified fire model, are compared and discussed in
detail. The predicted oscillating behavior of the fire-induced convective fluxes through the open vents
is compared with experimental results obtained by other authors. The CPU times consumed by the
two fire models and codes are also compared.

2. Numerical Models

The mass, momentum and internal energy conservation equations, along with appropriate
turbulence and fire models, are solved using the FDS (v. 6.1.2) and FLUENT (v. 6.3.26) codes, which use
finite-differences and finite-volume discretization schemes, respectively, and are second-order accurate.
Details on the discretization schemes can be found in [19,20].
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2.1. Turbulence Model

In a previous work [26] we compared the results obtained using LES (Large Eddy Simulation) and
RANS (Reynolds Averaged Navier Stokes equations) models for a scenario similar to that considered
here, showing the advantage of using LES. Therefore, all the results of the present work were
obtained using LES to simulate turbulence. In FDS, the Deardorff eddy viscosity subgrid-scale
(SGS) model [27] (default choice in version 6.1.2 of the code) was used in most of the simulations.
In this model, the turbulent viscosity is expressed as µt = ρCv∆

√
ksgs, where Cv = 0.1, the filter

width ∆ = (∆x ∆y ∆z)1/3 and ksgs is the subgrid-scale kinetic energy [18,19]. The turbulent Schmidt
and Prandtl numbers are set equal to the default value of 0.5, although the effects of using other
values will also be investigated. The influence of different SGS models on the numerical results
was assessed by using, as an alternative, the Smagorinsky model with different values of the model
constant Cs [18,19]. In FLUENT, we used a LES model with the default options (Smagorinsky-Lilly
SGS model, with Cs = 0.1).

2.2. Combustion Model

One aspect that can substantially and in many ways determine the evolution of a fire is the type
of burning material. Bearing in mind that it is not the purpose of this paper to focus attention on
complex combustion and soot formation processes, and despite the fact that fires in public spaces
will inevitably involve many different materials, we consider heptane as the burning fuel, as it has
been in other fire simulation studies (see, e.g., [7,25,28]). Although the combustion of this substance
involves a large number of chemical reactions and species, we only consider the production and
transport of those resulting from the reaction C7H16 + 11 O2 → 7 CO2 + 8 H2O. Other products such
as CO and soot have not been considered, although the transport of other species (except, for example,
soot, which would require a more complex treatment) could also be easily handled. Not considering
soot production is an additional simplification in the fire model aimed at minimizing the differences
between the FDS and FLUENT settings, so that the comparison between the results of the two codes
can focus primarily on aspects such as those related to the oscillatory flow through open vents.

One of the two fire models considered in this work is the EDC (Eddy Dissipation Concept)
non-premixed combustion model implemented by default in version 6.1.2 of FDS [18,29], based on the
infinitely fast, mixing-limited reaction approximation, in which fuel is locally consumed at a rate which
is proportional to both the mixing rate and the limiting concentration of reactant, and the production
rates of species mass times the respective heats of formation are summed to determine the heat release
per unit volume. The model for the mixing time scale is discussed in [29].

2.3. Simplified Fire Model

As an alternative to the EDC combustion model, we have modeled the fire by directly introducing
the gases generated from combustion, at temperature Tin, through an inlet section of area Ain, with a
mass flow rate ṁin.

The combustion products constitute a mixture that is assumed to behave as a conserved scalar,
whose properties (viscosity, thermal conductivity, mass diffusivity and molecular weight) are the
average of those of its constituent species. The distributions of mass fractions of species are determined
from the conserved scalar concentration and mass fractions Yin,CO2 = 0.1912, Yin,H2O = 0.0894,
and Yin,N2 = 0.7194 at the fire focus. For a different composition of the combustion gases, the transport
of CO and other species could be carried out in a similar way. Thus, the problem would be reduced
to knowing the amount of CO and other species produced at the fire focus, which, in turn, would
depend on the type of material burned and the ventilation conditions. As indicated above, in order
to be realistic, the complex analysis of the influence of different types of burning materials on the
evolution of the fire has been left outside the scope of this work.
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In the simulations involving both FDS and FLUENT the temperature dependency of the
specific heats of carbon dioxide, water vapor and nitrogen, ci

p, was expressed by a 4th order
polynomial function (ci

p(T) = ∑4
j=0 ki

jT
j) and, in the case of air, by a 7th order polynomial function

(cair
p (T) = ∑7

j=0 kair
j T j). This is the default option in FDS. The data in the FLUENT and FDS databases

are very similar, although the default option in the former is to set the specific heat of any species
as constant. The molecular weight, Min = 28.57 g mol−1, and specific heat, cin

p = ∑4
j=0 kin

j T j, of the
mixture are calculated as

Min =
N

∑
i=1

Xin,i Mi; cin
p (T) =

N

∑
i=1

Yin,ici
p(T), (1)

where N = 3 is the number of species and Xin,i the molar fraction of species i.
The rate of heat convected through the inlet section is calculated as

HRR = ṁin

∫ Tin

Tref

cin
p (T)dT, (2)

where the ambient temperature, Ta = 300 K, is set equal to the reference temperature Tref,
and ṁin = ρinvin Ain. Here, ρin = pa Min/(RuTin) is the density and vin the velocity of the mixture
of gases at the inlet section (pa is the ambient pressure). It is assumed that the temperature, density,
velocity and composition of the gas entering the domain are time-independent and uniform across the
inlet section. Note that, once heat release rate (HRR) and Ain are fixed, the choice of Tin determines vin

and, thus, the mass flow rate, ṁin. One of the goals of this paper is to determine whether the effects of
turbulent mixing and flame radiation on fire evolution, in regions near or far from the fire focus, are
well reproduced for different combinations of Tin and ṁin values.

2.4. Radiation Model

FDS uses techniques for radiative transport similar to those used in finite volume methods for
convective transport in fluid flow [30]. When using the combustion model, the fraction of the energy
released in the fire that is emitted as thermal radiation may be specified as a source term in the
radiation transport equation through parameter RADIATIVE FRACTION, or calculated by the radiation
model implemented in FDS [19] by setting RADIATIVE FRACTION = 0. We have tested both options,
with a specified fraction of the HRR emitted as thermal radiation of 0.35 in the first case, and the results
obtained did not differ significantly. Therefore, only the results obtained with the second option will
be shown below. In FLUENT, the default P1 radiation model was used [20]. The actual amount of
radiation absorbed or emitted by the hot gases in the simulations we run, which depended on the local
mass fractions of the gas mixture considered and the properties of each gas, is expected to be lower
than that obtained if the production of soot were taken into account.

3. Fire Scenario

3.1. Description of the Facility

In a previous contribution we studied the bus maneuvering and parking zones of the underground
transportation hub “Avenida de América”, in Madrid, Spain. Here, we focus on a fire that starts
in a commercial premises (one of twenty) situated on level −3 (Figure 1a). The different levels are
connected by escalators. The computational domain considered in all the simulations, shown in
Figure 1b, only includes the commercial area at level −3. The overall dimensions of the zone studied
are 66.66× 39.86 m, with a usable floor area of 2085 m2. In the geometric models created in FDS and
FLUENT, the x and y axes are horizontal, and the z axis is vertical. The origin of the coordinate system
is located in the S-W corner of the commercial area. It is assumed that the floor and ceiling surfaces are
flat and horizontal and that the height is uniformly 3 m. As mentioned above, the origin of the fire
is a commercial premises in the N-W corner of the shopping area. The danger is greater at this site
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because of the proximity to the stairs and consequent risk of spreading vertically and because of the
greater affluence of people, which would hinder evacuation. There are two escalators connecting level
−3 with level −2, and 11 1200× 600 mm air extraction grilles installed in the ceiling, which form part
of the forced ventilation system.
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Figure 1. (a) Schematic view of the transportation station building (excluding platforms). (b) Top
view of the shopping area where the fire originates (level -3): natural and forced ventilation systems,
fire focus and reference system.
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Figure 1. (a) Schematic view of the transportation station building (excluding platforms). (b) Top view
of the shopping area where the fire originates (level −3): natural and forced ventilation systems, fire
focus and reference system.

