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Resumo breve 

Desenvolvemento e validación de modelos de turbulencia para Reynolds-Averaged e 

Partially-Averaged Navier-Stokes en tres dimensións. Aplicación a fluxo en canais 

abertos curvos e meandriformes 
 

Entender e ser quen de predicir o comportamento do fluxo en canles abertos curvos e 

meandriformes é un elemento crucial para a enxeñería fluvial. O presente documento analiza este 

tipo de casos mediante a utilización de modelos computacionais tridimensionais e non 

hidrostáticos baseados nas ecuacións de conservación da masa e o momentum de Navier-Stokes. 

Dado que a turbulencia é omnipresente en fluxos ambientais e que a sua influencia é 

extremadamente relevante, este traballo analiza o efecto dunha variedade de modelos de peche 

para o termo que encapsula a aportación das fluctuacións turbulentas en tres escenarios: un canal 

curvo de 270°, un canal meandriforme consistente nunha sucesión de dúas curvas contrapostas e 

un meandro infinito. A análise céntrase específicamente na descripción do fluxo secundario, os 

mecanismos de xeración e regulación das estruturas coherentes e a súa influencia na distribución 

das tensións tanxenciais. Os modelos empregados nesta investigación pódense encadrar dentro de 

tres familias fundamentais que se diferenzan no xeito en que resolven ou aproximan as tensións 

turbulentas: URANS, PANS e LES. As prediccións obtidas nestas simulacións foron comparadas 

e validadas numérica e experimentalmente. A influenza nos resultados de parámetros numéricos 

como a condición de contorno de entrada e a discretización do termo convectivo da ecuación de 

momentum recibiu particular atención. 

Os resultados mostran que determinadas configuracións de PANS predín particularmente ben 

os fluxos primario e secundario e a estrutura da turbulencia con respecto aos datos experimentais 

e os resultados obtidos con LES. URANS combinado co modelo de turbulencia k-ε produce 

simulacións robustas e fiábeis para os escenarios considerados, pero manifesta deficiencias na 

predicción dalgúns mecanismos do fluxo secundario e a cuantificación da enerxía cinética 

turbulenta debido ao exceso de disipación. Implementáronse modelos non lineais baseados no 

concepto de viscosidade turbulenta en cobinación con URANS; os resultados foron irregulares e, 

en xeral, non melloraron a capacidade predictiva de k-ε. Os resultados sinalan que o 

desenvolvemento da turbulencia e a ‘memoria’ previa do fluxo tras percorrer sucesivas curvas 

alternas en canais meandriformes son cruciais para definir a estrutura e magnitude do fluxo 

secundario. Esta investigación amosa como estruturas coherentes formadas en curvas 

consecutivas interaccionan entre si e son recicladas entre un meandro e o seguinte, o cal ten 

importantes repercusións para o transporte de sedimentos e contaminantes en fluxos ambientais. 

As fluctuacións turbulentas identificadas nos canais en curva son intensamente anisotrópicas e 

non poden ser descritas con rigor e exclusivamente por modelos baseados en hipóteses de 

turbulencia isotrópica. Este traballo servirá como base a novas liñas de investigación para o 

desenvolvemento de modelos dinámicos inspirados en PANS que produzan ferramentas 

predictivas tridimensionais rápidas, fiables e precisas para enxeñería fluvial. 

 



 

 

Resumen breve 

Desarrollo y validación de modelos de turbulencia para Reynolds-Averaged y Partially-

Averaged Navier-Stokes en tres dimensiones. Aplicación a flujo en canales abiertos 

curvos y meandriformes 
 

Entender y ser capaz de predecir el comportamiento del flujo en canales abiertos curvos y 

meandriformes es un elemento crucial en ingeniería fluvial. El presente documento analiza este 

tipo de casos mediante la aplicación de modelos computacionales tridimensionales y no 

hidrostáticos basados en las ecuaciones de conservación de masa y momentum de Navier-Stokes. 

Dado que la turbulencia es omnipresente en flujos ambientales y que su influencia es 

extremadamente relevante, se analizó el efecto producido por diferentes modelos de cierre para 

el término turbulento en tres escenarios: un canal curvo de 270°, un canal meandriforme 

consistente en una sucesión de dos curvas alternas y un meandro infinito. El análisis se centra 

específicamente en la descripción del flujo secundario, los mecanismos de generación y la 

evolución de las estructuras coherentes y la interdependencia de lo anterior con las tensiones 

tangenciales. Los modelos empleados en este trabajo se pueden encuadrar en tres familias 

principales atendiendo al modo en que resuelven o aproximan las tensiones turbulentas: URANS, 

PANS y LES. Las predicciones obtenidas en dichas en estas simulaciones han sido comparadas y 

validadas numérica y experimentalmente. La influencia de parámetros como la condición de 

contorno de entrada del flujo y la discretización del término convectivo de la ecuación de 

momentum recibió particular atención. 

Los resultados revelan que determinadas configuraciones de PANS predicen con acierto los 

flujos primario y secundario, así como la estructura de la turbulencia, con respecto a los datos 

experimentales y simulaciones hechas con LES. URANS combinado con el modelo de 

turbulencia k-ε produce simulaciones robustas y fiables para los escenarios considerados, en 

especial del flujo primario, pero manifiesta deficiencias en la predicción de algunos mecanismos 

del flujo secundario y la cuantificación de la energía cinética turbulenta debido al exceso de 

disipación. Se han aplicado modelos no-lineales para la predicción de la viscosidad turbulenta en 

combinación con URANS; los resultados son irregulares y, en general, no mejoraron la capacidad 

predictiva de k-ε. Los resultados señalan que el desarrollo de la turbulencia y la ‘memoria’ previa 

del flujo tras recorrer sucesivas curvas alternas en canales meandriformes son clave para definir 

la estructura y magnitud del flujo secundario. Esta investigación muestra como estructuras 

coherentes formadas en curvas consecutivas interactúan entre sí y son recicladas entre un meandro 

y el siguiente, lo cual tiene importantes repercusiones para el transporte de sedimentos y 

contaminantes en flujos ambientales. Las fluctuaciones turbulentas identificadas en los canales 

en curva son intensamente anisotrópicas y no pueden ser descritas con rigor exclusivamente por 

modelos basados en hipótesis de turbulencia isotrópica. Este trabajo servirá de base a nuevas 

líneas de investigación sobre el desarrollo de modelos dinámicos inspirados en PANS capaces de 

producir herramientas predictivas en tres dimensiones rápidas, fiables y precisas para la ingeniería 

fluvial. 

  



 

 

Short abstract 

Development and validation of turbulence closures for three-dimensional Reynolds-

Averaged and Partially-Averaged Navier-Stokes. 

Application to open-channel flow in bends and meanders 

 

Understanding and being able to predict curved and meandering flow behaviour is key to river 

engineering. This work analyses this kind of flows using three-dimensional, non-hydrostatic 

computational models. Given the ubiquitous presence of turbulence in environmental flows and 

its crucial importance, different turbulence closures are applied to three curved and meandering 

open-channel flow scenarios: a single 270° bend, a two-bends meandering channel and an infinite 

meander. The analysis particularly focuses on the structure of the secondary flow, the mechanisms 

of generation and modulation of coherent structures, and their influence on the shear stresses. The 

modelling approaches utilised during this research fall within three fundamental families, 

URANS, PANS and LES. The fundamental difference among them is their approach to solve or 

model the turbulence stresses. The predictions provided by these models were tested, compared 

and validated. The influence of several modelling parameters – besides the turbulence closure 

itself - on their performance is also analysed, with a special emphasis on the discretisation scheme 

for the convective term and the inflow conditions.  

The results show that some configurations of PANS remarkably match the available 

experimental and LES datasets regarding the prediction of primary and secondary flow and 

turbulence structure. URANS combined with a k-ε turbulence closure provides a very robust and 

consistent forecasting of the scenarios under investigation, particularly the primary flow, while 

lacking on the prediction of some of the mechanisms driving the secondary motion and the 

turbulence structure. Non-linear eddy viscosity models were tested with irregular results, and 

overall failing to improve k-ε performance. Turbulence development and the memory of prior 

bends in meandering channels seem to be key to the secondary flow structure. It was found that 

coherent structures of consecutive bends interact with each other, which has important 

repercussions to sediment and pollution transport in environmental flows. It was also found that 

the turbulent fluctuations within the bends are strongly anisotropic and cannot be well described 

by models reliant on isotropic assumptions. Future lines of work based on this research could 

provide dynamic PANS models and new turbulence closures that will generate quick, reliable, 

and accurate three-dimensional tools for river engineering modelling. 
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1. Introduction and Scope of the Research 

1.1. Introduction 

In 1923, the English physicist and mathematician Sir Geoffrey Ingram Taylor (knighted in 1944) 

was appointed to a Royal Society fellowship that allowed him to stop his teaching as Reader in 

Dynamical Meteorology in Trinity College (Cambridge) and dedicate his time entirely to his 

research. He focused primarily on his ongoing study of turbulent flows, which he had started 12 

years before and led to the publication of his very relevant book ‘Turbulent Motion in Fluids’ in 

1915. That same year (1923) he conducted a simple but revealing experiment. Taylor designed 

two concentric cylinders, of which the inner one could rotate and the outer one is fixed, and filled 

with a viscous liquid the gap between both. When forcing a very slow rotation on the inner 

cylinder, the liquid starts rotating in an orderly fashion, as expected. However, as the operator 

increases the rotational speed of the inner cylinder, the fluid’s response becomes less predictable. 

Such is the beauty of this experiment: unveiling physical mechanisms through counter-intuitive 

observations. The first critical threshold happens when a secondary motion is established in a 

plane perpendicular to the direction of rotation (Figure 1.1a). The liquid keeps rotating dragged 

by the inner cylinder but the viewer can clearly see the formation of horizontal annular bands that 

indicate the boundaries of these secondary cells, conveniently known as ‘Taylor vortices’. A 

further increase of the rotational speed results in these vortices becoming unstable in both space 

and time (Figure 1.1b). Both the formation of the Taylor vortices and its increasingly wavy 

boundaries reflect responses to a momentum unbalance. Nevertheless, the flow is still laminar. If 

the experimental operator increases now the velocity of the inner cylinder, a transition to turbulent 

flow occurs. At first, the large instabilities that originated the wavy Taylor vortices will develop 

into smaller and higher-frequency motion (Figure 1.1c). Finally, once the flow is fully turbulent, 

different scales of super-imposed motion can be seen (Figure 1.1d). The large-scale wavy motion 

observed in Figure 1.1b has been dissipated by the turbulence. A sufficiently long time-averaged 

measurement of this flow would depict the liquid rotating around the cylinder’s axis coexisting 

with a secondary flow formed by Taylor vortices in a very similar way to what was observed in 

Figure 1.1a, although the annular bands for the time-averaged turbulent flow are wider. An 

instantaneous snapshot, however, would depict a seemingly chaotic, turbulent flow, in which 

there is exchange of mass between the vertical layers and the boundaries between them are in 

constant rearrangement (unlike the smooth wavy instability). The scales of observable vorticity 

are much finer than the ones of the Taylor vortices. 

Taylor’s experiment has become one of the most popular demonstrations of transition to 

turbulence to our days, only surpassed by the one that the Irish engineer Osborne Reynolds 

performed in 1883 in Manchester.  A similar observation in the context of thermally induced flow 

had been made previously by Henri Bérnard in 1900 in Paris. However, Taylor’s experiment is 

particularly relevant to this dissertation as it illustrates what became the main focus of it: the 

mechanisms of generation of the secondary flow in bends. 
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In Taylor’s experiment, the rotation of the inner cylinder drags the fluid in the gap, creating a 

curved shear flow. Flow in curves always display an energy imbalance because the liquid tends 

to move outwards, creating a gradient between the inner and outer (higher pressure) walls, which 

is commonly referred to as centripetal/centrifugal force. At very low speeds, the viscosity of the 

fluid is able to counter the pressure gradient. A slight velocity increase overwhelms the capacity 

of the liquid’s viscosity to dissipate the imbalance, resulting in secondary motion and formation 

of recirculation cells (Taylor’s vortices, Figure 1.1a), a physical response that actively re-

distributes momentum across the gap between cylinders. This configuration is precarious and a 

subtle velocity increase produces large-scale unsteadiness in the boundaries between the Taylor 

vortices (Figure 1.1b). This unsteadiness is not turbulent yet, but a last resort within the laminar 

regime to dissipate the centripetal force. An analogy could be drawn with the periodical von 

Karman vortex street past a cylinder. The next stages correspond to the transitional (Figure 1.1c) 

and fully turbulent regimes (Figure 1.1d). In those, the time-averaged scales of motion (Taylor 

vorticity) remain similar, although with a few qualitative differences due to the higher dissipation, 

but the instantaneous snapshots show the multiplicity of scales of motion and the exchange of 

mass and momentum between recirculation cells. The curvature still defines the secondary flow 

trends, but turbulence completely takes over the mechanisms of dissipation. 

  

(a) (b) 

  

(c) (d) 

Figure 1.1. Pictures taken to a replica of Taylor’s experiments, representing four of its most characteristic stages 

(in order of gradually growing rotational speed): formation of annular bands (a), wavy Taylor vortices (b), 

transition to turbulent regime (c), Taylor vortices in fully turbulent flow (d). 

Open-channel hydraulics is the study of the physics of fluid flow in conveyances in which the 

water forms a free surface with the atmosphere and is driven by gravity (Sturm, 2001). A variety 

of both natural and artificial flows of engineering interest can be found under the open-channel 
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flow label: rivers, estuaries, partly-full pipes (e.g. sewers), drainage ditches, or irrigation channels, 

to name a few. These examples illustrate the importance, variety, and ubiquitous presence of the 

open-channel configuration. Despite steady or quasi-steady state assumptions are very common 

in channel design, the reality is more complex, and this is particularly true for natural channels. 

In such cases, the application of the uniform/rapidly/gradually-varied flow one-dimensional 

equations may imply an oversimplification that compromises the quality, accuracy, and nature of 

the information these models provide. The alternatives are not without their drawbacks; both the 

incompressible Navier-Stokes and Saint-Venant (hydrostatic) equations are complex and, besides 

very artificial conditions, their solutions must be provided by means of numerical modelling. 

Turbulence modelling is undoubtedly a remarkable challenge from when facing these equations, 

albeit not the only ones; e.g. the representation of the channel’s bathymetry (particularly in 

alluvial flows) or the free-surface treatment are still active research areas.  

River Dynamics emerged as a differentiated discipline in the XIX century. However, the study 

of the fluvial systems’ behaviour has always been an object of interest for human societies, 

particularly since large river basins have been the cradle of important civilizations. River 

Dynamics incorporates the study of three different areas of knowledge that are intimately linked: 

river hydrodynamics, sediment and pollutant transport, and river morphology. Deep 

understanding of the hydrodynamics is essential for an accurate prediction of the associated 

sediment transport, deposition and erosion and the subsequent alterations in the channel 

morphology. The accurate estimation of the shear stresses, especially near the river bed and its 

banks, is key the aforementioned processes. As shear stress strongly depends on the velocity 

gradient tensor, the velocity field must be accurately described, including the influence of 

turbulence fluctuations. Readers may notice that the analysis of results is often focused to the 

time-averaged secondary flow. The reason for that being that this is a key feature for processes 

such as sediment transport and bed/bank erosion (via wall shear stress) and, simultaneously, one 

that can be captured by a range of turbulence modelling approaches ranging from Reynolds-

Averaged Navier-Stokes to large-eddy simulation. As Taylor’s experiment shows, the secondary 

flow is a rather practical and intuitive feature, but it reflects very clearly the balance of dissipative 

forces in play in the flow. 

 

One feature that might surprise those who venture in the research of non-hydrostatic, turbulent 

open-channel flow in bends is, despite its ubiquity and practical relevance, the relative scarcity of 

references. The study of this type of flows has been constrained by its complexity and the 

technical limitations, particularly in the numerical modelling department. This will be 

exhaustively discussed in Chapter 2. However, despite the number of works not being large, the 

quality of the research performed and the names involved in it is remarkable.  

Open-channel in bends flow yields a basic distinction with Taylor’s experiment. The curvature 

is one extra element added to another substantial imbalance in the vertical axis: the presence of a 

solid bed at the bottom and a free surface on top. As a result, the ineluctable secondary flow 

induced by the centripetal force to re-distribute the momentum in the cross-section presents is 

usually not split into a series of Taylor vortices but dominated by a single vortex that always 

moves outwards along the bottom and inwards along the free surface. Nevertheless, the physical 

mechanisms driving the primary and secondary flow and the shear stresses are essentially the 

same: centripetal force and turbulence. This work attempts to elucidate these mechanisms and the 

modelling techniques to predict them. 
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1.2. Goals and objectives 

The aim of this research is analysing the application to curved and meandering open-channel flow 

hydrodynamics of affordable, three-dimensional, non-hydrostatic Computational Fluid Dynamics 

(CFD) models that are capable of providing accurate and relevant results to river engineering 

applications. Our research is focused on features that two-dimensional and/or hydrostatic models 

struggle to unveil, including an accurate prediction of the secondary flow, the wall and bed 

stresses and the turbulent kinetic energy evolution along the bends and meanders. This was 

achieved throughout the following objectives: 

· To test, compare and validate the capabilities of Partially-Averaged Navier-Stokes (PANS) 

and unsteady Reynolds-Averaged Navier-Stokes (URANS) models in predicting curved open-

channel flows. 

· To quantify the influence of the inflow conditions on PANS and URANS predictions on open-

channel flow. 

· To quantify the influence of using first and second-order schemes for the convection terms on 

PANS and URANS simulations. 

· To identify the turbulence structure of curved and meandering open-channel flows. 

· To define the driving mechanisms of the secondary flow structure in curved and meandering 

channels. 

· To test, compare and analyse the application of non-linear eddy viscosity models to curved 

open-channel flows. 

· To validate all the results with experimental data and high-resolution numerical data (LES). 

  



5 

 

1.3. Contribution to knowledge 

More research is needed on three-dimensional, non-hydrostatic modelling of rivers and open-

channel flows, particularly with turbulence solving (LES) or hybrid approaches. This relative 

scarcity of available works can be explained by the complexity and intensive use of computational 

resources required by this sort of domains. This research intends to contribute to the state of 

knowledge on this field. Some innovative contributions that will be developed across the 

following sections are: 

· First application and parametric study of PANS for open-channel flows.  

· PANS results in the periodic meandering channel are qualitatively comparable to LES’ 

predictions despite using less than a 20% of the former’s grid points. 

· Unsteady RANS model is capable of capturing the presence of the counter-rotating outer-bank 

secondary cell in a non-periodic domain, although not its persistence. 

· Novel application of non-linear, URANS-based, eddy viscosity models to open-channel flows. 

· New evidence of bend-to-bend interaction in meandering channels. It was found that the residual 

of the main, pressure-driven recirculation cell of a previous bend can turn into the outer-bank 

cell of the next, creating preferential transport paths in the streamwise direction. However, no 

evidence was found regarding the outer-bank cell of a bend being the seed of the main cell of 

the next. Some authors have claimed that both cells switch places from one bend to the next, 

albeit the results obtained in this investigation seem to indicate that there is no link between 

them. 

· PANS-predicted turbulent fluctuations are 5 times lower in magnitude than LES’, while 

URANS’ are 100 times lower, despite using as many grid points as PANS. Furthermore, the 

turbulent fluctuations predicted by PANS match the trends depicted by LES’ resolved 

turbulence, depicting correctly the anisotropy map of the periodic meander. 

· Results suggest that even a small spectrum of resolved large-scale turbulence/unsteadiness 

appears to be critical for the correct prediction of the formation, evolution and decay of the 

secondary flow, the shear stresses and the turbulent kinetic energy along the bend. 

· The role of prior vorticity and spanwise dynamic pressure gradient in establishing the secondary 

flow is analysed. 

· The influence of the inflow and convection term discretisation schemes on the secondary flow 

and turbulence structure within curved open-channel flows is analysed and discussed. 

· PANS results provide better validation against experimental data than previous numerical works 

on the 270° bend and the two-bend meandering channel.  

· URANS k-ε results provide better validation against experimental data than previous RANS 

simulations on the periodic meandering channel. 
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2. State of the art: 3D non-hydrostatic modelling 

for open-channel flow in bends 

2.1. Turbulence modelling in Hydraulics 

This work is concerned with the critical role of turbulence modelling in the hydrodynamics of 

environmental flows in non-straight channels. Turbulence is the most relevant open problem in 

Fluid Dynamics and one of the classic problems of Physics. Turbulence complexity is the main 

responsible for the Clay Mathematics Institute placing the ‘Navier-Stokes equations solutions 

existence and smoothness’ number seven of its Millennium Prize Problems in Mathematics lists, 

awarded with 1 million US dollars prize. An early witness of the of complexity and beauty of 

turbulent flows is no other than Leonardo da Vinci (1452-1519). More than 150 years before Isaac 

Newton (1643-1727) laid the mathematical principles that would found Classic Mechanics, the 

Florentine artist and erudite devoted some of his time to the observation of fluids, among many 

other topics. Despite the lack of analytical tools, his privileged eye captured the essence of the 

multiple scales involved in turbulence and, even, gave a remarkably modern description of what 

we know as ‘the turbulent cascade’: "... the smallest eddies are almost numberless, and large 

things are rotated only by large eddies and not by small ones, and small things are turned by 

small eddies and large". Four centuries before Richardson and Kolmogorov, da Vinci had 

observed that, despite the apparent chaos, the inter-scale energy transfer in turbulent flows is not 

arbitrary, and goes from the larger to the smaller scales. A process also illustrated in another 

interaction between art and Turbulence, one short poem by the aforementioned Lewis F. 

Richardson (1881-1953) that reads: Big whirls have little whirls that feed on their velocity, and 

little whirls have lesser whirls and so on to viscosity. 

 

Figure 2.1. One of Leonardo da Vinci's sketches of turbulent eddies. Note the special care in representing the 

variety of eddy scales and their interaction. The Royal Collection. 
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Another da Vinci’s text accompanying his drawings of turbulent flow states the following 

(according to John L. Lumley translation): “Observe the motion of the surface of the water, which 

resembles that of hair, which has two motions, of which one is caused by the weight of the hair, 

the other by the direction of the curls; thus the water has eddying motions, one part of which is 

due to the principal current, the other to the random and reverse motion”. Again, the insight of 

these words is astonishing, as they fit perfectly the concept of Reynolds decomposition (Section 

2.1.2). 

It is not often that such an intricate scientific problem is also part of our common language and 

experience. Indeed, we all have an intuition of what ‘turbulence’ is and have used that word in 

common-life experiences, usually referred to a very specific manifestation of such phenomenon. 

However, from a rigorous standpoint, the definition of Turbulence is non-trivial and it is 

commonly described by some of its well-known features.  Turbulence is associated to energy 

dissipation, multi-scale eddy generation and interaction, and fluctuations of the flow properties. 

Turbulent flows are irregular, diffusive, have large Reynolds Numbers, inherently three-

dimensional, and dissipative (Pope, 2001).  

 

The Navier-Stokes equations were developed almost 200 years ago and are universally 

accepted to accurately describe the dynamics of fluids, including turbulent ones. As previously 

noted, these equations are particularly challenging and there is no analytical solution for them in 

complex domains and/or under general conditions, hence the need for numerical methods that can 

provide accurate solutions to scientific questions and engineering applications. The development 

of numerical methods to solve complex equations has gone hand by hand with advances in 

computational power and algorithm development. The fundamental strategy within most 

numerical techniques consists in substituting complex non-linear partial differential equations 

(PDE’s) by large systems of algebraic equations that computers can solve with relative ease. Thus 

the concept of Computational Fluid Dynamics (CFD). In fact, Fluid Mechanics has been one of 

the disciplines in which numerical modelling has been more impactful, and the range of 

applications and access to them is still growing.  

The first significant contributions to turbulence modelling occurred in the late XIX century. In 

1877, Boussinesq introduced the concept of ‘eddy viscosity’ in an attempt to capture in one term 

all the dissipative effects on turbulence on the mean flow, while providing means to estimate the 

turbulent stresses (also known as Reynolds stresses). In 1895 Reynolds published his works on 

Turbulence, providing, among other things, a way to statistically separate the turbulent and mean 

flow that has been tremendously influential. This is the basis to the Reynolds-averaged Navier-

Stokes (RANS) formulation. Prandtl (1925), upon his work on boundary layers, introduced the 

‘mixing length’ concept, closely related to Boussinesq’s eddy viscosity. This could be considered 

the founding idea of turbulence models. Prandtl (1945) proposed a new model based on a transport 

differential equation for the turbulent kinetic energy, k. This is the first one-equation model (as 

opposed to zero-equation or algebraic models such as mixing length). Kolmogorov (1942) 

postulated the first two-equation model, with expressions for k and ω, providing for the first time 

both a characteristic scale of velocity and length respectively for the turbulent eddies. 

Kolmogorov’s approach was ahead of its time and it was barely used until computers (and 

therefore CFD) started being used to solve fluids problems, thirty years later. Chou (1945) and 

Rotta (1951) developed the first models that were not based on the Boussinesq approach, but on 

the modelling of the turbulent stresses tensor components instead. Smagorinsky (1963) first 

proposed the large-eddy simulation (LES) approach, together with the first sub-grid scale (SGS) 

turbulence model. Deardoff (1970) was the first to explore the LES approach, which established 

a new paradigm by attempting to solve a small but substantial range of the turbulence spectrum, 

while the equations are filtered on a spatial basis, unlike RANS. This spawned a new family of 

turbulence models, most of which belonged to the zero-equation type as the relative range of the 
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turbulence spectrum to model is qualitatively less significant than in RANS. The most popular 

turbulence model to date, the k-ε model was introduced by Jones & Launder (1972) and given its 

standard form (re-calibrating its coefficients) by Launder and Sharma (1974). The combination 

of RANS, k-ε, and boundary conditions based on the logarithmic law of the wall has been without 

a doubt a story of great success for CFD, for its widespread, relative universality, and good 

compromise between results accuracy and computational requirements. 

 

Wilcox (1998) places ‘turbulence modelling’ as one of the three ‘key elements’ in CFD, 

together with algorithm development and grid generation. In the same book, the author states that, 

by its complex nature, turbulence modelling has achieved far less precision than the other two 

aspects. Twenty years later, it is fair to say that this statement is even more truthful than back 

then. An accurate solution of all the turbulent scales would require a very fine spatial and temporal 

resolution both to capture the whole spectrum of scales that characterises the flow. Turbulent 

modelling in CFD has been a prolific field and generated many alternatives. The fundamental 

difference among them lies in which scales of turbulent motion are solved and which ones are 

modelled, having these two terms a very specific meaning. Solving requires all the relevant time 

and spatial scales of the problem are determined through a numerical code that is based on 

physical principles, i.e., the Navier-Stokes equations. Modelling implies embracing further 

assumptions or simplifications of the physical laws or constitutive relations in order to obtain an 

approximate solution. Commonly, techniques that solve a significant part of the turbulence 

spectrum rely on simpler turbulence closures, whereas those that focus on the mean flow and 

regard turbulence as a merely dissipative feature require more sophisticated models. The choice 

of the CFD approach and the turbulence model depends strongly on the problem to be solved: 

geometry domain, flow type, precision required, and computer power available. The key to good 

turbulence modelling lies in the balance between solving and modelling, which entails an implicit 

compromise between the accuracy/resolution of the solution and the required computational 

resources. The choice of the turbulence modelling approach is therefore central to the entire 

numerical simulation, and strongly linked to the grid generation and discretisation schemes in 

particular. 

The following subsections introduce the most common turbulence modelling approaches, with 

a particular focus on those that are relevant for this work. 

2.1.1. Direct Numerical Simulation - DNS 

DNS approaches the Navier-Stokes equations without any extra assumptions on the behaviour of 

turbulence. DNS models attempt to solve all the spectrum of turbulence down to the 

Kolmogorov/dissipative scales without the aid of any complementary model, cut-out filter, or 

dissipative terms – besides the unavoidable numerical dissipation, hence the resolution has to be 

very fine both in space and time. Because turbulence is intrinsically three-dimensional and 

unsteady, so must be DNS solutions. 

The fundamental drawback of DNS is the high computational cost involved. There are usually 

several orders of magnitude between the characteristic scales of the largest and smallest eddies, 

and all of them must computed. The spatial resolution has to be equally fine in all directions, 

being the smaller, near-dissipative eddies the limiting factor. This compromises the use of DNS 

in large domains or at very high Reynolds numbers. Higher turbulence intensity results in smaller 

dissipative scales, so the order of magnitude of the grid resolution is strongly dependent on the 

Reynolds number. Eq. 2.1 estimates the size of the dissipative microscales of the flow in relation 

with the Reynolds number. This expression can be used to infer the number of grid points needed 

to accurate perform DNS in a fully turbulent flow.  
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𝜂 = 𝑅𝑒
−3
4 𝑙 

(2.1) 

where η is the characteristic length of the Kolmogorov scale and l is the characteristic length of 

the large, energy-containing eddies. Note how for high Re (hence, for any turbulent flow), the 

microscales in the flow are particularly small, e.g., for Re ~ 104 implies η ~ 10-3l, for Re ~ 105 

implies η ~ 10-4l, for Re ~ 106 implies η ~ 10-5l, etcetera. It is clear how these simulations might 

end up becoming prohibitive. 

The popularity of DNS grows slowly but steadily, linked to hardware enhancements, the 

availability of supercomputing facilities, and advances in parallelisation. It is, however, still 

restricted to research/academic environments, since its high requirements prevent direct 

applications to many practical problems, particularly in Civil or Environmental Engineering. 

Nevertheless, the generation of DNS databases is extremely important for benchmarking, testing, 

and validation purposes in the CFD community. And also in recent years as a learning basis for 

machine learning algorithms. DNS computational codes are usually relatively straightforward in 

terms of topology and discretisation, often relying in Cartesian grids and high-order centered 

schemes to capture the velocity gradients and sacrificing stability and adaptability in exchange 

for accuracy and minimal numerical dissipation. The reliance of DNS on pure physical principles 

and minimal modelling makes it particularly attractive to investigate new phenomena and 

behaviours, rivalling experimental studies in this department. 

2.1.2. Reynolds Averaged Navier-Stokes - RANS 

Turbulence is commonly referred to as being apparently a ‘random’. Perhaps ‘chaotic’ is a better 

term to define the nature of turbulent flow, implying that slight changes in the initial conditions 

will lead to very different results. It is, however, not surprising that signified researchers in 

Turbulence have used statistical methods to isolate the turbulent effects from the mean flow. 

In 1894, Osborne Reynolds collected in a paper the results of his experiments in what today is 

Manchester University. He encapsulated in the Reynolds dimensionless number the critical 

physical parameters involved in the regime transition from laminar to turbulent. He also proposed 

the decomposition of flow variables into mean and fluctuating contributions: 

𝒖 = �̅� + 𝒖′ (2.2) 

where u is the instantaneous velocity vector, �̅� is the time-averaged component, and 𝒖′ is the 

fluctuating part. 

The result of applying Eq. 2.2 on the Navier-Stokes equations are the Reynolds Averaged 

Navier-Stokes (RANS) equations (see Section 3.1). The statistical treatment of all the terms and 

variables (the velocity u and pressure p in particular) is a convenient tool to separate the time-

averaged properties, i.e. mean flow, from the instantaneous fluctuations, i.e. turbulent flow. The 

time-averaged product of the fluctuating velocity components 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  is isolated in a single term that 

defines the Reynolds stresses tensor. The ‘closure problem of turbulence’ consists in modelling 

this particular term without having to actually solve it for every turbulent scale. Consequently, in 

RANS the whole turbulence spectrum is modelled, requiring additional equations – the turbulence 

model - and unknowns from which the terms of the Reynolds stress tensor are inferred.  
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2.1.3. Turbulence models for RANS 

There is a variety of turbulence models for RANS, based on different principles and exhibiting 

diverse degrees of complexity. There is no general agreement on one model or approach being 

universally superior to the rest; hence the choice is problem dependent. The basic differences 

among them are the numerical stability and their specificity/universality. In pursuance of reducing 

the degrees of freedom of the problem, all turbulence models ultimately rely on coefficients that 

were calibrated from experimental data. 

Linear eddy viscosity models (LEVM) are based on the Boussinesq assumption (Eq. 2.4), not 

to be confound with the Boussinesq approximation for buoyancy-driven flows. This is also known 

as the turbulent-viscosity hypothesis (Pope, 2000), and constitutes the most popular paradigm in 

turbulence modelling for RANS. The Boussinesq assumption mimics Newton’s Law for fluids 

(Eq. 2.3), which establishes a direct relationship between the shear stress generated by the laminar 

viscosity and the symmetric component of the velocity gradients (strain): 

𝜏𝑖𝑗 = 𝜌𝜈𝑙 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) = 𝜌𝜈𝑙𝑆𝑖𝑗 

(2.3) 

where τ is the shear stress acting on a surface perpendicular to the i-component in the direction of 

the j-component, ρ is the fluid’s density, νl is the laminar viscosity, 
𝜕𝑢𝑖

𝜕𝑥𝑗
 is the partial derivative of 

the i velocity component with respect to the j Cartesian coordinate, and Sij the strain rate. The 

Boussinesq assumption establishes an equivalent framework for the shear stress caused by 

turbulence, creating a coefficient called eddy viscosity or turbulent viscosity (νt) due to the 

parallelism with the laminar viscosity for Newtonian fluids. However, unlike the laminar one, the 

eddy viscosity has no actual physical meaning, it is just a modelling artefact: 

−𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ = 2𝜈𝑡𝑆𝑖𝑗 −
2

3
𝑘𝛿𝑖𝑗  

(2.4) 

where 𝑢𝑖
′ is the fluctuating part of the i-component of velocity, νt is the eddy viscosity, k is the 

turbulent kinetic energy, and δij is the Dirac delta. Note that the last term of the equation is added 

so that this assumption is valid when the equation is contracted (i.e., no strain, only the trace is 

non-zero), thus 𝑢𝑖
′𝑢𝑖

′̅̅ ̅̅ ̅̅ = 2𝑘.  

The overarching idea behind eddy viscosity models is reducing the role of turbulence in the 

flow to the same as the laminar viscosity: energy dissipation. It acts as a sink of kinetic energy, 

not resolving the actual fluctuations in the fluid properties and the generation of multi-scale 

eddies. This idea complements well with RANS equations, whose focus is on the mean flow. One 

relevant feature or LEVM is assuming the turbulence to be isotropic, as the value of νt in a point 

would be the same, no matter the direction considered, whereas real turbulence is anisotropic by 

nature. 

Despite these simplifications, LEVM have proved successful at many engineering problems, 

becoming the most popular turbulence closure in practical CFD applications. The next list 

summarises some of the most relevant LEVMs: 

 Mixing-Length model (Prandtl, 1925): is an algebraic formulation, being the first attempt to 

describe the eddy viscosity distribution. Prandtl got inspiration from the kinetic gas theory 

and, using dimensional analysis, stated that the eddy viscosity is proportional to a mean 

fluctuating velocity and a "mixing length". The velocity is calculated through the product 
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of the mixing length times the mean velocity gradient as shown in Eq. 2.5 for a two-

dimensional case: 

 

(2.5) 

where ℓ𝑚 is the mixing length. The calculation of the eddy viscosity relies on the mixing 

length estimation. This coefficient is often estimated using geometrical parameters of the 

domain as a reference. Mixing-length model’s simplicity made it rather popular and further 

developments and refinements in ℓm estimation were suggested, among others, by Pantakar 

& Spalding (1970) or von Kármán (1931) for wall boundary layers.  

Nevertheless, the mixing-length hypothesis is rather restrictive and very dependent on the 

calibration of ℓm. It does not consider the transport of turbulence, hence is not suitable when 

convective or diffusive transport processes are important. Moreover, it has little use in 

complex flows due to the difficulties in specifying ℓm. 

 

 k - ε model (Jones & Launder, 1972): is the most popular turbulence model in fluid dynamics. 

The turbulence closure problem is resolved by adding two new partial differential equations 

and two new variables: k, the turbulent kinetic energy, and ε, the dissipation rate of the 

turbulent kinetic energy. The square root of k (k has squared velocity units) was found to 

be a meaningful property to estimate the turbulent velocity scale. The turbulent kinetic 

energy is a real and measurable scalar fluid property that describes the energy contained in 

the turbulence fluctuations. The turbulent dissipation rate ε is related to the dissipation 

occurring at the smallest scales (Kolmogorov, 1942). The values of these two quantities are 

obtained by solving two partial differential transport equations that account for transient 

convection-diffusion of the two properties. The main assumptions of the model are related 

to the production terms for k and ε. The model has a long, overall successful record of use 

in practical applications and as a result is well validated and calibrated, existing a general 

agreement about the empirical coefficients involved. 

The k-ε model has been applied to a wide variety of two-dimensional and three-dimensional 

flows, including shear flows, confined flows or jets. However, the k-ε model has some 

constrains: 

 Performance at low Reynolds numbers: ε-equation's formulation is not universal and is 

based on local isotropy. Hence, the model's behaviour is physically incorrect for low 

Reynolds numbers, for which this hypothesis is less suitable. For instance, when k tends 

to zero, the destruction term in the ε equation tends to infinity. This is a common case in 

the proximity of walls. In order to correct this issue several low-Re versions were 

developed by introducing damping functions to ensure viscous stresses taking over at low 

Reynolds numbers in the viscous sub-layer near the wall.  

 Over-prediction: the model tends to over-predict the shear stress in adverse pressure 

gradients. 

 Isotropy: the k-ε model is isotropic, stating the same eddy viscosity parameter for all 

stresses and thus neglecting the transport of the individual turbulent stresses.   

 

 k - ω model (Wilcox, 1988): was originally intended to address some of the drawbacks of the 

k-ε model. The k-ω model also solves the k equation and uses this variable as velocity scale, 

whereas it substitutes the turbulent dissipation rate ε by the ‘specific dissipation’ ω, 

proportional to 
𝜀

𝑘
. This change of variable aims to correct the unphysical near-wall 

asymptotic behaviour of the k-ε model. The change of variable fixes this problem, hence 

y

u
mt
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both the specific dissipation and the turbulent kinetic energy tend to zero when approaching 

a laminar sublayer. 

The k-ω model became available for commercial CFD solvers later than the k-ε closure, 

and it has been revised over the years (Wilcox, 2008). It has gained popularity, especially 

in aerodynamics. It has provided an overall better performance than k-ε in inner boundary 

layer flow, but k-ε is still preferred for the outer (turbulent) boundary layer and free flow.  

 

 Shear Stress Transport (SST) model (Menter, 1994): this is a model that combines some of 

the strong points of its predecessors. It uses k-ε for the outer boundary layer and free flow 

and k-ω for the inner boundary layer. SST also limits the shear stresses in adverse pressure 

gradient regions to avoid overestimation. It has been applied mainly in aerodynamics and 

is still in development. 

 

 SA model (Spalart & Allmaras, 1992): the Spalart-Allmaras approach is a one-equation 

model which solves a transport equation for an eddy viscosity-like variable. It has been 

originally designed for aerodynamics. 

 

Non-linear eddy viscosity models (NLEVM) are those based on the Boussinesq assumption 

and the concept of eddy viscosity but attempt to address some of the shortcoming of LEVMs. 

This basically implies avoiding over-dissipation of kinetic energy and/or including anisotropic 

behaviour. This is achieved by extending Boussinesq assumption to a higher order (most of them 

are second-order) using non-linear coefficients. The majority of NLEVMs use the k-ε model as 

their basis, although they can be adapted to other models. NLEVMs are an interesting 

intermediate alternative between LEVM and Reynolds Stress Models (RSM). A disadvantage 

NLEVMs share with their linear counterparts is the reliance in coefficient calibration. That is even 

more relevant for NLEVMs as the non-linear dependencies are often introduced by switching an 

originally constant coefficient into a variable one, which therefore relies on new coefficients. An 

additional, but related issue with NLEVMs is that the link between the formulation and the 

physical process that is modelled is rather obscure, not providing further understanding on the 

mechanisms of the problem. However, there is an overall agreement in the general form of the 

extended non-linear Boussinesq assumption (Aspley et al., 1997).  

Reynolds Strees Models are not based in the Boussinesq assumption, but require to solve a 

transport equation for each term of the Reynolds stress tensor instead. Compared to eddy viscosity 

models RSMs have following general advantages: a) the production terms of the equations are 

treated exactly instead of modelled; b) turbulence is allowed to be anisotropic, so the prediction 

of the normal stresses is much more faithful; c) RSM are able to deal with cases in which eddy 

viscosity models models typically fail, such as curvature effects, stagnation or flow separation. 

The disadvantages of RSM compared to eddy viscosity models are: a) they are more complex and 

difficult to implement; b) they are more expensive computationally; c) they are less stable from a 

numerical stanpoint. 

Algebraic Stress Models (ASM) are a simplified form of the RSM models where Reynolds 

stresses are calculated through approximated non-linear algebraic expressions based on RSM 

transport equations. Pope (1975) developed an explicit expression for ASM, making them easier 

to implement, less computationally expensive, and more stable. It has been aforementioned that 

NLEVM are an expansion of LEVM (usually k-ε) and ASM is a simplification of RSM. In fact, 

these two approaches can be considered as links or bridges between eddy viscosity and Reynolds 

stress models. The general form of explicit ASMs and NLEVM is the same (Aspley et al., 2010).  
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2.1.4. Unsteady RANS - URANS 

The concept of Unsteady RANS is not unequivocally defined. For some authors, this term simply 

refers to the unsteady form of standard RANS equations, since it has been a common practice to 

run RANS simulations on steady state scenarios neglecting the time derivative. For others, 

however, with the right numerical setup URANS might constitute a distinct modelling tool 

capable to solve the largest turbulent scales of the flow. Under the second hypothesis, URANS 

results might exhibit features such as anisotropy and non-linear interaction to a small degree. This 

is called ‘scale separation’: if the time scale T of the ensemble averaging is smaller than the time 

scale of the larger fluctuations, some of them can be solved. However, this requirement is not 

often satisfied in practice (Davidson & Peng, 2003). There is also a discussion on whether the 

unsteadiness that can be found in URANS solutions corresponds to the largest turbulent scales or 

it is caused by mean flow oscillations. 

URANS ultimately relies on the same turbulence closures as standard RANS, therefore it 

cannot solve a significant part of the turbulence spectrum as large-eddy simulation does. It can 

be, however, an interesting choice for engineering flows when attached boundary layers are 

important, since near-wall LES has similar requirements to DNS. Durbin (1995) found important 

differences between the Reynolds stresses calculated with a URANS approach and those merely 

obtained through a turbulence model. Other features that can differentiate URANS solutions over 

steady RANS are: a) unsteady solutions even with uniform boundary conditions; b) development 

of 3D structures over 2D geometries; c) reasonable solution of unsteady structures behind 

obstacles. Perzon & Davidson (2000) found that the k-ε model was too dissipative when 

calculating flow around obstacles using URANS, whereas non-linear models (see 2.1.3) were 

successfully tested for these cases. URANS shares the mathematical formulation of steady RANS 

and its turbulence closures. In order to capture a certain degree of the flow unsteadiness, a careful 

choice of less-dissipative discretisation schemes and a certain level of grid refinement are needed.  

 

The debate on whether URANS has entity to be an approach on its own or it is simply a 

particular configuration for RANS is beyond the scope of this work. In this document, the term 

URANS is used in its explicit meaning without any further consideration: RANS equations in its 

unsteady form. We believe that URANS is a good example of how the boundaries between 

modelling approaches are relatively flexible, and how the choices of the numerical parameters 

(grid resolution, discretisation schemes, etc.) can be as relevant to our results as the label on the 

chosen turbulence approach. 

2.1.5. Large Eddy Simulation - LES 

Large-eddy simulation is a rather straightforward technique to calculate turbulent flows, which 

has a major drawback in the computational cost. The increased computational resources have 

favour the proliferation of LES in many fields out of fundamental research, and its widespread 

inclusion in commercial software.  
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Figure 2.2. Contour maps of the instantaneous velocity field in a box (volume = L3) of homogeneous decaying 

turbulence obtained through: DNS (left), applying a L/32 filter (middle), applying a L/16 filter. From Lu et al. 

(2007). 

The overarching idea is to simulate the larger turbulence scales while modelling the smaller 

ones, referred to as sub-grid scales (SGS). From a formal standpoint LES equations are filtered 

in space (see Figure 2.2). In practice, the spatial filter usually coincides with the grid 

discretisation, hence the sub-grid scale concept. LES is strongly based on the canonical turbulence 

spectrum (see Figure 2.3).  The motivation for this approach lies in the fact that the larger turbulent 

scales contain the majority of the spectral energy. The filter represents the cut-off between the 

resolved scales and the modelled ones, whose contribution to the total energy is deemed 

qualitatively less relevant. In addition, the assumption of isotropy is rather accurate when applied 

exclusively to the small, dissipative scales. LES models must avoid discretisation schemes that 

trigger numerical dissipation. Lower-order and/or upwind schemes that are common in RANS 

may result in the artificial dissipation of turbulent fluctuations, harming the results accuracy and 

wasting the computational resources invested in solving those scales. In LES (and DNS) 

modelling practice, higher-order centered discretisation schemes are relatively popular. 

 

Figure 2.3. Schematic representation of the LES cut-off filter in the turbulence spectrum. From Gicquel et al. 

(2008). 

LES models can handle accurately cases where RANS assumptions might compromise the 

quality of the solution, such as flows with large separation, bluff body flows, or transitional flows 

(Ma et al., 2011). In return, LES is considerably more computationally demanding than RANS. 

Large-eddy simulations must always be 3D and unsteady to solve relevant turbulent scales (see 

Table 2.1. ). Albeit LES does not require solving all the scales as DNS (see section 2.1.1), the 

energy-containing scales in wall-bounded flows are very small, demanding very high grid 

resolutions in all the space coordinates. Spalart (2000) estimated that LES and DNS will not be 

fully suitable for industrial aerodynamics until 2045 and 2080, respectively. Despite of these 

estimations, LES has gained popularity in Hydraulics, and many researches had adopted its basic 
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idea to develop new approaches which combine the best features from RANS and LES such as 

Hybrid models, DES or PANS. These models will be discussed on the sections to come. 

 RANS LES 

Dimension 2D or 3D 3D 

Time derivative Steady or unsteady Unsteady 

Space discretisation Upwind Central 

Time discretisation 1st order 1st or 2nd order 

Turbulence model Two transport equations or more Zero or one-equation models 

Table 2.1.  Common numerical features in RANS and LES. 

Compared to RANS, LES turbulence models are simple, since only the dissipative low-energy 

scales are modelled. In LES there is no need to compute a turbulent length scale because the cut-

off filter length can be used. As aforementioned, the local isotropy hypothesis can be appropiately 

assumed since it is much more applicable to the smaller scales. The most popular SGS models for 

LES are the Smagorinsky model (Smagorinsky, 1963) and the dynamic model (Germano et al., 

1991). The Smagorinsky model is based on the same principle as the mixing-length model for 

RANS, using the cut-off filter (typically the grid size) to estimate the length scale. The 

Smagorinsky model depends on one scalar coefficient C that modulates its dissipative intensity. 

The dynamic model addresses this dependence by making the coefficient C into a variable whose 

value is computed depending on flow characteristics. 

2.1.6. Hybrid RANS-LES models and Detached Eddy Simulation (DES) 

The purpose of this approach is to avoid the inconveniences of LES for wall-bounded flows using 

the best features of two different modelling approaches. These are typically a low-Re version of 

URANS coupled with an eddy viscosity turbulence model for the inner near-wall region and LES 

for the outer and free flow regions. The good near-wall performance of RANS/URANS is strongly 

linked to the law-of-the-wall  boundary conditions, that provide a good determination of the 

velocity on the first computational node by the wall without having to solve the viscous sub-layer.  

The drawback of hybrid approaches has to do with the implementation of the RANS/LES 

interface. There are no clear rules for the exact location of the interface nor how the mesh 

refinement must be implemented. An abrupt mesh refinement requires high-order interpolation 

algorithms to ensure no loss of information. Besides, in shear flows it is typically the boundary 

layer by the wall providing the vorticity and triggering turbulence, but RANS does not solve the 

turbulent scales required to ‘feed’ the LES region.  

Of the several solutions proposed, Detached Eddy Simulation (DES) is probably the most 

successful one. DES is a particular case of Hybrid RANS-LES method. The original method was 

proposed by Spallart et al. (1997) but was refined ever since. DES is designed for applications in 

which there is a very clear differentiation of the regions dominated by the boundary layer (RANS) 

and those of strong flow separation (LES). This approach considered a rather particular type of 

problems (massively separated flows), where the interface between the two aforementioned 

regions is abrupt. This model was originally designed for aerodynamic flows around wings at 

very high attack angle. Those cases where that transition region (“grey area”) from RANS to LES 

is more gradual are problematic. Another distinctive feature of the method was the use of one 

only turbulence closure both for RANS and LES regions. DES was based in RANS with an one-

equation turbulence model, but several authors have used two-equation models (Spallart, 2009). 

Although advances in DES have improved the uncertainty linked to the interface between grid 

resolutions and models, the "translation" of the RANS-modelled turbulence to LES fluctuating 
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flow properties is still a fundamental matter of research. Nevertheless, DES is the most successful 

hybrid method nowadays and it is part of the model library of most CFD commercial packages. 

2.1.7. Partially Averaged Navier-Stokes - PANS 

PANS is the most novel modelling approach adopted in this work. This is another model that tries 

to bridge the large gap between RANS and LES, but unlike DES, it is not based on establishing 

different regions in the computational domain. The basic idea is to apply URANS coupled with 

an eddy viscosity turbulence closure and apply relaxation factors on the eddy viscosity, thus 

creating the conditions for some of the turbulent scales to be solved. This is the reason why it is 

called partial averaging, as opposed to RANS where the ensemble-averaging is supposed to be 

over the whole turbulent spectrum.  

A more detailed and formal description of this method is given in Section 3.2. The seminal 

work with PANS was Girimaji (2006), who compared URANS, DES, and PANS, providing the 

latter a better behaviour according to the theoretical turbulent production/dissipation ratio. Ma et 

al. (2011) developed a low-Re version for PANS with satisfactory results in three test cases, 

including fully turbulent straight channel flow. Davidson (2016) explores different calibrations 

for the eddy viscosity damping factor and also expands on the previous work by Girimaji & 

Wallin (2013) to use a variable damping factor. This latter alternative opens the door for PANS 

to act as a buffer layer between RANS and LES in hybrid models. This was explored further in 

Davidson and Friess (2019), where a new formulation for the ratio of modelled to total turbulent 

kinetic energy that bridges PANS and DES methods is proposed. 

2.1.8. The necessary reliance on turbulence modelling 

Turbulent modelling is a key issue for Fluid Mechanics modellers. There are two main strategies 

on this matter. The first one consists in modelling the dissipation generated by turbulence and 

isolate its effects on the mean flow (RANS). The second is solving all or at least a significant part 

of the turbulence spectrum (LES-DNS). The first choice has proven to be a good tool for engineers 

and researchers but has well-known limitations. Constant refinement of the turbulence closures 

over the decades has provided significant advances but there are bottlenecks that cannot be 

completely overcome (Sotiropoulos, 2015). The second alternative has been mainly constrained 

by computational requirements. DNS or LES are still expensive methods but their performance 

has increased enormously (see Table 2.2). Meanwhile, RANS or DES are now common tools in 

Hydraulics, albeit 1D and 2D shallow water models are still predominant.  

In the last 15 years, researchers have tried to combine the strong points of these alternatives in 

accurate and feasible methods. There are several hybrid or bridging models, based on this basic 

idea, but further research is still needed for them to become a practical tool for engineers. 

According to Spalart (2000): "For several decades, practical methods will necessarily be RANS, 

possibly unsteady, or RANS/LES hybrids, pure LES being unaffordable. Their empirical content 

will remain substantial, and the law of the wall will be particularly resistant". 
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Name* Aim** Unsteady Re-dependence 3D/2D Empiricism Grid Stε Ready*** 

2D URANS Numerical Yes Weak No Strong 105 103.5 1980 

3D RANS Numerical No Weak No Strong 107 103 1990 

3D URANS Numerical Yes Weak No Strong 107 103.5 1995 

DES Hybrid Yes Weak Yes Strong 108 104 2000 

LES Hybrid Yes Weak Yes Weak 1011.5 106.7 2045 

QDNS Physical Yes Strong Yes Weak 1015 107.3 2070 

DNS Numerical Yes Strong Yes None 1016 107.7 2080 

Table 2.2.  Applicability and requirements for different CFD techniques (Spalart, 2000). *QDNS=Quasi-Direct 

Numerical Simulation; ** aim of increasing grid resolution; *** for engineering applications. 
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2.2. Hydrodynamic modelling of open-channel flow in bends 

Open-channel flow is the branch of Hydraulics that studies gravity-driven flows, characterised by 

the presence of a free surface. Simplified open-channel flow scenarios are a common 

approximation that engineers use to study real environmental flows. Environmental flows 

incorporate many sources of complexity such as curvature, irregular bed topography, sediment 

transport and dynamic morphology or channel shape. In addition, environmental flows usually 

exhibit high Reynolds numbers, variable roughness, and relative shallowness. In this section the 

focus is on open-channel flows that follow a curved streamwise axis. 

The first attempt to study the effect of curvature on the flow was made by Boussinesq (1868), 

who solved analytically the laminar flow in a curved duct of rectangular cross-section. Albert 

Einstein (1926) described the secondary currents generated by centripetal force in meanders using 

an illustrative parallelism with the flow stirred by a spoon in a tea cup. A compilation of early 

efforts based on experimental results was comprehensively reviewed by Bradshaw (1973) and 

Patel & Sotiropoulos (1997). Characterizing turbulence, secondary flow, and shear stresses in the 

laboratory is a difficult task and the earlier attempts were heavily constrained by the limitations 

of the measuring devices. There were many difficulties in applying thermal anemometry to 

turbulent open-channel flow (Nezu, 2005). The emergence of laser-based technologies during the 

1980s made these studies easier and more accurate in the decades to follow, although still rather 

expensive.  

The first numerical studies on curved flows appeared on the 1970s, although the effort was 

focused in pressure-driven flows in pipes or ducts. Patankar et al. (1975) first applied RANS to 

the three-dimensional flow in a curved pipe with a k-ε model. Gibson et al. (1981) used a Reynolds 

Stress turbulence closure to solve the flow over a convex surface. Leschziner & Rodi (1979) did 

the first RANS simulation of curved open-channel flow with a k-ε two-equation closure. The first 

DNS simulations of curved flow were performed by Moser & Moin (1987). DNS was applied 

later to turbulent open-channel flow (Lu & Hetsroni, 1995), but the specific application of DNS 

in open-channel flow bends is non-existent to the knowledge of the author. LES simulations in 

curved open-channels are very few and recent, e.g., Stoesser et al. (2008), van Balen et al. (2009), 

and Kang & Sotiropoulos (2011). There is one work with DES in an open-channel with strong 

curvature done by Constantinescu et al. (2011). 

2.2.1. Secondary flow in open channels 

Secondary flow is the fluid motion in a plane perpendicular to the streamwise axis of the flow. It 

occurs as the result of an imbalance in the cross-sectional distribution of momentum. 

Consequently, secondary flow enhances the redistribution of momentum across the cross-section, 

and it is critical to explain erosion and sedimentation processes or mixing.  

Taylor is not the only eminent physicist that studied secondary structures in curved flows. In 

1926, Albert Einstein published read a dissertation before the Prussian Academy titled The Cause 

of the Formation of Meanders in the Courses of Rivers and of the So-Called Baer’s Law. Einstein 

is well known for his capacity to illustrate complex physical phenomena using simple but clear 

mental images. In this case, he uses the ‘tea cup problem’ as analogy: a flat-bottomed cup full of 

water and small tea leaves. When a spoon rotates the hot water, the leaves will accumulate in the 

centre of the cup, instead of dispersing. Einstein explains how the centrifugal force triggered by 

the rotation of the liquid, together with the higher friction at the bottom of the cup compared to 

the free surface, produce in a circular movement (see Figure 2.4) that advects the tea leaves to the 

centre of the cup. This is a pressure-driven secondary flow cell. 
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Figure 2.4. Tea cup problem as an analogy to river meanders secondary flow (Einstein, 1926). 

It is well known that flow in bends exhibits a secondary helical motion which counteracts the 

inertia of the primary flow by bringing high-momentum fluid from the outer to the inner bank. 

The domain’s curvature generates an unbalance and a net centripetal force and, hence, a spanwise 

pressure gradient. In addition, the presence of a boundary layer at the channel’s bed generates an 

imbalance in the shear stress vertical distribution. As a result, the high momentum water that hits 

the outer bank (increasing the shear stress at the outer wall and potentially generating scour) then 

moves towards the inner bank along the bed. The fluid loses momentum overcoming the channel’s 

floor friction (hence the deposition of sediments on the inner bank) and moves up to the surface. 

This is the secondary current of ‘Prandtl's first kind’, also known as main, centre-region, or 

pressure-driven cell (PDC). This mechanism of secondary motion is also found in laminar flows, 

hence turbuence modelling is not key to represent it, although the presence of turbulence may 

alter its fundamental behaviour. 

The ‘Prandtl's second kind’ of secondary currents are generated by turbulence anisotropy and 

non-homogeneity (Nezu & Nakagawa, 1993). When turbulent flow is confined within a domain’s 

boundaries, the presence of walls and boundary layers triggers anisotropy and lack of 

homogeneity (some axis of movement are more/less constrained than others). The global 

consequence of this is the advent of vortical structures which retain their identity over time, called 

‘coherent structures’. These structures are responsible for the secondary currents of Prandtl’s 

second kind. Unlike the secondary currents of Prandtl’s first kind, the second kind can be found 

in straight channels too. The relative strength of these currents is smaller than the one first kind, 

albeit their input is critical.  

Turbulent-driven currents or secondary flow of prandtl’s second kind are the responsible of the 

velocity dip phenomenon. This consists in the maximum of velocity being situated below the free 

surface due to the interaction between the primary flow with a non-negligible secondary flow. It 

has been observed that for straight channel, the presence of the velocity dip and relative 

importance of secondary currents is related with the aspect ratio B/h (e.g. Nezu & Rodi, 1985; 

Anta et al., 2010, Mera et al., 2015). Another relevant feature for the secondary flow structure is 

the channel bed roughness and the variations in it, which was investigated by Stoesser et al. (2015) 

among others.  

In the case of curved open-channel flow, the velocity dip can also be observed. Unlike straight 

channels, in curved flow there is a main secondary pressure-driven flow that prevails. The 

turbulence-driven secondary flow is confined to a second, counter-rotating cell usually located  

near the top outer bank of the channel. Despite its limited extent, this outer-bank cell (OBC) has 

important practical consequences. The presence of this flow structure was first observed by 

Bathurst & Thorne (1979), who stated that the OBC has a critical impact on outer-bank erosion 

and decreases the wall shear stress. 
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Figure 2.5. Secondary flow in an open-channel bend (Blanckaert and de Vriend, 2004). 

The OBC has been observed in natural rivers (e.g. Götz, 1975, Bathurst et al., 1977; Thorne et 

al., 1985; Russell & Vennell, 2019) and in experiments (e.g. de Vriend, 1981; Blanckaert & Graf, 

2001; Blanckaert & de Vriend, 2004; Blanckaert & de Vriend, 2005; Farhadi et al., 2018; Bai et 

al., 2019). The following are works are key to understand under which circumstances numerical 

models can simulate the OBC and the mechanisms that originate it: 

 Demuren & Rodi (1984) state that secondary flow of Prandtl's second kind cannot be 

simulated by RANS with an isotropic turbulence closure.  

 de Vriend (1981) established that the OBC is the result of the combination of Prandtl’s first 

and second kind types of secondary flow. 

 Blanckaert & de Vriend (2004) were the first to propose that the OBC is reinforced by the 

centrifugal force and that there are energy fluxes - linked to the occurrence of the OBC – 

from the turbulent kinetic energy to the mean flow kinetic energy, constituting a sort of 

local inverse cascade. 

 Zeng et al. (2008) collected in a paper both the experimental and numerical data obtained in 

a very sharp open-channel bend with different bed configurations. They solve RANS 

equations with both SST and SA eddy viscosity models. The authors indicated the need of 

improvements in both the turbulence modelling and sediment transport techniques. 

 Van Balen et al. (2009), LES of the flow through a mildly curved laboratory flume is 

performed. The paper suggests that the OBC is generated by a combination of turbulence 

anisotropy and centrifugal effects.  

 Van Balen et al. (2010), van Balen uses LES and RANS to model a strongly curved flow in 

the same computational domain used by Zeng et al. (2008). He analyses the influence of 

the water depth h on the secondary flow, concluding that for increasing values of h both the 

PDC and OBC are larger and, the latter, more persistent. There is a parallelism with the 

straight channel case in which the presence of the velocity dip is correlated with the aspect 

ratio B/h, where B is the channel’s width. RANS results do not show the outer-bank cell. 

 Stoesser et al. (2010) studied the secondary flow in a periodic meandering channel with LES 

and RANS, extending van Balen's conclusions for that case. This work will be further 

discussed in Section 2.3. Two different turbulence closures for RANS were used: k-ε and 

k-ω. The OBC appears in the RANS simulation, particularly with k-ω. Predictions based 

on k-ε only show the OBC at the bend’s apex. In general, RANS-based predictions report a 

late appearance of the OBC and an early dissipation, overestimating its dominance at the 

apex.   

 Constantinescu et al. (2011) used RANS and DES to calculate the flow on the same strongly 

curved channel as Zeng et al. (2008) and Van Balen et al. (2010), albeit using a fixed 

irregular bed. DES shows good agreement either for secondary flow determination and also 
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streamwise-oriented vortices. Important differences are observed in the shear stress 

distribution by DES and RANS. This work does not describe the presence of an OBC, 

although several streamwise-oriented vortical structures are detected, probably due to the 

peculiar cross-sectional shape, which is almost triangular. 

 Blanckaert et al. (2012) observed an amplifying effect of outer bank roughness on the OBC 

performing experiments in a laboratory flume. They found that the presence of the OBC 

was ubiquitous across their parameter space. Increasing the roughness of the outer bank 

increased considerably the OBC. It was also reported that the OBC amplifies until 

approximately the bend’s apex and remains stable thereafter. 

 Wei et a. (2016) investigated experimentally the influence of the curvature ratio, the Froude 

number and roughness on the secondary flow. They concluded that, for mildly curved 

flows, the magnitude of the secondary flow increases linearly with curvature. For moderate 

curvature this linear relation decreases until it reaches saturation. The authors found that 

the secondary flow does not depend on the Froude number in the range of 0.1 to 0.5. They 

also reported stronger secondary flow with increasing roughness for high curvature ratios 

 Farhadi et al. (2018) expanded on the work by Wei et al. (2016) by investigating 

experimentally the correlation between the Froude number and the OBC occurrence in a 

racetrack-shaped flume. Three different Fr that fall within the range of subcritical 

environmental flows were investigated. This study found that, within their setup, the OBC 

is stronger for smaller Froude numbers. This work also reported negative values for the 

TKE (turbulent kinetic energy) production at the OBC, suggesting the local presence of an 

inverse energy cascade. The experimental measurements also indicate increasingly 

anisotropy as the bend progresses, with values being particularly high at the outer bank. 

 Russell & Vennell (2019) conducted measurements on the Clutha river (NZ), finding the 

outer-bank cell to be larger and stronger than laboratory flume experiments, perhaps due to 

outer bank roughness. They also observed a counter-rotating inner-bank cell, which they 

link to flow separation at the inner bank in bends of high curvature. 

 Bai et al. (2019) reported velocity measurements with particle image velocimetry (PIV) in a 

U-shaped open channel. They found that the redistribution of momentum via secondary 

starts before entering the bend and that the coherent structures generated along the curve 

are rather persistent once this has ended, reaching as far as 8.5 m downstream. The OBC is 

clearly captured and a relation between the location of the maximum primary velocity and 

the OBC is observed. These observations establish that the secondary flow structure evolves 

considerably along the bend and it is difficult to assume a canonical secondary flow 

structure. 

 Yarahmadi et al. (2020) did experiments on a single-bend flume to determine if triangular 

vanes could be an effective measure to prevent erosion at the outer bank. Three-dimensional 

velocities were measured, depicting clearly the presence of the OBC from the bend’s apex 

onwards. The presence of the vanes strongly alters the secondary flow structure. The results 

are not conclusive. The vanes reduce the bed shear stress at the outer bank, probably by 

breaking the OBC and avoiding the transport of momentum downwards. However, they 

create local scour upstream and downstream. 
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2.2.2. Is the bi-cellular pattern universally present in turbulent curved flow? 

There is not an established agreement on this matter. Early research based on field measurements 

and experiments suggests that the OBC is not universal in open-channel flow in bends.  Götz 

(1975) suggests that the occurrence depends on the aspect ratio, whereas Brathurst et al. (1979) 

say that depends on the slope of the bank. More recent works, particularly numerical ones, have 

proven that the presence of the turbulent-driven cell is much more universal than initially thought. 

Blanckaert & de Vriend (2004) found that the OBC also occurs in cases of weak curvature.  

Unlike straight channels, where the aspect ratio determines the magnitude of the turbulent-

driven flow, there is no clear parameter to determine the inertia-to-turbulence ratio in curved 

open-channel flows. Van Balen (2010) studied the influence of the narrowness/shallowness open-

channel flow in bends for his thesis, and Constantinescu et al. (2011) mention that the interaction 

between the primary and secondary flow is larger when R/B<2, but does not clarifies which of 

the two secondary flow mechanisms is dominant.  

 Straight channel Curved channel 

1st kind sec. flow None Turbulence anisotropy 

2nd kind sec. flow Turbulence anisotropy 
Turbulence anisotropy + Centripetal 

forces 

Critical parameter B/h B/h + R/B? 

Table 2.3.  Secondary flow in straight and curved open-channels, the physical mechanisms that generate them and 

the threshold parameters for the turbulence-driven cells to be relevant (van Balen et al., 2009). 
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2.3. Hydrodynamic modelling of meandering open-channel flows 

A meandering channel contains two or more consecutive bends. The flow interaction from one 

bend to the next adds new features and complexity. In Section 2.2 the secondary flow's structure 

on a curved open-channel was discussed. In meandering channels the turbulence and pressure-

driven secondary currents are also present and influenced by the flow’s memory from previous 

bends. The following list includes some relevant examples of three-dimensional, non-hydrostatic 

CFD of meandering channels and experimental work that is crucial to understand the underlying 

mechanisms of meandering flows. 

 Demuren & Rodi (1986) were pioneers in this field. They used RANS with a version of k-ε 

in three different meander configurations, studying the influence of the aspect ratio, 

roughness, and discharge locations. The results show the presence of a single PDC in all 

simulations. 

 Sellin et al. (1993) published the first results of an ambitious experimental programme carried 

out at the Flood Channel Facility (Wallingford, UK) with the aim of providing a substantial 

knowledge in the area of compound meandering channels and flooding effects on rivers. 

Three experimental setups were created: low sinuosity (60º bends) channel with both fixed 

and irregular bed, and high sinuosity channel (110º bends) with irregular bed. Among the 

many objectives of this study, there is the influence of water depth on the secondary currents 

of the main channel and the influence of sinuosity, depth, and roughness on the discharge 

capacity, bed shear stress, and velocity distribution. Only the time-averaged velocities were 

measured, there is no record of turbulence statistics. These experiments became a key 

reference for any work in compound meandering channels and a remarkable step forward 

in this topic. Several researchers used this facility to carry on their experiments and/or 

validate their codes (e.g. Shukla & Shiono (2002), Shams et al. (2002) or Rameshwaran & 

Naden (2004)). 

 Ye & McCorquodale (1997) simulated a 180º bend and a meandering open-channel solving 

RANS on a collocated grid with σ layers on the vertical direction to fit the free surface and 

bathymetry. The results were compared with experimental data, showing that further effort 

should be made to describe the important secondary currents that take place. 

 Shiono & Muto (1998): “the most interesting feature of the compound meandering channel 

flow was found to be the behaviour of the secondary flow”. These researchers used a two-

component laser-Doppler anemometer to measure  the low sinuosity compound meandering 

channel of the FCF described in Sellin at al. (1993). The focus was on the secondary flow 

and shear stress analysis. They found a change in the direction of the secondary cells’ 

rotation before and after the inundation, due to the overbank flow. It was found also that 

the interaction between inbank and outbank flow creates a secondary shear current that 

prevails over the PDC in the main channel. Large interfacial shear stresses are reported at 

the bankfull. These stresses are usually higher than the ones generated on the bed. 

 Wu et al. (2000) solved the 3D hydrodynamics, sediment transport, and free surface in a 

channel with a 180º bend. They developed novel algorithms for the free surface and 

roughness description within their RANS model. The focus of the work is the sediment 

transport and deposition instead of the hydrodynamics. The validation of the suspended-

load and total-load showed generally good agreement. 

 Shams et al. (2002) ran a RSM closure for RANS in FLUENTTM code, including Lagrangian 

particles’ transport and deposition. They simulated two cases studied in laboratory by 

Shiono & Muto (1998) in the meandering channel of the Flood Channel Facility UK 

(Wallingford, England). This work also put a lot of effort on the secondary flow patterns. 

The OBC was not predicted in any of their simulations. 
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 Wilson et al. (2003) studied the 3D hydrodynamics predicted by RANS of a large-scale 

meandering channel with irregular fixed bed. They found reasonable overall agreement 

with experimental results, but important local discrepancies which try to solve by means of 

better free surface calculation and different discretisation schemes. They concluded that a 

more detailed treatment of turbulence is needed for a more accurate calculation, including 

the anisotropy effect. 

 Rameshwaran & Naden (2004): simulated with RANS the low sinuosity meandering channel 

of the UK Flood Channel Facility only for inbank flow. They developed a ‘porosity method’ 

for the calculations of shear stress on the surface. The numerically predicted velocity fields 

showed discrepancies with the experimental data, which the authors attributed to the 

isotropic nature of the turbulence closure. 

 Sugiyama et al. (2005) performed RANS with an ASM closure on a compound channel whose 

main channel’s geometry is similar to the one of Stoesser et al. (2010), albeit the dimensions 

are different and the R/H ratio much bigger. The authors used an ASM model with an 

original derivation of the pressure-strain term and a boundary fitted coordinate system. 

Validation with experimental results showed good agreement for the primary velocities. 

Secondary flow's patterns were qualitatively well-captured using a rather coarse mesh. 

 Wormleaton et al. (2005): these experiments were also carried out on the UK FCF. They used 

the low sinuosity channel with irregular sand/gravel bed. The object of the study is the 

effect of bankfull and overbank flows on the bed morphology. This article's introduction 

includes a very good description of the flow's structures in meanders (both inbank flow and 

flooding conditions) based on all the research done before in this facility. 

 

Figure 2.6. Inbank flow in a meandering channel (Wormleaton et al., 2005). 

 Nguyen et al. (2007) studied the 3D turbulent flow using RANS with the mixing-length and 

the k-ε models for a 90º bend, a 180º bend, a S-shape meandering channel, and one 

laboratory model of the real case of a curved stretch in the Rhine River. The results 

reasonably agreed with experimental data and focused on the shifting of the momentum in 

the bends and the effects on the free surface. This work does not analyse thoroughly the 

secondary flow. 

 Khosronejad et al. (2007) solved RANS equations using two different eddy viscosity 

closures: k-ε and k-ω in a S-shaped meandering channel. They also solved sediment 

transport, which was validated with data from other experiment. The results show a better 

behaviour of the low-Re version of k-ω. 

 Shukla & Shiono (2008) used a commercial code to complement experimental data obtained 

in the UK Flood Channel Facility (Shiono & Muto, 1998). The low sinuosity channel with 

flat bed was simulated with RANS and a k-ε closure; the domain consists in a 60 m long 
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compound meandering open-channel with four wavelengths. They analysed the advection 

of stream-wise vortices and found the shear stresses to have an important role in secondary 

flow generation, in contrast with straight compound channels, where the normal stresses 

are more important. The main source of shear stress and turbulence was identified in the 

interaction between main channel and floodplain, whereas the contribution of lateral shear 

stress was found to be small. The authors acknowledge that the use of an isotropic model 

could prevent results being more accurate regarding the turbulence-driven secondary flow. 

 Stoesser et al. (2010) used both steady RANS with k-ε and k-ω and LES to simulate the 

turbulent flow in a meandering channel of rectangular section and flat bed. This work 

focuses on secondary flow and shear stresses determination. They used periodic boundary 

conditions, creating a looping meandering channel. Results with both models were 

reasonable, albeit LES was remarkably closer to the experimental results by Siebert (1982). 

Although the OBC appears in the RANS results, the LES predicted its evolution correctly. 

They also concluded that the mechanism of generation of the OBC in a meandering channel 

is different from the single bend case, being the former “a result of the flow history”. 

 Kara et al. (2012) performed a detailed numerical study of a compound straight open-channel 

with one floodplain. With the aim of studying the influence of the floodplain depth, two 

cases were tested with different relative depth in the floodplains (taking as reference 

H=0.08 m the main channel depth): h/H=0.5 and h/H=0.25. Experimental data from 

Tominaga & Nezu (1991) showed a good agreement with the predictions. The pattern of 

the secondary flow is well depicted by the LES simulations, providing a structure 

dominated by two main vortices formed at the interface between the main channel and the 

floodplain. Another vortex roll, independent of the floodplain depth, is located near the free 

surface. As a result of these secondary currents, the span-wise Reynolds stresses generated 

are of the same magnitude as the primary Reynolds stress. The stream-wise vorticity 

equation is evaluated, concluding that anisotropy of the normal Reynolds stresses 

dominates the origin of secondary currents. 

 Kang & Sotiropoulos (2012) also compared RANS and LES prediction on a “natural-like” 

meandering channel. Unlike Stoesser et al. (2010), in this work the numerical algorithm 

and the grid used for the simulation was the same for both models. Only LES predicted the 

OBC and the shear layers at the inner and outer banks correctly. The authors blamed the 

isotropic turbulence closure of RANS eddy viscosity models for this. 

 Zhou et al. (2017) reviewed the predictive capacity of RANS models to simulate meandering 

open-channel flows. The analysis included two ‘families’ of turbulence closures, the first 

one being k-ε-based models (including the non-linear Craft-Suga-Launder - Craft et al., 

1996 -  model used in the current work) and the second being several versions of the SST 

models. They tested such models in two meandering domains, whose main difference was 

the existence of a straight cross-over in one of them and the sinuosity. The second case 

analysed in this reference would be analogous to the periodic meander of section 6.5 

without a straight cross-over between bends.  No significant differences were found among 

the turbulence models. While RANS predicted well the longitudinal velocity, the 

simulations fail to reproduce accurately the OBC and other secondary flow features. 

 Moncho-Esteve et al. (2017) did large-eddy simulations of a meandering open-channel with 

rectangular cross-section in order to elucidate the influence of the secondary motion in the 

mixing of a passive tracer released in the channel. There results are well presented and 

rather interesting. As with prior LES studies, the OBC appears in the results. The authors 

claim that PDC and OBC switch among bends, implying a two-way relation between them.  

They also state that the interaction between theses vortices and their streamwise stretching 

is crucial to predict mixing when the injection point is close to the banks. 
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 Kim et al. (2020) performed RANS simulations with a SST k-ω model coupled with 

Lagrangian tracking of passive particles to reproduce solute transport. The simulations did 

not capture the OBC, and insted the results are focused on the streamwise evolution of the 

PDC and its influence on solute transport. Higher sinuosity induces streamwise 

recirculation that effectively traps the particles. Secondary circulation favours this 

phenomenon by redistributing momentum in the cross section and bringing particles 

towards the recirculation areas. 

 

 

Figure 2.7. Range of meandering channel geometries analysed by Kim et al. (2020). 
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2.4. Hydrodynamic modelling of natural river meanders 

Meanders are the most usual form in which rivers appear on the Earth surface on their middle and 

low stretches. They are the result of the coupled evolution of the hydrodynamic properties of an 

open water course together with the climatic, morphological, geological, and biological features 

of the place of the planet where it occurs. Meanders are always in dynamic equilibrium, evolving 

with time and with the changes of the media. The main flow mechanisms in natural river meanders 

are summarised below: 

 PDC: as discussed in Section 2.2, these currents are generated by centripetal force (secondary 

flow of Prandtl's first kind). The water moves down in the outer bank and up in the inner 

one. In natural rivers, the PDC is stretched in the stream-wise axis acquiring a helical 

structure (see Figure 2.6). They are generated around the bends, having their maximum size 

at the bend’s apex. The cell looses energy along the cross-over sections until it finally dies 

out when entering the next bend. At that point a new counter-rotating PDC is generated.  

 OBC: much smaller than the PDC, it is located by the outer bank near the free surface. It is 

also stretched in the stream-wise direction acquiring a helical structure. Some authors 

(Stoesser et al., 2010) hint that in meanders with many consecutive bends and short cross-

over between them, the remains of the previous bend’s PDC is the source of the current 

bend’s OBC. Under that assumption, the two vortices do not vanish, but switch their roles. 

This cell is fundamentally generated by turbulence anisotropy and the history of the flow 

(Prandtl's second kind).  

 Overbank-induced structures: in the case of a straight overbank flow, there will be a very 

important interaction with the inbank flow, especially at those sections aligned 

perpendicularly to the floodplain axis. This interference will result in high shear stresses at 

the inbank/overbank interface. The typical secondary flow structures in meandering 

channels (PDC and OBC) can be either reinforced or dissipated partially or totally by the 

overbank flow.  

 Influence of roughness and depth: the influence of the overbank flow on the inbank flow may 

vary remarkably depending on the water depth at the floodplain and the roughness of it. 

One extreme case would be deep overbank flow and smooth floodplains. The overbank 

flow would carry high momentum and fundamentally alter of the secondary flow in the 

meander (see Figure 2.8a). On the opposite side of the spectrum, a shallow overbank flow 

over rough floodplains would affect minimally the secondary flow and shear stress 

distribution of a typical inbank flow in a meandering channel (see Figure 2.8b). 

 

  
(a) (b) 

Figure 2.8. Secondary inbank flow in a meandering channel subjected to: (a) strong overbank flow (deep and/or 

smooth floodplains), (b) weak overbank flow (shallow and/or rough floodplains). Wormleaton et al. (2005). 

 Influence of the bathymetry: an irregular channel bed and banks affects the aforementioned 

patterns.  
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In previous sections, the basic mechanisms and references of curved, meandering, and 

compound open-channels were commented. These are all idealized models of a real river or water 

channel. Although most of the experimental work in river dynamics was performed in laboratory 

flumes, field measurements have been also carried out by researchers. Consequently, numerical 

modellers have also preferentially chosen laboratory models or flumes as computational domain. 

Numerical models based on the 2D or 1D shallow waters (depth averaged) hydrostatic equations 

became rather popular and have been widely used in river engineering during the past 30 years. 

Regarding turbulence models, k-ε two-equation model is also a common modelling tool. 

Therefore, despite being out of the scope of the current work, a brief outline of some relevant 

works on three-dimensional modelling of river meanders is to follow: 

 Bathurst et al. (1977) was mentioned before and is a seminal work on river engineering. They 

did a field campaign of measurements to determine the distribution of shear stresses in 

rivers.  

 Lane et al. (1999) made an interesting studio comparing and analysing the performance of a 

2D depth-averaged model and a 3D non-hydrostatic RANS with a RNG (Re-Normalization 

Group theory modification) k-ε closure. They tested different applications of these models 

to river hydrodynamics in real rivers. They found that the 3D model has a basic limitation 

dealing with topographic complexity. Nevertheless, the authors concluded that the 

predictive ability of the 3D model is higher, particularly regarding the secondary 

circulation. They also found that 3D RANS provides more reliable estimates of bed shear 

stresses. 

 Sukhodolov & Rhoads (2001) characterised the three-dimensional flow structure and the 

temperature mixing through field data obtained at three rivers in Illinois (USA). 

Discrepancy between this work and Barhurst et al. (1977) has been found, which is 

attributed to the technological limitations of the latter at the time.  

 Nicholas & McLelland (2004): this work is a first attempt in accurately simulating a natural 

river floodplain under overbank flow. A RNG k-ε turbulence model is used together with 

wall functions and a drag-law to represent the effect of the vegetation on the floodplain. 

The results showed good qualitative agreement (with 50-60% of the measured data) with 

ADV measurements regarding primary flow and turbulent kinetic energy k (agreement of 

30-40% with measured data). The analysis of the numerical/physical mismatch is difficult 

due to the many sources of complexity: bed topography, vegetation structure, not to 

mention the numerical and experimental limitations. The determination of appropriate 

roughness values to use in the drag-law was found problematic. Authors recommend the 

use of 3D non-hydrostatic models for natural river environments.  

 Wormleaton & Ewunetu (2006) performed a RANS k-ε simulation of the low sinuosity 

meandering channel of the UK FCF with mobile sand bed and fixed concrete banks. They 

analysed the influence of floodplain depth, roughness, and planforms. The authors argued 

that the use of an isotropic turbulence closure is consistent since, although the flow is 

complex, the turbulence-driven secondary flow resulting from the Reynolds stresses 

anisotropy is small compared with the centrifugal and shear-induced one. They used a 

relatively coarse numerical grid. The predictions show good agreement with the 

experimental results, although tend to underestimate the magnitude of the secondary flow, 

especially around the bend’s apex. The authors suggested that the k-ε model "may fall short 

of requirements where accurate velocity distributions are needed". 

 Nguyen et al. (2007): this work was mentioned above. They applied 3D steady RANS to four 

different cases: 90º curved duct, 180º curved open-channel, S-shape channels, and the 

laboratory model of one curved stretch of the Rhine River. The amount of data is very large, 

yet the discussion is on the short side. The results lack further validation since the paper is 
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focused on introducing the code than in the study of the hydrodynamics. The results focus 

on the primary flow and momentum exchange.  

 Tritthart & Gutknecht (2007) simulated the impact of the reconnection of a former meander 

at the river Raab in Austria using a 3D unsteady RANS model with k-ε turbulence closure 

on a polyhedral mesh. No validation data was available. 

 Baranya et al. (2015) compared RANS results with field measurements on a river confluence. 

The results show the relevance of the secondary flow and vortex shedding on the mixing 

process occurring at the confluence, but the isotropic turbulence closure and the relatively 

coarse grid prevented a more accurate definition of the secondary flow structure. 

 Khosronejad et al. (2015) used LES and URANS with k-ω turbulence closure to simulate 

dune evolution in meandering rivers. Regarding modelling of secondary flow dynamics, 

the authors reported that URANS failed to reproduce intermediate-size bed forms. 

 Alvarez et al. (2017) simulated flow separation under strong curvature in the Colorado River 

using DES. Secondary flow is not the main focus of this work, but it is also analysed, albeit 

no OBC is observed. The flow structures captured with the model are consistent with field 

observations. 
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3. Mathematical model 

This Chapter describes the equations and fundamental assumptions that constitute the basis of the 

modelling on this work.   