In a previous work [26], upper levels of the station (Figure 1a) were included in the computational
domain in order to study the smoke and heat propagated not only in the commercial area at level −3,
but also in the stairwell that connects levels from −3 to 0 and through the natural ventilation outlets
installed at the ceiling of level −1. The evolution of the fire throughout level −3 when the upper levels
were included and when the stairwells of level −3 were assumed to be open to the atmosphere did not
show significant variations. Therefore, in order to better focus on the fire spread through level −3 only,
where the most relevant effects were observed, we will assume that the commercial area is directly
open to the atmosphere through two outlet sections (see Figure 1b), located 70 cm above the ceiling
of level −3, with the same areas of 81.37 m2 (west vent) and 60.06 m2 (east vent) as the horizontal
pass-through sections of the stairwells located on the W and E sides, respectively. As the aim of the
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present work is to analyze the evolution of the fire using different codes and fire models rather than
evaluating the effectiveness of particular measures to limit the spread of the fire to the top floors of
the building, no smoke barriers were included around the outlets. Note that, since there are not any
additional natural vents or other means for introducing fresh air from outside, the necessary makeup
air will inevitably be drawn through one or both existing vents, as will be shown below.

3.2. Boundary Conditions

Boundary conditions at the fire focus are applied on a square floor surface area Ain (z = 0) of
the premises where the fire focus is located. In most of the simulations presented in this work a total
heat release rate HRR = 2.5 MW is assumed, which lays in the range of typical HRR values (270 to
1200 kW m−2) for fires that may occur in shops [31]. When using both the simplified fire model and
the EDC combustion model, we assumed that the indicated HRR value (or the mean value around
which HRR oscillates in the combustion model) is reached almost instantaneously. Although we could
have used a more realistic curve to describe the evolution of HRR, this simplification will facilitate the
comparison between codes (while avoiding the introduction of additional parameters) and will not
hinder the study of the oscillatory flow through the ceiling vents, a process that is usually settled long
before the fire starts to decay, at least for fire scenarios similar to that explored in this paper.

When the combustion model is used, we assume that the burning fuel is heptane, with a heat
of combustion Ẇhept = 44.566 MJ kg−1 [32]. The default values for all other chemical and physical
properties set by the FDS code are assumed. The heptane evaporation speed and fuel burning rate
will not be a part of the solution; instead, the above mentioned HRR value is imposed. As mentioned
before, the parameter RADIATIVE FRACTION is set equal to 0.

In the case of the simplified fire model (Section 2.3), inflow boundary conditions are applied at
the inlet section of the fire focus. A mixture of gases with the composition indicated in Section 2.3
enters the domain with a mass flow rate ṁin, at temperature Tin and velocity vin, yielding a convective
HRR of 2.5 MW. The emissivity of the inlet surface is set to 0 to avoid any additional contribution to
the heat release rate due to thermal radiation.

To keep the thermal boundary conditions as similar as possible for both the combustion and
simplified fire models, zero emissivity and a very small liquid conductivity value at the heptane free
surface are imposed.

To select a suitable value for Ain, the area to which the fire is expected to spread should be
taken into account. A suitable value of the inlet velocity vin must also be selected to ensure a realistic
ratio between inertial and buoyancy effects [33]. However, such parameters are expected to be less
important the further one moves away from the focus of the fire, although their values must be chosen
so that the dimensionless HRR (source Froude number [33]) remains representative of buoyant fires:

HRR∗ = HRR/(ρacpTaD2
f

√
gD f ), (3)

where subscript a denotes ambient value, cp is the specific heat of air, g is the gravity acceleration and
D f is an equivalent fire focus diameter. In all the simulations we will assume an area of the fire focus
inlet section Ain = 3 m2, for which the above data provide a value of around 0.42 for HRR∗, which is
within the range considered normal for buoyant fires [33].

Table 1 shows the details of the four different combinations (labeled as cases G-1 to G-4) of Tin

and ṁin, which yield a convective HRR of 2.5 MW. The temperature range considered is intended to
include the typical average temperatures of the combustion products. The mass flow rate of carbon
dioxide is ṁin,CO2 = Yin,CO2 ṁin.
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Table 1. Conditions simulated with the simplified fire model (cases G-1 to G-4), run with Fire Dynamics
Simulator (FDS) and FLUENT.

Tin ṁin vin ρin
Case [K] [kg s−1] [m s−1] [kg m−3]

G-1 2436 0.8826 2.064 0.1429
G-2 2124 1.052 2.145 0.1639
G-3 1812 1.297 2.256 0.1921
G-4 1500 1.677 2.416 0.2320

In order to reproduce approximately the real operating conditions of the facility, we assume
that the air flow rate extracted through the forced ventilation system on level-3 is constant from the
outset of the fire (40,000 m3 h−1) and uniformly distributed among all the extraction grilles, assuming
that the fire does not affect the operation of the extraction units. The indicated value approximately
corresponds to a number of 6 to 7 air changes per hour, which is in accordance with the Spanish
regulations [34].

At the west and east natural vents, which are both assumed to be open during the simulations,
the gauge pressure is set to 0, a condition which is imposed through OPEN and PRESSURE OUTLET
boundary conditions in FDS and FLUENT codes, respectively. Details about the implementation of the
two types of boundary conditions, which are essentially the same, can be found in [19,20]. The results
obtained with FDS were very sensitive to the inadequate implementation of the inflow and outflow
boundary conditions, especially when a grid partition exists in the area closed to the fire focus and the
open vents, and so special care was taken to avoid these situations.

At all the walls, zero heat flux and no-slip boundary conditions are applied, without modeling the
conjugate heat transfer problem. Although the assumption of adiabatic walls might not be considered
sufficiently realistic, such an assumption allows us to reduce the number of factors to be considered
that affect the fire evolution, and thus to carry out a more precise comparison between FDS and
FLUENT performance in the prediction of the basic thermo-fluid dynamic aspects that determine the
fire evolution.

3.3. Computational Grid

Four different hexahedral computational grids of about 1017 k, 3358 k, 7074 k and 19,864 k cells
were used to run the simulations. The grid adaptation capabilities of FLUENT, which facilitate the
meshing of complex geometries and local refinement, were not used so that the grid characteristics
would be similar when comparing FDS. A uniform cell size in all directions was used for all grids in the
region 0 ≤ z ≤ 2 m, whereas a grid refinement in z direction was applied in the vicinity of the ceiling
(2 < z ≤ 3 m) in order to better resolve the flow near the wall. To choose an appropriate order of
magnitude for the size of the grid cells, the range of scales that must be resolved to obtain an acceptable
accuracy in the results was determined following the criterion that the estimated characteristic length
of the fire plume [35],

L =

(
HRR

ρacpTa
√

g

)2/5
, (4)

should be spanned by at least ten computational cells [28]. For the general scenario conditions
described above (HRR = 2.5 MW, ρa = 1.17 kg m−3, cp = 1011 J kg−1 K−1 and Ta = 300 K), we obtain
L = 1.380 m. In the region 2 < z ≤ 3 m, the cell size in z direction, ∆z, gradually shrinks to ∆zBL at
the ceiling (z = 3 m) in order to ensure suitable values of the parameter y+. Table 2 shows, for each
computational grid, the total number of cells, the approximate cell size in the region 0 ≤ z ≤ 2 m,
δ = ∆x = ∆y = ∆z, the approximate number of grid cells, L/δ, spanning the characteristic length L,
and the grid size in z direction at the ceiling, ∆zBL.
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Table 2. Grid characteristics: total number of cells, approximate cell size (δ), approximate number
of cells (L/δ) spanning the characteristic length L, and grid size (∆zBL) in z direction at the ceiling
(z = 3 m).

Grid Total # of Cells δ [mm] L/δ ∆zBL [mm]

I 1,017,000 220 6 37
II 3,358,000 138 10 33
III 7,074,000 100 14 30
IV 19,864,000 74 18.5 25

Most of the results presented in the following section were obtained using grid II (L/δ ≈ 10),
whereas grids I (coarsest), III and IV (finest) were used for testing grid independence.

FDS uses an explicit scheme in time, and automatically adjusts the time step ∆t required for
numerical stability during the simulation, so that the following condition is met:

CFL = ∆t max
( |u|

∆x
;
|v|
∆y

;
|w|
∆z

)
< 1. (5)

The default maximum and minimum CFL numbers used by FDS are, respectively, 1 and 0.8. Mean
values of ∆t = 2.1 and 1.8 ms were obtained from Equation (5) when using the simplified fire model
and the EDC combustion model, respectively.

On the other hand, a fully-implicit scheme was used for time advancement in FLUENT, and no
stability criterion was taken into account to calculate ∆t. Instead, we used a constant time step
∆t = 50 ms during the simulations. All residuals diminished by at least two orders of magnitude after
around 40 to 50 iterations per time step, and then remained almost constant. The scaled residuals
defined in FLUENT [20] for the mass, species, three components of momentum, and energy and
radiation equations decreased to around 10−2, 10−3, 10−4 and 10−6, respectively.

It should be pointed out that, for the same scenario and equivalent simulation settings, FLUENT
is considerably more time consuming than FDS, and obtaining strictly time step-independent solutions
may require substantially higher CPU times. In fact, reducing the time step used with FLUENT
to obtain the results presented in the next section would still produce small changes in the results,
although not be very significant for the purposes of comparison with FDS.

4. Results and Discussion

This section looks at the results obtained from the simulation of the scenario described in
Section 3.2 using the FDS and FLUENT codes with the simplified fire model and the default
EDC combustion model implemented in FDS. The results obtained are the temperature and CO2

concentration contours in horizontal and vertical sections of the domain, heat flow rates and CO2

mass flow rates extracted from the ventilation systems, and mass flow rates leaving and entering the
compartment through the ceiling vents.

First, we discuss the sensitivity of the results obtained with FDS to the grid size and different
settings of the LES turbulence model. Then, we analyze the predictions of FDS with the simplified
fire model, considering four combinations of the inlet temperature, Tin, and mass flow rate, ṁin, of the
mixture of gases introduced in the computational domain (cases G-1 to G-4 of Table 1). The results
obtained for the oscillatory flow through vents are compared with experimental results available in the
literature. Then, we compare the results for the fire evolution obtained with the simplified fire model
(Case G-1 of Table 1) and the EDC combustion model (with RADIATIVE FRACTION = 0) using the FDS
code. Finally, the results obtained with the simplified fire model using the FDS and FLUENT codes are
compared to each other.

Except in Section 4.1, the respective default settings for the LES model were used in each code,
and a computational grid with L/δ ≈ 10 was used in all the simulations described below.
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4.1. Preliminary Tests

Several tests were carried out to investigate the grid independence of the FDS results using the
four computational grids of Table 2. Using the simplified fire model with Tin = 1500 K (Case G-4 in
Table 1), results for CO2 mass flow rate extracted by the ventilation systems, shown in Figure 2a, can
be considered fairly grid independent even for the relatively coarse grid II, as well as results for heat
flow rate and temperature and CO2 mass fraction contours on vertical and horizontal sections of the
domain (not shown here).
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Figure 2. (a) Mass flow rates of CO2 through the ventilation systems and (b) mass flow rates through
the west and east vents (positive outwards) and net mass flow rate leaving the compartment, obtained
with FDS, the simplified fire model with Tin = 1500 K (Case G-4 in Table 1) and grids with L/δ ≈
6, 10, 14 and 18.5.
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Figure 2. (a) Mass flow rates of CO2 through the ventilation systems and (b) mass flow rates through the
west and east vents (positive outwards) and net mass flow rate leaving the compartment, obtained with
FDS, the simplified fire model with Tin = 1500 K (Case G-4 in Table 1) and grids with L/δ ≈ 6, 10, 14
and 18.5.

Figure 2b shows the mass flow rate (positive outwards) through the west and east natural vents
and the net mass flow rate leaving the compartment.

The results depicted in Figure 2b show an acceptable degree of grid independence for grids II
and finer, especially in terms of the net mass flow rate. However, note that the oscillating mass flow
rates through the open vents are very sensitive to the grid size, and differences remain between the
results obtained with grids III and IV. Indeed, the dependence of these unsteady results on grid size
could not be completely avoided unless an extremely fine grid were used. However, the temperature
and CO2 mass fraction contours, the heat and CO2 mass flow rates through the forced and natural
ventilation systems (Figure 2a) and the net mass flow rate leaving the compartment (Figure 2b) do not
appreciably change when using grids with L/δ ≈ 10, 14 or 18.5, and, therefore, the computational grid
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with L/δ ≈ 10 (grid II) can be considered sufficiently fine to reach grid independency for the most
relevant results. As for the FLUENT code, it was shown in [26] that, for the current scenario, a grid
with L/δ ≈ 10 is also fine enough to reach grid independency for the most relevant results. However,
the comparison between Figure 2a and the equivalent results shown in [26] shows that FLUENT, when
using LES, is more sensitive to the grid size than FDS in predicting, for example, the CO2 mass flow
rate through the forced extraction grilles.

The Deardorff and Smagorinsky SGS models are the default options for LES models in FDS and
FLUENT, respectively [19,20]. We ran simulations with FDS, using both SGS models, two values
for the coefficient Cs of the Smagorinsky model (0.2 and 0.1, the latter being the default value in
FLUENT) and two combinations for the turbulent Prandtl and Schmidt numbers (Prt|Sct = 0.5|0.5 and
0.85|0.7, which are the default values in FDS and FLUENT, respectively). As in the grid independence
test, the results obtained for the mass flow rates through the west and east vents (not shown here)
appear to be the most sensitive ones to the settings used for the SGS model (differences for other
quantities such as the mass flow rate through the forced extraction grilles and net mass flow rate
leaving the compartment are much smaller). Moreover, differences are significant only between the
results obtained with FDS and FLUENT, whereas using different settings for the SGS model in FDS
does not affect the results substantially.