3.1. URANS equations and turbulence closures 

URANS equations are the result of applying Reynolds decomposition (Eq. 2.2) to the Navier-

Stokes equations for mass continuity and momentum balance: 

𝜕�̅�𝑗

𝜕𝑥𝑗
= 0 (3.1) 

𝜕�̅�𝑖

𝜕𝑡
+

𝜕�̅�𝑖�̅�𝑗

𝜕𝑥𝑗
= −

1

𝜌

𝜕�̅�𝑑

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[
𝜇

𝜌

𝜕�̅�𝑖

𝜕𝑥𝑗
] − 𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅            𝑓𝑜𝑟 𝑖 = 1, 3 (3.2) 

where 𝑢�̅� is the averaged velocity component i and 𝑢𝑖
′ is the fluctuating velocity component i, 𝑃𝑑

̅̅ ̅ 

is the averaged dynamic (non-hydrostatic pressure), ρ is the density of the fluid (ρ=1000 kg/m3 

for water), and μ is the laminar viscosity. This form of the equations does not assume account for 

the presence of a variable free surface. 

Four different turbulence closures have been tested for URANS in the current research work: 

the standard k-ε model, and three non-linear eddy viscosity closures: one second-order and two 

third-order models. 

3.1.1. The k-ε model 

The k- ε model is a two-equation turbulent closure based on the modelling of the transportation 

of the turbulent kinetic energy k and the turbulent dissipation rate ε. It is the most widely used 

and validated turbulence model. It is based in the Boussinesq assumption (Eq. 2.4), establishing 

a linear relation between the Reynolds stresses and the strain rate Sij (Eq. 3.3). The eddy viscosity 

νt is estimated as: 

𝜈𝑡 = 𝐶𝜇

𝑘2

휀
 (3.3) 

where Cμ is a constant coefficient (commonly Cμ=0.09), Substituting Eq. 3.3 on Eq. 2.4, the form 

of the Reynolds stress tensor components is:  
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−𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ = 2𝐶𝜇

𝑘2

휀
𝑆𝑖𝑗 −

2

3
𝑘𝛿𝑖𝑗 (3.3) 

where Sij represents the components of the strain rate tensor, which constitutes the symmetric part 

of the velocity gradient tensor and it is calculated as described in Eq. 3.4: 

𝑆𝑖𝑗 =
1

2
(
𝜕�̅�𝑖

𝜕𝑥𝑗
+

𝜕�̅�𝑗

𝜕𝑥𝑖
) (3.4) 

As seen in Eq. 3.3, the Boussinesq assumption assigns a constant value of 
2

3
𝑘 to all of the trace 

components in case of zero strain, which is coherent with the definition of the turbulent kinetic 

energy in a three-dimensional velocity field: 

𝑘 =
1

2
(𝑢′𝑢′̅̅ ̅̅ ̅̅ + 𝑣′𝑣′̅̅ ̅̅ ̅̅ + 𝑤′𝑤′̅̅ ̅̅ ̅̅ ̅) (3.5) 

However, defining the normal Reynolds stresses (𝑢𝑖
′𝑢𝑖

′̅̅ ̅̅ ̅̅ ) as equal contributions to a single 

variable, k, forces a non-realistic isotropic phenomenology which constitutes one key restriction 

that the k- ε closure inherits. 

The transport equation for k reads: 

𝜕𝑘

𝜕𝑡
+ �̅�𝑗

𝜕𝑘

𝜕𝑥𝑗
= 𝜈𝑡

𝜕�̅�𝑖

𝜕𝑥𝑗

𝜕�̅�𝑖

𝜕𝑥𝑗
+

𝜕

𝜕𝑥𝑗
[(

𝜇

𝜌
+

𝜈𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] − 휀 (3.6) 

where σk=1.0. Eq. 3.6 can be obtained by extracting the trace from the exact 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  transport 

equation, which will not be develop here since it is not substantial to this work. The physical 

meaning of the terms involved in Eq. 3.6 is disclosed as follows: 

𝜕𝑘

𝜕𝑡
+ 𝐶𝑘 = 𝑃𝑘 + 𝐷𝑘 − 휀 (3.7) 

where Ck quantifies the convective transport of k, Pk is the production of turbulent kinetic energy, 

Dk the turbulent and viscous diffusion of k, and ε the destruction of turbulent kinetic energy via 

dissipation, coupling both variables. The dissipation rate ε can be defined from the k-equation and 

dimensional analysis as follows: 

휀 =
𝜇

𝜌

𝜕𝑢𝑖
′

𝜕𝑥𝑗

𝜕𝑢𝑖
′

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (3.8) 

An exact transport equation for ε can be obtained from Eq. 3.8 (Wilcox, 1998). However, the 

final form of this exact derivation is rather complicated, and there are many terms of near-

negligible weight. The approach adopted by Jones & Launder (1972) was to follow the structure 

of the k-equation, resulting in Eq. 3.9: 
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𝜕휀

𝜕𝑡
+ �̅�𝑗

𝜕휀

𝜕𝑥𝑗
=

휀

𝑘
(𝑐𝜀1𝜈𝑡

𝜕�̅�𝑖

𝜕𝑥𝑗

𝜕�̅�𝑖

𝜕𝑥𝑗
− 𝑐𝜀2휀) +

𝜕

𝜕𝑥𝑗
[(

𝜇

𝜌
+

𝜈𝑡

𝜎𝜀
)

𝜕휀

𝜕𝑥𝑗
] (3.9) 

where the values adopted for the constants are σε=1.31, Cε1=1.44, and Cε2=1.92. Eq. 3.9 

incorporates a higher degree of modelling, revealed by the more profuse use of semi-empirical 

coefficients. The physical interpretation of the terms involved is analogous to the k-equation: 

𝜕휀

𝜕𝑡
+ 𝐶𝜀 = (𝑃𝜀 − Ψ𝜀) + 𝐷𝜀 (3.10) 

where Cε quantifies the convective transport of ε, Pε and Ψε are, respectively, the production and 

destruction of the turbulent dissipation rate, and Dε is the turbulent and viscous diffusion of ε. 

3.1.2. Non-linear eddy viscosity models 

Linear eddy viscosity models (LEVM’s) have proved to be a powerful tool for predicting the 

mean flow properties in many engineering flows. Nevertheless, when accurate determination of 

secondary flow or shear stresses is required, LEVM’s are far from perfect. Firstly because linear 

eddy viscosity models assume turbulence to be isotropic, providing an unrealistic prediction of 

the normal stresses. Secondly, because the k-ε model is known to be overly dissipative, 

particularly for problems involving flow separation or shear layers.  

In Section 2.1.3 it was discussed how the boundary between non-linear eddy viscosity models 

(NLEVMs) and explicit algebraic stress models (ASM) is relatively flexible. These closures 

provide algebraic expressions to calculate each one of the terms of the Reynolds stress tensor. 

The majority of them however are based on linear eddy viscosity closures. We have chosen to 

label them as NLEVMs for this reason, but the reader can find them addressed with the ASM 

label, particularly in older papers.  

Three NLEVMS closures based on the k-ε formulation are tested in this dissertation and 

compared with standard k-ε one in an URANS simulation. Two third-order models specifically 

developed for flows subjected to curvature were chosen. A third quadratic non-linear eddy 

viscosity model was also tested to provide a wider view of the spectrum of modelling choices 

available. All the models share a common formulation consisting in extending the Boussinesq 

assumption through the use of non-linear quadratic and/or cubic terms. The overall expression 

reads: 

 

𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ = −2𝐶𝜇

𝑘2

휀
𝑆𝑖𝑗 +

2

3
𝑘𝛿𝑖𝑗 + 𝑎1

𝑘3

휀2
(𝑆𝑖𝑘𝑆𝑗𝑘 −

1

3
𝑆𝑘𝑙𝑆𝑘𝑙𝛿𝑖𝑗)

+ 𝑎2

𝑘3

휀2 (𝑆𝑖𝑘Ω𝑗𝑘 + 𝑆𝑗𝑘Ω𝑖𝑘) + 𝑎3

𝑘3

휀2
(Ω𝑖𝑘Ω𝑗𝑘 −

1

3
Ω𝑘𝑙Ω𝑘𝑙𝛿𝑖𝑗)

+ 𝑎4

𝑘4

휀3 (𝑆𝑖𝑘Ω𝑗𝑙 + 𝑆𝑗𝑘Ω𝑖𝑙)

+ 𝑎5

𝑘4

휀3
(Ω𝑖𝑘Ω𝑘𝑙𝑆𝑙𝑗 + Ω𝑗𝑘Ω𝑘𝑙𝑆𝑙𝑖 −

2

3
Ω𝑘𝑙𝑆𝑙𝑚Ω𝑚𝑘𝛿𝑖𝑗)

+ 𝑎6

𝑘4

휀3 (S𝑘𝑙S𝑘𝑙𝑆𝑖𝑗) + 𝑎7

𝑘4

휀3 (Ω𝑘𝑙Ω𝑘𝑙𝑆𝑖𝑗) 

(3.11) 

where the rotation rate is defined by: 



 33 

Ω𝑖𝑗 =
1

2
(
𝜕�̅�𝑖

𝜕𝑥𝑗
−

𝜕�̅�𝑗

𝜕𝑥𝑖
) (3.12) 

In Eq. 3.11, all the coefficients, including Cμ, are not constants anymore, but dependent on the 

velocity gradient tensor. The ai coefficients multiply the higher-order extra terms added to the 

standard Boussinesq assumption for k-ε; note that if ai=0 the resulting expression would be 

identical to Eq. 3.3. The expressions chosen for these ai coefficients constitute the fundamental 

difference between the models. It is also noteworthy that the non-symmetric contribution to the 

velocity gradient tensor, i.e., the vorticity rate tensor Ω𝑖𝑗, plays a role in the quantification of the 

coefficients, whereas LEVM’s rely solely on the strain rate. 

3.1.3. Gatski and Speziale (GS) model 

Gatski & Speziale (1993) derived a quadratic model based on Pope’s (1975), which set the basis 

for NLEVM’s. The model uses the terms on the right-hand side of Eq. 3.11, hence it must provide 

values for two non-linear coefficients ai which arise from the analysis and adaptation of the 

Reynolds stress transport equations (a3,…, a7 = 0): 

𝑎1 = 𝜑2(2 − 𝐶3) (
4

3
− 𝐶2) (3.13) 

𝑎2 =
1

2
𝜑2(2 − 𝐶4) (

4

3
− 𝐶2) (3.14) 

𝐶𝜇 =
1

2
𝜑 (

4

3
− 𝐶2) (3.15) 

where φ depends on the ration between turbulent kinetic energy production Pk  (Eq. 3.7) and 

dissipation rate ε: 

𝜑 = (
𝐶1

2
−

𝑃𝑘

휀
)

−1

 (3.16) 

where C1=3.6, C2=0.8, C3 = C4 =1.2. Gatski & Speziale (1993) report that the fifth term in Eq. 

3.11 leads to erroneous prediction, fixing a3=0. The parameter Cμ depends on the rate between 

turbulence production and dissipation: 

𝐶𝜇 =
1

2
𝜑 (

4

3
− 𝐶2) (3.17) 

3.1.4. Craft-Suga-Launder (CSL) model   

Craft et al. (1996) developed this cubic model which has been proved successfully in complex 

open channel flows. In this case, the value of the coefficients ai is obtained by multiplying a 

constant by the pivotal coefficient Cμ: 

𝑎1 = −0.4𝐶𝜇 ; 𝑎2 = 0.4𝐶𝜇 ; 𝑎3 = 1.04𝐶𝜇 (3.18) 
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𝑎4 = 80𝐶𝜇
3 ;  𝑎5 = 0 ; 𝑎6 = −40𝐶𝜇

3 ; 𝑎7 = 40𝐶𝜇
3 

The parameter Cμ depends on the strain and rotation rate: 

𝐶𝜇 =
0.3

1 + 0.35𝜂
3
2

[1 − 𝑒−0.36𝑒0.75𝜂
] (3.19) 

where η=max(S,Ω). S and Ω are the strain and rotation rates: 

ijij SS
k

S 2


  (3.20) 

ijij

k
 2


 (3.21) 

3.1.5. Lien-Leschizner (LL) model 

This is a cubic approach derived by Lien & Leschizner (1994) from a quadratic eddy viscosity 

model by Shih et al. (1993). It was successfully applied in flows subjected to strong curvature and 

separation, such as backwards step. 

𝑎1 =
3

1000+𝑆3 ; 𝑎2 =
15

1000+𝑆3 ; 𝑎3 =
19

1000+𝑆3 

𝑎4 = 80𝐶𝜇
3 ;  𝑎5 = 0 ; 𝑎6 = −16𝐶𝜇

3 ; 𝑎7 = 16𝐶𝜇
3 

(3.22) 

where S is the strain rate and Cμ is calculated following Eq. 3.19. 
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3.2. PANS model 

Partial averaging consist in filtering part of the turbulent scales, so that the biggest fluctuations 

are solved and the rest modelled. PANS is originally based on the unsteady RANS equations plus 

the k-ε model. Therefore, the filtering is not explicit, as in LES, through a turbulent length scale 

(usually the grid size), but implicit through the dampening of the k and ε equations. 

Consequently, PANS equations are look the same as unsteady RANS, but instead of Reynolds 

averaged we have partially averaged variables: 

𝜕�̂�𝑗

𝜕𝑥𝑗
= 0 (3.24) 

𝜕�̂�𝑖

𝜕𝑡
+

𝜕�̂�𝑖�̂�𝑗

𝜕𝑥𝑗
= −

1

𝜌

𝜕�̂�𝑑

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[
𝜇

𝜌

𝜕�̂�𝑖

𝜕𝑥𝑗
− 𝜏𝑖𝑗]           𝑓𝑜𝑟 𝑖 = 1, 3 (3.25) 

where �̂�𝑖 = ℘(𝑢𝑖) and �̂�𝑑 = ℘(𝑃𝑑), being  the partial-averaging operator. The Reynolds stress 

tensor will be the product of the non-resolved fluctuations: 𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗̂ − �̂�𝑖�̂�𝑗.  

PANS requires a turbulence closure to address the unresolved turbulence. In PANS, the relation 

between solved and modelled quantities is given by two parameters: 

k

k
f u

k   






uf   

(3.26) 

where k and ε are the total turbulent kinetic energy and dissipation rate and the sub-index u 

represents the unresolved (i.e. modelled) part. This parameters vary between 0 and 1. If both are 

equal to one, then all the k and ε would be modelled, so this would be a standard RANS method. 

On the other end of the spectrum, fk = fε = 0 would imply not using any turbulence closure at all, 

hence a DNS-type of simulation.  

By choosing carefully fk and fε and matching them with the adequate mesh, the modeller is 

implicitly choosing a cut-off filter. That does not mean that the model can be used to perform 

indistintey RANS, LES, DNS or any intermediate procedure. PANS models are usually built on 

RANS codes, therefore the implemented numerical discretisation schemes or the parallelisation 

strategy (if any) constrain the possibilities of the method. Plus, this being a relatively recent 

modelling approach, there are no clear procedures on how to choose fk and fε and the 

corresponding numerical parameters for a successful and efficient simulation. These are precisely 

some of the aspects this research wants to shed some light upon. 

PANS is very stable except, naturally for very low values of the damping factors (fk and fε). 

One way of quantifying the partial-averaging is to calculate the turbulent length scale of the 

modelled fluctuations ℓu given by total and unresolved k and ε following Eq. 3.27: 
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Hence, for fk = 0.4 and fε = 1, the turbulent length scale of PANS modelled fluctuations would 

be approximately 25% of the modelled length scale in standard RANS k-ε.  

PANS is based on the RANS equations and the k-ε model. The turbulence model for the 

unresolved fluctuations is derived by multiplying Eqs. 3.6 and 3.9 by fk and fε respectively, 

assuming they have a constant value. Reordering the terms we obtain: 
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 (3.29) 

Eqs. 3.28-29 retain the same structure as in 3.6 and 3.9. There are however three main 

differences between them: a) the turbulent kinetic energy k and the dissipation rate ε are 

substituted by their partially averaged parts (ku and εu respectively); b) the velicity field which 

advects ku and εu is no longer ensemble-averaged but partially-averaged; c) some of the coefficient 

values are affected by this modifications, since they now integrate the ratios of resolved-to-

unresolved turbulence (Eq. 3.30). 
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(3.30) 

PANS eddy viscosity νu is calculated through this modelled ku and εu: νu = Cμ (k
u)2/εu. And 

consequently the Boussinesq assumption for the strain rate tensor is reads: 

ijijuij kS 
3

2
2   (3.31) 

In PANS, as in standard k-ε models, Cμ is taken as a constant value of 0.09.  
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3.3. LES model 

The space-filtered mass and momentum conservation equations for an incompressible fluid are: 

𝜕〈uj〉

𝜕𝑥𝑗
= 0 (3.32) 

𝜕〈𝑢𝑖〉

𝜕𝑡
+

𝜕〈𝑢𝑖〉〈𝑢𝑗〉

𝜕𝑥𝑗
= −

1

𝜌

𝜕〈𝑃𝑑〉

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[
𝜇

𝜌

𝜕〈𝑢𝑖〉

𝜕𝑥𝑗
− 𝜏𝑖𝑗]           𝑓𝑜𝑟 𝑖 = 1, 3 (3.33) 

where 〈𝑢𝑖〉 and 〈𝑃𝑑〉 are the space-filtered velocity i-component and the space-filtered dynamic 

pressure respectively, and 𝜏𝑖𝑗 = 〈𝑢𝑖𝑢𝑗〉 − 〈𝑢𝑖〉〈𝑢𝑗〉 is the sub-grid scale (SGS) turbulence tensor, 

which is estimated using the Smagorinsky SGS model:  

𝜈𝑆𝐺𝑆 = (𝐶𝑠Δ𝑔)
2
|𝑆| (3.34) 

where Cs=0.1 is a constant coefficient, Δg is the grid spacing and S is the strain rate (Eq. 3.20). 

Notice the simplicity of the Smagorinsky model compared to the turbulence closures in Sections 

3.1 and 3.2. Once the SGS viscosity νt is obtained, the terms of the SGS turbulence tensor τij are 

obtained following the Boussinesq assumption:   

𝜏𝑖𝑗 = 2𝜈𝑆𝐺𝑆𝑆𝑖𝑗 +
1

3
𝜏𝑘𝑘𝛿𝑖𝑗 (3.35) 

Since LES solves the larger, energy-containing turbulent structures, a simple isotropic model 

can suffice to account for the dissipative scales of turbulence. 
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4. Numerical model 

The cases studied in this dissertation are solved with the code Freeflow3D originally developed 

by Dr Luis Cea within the GEAMA (Water and Environmental Engineering Group) of A Coruña 

University. FreeFlow3D is a Finite Volume FORTRAN code which was originally designed to 

solve the unsteady RANS equations for three-dimensional, non-hydrostatic flows with free 

surface boundary condition. 

The LES simulations were performed with the code Hydro3D (Bominayuni & Stoesser, 2011). 

This code is an in-house FORTRAN-based Finite Volume code as well. It is built on a staggered 

grid and parallelised with a MPI protocol. In the context of this work, the LES data have been 

used for comparison and discussion, but the development of Hydro3D was not among the goals 

of the PhD. However, the LES code has been ran specifically for this work and all the LES results 

in this documents were obtained and postprocessed by the author with the collaboration of Dr 

Bominayuni and Professor Stoesser. 

FreeFlow3D has been previously applied with success to short wave propagation (Cea et al., 

2009). In this work it has been applied to environmental flows. Further developments have been 

made in the code during the realization of this PhD towards this goal, the most relevant being the 

implementation of non-linear eddy viscosity turbulence models and the PANS model. 

In the following, details on the numerical schemes and algorithms implemented in the code are 

provided.  

4.1. The Finite Volume Method (FVM) 

The Finite Volume Method is an Eulerian numerical approach whose main advantages are: 

 Conservative formulation: the numerical algorithm resulting from the integration of the 

equations expresses the exact conservation of the relevant properties in each cell (also called 

finite volume as the discrete, finite version of a mathematical control volume). The integral 

form of the equations can be directly translated into conservation laws. Not only the relation 

between the numerical code and the equations is tight, but also the interpretation of them. 

The conservation of any property within a control volume (CV) in FVM can be seen as a 

balance. Typical elements of this balance are: the rate of change of the property within the 

control volume in time, the volumetric "sources" or "sinks" of this property inside the 

control volume, and the inwards and outwards fluxes across the control volume boundaries 

(∂CV) due to convection and diffusion.  

 

(4.1) 

 Adaptation to complex domains: unlike the Finite Differences Method (FDM), FVM allows 

unstructured and non-uniform cell shapes and sizes. The adaptation to irregular 

computational domains is key to the applicability to Engineering practice. This feature is 

shared with the Finite Element Method (FEM), which was originally designed for structural 

stress analysis and it is very versatile and popular in a number of engineering fields.  
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The basic steps of a FVM algorithm are: 

1. Domain discretisation: FVM divides the continuous domain in n nodes and ncell cells (or 

finite volumes). The continuous time dimension is also discretised into time steps.  

2. Volume integration: the most characteristic step in the FVM consists on the integration of 

the governing equations of fluid motion over each one of the finite volumes in which the 

domain has been divided. The variables (velocity and pressure) values obtained as a result 

of the balance at every finite volume is stored at every computational node. The momentum 

fluxes across the finite volumes’ faces are predicted following discretisation schemes that 

utilise the discrete variable values at the nodes and the topological features of the 

computational cell to approximate a continuous solution. In this process, discretisation 

errors are introduced. The final result is a set of n algebraic equations. 

3. Matrix solver: the equations resulting from the previous step are solved. As they are usually 

non-linear, iterative procedures are required. 
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4.2. Computational grid 

FreeFlow3D does the spatial discretisation in a semi-structured cell-centred collocated grid. A 2D 

unstructured horizontal mesh is first defined and extruded to generate a 3D computational grid 

with several vertical layers of variable thickness. This layers can be either horizontal (z-layers) or 

terrain-following (σ-layers, see Phillips, 1957), which provide a progressive adaptation from an 

irregular bed to the water surface (see Figure 4.1).  

 

Figure 4.1. σ-layers in a natural compound channel mesh generated with FreeFlow3D. Notice the triangular and 

rectangular horizontal sections of the mesh in different regions. 

The flow variables (velocity, pressure, turbulent kinetic energy, and dissipation) are stored at 

the cell nodes, which are located on the geometrical centre of the volumes. The cells of the 2D 

horizontal mesh can have any shape, although most applications can be effectively discretised 

with triangles or quadrilaterals. When extruded, those shapes produce five or six-faced prisms. 

The lateral faces is always vertical, while the top and bottom faces can be oriented either 

horizontally (z-layers) or at an intermediate angle between the bed and the surface (σ-layers). Any 

element of the mesh is identified with two indices: i refers to the position in the horizontal mesh 

and k refers to the vertical layer. The total number of cells can be calculated as the product of the 

number of elements of the horizontal mesh ni times the number of layers nk. 

The grid covers the desired computational domain. In the case of an irregular bed or a free 

surface computation with z-layers, there will be cells located below or above the limits of the 

domain that will not be considered in the computations. Some cells located in the free surface or 

bottom can be partially filled with fluid. The user can set the threshold fluid fraction for a cell to 

be included in the computation. 

 Boundary conditions on the velocity and pressure fields and the free surface elevation must be 

specified. Open boundaries are defined via a given velocity field (that can vary in time), a constant 

water depth or water surface elevation, and a Neumann or Dirichlet condition on the dynamic 

pressure. Regarding wall boundaries, FreeFlow3D allows choosing among slip and non-slip 

conditions or a wall-function approach (smooth and rough). The roughness coefficients (Manning 

n or equivalent sand height ks) can be constant or variable across the domain. Regarding the free 

surface, it is possible to impose a rigid lid approach (slip condition on velocity and Pd=0 since the 

atmospheric pressure is taken as reference) or a free-surface-solving approach, in which no 

condition is imposed on the velocity and a height-function method is adopted. The free-surface-

solving approach will not be developed in this document since it is not pertinent to the results 

displayed in it.  
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4.3.  Discretisation of the momentum equations 

The integration of the momentum equations (Eqs. 3.2, 3.25, 3.33) over a control volume CVi gives 

the following expression: 

𝜕𝜙

∂𝑡
𝜕𝑉 + 𝐹𝑖

𝐶 = 𝐹𝑖
𝐷 + 𝐹𝑖

𝑇 + 𝐹𝑖
𝑃 + 𝐹𝑖

𝑍 (4.2) 

where ϕ is a velocity component, V the volume, and Fi are different transport phenomena: 

convection (C), viscous diffusion (D), turbulent  diffusion (T), dynamic pressure (P), and 

hydrostatic pressure (Z). The spatial discretization of each of these terms is specified in the 

following section.  

4.3.1. Time discretisation  

The first term in Eq. 4.2 is the rate of change of ϕ, which is zero in steady simulations. To model 

transient problems this term must be retained in the discretisation process. The finite volume 

integration of equation Eq. 4.2 is integrated over a finite time step Δt, resulting in: 

∫ (∫
𝜕𝜙

∂𝑡
𝑑𝑡

𝑡

𝑡−∆𝑡

)
𝐶𝑉𝑖

𝜕𝑉 + ∫ 𝐹𝑖
𝐶

𝑡

𝑡−∆𝑡

𝑑𝑡

= ∫ 𝐹𝑖
𝐷

𝑡

𝑡−∆𝑡

𝑑𝑡 + ∫ 𝐹𝑖
𝑇

𝑡

𝑡−∆𝑡

𝑑𝑡 + ∫ 𝐹𝑖
𝑃

𝑡

𝑡−∆𝑡

𝑑𝑡 + ∫ 𝐹𝑖
𝑍

𝑡

𝑡−∆𝑡

𝑑𝑡 

(4.3) 

The integration of the first term in Eq. 4.3 is straightforward; finite differences can be used to 

approximate the time derivative: 
𝜕𝜙

𝜕𝑡
≈

𝜙𝑛+1−𝜙𝑛

Δ𝑡
, where ϕn+1 is the value of the variable at the 

current time step t that is being computed and ϕn is the value on the previous time step t-Δt. Under 

this approach, ϕn+1 is the unknown and can be explicitly formulated since the time step is defined 

by the user and ϕn is provided by the solution of the previous time step or the initial conditions. 

However, the evaluation of the Fi terms is more challenging since they also depend on ϕ. A 

discretisation scheme is needed to approximate those; the most common approaches are: 

 Implicit schemes. The value of the variable ϕn+1 in the current time step is used to estimate 

the Fi terms. Since this value is unknown and cannot be isolated on one side of Eq. 4.3, an 

implicit method must be used to obtain a solution. This is a first-order approach. 

 Explicit schemes. The transport terms are estimated based on the value of the variable on the 

previous time step Fi=f(ϕn). This allows an explicit formulation, where the unknown ϕn+1 

can be isolated on one side of Eq. 4.3. This is a first order-approach too. 

 Semi-implicit schemes. A weighting parameter θ determines the weight of each time step in 

the calculation of the transport terms: 𝜙𝑛+𝜃 ≈ 𝜃𝜙𝑛+1 + (1 − 𝜃)𝜙𝑛. If θ=0.5, this is the 

Crank-Nicolson scheme (Crank & Nicolson, 1947), which is rather popular in CFD and 

constitutes a second-order approach. 

FreeFlow3D discretises in time the momentum equations (Eq. 3.2) using the Crank-Nicolson 

scheme for the convective and viscous-diffusive terms, whereas the dynamic pressure is computed 

implicitly and the hydrostatic term is calculated explicitly in unsteady computations and implicitly 

in steady computations. The reason for the latter is the high numerical dissipation induced by 

implicit schemes in unsteady simulations. The turbulent diffusion follows Crank-Nicolson when 

using a linear eddy-viscosity closure such as k-ε, and is calculated explicitly when using a non-

linear eddy-viscosity model.  
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After time integration, Eq. 4.3 takes the following shape: 

𝜙𝑛+1 − 𝜙𝑛

Δ𝑡
𝑉𝑖 + 𝐹𝑖

𝐶,𝑛+1/2
= 𝐹𝑖

𝐷,𝑛+1/2
+ 𝐹𝑖

𝑇,𝑛+1/2
+ 𝐹𝑖

𝑃,𝑛+1 + 𝐹𝑖
𝑍,𝑛

 (4.4) 

4.3.2. Spatial discretisation 

This section shows how FreeFlow3D approximates the discrete form of the Fi  transport terms of 

Eq. 4.2. The schemes based on a centred scheme are analysed first, and the more challenging 

discretisation of the convective flux term follows. Indices i and j refer to arbitrary control volumes 

and their respective computational nodes. The index ij refers to the common face between nodes 

i and j. Finally, m is the mth component of any given vector. 

 Discretisation of the dynamic pressure 

The integration over a control volume CVi of the dynamic pressure term 𝐹𝑖
𝑃,𝑛+1

 of the momentum 

equation (Eq. 4.4) gives: 

𝐹𝑖,𝑚
𝑃,𝑛+1 = −

1

𝜌
∫

𝜕�̅�𝑑
𝑛+1

𝜕𝑥𝑚𝐶𝑉𝑖

𝑑𝑉 = −
1

𝜌
∫ �̅�𝑑

𝑛+1 ∙
𝜕𝐶𝑉𝑖

𝑛𝑚𝑑𝐴

≈ −
1

𝜌
∑�̅�𝑑,𝑖𝑗

𝑛+1 ∙ 𝑛𝑚,𝑖𝑗𝐴𝑖𝑗

𝐾𝑖

𝑗=1

          𝑓𝑜𝑟 𝑚 = 1, 3 

(4.5) 

where ρ is the fluid density, �̅�𝑑,𝑖𝑗
𝑛+1is the ensemble average of the dynamic pressure at the current 

time step at the face between the CV’s i and j, 𝑛𝑚,𝑖𝑗 is mth component of the unit vector �⃗�  normal 

to the control volume face ij, Ki accounts for all the control volumes CVj which share any face 

with the control volume CVi, and Aij is the area of the face ij.  

The dynamic pressure term in the momentum equations is discretised using a central 

differencing scheme (CDS). This is a second order scheme in which all the neighbouring nodes 

provide information to calculate the fluxes across the faces: 

�̅�𝑑,𝑖𝑗
𝑛+1 ≈ 𝑓𝑖𝑗�̅�𝑑,𝑖

𝑛+1 + (1 − 𝑓𝑖𝑗)�̅�𝑑,𝑗
𝑛+1 (4.6) 

being fij the interpolation coefficient for the cell's face: 

𝑓𝑖𝑗 =
∆𝑗

∆𝑖 + ∆𝑗
 (4.7) 

where Δi and Δj are the orthogonal distances to the face ij from the nodes i and j, respectively. 

Hence, the final expression of the discretised dynamic pressure depends on its values on the 

neighbouring nodes and the grid geometry (nm, Aij, fij). 

 Discretisation of the hydrostatic pressure 

The free surface gradient term 𝐹𝑖
𝑍,𝑛

 in Eq. 4.4 accounts for the hydrostatic force in the x and y 

directions. The integration over a control volume CVi for an unsteady simulation follows Eq. 4.8:  
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𝐹𝑖,𝑚
𝑍,𝑛 = −𝑔∫

𝜕𝑧�̅�
𝑛

𝜕𝑥𝑚𝐶𝑉𝑖

𝑑𝑉 = −𝑔∫ 𝑧�̅�
𝑛 ∙

𝜕𝐶𝑉𝑖

𝑛𝑚𝑑𝐴

≈ −𝑔∑𝑧�̅�,𝑖𝑗
𝑛 ∙ 𝑛𝑚,𝑖𝑗𝐴𝑖𝑗

𝐾𝑖

𝑗=1

             𝑓𝑜𝑟 𝑚 = 1, 2 

(4.8) 

where g is the acceleration of gravity and 𝑧�̅�,𝑖𝑗
𝑛  is the ensemble-average of the water surface 

elevation at the face ij, which is calculated using CDS as in Eq. 4.6. 

 Discretisation of the viscous diffusive flux 

The viscous diffusive flux in Eq. 3.2 appears as 
𝜕

𝜕𝑥𝑗
[𝜈

𝜕�̅�𝑖

𝜕𝑥𝑗
], where 𝜈 =

𝜇

𝜌
. By developing the u-

component (i=1), Eq. 4.9 is obtained: 

𝜕

𝜕𝑥𝑗
[𝜈

𝜕�̅�

𝜕𝑥𝑗
] =

𝜕

𝜕𝑥
[𝜈

𝜕�̅�

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝜈

𝜕�̅�

𝜕𝑦
] +

𝜕

𝜕𝑧
[𝜈

𝜕�̅�

𝜕𝑧
] (4.9) 

Integrating Eq. 4.9 over a control volume CVi gives: 

∫ (
𝜕

𝜕𝑥
[𝜈

𝜕�̅�

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝜈

𝜕�̅�

𝜕𝑦
] +

𝜕

𝜕𝑧
[𝜈

𝜕�̅�

𝜕𝑧
]) 𝑑𝑉

𝐶𝑉𝑖

= ∫ 𝜈 (
𝜕�̅�

𝜕𝑥
𝑛𝑥 +

𝜕�̅�

𝜕𝑦
𝑛𝑦 +

𝜕�̅�

𝜕𝑧
𝑛𝑧)𝑑𝐴

𝜕𝐶𝑉𝑖

≈ ∑𝜈 (
𝜕�̅�

𝜕𝑥
𝑛𝑥 +

𝜕�̅�

𝜕𝑦
𝑛𝑦 +

𝜕�̅�

𝜕𝑧
𝑛𝑧)

𝑖𝑗

𝐴𝑖𝑗

𝐾𝑖

𝑗=1

 

(4.10) 

Eq. 4.10 is the discretised form of the viscous diffusive flux on the x-momentum equation. 

Since Eq. 4.9 had a double derivative, the integration over control volumes retains the orthogonal 

component of velocity gradients. These are calculated as follows: 

(
𝜕�̅�

𝜕𝑥
𝑛𝑥 +

𝜕�̅�

𝜕𝑦
𝑛𝑦 +

𝜕�̅�

𝜕𝑧
𝑛𝑧)

𝑖𝑗

= (∇�̅� ∙ �̅�)𝑖𝑗 ≈
𝑢𝑗 − 𝑢𝑖

∆𝑥𝑖𝑗
 (4.11) 

After applying the Crank-Nikolson scheme for time discretisation, the final form of the viscous 

diffusive term is provided by: 

𝐹𝑖,𝑚
𝐷,𝑛+1/2

=
1

2
∑𝜈 (

𝜕�̅�𝑚
𝑛+1

𝜕𝑥
𝑛𝑥 +

𝜕�̅�𝑚
𝑛+1

𝜕𝑦
𝑛𝑦 +

𝜕�̅�𝑚
𝑛+1

𝜕𝑧
𝑛𝑧)

𝑖𝑗

𝐴𝑖𝑗

𝐾𝑖

𝑗=1

+
1

2
∑𝜈 (

𝜕�̅�𝑚
𝑛

𝜕𝑥
𝑛𝑥 +

𝜕�̅�𝑚
𝑛

𝜕𝑦
𝑛𝑦 +

𝜕�̅�𝑚
𝑛

𝜕𝑧
𝑛𝑧)

𝑖𝑗

𝐴𝑖𝑗

𝐾𝑖

𝑗=1

         𝑓𝑜𝑟 𝑚 = 1, 3 

(4.12) 
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 Discretisation of the Reynolds stresses 

Depending on the turbulence closure, the Reynolds stresses −𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  from Eq. 3.2 can be modelled 

in different ways. Two types of turbulence closures for RANS are tested in this work: the k-ε eddy 

viscosity model and a number of non-linear viscosity models. For the k-ε closure, the Reynolds 

stresses are computed following the Boussinesq approximation (Eqs. 2.4 and 3.3), which results 

in an analogous expression to the one derived for the viscous diffusion (Eq. 4.9), being the only 

difference that the kinematic viscosity ν is replaced by the eddy viscosity νt. Hence, the calculation 

of the discretised turbulent diffusion 𝐹𝑖,𝑚
𝑇,𝑛+1/2

 for the k-ε model is equivalent to the viscous 

diffusion 𝐹𝑖,𝑚
𝐷,𝑛+1/2

 in Eq. 4.12. 

However, for the non-linear eddy viscosity models, each one of the Reynolds stresses are 

calculated separately and explicitly. The discretisation of the Reynolds stresses on the x-

momentum equation follow the procedure described in Eq. 4.13.  

∫
𝜕𝑢′𝑢𝑗

′̅̅ ̅̅ ̅̅

𝜕𝑥𝑗𝐶𝑉𝑖

𝑑𝑉 = ∫ (
𝜕𝑢′2̅̅ ̅̅

𝜕𝑥
+

𝜕𝑢′𝑣′̅̅ ̅̅ ̅̅

𝜕𝑦
+

𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑥
)

𝐶𝑉𝑖

𝑑𝑉

= ∫ (𝑢′2̅̅ ̅̅ 𝑛𝑥 + 𝑢′𝑣′̅̅ ̅̅ ̅̅ 𝑛𝑦 + 𝑢′𝑤′̅̅ ̅̅ ̅̅ 𝑛𝑧)
𝜕𝐶𝑉𝑖

𝑑𝐴

≈ ∑((𝑢′2̅̅ ̅̅ )
𝑖𝑗

𝑛𝑥,𝑖𝑗 + (𝑢′𝑣′̅̅ ̅̅ ̅̅ )𝑖𝑗𝑛𝑦,𝑖𝑗 + (𝑢′𝑤′̅̅ ̅̅ ̅̅ )𝑖𝑗𝑛𝑧,𝑖𝑗)𝐴𝑖𝑗

𝐾𝑖

𝑗=1

 

(4.13) 

Applying CDS to calculate the stresses at the cell faces: 

(𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ )
𝑖𝑗

≈ 𝑓𝑖𝑗(𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ )
𝑖
+ (1 − 𝑓𝑖𝑗)(𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ )

𝑗
 (4.14) 

Finally, the generic form of the turbulent diffusion term in Eq. 4.4 for a non-linear eddy 

viscosity closure is given by Eq. 4.15: 

𝐹𝑖,𝑚
𝑇,𝑛 = ∑((𝑢𝑚

′ 𝑢𝑙
′̅̅ ̅̅ ̅̅ ̅)

𝑖𝑗

𝑛
𝑛𝑥,𝑖𝑗 + (𝑢𝑚

′ 𝑢𝑙
′̅̅ ̅̅ ̅̅ ̅)

𝑖𝑗

𝑛
𝑛𝑦,𝑖𝑗 + (𝑢𝑚

′ 𝑢𝑙
′̅̅ ̅̅ ̅̅ ̅)

𝑖𝑗

𝑛
𝑛𝑧,𝑖𝑗)𝐴𝑖𝑗

𝐾𝑖

𝑗=1

         𝑓𝑜𝑟 𝑚 = 1, 3 (4.15) 

where 𝑢𝑚
′ 𝑢𝑙

′̅̅ ̅̅ ̅̅ ̅ is calculated following one of the methods described in Sections 3.1.2 to 3.1.5.  

 Discretisation schemes for the convective flux 

The integration of the convective flux over a control volume for the x-momentum equation is 

given by Eq. 4.16: 

∫
𝜕�̅�

𝜕𝑥𝑚𝐶𝑉𝑖

𝑢𝑚𝑑𝑉 = ∫ �̅� 𝑢𝑚
𝜕𝐶𝑉𝑖

𝑛𝑚𝑑𝐴 = ∫ �̅� 𝑢𝑛
𝜕𝐶𝑉𝑖

𝑑𝐴 ≈ ∑�̅�𝑖𝑗𝜆𝑖𝑗

𝐾𝑖

𝑗=1

 (4.16) 

where 𝑢𝑛 = 𝑢𝑚𝑛𝑚 is the velocity component normal to the cell face and λij=un,ijAij is the outlet 

flux through the control volume face, which is calculated by linear interpolation from the velocity 

value at nodes i and j. The following subsections cover the different strategies integrated in 

FreeFlow3D to calculate �̅�𝑖𝑗.  
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Central Differencing Scheme 

CDS was used to approximate the value of the velocity component at the cell face ij for the 

discretisation of all the terms in the Navier-Stokes equations so far. However, CDS is not always 

a suitable for the convective term. CDS is conservative and second-order accurate, albeit it lacks 

relevant features such as boundedness (in absence of source terms, the value of the variable at a 

computational node should be in relation with the magnitude and sign of such variable at its 

boundaries or surrounding nodes) and transportiveness. The latter is deeply connected to the 

Péclet number (Eq. 4.17): 

𝑃𝑒 =
𝑈∆𝑥

𝐷
 (4.17) 

where U is the bulk velocity in the streamwise direction, Δx is the grid size in the streamwise 

direction and D the mass diffusion coefficient, which can be calculated as a contribution of the 

fluid and eddy viscosities 𝐷 = 𝜈 + 𝜈𝑡. The Péclet number is a ratio between advective and 

diffusive forces. CDS is only stable and accurate if Pe<2. For large magnitudes of Pe, the flow is 

dominated by convective forces. Such cases are not uncommon in channel flows, and CDS may 

lead to instabilities, as it is insensitive to the direction in which the flow transports information. 

In such cases, the upstream neighbours have a significantly higher specific weight on the nodal 

value than the downstream ones. On the other hand, for values of Pe≈0 the flow is nearly isotropic 

and entirely dominated by diffusion. If Pe≈1, advective and diffusive forces are balanced, and a 

central scheme would be adequate. The Péclet number relies on grid spacing and bulk velocity, 

hence CDS is only suitable for flows at low Reynolds number or simulations on a very fine grid. 

In fact, 2nd and 4th-order CDS are a common choice for LES and DNS.  

According to CDS, the velocity at the face ij is calculated as follows: 

�̅�𝑖𝑗 ≈ 𝑓𝑖𝑗�̅�𝑖 + (1 − 𝑓𝑖𝑗)�̅�𝑗 (4.18) 

where  𝑓𝑖𝑗 has been defined in Eq. 4.7. 

Upwind Scheme 

When there is a clear preferential direction for convection, the upstream node has much more 

influence on the ij face considered than the other neighbouring nodes. The upwind scheme is a 

first-order approach in which the velocity at the cell face is equal to its value at the upstream node. 

A control variable based on the local velocity field must be computed in every time step to identify 

the flow direction. Applying an upwind scheme, the velocity at the face ij in Eq. 4.16 is calculated 

following Eq. 4.19. 

�̅�𝑖𝑗 ≈ �̅�𝑖 (4.19) 

 

Gamma Scheme 

The Gamma scheme, proposed by Jasak et al. (1999), is a second-order scheme which uses the 

close upwind node to each face in order to compute the convective flux. Other higher-order 

schemes need information from the far upwind nodes, which are hard to identify in an 

unstructured mesh, with the consequent need of devoting computational time to mapping. The 

Gamma scheme switches to 2nd-order CDS whenever a boundedness criterion (similar to the 

Péclet number from Eq. 4.17) is satisfied and upwind scheme otherwise. A blending factor γ is 
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introduced to ensure a smooth transition between both approaches. This factor is obtained as a 

function of a normalised velocity �̃�𝑖 described in Eq. 4.20: 

�̃�𝑖 = 1 −
�̅�𝑖 − �̅�𝑗

2(∇𝑢)𝑖𝑟𝑖𝑗
 (4.20) 

where 𝑟𝑖𝑗 is the vector that joins the nodes i and j. Assuming the flow moves from node i to node 

j, the computation of �̅�𝑖𝑗 with Gamma scheme would follow Eq. 4.21: 

�̅�𝑖𝑗 ≈ [1 − 𝛾𝑖𝑗(1 − 𝑓𝑖𝑗)]�̅�𝑖 + [𝛾𝑖𝑗(1 − 𝑓𝑖𝑗)]�̅�𝑗 (4.21) 

Should the blending factor become negligible, Eq. 4.21 turns into a 1st-order upwind scheme, 

and for 𝛾𝑖𝑗 = 1, Eq. 4.21 is analogous to a CDS (Eq. 4.18). 

Finally, the general form for the discretisation in time and space of the convective flux follows 

Eq. 4.22: 

𝐹𝑖,𝑚
𝐶,𝑛+1/2

= 𝑎𝑖

�̅�𝑚,𝑖
𝑛 + �̅�𝑚,𝑖

𝑛+1

2
+ ∑𝑎𝑖𝑗

�̅�𝑚,𝑗
𝑛 + �̅�𝑚,𝑗

𝑛+1

2

𝐾𝑖

𝑗=1

             𝑓𝑜𝑟 𝑚 = 1, 3 (4.22) 

where the value of the coefficients ai and aij, depend on the choice of discretisation scheme. The 

three alternatives considered in FreeFlow3D are described on Table 4.1. .  

 

 CDS Upwind Gamma 

ai 
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a a f 
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i

i ij ij ij

j K

a a f 


    

aij (1 )ij ij ija f    0 (1 )ij ij ij ija f    

uij (1 )ij ij i ij ju f u f u    
ij iu u  1 (1 ) (1 )ij ij ij i ij ij ju f u f u             

Table 4.1.  Convection transport coefficients for the discretisation schemes (assuming the flow moves from i to j). 

4.3.3. Rhie-Chow interpolation 

Both the velocity and pressure field are stored at the nodes located at the geometric centre of the 

finite volumes. Without further considerations, such an arrangement can result in wrong 

estimations if a highly non-uniform ‘checker-board’ pressure field occurs. A remedy for this 

problem is to use a staggered grid (Harlow & Welch, 1965), in which the velocity components 

are stored at the cells’ faces and pressure is calculated at the nodes, thus avoiding errors when 

facing irregular pressure distributions. Codes that use collocated grids such as FreeFlow3D 

require a stabilization technique to avoid wrong predictions when facing a ‘checker-board’ 

pressure field. Rhie & Chow (1983) developed a method that removes the dynamic pressure 

forcing from the velocity calculated at the nodes before interpolating the velocity at the faces, 

using one of the methods described in Section 4.3.2. Once the values at the faces are obtained, 

the pressure gradient is added. This method was extended in Cea et al. (2009) to the hydrostatic 

pressure. 
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4.3.4. SIMPLE algorithm and matrix solver 

The three velocity components of the flow obtained from the momentum equations (3.2) must 

also fulfil the continuity equation. This condition must be accomplished by means of an iterative 

method. FreeFlow3D incorporates the Semi-Implicit Method for Pressure-Linked Equations 

(SIMPLE) algorithm to ensure mass continuity and pressure-velocity coupling. The algorithm 

was originally derived by Patankar & Spalding (1972). It is essentially a guess-and-correct 

procedure for the calculation of the pressure, which follows these steps: 

 

1. The momentum equations are solved using the dynamic pressure field from the previous 

time step, n, producing a velocity field (u*, v*, w*). 

2. This solution for the velocities at n+1 is a preliminary guess which does not necessarily 

satisfy the continuity equation (3.1). 

3. The mass residual resulting from the lack of continuity is computed at each cell.  

4. A pressure correction term that neutralizes the mass residual is calculated; the pressure 

value at each node is modified accordingly. 

5. All the coefficients and source terms of the momentum equations are recomputed with 

the new pressure field. A new velocity field is obtained. 

6. The process keeps running until a divergence free velocity field is obtained (within a pre-

defined tolerance). 

FreeFlow3D incorporates a preconditioned GMRES (Vuik & Vorst, 1992). The user can 

compute each system iteratively in horizontal layers or vertical columns. In each layer or column 

a sparse linear system needs to be solved. Under-relaxation factors for velocity, pressure, the 

turbulent kinetic energy and the turbulent dissipation can be set, resulting in a higher stability of 

the code.  
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5. Simulation of a curved open-channel flow 

The first case under analysis is an open-channel flow with a single 270° bend and a mild slope. 

Previous chapters have introduced the complex interaction between pressure-driven and 

turbulence-driven secondary motion in open-channel bends, as well as the challenges that its 

modelling poses and how these influence the prediction of the primary and secondary flow and 

the shear stresses. The current chapter is structured as follows:  

 The case study is introduced. Previous experimental and numerical works on this specific 

case are briefly discussed.  

 The numerical setups for every modelling approach and case are described in detail. 

 The results analyse the most significant differences between URANS and PANS on the 

characterization of the primary and secondary flow.  

 The results are validated using experimental data. 

 The prediction of the turbulent kinetic energy and shear stresses is discussed. 

 The sensitivity of the predicted secondary flow is tested against different discretisation 

techniques, inflow conditions, and turbulence closures. 
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5.1. The 270º bend with mild slope 

5.1.1. Description of the experiment 

The 270º bend flume used to test various turbulence closures for FreeFlow3D is depicted in Figure 

5.1. It consists of a 270º curved flume, with a rectangular cross-section and a fixed bed. The 

channel is 1.07 m wide, its side walls are 0.21 m high, and the curvature radius is R=3.66 m. The 

bed has a constant slope of S0=8.3∙10-4. Bed and wall roughness were quantified in ks=1.3 mm. 

The lengths of the straight inlet and outlet are 6.13 and 2.53 m, respectively. This flume has been 

the object of several prior studies. The first experimental work was conducted by Steffler (1984) 

during his PhD at the Hydraulic Laboratory of the University of Alberta in Edmonton. He 

measured primary and secondary velocities for very shallow flows.  

 

Figure 5.1. Schematic layout of the 270º bend flume (Steffler, 1984). 

Steffler's experimental measurements on the 270º bend were conducted with a bulk velocity of 

0.36 m/s and a water depth of 0.061 m, giving a total discharge of 0.0235 m3/s. Provided that 

channel's width is 1.07 m, this results in a rather shallow flow (approx. 6.1 cm). The shallowness 

implies a remarkable separation between the horizontal and vertical scales. The resulting 

Reynolds number is Re=21,960 and the Froude number is Fr=0.465, hence the flow is fully 

turbulent and subcritical. The aspect ratio R/B=3.4 indicates a moderate curvature. Despite of the 

shallowness, the curvature and the high Re promote relevant secondary currents which only a 

non-hydrostatic approach can characterise accurately. 

5.1.2. Previous research on the 270º bend 

The experimental datasets obtained at the 270º bend were used to validate several numerical 

codes, some of them co-authored by Steffler himself. Ghamry & Steffler (2002) published some 

numerical predictions in curved channels using Steffler's experiments on the 270º bend for 

validation, among others. They used a two-dimensional depth-averaged finite-element code 

developed by Ghamry (1999) for his PhD thesis in the aforementioned department. This model 

proposed novel linear and quadratic distribution shapes to model the velocity distribution in depth 

(since the z-coordinate was not solved). The results provided good agreement on the longitudinal 

velocities, while the limitations of the 2D approach are more evident for the secondary flow, 

particularly at the boundary layers. The choice of velocity profiles for validation is not particularly 
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consistent (different transverse locations at different cross-sections and/or velocity components), 

i.e., it is difficult to understand how the model predicts the flow evolution along the bend. Overall, 

the different distribution shapes tested showed little influence on the results. Similar results were 

presented in Ghamry & Steffler (2005). In this article, the authors compared he code developed 

by Ghamry to the experiments by DeVriend (1976) and Steffler (1984). Interestingly, this paper 

pays special attention to the computational effort and it only uses linear distributions to 

approximate the vertical profiles of the streamwise and spanwise velocity components – Ghamry 

& Steffler (2002) also used quadratic fits for those components. The validation is more 

comprehensive, including water surface profiles and streamwise depth-averaged velocity profiles. 

The conclusions are very similar, since both the model and the grid are identical to the previous 

paper.  

De Marchis & Napoli (2006) replicated Steffler's experiments on the 270º bend using three-

dimensional RANS with a standard k-ε closure. This work used a height-function to model the 

free surface and a precursor simulation on a straight channel with periodic boundary conditions 

to create the inlet velocity profile. The horizontal mesh was finer than the one used for the 

aforementioned depth-averaged works, but still relatively coarse (128x32x16). Both the 

longitudinal and transverse velocities are compared with the experimental data. The longitudinal 

velocities were matched with great accuracy, while the secondary ones showed rather important 

deviations. The magnitude of the secondary currents was underestimated, especially near the 

bottom and the free surface, although the core of the secondary circulation was well captured. 

The authors pointed to the insufficient grid refinement and the excessively dissipative turbulence 

model to explain this deviation.  

Tritthart & Gutknecht (2007) used the 270º bend to test a three-dimensional finite volume code 

which uses polyhedral cells with different number of faces. The work focused on the mesh 

generation and the definition of momentum fluxes across them. The goal was minimising 

numerical diffusion through a non-orthogonal disposition of computational nodes. The predicted 

longitudinal velocities were in agreement with the experimental ones while transverse velocities 

were not compared. The vertical resolution is 11 points. Hexagonal cells show a slightly better 

agreement than tetrahedrons, at a higher computational cost 

Steffler’s dataset was used also as part of the validation of another PhD thesis in the University 

of Alberta by Zobeyer (2012), in which a depth-averaged RANS model for open-channel flows 

is proposed. The 270 channel was one of four validation cases for that particular model. Depth-

averaged longitudinal and transverse velocities are compared. The results are rather close to the 

experiments considering all the short-comings of a depth-averaged approach, e.g., boundary 

layers are not expected to be solved accurately. The validation shows a complete matrix of profiles 

at all stations. However, some of the experimental measured profiles shown seem to slightly differ 

from the previous works mentioned in this section and to be composed of more sampling points, 

despite referencing the same experiment. Because this part of Zobeyer’s thesis has been never 

published in a peer-reviewed journal, this work will use the experimental dataset reported on 

Ghamry & Steffler (2002 and 2005), De Marchis & Napoli (2006), and Tritthart & Gutknecht 

(2007).  

5.1.3. Is there an outer-bank cell on the 270º bend? 

Steffler (1984) measured vertical profiles of streamwise (primary flow) and spanwise (horizontal 

component of the secondary flow) velocities at different cross-sections along the bend (further 

detail provided in Figure 5.5). Those profiles do not identify clearly the presence of an outer-bank 

cell (OBC), as described in Section 2.2.1. The profiles that are closer to the outer bank do not 

show a change of sign for the v-velocity (spanwise component), that would characterise a counter-

rotation. None of the numerical works mentioned in the previous section (5.1.2) captured the OBC 
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either. This is expected in most cases since the models are two-dimensional and/or adopt depth-

averaged and hydrostatic assumptions. The exception is the RANS model used by De Marchis & 

Napoli (2006), which nonetheless does not capture the OBC. 

However, there is evidence in the experimental datasets of an OBC in at least some cross-

sections. Firstly, the vertical profiles are not fully conclusive due to their sampling resolution and 

they hint a change in the trend by the outer-bank. The v-velocities at the corner between the outer-

bank and the water surface for the 180°, and 270° stations clearly show an inwards deflection that 

is not present at any other location. This could suggest the presence of a small OBC between the 

sampling location and the wall in some of those cross-sections. It is important to note there is a 

11 cm gap between the last profile by the outer bank and the wall, where a small OBC could 

develop. This hypothetical undetected OBC would also explain why the vertical integration of the 

experimental secondary velocity profiles does not add up to zero, but instead shows a net outwards 

velocity at the upper half of the channel. An OBC would balance this excess. 

A definitive clue are the measurements of horizontal profiles of v-velocity at the surface, 

extracted from Ghamry & Steffler (2005) and reproduced in Figure 5.2 (circles indicate 

experimental sampling points). At the 180° station, there is a region where the surface velocity 

has opposite sign by the outer bank, extending between approx. y/b=-0.8 and y/b=-1 (being b the 

half-width of the flume). It is precisely y/b=-0.8 the location of the last vertical profile before the 

outer bank. This velocity denotes the presence of a counter-rotating vortex at that corner. Hence 

it is reasonable to conclude that the OBC was captured by the experiments at least in the 180° 

station and that the diameter of this eddy should not exceed by much approx. 12 cm from the 

outer bank wall. 

 

Figure 5.2. Horizontal spanwise velocity  at the water surface (Vs) in the experiments as reported by Ghamry & 

Steffler (2005). 
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5.2. Simulation setup 

5.2.1. Initial and boundary conditions 

The simulations were run following the conditions of Steffler's experiments. Some models require 

different treatment of inlet turbulence, and because of that there are two different alternatives for 

inlet conditions, which lead to complementary outlet conditions. These correspondences are 

marked with a) and b). 

Inflow Outflow Walls/bed Free surface TKE 
Turbulent 

dissipation 

Uniform 

Q=23.5∙10-3 

m3/s Zero-

gradient 

Wall function 

ks=0.0013 

Rigid lid 

H=0.061 m 

20.1in ink U
 

m2/s2 

3/ 2
3/ 4

in

k
C 

 
m2/s3 Synthetic 

inflow 

Table 5.1.  Boundary conditions for the simulations in the 270º channel. 

Where: 

 Synthetic inflow: a turbulent velocity field is prescribed. It is created by the combination of 

a RANS mean velocity profile plus turbulent fluctuations generated synthetically for a given 

wave number and geometry (Lund et al., 1998). 

 Zero-gradient condition: the gradients of all fluid properties in the direction perpendicular to 

the plane of reference (the outlet cross-section in the present scenario) are zero. This is a 

common procedure regarding outlet conditions and implies an artificial forcing of the flow 

variables at the exit. The outlet should be placed at a convenient distance from the key locations 

for the study of the flow, which in this case is ensured by the 2.53 m straight outlet downstream 

of the bend. The outlet is also taken as the pressure reference Pd=0. 

 Wall functions: a logarithmic profile is applied to the calculation of the wall-tangential 

velocity components, k, and ε at the first grid point after the wall. The normal fluxes and 

gradients are set to zero. The equivalent sand roughness or of the walls was set to ks=0.0013. 

 Rigid lid: a fixed surface layer is imposed at a certain height over the bed. This approach is 

adopted since there is no experimental data on the free surface variations and the numerical 

predictions by De Marchis & Napoli (2006) report variations under 2% on the free surface 

elevation. Figure 5.3 shows the water surface variation in the spanwise direction (from bank to 

bank), as reported in Ghamry & Steffler (2005). Based on this evidence, the deformation of the 

water surface does not appear to be critical, and the results for this section focus on the depiction 

of the secondary flow structures and its impact on the shear stresses. The rigid lid acts as a 

symmetry plane, where zero gradient is applied to all the fluid properties in the wall normal 

direction and zero flux across the surface is allowed. 
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Figure 5.3. Water surface variation in the experiments as reported by Ghamry & Steffler (2005 ). 

A precursor URANS simulation with a k-ε model starting off from uniform conditions was run 

until fully developed stationary state and taken as initial condition for velocity, pressure, turbulent 

kinetic energy and dissipation. 

5.2.2. Computational three-dimensional grid 

Three different mesh resolutions were tested on the 270º bend with URANS to analyse grid 

convergence. The main features of each mesh are compiled in Table 5.2. . The coordinate x refers 

to the streamwise axis (inlet to outlet), y to the spanwise (wall-normal axis), and z to the vertical. 

Mesh 
Number of cells 

Near-wall grid 

resolution 
Stretching 

Total grid points 

x y z y+ z+ y z 

M1 132 12 23 425 60 1:15 1:2 45,936 

M2 425 84 23 50 50 1:32 1:2.5 821,100 

M3 430 98 23 35 50 1:20 1:2.5 969,220 

Table 5.2.  Characteristic parameters of the grids used to compute the flow on the 270º bend channel. 

The total count of grid points in Table 5.2.  establishes a qualitative difference between the 

coarse (M1) and medium (M2) meshes, which is mainly due to a very different resolution in the 

streamwise and spanwise axes. The fine mesh M3 provides further refinement near the side walls. 

The grid is stretched in the spanwise (y) and vertical (z) directions, providing higher resolutions 

near the wall boundaries. The rate of stretching is provided by the ratio between the smaller and 

bigger cells in the chosen direction. The local Reynolds numbers y+ and z+ in Table 5.2.  refer to 

the spanwise and vertical axis, respectively, and were calculated as follows: 

𝑦+ =

∆𝑦
2  𝑢∗

𝜈
 

(5.1) 

where Δy is the width of the first cell in the wall-normal direction, u* is the friction velocity and 

ν the dynamic laminar viscosity. The local Reynolds number in the vertical direction z+ is 
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calculated using the vertical mesh resolution Δz instead. Provided that FreeFlow3D is based on 

the Finite Volume approach and the mesh elements are prismatic for all cases, the distance to the 

first grid point is half the cell’s width (Δy/2). The friction velocity is a measure of the shear stress 

in velocity units, and can be calculated as: 

𝑢∗ = √
𝜏𝑤

𝜌
 (5.2) 

where τw is the wall shear stress and ρ the water density. The local Reynolds number is a good 

indicator of the dimensionless near-wall resolution. The suitability of the chosen boundary 

conditions can be informed through the estimate of y+ at the first wall-normal grid point.. 

 

  

Figure 5.4. Three-dimensional view of the two computational meshes considered: M1 (left) and M2 (right). 

5.2.3. Numerical setup 

Three different discretisation schemes were tested for the convective term: Gamma, Upwind 

(UW) and Central Differences (CDS), which were described in detail in Section 4.3.2. The fixed 

time step for the URANS and PANS simulations is Δt=5·10-3 s, fully accomplishing the CFL 

condition. The simulations were run for 10 flow-troughs (where 1 flow-through is the 

approximated time that a no-inertial particle of fluid would take to be transported from the inlet 

to the outlet of the domain) to ensure that the flow was fully developed, and the time-averaged 

properties had reach a steady state. Then the time-averaged statistics were collected for a 

minimum of other 20 flow-troughs. This is roughly a total computational time of 4000 seconds 

(more than 60 minutes). A precursor simulation was ran in the straight inlet with periodic 

conditions to provide fully developed flow at the bend’s entrance without adding additional 

computational effort. The simulations were ran serially on a single Intel Xeon 2.27 GHz 

processor and on average they would require from 1 to 15 hours depending on the mesh 

resolution. Regarding time discretisation, second order Crank-Nicholson scheme has been used 

for all cases. 

 

Table 5.3.  shows the different configurations tested for the 270º bend. PANS simulations cover 

different configurations depending on the values given to fk and fε. Six different values for fk were 

tested (see Section 3.2). There are three different turbulence closures for URANS: standard linear 

k-ε model, the second-order non-linear Gatsky and Speziale’s model (GS), the Craft-Suga-

Lauder’s model (CLS) with both second and third-order formulations, and the third-order non-
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linear Lien & Leschizner model (LCL). All the former non-linear models are condensed under 

the label NL (for non-linear) in Table 5.3. . 

 k-ε model Grid Disc. scheme Inlet condition 

 STD NL M1 M2 M3 CDS Gamma Uniform Synthetic 

URANS x x x x x x x x x 

PANS x  x x x x x x x 

Table 5.3.  Simulations layout for the 270º channel. STD: standard k-ε, NL: non-linear eddy viscosity model, UW: 

upwind convection scheme, CDS: central differences scheme. 
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5.3. Primary and secondary flow in the 270º bend 

Due to the diversity of datasets produced in the simulations – note that there are four different 

configurations under both PANS and NL models for URANS. In consequence, a preliminary 

analysis of the primary and secondary flow features is presented in this section with a 

representative configuration of URANS and PANS. Section Error! Reference source not found. 

discusses the differences within both approaches. The configurations of choice are URANS with 

standard k-ε model and PANS with fk=0.6 and fε =1. The choice is based on both these 

configurations providing a relatively good prediction while providing qualitatively different 

predictions. URANS with k-ε closure is a very reliable combination which in exchange promotes 

high dissipation, hence the interest of comparing it with a PANS model, which is basically less 

dissipative version of it. This has a quantitative and qualitative (presence of the OBC) impact on 

the results. The fk=0.6 setup was chosen since it offers on average the best results among the 

PANS configurations that were tested (see Table 5.3. ).  Both cases were run in mesh M2, using 

Gamma scheme and uniform inlet conditions.  

Four sections were chosen to analyse the flow evolution along the bend: 0º, 90º, 180º and 270º, 

as labelled in Figure 5.5. These are the sections where experimental data are available from the 

aforementioned prior works on this case. Relative coordinates were adopted for the cross-

sectional views, with x, y and z and U, V and W representing the streamwise, spanwise and vertical 

components of space and velocity, respectively. 

 

Figure 5.5. Location of the cross-sections that were subjected to analys in the 270º bend. The vertical axis has 

been scaled up on a 10:1 proportion. 

5.3.1. Primary flow 

Figure 5.6 shows the contours of normalised velocity module |U|/Ubuk at three different depths 

(z/H=0.1, z/H=0.5, and z/H=0.9, where H=6.1 cm is the total depth of the channel). The most 

notable feature is the centrifugal advection of the higher momentum area (HMA, where 

|U|/Ubuk>1) towards the outer bank along the bend. The spanwise gradient of |U|/Ubuk is more 

remarkable in PANS simulations. In contrast, URANS shows a more homogeneous horizontal 

distribution of the momentum. And whereas the shear layer at the inner bank is formed 

approximately at the same location in URANS and PANS, the latter is considerably wider and 

exhibits lower velocities.  
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Figure 5.6. Time-averaged normalised velocity module contours for URANS k-ε (left) and PANS fk=0.6 (right) at 

z/H=0.1 (top), z/H=0.5 (middle), and z/H=0.9 (bottom). 
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Perhaps the most notable difference between both predictions is the at which point the HMA 

(|U|/Ubuk>1) reaches the outer bank. This happens for PANS before the 90° station for all cases. 

For URANS, a very thin high-velocity layer is formed by the outer bank, but the bulk of the HMA 

is separated from it via a discontinuity. PANS contours are also rather similar across the three 

depths, while URANS exhibits a clear increase in the velocity magnitude as z/H increases. All 

these features seem to indicate that the cross-sectional redistribution of momentum is more 

effective in PANS, leading to a higher gradient in the y (spanwise) axis and a less pronounced 

gradient in the z (vertical) one when compared to URANS. It is clear that this has relevant 

implications for the scour and sediment deposition processes. 

 

Figure 5.7 shows the time-averaged, normalised, primary velocity U/Ubulk for the four sections 

referenced in Figure 5.5. The outwards advection of momentum from the inner side to the outer 

bank is very clear. In PANS, the HMA has been entirely shifted towards the outer bank along the 

first 90° of the bend, whereas the transition is less sudden for URANS. PANS results exhibit a 

higher cross-sectional distribution of momentum than URANS at 0° - the end of the straight inlet. 

Nevertheless, the U/Ubulk gradient between the inner and outer banks is higher for PANS along 

the bend. A remarkable feature only observed in the PANS predictions is a bubble of relatively 

high momentum (U/Ubulk≈1) by the inner bank at z/H=0.4 which is noticeable from the 90° station 

onwards.  

Overall, the URANS-predicted HMA along the bend (90°-270°) acquires a shape that reminds 

the cross-section of a compound channel, narrow at the base and wide at the top. The higher 

streamwise velocity values (U/Ubulk>1) are mostly gathered at the upper half of the channel 

(z/H>0.5). In contrast, the HMA in PANS depicts a guitar-shape, with a protuberance on the lower 

side (z/H≈0.36). The primary flow contours are relatively stable between 180° and 270°. It is 

noteworthy how the HMA des not reach the corner between the outer bank and the free surface 

for PANS at 180°, while it does so for URANS. This can be related to the presence of an outer-

bank cell and have important implications towards the prediction of outer-bank scour. 

Figure 5.7 also indicates the precise location of the highest streamwise velocities (labelled as 

Umax) at each cross-section. The local maxima approach the outer wall as the bend progresses, 

although significant differences are found between URANS and PANS. The results, summarised 

in Table 5.4. , suggest an initial (0°-90°) reduction of the highest velocities due to the turbulent 

kinetic energy (TKE) redistribution triggered by the centrifugal force; this is followed by a 

gradual increase as the HMA becomes more clustered at the outer bank. PANS consistently 

exhibits higher values (4-12%) due to its less dissipative nature. The location of the maxima in 

the cross section differs significantly, particularly at 90°. At 180° and 270°, under a rather stable 

structure, PANS’ predicted Umax is consistently closer to the surface that URANS’s. 

 URANS PANS 

0º 1.25 1.30 

90º 1.22 1.28 

180º 1.26 1.38 

270º 1.35 1.51 

Table 5.4.  Maximum time-averaged normalised streamwise velocities (U/Ubulk)max for each modelling approach at 

the stations indicated in Figure 5.7. 

The velocity dip phenomenon can also be observed. As the bend progresses and the pressure-

driven secondary current begins to form, the local maxima of the streamwise velocities are pushed 

downwards.  
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Figure 5.7. Cross-sectional upstream views (outer side on the left, inner side on the right) of the time-averaged 

streamwise velocity at the 0º, 90º, 180º, and 270º stations. URANS on the left and PANS on the right. The maximum 

longitudinal velocity in each section is shown. The vertical scale has been exaggerated 2.5:1.  
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5.3.2. Secondary flow 

Figure 5.8 shows the dynamic pressure Pd at a plane located at z/H=0.5, where H=6.1 cm is the 

total depth of the channel. The centrifugal force triggered by the flow’s inertia outwards entering 

the bend generates an unbalance between the inner and outer bank. This is the driving force behind 

the main secondary cell, and the momentum redistribution. From inlet to outlet, URANS predicts 

a streamwise pressure gradient that is approx. 40% higher than the one calculated by PANS. 

URANS PANS 

  

Figure 5.8. Dynamic pressure contours for URANS k-ε (left) and PANS fk=0.6 (right) at z/H=0.5. 

The dynamic pressure gradient in the cross-sectional axis, however, is rather similar for 

URANS and PANS. This can be better visualised in Figure 5.9, where the dynamic pressure at 

the inner and outer banks are compared for z/H=0.5. Subtle differences are present between both 

modelling approaches. At the 0° station, URANS shows a greater Pd gradient between the inner 

and outer bank than PANS, which correlates with the streamwise velocity distribution observed 

in Figure 5.6. The transverse pressure gradient due to the centripetal force induced by the bend is 

propagated upstream into the straight inlet in both cases since this is a subcritical flow, albeit this 

is more acute for URANS. Once inside the bend, 
𝑑𝑃𝑑

𝑑𝑦
 increases rapidly for PANS and surpasses 

the URANS magnitude. URANS reaches a maximum gradient at 90° which decreases gradually 

along the bed, whereas PANS keeps a very similar 
𝑑𝑃𝑑

𝑑𝑦
 magnitude between 90° and 180° and 

decreases abruptly towards the exit of the bend at 270°. Interestingly, both models predict an 

almost identical dynamic pressure gradient at 270°. 

It is clear from Figure 5.8 and Figure 5.9 that the pressure distribution in the 270º bend 

substantially deviates from a hydrostatic assumption. Ghamry & Steffler (2002) provided linear 

and quadratic shape functions to account for the vertical variation of the horizontal velocity 

components and the non-hydrostatic pressure in depth-averaged models. The URANS and PANS 

results show that the vertical variations that deviate from hydrostatic pressure are almost 

negligible 
𝑑𝑃𝑑

𝑑𝑧
≈ 0. The relevant gradient of dynamic pressure occurs in the spanwise axis, hence 

trying to adjust a Pd(y) curve might be a good alternative for hydrostatic solvers.  
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Figure 5.9. Spanwise dynamic pressure gradient for URANS k-ε (blue) and PANS fk=0.6 (red) at z/H=0.5 along 

the bend. 

Figure 5.10 shows the spanwise dynamic pressure distribution for URANS and PANS along 

the bend. The dynamic pressure is normalised by its maximum URANS value at the outer bank 

of the 0° station P0. The spanwise variation of Pd is almost linear. PANS and URANS predict 

rather similar variations (as seen in Figure 5.9) once the flow enters the bend. At 90, 180, and 270 

a subtle depression can be observed for PANS results by the inner bank, indicating boundary layer 

separation. 

 

Figure 5.10. Spanwise profile of dynamic pressure along the bend for URANS k-ε (left) and PANS fk=0.6(right). 

The outer bank is located at y/B=0 and the inner one at y/B=1. 

Figure 5.11 shows the normalised time-averaged vorticity contours and the secondary flow 

streamtraces inside the bend. The flow structure is relatively stable for both closures along the 

bend. At station 90º the curvature has generated a pressure-driven cell (PDC) that dominates the 

entire cross section. This large eddy has two cores, both for URANS and PANS results. This 

could be a result of the shallowness (H/B=0.057). URANS results depict consistently a larger core 

at y/B=0.75 and a smaller one at y/B=0.15. Both cores are aligned vertically at approx. z/H=0.4 in 

all cases, with the larger core shifted down at /H=0.3 at the 270º section. PANS results show a 

different PDC structure where one of the cores dominates a much larger area than the other. The 
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larger PANS core is located at a more central position, between y/B=0.4-0.6 and z/H=0.3-0.5. The 

second core is smaller and attached to the inner wall boundary layer, and it is elongated vertically 

due to the upwards flow in that region. 

The most remarkable difference from a qualitative standpoint is the presence of an outer-bank 

cell (OBC) in the 180º and 270º PANS results. This OBC is relatively small and confined to the 

outer-top corner, occupying the area between y/B=0-0.1 (in accordance with the experimental 

measurements from Figure 5.2) and z/H=0.41-1. The OBC seems to play a role in pushing the 

cores of the PDC downward and inward when compared to the URANS results. The OBC is also 

responsible for pushing the high-momentum primary flow away from the outer-bank surface, as 

observed in Figure 5.7 at the 180º and 270º stations for PANS. 
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Figure 5.11. Cross-sectional upstream views (outer side on the left, inner side on the right) of the normalised, 

time-averaged streamwise vorticity ωx/ω0 and the secondary flow streamlines at the 0º, 90º, 180º, and 270º stations. 

URANS on the left and PANS on the right. The vertical scale has been exaggerated 2.5:1. 

Despite the vorticity contours in Figure 5.11 showing trends being remarkably similar (save 

the OBC), PANS predicts a substantially higher vorticity magnitude than URANS. This is despite 

both fields being normalised by the same maximum value ω0. This suggest a stronger secondary 

flow in PANS, probably as a result of lesser turbulent dissipation. 
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Figure 5.12 shows the horizontal profiles of time-averaged normalised span-wise velocity 

V/Ubulk integrated over the channel’s depth. At the bend’s entrance (0° station), there is a net 

secondary advection towards the inner wall. As the bend progresses, by 90°, the PDC is formed 

(see Figure 5.11) and the net transport of momentum on the cross-section is close to zero. At 180° 

the trend has shifted and the balance of the secondary flow favours the outwards direction slightly 

across the whole channel’s width. By the 270° cross-section, at the curve’s exit, the depth-

averaged V/Ubulk profile is almost a mirror image of the one at the entrance, with a clear net 

advection outwards, particularly at the centre of the channel. 

 

Figure 5.12. Horizontal profiled of the depth and time-averaged normalised span-wise velocity at different 

locations along the bend. 
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5.4. Experimental validation 

In this section, the URANS and PANS numerical predictions for the 270° bend will be compared 

versus the available experimental data. As explained in Section 5.1.2, there is a number of works 

that used the original experimental data by Steffler (1984). Since it is not possible to access the 

original measurements, the author has compiled all the available published datasets in Ghamry & 

Steffler (2002 and 2005). De Marchis & Napoli (2006) and Tritthart & Gutknecht (2007) do not 

provide any further experimental data, hence it appears they have obtained theirs from the 

aforementioned Ghamry & Steffler papers. All the experimental data that the author was able to 

find is displayed in the following results. For the sake of offering a complete flow description, 

this section also includes numerical results from stations where experimental data is not available.  

Most of the experimental data for validation is presented in the shape of velocity profiles. 

Horizontal profiles are either depth-averaged or obtained at the surface. Vertical profiles have 

been measured at 5 different locations in the span-wise axis y, being y/B=0.1 the closest to the 

outer bank, y/B=0.5 the section at the channel’s half width and y/B=0.9 the one closest to the inner 

bank. This is depicted in Figure 5.13. 

 

Figure 5.13. Location of the vertical velocity profiles on the PANS-predicted 180° station seen from upstream. 

5.4.1. Primary flow 

Figure 5.14 shows the horizontal profiles of time and depth-averaged normalised longitudinal 

velocity U/Ubulk. As in previous sections, the URANS turbulence closure is standard k-ε and 

PANS is fk=0.6, fε=1.0. Both models ran on mesh M2, using Gamma scheme and uniform inlet 

conditions. There are only experimental datasets for the 0° and 270° stations. At 0°, both 

predictions are rather similar and in good agreement with the experiments. At 90° the momentum 

shift from the inner (y/B=1) to the outer (y/B=0) bank is still under development for URANS, 

while fairly completed for PANS. At 180° the PANS results hint the presence of the OBC, 

exhibiting a dent at the outer bank. This is not reflected in URANS results. Furthermore, both at 

90° and 180° there is an increase in PANS predicted U/Ubulk by the inner bank, probably caused 

by the PDC which drives high-momentum fluid upwards along the inner wall; as seen in Figure 

5.11, the intensity of the secondary flow is stronger in PANS. At 270°, PANS stills predicts a 

larger difference in the streamwise velocities between both banks; the experimental results sit 

inbetween both modelling approaches, albeit they are closer to URANS near the inner bank. 
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Figure 5.14. Horizontal profiles of time and depth-averaged normalised longitudinal velocity U/Ubulk at the 0º, 

90º, 180º, and 270º stations for URANS (blue), PANS (red), and experimental data (circles) obtained from Ghamry 

& Steffler (2005). 

Figure 5.15 shows the vertical profiles of time-averaged normalised longitudinal velocity 

U/Ubulk. There is a general agreement on the trends but a general overestimation of the velocity 

magnitude. There are reasons to believe that the flow rate prescribed in the experiments might not 

always have matched accurately the 23.5 l/s that is reported in the publications. This would result 

in a bulk velocity Ubulk =36 cm/s in absence of significant water surface deformation (see Figure 

5.3), which is the value used to normalise all three datasets (URANS, PANS, and experimental). 

Station 0° displays the highest density of experimental sampling, with four experimental profiles. 

In addition, at 0° the profiles are more similar between them since the flow has not yet penetrated 

in the bend. On average, the integral value of U/Ubulk across the experimental profiles at 0° is 

approx. 0.85, suggesting an incoming flow rate inferior to the one reported.   
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Figure 5.15. Vertical profiles of time-averaged streamwise velocity for URANS k-ε (blue), PANS fk=0.6 (red) and experiments (circles; Ghamry & Steffler, 2002; Ghamry & Steffler, 2005). 
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Overall, the experimental results depicted in Figure 5.15 tend to match better with the URANS-

predicted velocities. However, the discrepancies are of different nature as the flow develops inside 

the bend. At 0°, URANS and PANS provide rather similar predictions, with PANS capturing better 

the bottom boundary layer and exhibiting a greater vertical gradient 
𝜕𝑈

𝜕𝑧
. Both models tend to 

overestimate the magnitudes compared to the experimental results. URANS is slightly closer to the 

experimental points but PANS provides a better match for the near-bottom fow. At 90°, experimental 

data are only available near the walls. URANS provides a better match, suggesting that the shift of 

momentum from the inner to the outer wall predicted by PANS might be too quick due to lesser 

dissipative forces. At 180° the experimental data is also only available at y/B 0.1 and 0.9, being 

URANS much closer to the experiments at the former (even though still overestimating) and PANS 

clearly closer the measurements at  y/B=0.1. We know that experiments report an OBC at this station 

from several results, including Figure 5.2), and that PANS captures that but URANS does not (Figure 

5.11).  Hence, one plausible explanation would be that PANS is overall capturing better the flow 

structure at this station but the extent of the PANS-predicted OBC is rather small, hence the 

discrepancy near the outer wall (see in Figure 5.13 how the y/B=0.1 does not reach the OBC). More 

experimental profiles would be needed to confirm this point. It is more challenging to analyse the 

270° results since there are only experimental data from the outer half of the channel. The results 

keep hinting that the flow rate in the experiments might be less that reported (note that the distribution 

of momentum should be significantly biased towards the outer bank at this point) and the URANS 

results deviate less from the experiments. 

5.4.2. Secondary flow 

Figure 5.16 allows the comparison of superficial transverse velocities V/Ubulk between URANS, 

PANS and experiments. There is only available experimental data for 90° and 180°. At 90°, URANS 

offers better agreement, in agreement with prior observations for primary flow. It is interesting to see 

that, despite the low spatial resolution of the experimental points, the last sampling point by the outer 

bank (at y/B=0.1 approx.) is very close to zero and hints the presence of a small OBC at 90°. This 

has not been captured by neither PANS nor URANS. At 180°, PANS offers a remarkably better 

agreement with experiments, particularly since they both reflect the presence of an OBC through the 

abrupt change of sign in V/Ubulk by the outer bank, while URANS does not. 
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Figure 5.16. Horizontal profiles of time-averaged span-wise velocity V/Ubulk at the surface of the channel at the 0º, 

90º, 180º, and 270º stations. URANS (blue), PANS (red), and experimental data (circles) obtained from Ghamry & 

Steffler (2005). 

Figure 5.17 compiles all the vertical profiles of secondary flow inside the bend, comparing 

URANS and PANS predictions with their experimental counterpart. Unlike the primary flow (Figure 

5.15), in this case the validation is clearly more favourable to PANS-predicted results. 

Systematically, PANS is able to capture more accurately the boundary layer and the current across 

the channel’s bottom. URANS, seemingly due to the higher dissipation triggered by the k-ε model, 

underestimate the shear at the bottom layer, and, as a result, the whole profile is flatter. Regarding 

the OBC prediction, focusing on the outer bank (y/B=0.1) results, it is noteworthy to see how the 

experiments sampled V/Ubulk≈0 at 90° by the surface, suggesting again the possibility of a developing 

OBC that is not described by the models. However, PANS does match accurately the experiments at 

180° but clearly overpredicts the size of the OBC at 270° in what is clearly the only significant 

disagreement between PANS predictions and the available experiments regarding secondary flow. 
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Figure 5.17. Vertical profiles of time-averaged spanwise velocity for URANS k-ε (blue), PANS fk=0.6 (red) and experiments (circles) from Ghamry & Steffler (2002, 2005).
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5.4.3. Grid convergence 

Figure 5.18 portrays the secondary velocity profiles at 180° to contrast the performance of the three 

computational meshes M1, M2, and M3 defined in Table 5.2.  for URANS and PANS. The experimental 

datasets are also included for reference. Overall, M2 and M3 predictions are rather similar since both 

meshes share the same vertical resolution and their main difference relies on the presence of more 

spanwise grid points. Those extra nodes are mostly located at the centre of the channel, since the 

computational grids are stretched for all three cases to ensure a proper near-wall treatment, and they do 

not seem to provide a qualitative difference. URANS results are not very sensitive to the mesh 

resolution, showcasing the robustness of the k-ε model – and its counterpart, the excessive numerical 

dissipation. For PANS, qualitative differences are observed between the coarser M1 mesh prediction 

and the two finer ones. Nevertheless, solutions obtained on M2 and M3 are convergent. 
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Figure 5.18. Vertical profiles of time-averaged spanwise velocity V/Ubulk at 180º. URANS k-ε on the top row and  PANS 

fk=0.6 at the bottom. Experiments (circles) from Ghamry & Steffler (2002, 2005). M1: coarser mesh; M2: medium; M3: 

finer. 
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5.5. Turbulent kinetic energy and shear stresses 

The previous two sections highlighted some of the quantitative and qualitative differences between 

URANS and PANS predictions. The key difference between both approaches is the way in which 

turbulent dissipation is accounted for. This section illustrates how each formulation impacts the way in 

which the turbulent kinetic energy and turbulent stresses are forecasted. 