4.2. Results of the Simplified Fire Model

Figure 3 shows the results for the heat flow rate through the ventilation systems, obtained with
FDS using the simplified fire model with the four combinations of Tin and ṁin of cases G-1 to G-4
(Table 1).
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Figure 3. Heat flow rate through the forced extraction grilles and west vent, predicted by FDS and the
simplified fire model with Tin = 2436, 2124, 1812 and 1500 K (cases G-1 to G-4 in Table 1).
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Figure 3. Heat flow rate through the forced extraction grilles and west vent, predicted by FDS and the
simplified fire model with Tin = 2436, 2124, 1812 and 1500 K (cases G-1 to G-4 in Table 1).

Note that, despite the broad range of inlet temperatures considered (2436–1500 K), maintaining
the same convective heat release rate (calculated from Equation (2)) in all the cases yields results that
compare very well with each other. The results for the normalized CO2 mass flow rate (ṁCO2 /ṁin,CO2 ,
where ṁin,CO2 is the mass flow rate of CO2 introduced in the domain at the fire focus) are qualitatively
very similar to those for the heat flow rate shown in Figure 3. Although not shown here, the results
for the mass flow rate extracted by the forced ventilation system and net mass flow rate leaving the
compartment are practically independent of Tin.

Table 3 shows the fractions of the heat and CO2 mass introduced in the domain from the beginning
of the fire that had been extracted by the ventilation systems at t = 90 and 720 s,

Ih(t) =
1

(HRR)t

∫ t

0
q̇ dt; Ic(t) =

1
ṁin,CO2 t

∫ t

0
ṁCO2 dt. (6)
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Note the low dependence of Ih and Ic on the inlet temperature Tin.
Figure 4 shows the temperature contours at t = 90 s on horizontal planes at heights z = 2.95

and 2.05 m, and at t = 720 s and z = 2.95 m, predicted by FDS using the simplified fire model with
Tin = 2436 and 1500 K. It can be observed that, sufficiently far from the fire focus, the temperature
distributions obtained using different Tin values compare very well, behavior that is consistent with
the very slight dependence of the results of Figure 3 and Table 3 on Tin. A similar behavior is observed
for the distributions of the normalized CO2 concentration and velocity magnitude, which are not
shown for brevity.

Table 3. Fractions (in %) of heat (Ih) and mass of CO2 (Ic) extracted by the natural and forced
ventilation systems (Equation (6)). In parentheses, variation (in %) with respect to Case G-1. Values
obtained with FDS and the simplified fire model after the first 90 s (cases G-1 to G-4) and 720 s (cases
G-1 and G-4) of the fire.

West Vent Forced Extraction Grilles

Case Ih (∆) Ic (∆) Ih (∆) Ic (∆)

t = 90 s

G-1 38.90 40.16 17.76 19.19
G-2 38.87 (−0.1) 40.01 (−0.4) 17.77 (+0.0) 19.22 (+0.2)
G-3 39.20 (+0.8) 40.07 (−0.2) 17.46 (−1.7) 18.70 (−2.6)
G-4 39.37 (+1.2) 40.12 (−0.1) 17.31 (−2.6) 18.54 (−3.4)

t = 720 s

G-1 61.20 58.36 28.70 30.18
G-4 60.67 (−0.9) 58.28 (−0.1) 28.06 (−2.2) 29.86 (−1.0)

4.2.1. Oscillatory Flow through Ceiling Vents

Figure 5a shows, for Case G-4 (Tin = 1500 K), the FDS results for the mass flow rates leaving
and entering the compartment through the west vent (ṁw,out and ṁw,in, respectively), the net mass
flow rate through this vent (ṁw,out − ṁw,in) and the mass flow rate entering the compartment through
the east vent (ṁe,in). During the whole simulation, the outward mass flow rate through the east vent
is negligible compared to the inward one. On the other hand, hot gases flow outward through the
north side of the west vent (closer to the fire focus; see Figure 1b) and cool air at ambient conditions
(Ta = 300 K) flows inward through the south side. The bidirectional flow predicted through the
west vent is widely described in the literature (see, for example, [36–38]). In the problem considered,
whether the flow across the vents is induced by buoyancy or by a fire-generated pressure difference is
determined by the Richardson number, which can be expressed as [38,39]

Ri = Gr/Re2 = gD∆ρ/∆p,

where Gr and Re are the Grashof and Reynolds numbers, D is the vent size, ∆ρ is the variation of
density across the vent and ∆p is the pressure increment due to thermal expansion, calculated as

∆p =
1

2ρe

(
HRR

cpTe ACd

)2
,

where ρe and Te are the density and temperature in the vicinity of the vent, Cd is a discharge coefficient
and A is the area of the vent. In the scenario of Figure 5a, using the mean values of density and
temperature obtained from the simulation at t = 45 s over the west vent (of area A = 11.38× 7.15 m2)
yields ∆pp ≈ 6 mPa, ∆ρe ≈ 30 g m−3 and Ri ≈ 500, a value indicating that the flow is dominated
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by buoyancy. As the mean temperature around the vent increases, Ri reaches values above 103 for
t > 135 s.

It can be observed from Figure 5a that the inward and outward mass flow rates across the west
vent oscillate. Note that the outward mass flow rate oscillation wave has a slight and approximately
constant delay of about 10 s with respect to the inward flow wave. Also note that the resulting
oscillating net mass flow rate across the west vent determines the oscillating behavior of the inward
flow through the east vent, with the same frequency (of about 0.03 Hz, calculated over a simulation of
750 s) and approximately the same wave shape and time-dependent amplitude. This behavior was
observed for all the simulations run.Version July 31, 2019 submitted to Appl. Sci. 12 of 24
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Figure 4. Temperature contours (◦C) at instant t = 90 s and z = 2.95 and 2.05 m (top pictures), and at
t = 720 s and z = 2.95 m (bottom pictures). Results obtained with FDS, a grid with L/δ ≈ 10 and the
simplified fire model with (a) Tin = 2436 K and (b) Tin = 1500 K (cases G-1 and G-4 in Table 1).
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Figure 4. Temperature contours (◦C) at instant t = 90 s and z = 2.95 and 2.05 m (top pictures), and at
t = 720 s and z = 2.95 m (bottom pictures). Results obtained with FDS, a grid with L/δ ≈ 10 and
the simplified fire model with (a) Tin = 2436 K, (b) Tin = 1500 K, (c) Tin = 2436 K, (d) Tin = 1500 K,
(e) Tin = 2436 K and (f) Tin = 1500 K (cases G-1 and G-4 in Table 1).

Figure 5a also shows the results for the evolution of the CO2 mass flow rate through the west vent
divided by the constant C = 7× 10−3 (triangle symbols). The approximate coincidence between these
results and the outward mass flow rate through the west vent means that the concentration of CO2

in the hot gases leaving the compartment is fairly constant, and varies from approximately 7× 10−3

during the first two minutes after the instant at which the gases begin to flow (around t = 10 s) to
8.5× 10−3 once the simulation reaches a steady state.
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1500 K 2436 K

M
as

s
flo

w
ra

te
[k

g
s−

1 ]

Time [s]

Figure 5. (a) Mass flow rates through the west and east vents obtained with FDS for Case G-4 (Tin =

1500 K). Triangle symbols: CO2 mass flow rate through the west vent divided by C = 7 × 10−3.
(b) Comparison between FDS results for the mass flow rates through the west and east vents for cases
G-1 and G-4 (Tin = 2436 and 1500 K).

with Tin = 2436 K. Therefore, the influence of Tin on the overall oscillatory behavior of the flow at the351

open vents is apparently small.352

4.2.2. Comparison with experiments353

The dependence of the frequency of the oscillating flow through the open vents was found to be
well described by expressions of the form

f = k(HRR)n (7)

(see [37] and references therein for a review of results available in the literature). From experimental
and numerical results it was shown in [40,41] that the flow oscillation frequency in a compartment
fire with two open vents is proportional to (HRR)1/3. A similar problem but for a compartment with
a single horizontal ceiling vent was studied numerically in [42], where the flow oscillation frequency
was found to be proportional to (HRR)0.29 for heat release rates below a critical value. Figure 6a
shows the numerical results for the oscillation frequency as a function of the heat release rate (in the

Figure 5. (a) Mass flow rates through the west and east vents obtained with FDS for Case G-4
(Tin = 1500 K). Triangle symbols: CO2 mass flow rate through the west vent divided by C = 7× 10−3.
(b) Comparison between FDS results for the mass flow rates through the west and east vents for cases
G-1 and G-4 (Tin = 2436 and 1500 K).