5.5.1. Turbulent Kinetic Energy 

The turbulent kinetic energy (TKE) is a key parameter in Fluid Mechanics that describes the fraction of 

the total kinetic energy that is invested in generating turbulence by the mean flow. It is calculated 

through solving or modelling the Reynolds normal stresses, hence a direct result of the ensemble 

averaged of correlated velocity fluctuations. To calculate it for URANS and PANS we must include two 

contributions: a) that of the turbulence model, for which the TKE or k is the dependent variable of one 

transport equation and a major contributor to the ‘eddy viscosity’; b) that of the actual Reynolds stresses 

obtained through solving the actual velocity fluctuations. URANS effectively relies almost entirely on 

modelling as described in Section 3.1.1, whereas PANS can potentially allow a small degree of 

fluctuations to occur, depending on the Reynolds number and the discretisation setup. The following 

equations describe how the TKE is calculated: 

𝑇𝐾𝐸

𝑈𝑏𝑢𝑙𝑘
2 =

𝑇𝐾𝐸𝑚𝑜𝑑 + 𝑇𝐾𝐸𝑠𝑜𝑙

𝑈𝑏𝑢𝑙𝑘
2  (5.3) 

𝑇𝐾𝐸𝑚𝑜𝑑 = 𝑓𝑘𝑘 (5.4) 

𝑇𝐾𝐸𝑠𝑜𝑙 =
1

2
(𝑢′𝑢′̅̅ ̅̅ ̅ + 𝑣′𝑣′̅̅ ̅̅ ̅ + 𝑤′𝑤′̅̅ ̅̅ ̅̅ ) (5.5) 

where fk=1 for URANS, fk=0.6 for PANS, and k is calculated by solving the corresponding transport 

equations described in Section 3.1.1. The Reynolds stresses 𝑢𝑖
′𝑢𝑖

′̅̅ ̅̅ ̅̅  are the ensemble average of the product 

of the instantaneous velocity field, which constitute a separate tensor in the Reynolds or partially-

averaged form of the Navier-Stokes equations (3.2).  

Figure 5.19 shows the ratio of resolved versus modelled TKE within three cross-sections of the bend 

for PANS. Overall, the integral ratio is very low, spanning from slightly over 0.1% at 90° to almos 1% 

at 270°. URANS results are not depicted since the lack of resolved scales makes their contributions 

negligible, always below 0.1%. However, despite the integral TKEs/TKEt ratio for PANS being very 

low, it is locally significant by the upper outer bank corner, where the solved TKE can account for up 

to a 30% of the total at 270°, which is not negligible. Figure 5.19 describes how the contribution to the 

TKE of the solved turbulent scales increases as the bend progresses, both in magnitude and extension. 

The presence of this small, but locally relevant, fraction of resolved turbulence appears strongly 

correlated with the presence of the OBC. 
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Figure 5.19. Upstream view of the cross-sections within the bend (y/B=0 outer wall, y/B=1 inner wall) depicting the ratio 

of solved versus modelled turbulent kinetic energy for the PANS fk=0.6 simulation. The streamlines of the secondary motion 

are shown for reference. The vertical scale is exaggerated 2.5:1. 

The comparison of TKE contours between URANS and PANS is depicted in Figure 5.20. The total 

TKE includes modelled and resolved contributions as described in Equation 5.3, although the latter is 

negligible for URANS. Overall, and unsurprisingly, URANS estimates higher TKE across the cross-

sections. At 90° a similar trend is observed between the two models, with most of the turbulence being 

generated and the bottom boundary layer. At 180° and 270° the contribution of the solved scales 

becomes significan for PANS predictions by the outer-bank, reflecting the TKE generated by the OBC 

and the boundary layer between this and the PDC. In addition, all three PANS cross-sections predict 

less turbulence generation by the inner bank, probably due to the more acute transfer of momentum from 

the inner to the outer bank observed in previous results provided by this model. 
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Figure 5.20. Cross-sectional upstream views (outer side on the left, inner side on the right) of the normalised, turbulent 

kinetic energy at 90º, 180º, and 270º. URANS on the left and PANS on the right. The vertical scale has been exaggerated 

2.5:1. 

5.5.2. Turbulent shear stresses 

The evolution of the bed and wall shear stresses along the curve also provides good insights on the 

momentum balance within the cross-section and performs a key role on scour and sediment transport. 

In the context of a fully turbulent case such as the present one (Re=21,960), the turbulent stresses or 

Reynolds stresses are crucial to understand the vortex formation. The calculation of shear stresses must 

also consider the part generated by the resolved turbulent fluctuations and the part provided by the 

turbulence model: 

𝜏𝑖𝑗

𝑈𝑏𝑢𝑙𝑘
2 =

𝜏𝑖𝑗𝑚𝑜𝑑
+ 𝜏𝑖𝑗𝑠𝑜𝑙

𝑈𝑏𝑢𝑙𝑘
2  (5.6) 

𝜏𝑖𝑗𝑚𝑜𝑑
= 𝜌 (−2𝐶𝜇

𝑘2

휀
 𝑆𝑖𝑗) (5.7) 

𝜏𝑖𝑗𝑠𝑜𝑙
= 𝜌 𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅  (5.8) 

where k and ε are provided by the turbulence model. 
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The bed and wall stresses are calculated on the first line of grid points on the normal direction from 

the boundary. These points fall within the logarithmic region of the boundary layer for URANS and 

PANS (y+= z+=50), and they are calculated considering both the streamwise and spanwise contributions 

acting on the horizontal bottom layer: 

𝜏𝑏 = √𝜏𝑥𝑧
2 + 𝜏𝑦𝑧

2 (5.9) 

where τb is the bed shear stress. 

Figure 5.21 shows the time-averaged normalised bed (left) and walls (right) shear stresses at three 

cross-sections for URANS and PANS. The asymmetry of the stresses increases as the bend progresses 

due the momentum shift outwards. The shear stress over the inner wall remains mostly the same, while 

the stress on the outer wall nearly duplicates. The shear generated at the bottom is between two and three 

times higher in magnitude than the one generated at the walls. Regarding the differences between the 

two models, URANS consistently portrays higher values due its higher dissipative nature. The patterns 

predicted by the two models for the bed and inner wall shear stress are very similar. However, the shear 

stress prediction for the outer bank for 180º and 270º significantly differs. While URANS predicts a 

peak near the surface, the PANS-predicted results decrease strongly. This is clearly related to the 

presence of the OBC, and manifest a very relevant practical consequence: the OBC acts like a cushion 

between the hydrodynamic forces and the channel. 
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Figure 5.21. Time-averaged normalised bed (left) and wall (right) shear stresses along the bend. URANS: straight line; 

PANS: triangles. 
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5.6. Numerical sensitivity analysis 

Previous sections within this chapter have revolved around the quantitative and qualitative differences 

between URANS and PANS predictions for the 270° bend. This section discusses the influence of 

further numerical parameters that can potentially impact the capability of FreeFlow3D to solve turbulent 

scales. PANS fk=0.6 and fε=1.0 was chosen to explore the influence of the convective term discretisation 

scheme and the inflow condition; the reason being that this numerical setup has been able to provide 

relatively accurate results and its turbulence closure is less dissipative than those for URANS, and hence 

more sensitive to those modelling choices. Finally, this section analyses the performance on the 270° 

bend of different turbulence models for URANS. 

5.6.1. Discretisation scheme 

Gamma and central differencing (CDS) schemes for the discretisation of the convective term of the 

momentum equations were formulated and described in Section 4.3.2. Some results concerning the 

evolution of the secondary flow in the bend with both schemes, obtained under otherwise identical 

conditions (PANS fk=0.6, M2) are depicted in Figure 5.22. The contours of resolved versus total TKE 

are plotted with super-imposed streamlines for the secondary motion. The choice of discretisation results 

in qualitatively different outcomes. Firstly, the ratio of resolved TKE with CDS is much higher than the 

one calculated with the gamma scheme. The integral TKEs/TKEt across the cross sections surpasses 30% 

for CDS at 270°, while it does not reach 1% for gamma at the same station. Locally, CDS-predicted 

TKEs can contribute over 90% of the total turbulent kinetic energy in some areas, with a particular 

emphasis on the outer-bank corner. This clearly indicates that the boundedness criterion employed 

within the gamma algorithm to switch between first and second-order approximations applies the first-

order upwind formulation more often than not, resulting in higher numerical dissipation.  

Despite the relevant differences between both schemes regarding the treatment of the unsteadiness in 

the flow, the velocity fields remain overall rather similar. However, Figure 5.22 depicts one instance in 

which there is a qualitative difference in the prediction of the secondary flow. As reported in Section 

5.3.2, an OBC is found at 180° for simulations using the gamma scheme, but the CDS results at that 

station do not show the presence of it. CDS-based results at 180° indicate a turbulent hotspot by the 

upper outer bank, with a very relevant contribution of resolved turbulent fluctuations 𝑢𝑖
′𝑢𝑖

′̅̅ ̅̅ ̅̅  (over 90%); 

however, a coherent structure is not formed. This may come as a surprise, since the observation of the 

numerical simulations up to this point seemed to support that the OBC is captured when the excess of 

dissipation is removed (via direct damping in the case of PANS). However, this is not the case with 

CDS. On the other hand, unlike with URANS, the OBC is present at 270°, suggesting a late development 

of this structure when compared to gamma and experimental results.  
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Figure 5.22. Upstream view of the cross-sections within the bend (y/B=0 outer wall, y/B=1 inner wall) depicting the ratio 

of solved versus modelled turbulent kinetic energy for the PANS fk=0.6 simulation implementing gamma (left) and CDS 

(right) convection schemes. The streamlines of the secondary motion are over imposed. The vertical scale is exaggerated 

2.5:1. 

 Figure 5.23 shows the time series for the velocity fluctuations in the spanwise axis 𝑣′ = 𝑉 − 𝑣 at the 

geometric centre of the 90°, 180°, and 270° cross-sections during a time span of 60 computational 

seconds once the flow is developed. In all cases the fluctuations produced by CDS are larger in amplitude 

and of lower frequency than the gamma-based ones. This might suggest that the CDS fluctuations are a 

product of flow unsteadiness, describing (relatively large) scales of turbulence, whereas the oscillations 

around the mean obtained with the gamma scheme could be the product of numerical noise. 
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Figure 5.23. Time series of the spanwise velocity fluctuations simulated with PANS fk=0.6 using gamma (red) and central 

differencing (blue) schemes. They are located at the central point of the 90°, 180°, and 270° cross-sections. 

Figure 5.24 shows another comparison between gamma and CDS for PANS fk=0.6. In this case, three 

profiles at the 180° station are compared. Despite being a limited comparison, it is representative of 

the overall trend. In general, the velocities predicted by CDS are extremely similar to those predicted 

by the gamma scheme, including the secondary circulation. Compared to experimental data, the 

validation of the numerical results produced with CDS is not worse than the one obtained with 

gamma. This supports the idea of the fluctuations described in Figure 5.22 and Figure 5.23 

representing physical phenomena, i.e., a limited range of the real turbulence spectrum.  
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Figure 5.24. Vertical profiles of time-averaged spanwise velocity V/Ubulk at 180º for PANS fk=0.6 with gamma (red) and 

CDS (blue) convection schemes. Experiments (circles) from Ghamry & Steffler (2002, 2005). 

 

  



80 

 

5.6.2. Inflow condition 

Section 5.6.1 demonstrated how one turbulence modelling approach (PANS fk=0.6 in that case) can 

provide significantly different results depending on the numerical parameters of choice. One issue that 

has arisen some of these results is how turbulence and coherent structures develop. The curvature 

induces three-dimensional motion throughout the secondary flow, constituting a trigger for turbulence, 

but the degree of development and turbulence intensity of the flow that enters the bend can be important. 

Generating realistic turbulent inlet conditions is a common topic in CFD; the computational resources 

required to generate developed turbulence velocity fields upstream of the region of interest can be rather 

taxing, and sometimes unaffordable. It is for this reason that inlet boundary conditions that prescribe 

and synthetic turbulence are used. 

Imposed isotropic synthetic fluctuations were used to create a turbulent inlet condition in the 270º 

bend. Further details can be found on Davidson (2008) . The procedure follows a number of steps: 

1. New geometry:  the sole purpose of the long (6.13 m) straight inlet is, both experimentally and 

numerically, developing the flow before entering the bend. Hence it is removed from the geometry. 

The new inlet is located at the 0º section (Figure 5.25). 

2. Isotropic turbulence: a fluctuating velocity field based on a prescribed turbulent energy spectrum 

is created for each time step. Through the velocity field a turbulent integral length scale is prescribed 

to the flow. 

3. Mean inflow: the inflow is the result of adding a mean velocity profile to the prescribed 

fluctuations. The mean velocity field is obtained from extracting the 0° cross-section from a precursor 

URANS k-ε simulation.  

4. Time-correlation: unlike length scale, turbulent integral time scale is not prescribed via the 

independent fluctuations. In order to amend this, an asymmetric time filter is used to blend the 

velocity field at time m to the previous at m-1. 

5. Blending: a damping factor is applied to the fluctuations as a function of their distance to the 

wall. 

6. Recycling: in each time step a new fluctuation file is read by the code and added (after time-

correlated and blended) to the mean inflow profile. For the sake of economy of computational 

resources, the code recycles the fluctuation files, going through them forward and backwards order 

as the final inflow is reached. The order must be however kept to make sure that time correlations is 

respected. 

 

 

Figure 5.25. Schematic view of the turbulent synthetic inflow: a URANS precursor simulation is run to provide the mean 

velocity profile to which the synthetic fluctuations are added, allowing the removal of the straight inlet. 

As with the previous section, PANS fk=0.6,  fk=1.0 is used to describe the effect of the different inlet 

condition. Close inspection of the results obtained with a synthetic turbulent inflow for all cases using 

mesh M2 and gamma scheme reveal results virtually identic to those obtained with the straight inlet; no 

relevant qualitative nor quantitative disagreements are found. Figure 5.26 shows the evolution 

throughout 60 computational seconds of the velocity fluctuations in the spanwise and vertical axes along 

the bend for gamma and CDS using the synthetic turbulence inflow at the central points of each 
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designated cross-section. At the new inlet, 0°, the virtual probe records the high amplitude and high 

frequency synthetic turbulence that is being prescribed. From that point downstream, the fluctuations 

drastically attenuate, and the trend is similar to Figure 5.23, with CDS providing higher-amplitude, 

lower-frequency fluctuations compared to gamma. Notice as well the lower magnitude of the vertical 

fluctuations. However, it is interesting to notice that the amplitude of CDS fluctuations is higher than in 

the uniform inlet case (see Figure 5.23), particularly at 90°. 
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Figure 5.26. Time series for the spanwise (left) and vertical (right) velocity fluctuations at a central point of the 0°, 90°, 

180°, and 270° cross-sections simulated with a synthetic turbulence inflow and CDS (blues) and gamma (red) schemes for 

PANS fk=0.6. Notice the different vertical scales at 0° and between v’ and w’. 
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Regarding gamma scheme with the synthetic inflow, Figure 5.28 illustrates that, even for a fk value 

as low as 0.3, the turbulent fluctuations are dissipated quickly and fail to induce extra unsteadiness 

downstream. On the other hand, CDS results with the synthetic inflow contain some interesting features. 

 

Figure 5.27. Slides at different points of the bend for a PANS simulation with fk=0.3 with synthetic turbulence inflow. 

Figure 5.28 shows the evolution of the ratio of solved versus total TKE as the bend progresses for 

two simulations performed with PANS fk=0.6 on the M2 mesh with CDS. The streamlines depict the 

structure of the secondary flow. The most remarkable outcome of this comparison is that, for the 

synthetic turbulent inflow, there is an OBC at 180°. This was not found in the uniform inflow case, 

despite being a flow feature reported by the experimental data (see Figure 5.2). The numerical data 

strongly suggest that the reason behind the OBC faster development is in that the turbulent fluctuations 

that CDS allows also develop earlier with the synthetic inflow. This is well illustrated by the TKEs/TKEt 

ratios; while the contours at the bend’s exit (270°) are nearly identical for both inflows, a qualitative 

difference can be observed at 90°, where the integral value across the cross-section of the solved 

fluctuations on the total TKE lifts from 8% with uniform inflow to 14% with synthetic inflow. In general, 

the TKEs/TKEt is more consistent along the bend. This and the previous results suggest a strong 

correlation between resolved fluctuations and a correct depiction of the OBC, as indicated repeatedly 

by the high TKEs/TKEt values at the upper outer bank corner. 
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Figure 5.28. Upstream view of the cross-sections within the bend (y/B=0 outer wall, y/B=1 inner wall) depicting the ratio 

of solved versus modelled turbulent kinetic energy for the PANS fk=0.6 simulation with a uniform inflow condition and a 

straight inlet (left) and a synthetic turbulence inflow (right). The streamlines of the secondary motion are over imposed. The 

vertical scale is exaggerated 2.5:1 

Figure 5.29 provides an overview of how CDS combined with the synthetic turbulence inflow impacts 

the secondary flow predictions. This figure portrays five vertical profiles per cross-section at each one 

of the 90°, 180°, and 270° stations that show the evolution of the time-averaged normalised spanwise 

velocity V/Ubulk. The  results obtained with PANS fk=0.6 in combination with the synthetic inflow and 

CDS are displayed in blue and compared to the experimental datasets (black circles) and the PANS 

fk=0.6 generated with a gamma scheme and an uniform inflow, that were previously compared with 

URANS in Figure 5.17. 

Overall, the results are rather similar between the two numerical datasets. The description of the 

secondary flow does not differ qualitatively. The subtle differences that can be appreciated at 90° or 

270° y/B=0.1 generally reduce the already small differences with the experimental measurements. It 

appears that the higher ratio of solved TKE at the OBC calculated by Synth-CDS provides slightly closer 

predictions to the experiments on that region.
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Figure 5.29. Vertical profiles of time-averaged spanwise velocity for PANS fk=0.6 with synthetic turbulent inflow and CDS (blue) and PANS fk=0.6 with uniform inflow and gamma scheme 

(red) and experiments (circles) from Ghamry & Steffler (2002, 2005). 
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5.6.3. Turbulence closure for URANS: linear versus non-linear eddy viscosity models 

The isotropic nature of the Boussinesq assumption behind linear eddy viscosity models such as 

k-ε is often pointed out as one of its main drawbacks. Coincidentally, it is agreed that anisotropy 

is one of the mechanisms of generation of secondary currents of Prandtl’s second kind. Therefore 

it seems natural to seek other turbulence modelling alternatives that might be capable to overcome 

these limitations. Non-linear eddy viscosity models (see section 3.1.2) incorporate non-linear 

coefficients in the formulation of the Reynolds stresses based on the velocity gradients and the 

strain-vorticity balance. The three no-linear models described in sections 3.1.3-3.1.5 have been 

tested in the 270º bend. GS and CSL exhibited convergence problems and their results were 

deemed as inaccurate. The cubic model formulated by Lien & Leschizner (1994) (LL) was 

successfully tested and its results presented in the current section. 

Figure 5.30 compares the results of standard k-ε and LL by depicting the contours of the eddy 

versus laminar viscosity ratio and the secondary flow streamlines at the 90º, and 180º, and 270º 

stations.  
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Figure 5.30. Upstream view of the eddy versus laminar viscosity contours and superimposed secondary motion 

streamlines at the three different cross-sections for standard k-ε (left) and Lien-Leschziner (right) models. The 

vertical scale has been exaggerated on a scale 2.5:1. 

Overall, there are more similarities than differences among the two URANS closures and the 

LL model does not seem to improve the k-ε prediction. The eddy viscosity magnitude and 

distribution is very similar in both cases, in both cases strongly correlated to the spanwise velocity 
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gradient of the primary flow (see Figure 5.7). LL results seem to hint more clearly the presence 

of the separated shear layer at the upper half of the inner bank, and they also highlight an area of 

high νt by the outer bank. However, this does not translate into a different depiction of the 

secondary flow. The same two-core structure is predicted by both k-ε and LL, with the only 

difference being that the vortices’ cores are more poorly defined for the latter. 

Figure 5.31 displays the integral eddy versus laminar viscosity ratio across the 90º, 180º, and 

270º  cross-sections for standard k-ε (blue bar), LL (green), and PANS fk=0.6 (red). This diagram 

informs on the qualitative differences between the levels of turbulent dissipation imposed by 

URANS and PANS. Standard k-ε and LL provide very similar levels, albeit it is noteworthy that 

LL’s turbulent viscosity is consistently higher. PANS’ modelled turbulent viscosity is 50-60% 

lower at the three sections, shedding light on the qualitative differences found in the secondary 

flow predictions between PANS and URANS. These results suggest that the secondary flow 

balance cannot be adjusted by means of a higher order approximation to the Reynolds stresses but 

further solving of inertial scales of motion is needed. 

 

Figure 5.31. Integral values of eddy versus laminar viscosity along the bend for standard k-ε (blue), LL (green), 

and PANS fk=0.6 (red). 
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6. Simulation of a meandering open-channel 

flow 

The presence of more than one bend in open-channel flow adds new layers of complexity to the 

hydrodynamics. In the previous chapter, the influence of the curvature on the primary and 

secondary flow and the turbulent properties was analysed, as well as the impact of choosing 

different closure approaches. With one single bend there were two main driving forces responsible 

for the observed phenomena: the centripetal/pressure induced forces and the anisotropic/turbulent 

motion. In this chapter a new element is added: the influence of the previous bend or bends.  

The current chapter is structured as follows:  

 Two case studies are introduced: meandering channel with two bends (A) and with periodic 

bends (B). The previous experimental and numerical works on this specific case are briefly 

commented.  

 The numerical setups for every modelling approach and case are described. 

 The results begin with the study of the two-bend meander and the significant differences 

between URANS and PANS on the characterization of the secondary flow. The results are 

validated experimentally and a grid sensitivity analysis is performed. 

 The following sections focuses on the periodic meander and its primary and secondary flow 

trough three different modelling approaches: URANS, PANS and LES.  

 A section is devoted to the analysis of the turbulence structure and the different ways in which 

URANS, PANS, and LES resolve it. 

 Subsequently, the performance of URANS and PANS is assessed by comparing up to four 

different turbulence models for URANS and four different configurations for PANS.  

 The last section tries to assemble all the cases that were analysed individually to focus on the 

key aspects that explain the mechanisms of the secondary motion: the turbulence modelling 

approach and the influence of the flow’s ‘history’ and the interaction between consecutive 

curves.  
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6.1. The case studies 

The results to be shown in this chapter are based on the experiments conducted by Siebert in 

Karlsruhe University on a meandering flume (Siebert, 1982). Two different numerical domains 

have been tested. The first one corresponds to the original configuration of Siebert: a two-bend 

meandering channel with straight inlet and outlet. A second set of tests was carried out in which 

only one of the bends was considered in a cyclic loop.  

6.1.1. Description of the flume and the experiment 

The experimental setup (Figure 6.1) consisted in two successive 180º bends and a straight 0.5 m 

cross-over section between them. The flume’s cross-section is rectangular, being the width 

B=0.25 m, the wall's height h=0.20 m and the radius from the centreline of the cross-section R=1 

m. The channel’s floor is flat and both bed and walls were fabricated from Lucite. The flume has 

a 4 m straight inlet and a 2 m straight outlet. The resulting sinuosity is σ=1.71 and the aspect ratio 

is R/B=4. 

 

Figure 6.1. Original configuration of the experimental flume measured experimentally by Siebert (1982). 

The experimental conditions are sumarised in the following parameters: 

 Bulk velocity: Ubulk=0.21 m/s. 

 Water depth: H= 8.7 cm. 

 Reynolds number (using H): Re=18,500. 

 Froude number: Fr=0.23. 

 Width-to-depth ratio: B/H=2.9. 

 Curvature ratio: H/R=0.087. 

The flow on the meandering channel is fully turbulent and subcritical. The shallowness is high, 

but significantly less pronounced than in the 270º bend of the previous chapter (B/H=17.5). On 

the other hand, this case exhibits a greater curvature: H/R=0.087 instead of H/R=0.017 for the 

270º bend. 
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6.1.2. Previous works on the meandering channel 

There are two main references in the scientific literature that studied this particular meandering 

channel: the aforementioned experimental work by Siebert (1982) and the numerical work by 

Stoesser, Ruether and Olsen in 2010. 

 Siebert (1982) made experimental measurements with hot-film anemometry under the 

conditions specified in 6.1.1. 3D velocities were recorded in several sections at the bends, cross-

over sections and outlet. Siebert estimated the average variance both for streamwise and 

spanwise velocities in 4% and 1% respectively. 

 Stoesser et al. (2010) simulated the second bend of the flume using cyclic boundary 

conditions. LES and RANS (with k-ε and k-ω isotropic turbulence closures) models were tested 

and compared using different grids. The dynamic Smagorinsky model was used as subgrid 

turbulent closure for LES. The results were focused on the primary and secondary flow and the 

shear stresses distribution. Overall, both models predicted well the streamwise velocities, but 

only LES could accurately represent the secondary flow. The match between LES and 

experimental results is outstanding. The isotropic nature of the turbulence closures for RANS 

makes them fail to predict the evolution of the outer-bank cell. There is an overall good 

agreement between RANS and LES results regarding shear stresses, although RANS models 

tend to overpredict the bed shear stress in the middle of the channel and close to the inner wall 

at the bend's apex (90º section). 

The LES data gathered by Stoesser et al. and the laboratory measurements by Siebert are used 

to validate and discuss the results of this section. 
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6.2. Simulation setup 

This work explores two different scenarios: Case A follows the actual experimental facility in 

which Siebert conducted his experiments, while Case B is an idealized periodic meandering 

channel analogous to the one which Stoesser et al. (2010) analysed through large-eddy simulation. 

The idea behind this duplicity is to gain some understanding on the influence of the periodicity 

and the repetition of bends on the flow structure, the turbulence generation and the choice of the 

appropriate inflow condition. 

6.2.1. Case studies: two-bend vs periodic meander 

Figure 6.2 shows Case A’s numerical domain, which follows the original experimental 

configuration of Siebert (1982), including the straight inlet and outlet, the two 180º bends and the 

0.5 m cross-over section between them. 

 

Figure 6.2. Test case A: computational domain that replicates the original flume from Siebert (1982). 

Figure 6.3 illustrates the domain investigated numerically by Stoesser et al. (2010), which was 

replicated for Case B. The focus of that work was the study of the flow in one cyclic bend, hence 

inlet and outlet sections were eliminated. Instead of two 180º bends the domain consists in one 

complete 180º bend and two halves of 90º for the previous and following curves. There are two 

0.5 m cross-over sections between the bends.  

 

Figure 6.3. Test case B: periodic meander. 
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To obtain a fully developed flow, periodic boundary conditions were used.  Thus, the result 

resembles an endless meander constituted by a series of identical 180º bends which alternatively 

switch direction and are inter-connected by 0.5 m cross-over sections. 

6.2.2. Initial and boundary conditions 

The simulations performed for the present work followed closely the conditions established in 

Siebert's experiment. Three different inflow approaches are presented: for Case A, a uniform 

inflow develops along the 4 m long straight inlet before entering the bends. For Case B periodic 

inlet/outlet conditions and the synthetic turbulence approach are tested. For all cases Ubulk was set 

to match the flow discharge of the experiments. Table 6.1. summarises the boundary conditions 

for the different scenarios (including the LES simulation) to be analysed in the Results. 

 Inflow Outflow Walls/bed Free surface TKE Epsilon 

C
a
se

 A
 

Uniform 

Q=4.57∙10-3 

m3/s 

Zero-

gradient 
Wall functions 

Rigid lid 

H=0.087 m 

20.1in ink U
 

m2/s2 

3/ 2
3/ 4

in

k
C 

 
m2/s3 

C
a
se

 B
 

Periodic Periodic Wall functions 
Rigid lid 

H=0.087 m 
Periodic Periodic 

C
a
se

 B
 -

 L
E

S
 

Periodic Periodic No slip 
Rigid lid 

H=0.087 m 
- - 

Table 6.1.  Boundary conditions for the simulations in the meandering channel. 

Where: 

 Periodic or cyclic inflow/outflow: at each time step, the outflow velocity field is imposed at 

the inlet. This approach may induce a certain periodicity in the large turbulent structures. This 

does not constitute a problem for Case B simulations, as the goal is to reproduce a cyclic, 

theoretically endless meander, and such scenario would certainly enhance turbulence 

periodicity in physical tests. 

 Zero-gradient condition: the gradients of all fluid properties in the direction perpendicular to 

the plane of reference (the outlet cross-section in the present scenario) are zero. This is a 

common procedure regarding outlet conditions and implies an artificial forcing of the flow 

variables at the exit. Hence the outlet should be placed at a convenient distance from the key 

locations for the study of the flow, as it occurs in this work in Case A, where the outlet is 

separated from the exit of the second bend by a 2 m straight channel. The outlet is also taken as 

the dynamic pressure reference Pd=0. 

 Wall functions: the law of the wall is applied to the calculation of the wall-tangential velocity 

components, k, and ε at the first grid point after the wall. The normal fluxes and gradients are 

set to zero. Smooth wall is considered, as the flume was fabricated with Lucite, so the equivalent 

sand roughness ks=0. 
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 No slip: all the velocities are set to zero at the wall. This is the most physically-accurate 

approach but it demands a very high near-wall mesh resolution as the first computational node 

after the wall should be placed within the laminar sub-layer (typically y+<11.67).  Otherwise an 

approach based on wall functions is recommended. 

 Rigid lid: a fixed surface layer is imposed at a certain height over the bed. This approach is 

considered valid as the water level variations reported in the experiments are below 5% of the 

water depth, plus the additional numerical data by Stoesser et al. (2010) used for validation 

shares this assumption. This lid acts as a symmetry plane, where zero gradient is applied to all 

the fluid properties in the wall normal direction and zero flux across the surface is allowed. 

6.2.3. Grid characteristics and sensitivity 

A grid sensitivity test with three different mesh resolutions (A1-A3) was conducted for case A. 

The medium resolution (A2) was applied for case B (B1) with a very slight increase in the span-

wise resolution and compared to the LES results (B2). In total, four different grid resolutions were 

employed, three for URANS and PANS (A1, A2/B1 and A3) and one for LES (B2), and their 

main characteristics can be found in Table 6.2. . 

Case Mesh 
Number of cells Near-wall res. Stretching 

Total grid points 
x y z y+ z+ y z 

A 

A1 425 28 21 160 72 1:6 1:6 271,788 

A2 738 56 25 88 72 1:6 1:5 1,095,198 

A3 891 82 36 50 72 1:4 1:5 2,739,332 

B 

B1 622 60 25 66 72 1:7 1:5 988,078 

B2 

(LES) 
1185 82 60 24 1 1:6 1:18 6,004,718 

Table 6.2.  Main features of the five numerical grids whose results are shown in this section. 

All the grids are stretched in the spanwise (y) and vertical (z) directions, providing higher 

resolutions near the solid wall boundaries and, for some cases, at the free surface (see Figs. 4 and 

5). The rate of stretching in Table 6.2.  is provided by the ratio between the smaller and bigger 

cells in the chosen direction. The number of grid points at the straight inlet and outlet of Case A 

is minimized by using a Δx twice coarser than at the curves and cross-over areas, which follow 

the spacing described in Table 6.2. . The local Reynolds numbers y+ and z+ refer to the spanwise 

and vertical axis, respectively, and were calculated as follows: 

𝑦+ =

∆𝑦
2  𝑢∗

𝜈
 

(6.1) 

where Δy is the width of the first cell in the wall-normal direction, u* is the friction velocity and 

ν the dynamic laminar viscosity. The local Reynolds number in the vertical direction z+ is 

calculated using the vertical mesh resolution Δz instead. Provided that both the LES (Hydro3D) 

and URANS/PANS (FreeFlow3D) codes are based on the Finite Volume approach and the mesh 

elements are prismatic for all cases, the distance to the first grid point is half the cell’s width 

(Δy/2). The friction velocity is a measure of the shear stress in velocity units, and can be calculated 

as: 
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𝑢∗ = √
𝜏𝑤

𝜌
 (6.2) 

where τw is the wall shear stress and ρ the water density. The local Reynolds number is a good 

indicator of the dimensionless near-wall resolution. The suitability of the chosen boundary 

conditions can be informed through the estimate of y+ at the first wall-normal grid point.  

The evaluation of y+ and z+ for the URANS and PANS simulations confirms that for every case 

the first grid point after the wall falls into the log-law region of the turbulent boundary layer, 

therefore the wall-boundary conditions were adequately chosen. The local Reynolds number at 

the first nodes is consistently under 100, except for the coarser mesh A1 in the spanwise axis. The 

LES grid B2 has a much greater level of refinement near the walls (hence the considerably higher 

number of grid points). The first node after the bottom wall is at z+=1, well within the viscous 

sub-layer where the no-slip condition is applied. The estimated resolution for B2 at the side walls 

is y+=24, which is in the buffer region between the viscous and log-law region (typically 

11.63<y+<30). 

Figures Figure 6.4 and Figure 6.5 show the plan and cross-sectional views, respectively, of the 

grids described in Table 6.2. .  

  

  

Figure 6.4. Plan views of the grids A1 (top left), A2/B1 (top right), A3 (bottom left) and B2 (LES) (bottom right).  
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Figure 6.5. Cross-sectional views of the grids A1 (top left), A2/B1 (top right), A3 (bottom left) and B2 (LES) 

(bottom right).  

The large-eddy simulation was not part of the grid sensitivity analysis; its mesh details were 

added for the sake of comparison and to provide further understanding of the high resolution of 

the results to be shown in the following subsections. From Figures Figure 6.4 and Figure 6.5 is 

rather clear that the main difference between the URANS/PANS grids and the LES one is the 

extreme refinement near the bottom wall and the greater streamwise resolution. Mesh A3 implied 

an extreme use of computational resources for a non-parallel code such as FreeFlow3D at the time 

the simulations were conducted, but it was tested to offer completion on a grid convergence study. 

6.2.4. Numerical setup 

Based on the results seen in the previous chapter, Gamma scheme is used for the discretization of 

the convective term while the time derivative is approximated through the Crank-Nicholson 

approach. The fixed time step for the URANS and PANS simulations is Δt=2·10-3 s, fully 

accomplishing the CFL condition. For all cases the simulation was run for 10 flow-troughs (where 

1 flow-through is the approximated time that a non-inertial particle of fluid would take to be 

transported from the inlet to the outlet of the domain) to ensure that the flow was fully developed, 

and the time-averaged properties had reach a steady state. Then the time-averaged statistics were 

collected for a minimum of other 20 flow-troughs. This is roughly a total computational time of, 

at least, 2000 seconds (more than 30 minutes). These simulations were performed on a single 

Intel Xeon 2.27 GHz processor and on average they would require from 6 to 20 hours depending 

on the mesh resolution (see Subsection 6.2.3).  

The results are compared with the LES data from Stoesser et al. (2010), which were not initially 

part of this research. However, the large-eddy simulation of Case B was re-run for the present 

work and all the outputs were postprocessed, presented and analysed by the author of this thesis 

in agreement with Prof Stoesser and his team. The code used for the LES is different from the one 

used for all the other numerical simulations in this document. It is also an in-house FORTRAN-

based code based on the Finite Volume method (although there is also a Finite Differences 

version) which solves the space-filtered Navier-Stokes equations on a collocated grid. The 

detailed description of Hydro3D numerical features and capabilities is beyond the scope of this 

work but it is carefully described in works such as Bomminayuni and Stoesser (2011), Kim et al. 

(2013), or Fraga et al. (2016). 

The settings for large-eddy simulations are rather different, as the LES requirements in terms 

of spatial and temporal resolution are much higher and the code is MPI-parallelized to run in 
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multiple cores. The grid details are provided in Table 6.2.  under the denomination Mesh B2, 

comprising more than 6 Mio computational cells. The time step for LES is set to 10-3 s and 20 

flow-troughs were required before starting time-averaging of first and second order statistics. The 

sub-grid scale turbulence is modelled using the dynamic Smagorinsky method proposed by 

Germano et al. (1991). Explicit 3-step second-order Runge-Kutta precitor-corrector method is 

used for the time discretisation whereas a second-order central differences is the chosen scheme 

for the convective and diffusive tests. More details are available in Stoesser et al. (2010). 

Table 6.3.  shows the different turbulent closures tested in both case studies. The damping 

factor fk determines the modelled-to-solved ratio of turbulent kinetic energy with the PANS 

approach. There are three different turbulence closures for URANS: standard linear k-ε model, 

the second-order non-linear Gatsky and Speziale’s model (GS), the Craft-Suga-Lauder’s model 

(CLS) with both second and third-order formulations, and the third-order non-linear Lien & 

Leschizner model (LCL). The classic Smagorinsky model (Germano et al., 1991) accounts for 

the sub-grid turbulence in the large-eddy simulations. 

Cases 
URANS PANS LES 

k-ε GS CLS2 CLS3 LCL fk=0.3 fk=0.4 fk=0.5 fk=0.6 DSM 

A x x x x  x x x x  

B x x  x x x x x x x 

Table 6.3.  The different models' setups simulated for each case. 

6.2.5. Coordinate system and rotation of the reference frame 

The computational models described over the previous sections (6.2.1 to 6.2.4)  were built on a 

three-dimensional, Cartesian, and orthogonal framework in which every location and vector field 

is defined in relation to a (x,y,z) set of coordinates and a (𝑖 , 𝑗 , �⃗� ) standard vector basis. There is a 

common reference system for the whole computational domain of each case (A and B) in which 

the origin (0,0,0) corresponds to (xmin,ymin,zmin), hence the coordinates are always positive. 

Although this is a convenient framework for the numerical setup, it is not the most intuitive 

and useful in order to analyse the results within a curved or meandering geometry, where sections 

with different orientations and vector properties are evaluated. Hence, a curvilinear reference 

framework is adopted during results postprocessing and discussion. The curvilinear framework is 

unique to each section, and the coordinates are locally defined in relation to the plane that contains 

it. Within this context, x, y, and z represent the streamwise (normal to the section), spanwise, and 

vertical directions, respectively, while U, V, and W define the time-averaged velocities on those 

same axes. The origin of coordinates (0,0,0) is set at the bottom-left bank corner from an upstream 

perspective. 

When the section under analysis does not belong to one of the three Cartesian (XY, XZ, YZ) 

planes, a coordinate system rotation is applied on every vector and tensor field, including the 

position x, velocity u, and vorticity ω vectors and the stress T or velocity gradient ∇𝒖 tensors. 

For any given stress tensor T{x,y,z} defined in absolute coordinates, there is a rotation matrix R 

constituted by the coordinates of the vectors of the basis for the new reference system {x’,y’,z’} 

as a linear combination of the basis of the original one {x,y,z}. The switch of the coordinate system 

that results in a rotation of the reference frame is achieved by applying Eqs. 6.3 (tensor form) and 

6.4 (scalar form): 

𝑻{𝑥′,𝑦′,𝑧′} = 𝑹 · 𝑻{𝑥,𝑦,𝑧} · 𝑹𝑇 (6.3) 



96 

 

[

𝜎𝑥′𝑥′ 𝜏𝑥′𝑦′ 𝜏𝑥′𝑧′

𝜏𝑦′𝑥′ 𝜎𝑦′𝑦′ 𝜏𝑦′𝑧′

𝜏𝑧′𝑥′ 𝜏𝑧′𝑦′ 𝜎𝑧′𝑧′

]=𝑹[

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜎𝑦𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧𝑧

] 𝑹𝑇 (6.4) 

where σ and τ represent, respectively, the normal and shear stresses acting on the planes 

represented by their sub-indices. The first sub-index indicates the direction along which the force 

that generates the stress is exerted whereas the second sub-index corresponds to the direction 

perpendicular to the plane over which the force is acting (i.e., plane XY is designated by sub-

index z). The nature of the components of the rotation matrix R depends on the angle considered 

and the axes of rotation. In the current case an elemental rotation around the Z-axis is considered, 

therefore R takes the form described by Eq. 6.5: 

𝑹𝑧(𝜃) = [
cos𝜃 −sin𝜃 0
sin𝜃 cos 𝜃 0
0 0 1

] (6.5) 

The rotation of a given vector is a particular case for the tensor one. Taking the velocity vector 

u as an example, the expression follows Eq. 6.6: 

𝒖{𝑥′,𝑦′,𝑧′} = 𝑹 · 𝒖{𝑥,𝑦,𝑧} (6.6) 

Hence, for instance, given a velocity vector u, its coordinates with respect to a reference system 

rotated by an angle θ around the Z-axis would be: 

[
𝑢′
𝑣′
𝑤′

]=[
cos 𝜃 −sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

] [
𝑢
𝑣
𝑤

] = [
𝑢 cos 𝜃 − 𝑣 sin 𝜃
𝑢 sin 𝜃 + 𝑣 cos 𝜃

𝑤
] (6.7) 
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6.4. Two-bend meandering channel: URANS and PANS analysis 

This section introduces Case A’s results regarding the streamwise and spanwise velocity field. 

Six different modelling approaches (4 PANS and 4 URANS setups, as seen in Table 6.3. ) and 

three different numerical grids (Table 6.2. ) were tested and compared with the experimental 

results from Siebert (1982). Provided the abundance of data, one representative configuration of 

URANS and another of PANS were chosen to illustrate these results: URANS with standard k-ε 

closure and PANS with fk =0.6 and fε =1. All the other setups and the way in which they affect the 

flow prediction will be analysed in section 0, and a grid sensitivity study is displayed in 6.6.  

6.4.1. Primary flow 

Figure 5.5 indicates the location of six cross-sectional stations in which the evolution of the 

primary and secondary flow is analysed. These stations characterize the entrance, apex and exit 

of the first (A) and second (B) bends. 