Figure 5b compares the results of Figure 5a, for Tin = 1500 K, with those obtained with Tin =

2436 K. Note that the frequency of the mass flow rate oscillations is only slightly smaller and their
amplitude remains more constant with time for the higher Tin value. The absolute values of the net
mass flow rates across the west and east vents obtained with both Tin values are in phase to each
other and oscillate with very similar amplitudes. Also note that the mentioned delay of about 10 s
between the outward and inward mass flow rate oscillation waves also exists in the results obtained
with Tin = 2436 K. Therefore, the influence of Tin on the overall oscillatory behavior of the flow at the
open vents is apparently small.

4.2.2. Comparison with Experiments

The dependence of the frequency of the oscillating flow through the open vents was found to be
well described by expressions of the form

f = k(HRR)n (7)

(see [37] and references therein for a review of results available in the literature). From experimental
and numerical results it was shown in [40,41] that the flow oscillation frequency in a compartment fire
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with two open vents is proportional to (HRR)1/3. A similar problem but for a compartment with a
single horizontal ceiling vent was studied numerically in [42], where the flow oscillation frequency was
found to be proportional to (HRR)0.29 for heat release rates below a critical value. Figure 6a shows the
numerical results for the oscillation frequency as a function of the heat release rate (in the interval 500
to 2500 kW) obtained in the present work using FDS and the simplified fire model, with Tin = 1500 K
and L/δ ≈ 10. The figure also shows the correlation

f = 1.562× 10−4 (HRR)0.345, (8)

which fits the FDS results with R2 = 0.9922, along with correlations of the form of Equation (7),
with the values of the exponent n proposed in [40–42]. Note that the results for the oscillation
frequency obtained in the present work exhibit a dependence on the HRR that is very close to that of
the experimental results of [40,41].
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Figure 6. (a) Oscillation frequency of the fire-induced flow through the open vents as a function of
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Figure 6. (a) Oscillation frequency of the fire-induced flow through the open vents as a function of
heat release rate (HRR). Comparison of the present numerical results with correlations of the form of
Equation (7) with values of the exponent n deduced from experimental and numerical results [40–42].
(b) Collapse of FDS and experimental results on the correlation f H3 = k(HRR)1/3 with k = 4.97× 10−3.

Figure 6b shows a comparison between the present numerical results and the experimental results
of [40,41], obtained in a cubic enclosure of side 0.6 m for thermal powers of 1 and 8 kW, for which the
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measured frequencies were 0.3 and 0.6 Hz, respectively. Although the experimental results available
for comparison are scarce, it is interesting to point out that numerical and experimental results collapse
very well after scaling on the curve f H3 = k(HRR)1/3, despite the wide ranges of the compartment
height, H, and HRR values considered.

4.3. Combustion Model vs. Simplified Fire Models

Figure 7 shows the HRR as a function of time in FDS simulations that use the simplified fire
model (cases G-1 to G-4) and the EDC combustion model. In the first case, the energy enters the
domain at a constant rate, whereas in the second one the HRR exhibits high frequency fluctuations,
with an amplitude that approximately varies in the range 1.0 to 1.5 MW. As will be shown below,
these fluctuations produce high-frequency fluctuations of small amplitude in the heat and mass flow
rates through the ventilation systems, especially through the west vent.

Version July 31, 2019 submitted to Appl. Sci. 15 of 24

4.0

3.5

3.0

2.5

2.0

1.5
9080706050403020100

H
R

R
[M

W
]

Simplified fire model
Combustion model

Time [s ]

Figure 7. Heat release rate (HRR) in the simulations of cases G-1 to G-4 (Table 1), compared with that
of the EDC combustion model.
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Figure 8. Temperature contours (◦C) (left column) and CO2 mass fraction contours (YCO2 × 104) (right
column) at instant t = 90 s and x = 11, 17, 23, 29 and 36 m, obtained with FDS using a grid with
L/δ ≈ 10. (a) Combustion model with RADIATIVE FRACTION = 0 and (b) simplified fire model with
Tin = 2436 K (Case G-1).

4.3. Combustion model vs. simplified fire models364

Figure 7 shows the HRR as a function of time in FDS simulations that use the simplified fire365

model (cases G-1 to G-4) and the EDC combustion model. In the first case, the energy enters the366

domain at a constant rate, whereas in the second one the HRR exhibits high frequency fluctuations,367

with an amplitude that approximately varies in the range 1.0 to 1.5 MW. As will be shown below,368

these fluctuations produce high-frequency fluctuations of small amplitude in the heat and mass flow369

rates through the ventilation systems, especially through the west vent.370

Figure 8 shows the temperature and CO2 mass fraction contours at instant t = 90 s and vertical371

planes at x = 11, 17, 23, 29 and 36 m, obtained with the combustion model and the simplified fire372

model (Case G-1). Figure 9 shows the temperature and velocity magnitude contours at t = 90 s, on373

the horizontal plane at z = 2.95 m, obtained with FDS using the EDC combustion model and the374

simplified fire model (Case G-1). Figure 10 shows the CO2 mass fraction contours at t = 90 s, on the375

horizontal planes at z = 2.95 m (left column) and z = 2.05 m (right column), obtained as in Figure 9.376

It can be observed from the figures the very good overall agreement between the three types of results377

obtained with the combustion and simplified models.378

Figure 11 shows the results for the mass of CO2 and heat flow rates through the ventilation379

systems obtained with FDS using the simplified fire model (Case G-1) and the combustion model.380

Note that the combustion model predicts mass of CO2 flow rates through the forced ventilation grilles381

slightly larger than those obtained with the simplified fire model, a behavior that could be explained382

by the higher CO2 concentrations at the ceiling in the vicinity of the forced extraction grilles, as shown383

in Figure 10. Also note the very good degree of agreement between the results for the flow rates384

Figure 7. Heat release rate (HRR) in the simulations of cases G-1 to G-4 (Table 1), compared with that
of the EDC combustion model.

Figure 8 shows the temperature and CO2 mass fraction contours at instant t = 90 s and vertical
planes at x = 11, 17, 23, 29 and 36 m, obtained with the combustion model and the simplified fire
model (Case G-1). Figure 9 shows the temperature and velocity magnitude contours at t = 90 s,
on the horizontal plane at z = 2.95 m, obtained with FDS using the EDC combustion model and the
simplified fire model (Case G-1). Figure 10 shows the CO2 mass fraction contours at t = 90 s, on the
horizontal planes at z = 2.95 m (left column) and z = 2.05 m (right column), obtained as in Figure 9.
It can be observed from the figures the very good overall agreement between the three types of results
obtained with the combustion and simplified models.
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Figure 7. Heat release rate (HRR) in the simulations of cases G-1 to G-4 (Table 1), compared with that
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Figure 8. Temperature contours (◦C) (left column) and CO2 mass fraction contours (YCO2 × 104) (right
column) at instant t = 90 s and x = 11, 17, 23, 29 and 36 m, obtained with FDS using a grid with
L/δ ≈ 10. (a) Combustion model with RADIATIVE FRACTION = 0 and (b) simplified fire model with
Tin = 2436 K (Case G-1).

4.3. Combustion model vs. simplified fire models364
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horizontal planes at z = 2.95 m (left column) and z = 2.05 m (right column), obtained as in Figure 9.376

It can be observed from the figures the very good overall agreement between the three types of results377

obtained with the combustion and simplified models.378

Figure 11 shows the results for the mass of CO2 and heat flow rates through the ventilation379

systems obtained with FDS using the simplified fire model (Case G-1) and the combustion model.380

Note that the combustion model predicts mass of CO2 flow rates through the forced ventilation grilles381

slightly larger than those obtained with the simplified fire model, a behavior that could be explained382

by the higher CO2 concentrations at the ceiling in the vicinity of the forced extraction grilles, as shown383

in Figure 10. Also note the very good degree of agreement between the results for the flow rates384

Figure 8. Temperature contours (◦C) (left column) and CO2 mass fraction contours (YCO2 × 104) (right
column) at instant t = 90 s and x = 11, 17, 23, 29 and 36 m, obtained with FDS using a grid with
L/δ ≈ 10. (a) Combustion model with RADIATIVE FRACTION = 0 and (b) simplified fire model with
Tin = 2436 K (Case G-1).
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Figure 9. Temperature contours (left column) and velocity magnitude contours (right column) at
t = 90 s, on the horizontal plane at z = 2.95 m, obtained as in Figure 8.
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Figure 10. Contours of CO2 mass fraction (YCO2 × 104) at t = 90 s and heights z = 2.95 m (left column)
and z = 2.05 m (right column), obtained as in Figure 8.

through the west vent obtained with FDS and the two fire models. This can be seen with more detail385

in Figure 12, which compares results similar to those presented in Figure 5b, obtained with FDS using386

the combustion model and the simplified fire model. Note that the outward mass flow rate through387

the west vent predicted with the combustion model oscillates with a slightly smaller amplitude than388

when using the simplified fire model, an effect that is also observed in the net mass flow rate through389

the west vent and, as a consequence, in the inward mass flow rate through the east vent.390

Table 4 shows the relative CPU time consumed by FDS using the EDC combustion model and the391

simplified fire model. Note that the combustion model consumes a CPU time around 40% larger than392

that consumed when the simplified fire model is used, with no appreciable change in the results, as393

shown above. Using the default value of 0.35 instead of zero for the parameter RADIATIVE FRACTION394

reduces the CPU time consumed by the combustion model by about 7%, with very little difference in395

the overall results.396

4.4. FDS vs. FLUENT397

Figures 13 to 18 show comparisons between temperature, velocity magnitude and CO2 mass398

fraction contours obtained with FDS and FLUENT at several vertical and horizontal planes and two399

different instants. It can be observed from the figures that the overall degree of agreement is very400

good. The most noticeable differences between FDS and FLUENT results are systematically observed401

Figure 9. Temperature contours (left column) and velocity magnitude contours (right column) at
t = 90 s, on the horizontal plane at z = 2.95 m, obtained as in Figure 8. (a) Combustion model with
RADIATIVE FRACTION = 0 and (b) simplified fire model with Tin = 2436 K (Case G-1).
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Figure 10. Contours of CO2 mass fraction (YCO2 × 104) at t = 90 s and heights z = 2.95 m (left
column) and z = 2.05 m (right column), obtained as in Figure 8. (a) Combustion model with
RADIATIVE FRACTION = 0 and (b) simplified fire model with Tin = 2436 K (Case G-1).

Figure 11 shows the results for the mass of CO2 and heat flow rates through the ventilation
systems obtained with FDS using the simplified fire model (Case G-1) and the combustion model.
Note that the combustion model predicts mass of CO2 flow rates through the forced ventilation grilles
slightly larger than those obtained with the simplified fire model, a behavior that could be explained
by the higher CO2 concentrations at the ceiling in the vicinity of the forced extraction grilles, as shown
in Figure 10. Also note the very good degree of agreement between the results for the flow rates
through the west vent obtained with FDS and the two fire models. This can be seen with more detail
in Figure 12, which compares results similar to those presented in Figure 5b, obtained with FDS using
the combustion model and the simplified fire model. Note that the outward mass flow rate through
the west vent predicted with the combustion model oscillates with a slightly smaller amplitude than
when using the simplified fire model, an effect that is also observed in the net mass flow rate through
the west vent and, as a consequence, in the inward mass flow rate through the east vent.
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Figure 11. (a) Mass flow rates of CO2, and (b) heat flow rates through the ventilation systems, obtained
with FDS as in Figure 8.
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in the distribution of the CO2 concentration in the vicinity of the ceiling, as can be observed from402

Figures 17 and 18, and pictures at the right column of Figures 13 and 14.403

As in previous sections, the most sensitive results to the use of FDS or FLUENT codes are related404

to the flow rates through the ventilation systems, and, therefore, we will discuss in the following405

the main differences found in the results for these quantities when using the two codes. Figures 19a406

and 19b compare the results obtained with FDS and FLUENT for the evolution of the CO2 mass407

and heat flow rates, respectively, through the open vents and forced extraction grilles, using the408

simplified fire model with Tin = 1500 K (Case G-4). The degree of agreement between the FDS and409

FLUENT results is very good, especially for the heat flow rates. Note that FLUENT predicts values410

Figure 11. (a) Mass flow rates of CO2, and (b) heat flow rates through the ventilation systems, obtained
with FDS as in Figure 8.
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Simplified model Combust. model

M
as

s
flo

w
ra

te
[k

g
s−

1 ]

Time [s]

Figure 12. Results similar to those of Figure 5b, but obtained as in Figure 8.

in the distribution of the CO2 concentration in the vicinity of the ceiling, as can be observed from402

Figures 17 and 18, and pictures at the right column of Figures 13 and 14.403

As in previous sections, the most sensitive results to the use of FDS or FLUENT codes are related404

to the flow rates through the ventilation systems, and, therefore, we will discuss in the following405

the main differences found in the results for these quantities when using the two codes. Figures 19a406

and 19b compare the results obtained with FDS and FLUENT for the evolution of the CO2 mass407

and heat flow rates, respectively, through the open vents and forced extraction grilles, using the408

simplified fire model with Tin = 1500 K (Case G-4). The degree of agreement between the FDS and409

FLUENT results is very good, especially for the heat flow rates. Note that FLUENT predicts values410

Figure 12. Results similar to those of Figure 5b, but obtained as in Figure 8.

Table 4 shows the relative CPU time consumed by FDS using the EDC combustion model and
the simplified fire model. Note that the combustion model consumes a CPU time around 40% larger
than that consumed when the simplified fire model is used, with no appreciable change in the results,
as shown above. Using the default value of 0.35 instead of zero for the parameter RADIATIVE FRACTION
reduces the CPU time consumed by the combustion model by about 7%, with very little difference in
the overall results.
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Table 4. CPU time (relative to Case G-1) in FDS simulations.