 

Figure 6.6. Location of the cross-sections that were subjected to analys in Case A (two-bend meander). 

Figure 6.9 illustrates the distribution of the normalised time-averaged horizontal velocity 

module at three different depths: near the bed (z/H=0.1), mid-depth plane (z/H=0.5) and near the 

surface (z/H=0.9) for k-ε URANS and PANS (fk=0.6) simulations. The contour lines are set at 

|U|/Ubulk=0.25, 0.55, 0.85 and 1.2 for all the plots. At the entrance of each bend the streamwise 

momentum builds up near the inner wall and is advected towards the outer wall as the flow 

progresses along the bend. This is more noticeable at the second bend, as the momentum advected 

outwards from the first bend enters directly the second one from the inner side. The detachment 

of the maximum streamwise velocities from the surroundings of the inner wall occurs earlier near 

the free surface, where |U|/Ubulk is higher.  

Regarding the differences between URANS and PANS, the two approaches predict rather 

similar streamwise momentum distributions. PANS is less dissipative, exhibiting slightly higher 

velocities and a higher velocity gradient between the inner and the outer banks. The most 

remarkable disagreement occurs at the second bend, where the structure of the flow predicted by 

the PANS simulations is more complex. In the proximities of the second bend’s apex at z/H=0.9 

there is a low momentum region on the outer half which is the result of the presence of an outer-

bank counter-rotating cell (OBC) detracting energy from the streamwise momentum. The 
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interface between this low momentum region and the high velocity stream coming from the inner 

side shows a very steep velocity gradient. At lower planes, there is not a such prominent feature, 

but the high velocity area where |U|/Ubulk>1 (Higher Momentum Area, HMA) is split both in the 

lower and middle planes, while it remains continuous for URANS. This reveals the interaction of 

the primary flow with a more complex and irregular secondary motion, which is analysed in 

Section 6.4.2. 

 URANS PANS 
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Figure 6.7. Plan view of the time-averaged horizontal velocity module (|U|/Ubulk) at z/H=0.1 (top), z/H=0.5 

(centre), and z/H=0.9 (bottom) for URANS with k-ε (left) and PANS fk=0.6 (right). 

Figure 6.8 shows the time-averaged streamwise velocity distribution at six different cross-

sectional stations corresponding to the entrance, apex, and exit of the two bends, as described in 

Figure 5.5. In these plots the flume’s height and width are represented in dimensionless 

coordinates (z/H and y/B respectively) and the contours of the dimensionless streamwise velocity 

U/Ubulk are plotted. The left bank corresponds to y/B=0 while y/B=1 is at the right bank, from the 

perspective of a viewer looking downstream. This figure exhibits important differences in the 

velocity fields between both the first (A) and second (B) bend and the two turbulent approaches 

(URANS and PANS).  
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Figure 6.8. Cross-sectional upstream views (left bank at y/B=0 and right bank at y/B=1 for all plots) of the time-

averaged streamwise velocity (U/Ubulk) along the two bends (A and B) at the entrance (0º), apex (90º) and exit (180º) 

for URANS k-ε (left) and PANS fk=0.6 (right). 

Following the U/Ubulk evolution downstream, at the 0ºA station the streamwise velocity is 

distributed quite homogeneously across the section after the flow has been developed along the 

straight inlet. When entering the first bend the pressure gradient induced by the curvature has 
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already shifted the streamwise momentum towards the inner bank. URANS and PANS 

predictions are rather similar, although the latter show a larger HMA (U/Ubulk>1), probably due 

to a stronger secondary circulation. At 90ºA the U/Ubulk distribution follows a shoe-like structure: 

the HMA is narrower on the upper than on the lower half. Two physical processes are responsible 

of this characteristic shape. The HMA that was homogeneously distributed along the cross-section 

before entering the bend shifts towards the outer side due to the flow’s inertia; then the pressure 

imbalance generated by the bend induces a secondary motion which drags momentum downwards 

and redistributes it from the outer bank towards the inner along the bed. As a result the HMA is 

wider at the bottom and narrower near the surface. PANS results show a sharp division on the 

upper half of the section between the HMA at the outer side and a lower velocity region on the 

inner side, which is more gradual for URANS. PANS predictions for U/Ubulk appear to be more 

sensitive to the secondary recirculation; while the maximum velocities predicted by URANS are 

near the surface by the outer bank, in PANS they were dragged down towards the bottom by the 

pressure-driven cell (PDC), which also advects part of the HMA upwards along the inner wall. 

At 180ºA (first bend’s exit) the HMA is concentrated near the outer wall and Umax is located at 

the bottom for both models. It is remarkable that both models predict a rather similar velocity 

field despite the important differences at 90ºA. The trend for the higher streamwise velocities is 

shifting from the inner upper side to the outer lower side both for URANS and PANS but the 

speed of this development is slightly different.  

At 0ºB the flow has not evolved significantly from the previous bend’s exit. Compared to the 

entrance of the first bend, the momentum is very unevenly distributed across the section. The 

HMA is still on the left bank (y/B=0), which was the outer side of the first bend and is the inner 

side of the second one. The outwards advection along bend A reinforces the concentration of 

momentum on the inner side at the entrance of bend B. In the PANS results the Umax has travelled 

to the surface, probably due to the decay of the PDC along the cross-over. At 90ºB the HMA is 

shifting outwards but is still closer to the inner bank, while at bend A’s apex the displacement 

outwards was completed. While Umax remains on the lower half for URANS, PANS predicts it 

close to the surface. The shoe shape is noticeable in the URANS results, while for PANS the 

HMA is split, probably due to the interaction with the secondary motion. At 180ºB the HMA has 

been advected towards the outer bank, although in PANS results it is still occupying most of the 

upper side and the Umax remains closer to the inner wall.  

Table 6.4. shows the (U/Ubulk)max for every cross-section from Figure 5.5. Overall, PANS results 

exhibit more extreme velocities due to the damping of the k-ε model. The maximum velocities at 

the start of the meander are rather similar for both models. The pressure-driven secondary motion 

induced by the bend induces a drastic reduction in Umax from 0ºA to 90ºA, 10% for URANS and 

5% for PANS. This is followed by an increase in Umax in the second half of the first bend, but 

while PANS returns to the same values of the entrance, URANS results show an overall loss of a 

6% of the maximum velocity along the first bend. The cross-over section between 180ºA and 0ºB 

results in a remarkable increase of the highest velocities, 14% for URANS and 17% for PANS. 

There is a big drop in Umax between 0ºB and 90ºB but this time while URANS decreases only a 

5% PANS experiments a 11% reduction, almost exactly the opposite of what happened in bend 

A. Finally, unlike bend A, Umax keeps dropping for both models between 90ºB and 180º. The 

maximum dimensionless velocities at the entrance and exit of the meander are rather similar for 

the two models (1% and 3% difference respectively), despite the divergences registered along the 

way.  
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 URANS PANS 

0ºA 1.21 1.20 

90ºA 1.11 1.15 

180ºA 1.15 1.21 

0ºB 1.29 1.38 

90ºB 1.24 1.27 

180ºB 1.13 1.16 

Table 6.4.  Maximum time-averaged streamwise velocity (U/Ubulk) at the cross-sections depicted in Figure 5.5. 

6.4.2. Secondary flow 

Figure 6.9 shows the horizontal distribution of dynamic pressure (Pd) along the domain at 

z/H=0.5. The reference for Pd=0 is the outlet section. Both distributions are rather similar 

regarding the overall generation and dissipation of the pressure imbalance in the bends, although 

URANS consistently predicts a higher spanwise pressure gradient. Figure 6.9 shows how the 

curvature induces a pressure imbalance in the transverse direction. The pressure is higher near the 

outer side of the bend, where the streamwise momentum is advected, and lower by the inner wall, 

where the separation occurs (see Figure 6.7). The pressure gradient between both sides results in 

a centripetal force from the outer to the inner wall of the curve that partially redistributes the 

momentum within the cross-section. This is the main mechanism involved in the generation of 

the PDC, also known as pressure-driven cell or secondary current of Prandtl's first kind, which 

only occurs in curved flows. The resulting secondary motion is stronger than the one induced by 

turbulence (secondary currents of Prandtl's second kind), hence it has a big impact on all the 

predicted flow features, including streamwise velocities and stress distribution. 

URANS PANS 

  

Figure 6.9. Plan view of the time-averaged dynamic pressure at the z/H=0.5 plane for URANS k-ε (left) and PANS 

fk=0.6 (right). 

Figure 6.10 shows the evolution of the time-averaged dimensionless dynamic pressure Pd/Pout 

along the spanwise dimensionless axis y/B of the cross-sections depicted in Figure 5.5 at z/H=0.5. 

The dynamic pressure was normalised by its value at the outer bank Pout to facilitate the 

comparison of the profiles in a common framework. The pressure is consistently maximum at the 

outer bank (y/B=1) and minimum at the inner one. The difference between the inner and outer 

sides is significantly higher for the second bend in every case. The magnitude of the pressure 

gradient is lower at 0º in both bends and models, but does not differ significantly between 90º and 

180º, being slightly higher at the apex (90º A) than the exit (180º A) of the first bend and virtually 

identical at the second. However it does change the shape which shifts from convex at 0º to 

sigmoid at 90º and concave at 180º. The trends are remarkably consistent between URANS and 
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PANS, although PANS results show negative pressure at 90º and 180º in the second bend, 

although this does not translate in streamwise recirculation, as seen in Figure 6.7. 

URANS PANS 

  

Figure 6.10. Spanwise evolution of the time-averaged normalised dynamic pressure Pd/Pout at the cross-sections 

depicted in Figure 6.6 at z/H=0.5 for URANS k-ε (left) and PANS fk=0.6 (right). 

Figure 6.11 illustrates the secondary flow at the stations referenced in Figure 5.5 for URANS 

k-ε and PANS fk=0.6. Each plot depicts the time-averaged plane-normal component of the 

vorticity vector ωx normalised by the maximum value in the domain ω0 and the secondary flow 

streamlines. The vorticity’s magnitude indicates the strength of the recirculation, being greater 

than zero for clock-wise motion and vice versa. The vorticity tensor is calculated as follows: 

𝝎 = 𝛻 × 𝒖 = (
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
,
𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
,
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
) (6.8) 

where the derivatives are approximated at every cell node using a central differences scheme. 

Each vorticity component describes the rotation in the perpendicular plane. Some streamlines 

from Figure 6.11 may appear to follow a wall-normal trajectory wherever the secondary flow is 

almost stagnant, due to the poor accuracy of the surface integral of the circulation at very 

velocities. 

The 0ºA station is not shown as there is no substantial secondary flow at this point. At the first 

bend’s entrance the primary flow has already built up but the Prandtl's second kind secondary 

motion does not develop after going through the 4 m long straight inlet channel. This is expected 

for URANS given the isotropic nature of the turbulence closure. Therefore, both the secondary 

motion and vorticity are negligible. 

The 90ºA station depicts very well the mechanics of the PDC, which is already well developed 

and dominates the secondary motion at this location. The PDC follows the same pattern at every 

station within the bend: the water particles move from the HMA at the outer bank (see Figure 6.8) 

towards the lower-energy inner bank across the bottom, partially compensating the inner-outer 

momentum imbalance within the cross-section (see Figure 6.10). This mass flux inwards is highly 

energetic and therefore exhibits ωx/ω0 ≈1. The inwards circulation is complemented by a low-

energy flux outwards along the upper part of the PDC. Because of the downstream-view criterion, 

the rotation in the PDC is anticlockwise (color-coded blue) in the first bend (90ºA and 180ºA) 

and clockwise (color-coded red) in the second. URANS predicts a PDC with only one core close 

to the cross-section’s centre and a very small counter-rotating vortex by the inner-surface corner. 

PANS results show a double-core structure with two small vortices near the surface and higher 

magnitude of ω along the bottom and inner wall. PANS model is rather less dissipative than the 

standard k-ε approach and predicts a more energetic secondary flow, with a very strong impact 

on the primary flow distribution. There is a very clear mutual dependence between the patterns 

of vorticity and secondary flow in Figure 6.11 and the distribution of the primary flow at 90ºA 
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for PANS in Figure 6.8. At 180ºA the secondary flow predicted by both models is very weak on 

the upper half. The evolution of the flow patterns between 180ºA, 0ºB and 90ºB is very revealing. 
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Figure 6.11. Cross-sectional upstream views (left bank at y/B=0 and right bank at y/B=1 for all plots) of the 

streamwise vorticity ωx and secondary flow streamlines along the two bends (A and B) at the entrance (0º, only for 

bend B), apex (90º) and exit (180º) for URANS with k-ε (left) and PANS fk=0.6 (right). 

At 0ºB the PDC of the first bend is still dominant but its core is split in two: one remains near 

the bed at the cross-section’s centre and the other moves upwards along the outer wall. By 90ºB 

the PDC of the second bend dominates most of the cross-section, but there is a counter-rotating 

outer-bank cell (OBC) near the surface, significantly larger in PANS results. It seems rather clear 

that this counter-rotating OBC is the remains of bend A’s PDC, more specifically of the second 

core by the outer wall observed at 0ºB. At 180ºB the OBC has faded away in URANS results 
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while it is rather relevant in PANS. Hence while the turbulence closure may not be key to the 

establishment of the OBC, it does seem to be crucial in its persistence. 

The different prediction of the OBC at 90ºB and 180ºB constitute a qualitative difference 

between the two models and has a strong impact on the primary flow (Figure 6.8). A key aspect 

from an Engineering point of view is that URANS predicts the maximum velocities at the second 

bend’s exit by the outer bank while PANS does not, as the HMA is dragged towards the centre of 

the channel. As a side effect, the more confined PDC drives more momentum along the bottom 

and inner boundaries. 

6.4.3. Experimental validation 

In this subsection some velocity measurements (Siebert, 1982) are compared to the URANS and 

PANS predictions. The experimental data is only available at 0ºB and 180ºB, but 90ºB station is 

also shown to provide a better description of the flow evolution.  

 

Figure 6.12 shows horizontal profiles of time-averaged normalised streamwise velocity U/Ubulk 

at z/H=0.67 for URANS, PANS and experiments (the latter only at 0ºB and 180ºB). The inner 

bank is at y/B=0 and the outer one at y/B=1. At 0ºB the overall agreement with the experiments 

is better for PANS, remarkably in the proximities of the outer bank. URANS velocities drop 

significantly near the outer wall, whereas PANS results predict a comeback which matches well 

with the experimental behaviour (although there is a local U/Ubulk minimum at approximately 

y/B=0.9 which is not registered in the experiments). The reason for the streamwise velocities to 

recover near the outer bank is the momentum carried by the secondary flow from the inner bank. 

This recirculation is much stronger in PANS predictions, where the previous bend’s PDC is 

pushed towards the outer wall and develops a second core there (see Figure 6.11). At 90ºB there 

are no experimental data and the outwards shift of momentum in progress is depicted on the 

numerical simulations. Both are rather similar, being PANS a bit wobblier. At 180ºB the 

momentum shift has been completed, although the streamwise velocity distribution is more even 

than at the bend’s entrance. It is interesting to note that whilst URANs predict the maximum 

velocities by the outer bank, both PANS and the experiments locate it around the channel’s centre, 

reflecting the influence of the OBC. 
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Figure 6.12. Horizontal profiles (y/B=0: inner bank) at z/H=0.67 of time-averaged streamwise velocity at the 

second bend’s entrance (0º), apex (90º) and exit (180º) for URANS with k-ε (solid line), PANS fk=0.6 (dashed line), 

and experimental measurements (circles). 

Figure 6.13 shows the vertical profiles of time-averaged secondary velocity V/Ubulk at y/B=0.1, 

0.2, 0.5, 0.8, and 0.9 for URANS, PANS and experiments at the entrance, apex and exit of the 

second bend. On the inner half of 0ºB there is not good agreement between the secondary flow 

predicted by URANS and PANS and the physical measurements. The experimental data points 

near the surface exhibit positive secondary velocities (V/Ubulk>0) at y/B=0.1, y/B=0.2, and 

y/B=0.5, revealing the presence of the first bend’s OBC in the experiments. These positive V/Ubulk 

values do not match URANS and PANS results, as neither of them developed an OBC at the first 

bend (see Figure 6.11). At 90ºB PANS results indicate the presence of an eddy near the surface 

of the outer bank that spans from y/B=0.5 to y/B=0.9, whereas it is only noticed at y/B=0.9 for 

URANS. This second bend’s OBC is not only larger but also stronger for PANS, as indicated by 

V/Ubulk magnitudes. Hence the secondary velocities at the PDC predicted by PANS are higher, 

particularly at the bottom at y/B=0.1, 0.2, and 0.5. Finally, at 180ºB there is a significant 

disagreement near the surface at y/B=0.5, 0.8, and 0.9. The negative velocities in PANS and 

experimental results reveal the persistence of the second bend’s OBC in the experiment, which is 

very closely captured by PANS while it has been completely dissipated in URANS.   



106 

 

 y/B=0.1 

(Inner side) 

y/B=0.2 y/B=0.5 y/B=0.8 y/B=0.9 

(Outer side) 

0
º 

B
 

     

9
0
º 

B
 

     

1
8
0
º 

B
 

     

Figure 6.13. Vertical profiles of time-averaged spanwise velocity (V/Ubulk) at the second bend’s entrance (0º), 

apex (90º), and exit (180º) for URANS k-ε (solid line), PANS fk=0.6 (dashed line), and experimental measurements 

(circles). 

6.4.4. Grid convergence 

Three different mesh resolutions -A1, A2, and A3- were tested in Case A, consisting of approx. 

0.27, 1, and 2.74 Mio grid points, respectively. All the mesh characteristics are detailed in Section 

6.2.3. Figure 6.14 shows the performance of the URANS k-ε model at the 180º running on the 

three numerical grids and confronted to the experimental results. These results, extendable to 

other cross-sections and properties, show a reasonable and predictable convergence in the 

secondary flow patterns. Even at the highest resolution the results are off on the prediction of the 

OBC at the upper-outer corner, signalling that the representation of such structure is not just a 

matter of computational power, but it is also related to the turbulence closure (as PANS does 

predict the OBC, see Figure 6.11). 
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Figure 6.14. Vertical profiles of time-averaged spanwise velocity (V/Ubulk) at the second bend’s exit (180º) for 

URANS k-ε at three different grid resolutions: A1 (dashed line), A2 (solid line), and A3 (dotted line). The circles 

represent the experimental measurements. 

In view of these results, it was decided that mesh A2 was a good compromise and equivalent 

parameters were assumed to construct mesh B1 to test URANS and PANS in Case B. Mesh A3 

does not show any qualitative difference to justify the extremely high computational requirements 

it involves (particularly within a non-parallel code), and mesh A1 is too coarse for PANS 

simulations to show most of their distinct predictive capacity. Furthermore, one of the goals of 

the present study is to compare the ability to represent relevant flow features with URANS, PANS, 

and LES under typical numerical setups of these three approaches, including convection schemes 

and discretisation in space and time. Mesh A3 clearly exceeds the reasonable necessities of an 

URANS/wall-functions setup, being within the order of magnitude of a coarse LES approach. 

Because very little is yet known about PANS ideal grid requirements, this works explores its 

capabilities on a typical URANS setup, which constitutes a qualitative save in computational 

resources (in the present case, more than 6 to 1 in number of grid points) when compared to LES.  
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6.5. Periodic meandering channel: URANS, PANS, and LES comparison 

This section describes in detail the primary and secondary flow in Case B setup, comparing the 

Freeflow3D predictions with Hydro3D LES by Stoesser et al. (2010). Hydro3D solves the space-

filtered Navier-Stokes equations on a staggered grid for the continuous (Eulerian) phase and has 

been validated thoroughly for many different flows (e.g., Bomminayuni and Stoesser, 2011; Kara 

et al., 2012, 2015; Fraga et al.; 2016; Ouro et al., 2016). 

As shown in Table 6.3. , up to seven turbulence closures, three inflow conditions, and two 

different mesh resolutions were tested for Case B’s computational domain. This section focuses 

on the description of the main mechanisms of the primary and secondary flow in the periodic 

meander for which the results obtained with URANS with standard k-ε, PANS with fk =0.6 and fε 

=1, and LES with dynamic Smagorinsky sub-grid model are presented. The results obtained with 

the other modelling alternatives and the impact of different turbulence closures, mesh resolutions, 

and boundary conditions are discussed in sections to follow. One important aspect to keep in mind 

throughout this section is that the URANS and PANS simulations ran on mesh B1, therefore they 

have a significantly lower resolution than LES results, which were obtained on mesh B2 (see 

Table 6.2. ). Some flow features analysed in the current section are illustrated on five cross-

sectional stations depicted in Figure 6.15. 

 

Figure 6.15. Location of the cross- sections for curved flow analysis on the case B. 

6.5.1. Primary flow 

Figure 6.16 exhibits the time-averaged normalised horizontal velocity module |U|/Ubulk at three 

different depths of the bend plus the preceding and later cross-overs: near the bed (z/H=0.1), 

middle-depth (i0.5), and close to the surface (z/H=0.9) for k-ε URANS, PANS (fk=0.6), and LES 

simulations. The contour lines are set at U/Ubulk=0.25, 0,55, 0,85 and 1.2. As in Figure 6.7, these 

plots show clearly how the HMA (Higher Momentum Area, U/Ubulk>1) is deflected outwards as 

the flow progresses along the bend. When the flow enters the bend, the HMA is located on the 

inner side due to two reasons: i) the favourable pressure gradient on the inner part of the curve 

(see Figure 6.18), which also occurs in single bends; ii) the previous bend's influence: the 

momentum was already advected towards the outer wall of the preceding curve, which eventually 

becomes the inner wall of the current bend.  

All three simulations provide fairly similar results regarding the |U|/Ubulk. The most remarkable 

difference among models is the lower dissipation and incomplete detachment of the HMA in 

URANS simulations. At the 90º station at z/H=0.5 and 0.9, URANS results still show a peak of 

|U|/Ubulk>1.2, while the magnitude is lower for PANS and LES. Furthermore, the separation of 
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the HMA from the inner side of the bend is never fully completed in the URANS simulation, 

where the maximum |U|/Ubulk at 180º is still rather close to the inner bank, while it has shifted in 

PANS and LES. The two latter show a clear detachment of the main flow from the inner bank 

outwards at some angle before the bend's apex (90º). As a result, an inner shear layer is created. 

The exact point seems to be different for every depth, but in all cases the coincidence between 

PANS and LES is remarkable. At z/H=0.5 the shear layer begins at approx. 74º for PANS and 

68º for LES, while at z/H=0.9 it is around 50º for both. These disagreements in the URANS 

predictions of the inner shear formation layer were reported by van Balen et al. (2010b). The 

origin of these inaccuracies  shear stress distribution and the structure of the secondary flow 

predicted by URANS, which will be analysed in Section 6.5.2.  
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Figure 6.16. Horizontal view of time-averaged horizontal velocity module contours normalised by the bulk 

velocity near the bed (z/H=0.1, top), at half-depth (z/H=0.5, centre), and near the surface (z/H=0.9, bottom) for 

URANS with k-ε (left), PANS fk=0.6 (centre), and LES (right). 

It is also noticeable a higher |U|/Ubulk spanwise gradient at the bend’s entrance near the surface 

in URANS and PANS results. At 0º and z/H=0.9 there is a relatively important area of 

|U|/Ubulk<0.5 for those two models which is instead very thin and attached to the outer side for 

LES. When compared with the two-bend Case A, the results in Figure 6.16 show a more 

homogeneous streamwise velocity distribution, revealing an already developed secondary flow 

after going through the periodic series of bends. Regarding the differences between the three 

depths, the velocities are much smaller near the bed because of the bed friction influence. For all 

the three models, the main flow is more attached to the inner wall near the bed than in the higher 
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layers. The detachment from the inner wall and subsequent shear layer makes their appearance 

on a lower angle (50º) for z/H=0.9 than on the at z/H=0.5 (60-70º). On the other hand, the top 

plane (z/H=0.9) shows the more extreme differences between the velocities on the inner and outer 

sides of the bend. The reason is on the secondary recirculation being more effective near at the 

bottom. The pressure-driven cell (PDC) transports the high-momentum water from the outer side 

to the inner one close to the channel bed, with the consequent energy loss due to the friction. The 

recirculation is completed by coming back to the inner side along the upper half of the channel's 

depth.  

Figure 6.17 shows the evolution along the bend of the time-averaged streamwise velocity 

contours at the five different cross-sectional stations described in Figure 6.15, for URANS, PANS 

and LES. At the 0º station the primary flow pattern is rather similar for the three modelling 

approaches. The HMA is close to the inner bank, being narrower for LES than URANS and 

PANS. The U/Ubulk distribution presents the “shoe shape” already discussed in Figure 6.8, which 

is a result of an incipient PDC dragging outwards momentum along the bed. LES shows a 

narrower HMA and a thinner low U/Ubulk intrusion at the top-right corner. At 45º the momentum 

redistribution driven by the pressure imbalance continues, bearing an imbalance between the 

lower half, where most momentum is located, and the upper one. A developing shear layer is 

already noticeable at the inner-top side, particularly in PANS and LES. At 90º the HMA has 

detached from the inner bank and URANS results start diverging from the other two. At 135º the 

maximum U/Ubulk is on the outer half for LES while still at the inner bank for URANS; PANS 

predicts an intermediate state. Finally, at 180º, the differences among models are remarkable. LES 

completed the outwards momentum shift and the HMA is by the outer bank. PANS model 

presents a very similar velocity distribution but the HMA is more spread out. URANS did not 

complete the momentum shift and the HMA is still at the inner half. This could reflect that 

URANS either underestimates the PDC motion (as indicated by van Balen et al. (2010)) or 

overpredicts the OBC. 

There are several phenomena that can be clearly appreciated in the joint analysis of Figure 6.7, 

Figure 6.8, Figure 6.16, and Figure 6.17 and summarise all aforementioned observations:  

i) Momentum outwards shift: as the flow travels along the bend, the inertia drives the region 

where U/Ubulk>1 (HMA) towards the outer side. This results also in: 

ii) Detachment from the inner bank: as a consequence of the momentum shift, the HMA departs 

from the inner wall creating a shear layer. It may be noticed from 90º station and beyond, 

especially in PANS and LES results. 

iii) Top/bottom unbalance: there is as well a vertical unbalance between the upper and lower 

halves of the channel. The inertia-driven momentum shift generates a pressure unbalance that 

results in secondary motion. The PDC advects the HMA along the bed towards the outer side. 

When this flow recirculates upwards, an important part of its energy is lost due to bed friction. 

For this reason, the HMA is wider on its lower part and more energy is transported along the 

lower half. 

iv) Velocity dip: in open-channel flow, the presence of the free surface prevents the maximum 

streamwise velocity from being at the top boundary. This feature is well-known as it has been 

observed for long in experiments (Mera et al, 2015), and it is often referred to as velocity dip. In 

curved geometries, the secondary currents are stronger and the dip more noticeable. Only URANS 

results at 135º exhibit a maximum velocity close to the free surface, probably due to secondary 

flow advection.  

v) Momentum spreading: besides being advected, the HMA is also distributed across the cross-

section as the bend progresses. At 0º, the HMA is is narrow, located by the inner side and the 

maximum U/Ubulk value is high. From the apex (90º), the HMA becomes larger (dominating most 

of the cross-section in some cases) and the maximum values decrease (see Table 5.4. ). This is 
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due to the secondary recirculation induced by the pressure unbalance. This momentum 

redistribution is more efficient in PANS and LES. 

 URANS PANS LES 

0º 1.27 1.30 1.25 

45º 1.30 1.32 1.30 

90º 1.22 1.16 1.22 

135º 1.21 1.11 1.12 

180º 1.14 1.12 1.13 

Table 6.5.  Maximum time-averaged normalised streamwise velocities (U/Ubulk)max for each modelling approach at 

the stations indicated in Figure 6.15. 

Based merely on the (U/Ubulk)max estimates, 14%, 18% and 15% TKE losses along the bend are 

observed for URANS, PANS and LES, respectively. It is remarkable the sharp velocity decrease 

between 45º and 90º, suggesting that the PDC became stable and dominant. 
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Figure 6.17. Cross-sectional upstream view of the time-averaged normalised primary velocity at 0º, 45º,  90º, 135º, and 180º for URANS (left), PANS (centre) ad LES (right). The location of 

the maximum streamwise velocity Umax is shown at each station.  
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6.5.2. Secondary flow 

In this section, the secondary flow patterns are analysed, paying special attention to the interaction 

with the primary flow observed in the previous section and the capability of the models to capture 

the OBC. 

Figure 6.18 shows the horizontal dynamic pressure Pd distribution at the mid-depth (z/H=0.5) 

plan section of the bend predicted by URANS, PANS and LES. It is important to note that while 

FreeFlow3D (URANS and PANS) sets the outlet as the reference for dynamic pressure (Pd=0 

Pa), Hydro3D (LES) does it in the centre of the domain. Therefore, the distributions are not 

entirely comparable and there is a pressure decay in URANS and PANS which does not occur in 

LES due to the numerical setup and not to physical reasons.  

URANS PANS LES 

   

Figure 6.18. Plan view of the time-averaged dynamic pressure Pd at z/H=0.5 for URANS k-ε (left), PANS fk=0.6 

centre) and LES (right). 

Figure 6.19, however, offers a more revealing comparison of the bend-induced pressure 

gradient predicted by the three turbulent approaches. This figure shows the horizontal spanwise 

profile of the time-averaged dynamic pressure Pd/Pout normalised by the outer bank value at 0º, 

90º, and 180º and z/H=0.5 for URANS k-ε, PANS fk=0.6, and LES. The results for both 

FreeFlow3D simulations are very similar (as already seen in Figure 6.18); the outer-inner pressure 

drop at 0º is slightly higher than 30% and increases up to 75% (URANS) and 70% (PANS) at 90º. 

For LES, the pressure drop at 0º is much higher (approx. 60%) and around 95% at 90º. However, 

the three profiles are very similar at 180º. These results suggest that the pressure-driven secondary 

motion is already rather strong at the entrance of the bend for LES, but there is still a nearly 40% 

drop between 0º and 90º, consistent with URANS and PANS results. While URANS and PANS 

seem to become stable at the second half of the bend (90º-180º), LES’ pressure drop is greatly 

corrected between these two sections. When compared to the results in Figure 6.10, the evolution 

of the dynamic pressure for URANS and PANS in the periodic meander falls inbetween the 

predictions of the first and second bend in Case A. 
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URANS PANS LES 

   

Figure 6.19. Spanwise profiles of time-averaged normalised dynamic pressure Pd/Pout at 0º,90º, and 180º and 

z/H=0.5 for URANS k-ε (left), PANS fk=0.6 (centre), and LES (right). 

As seen in the single bend, the curvature induces a pressure gradient in the transverse direction, 

resulting in a centripetal force from the outer to the inner wall of the curve. This is the main 

mechanism involved in the generation of the main secondary cell (pressure driven cell, PDC, or 

secondary current of Prandtl's first kind). This PDC only appears in curved geometries, being the 

main agent redistributing the momentum in the transverse plane. The resulting secondary motion 

is stronger than the one induced by turbulence (secondary currents of Prandtl's second kind), 

hence it has a big impact on all the predicted flow features, including streamwise velocities and 

shear stress distribution. 

Figure 6.21 shows the normalised time-averaged vorticity fields at the 0º, 45º, 90º, 135º, and 

180º cross-sections, together with the secondary flow streamlines. This figure summarise some 

important results of this work, as it exhibits some of the main differences, particularly between 

URANS and LES, on the secondary motion that were hinted in previous results, and how PANS 

somehow bridges the other two approaches. Furthermore, when complemented with Case A’s 

results, it provides revealing information about the mechanisms of generation of the outer-bank 

cell (OBC) and the interaction between vortices of alternating bends. The OBC is predicted by 

the three modelling approaches and the overall structure of the secondary flow in the bend is quite 

similar in all of them: a clock-wise (red) PDC vortex generating by the inner wall which becomes 

progressively dominant and an anticlock-wise (blue) OBC with decaying strength which remains 

limited to the near-surface region close to the outer wall. In general, PANS and LES predict higher 

magnitudes of ωx/ω0. Also, the higher resolution of LES reveals vorticity peaks at the shear layers 

by the fully-resolved walls’ boundary layers, as well as the presence of corner vortices.  

Along the first half of the bend the dominating vortices are generated. The PDC cell of the 

previous bend is at the outer side of the current one, while the OBC is at the inner side. When 

entering the current bend, the secondary structures of the previous bend are still prevalent, 

although the vorticity magnitude is low, due to the pass through the straight cross-over. Between 

the 0º and 45º stations the secondary patterns of the current bend are set in motion. As seen in 

single bends (Figure 6.11), the PDC appears very sharply and the magnitude of the secondary 

velocities increases substantially (around a factor or 3-4) due to the pressure gradient generated 

by the centripetal forces. Unlike the single bend case, at 45º there is a large antoclock-wise (blue) 

vortex which covers most of the outer half. In single bends, the OBC does not appear before the 

bend's apex (see Chapter 5 or Figure 6.11) and it is never so relatively large. This structure is the 

vanishing previous bend's PDC, which is abruptly dragged outwards as the current bend’s PDC 

makes its appearance, and develops into the current bend’s OBC. 

At the bend's apex (90º) in all three sets of results the OBC (blue) becomes dominant on the 

upper half of the section while the PDC (red) drives the lower one. At this point the differences 

between models become more evident: in LES the previous bend’s PDC has been split into a 

small eddy at the upper outer corner and a tiny, residual corner vortex in the upper inner side; 

however, in URANS the OBC dominates the upper half and the centre of the channel. PANS 
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results lay approximately inbetween the other two predictions. It is also noteworthy that the PDC 

predicted by URANS has two cores, PANS’ PDC has one core at y/B=0.5 and LES has also only 

one leaning towards the inner side. Along the second half of the bend (135º-180º) there is an 

evolution towards canonical secondary patter in which the clock-wise PDC is clearly dominant 

and the OBC is confined to the outer bank. In LES results, this pattern remains virtually identical 

from 90º to 180º. For URANS the OBC (or previous bend’s PDC) is still quite relevant at 135º 

and it is only confined on the upper outer bank corner at 180º. PANS predictions, again, lay 

somewhere halfway between the other two. 

Compared to Case A’s results in two bends (see Figure 6.11) there are several relevant and 

explanatory differences: 

1. No OBC is generated in Case A’s first bend, hence there is no previous’ bend OBC at the 

second bend’s entrance. 

2. In Case A the PDC from the first bend appears to be confined to the lower half of the section 

and it is easily pushed outwards by the second bend’s PDC. In Case B the current bend’s 

PDC does not completely dominate the section until 135º-180º, while in Case A this already 

happened at 90ºB. 

3. In Case A URANS do not predict an OBC at the second bend’s exit either. PANS do, and 

it is larger than the one predicted in the periodic case. 

The advection of the streamwise velocity outwards does not reach the outer bank due to the 

presence of the OBC. This cell creates a buffer region which protects the bank from the eroding 

force of the HMA. In well-developed secondary flow in curves, Blanckaert (2002) stated that the 

maximum streamwise velocity tends to be between the two cells. In Figure 6.20 the time-averaged 

normalised primary velocity contours and secondary flow streamlies are overlapped to confirm 

Blanckaert’s observation in the results at the 180º cross-section, particularly for PANS and LES. 

Hence, despite its limited strength, the correct prediction of the OBC has a crucial impact in River 

Engineering and bank protection works. 

URANS PANS LES 

   

Figure 6.20. Upstream view of the time-averaged normalised streamwise velocity, the secondary flow streamlines 

and the maximum streamwise velocity at the 180º cross-section for URANS k-ε (left), PANS fk=0.6 (centre), and 

LES (right). 
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Figure 6.21. Upstream  views (inner side left, outer side right) of the time-averaged normalised streamwise vorticity ωx/ω0 and secondary flow streamlines at the 0º, 45º, 90º, 135º and 180º 

cross-sections of Case B. Results are shown for URANS k-ε (left), PANS fk=0.6 (middle) and LES (right). 
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Another way to track the evolution of the vorticity is through the normalised circulation Γ̂. The 

circulation is a measure of the relative strength of a vortex tube based on the integration of its 

vorticity over its cross-sectional area A: 

Γ = ∬ 𝜔𝑥𝑑𝐴
𝐴

 (6.9) 

where ωx is the streamwise vorticity as defined in Equation 8. The circulation is scaled as follows: 

Γ̂ =
1

𝐴

𝐻

𝑈𝑏𝑢𝑙𝑘
Γ (6.10) 

Where H is the water depth. 

In Figure 6.22, the vortex tube is formed by the streamwise evolution of the PDC along the 

bend. The results show how the PDC quickly develops as the flow enters the bend, reaching a 

maximum around 45º. The decaying patterns are rather different among the three models: URANS 

reaches a maximum around 45º and keeps that level of circulation until 90º, to start there a slow 

decline towards the exit. PANS’ PDC generates more vorticity per unit area than the two models, 

reaching a maximum slightly after 45º and starting a decay around 75º towards the exit. LES also 

experiments a peak at 45° and starts a decay from there until approx. 135º, where it experiments 

a new boost. LES is the only model that predicts a higher level of vorticity at 180º than at 90º, 

what constitutes a significant difference. Despite the different evolution, LES and URANS show 

the same magnitude of Γ̂ at 90º and LES and PANS exit the bend at 180º with almost identical Γ̂. 

However, URANS and PANS never cross, having the latter more vorticity all along the bend. 

 

 

Figure 6.22. Normalised circulation of the pressure-driven vortex along the bend for URANS (blue line), PANS 

(black), and LES (red). 

Figure 6.23 displays the normalised circulation for the outer-bank vortex tube along the bend. 

In contrast with the pressure-driven vortex, the outer-bank one has its maximum development 

along the second half of the bend. It does not start at zero as in periodic bends the OBC is 

generated from the residual of the previous bend’s PDC (that will be analysed in detail in section 

6.8.3). In this case PANS and LES have almost identical evolutions, being LES a slightly less 

strong on the first half of the bend and slightly stronger on the second one. URANS-predicted 

circulation is substantially inferior during the second half of the bend. 
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Figure 6.23. Normalised circulation of the outer-bank vortex along the bend for URANS (blue line), PANS (black), 

and LES (red). 

6.5.3. Numerical Comparison 

Figure 6.24 shows horizontal profiles at z/H=0.67 of the time-averaged streamwise velocity at 0º, 

90º, and 180º. Overall, there is a remarkable agreement amid models; these plots also offer a clear 

view of the momentum shift outwards. Velocities at the inner side are reduced in about 30% as 

the bend progresses, while increased in the same rate at the outer side (except for URANS). While 

URANS and LES distributions are slightly more similar at 0º, as the bend progresses, PANS and 

LES results converge, being virtually identical at 180º. As noticed in Figure 6.17, URANS do not 

complete the outwards shift of momentum. 
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Figure 6.24. Horizontal profiles at z/H=0.67 of time-averaged streamwise velocity at the second bend’s entrance 

(0º), apex (90º) and exit (180º) for URANS k-ε (solid line), PANS fk=0.6 (dashed line), and LES (deltas). 

The vertical profiles for time-averaged normalised secondary velocities are shown in Figure 

6.25. The results for URANS, PANS, and LES are included, as well as the experimental 

measurements by Siebert (1982) on those sections where available (0º and 180º). Although these 

experiments were conducted in a physical domain which is replicated by Case A and rather 

different from the periodic setup of Case B, the inclusion of the measurements was judged 

insightful for discussion purposes, not for validation sake (see 6.4.3). The overall agreement on 

patterns and magnitudes of secondary velocity is very high among the three models. The 

secondary flow near the bottom is more accurately described by the LES simulations, due to the 

much higher mesh resolution in the near-wall region. URANS and PANS use the wall-function 

boundary condition, which provides a very fitting approximation, but does not fully resolve the 

boundary layer. However, PANS predict much closely to LES the flow near the bottom (see for 

instance the 90º and 135º profiles), and very accurately given the huge save in computational 

resources that wall functions constitute. 

At 0º the V/Ubulk profiles describe the secondary patterns of the previous bend, as the vortices 

of the current one have not been generated yet. PANS and LES profiles of secondary velocities 

match almost perfectly. URANS has relatively relevant divergences at y/B=0.5 and y/B=0.9, 

which reveal an underestimation of the extent of the previous bend’s OBC, as observed in Figure 

6.20. The experimental data from the two-bend setup show an important agreement with the 

predictions, albeit they seem to detect a larger OBC at y/B≤0.5. At 45º, the curve described by 

V/Ubulk has switched orientation as the current bend’s PDC dominates the secondary motion. 

URANS and PANS show disagreements with LES near the surface between y/B=0.1 and y/B=0.5, 

implying that the the remains of the previous bend’s PDC are more substantial in the two former 

models’ predictions than in LES’. While in LES the previous bend’s PDC only dominates the 

outer half of the 45º section (and therefore could be considered at this point an outer-bank cell), 

its influence is noticeable in all the upper half in URANS and PANS. The same analysis can be 

made at the bend’s apex, the 90º station. URANS and PANS depict a situation where the 

secondary motion is controlled by the PDC at the lower half and the previous bend’s PDC in most 

of the upper half, while LES results show a rather developed canonical secondary flow structure 

with a dominant PDC whose core is set by the inner bank and an OBC by the outer bank’s upper 

corner. Additionally, URANS exhibits a remarkable underestimation of the inwards circulation 

at the channels bottom at y/B≤0.5, meaning that the momentum redistribution mechanism driven 

by the PDC is affected. 

At 135º the profiles show a much higher agreement, especially between LES and PANS. 

URANS results reflect the consequences of the previously described mismatches at the 45º and 

90º stations, exhibiting an important overestimation of the inwards flow at the surface at y/B≤0.5 

while underpredicting the flow inwards along the bottom in every profile, especially at the inner 
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half. This prevents the momentum shift phenomenon of being completed for URANS, as seen in 

Figure 6.17. At 180º the agreement amid the three proposed modelling approaches is remarkable, 

particularly between PANS and LES. The experimental results are also predicted very accurately. 

It is interesting to note that URANS overestimates the OBC all the way between 45º and 135º 

but slightly underestimates it at 180º and rather clearly at 0º (the entrance of the next periodic 

bend) when compared to the other two models. This suggests that some modelling assumption/s 

of URANS result in a lack of regulation of the OBC and its interaction with the previous bend’s 

structures, triggering an excessive dissipation of the OBC along the second half of the channel 

and a lack of it during the first half. Most likely, this is related to the isotropic turbulent closure 

provided by the k-ε model. It is also interesting how, despite not being qualitatively much closer 

than URANS at the bend's entrance, PANS results gradually converge with LES along the bend, 

particularly from the apex on.  
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Figure 6.25. Profiles of the time-averaged normalised secondary velocity (V/Ubulk) at 0º, 45º, 90º, 135º, and 180º 

for URANS k-ε (solid line), PANS fk=0.6 (dashed line), LES (deltas), and experimental measurements (circles).  
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6.6. Turbulence structure 

Sections 6.3 and Figure 6.14 described and validated the primary and secondary flow in the first, 

second and subsequent bends of a meandering channel with three different models (URANS, 

PANS, and LES), highlighting the most significant disagreements on their predictions. From a 

Fluid Dynamics point of view, the main difference between the three approaches is the turbulence 

closure and the assumptions related to it, hence the importance of the right understanding and 

quantification of the turbulence-related properties in the flume. This section attempts to describe 

the turbulence structure of the flow by analysing some key aspects such as the turbulent kinetic 

energy, the turbulent shear stresses, and the anisotropy. The analysis is focused on Case B as there 

are LES results available to compare with (there are no experimental data on second-order 

statistics). This is particularly interesting because large-eddy simulation complements the 

spectrum of turbulence approaches and provides fully-solved and non-isotropic variables that 

enrich the discussion on this matter. 

6.6.1. Turbulent kinetic energy 

Figure 6.28 shows the distribution of time-averaged normalised turbulent kinetic energy (TKE) 

at three different horizontal planes (z/H=0.1, z/H=0.5, and z/H=0.9) of case B for URANS k-ε, 

PANS fk=0.6, and LES models. TKE was calculated by adding up the modelled and solved 

contributions, in order to make comparable three models in which the turbulent stresses are 

calculated in rather different manners. The quantities are calculated as follows: 

𝑇𝐾𝐸

𝑈𝑏𝑢𝑙𝑘
2 =

𝑇𝐾𝐸𝑚𝑜𝑑 + 𝑇𝐾𝐸𝑠𝑜𝑙

𝑈𝑏𝑢𝑙𝑘
2  (6.11) 

𝑇𝐾𝐸𝑚𝑜𝑑 = {

 
𝑓𝑘𝑘 (𝑈𝑅𝐴𝑁𝑆, 𝑃𝐴𝑁𝑆) 

0 (𝐿𝐸𝑆)
 (6.12) 

𝑇𝐾𝐸𝑠𝑜𝑙 =
1

2
(𝑢′𝑢′̅̅ ̅̅ ̅ + 𝑣′𝑣′̅̅ ̅̅ ̅ + 𝑤′𝑤′̅̅ ̅̅ ̅̅ ) (6.13) 

where fk=1 and 0.6 for URANS and PANS respectively and k is calculated by solving the 

corresponding convection-diffusion equations described in Section 3.2.1. The Reynolds stresses 

𝑢𝑖
′𝑢𝑖

′̅̅ ̅̅ ̅̅  are obtained by time-averaging the instantaneous velocity field obtained from the Navier-

Stokes equations, therefore there is no modelling closure involved.  

While in URANS the TKE is almost entirely modelled, in LES it is entirely solved within the 

momentum equations, saving the sub-grid dissipative scales. PANS concept lays inbetween both 

but in practise far away from the high resolution of LES. This is shown in Figure 6.26, in which 

the TKE solved vs the total TKE was integrated across the entire 180º cross-section for URANS, 

PANS, and LES. It is interesting to note that, despite the turbulent kinetic energy damping factor 

fk is set to a 60%, this does not translate linearly into the results providing a 40% of TKE solved 

and a 60% modelled, but in fact quite the opposite. The behaviour of the model in that respect if 

non-linear and the rate of turbulence solving strongly depends not only on the turbulence model 

but also the nature of the problem being simulated and the numerical discretisation strategy. As 

stated in Section 3.4, fk and fε do not imply an explicit filtering rate. 
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Figure 6.26. Integral percentual amounts of TKE solved versus the total (solved  + modelled) at the 180º station 

for URANS k-ε, PANS fk=0.6, and LES (assuming sub-grid scales provide negligible amounts of turbulent energy). 

The distribution of solved and modelled energy is also far from homogeneous, as shown in 

Figure 6.27, which depicts the TKEsol/(TKEsol+TKEmod) contours for URANS k-ε and PANS 

fk=0.6 at the 180º cross-section. The ratio of TKE solved for URANS is rather negligible, as seen 

in Figure 6.26. In general, the turbulence model accounts for up to 80-90% of the total TKE there 

where the stronger gradients are – proximities of the walls and the area between both PDC and 

OBC vortices (around 60% TKEmod). The TKE generated by the solved intrinsic fluctuations of 

the velocity field takes over close to the surface and around the PDC’s core. Most of the cross-

section dwells within a 60-80% of TKE solved versus the total. LES results are not displayed as 

all the TKE is solved, assuming that the SGS model does not account for a significant amount of 

energy.  

URANS PANS 

  

Figure 6.27. Upstream view of the TKE solved versus total TKE (solved + modelled) contours at the 180º station 

for URANS (left) and PANS (right). 

The differences on the TKE prediction among the three models represented in Figure 6.28 are 

very significant. URANS results show a smoother TKE/Ubulk
2 field with rather lower magnitudes. 

PANS and LES, however, show remarkably similar results. At z/H=0.1 LES shows a greater 

TKE/Ubulk
2 production at the bottom layer than the other two approaches, particularly PANS, 

probably due to the near-wall damping of the k-ε model in the latter. At z/H=0.5 the turbulence is 

mostly generated at the first half of the bend, closer to the outer bank, probably related to the 

momentum shift outwards described in 6.5.1. A hint of a shear layer by the inner bank can be 

appreciated in PANS and LES predictions. The highest TKE/Ubulk
2 magnitudes can be found at 

z/H=0.9, particularly for PANS. PANS and LES results at the top plane clearly describe two areas 

of high TKE: one related to the momentum shift outwards and the shear layer generated by the 

flow detachment from the inner bank. The shear layer is not revealed by URANS results, as noted 

previously by other authors (van Balen 2010b). 
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Figure 6.28. Plan views of the time-averaged normalised turbulent kinetic energy (TKE/Ubulk
2) distribution along 

the bend for URANS k-ε (left), PANS fk=0.6 (centre), and LES (right).  

6.6.2. Turbulent shear stresses 

Bed and wall shear stresses are extremely relevant in Open-Channel Hydraulics due to their key 

role on such processes as scour, erosion, or sediment transport. They are strongly linked to the 

flow primary and secondary structure and the interaction of those three elements is complex and 

key to understand the flow hydrodynamics. In the context of a fully turbulent case such as the 

present one (Re=18,500), the turbulent stresses or Reynolds stresses are crucial to understand the 

vortex formation, while the viscous stresses are only dominant in the vicinity of solid boundaries 

or interfaces (if the simulation is capable of resolving those with a sufficient level of detail). As 

in Section 6.6.1 regarding the TKE calculation based on the normal stresses, the calculation of 

shear stresses must consider the part generated by the resolved turbulent fluctuations and the part 

provided by the turbulence model: 

𝜏𝑖𝑗

𝑈𝑏𝑢𝑙𝑘
2 =

𝜏𝑖𝑗𝑚𝑜𝑑
+ 𝜏𝑖𝑗𝑠𝑜𝑙

𝑈𝑏𝑢𝑙𝑘
2  (6.14) 

𝜏𝑖𝑗𝑚𝑜𝑑
= 𝜌(−2𝐶𝜇

𝑘2

휀
 𝑆𝑖𝑗) (6.15) 
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𝜏𝑖𝑗𝑠𝑜𝑙
= 𝜌 𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅  (6.16) 

where k and ε are provided by the turbulence model. 

The bed and wall stresses are calculated on the first grid point off the boundary, which falls 

within the logarithmic region of the boundary layer for URANS and PANS (y+=66 and z+=72), 

but within the buffer and viscous sub-layers for LES (y+=24 and z+=1), hence the calculation 

methods are different: 

𝜏𝑏 = √𝜏𝑥𝑧
2 + 𝜏𝑦𝑧

2 (6.17) 

𝜏𝑏𝐿𝐸𝑆
= 𝜇 (

𝜕𝑢

𝜕𝑧
+

𝜕𝑣

𝜕𝑧
) (6.18) 

where τb is the bed shear stress, since the computational domain’s bed is flat and defined by its 

unitary normal vector k in the z direction. The stress tensor was conveniently rotated for every 

section following the procedure described in Section 6.2.5. 

Figure 6.29 shows the time-averaged normalised bed (left) and walls (right) shear stresses at 

five cross-sections of Case B for URANS, PANS, and LES. This figure illustrates rather well the 

momentum shift phenomenon that occurs along the bend discussed previously in sections 6.4.1 

and 6.5.1. In the first place, the wall shear stress (τb/Ubulk
2) profile across the bed shows a peak by 

the inner wall (y/B=0) at 0º which gradually moves outwards along the bend. There are some 

mismatches between LES and PANS predicting the local peak by the outer wall due probably to 

the lesser resolution, but the overall mark is remarkable. PANS results slightly overestimate LES 

τb/Ubulk
2 results, but both converge towards the bend’s exit. URANS model however overpredicts 

significantly the other two models’ outcomes. Furthermore, it does not complete the shift of 

momentum to the outer bank, showing a rather flat τb/Ubulk
2 distribution at 180º, while PANS and 

LES are clearly skewed. 
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Figure 6.29. Time-averaged normalised bed (left) and wall (right) shear stresses at 0º, 45º, 90º, 135º, and 180º 

for URANS k-ε (solid line), PANS fk=0.6 (dashed line), and LES (delta symbols). 

The time-averaged, normalised shear stresses profiles at both the inner and outer bank are 

displayed on the right column of Figure 6.29. The momentum outwards shift and clear URANS 

overprediction of the stress magnitudes are also present here, but the overall agreement on the 

trends of the three models’ results is less clear. Focusing first on the coincidences, all three models 

show a relatively flat profile at the outer bank (except PANS near the surface) which grows in 

magnitude as the bend progresses. There is a distinctive peak near at the lower half of the inner 
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bank which is also depicted by the three approaches, although much higher for URANS. This 

peak corresponds to the secondary motion which drags fluid towards the inner side across the 

bottom of the flume. Regarding the discrepancies, in general URANS and PANS seem to reflect 

sharply the changes in the velocity distribution, while LES is much smoother. There are 

significant peaks near the free surface in the PANS prediction at 45º-180º stations. These peaks 

reveal the presence of flow detaching from the outer wall’s boundary layer towards the centre of 

the channel due to the OBC. As seen in Figure 6.20, the OBC predicted by PANS reaches the 

inner wall at 90º, producing the corresponding peak in τw/Ubulk
2 at that station. These peaks are 

the main reason for PANS and LES profiles not agreeing as they did regarding the bed stresses. 

In their absence, at 0º and 180º, the match is again remarkable. It is unclear if the reason for this 

disagreement is merely on the rather different near-wall resolution, as that did not constitute a 

problem with the bed stresses - OBC detaching also occurs in LES-predicted secondary flow, save 

the OBC reaching the inner bank at 90º. A different implementation of the free surface boundary 

condition regarding the neglection of the pressure gradients may also partially explain the 

differences. 

Figure 6.30 shows the time-averaged normalised turbulent stress τxy/Ubulk
2 distribution at the 

entire 0º, 90º, and 180º stations for all three models. The super-imposed dotted lines show the 

streamwise velocity distribution for clarity. This stress component is generated by the action of 

the streamwise motion (U) on the Y-normal spanwise plane. Overall, the positive and negative 

peaks normally correspond to interfaces between vortex tubes, wall friction, and areas where the 

fluid detaches from eddies. The agreement between PANS and LES is generally very good. At 0º 

the three models agree on the prediction of the high τxy/Ubulk
2 layer by the inner bank – where the 

high momentum flow is concentrated from the previous bend - and the negative values on the 

region inbetween the two vortices. Only LES captures the small-scale bed-induced turbulence 

generated by the channel’s bed. At 90º there is a gap in the magnitude of τw/U Ubulk
2 between 

URANS and the other two models. Most of the section is dominated by negative values of 

τw/Ubulk
2, save for the inner bank and a very thin layer near the bed. There is a positive peak in the 

PANS results at y/B=0.2 and z/H=0.4 which is not visible in the LES data and it possibly obeys 

to the lesser degree of development of the secondary flow in PANS: the PDC’s vortex core has 

not yet migrated totally to the inner bank and the OBC dominates the whole upper half, creating 

friction between the two counter-rotating cells in that particular area. Finally at 180º the high 

values of stress have smoothened as the secondary flow got stable and the three predictions are 

rather close. As seen before, LES captures the small scale vorticity developing near the bed while 

PANS has higher peaks near the surface. 

  



128 

 

 URANS PANS LES 

0
º 

   

9
0
º 

   

1
8
0
º 

   

Figure 6.30. Upstream view of the time-averaged normalised field of shear stress in the XY plane (τxy/Ubulk
2) at 

the 0º, 90º, and 180º cross-sections for URANS k-ε (left), PANS fk=0.6 (centre), and LES (right); the dashed lines 

correspond to the U/Ubulk contours. 
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Figure 6.31. Upstream view of the time-averaged normalised contours of shear stress in the XZ plane (τxz/Ubulk
2) 

at the 0º, 90º, and 180º cross-sections for URANS k-ε (left), PANS fk=0.6 (centre), and LES (right); the dashed lines 

correspond to the U/Ubulk contours. 

Figure 6.31 shows the time-averaged normalised turbulent stress τxz/Ubulk
2 distribution at the 0º, 

90º, and 180º cross-sections for URANS (left), PANS (centre), and LES (right). The super-

imposed dotted lines show the streamwise velocity distribution. This component of the stress 

tensor is also generated by the streamwise flow but acts on the horizontal plane (Z-normal). It 
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represents accurately the turbulence coming from the bed friction and the vertical momentum 

advection along the walls. As with Figure 6.30, the overall agreement between PANS and LES is 

remarkable, while URANS predictions are fairly off, particularly at 90º. 

Figure 6.32 exhibits the time-averaged normalised turbulent stress τyz/Ubulk
2 distribution at 0º, 

90º, and 180º stations for the three modelling approaches. The super-imposed lines represent the 

secondary flow as this is particularly meaningful to this component of the stress tensor. This shear 

stress component mainly affects the spanwise transport of momentum. Its average magnitude is 

significantly smaller than that of the other two components of the shear stress, hence the 

prediction is more sensitive to the differences among models. LES results have a transient feel as 

a result of the small magnitude of the stress and its variability. At 0º the secondary structure of 

the previous bend is fading away as it enters the current one. At this location URANS results 

arguably show a better agreement with LES, depicting clearly the advection of fluid towards the 

outer bank driven by the previous bend’s PDC as a large (blue) region with negative values of 

τyz/Ubulk
2. The secondary motion from the previous bend is significantly weaker in PANS results, 

and the two counter-rotating vortices are close to be completely faded away. At 90º the section is 

split in two: the positive values of τyz/Ubulk
2 at the bottom reveal the PDC carrying momentum 

outwards while at the upper half the detached flow returns inwards (colour blue), except when 

trapped in the OBC. Significant differences between the model are related to the OBC prediction, 

which dominates the entire upper half in URANS and PANS (although with a different structure) 

and is pushed to the outer-upper corner for LES. At 180º the τyz/Ubulk
2 distribution illustrates 

perfectly the transport of fluid within the PDC and its detachment. PANS and LES provide very 

close predictions while URANS strongly overestimates the shear stress by the bed. 
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Figure 6.32. Upstream view of the time-averaged normalised contours of shear stress in the YZ plane (τyz/Ubulk
2) 

at the 0º, 90º, and 180º cross-sections for URANS k-ε (left), PANS fk=0.6 (centre), and LES (right); the lines 

correspond to the secondary flow streamlines. 
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6.6.3. Turbulence anisotropy 

Turbulent flow is by nature three-dimensional, which implies that anisotropy is part of its nature. 

According to Kolmogorov’s decay laws, every ‘generation’ of eddies in the energy cascade 

process becomes smaller and more isotropic, and the dissipative scales (or Kolmogorov’s scales) 

are assumed to be completely isotropic. However, boundary layer flows or shear flows induce 

anisotropy in the larger and medium scales of turbulence, as the external forces or the geometry 

constrain one or some of the axes of motion (and therefore the turbulent fluctuations). The vortices 

or coherent structures of Prandtl’s second kind (the OBC is generally regarded as such) are a 

result of this skewness or anisotropy, and therefore related to the geometry of the problem 

(shallowness, curvature). Probably the most restricting assumption linked to the k-ε model is its 

isotropic nature: the fluctuations (i.e., the normal Reynolds stresses) are the same in all directions: 

𝑢′2̅̅ ̅̅ = 𝑣′2̅̅ ̅̅ = 𝑤′2̅̅ ̅̅ ̅ . Because both URANS and PANS are based on the k-ε model, the only source 

of turbulence comes from the resolved unsteadiness or fluctuations of the flow, removing the 

modelled, isotropic part provided via the eddy viscosity. The LES model works differently as it 

is supposed to resolve most of the energy-meaningful turbulent scales in the flow and only model 

the dissipative sub-grid scales, in which the isotropic assumption is quite fitting. Figure 6.26 and 

Figure 6.27 have already shown how the amount of solved turbulent stresses may be significant 

in PANS but very minimal in URANS. In this subsection the nature and extent of the solved 

turbulence in the three models is represented in the spectral space and its impact on reflecting the 

flow anisotropy is studied by using quadrant analysis. 

The time series to perform both the spectral and quadrant analysis were extracted in the 

locations depicted in Figure 6.33. The six locations were chosen in the vicinity of the PDC and 

OBC cores of the 0º, 90º, and 180º cross-sections of Case B (periodic). 

0º 90º 180º 

   

Figure 6.33. Location of the sampling points (P1-P6) for the spectral and quadrant analysis. 

Figure 6.34 shows the velocity spectra of the two sampling points at the 180º station. The others 

were omitted as they were extremely similar. The thin, dashed, black line represents the -5/3 slope 

that should match well-resolved turbulence within the inertial sub-range according to the 

Kolmogorov Law, representing homogeneous turbulence decay. The blue, red and black lines 

correspond to LES, PANS, and URANS respectively and represent the spectral energy contained 

by the turbulent fluctuations in the frequency domain, which is calculated from the original time 

series by using Fourier series. The overall behaviour of the models is very consistent for the three 

velocity components and the two points considered. The LES velocity spectra show a canonical 

behaviour with a production region linked to the larger and more energetic eddies, an inertial 

range that loosely follows the -5/3’s law and a dissipation range corresponding to the smallest, 

highest frequency eddies. Neither URANS nor PANS are able to reproduce this trend and 

therefore they are not resolving the turbulent cascade process. However, there are three 

noteworthy features: i) PANS produces consistently significantly higher energy linked to the 

velocity fluctuations than URANS; ii) both URANS and PANS follow the -5/3’s law for decaying 

turbulence, revealing some extent of physically realistic interaction between eddies of different 

scales; iii) the numerical dissipation (characterised by high frequency, regular peaks at lower 
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energies) start at higher frequency for URANS (approx. 20-30 Hz) than PANS (60-70 Hz). Hence, 

albeit (as expected) URANS and PANS are not able to reproduce a full turbulent spectrum, there 

are significant difference between the two models in the level of unsteady fluctuations of the 

velocities, the amount of kinetic energy they carry, and the intensity of the numerical dissipation.  
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Figure 6.34. Power Density Spectra of the u (left), v (centre) and w (right) velocity components at points 5 and 6 

for URANS (black line), PANS (red line), and LES (blue line). The dashed lines represent the -5/3 slope for the 

inertial sub-range according to Kolmogorov’s Laws. 

Quadrant analysis (Lu and Willmarth, 1973) is a technique that helps identifying the presence 

of coherent structures in the flow and their contribution to the Reynolds stresses and it also 

illustrates graphically the degree of anisotropy of the turbulent fluctuations at the six locations 

under analysis (Figure 6.33). Figure 6.35 shows an example of quadrant analysis in the u’-v’ 

(normalised by the root mean squared fluctuations uRMS and vRMS) axes for Point 1, where LES 

data is represented in grey, PANS in red and URANS in black and the four quadrants are labelled 

as Q1, Q2, Q3, and Q4 respectively. This plot illustrates the extensive gap in scale between the 

fluctuations of the three models. As a general approximation, PANS fk=0.6 fluctuations are about 

5 times smaller than LES, and URANS’ (from which only a small black dot in the intersection 

among quadrants is visible) are around 100 times smaller than LES. Albeit PANS resolution is 

insufficient to properly resolve the turbulence spectrum, the amount of resolved unsteadiness is 

very significantly higher than in URANS. 
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Figure 6.35. Quadrant plot at P1 in the axes u’/uRMS-v’/vRMS. PANS (red) and LES (grey) result displayed. 

Figure 6.36 investigates whether the nature of the velocity fluctuations in PANS is related to 

the physical phenomena described in previous sections (e.g., secondary flow, Reynolds stresses) 

and shares trends in common with the fully-resolved LES. This Figure shows the quadrant 

analysis of the six locations labelled in Figure 6.33. Every point is analysed within the u’-v’ (a), 

u’-w’ (b), and v’-w’ (c) axes, and normalised by the root mean squared fluctuations uRMS, vRMS, 

and wRMS. For the sake of clarity, LES and PANS are represented in different scales (LES: grey 

labels at the top and right axes; PANS: red labels at the bottom and left ones), providing a 1:4 

proportion between the two models. URANS results are not shown as they do not reproduce 

significant fluctuations, hence its turbulent prediction can be deemed as entirely isotropic. At P1 

the u’/uRMS streamwise fluctuations are higher than those in the spanwise plane, resulting in the 

horizontally stretched shapes observed in a) and b) distributions. The secondary flow (v’/vRMS - 

w’/wRMS) is rather muffled and isotropic, due to the fading process of the previous bend’s PDC. 

P2, corresponding to the previous bend’s OBC, shows the prevalence of u’/uRMS and v’/vRMS versus 

w’/wRMS in LES and PANS distributions at b) and c), dampened by the presence of the free surface. 

P3 and, particularly, P4, located in the 90º cross-section, exhibit notably higher magnitudes of 

turbulent fluctuations than the other sampling points, which correlate with higher TKE and shear 

stress levels at this station (e.g. Figure 6.28 and Figure 6.29 among others). The behaviour at P3 

is relatively isotropic, being noteworthy the higher dispersion of turbulent events in the fourth 

quadrant (Q4) of a), which is well reproduced by PANS. The flow behaviour at P4 is strongly 

anisotropic, as both PANS and LES data produce rather flat shapes, particularly in a) and b), 

revealing the dominance of the u’ fluctuations. At P5 v’/vRMS is the preferential axis, captured by 

a vertically elongated shape in a) and a flat distribution in c). P6 shows a rather isotropic 

distribution in a) with more occurrence of events in Q4 and Q3 (particularly in PANS dataset) 

and flat distributions in b) and c), which recall those observed at P2. 

  

Q4 

Q3 

Q1 

Q2 



133 

 

  

 a) b) c) 

P
o
in

t 
1
 

   

P
o
in

t 
2
 

   

P
o
in

t 
3
 

   

P
o
in

t 
4
 

   



134 

 

 a) b) c) 

P
o
in

t 
5
 

   

P
o
in

t 
6
 

   

Figure 6.36. Quadrant plots in the axes u’/uRMS-v’/vRMS (left), u’/uRMS-w’/wRMS (centre), and v’/vRMS-w’/wRMS 

(right) for Points 1-6. PANS (red) and LES (grey) result displayed. 

Overall, Figure 6.36 provides four relevant conclusions: i) according to PANS and LES data 

the flow exhibits an important degree of anisotropy; ii) the shape and quadrant occupation patterns 

of PANS’ turbulent events follow rather closely those of LES’; iii) the quadrant distribution of 

the turbulent events predicted by PANS and LES correlates well with the previously described 

flow motion and behaviour; iv) the patterns of the secondary flow (v’/vRMS-w’/wRMS) are generally 

more anisotropic at the OBC locations (P2, P4, and P6) than at the PDC (P1, P3, and P5).   
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6.7. Turbulence closure analysis 

The previous sections of the current chapter have analysed the main flow features in the 

meandering channel and revealed the differences between the three major modelling approaches 

under analysis: URANS, PANS, and LES. A representative configuration of both URANS and 

PANS was selected for those analysis, namely URANS with k-ε closure and PANS with damping 

factors fk=0.6 and fε=1.0. However, other URANS and PANS closures were set up and tested. 

This section discusses the main differences among them and how the choice of different eddy 

viscosity models or damping factors may affect the prediction of the flow behaviour for the 

present case. All the results presented in this section correspond to Case B simulations, in 

coherence with those analysed in section 6.6. 

6.7.1. Partially-Averaged Navier-Stokes 

The PANS configurations differ on the rate of damping of the TKE predicted by the k-ε model, 

ranging from fk=0.3-0.6. URANS was also included as a particular PANS case where fk=1 (no 

damping). This reduction in the TKE is not explicit, as the momentum equations and the transport 

equation for the dissipation rate ε are solved iteratively and interact non-linearly. As an example, 

whereas for fk=1 (URANS) the integral ratio of eddy viscosity over laminar viscosity at the 180º 

station is νt/νl≈46, for fk=0.6 is νt/νl≈9, implying a relaxation rate of the eddy viscosity of approx. 

5 times. This may change in other sections depending on the flow field. 

Figure 6.37 shows the distribution of the ratio of TKE solved versus the total at the 180º station 

for four different PANS configurations (five with URANS). The last plot shows the integral rates 

of resolved TKE versus the total for the five cross-sections. Both the contours and the integral 

quantities illustrate clearly that the rate of solved versus modelled turbulence does not respond 

linearly to the changes in the damping factor fk. For fk=0.3 the integral TKEs ratio is around 90% 

and the modelled turbulence only dominates the boundary layers. The contours for fk=0.4 are 

rather similar, increasing the TKEmod production layer by the walls and exhibiting an area where 

TKEs/TKEt<0.8 at the interface between the counter-rotating cells. For fk=0.5 the integral ratio of 

solved turbulent kinetic energy is slightly over 70%, mostly concentrated near the free surface 

and the PDC’s core. The same trend is found for fk=0.6, which significantly drops the TKEs/TKEt 

ratio to 60%. Finally, URANS (fk=1.0) models over 98% of the turbulent kinetic energy 

production, and the only region where there is an almost insignificant approach from the velocity 

fluctuations is by the free surface. 
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Figure 6.37. Upstream views of the time-averaged solved versus total TKE ratio at the 180º station (Case B) for 

PANS fk=0.3-06 and URANS (fk=1.0). The bottom-right figure shows the integral values of TKEs/TKEt (%) on the 

180º cross-section. 
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Figure 6.38. Power Density Spectra of the u (left), v (center) and w (right) velocity components at points 5 and 6 

for URANS (black line), PANS fk=0.3 (cyan), fk=0.4 (green), fk=0.5 (pink), fk=0.6 (brown), and LES (blue). The 

dashed lines represent the -5/3 slope for the inertial sub-range according to Kolmogorov’s Laws. 

Figure 6.38 shows the power density spectra for the four PANS configurations (fk=0.3-0.6) in 

contrast with URANS and LES at P5 and P6, located according to the description in Figure 6.33. 

The spectral analysis demonstrates that further damping on the eddy viscosity does not imply a 

greater rate of turbulence solving in the current case. The spectra based on the various PANS 

simulations do not show significant differences, suggesting that there might be other limiting 

factors. To properly resolve the energetic turbulence scales a not-too-dissipative turbulence model 

is a required condition, but it must go together with higher-order, non-dissipative convective 

schemes and a refined discretisation. 
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Figure 6.39 shows the vertical profiles of time-averaged normalised secondary velocity at the 

180º station for all PANS configurations (fk=0.3-0.6), URANS, and LES. The results show that 

all PANS profiles show a rather close trend without significative differences on the prediction of 

the secondary motion. PANS fk=0.6 is clearly the closest to the LES results, while the results for 

lower damping factors tend to exaggerate slightly the articulation of the curves.  
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Figure 6.39. Vertical profiles of the normalised time-averaged secondary velocity at five different horizontal 

locations of the 180º cross-section (Case B) for URANS (thick black line), PANS fk=0.3 (orange, circles), fk=0.4 

(red, triangles), fk=0.5 (brown, diamonds), fk=0.6 (grey, squares), and LES (thick blue line). 

Overall, the results in this section prove that the magnitude of the damping factor fk has a 

significant and non-linear influence by reducing the eddy viscosity diffusivity on the flow. 

However, in absence of further refinements on the resolution and order of the numerical 

discretisation, this does not necessarily lead to further resolving of turbulence. The energy excess 

in the flow (due to lower numerical dissipation) is not necessarily invested in motion at higher 

frequencies or scales and may not improve the results. PANS’ damping factors and numerical 

discretisation have to be coupled, in a similar fashion as LES’ SGS models are mesh resolutions 

are. 
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6.7.2. URANS: linear versus non-linear eddy viscosity models 

Conventional turbulence models are based on the Boussinesq stress-strain relations, which proved 

to be a very useful assumption but has the main drawback of assuming an isotropic turbulent 

behaviour. In previous sections it was proved that the levels of anisotropy in the meandering 

channel are high and have qualitative consequences on the prediction of the secondary flow and 

turbulent stresses. Other deficiencies of the linear eddy viscosity models that may affect the 

present case are: suppression of separation from curved walls, excessive dissipation, wrong 

response to swirl, or suppression of self-induced periodic motions (Aspley et al., 2010). URANS 

with standard k-ε closure (isotropic) was chosen as the benchmark for URANS simulations on 

previous sections given the vast popularity of this turbulence closure. Overall, it has predicted 

accurately most of the properties of the flow but has shown some limitations such as: i) non-

representation of the OBC in non-periodic simulations; ii) great overestimation of the wall and 

bed shear stresses; iii) non-representation of the shear layer at the inner bank of the bend. Non-

linear eddy viscosity models try to address these limitations is introducing non-linear terms in the 

relation between the turbulent stress and the velocity gradients. Three non-linear eddy viscosity 

models were tested in Case B. They are based on the works of Gatki and Speziale, 1993 (GS), 

Craft et al., 1997 (CLS), and Lien & Leschziner, 1994 (LL) and described in detail in section 

3.2.2.  

Figure 6.40, Figure 6.41, and Figure 6.42 compare the results of those compared to standard k-

ε. These figures depict the contours of the ratio of eddy viscosity versus laminar viscosity together 

with the secondary flow streamlines at the 0º, 90º, and 180º stations (Case B), respectively. GS is 

a quadratic model and CLS and LL are based on cubic expansions of the Reynolds stress tensor.  

STD k-ε GS 

  

CLS3 LL 

  

Figure 6.40. Upstream view of the time-averaged eddy versus laminar viscosity contours and superimposed 

secondary motion streamlines at the 0º station for four different eddy viscosity modelling approaches: standard k-ε 

(top left), Gatsky and Speziale (top right), Craft-Launder-Suga (bottom left), and Lien-Leschziner (bottom right). 
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STD k-ε GS 

  

CLS3 LL 

  

Figure 6.41. Upstream view of the time-averaged eddy versus laminar viscosity contours and superimposed 

secondary motion streamlines at the 90º station for four different eddy viscosity modelling approaches: standard k-

ε (top left), Gatsky and Speziale (top right), Craft-Launder-Suga (bottom left), and Lien-Leschziner (bottom right). 

STD k-ε GS 

  

CLS3 LL 

  

Figure 6.42. Upstream view of the time-averaged eddy versus laminar viscosity contours and superimposed 

secondary motion streamlines at the 180º station for four different eddy viscosity modelling approaches: standard 

k-ε (top left), Gatsky and Speziale (top right), Craft-Launder-Suga (bottom left), and Lien-Leschziner (bottom right). 

The results show that GS implementation is not successful at predicting the current case. It 

does not capture the OBC presence at 0º and 180º and seems to oversimplify the generation of 

eddy viscosity. The predictions of CLS and, especially, LL are remarkably close to standard k-ε. 

The secondary motion of the latter is virtually identical at the three cross-sections between the LL 

and standard k-ε, whereas CLS seems to underestimate the extent of the OBC. The νt/νl 

distribution is also virtually identical between the three models on those locations, albeit its 

magnitude is significantly lower for CLS and LL than standard k-ε.  

Figure 6.43 displays the integral eddy versus laminar viscosity ratio across the 180º cross-

section for the four URANS models (standard k-ε (blue bar), GS, CLS, and LL (grey)) and PANS 
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fk=0.6 (red). This diagram confirms the observations from Figure 6.40-Figure 6.42: the turbulent 

viscosity predicted by standard k-ε is higher than the one calculated by the non-linear eddy 

viscosity models by 12% on average. It is a significative difference that, however, does not 

translate into any remarkable discrepancy in the secondary flow. The ratio of solved versus total 

TKE at the 180º station is also very low for all the URANS approaches: 0.9% for standard k-ε, 

1.2% for GS, 0.1% for CLS, and 0.5% for LL. The difference with the same parameters for PANS 

fk=0.6 is remarkable: the integral νt/νl ratio at 180º as represented in Figure 6.43 is below 10, and 

the solved TKE rate goes up to 60%. These results suggest that the decreased eddy viscosity is 

rather far from being sufficient to trigger a significant degree of unsteadiness.  

 

Figure 6.43. Integral values of eddy versus laminar viscosity at the 180º station for standard k-ε (blue), PANS 

fk=0.6 (red), GS, CLS, and LL (grey). 
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6.8. Discussion on secondary flow prediction and mechanisms of generation 

The previous sections of this chapter have described – and validated - in detail the numerically-

predicted hydrodynamics in a meandering channel. Among the many aspects subject to discussion 

there are two particularly interesting and influential on the results: the presence of previous bends 

and the numerical approach to turbulence. Regarding the former, three scenarios were analysed: 

one bend after a straight section (Case A), one bend after a previous bend (Case A), and one bend 

after an endless series of previous bends (Case B). In relation to the turbulence closure, there are 

three basic approaches: URANS, PANS, and LES with well-defined strengths and limitations. 

Many relevant properties were analysed, but there is a particular feature whose prediction 

constitutes a qualitative difference and is heavily influenced by the two aforementioned factors: 

the outer-bank cell. This flow structure regulates the pressure-driven vorticity and affects the 

turbulent stresses distribution and consequently the scour and conveyance capacity of the flow. 

In this section, relevant results are summarised to clarify the key influence of the flow’s 

turbulence and ‘memory’ on the accurate prediction of the secondary flow and other properties. 

6.8.1. Turbulence, unsteadiness, and anisotropy 

Figure 6.44 is particularly revealing both to illustrate the influence of the turbulence modelling or 

the influence of the flow memory. This subsection focuses in the former. The figure depicts three 

upstream views of the time-averaged normalised vorticity field and the secondary flow 

streamlines at the exit of three bends calculated with three different approaches: URANS k-e, 

PANS fk=0.6, and PANS fk =0.4. Each scenario differs in the number of meandering bends the 

fluid went through before reaching the current one: none, one, and an infinite (theoretically) 

series. The models differ in the rate of dissipation applied via eddy viscosity. 
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Figure 6.44. Upstream views of the time-averaged normalised vorticity distribution with superimposed secondary 

flow streamlines at the 180º cross section of the first bend (Case A, left), second bend (Case A, centre), and periodic 

bend (Case B, right) for URANS k-ε (top), PANS fk=0.6 (medium), and PANS fk=0.4 (bottom). 
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Only fk=0.4 captures the OBC at the three cross-sections. PANS fk=0.6 simulates it in the 

second and periodic bend, and URANS (fk=1.0) just in the periodic bend. Hence there is a 

qualitative discrepancy due to the turbulence modelling approach. Based on the experimental 

results it is only safe to say that there is an OBC in the second bend, and therefore the periodic 

one must have it as well. It is dubious if the first bend does, although a close look at the 

experimental results at the 0º station hint the vanishing footprint of an OBC from the first bend. 

It was discussed in Chapter 5 how the presence of the OBC on a single bend depends strongly on 

its curvature and shallowness. Nevertheless, the trend is clear: excessive numerical dissipation 

prevents capturing the OBC in a given case. 

The numerical results suggest the reason preventing URANS models from capturing the OBC 

being the inability to predict an anisotropic turbulent stress tensor. There are two main modelling 

strategies to induce anisotropy in the flow: i) solving the momentum equations with a sufficient 

level of resolution to predict a realistic turbulent stress tensor; ii) introducing the anisotropy in 

the turbulence modelling through some assumptions. The present work, within its limitations, 

tried both approaches. The former (turbulence/unsteadiness solving) with PANS and LES; the 

latter (anisotropic modelling) with non-linear eddy viscosity models for URANS. Whereas PANS 

and LES were successful on this regard, URANS models were not. From the results presented in 

this work, it seems that only the unsteadiness provided by the solved turbulent fluctuations 

provided the necessary degree of anisotropy, whereas the modelling attempts were unsuccessful. 

The results show that even small amounts of turbulence/unsteadiness make a difference in the 

correct representation of the secondary flow. 

Based on the results of the current work, the excess of dissipation via eddy viscosity has been 

a much more relevant limiting factor for the quality of the simulations than the choice of an 

isotropic or anisotropic turbulence closure. This, however, is extremely problem-dependent, and 

may have worked differently for another case or a different setup, so all conclusions should be 

considered within the scope of the present study. 

The analysis of section 6.6 leaves is an open question regarding if it is more appropriate to 

consider the fluctuations within URANS and PANS velocities as ‘mean flow unsteadiness’ or 

‘turbulence’. It does seem that the former is more adequate for URANS, where the unsteadiness 

is rather low and not very influential on the overall fluid motion. It is arguable if PANS’ 

fluctuations are just mean flow fluctuations or they also reflect some of the largest scales of 

turbulence. The trajectories of some turbulent events depicted in the quadrant analysis in Figure 

6.36 do not seem very chaotic, suggesting mean flow unsteadiness. Nonetheless, this is a 

theoretical discussion beyond the scope of this work. Turbulence or unsteadiness, it is responsible 

for the major differences between the three modelling approaches and that is key to understand 

the different ways in which the flow is predicted by them. 

6.8.2. Other properties affected by the turbulence closure 

 Circulation: besides the presence or absence of the OBC, the evolution of both this vortex and 

the PDC is rather different for URANS, PANS, and LES. Taking LES as a reference, PANS 

overpredicts the vorticity on the first half of the bend. URANS underestimates the circulation 

of the OBC and the PDC in the second half of the bend.  

 Turbulent stresses: URANS overestimates the turbulent wall and shear stresses when 

compared to PANS and LES. PANS and LES show important discrepancies on the wall stresses 

near the surface. 

 Flow separation: URANS does not fully advect the more energetic flow to the outer side of 

the section. It does not either predict the shear layer in the inner side. 
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 Mixing: LES and PANS predict a higher dispersion of the streamwise velocities than 

URANS. This is correlated with the vortex circulation. URANS underestimation of the PDC’s 

circulation in the second half of the bend leads to the underprediction of the transport of 

momentum across the channel’s bottom between 90º and 135º. 

 Turbulent kinetic energy: a majority (>60%) of the TKE predicted by PANS comes from 

solved turbulent unsteadiness (as opposed to isotropic turbulence modelling). PANS velocity 

fluctuations carry significantly more spectral energy than URANS’, albeit they are far from 

LES’ and cannot reproduce the energy cascade process. 

 Velocity dip: LES simulations locate the streamwise velocity maximum at the lower part of 

the section. This point moves progressively downwards as the bend progresses. For URANS 

and PANS, the maximum velocity is close to the surface once passed the bend's apex.  

6.8.3. Memory of the flow: one bend, two bends, and periodic 

Figure 6.44 shows that both URANS and PANS fk=0.6 are capable of capturing the OBC 

depending on the number of preceding bends in the meander. The left column of Figure 6.44 

corresponds to Case A’s first bend. Without any ‘memory’ of previous curvature, only PANS 

fk=0.4 predicts a poorly developed OBC. After two bends, PANS fk=0.6 also captures the OBC. 

Finally, in the periodic meander the three models predict the OBC occurrence with relative 

accuracy.  

It is appealing to use the term ‘flow memory’ to refer to the mechanisms in place, albeit rather 

vague. The presence of a series of bends may reinforce the secondary flow in two ways: i) via the 

interaction of the vorticity of subsequent bends; ii) via development of flow properties which are 

relevant to the secondary motion. Either way, the OBC is not uniquely turbulence-driven.  