Case Fire Model Relative CPU Time

G-1 Gas release (Tin = 2436 K) 1
G-2 Gas release (Tin = 2124 K) 1.019
G-3 Gas release (Tin = 1812 K) 1.023
G-4 Gas release (Tin = 1500 K) 1.021

Combustion model (rad. frac.: 0) 1.462

4.4. FDS vs. FLUENT

Figures 13–18 show comparisons between temperature, velocity magnitude and CO2 mass fraction
contours obtained with FDS and FLUENT at several vertical and horizontal planes and two different
instants. It can be observed from the figures that the overall degree of agreement is very good. The most
noticeable differences between FDS and FLUENT results are systematically observed in the distribution
of the CO2 concentration in the vicinity of the ceiling, as can be observed from Figures 17 and 18,
and pictures at the right column of Figures 13 and 14.Version July 31, 2019 submitted to Appl. Sci. 18 of 24
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Figure 13. Temperature contours (◦C) (left column) and CO2 mass fraction (YCO2 × 104) (right column)
at instant t = 90 s and x = 11, 17, 23, 29 and 36 m obtained using a grid with L/δ ≈ 10, the simplified
fire model with Tin = 2436 K (Case G-1) and (a) FDS and (b) FLUENT codes.
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Figure 14. Temperature contours (◦C) (left column) and CO2 mass fraction (YCO2 × 104) (right column)
at instant t = 240 s and x = 11, 17, 23, 29 and 36 m, obtained as in Figure 13. (a) FDS; (b) FLUENT.

for the CO2 mass flow rates extracted through the forced extraction grilles and through the west vent411

that are higher and lower, respectively, than those predicted by FDS, which can be attributed to the412

higher CO2 concentrations at the ceiling in the vicinity of the forced extraction grilles, as shown in413

Figures 17 and 18. However, despite the differences in the values predicted by FLUENT and FDS for414

the mass of CO2 extracted over 750 s through the forced (83.27 vs. 73.20 kg) and natural (134.5 vs.415

143.6 kg) ventilation systems, the difference in the total CO2 mass extracted over that time period is416

less than 1%. The reasons for these relatively low discrepancies are not completely clear. Note that the417

higher Schmidt number used by default in FLUENT would produce a lower diffusion and therefore418

Table 4. CPU time (relative to Case G-1) in FDS simulations.

Case Fire model Relative CPU time

G-1 Gas release (Tin = 2436 K) 1
G-2 Gas release (Tin = 2124 K) 1.019
G-3 Gas release (Tin = 1812 K) 1.023
G-4 Gas release (Tin = 1500 K) 1.021

Combustion model (rad. frac.: 0) 1.462

Figure 13. Temperature contours (◦C) (left column) and CO2 mass fraction contours (YCO2 × 104) (right
column) at instant t = 90 s and x = 11, 17, 23, 29 and 36 m obtained using a grid with L/δ ≈ 10,
the simplified fire model with Tin = 2436 K (Case G-1) and (a) FDS and (b) FLUENT codes.
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at instant t = 90 s and x = 11, 17, 23, 29 and 36 m obtained using a grid with L/δ ≈ 10, the simplified
fire model with Tin = 2436 K (Case G-1) and (a) FDS and (b) FLUENT codes.
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Figure 14. Temperature contours (◦C) (left column) and CO2 mass fraction (YCO2 × 104) (right column)
at instant t = 240 s and x = 11, 17, 23, 29 and 36 m, obtained as in Figure 13. (a) FDS; (b) FLUENT.
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that are higher and lower, respectively, than those predicted by FDS, which can be attributed to the412

higher CO2 concentrations at the ceiling in the vicinity of the forced extraction grilles, as shown in413

Figures 17 and 18. However, despite the differences in the values predicted by FLUENT and FDS for414

the mass of CO2 extracted over 750 s through the forced (83.27 vs. 73.20 kg) and natural (134.5 vs.415
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Table 4. CPU time (relative to Case G-1) in FDS simulations.

Case Fire model Relative CPU time

G-1 Gas release (Tin = 2436 K) 1
G-2 Gas release (Tin = 2124 K) 1.019
G-3 Gas release (Tin = 1812 K) 1.023
G-4 Gas release (Tin = 1500 K) 1.021

Combustion model (rad. frac.: 0) 1.462

Figure 14. Temperature contours (◦C) (left column) and CO2 mass fraction contours (YCO2 × 104)
(right column) at instant t = 240 s and x = 11, 17, 23, 29 and 36 m, obtained as in Figure 13. (a) FDS;
(b) FLUENT.
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Figure 15. Temperature contours (left column) and velocity magnitude contours (right column) at
t = 90 s, on the horizontal plane at z = 2.95 m, obtained as in Figure 13. (a) FDS; (b) FLUENT.
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Figure 16. Temperature contours (left column) and velocity magnitude contours (right column) at
t = 240 s, obtained as in Figure 13. (a) FDS; (b) FLUENT.
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Figure 17. Contours of CO2 mass fraction (YCO2 × 104) at t = 90 s and heights z = 2.95 m (left column)
and z = 2.05 m (right column), obtained as in Figure 13. (a) FDS; (b) FLUENT.

a higher CO2 concentration near the ceiling, resulting in a higher CO2 mass flow rate through the419

forced ventilation grilles and a lower extraction rate through the west vent. Also note that the slightly420

Figure 15. Temperature contours (left column) and velocity magnitude contours (right column) at
t = 90 s, on the horizontal plane at z = 2.95 m, obtained as in Figure 13. (a) FDS; (b) FLUENT.
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Figure 15. Temperature contours (left column) and velocity magnitude contours (right column) at
t = 90 s, on the horizontal plane at z = 2.95 m, obtained as in Figure 13. (a) FDS; (b) FLUENT.
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Figure 16. Temperature contours (left column) and velocity magnitude contours (right column) at
t = 240 s, obtained as in Figure 13. (a) FDS; (b) FLUENT.
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Figure 17. Contours of CO2 mass fraction (YCO2 × 104) at t = 90 s and heights z = 2.95 m (left column)
and z = 2.05 m (right column), obtained as in Figure 13. (a) FDS; (b) FLUENT.
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Figure 16. Temperature contours (left column) and velocity magnitude contours (right column) at
t = 240 s, obtained as in Figure 13. (a) FDS; (b) FLUENT.
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Figure 17. Contours of CO2 mass fraction (YCO2 × 104) at t = 90 s and heights z = 2.95 m (left column)
and z = 2.05 m (right column), obtained as in Figure 13. (a) FDS; (b) FLUENT.
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As in previous sections, the most sensitive results to the use of FDS or FLUENT codes are related
to the flow rates through the ventilation systems, and, therefore, we will discuss in the following the
main differences found in the results for these quantities when using the two codes. Figure 19a,b
compare the results obtained with FDS and FLUENT for the evolution of the CO2 mass and heat flow
rates, respectively, through the open vents and forced extraction grilles, using the simplified fire model
with Tin = 1500 K (Case G-4). The degree of agreement between the FDS and FLUENT results is very
good, especially for the heat flow rates. Note that FLUENT predicts values for the CO2 mass flow rates
extracted through the forced extraction grilles and through the west vent that are higher and lower,
respectively, than those predicted by FDS, which can be attributed to the higher CO2 concentrations
at the ceiling in the vicinity of the forced extraction grilles, as shown in Figures 17 and 18. However,
despite the differences in the values predicted by FLUENT and FDS for the mass of CO2 extracted
over 750 s through the forced (83.27 vs. 73.20 kg) and natural (134.5 vs. 143.6 kg) ventilation systems,
the difference in the total CO2 mass extracted over that time period is less than 1%. The reasons for
these relatively low discrepancies are not completely clear. Note that the higher Schmidt number used
by default in FLUENT would produce a lower diffusion and therefore a higher CO2 concentration
near the ceiling, resulting in a higher CO2 mass flow rate through the forced ventilation grilles and a
lower extraction rate through the west vent. Also note that the slightly lower outward mass flow rate
through the west vent predicted by FLUENT, as will be shown below, may also contribute to explain
the differences.

Figure 19c compares the FDS and FLUENT results for the net mass flow rates through the west
and east vents, and the net mass flow rate leaving the compartment, obtained with the simplified
fire model with Tin = 1500 K (Case G-4). The agreement between both types of results for the net
mass flow rate leaving the compartment is very good. Note that approximately 12 minutes after the
beginning of the fire the net mass flow rate leaving the compartment vanishes, and the flow pattern in
the compartment begins to oscillate around a steady state. On the other hand, the results obtained with
FDS show larger outward and inward mass flow rates through the west and east vents, respectively,
with greater oscillation amplitudes. Both codes predict that the mass flow rates through both natural
vents oscillate with a frequency of about 0.03 Hz for HRR = 2.5 MW. The results for the mass flow
rate through the forced extraction grilles obtained with both codes (not shown in the paper) compare
very well.
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Figure 19. (a) Mass flow rates of CO2, (b) heat flow rates, and (c) mass flow rates (including the
net mass flow rate leaving the compartment) through the ventilation systems obtained with FDS and
FLUENT using the simplified fire model with Tin = 1500 K (Case G-4).
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Figure 19. (a) Mass flow rates of CO2, (b) heat flow rates, and (c) mass flow rates (including the net
mass flow rate leaving the compartment) through the ventilation systems obtained with FDS and
FLUENT using the simplified fire model with Tin = 1500 K (Case G-4).

Figure 20 shows the comparison presented in Figure 19c, but with more detail and for a shorter
period of time. Besides the net mass flow rates, Figure 20 also compares the outward and inward mass
flow rates through the west vent. Note the fairly good agreement between the results for the outward
mass flow rate through the west vent obtained with FDS and FLUENT. This implies that the larger
net mass flow rate through the west vent obtained with FDS is mainly due to a smaller inward mass
flow rate. This, in turn, determines the larger inward mass flow rate through the east vent predicted
by FDS.
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Figure 20. Same results as in Figure 5b, but obtained with FDS and FLUENT for Case G-4 (Tin =

1500 K).

simplified fire model are fairly independent of the inlet velocity and temperature of the hot468

gases introduced at the fire focus.469

2. The results obtained with FLUENT using the simplified fire model show a reasonable degree470

of agreement with those obtained with FDS, except regarding the mass flow rates of cold air471

entering through the natural vents and CO2 mass flow rates through the west vent and forced472

ventilation grilles, for which some quantitative differences were observed.473

3. The features that are most sensitive to using the different codes, fire models, computational grids474

and turbulence model settings are those describing the fire-induced oscillatory flow through475

the open vents, particularly the mass flow rate of cool air entering the domain. To the best476

of our knowledge, neither FDS nor FLUENT have previously been used to predict the type of477

fire-induced oscillatory flows through openings described in this paper, about which there is478

relatively little information in the literature.479

4. The dependence of the oscillation frequency on the HRR was in reasonable agreement with the480

experimental and numerical results reported in the literature.481

5. For the fire scenarios considered and versions of the codes used in this work, the main advantage482

of FDS over FLUENT was found to be its substantially lower CPU time consumption. On the483

other hand, FLUENT allows much more flexibility in grid generation for arbitrary geometries,484

and the simulation set up can be done more easily in FLUENT than in FDS.485

The results presented in this paper provide insight into the relative merits of specialized and486

general-purpose codes and different fire models, which are frequently used to assess fire safety levels487

in buildings in order to reduce risk to human life in the case of fire. The future work based on the488

presented results may be of help in devising fire safety solutions, aimed at limiting the zones of489

possible escape routes where people survival could be compromised in the event of a fire.490
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Figure 20. Same results as in Figure 5b, but obtained with FDS and FLUENT for Case G-4
(Tin = 1500 K).

Despite the discrepancies mentioned above, the overall agreement between FDS and FLUENT
is reasonably good. The higher discrepancies between the results of the two codes reported in the
literature for some fire simulations, which do not seem to be justified when similar mathematical
fire models are solved, might in part be attributed to underresolved numerical solutions in space
and/or time obtained with FLUENT, which requires substantially more computational resources
than FDS for a given grid resolution. The main disadvantage of FLUENT over FDS, at least for
the scenarios simulated and code versions used in this work, is the substantially higher CPU times
required (as much as twice or even more) when standard settings are used, a drawback that is
not accompanied by appreciable differences in the numerical predictions. However, differences in
CPU time consumption should be taken with care since changes in certain settings may produce
substantial variations. For example, using the PISO algorithm instead of SIMPLEC for solving the
coupling between mass and momentum conservation equations through pressure increases CPU time
consumption in FLUENT by a factor of the order of 20%. Choosing different convergence criteria
and numerical settings may also result in appreciable variations in CPU time consumption. On the
other hand, FLUENT offers much more flexibility in grid generation for arbitrary geometries and
postprocessing of results, and makes simulation set up easier than FDS, which requires a more careful
specification of boundary conditions and grid partitions. It should also be pointed out that more recent
releases of ANSYS FLUENT [43] are likely to improve the performance of the code, specially in terms
of the amount of CPU time consumed.

5. Conclusions

The merits of a specialized and a general-purpose code to simulate a fire in the commercial area
of an underground intermodal transportation station are investigated using a simplified fire model,
whose results have been previously compared with those of an EDC combustion model. The following
conclusions can be drawn from the results presented above.

1. The simplified fire model yielded results that, far enough away from the fire focus, are in excellent
agreement with those obtained using an EDC combustion model, while requiring appreciably
lower CPU times. It was also found that, for a given HRR, the results of the simplified fire model
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are fairly independent of the inlet velocity and temperature of the hot gases introduced at the
fire focus.

2. The results obtained with FLUENT using the simplified fire model show a reasonable degree of
agreement with those obtained with FDS, except regarding the mass flow rates of cold air entering
through the natural vents and CO2 mass flow rates through the west vent and forced ventilation
grilles, for which some quantitative differences were observed.

3. The features that are most sensitive to using the different codes, fire models, computational grids
and turbulence model settings are those describing the fire-induced oscillatory flow through
the open vents, particularly the mass flow rate of cool air entering the domain. To the best
of our knowledge, neither FDS nor FLUENT have previously been used to predict the type of
fire-induced oscillatory flows through openings described in this paper, about which there is
relatively little information in the literature.

4. The dependence of the oscillation frequency on the HRR was in reasonable agreement with the
experimental and numerical results reported in the literature.

5. For the fire scenarios considered and versions of the codes used in this work, the main advantage
of FDS over FLUENT was found to be its substantially lower CPU time consumption. On the
other hand, FLUENT allows much more flexibility in grid generation for arbitrary geometries,
and the simulation set up can be done more easily in FLUENT than in FDS.

The results presented in this paper provide insight into the relative merits of specialized and
general-purpose codes and different fire models, which are frequently used to assess fire safety levels
in buildings in order to reduce risk to human life in the case of fire. The future work based on the
presented results may be of help in devising fire safety solutions, aimed at limiting the zones of possible
escape routes where people’s survival could be compromised in the event of a fire.
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