Figure 6.45 shows the Q-criterion iso-surfaces at Q=0.1 colour-coded by the velocity module 

|U| at the transition between two bends in Case B simulated with LES. The cross-sectional planes 

of the exit of the previous bend and the entrance in the following one are also included in the 

figure to better illustrate the relation between the three-dimensional vortical structures and the 

two-dimensional eddies. Q-criterion is a vortex visualization method developed originally by 

Hunt (1987) based on the definition of a new variable Q that weighs strain versus vorticity rate: 

𝑄 =
1

2
(|Ω| − |𝑆|) (6.19) 
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Figure 6.45 depicts the three-dimensional streamwise evolution of much of the secondary 

motion analysed along this and the previous chapter. Firstly and more importantly, there is vortex 

A, which is the PDC of the previous bend. Vortex A loses part of its volume when exiting the 

first bend, starts moving upwards along the crossover, and persists in the second bend, smaller 

and confined in the upper outer bank. This is the confirmation of something that the results had 
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already hinted: in meandering channels, the OBC is originated in the PDC of the previous bend. 

Hence there is effectively an interaction and reinforcement of the vorticity between bends. 

Other identifiable coherent structures in Figure 6.45 are B, C, and D. Vortex B is the OBC of 

the first bend. It would be tempting to induce that there is also a relation between this eddy and 

the PDC of the next bend (labelled as D in the figure). However, the results seem to indicate 

otherwise. Vortex B loses much of its vortical strength along the cross-over, although it is still 

identifiable at the second bend’s 0º station. It seems that there is some interaction between residual 

turbulence from B and D just passed the inner upper corner of the second bend’s 0º station, but 

far from the clear continuity of A along the two bends. It seems that B does not have any 

significant part in D’s generation. Finally, there is a corner eddy C which originates at the cross-

over and develops some rather high influence along the first half of the bend. At the bottom of 

the first bend’s 180º station some rollers generated at the bed’s boundary layer are also captured 

by the Q-criterion iso-surfaces. Figure 6.46 identifies the four aforementioned coherent structures 

(A, B, C, and D) in 0º and 90º two-dimensional cross-sections. 

 

Figure 6.45. Three-dimensional representation of the Q-criterion isosurfaces defining vortex tubes colour-coded 

with the velocity module for Case B LES. The secondary flow streamlines are described in cross-sectional planes at 

the exit of one bend (180º) and the entrance of the next one (0º).  

  

Figure 6.46. Cross-sectional view of the coherent structures that define the vortex tubes in Figure 6.45: 0º and 

90º cross-sections based on LES results. 

Figure 6.47 replicates Figure 6.45 on PANS fk=0.6 data. The result is remarkably similar and 

all the coherent structures identified in the LES data are present in PANS’. Again, Q-criterion iso-

surfaces at Q=0.1 are used. Overall, the vortex tubes’ surfaces are ‘cleaner’ in this case as no 

small-scale turbulence is resolved for PANS.  
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The vortex interaction between bends described by LES is mimicked by PANS. The 

transformation of A from PDC of the first bend to OBC of the next one is very clearly depicted, 

as well as vortex B’s (previous bend’s OBC) decline along the cross-over. The PDC detachment 

from the inner bank is rather well illustrated in the first bend by vortex A and by vortex D in the 

second one. The corner eddy C occupies a bigger volume and it seems to split in two cores when 

approaching the bend apex. The bottom rollers observed in LES are not depicted here, which 

relates to the τxy/Ubulk
2 distribution shown in Figure 6.30. 

 

Figure 6.47. Three-dimensional representation of the Q-criterion isosurfaces defining vortex tubes colour-coded 

with the velocity module for Case B PANS fk=0.6. 

Figure 6.45-Figure 6.47 prove that there is interaction between the vortical structures of 

subsequent bends, providing an explanation to the different predictions based on the memory of 

the secondary flow. However, it might be interesting to question why URANS is not capable of 

predicting the OBC in Case A as it is in Case B. There is already a PDC vortex in Cases A’s first 

bend to ‘feed’ second’s bend OBC. The results shown in section 6.6 seem to indicate that the few 

turbulent scales solved by PANS have a qualitative impact in the results that transcend their 

quantitative magnitude. In particular, these scales of motion feed anisotropic behaviour and 

prevent extra dissipation that might dissipate the early formation of coherent structures. 

Another relevant question that has not yet been answered is why the PDC’s vorticity module 

increases after a series of bends. The results suggest that the PDC is not recycled from bend to 

bend but instead newly generated when the curvature induces a pressure gradient. Therefore why 

is this structure also sensitive to the memory of the flow? 

Figure 6.48 shows the time-averaged, normalised pressure gradient in the span-wise axis at the 

exit of the first (black), second (blue), and periodic (red) bends as predicted by PANS fk=0.6. Case 

A’s first bend is located after a straight inlet channel; at the bend’s entrance the flow’s momentum 

is distributed almost uniformly. When exiting the first bend, the momentum has already been 

advected towards the outer bank, which will become the second’s bend inner bank. The results 

suggest that an initially unbalanced pressure field contributes to an earlier establishment of the 

secondary flow. In a periodic meander, this pressure unbalance reaches an equilibrium.  
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Figure 6.48. Time-averaged, normalised pressure gradients at the exit of the first (black), second (blue) and 

periodic (red) bends for PANS fk=0.6. 

So far, this sub-section has discussed how the interaction between vorticity of subsequent bends 

and the pressure unbalance at the bend’s start have a very relevant impact on the early 

establishment of the secondary flow - OBC and PDC respectively. May there be other elements 

that explain the ‘flow memory’ effect? It is dubious that the answer to the question of why 

URANS is not capable of predicting the OBC in Case A and it is in Case B has been fully given. 

At the entrance of Cases A’s second bend there is a PDC from the previous bend to develop into 

the second’s bend OBC, and the pressure gradient between banks is stablished. Results such as 

the analysis of the circulation (Figure 6.22 and Figure 6.23) and the secondary flow in general 

suggest that the development of the turbulent/unsteady field may have something to do with 

URANS extra difficulties to capture the OBC. Even if the origin of the OBC in a meander is not 

totally turbulence-driven, but a result of the flow’s history, the evolution of this vortex (and the 

turbulent stresses linked to the secondary flow) is regulated by the solved or modelled turbulence. 

According to some authors (Davidson, 2015), the central limit theorem offers a mathematical 

ground to explain why (according to many observations/studies) the turbulence “remembers” 

characteristics of the linear and angular momentum provided in the initial conditions of the flow, 

even when the turbulence is asymptotic (mature) and, under most assumptions, independent of 

the initial conditions. This phenomenon, known as the ‘permanence of the big eddies’, has not 

reached a total agreement from a theoretical standpoint and is therefore out of the scope of this 

work. However, in general terms, it condensates the idea that the more turbulent a flow is – this 

is, the broader its spectrum of turbulent scales is - the more ‘memory’ of previous events remains 

via conservation of momentum and the more it is influenced by its initial or prior conditions. This 

might very well apply to different degrees of turbulence solving within numerical solutions. 
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7. Conclusions 

Different turbulence closures have been applied to curved open-channel flows. The modelling 

approaches fell within three fundamental families, URANS, PANS, and LES, including a 

multiplicity of formulations and configurations for the former two. The predictions provided by 

these models were tested, compared and validated. The influence of other modelling parameters 

– besides the turbulence closure itself - on their performance was also analysed, with a special 

emphasis on the discretisation scheme for the advective term and the inflow conditions. The 

analysis had a particular focus on the structure of the secondary flow, the mechanisms of 

generation and modulation of coherent structures, and their influence on the shear stresses. Two 

basic case scenarios were adopted, a single 270° bend and a meandering channel with two 

different configurations: two-bends and a periodic meander. The latter allowed a particularly rich 

analysis of the influence of prior bends’ memory on the flow downstream, and how the coherent 

structures of consecutive bends interact with each other. 

7.1. Modelling 

· Partially-Averaged Navier-Stokes (PANS) has been applied to open-channel flows for the 

first time in this work. Despite the different nature of the cases under investigation, PANS with 

fk=0.6 and fε=1.0 was the model that provided the best results among all the approaches 

considered (save LES). While the validation of the primary flow did not provide significant 

advantages compared to URANS, PANS fk=0.6 provided a remarkable validation of the 

secondary velocities against experimental data and LES for both the 270° bend and the 

meandering channel. This is the first non-LES model to report the presence of the counter-

rotating outer-bank cell in a single bend (270° case). URANS did not reproduce this 

phenomenon. For meandering channels, PANS fk=0.6 did predict accurately all the coherent 

structures captured by LES (e.g., PDC, OBC, corner vortices), including their streamwise 

evolution and interaction across successive bends.  

PANS also predicted a more effective cross-sectional redistribution of momentum, describing 

accurately the role of the main recirculation cell driven by the centripetal force via the dynamic 

pressure. The periodic meandering channel allowed direct comparison between PANS and LES. 

The agreement with LES both on the patterns and magnitude of the secondary velocities, the 

TKE and the shear stresses is remarkable. PANS results were qualitatively closer to LES than 

URANS, despite being much closer to the latter in terms of computational resources. PANS 

roughly required less than a 20% of LES total grid points while solving approx. 60% of the 

TKE, making of the combination of PANS and wall functions a very interesting alternative for 

turbulent flows. Four different PANS configurations were analysed (five including 

fk=1.0URANS). The results showed that the choice of fk has a significant, non-linear 

correlation with the fraction of low-frequency, energy-containing turbulent scales that are 

solved. Nevertheless, without further mesh refinement, PANS is not able to properly solve the 

inertial sub-range nor the energy cascade. 
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· Unsteady Reynolds-Averaged Navier-Stokes with a standard k-ε turbulence closure was used 

as the base modelling approach within the ‘URANS family’. URANS k-ε provided consistent 

results for all the cases considered, with particularly good predictions of the mean primary flow, 

in some cases slightly superior to PANS. Regarding the secondary flow ant the TKE and shear 

stresses distributions, URANS k-ε is, as expected, over-dissipative. URANS k-ε was not capable 

of depicting clearly the shear layer generated by the separation of the high momentum flow from 

the inner bank. It is however noteworthy that URANS k-ε was capable of capturing the presence 

of the OBC when the flow conserved the ‘memory’ of a prior bend. 

· Non-linear eddy viscosity models for URANS were also tested as alternative to the standard 

k-ε closure that would not enforce isotropy and high dissipation. Three different formulations 

were implemented and run, ranging from second (GS) to third-order (CSL and LL) non-linear 

approximations to eddy viscosity. GS failed to capture the OBC at most cross-sections of the 

meandering channel. The cubic approaches provided a better agreement with the experimental 

and LES results, but, despite being less dissipative, they did not improve the URANS k-ε results 

overall. In addition, the level of dissipation induced by these models appears to be case 

dependent, being slightly higher than standard k-ε for the 270° bend while slightly lower for the 

meandering channel. In global, the non-linear eddy viscosity models provided disappointing 

results and their complex entanglement of non-linear coefficients challenges direct 

interpretations. In contrast with PANS, these approaches lack universality. 

· Inflow conditions have a major impact on the subsequent turbulent flow development. This has 

been indirectly explored as part of the analysis of the interaction between bends in the 

meandering channel, revealing that the ‘memory’ effect is indeed critical to the development of 

the secondary flow. In a more explicit way, a synthetic isotropic turbulence method has been 

tested on the 270° bend. With this approach, the 6.13 m straight inlet to develop the approach 

flow was removed from the computational domain, and a mean velocity profile based on a 

precursor URANS simulation overlapped with the unsteady synthetic fluctuations was 

prescribed at the bend’s entrance. The effect of the synthetic turbulence inflow was strongly 

dependant on the choice of discretisation scheme. The results obtained with the synthetic inflow 

and a gamma convection scheme did not improve the uniform inflow; the turbulent fluctuations 

were quickly dissipated, although the prescribed inlet helped in reducing significantly the 

computational domain without damaging the predictions. The central differencing scheme 

however strongly benefited from the synthetic turbulence inflow; the results show a higher rate 

of resolved turbulent fluctuations on the large, energy-containing scales at the initial stages of 

the bend. The combination of PANS, synthetic inflow and CDS provided the best match with 

the experimental secondary velocities without increasing the computational demand. 

· The discretisation scheme for the convective term: CDS and gamma scheme were tested and 

compared for the 270° bend. The results show that the gamma scheme usually adopts the first-

order upwind mode under the particular conditions of this simulation (dominated by streamwise 

advection), dissipating a vast majority of the turbulent fluctuations into high-frequency noise. 

CDS provided some leeway for solving low frequency, energy-containing fluctuations. 

Combined with a turbulent inflow, CDS provided slightly more accurate results than gamma 

and achieved substantial ratios of resolved TKE within the bend (15-30%). 
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7.2. Flow structure 

· The nature of open-channel flow in bends is strongly three-dimensional, anisotropic and non-

hydrostatic. 

· Primary flow: within a curved geometry, inertia drives the flow outwards, resulting in 

detachment from the inner bank forming a shear layer. This process is well forecasted by PANS 

and LES in the periodic meander, including the presence of negative pressure by the inner bank, 

indicating flow separation. This is not present in URANS results. 

· The pressure-driven secondary flow/PDC is the fundamental mechanism for the redistribution 

of energy across the channel’s cross-section. It is created by the combination of two unbalances: 

(1) the centripetal force originated by the curvature that results in an outwards pressure gradient, 

(2) the friction at the water-atmosphere interface is less prominent than the boundary layer 

produced at the channel bottom. The resulting momentum redistribution across the cross-section 

is significantly higher for PANS and LES than URANS. The evolution of the primary and 

secondary flow is two-way coupled. 

· The dynamic pressure gradient across the channel’s width is the driving force of the PDC. 

The pressure difference between the inner and outer bank evolves along the curve; URANS and 

PANS predict a significant increase along the first half of the curve while LES results show a 

greater development on the second half, and a higher gradient overall. In meandering channels, 

the pressure gradient also evolves from bend to bend, initially increasing its magnitude and 

eventually reaching and maintaining an equilibrium. 

· Turbulence-driven secondary motion/OBC: the smaller counter-rotating outer-bank cell is a 

product of anisotropic velocity fluctuations cornered where the PDC’s strength is less 

prominent. Those fluctuations can be the result of two different and complementary phenomena: 

(1) turbulence and (2) residual vorticity from previous bends in meandering channels. In real 

flow, turbulence is always present and (2) can be an additional factor. In simulations, the highly 

dissipative nature of RANS has prevented the identification of the OBC in previous research. In 

this work, however, the OBC was found in URANS predictions for meandering channels due to 

(2). The combination of (1) and (2) is complex and non-linear. The OBC can be simulated 

without relevant solved turbulent scales (URANS). However, only modelling approaches 

capable of solving some range of turbulence scales are able to predict with reasonable accuracy 

the generation, evolution, and decay of the OBC. The presence of the OBC has a remarkable 

practical importance for river engineering, given its protective role versus shear stresses acting 

at the outer bank and the generation of preferential transport pathways following the streamwise 

stretching of the OBC. 

· In fully developed curved flow, a manifestation of the velocity dip phenomenon can be 

described. The maximum streamwise velocity is not located by the surface, but at the boundary 

between the PDC and the OBC instead.  

· Bend-to-bend interaction and vortex recycling: three-dimensional visualisation of vortex 

tubes along the crossover between bends in meandering channels confirmed that the residual 

vorticity of one bend’s PDC can evolve into the next bend’s OBC. According to LES and PANS 

results, this process does not work both ways. The PDC of one cell seems to have no relation 

with the OBC of the previous one. The latter is quickly dissipated, whereas the PDC begins its 

formation prior to the flow’s entrance in each bend driven by the transverse pressure gradient. 
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· According to circulation diagrams, the vorticity within the PDC develops very fast within the 

first 45° of the bend, to then enter a gradual decay. The evolution of this vortex’s strength varies 

among models, with URANS underestimating it all along the bend. The OBC’s initial 

development within a bend in the periodic meander is more gradual, probably favoured by the 

fact of ‘recycling’ vorticity from the previous bend’s PDC. URANS also underpredicts the 

OBC’s circulation. 

7.3. Turbulence 

· This research has confirmed the significant overprediction of the normalised bed and wall shear 

stresses by URANS. PANS results were in good relative agreement with LES in the periodic 

meandering channel. This work uses modelling approaches that intend to solve a significant 

(LES) or a small (PANS) part of the energy-containing turbulent fluctuations. As such, both the 

contribution from the turbulence closure and the resolved scales are considered when calculating 

Reynolds stresses and the TKE.  

· Regarding TKE and the turbulent shear stress distribution, URANS predictions exhibited 

relevant differences with both PANS and LES (where available). In the 270° bend URANS 

overestimated the TKE when compared to PANS (+gamma scheme), particularly at the bottom 

boundary layer. For the periodic meander, however, URANS appeared to underestimate TKE 

production, particularly near the top, in comparison with PANS and LES. In this research, the 

ratio between resolved and total (resolved + modelled) TKE was used at times as an indicator 

of the capability of a given model or setup to solve via Navier-Stokes a fraction of the turbulent 

fluctuations. Regarding turbulent shear stresses (Reynolds stresses), comparison for the periodic 

meander also indicates a general underestimation by URANS datasets (again compared to 

PANS and LES), with local overestimation at the bottom or inner boundary layers. 

· Anisotropy: quadrant analysis was used to characterise the turbulence anisotropy at several 

sampling points (namely the cores of the PDC and OBC for each cross-section). PANS velocity 

fluctuations were overimposed on LES data. Different axes were used for each model since 

PANS’ fluctuations are on average 4-5 times smaller than LES’ in amplitude. URANS 

fluctuations were two orders of magnitude smaller, hence negligible in comparison. Quadrant 

analysis could successfully link the fluctuation spread with the dominating coherent structures 

at each point. The turbulence at most points was strongly anisotropic, and the trends of data 

spread predicted by PANS and LES were very similar despite the difference in magnitude. The 

turbulence anisotropy was stronger at locations under the influence of the OBC. 

· Spectral analysis of the velocity field performed on time series collected at some sampling 

points reveals that only LES is capable of producing a canonical behaviour according to 

Richardson-Kolmogorov phenomenology. In LES spectra the production at large scales and 

decay are well-defined, with a rather narrow inertial sub-range well-aligned with -5/3, at least 

for the horizontal velocity components. Neither URANS nor PANS are capable of doing 

something similar, however PANS’ results reveal a significantly larger spectral energy linked 

to its resolved scales, both URANS and PANS are aligned with the -5/3 slope and the numerical 

noise makes an appearance at higher frequencies for URANS than for PANS. The presence of 

resolved scales of turbulence motion in PANS simulations, while overall small, is locally 

relevant, and appears to be strongly correlated with the generation and modulation of the OBC. 
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7.4. Future Research 

· PANS proved to be a very interesting modelling approach but lacks systematisation. It is 

necessary to create a framework where the discretisation and the turbulence closure are 

dynamically connected. A dynamic PANS model with a variable fk as a function of local flow 

conditions and numerical parameters could be a fantastic tool to bridge the gap between RANS 

and LES. 

· New families of turbulence closures based on further understanding of the inter-scale energy 

transfer quantified on DNS datasets need to be formulated. Extensive calibration of successful 

base formulations such as k-ε have probably reached the boundaries of their applicability. 

· Further investigation on optimal combinations of PANS (or other hybrid RANS-LES or DES 

models) with wall functions, higher-order schemes and synthetic turbulence inflows needs to be 

performed. 

· It is important to pursue research on high-order discretisation schemes for unstructured 

grids. 

· The prevalence of a two-core PDC in the 270° ben could be a consequence of its shallowness. 

More research is needed on the effect of shallowness on the secondary motion. 

· PDC-OBC interaction could create preferential pathways for sediment transport in meanders 

of importance for geomorphologists. 

· Despite the general validity of the rigid lid approach, thorough analysis of the influence of free 

surface deformation on curved open-channel flow dynamics is needed. 

· It is imperative to study the prevalence of the aforementioned coherent structures in 

supercritical flows. All the previous studies have focused in subcritical flows with varying 

Froude numbers. 
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Anexo 1: Resumo extendido en Galego 

O comportamento do fluxo en canles abertas con curvatura é complexo e responde a unha 

conxunción de factores. Ser quen de comprender os mecanismos implicados nestes fenómenos, a 

súa natureza e, consecuentemente, poder replicalos e predicilos é un obxectivo fundamental para 

a enxeñería fluvial. Sen embargo, a modelización do fluxo en canles abertas en curva ou con 

meandros non é trivial debido á confluencia de mecanismos mencionada anteriormente. É habitual 

buscar un compromiso entre modelos sinxelos para o usuario e rápidos ou modelos de alta 

precisión. Este traballo explora a posibilidade de tender pontes entre ambas alternativas extremas, 

sempre dentro do contexto da modelización en tres dimensións. 

O movemento da auga en canles abertas curvos xera un importante fluxo secundario, isto é, 

movemento no plano perpendicular ao eixo do cauce ou da canle. Este fluxo secundario 

caracterízase por un movemento helicoidal que contrarresta a inercia do fluxo primario (o que se 

produce na dimensión principal da canle) redistribuíndo fluído que posúe un momentum 

(cantidade de movemento) elevado entre as beiras exterior e interior da canle. Esta recirculación 

obedece a un desequilibrio producido pola forza centrípeta, que da lugar a un gradiente de 

presións transversal. A maiores, existe outro desequilibrio na distribución de tensións de corte no 

eixo vertical provocado pola existencia dunha capa límite xerada polo fondo da canle que non ten 

correspondencia de magnitude comparable coa capa límite inducida pola superficie libre. En 

consecuencia, a inercia do fluído é proxectada cara a beira externa da curva, incrementando as 

tensións tanxenciais dese lado, para logo recircular cara a beira interna a través do fondo, movida 

polo fluxo secundario. O fluxo perde momentum a resultas da fricción do fondo, e continúa o seu 

camiño cara a superficie a través da beira interna da canle. Esta corrente de recirculación está 

promovida polo gradiente de presión entre o lado externo e interno da curva, polo cal é 

denominada ́ pressure-driven cell´ (PDC). Esta é unha corrente secundaria de Prandtl de ‘primeira 

clase’, e constitúe a estrutura dominante do fluxo secundario dunha canle en curva, por extensión 

e intensidade.  

Porén o gradiente de presión xerado pola forza centrípeta non é o único mecanismo xerador do 

fluxo secundario. As correntes de Prandtl de ‘segunda clase’ son aquelas orixinadas pola 

turbulencia anisótropa e inhomoxénea (Nezu & Nakagawa, 1993). Ámbalas dúas propuedades 

son favorecidas cando un fluído turbulento está confinado nun dominio no cal os graos de 

liberdade son diferentes en según que eixos de movemento. As canles abertas caracterízanse pola 

presenza dunha dimensión lonxitudinal varios ordes de magnitude superior ao ancho e a 

profundidade dos mesmos. Asemade, tal e como se explicou no parágrafo anterior, existe un 

desequilibrio na distribución do momentum entre o lado interno e externo da curva e outro no 

eixo vertical entre a capa límite do fondo e o sutil efecto da superficie libre. O resultado global é 

a aparición de estruturas coherentes caracterizadas pola súa vorticidade que reteñen a súa forma 

ao longo do tempo. Estas estrutuas, a diferenza das correntes de primeira clase, poden atoparse 

en canais rectilíneos pois non están xeradas pola forza centrípeta. Sen embargo, en canles curvas, 

estes remuíños interaccionan non linearmente coa PDC xerando patróns complexos. A forza 

relativa destas correntes turbulentas é inferior ás da primeira clase, pero a súa presenza é chave 

para entender a distribución de velocidades e tensións no leito e marxes da canle. En treitos 

curvos, estas correntes de segunda clase maniféstanse en forma dun vórtice adicional que xira en 

sentido oposto ao PDC e se atopa confinado entre a superficie libre e a marxe externa da canle. 

Por esa razón se adoita aludir ao mesmo como ‘outer-bank cell’ (OBC), e foi reportada por 

primeira vez por Bathurst & Thorne (1979). 
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Esta tese explora novos modelos tridimensionais para canles abertas curvas e meandriformes. 

Estes modelos, baseados en dinámica de fluídos computacional (CFD), deben ser quen de capturar 

a complexidade destes escenarios, o cal require dunha aproximación non hidrostática, e ao mesmo 

tempo ser asequibles en canto a capacidade e tempos computacionais. Con respecto a este último 

punto, búscanse modelos que poidan executarse en ordenadores persoais, sen necesidade de 

acudir a supercomputadores e tempos de espera que superan en ocasións días ou semáns. Por 

outro lado, o investimento que require un modelo tridimensional debe estar xustificado por unha 

mellora cualitativa nos resultados con respecto ao que modelos bidimensionais ou hidrostáticos 

poden ofrecer. Nese senso, esta investigación céntrase na predicción do fluxo secundario, as 

tensións tanxenciais no leito e as marxes e a evolución da enerxía cinética turbulenta.  

A análise do fluxo en canles abertas curvas nútrese dos resultados diferentes modelos. A 

diferencia fundamental entre eles atópase no tratamento da turbulencia. Todos os casos analizados 

neste traballo son plenamente turbulentos, con alto número de Reynolds. Como consecuencia, os 

perfís de velocidade son os propios dun fluxo turbulento, as tensións tanxenciais teñen unha 

natureza abrumadoramente turbulenta e, consecuentemente co exposto máis arriba, as estruturas 

coherentes do fluxo e as correntes secundarias están moi fortemente influídas pola turbulencia. 

Polo tanto, unha correcta representación da turbulencia é clave para describir con precisión os 

fenómenos físicos detrás dos comportamentos observables na natureza e o laboratorio. Sen 

embargo, resolver numéricamente todas as escalas espacio-temporais das ecuacións de Navier-

Stokes, cubrindo todo o espectro de escalas turbulentas dende a producción ao sub-rango inercial 

e as escalas disipativas, é tremendamente custoso computacionalmente, cando non inasumíbel. 

Isto obriga a utilizar modelos de peche de turbulencia para afrontar a predicción de fluxos 

medioambientais cun número de Reynolds alto a un custo computacional razoable. De forma 

xenérica, os modelos de mecánica de fluídos computacional poden segregarse en función da 

proporción do espectro turbulento que é resolta fronte á que é modelada. Neste contexto, 

emprégase a palabra ‘resolver’ para indicar a caracterización das escalas de movemento obtidas 

mediante a resolución das ecuacións de Navier-Stokes, isto é, partindo de principios 

fundamentais. Porén, ‘modelar’ consiste en aplicar hipóteses e simplificacións destes principios 

fundamentais e relacións constitutivas para aproximar unha solución. Os modelos de turbulencia 

adoitan representar o efecto da mesma no fluxo como un fenómeno meramente disipativo que 

altera o fluxo medio, normalmente ligado aos gradientes de velocidade e os tensores de 

deformación e vorticidade. No presente traballo, hai resultados xerados con tres familias de 

modelos: Unsteady Reynolds-Averaged Navier-Stokes (URANS), que está deseñado para 

modelar toda a turbulencia; Partially-Averaged Navier-Stokes (PANS), que usa coeficientes de 

amortiguamento para reducir o peso da disipación turbulenta e permitir a resolución dunha 

mínima parte das escalas de movemento; Large-Eddy Simulation (LES), na cal aquelas escalas 

que conteñen unha cantidade significativa de enerxía cinética son resoltas. Dentro da alternativa 

URANS, diferentes modelos de peche de turbulencia foron testados, e para PANS probáronse ata 

cinco valores diferentes do coeficiente de amortiguamento da enerxía cinética. 

Os resultados proporcionados por estes modelos son analizados, comparados e validados con 

datos experimentais. A análise inclúe a influencia de diversos parámetros (ademáis do tratamento 

da turbulencia) sobre o rendemento do modelo e a calidade das prediccións. Esta análise está 

especialmente centrada na análise do flux secundario, os mecanismos de xeración e modulación 

das estruturas coherentes e a súa influencía sobre os mapas de velocidade primaria e secundaria 

e as tensións de corte. Tres casos foron obxecto de análise: unha canle curva de 270º cunha lixeira 

pendente, unha canle meandriforme con dúas curvas consecutivas de 180º e un meandro 

periódico. 

Os resultados expostos e analizados nesta tese son froito de simulacións numérica, contrastadas 

con datos experimentais ou proporcionados por outros modelos. A principal ferramenta de 

traballo empregada nesta investigación foi o código Freeflow3D desenvolvido orixinalmente polo 
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Dr Luis Cea Gómez no Grupo de Enxeñaría da Auga e do Medio Ambiente da Universidade da 

Coruña. Freeflow3D é un código de Volumes Finitos escrito en FORTRAN que foi orixinalmente 

desenvolvida para resolver as ecuacións Reynolds-Averaged Navier-Stokes (RANS), incluíndo a 

variable temporal, en dominios tridimensionais para fluídos incompresibles e non hidrostáticos 

en lámina libre. Este modelo fora previamente aplicado con éxito a casos de propagación de ondas 

miúdas (Cea et al., 2009). Neste traballo empregouse para a modelización de canais abertos. Para 

isto implementáronse novas potencialidades no código, especialmente no referente á 

modelización da turbulencia, sendo as máis relevantes os modelos turbulentos non lineais e 

PANS.  

A sección 6.5 da presente tese analiza o caso dun meandro periódico e nela se comparan os 

resultados de URANS e PANS obtidos con Freeflow3D cos de LES proporcionados polo código 

Hydro3D (Bominayuni & Stoesser, 2011), desenvolvido polo Dr Thorsten Stoesser no 

GeorgiaTech (USA) e na Universidade de Cardiff (UK). Esta ferramenta tamén foi programada 

en FORTRAN sobre unha arquitectura de Volumes Finitos. A diferencia de Freeflow3D, este 

código resolve as variables sobre unha malla alterna, na cal hai ubicacións separadas para os 

nodos de presión e de cada unha das compoñentes da velocidade. 

Os resultados obtidos proporcionan relevantes conclusións tanto dende o punto de vista do 

modelado como do comportamento de canles abertas en xeometría curva. Este traballo constitúe 

a primeira aplicación de PANS á hidráulica de canles abertos. A pesar da diferente natureza dos 

tres casos investigados, PANS con fk=0.6 e fε=1 é o modelo que proporciona os mellores 

resultados entre todas as alternativas empregadas con Freeflow3D (isto é, agás LES). A validación 

da velocidade primaria, que segue o eixo lonxitudinal da canle, non é significativamente mellor 

para PANS que para URANS, porén PANS fk=0.6 acadou notables resultados tanto na canle de 

270º como nos canais meandriformes. Esta mellora comparativa con respecto a URANS non é só 

cuantitativa, os resultados presentados neste traballo constitúen a primeira ocasión en que se 

reporta a presencia da recirculación da marxe exterior (OBC) nunha simulación dunha única curva 

(a canle de 270º) cun modelo de menor resolución que LES. URANS non foi quen de reproducir 

a OBC para unha soia curva, e mostrou importantes limitacións de cara a predicir a súa creación, 

magnitude e persistencia no meandro de dúas curvas. Nos canais meandriformes, PANS acadou 

resultados que describen con precisión as estruturas coherentes descritas por LES, incluído a súa 

evolución loxitudinal e a interacción das mesmas entre curvas sucesivas. 

Os resultados obtidos nas simulacións con PANS reflexan unha redistribución do momentum 

na sección transversal a cargo do fluxo secundario máis eficiente que a predita por URANS. O 

meandro periódico permitiu unha comparación directa entre os resultados de PANS e LES. 

Ambos modelos coinciden na cuantificación das velocidades secundarias, a enerxía cinética 

turbulenta e as tensións de corte turbulentas. Os resultados obtidos con PANS son 

cualitativamente máis próximos a LES que a URANS, e sen embargo comparte a economía 

computacional do segundo. PANS empregou menos dun 20% do número total de nodos 

computacionais da simulación con LES, a pesar do cal resolveu aproximadamente un 60% da 

enerxía cinética turbulenta. Isto fai que a combinación de PANS coa lei da parede para resolver 

as capas límite coas fronteiras sólidas sexa moi atractiva para o modelado de fluxos turbulentos 

destas características. Entre as diferentes configuracións de PANS que foron executadas 

apreciouse que os resultados son sensibles á elección de fk. O factor de amortiguamento exerce 

unha influencia non lineal na fracción de escalas turbulentas resoltas, sempre dentro dos límites 

permitidos pola discretización, é dicir, escalaes de baixas frecuencias e altamente enerxéticas. 

Nembargantes os resultados amosaron que, para a resolución espacial considerada, PANS non 

permite resolver o sub-rango inercial do espectro turbulento. 

Dentro da familia de modelos URANS, a configuración máis explorada no presente traballo foi 

URANS acoplado co modelo de turbulencia k-ε. Esta dupla ofrece resultados consistentes para 

todos os escenarios considerados, con prediccións particularmente fieis aos resultados 
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experimentais para o fluxo primario, mesmo superior a PANS en algúns casos. A coñecida 

natureza disipativa do modelo k-ε, que lle proporciona robustez, penaliza sen embargo as 

estimacións do fluxo secundario, a enerxía cinética turbulenta e as tensións tanxenciais. En xeral, 

tende a sobreestimar a PDC e as tensións de corte. URANS non demostrou ter capacidade para 

describir a capa de corte xerada pola separación do fluxo na marxe interna da curva. Sen embargo, 

URANS si é quen de predicir a presenza do OBC naqueles casos nos que existe a ‘memoria’ 

dunha curva anterior, pero non nunha única curva. 

Ademais de k-ε, outros modelos de peche para URANS menos convencionais son tamén 

analizados neste traballo. Tres diferentes formulacións de segundo e terceiro orde, 

especificamente desenvoltas para fluxos en curva, foron implementadas e probadas en todos os 

escenarios. Estes modelos comparten con k-ε o concepto da viscosidade turbulenta, pero o xeito 

en que esta é calculada é máis complexo, empregando coeficientes non lineais que teoricamente 

reflicten características da natureza do fluxo como a anisotropía. Os modelos cúbicos, en especial 

Lien-Leschziner, funcionan mellor que o cuadrático e proporcionaron resultados razoables, pero 

non melloraron as prediccións de k-ε. Ademáis o grao de disipación proporcionado por estes 

modelos parece depender do caso a considerar. Globalmente, os resultados dos modelos de 

turbulencia non lineais son decepcionantes, e as súas complexas formulacións dificultan 

interpretacións directas dos fenómenos físicos que están a representar. En contraste con PANS, 

estas alternativas de modelado teñen un rango de aplicación máis restrinxido. 

As condicións de contorno de entrada da auga na canle teñen un impacto relevante no 

desenvolvemento subsecuente do fluxo. Nos escenarios con meandros sucesivos, esta cuestión é 

tratada implicitamente ao observar as diferencias entre o fluxo dunha volta e a seguinte, así como 

a interacción entre as mesmas.  No tocante ao caso de estudo consistente nunha única curva, un 

método para xerar turbulencia sintética isotrópica (Davidson, 2008) como condición de entrada 

implementouse na canle de 270º. Como efecto colateral, a entrada recta na canle de 6.13 m de 

lonxitude pode ser eliminada da simulación, e un perfil de velocidades baseado nunha simulación 

previa superimposto sobre as fluctuacións turbulentas sintéticas son prescritos ao comezo da 

curva. O efecto da turbulencia sintética depende en grande medida da elección do esquema 

convectivo. Os resultados obtido coa combinación de turbulencia sintética e o esquema Gamma 

non melloran aos da condiciñon de entrada uniforme; as fluctuacións turbulentas son disipadas 

rapidamente. Sen embargo, o esquema de diferencias centrais si xerou unha boa sinerxia coa 

turbulencia sintética. Os resultados con esta combinación presentan unha maior presenza de 

escalas de movemento resoltas no desenvolvemento inicial da curva. De feito, as simulacións con 

PANS empregando o esquema de diferencias centrais e a turbulencia sintética como condición de 

contorno na entrada proporcionan a mellor predicción do fluxo secundario para a canle de 270º, 

sen custo computacional adicional. 

No tocante á estrutura do fluxo, as simulacións describen con claridade como o fluxo primario 

que penetra na curva é proxectado cara a beira externa. PANS e LES simulan de xeito similar este 

proceso, chegando a predicir unha zona de separación de fluxo con presións negativas a carón da 

marxe interna da curva, pero isto non se reflexa nas simulacións con URANS. A redistribución 

de momentum na sección transversal do fluxo é levada a cabo pola PDC, que é consecuencia de 

dous desequilibrios: o xerado pola forza centrípeta e aquel debido á diferencia no eixo vertical 

entre a capa límite do fondo e da superficie libre. A evolución dos fluxos primario e secundario 

están fortemente ligadas. Esta recirculación está promovida polo gradiente de presión dinámica, 

que evoluciona ao longo da curvatura. No meandro periódico, URANS e PANS sinalan un 

importante incremento do gradiente de presión entre o lado externo e interno durante a primeira 

metade da curva, mentres que LES predí un maior crecemento unha vez superados os 90º. 

O remuíño da marxe exterior, a OBC, é un producto das fluctuacións turbulentas confinadas 

no recuncho da sección transversal onde a PDC é menos dominante. A orixe desta estrutura é 

dual. Por un lado está a turbulencia, que é unha condición necesaria e suficiente para a ocurrencia 
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da OBC. A maiores, en canais meandriformes, a vorticidade residual de meandros previos 

contribúe á súa formación. É por iso que a OBC só se atopa nas simulacións feitas con URANS 

cando hai unha sucesión de curvas. A memoria do fluxo sen embargo non é necesario para 

describir esta estrutura empregando PANS. É importante destacar que, mesmo se o OBC fai 

aparición, só as simulacións con certo grao de resolución das escalas turbulentas máis grandes 

son quen de describir con precisión a súa xeración, evolución e esvaecemento. Isto ten alta 

relavancia práctica dao que a OBC exerce de amortiguador para a erosión na marxe exterior dunha 

canle e pode afectar ao transporte de sedimentos. As simulacións analizadas tamén mostran 

claramente que a velocidade máxima nas seccións transversais se atopa consistentemente por 

baixo da lámina libre e na interfaz entre a PDC e a OBC. 

Un achádego importante deste traballo é a confirmación e visualización da interacción entre as 

estruturas de meandros consecutivos. En concreto, comprobouse que a vorticidade residual da 

PDC dun meandro persiste e pode ser ‘reciclada’ como a OBC do meandro seguinte. Sen 

embargo, ao contrario do que afirman algúns traballos anteriores, os resultados non amosan 

ningunha evidencia de que o contrario tamén sexa certo. De feito, suxiren que a PDC é creada 

novamente en cada sucesiva curva, sen depender en grande medida da memoria do fluxo. 

Os resultados relativos ás tensións tanxenciais sobre as beiras e o fondo confirman a 

sobreestimación dos modelos URANS fronte a PANS e LES na canle peródica. Os resultados 

tamén empregan análise de cuadrantes para caracterizar a anisotropía da turbulencia en nos 

centros dos vórtices de recirculación secundaria (PDC e OBC). As fluctuacións preditas por 

PANS son en torno a 4 ou 5 veces menores en magnitude que as obtidas con LES, pero reproducen 

fielmente as tendencias representadas por este. Esas tendencias revelan unha turbulencia 

fortemente anisotrópica na maioría dos puntos analizados. A magnitude das fluctuacións obtidas 

con URANS son 100 veces inferiores as de LES. 

A análise do espectro de turbulencia do campo de velocidades mostra que nin PANS nin 

URANS son quen de reproducir con claridade un espectro canónico comparable ao de LES. 

Porén, PANS presenta unha enerxía espectral superior en todo momento á de URANS, indicando 

unha maior amplitude das súas fluctuacións, que están aliñadas coa recta de -5/3. A presencia de 

escalas resoltas de turbulencia en PANS é, aínda que miúda en relación a LES, decisiva de cara á 

predicción da evolución das estruturas coherentes do fluxo. 
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Anexo 2: Resumen extendido en castellano 

El comportamiento del flujo en canales abiertos curvos es complejo y responde a una conjunción 

de factores. Ser capaz de comprender los mecanismos implicados en estos fenómenos, su 

naturaleza y, en consecuencia, poder replicarlos y predecirlos es un objetivo fundamental para la 

ingeniería fluvial. Sin embargo, el modelado de flujo en canales abiertos curvos o meandriformes 

no es trivial debido a la confluencia de los mecanismos mencionados anteriormente. Es común 

buscar un compromiso entre modelos simples para el usuario y rápidos o modelos de alta 

precisión. Este trabajo explora la posibilidad de tender puentes entre ambas alternativas extremas, 

siempre en el contexto del modelado tridimensional. 

El movimiento del agua en canales abiertos curvos genera un flujo secundario significativo, es 

decir, movimiento en el plano perpendicular al eje del canal o canal. Este flujo secundario se 

caracteriza por un movimiento helicoidal que contrarresta la inercia del flujo primario (que ocurre 

en la dimensión principal del canal) al redistribuir el fluido que tiene un elevado momentum 

(cantidad de movimiento) entre los márgenes exterior e interior del canal. Esta recirculación se 

debe a un desequilibrio producido por la fuerza centrípeta, que da como resultado un gradiente de 

presión transversal. Adicionalmente, existe otro desequilibrio en la distribución de esfuerzos 

cortantes en el eje vertical causado porque la capa límite generada por el fondo del canal no es 

comparable en magnitud a la inducida por la superficie libre. En consecuencia, la inercia del fluido 

se proyecta hacia el borde exterior de la curva, aumentando las tensiones tangenciales en ese lado, 

para luego recircular hacia el borde interior por el fondo, movido por el flujo secundario. El flujo 

pierde impulso como resultado de la fricción del fondo y continúa su camino hacia la superficie 

a través del borde interior del canal. Esta corriente de recirculación es promovida por el gradiente 

de presión entre el lado exterior e interior de la curva, por lo que se le llama ‘pressure’driven cell’ 

(PDC). Se trata de una corriente secundaria Prandtl de "primera clase" y constituye la estructura 

dominante del flujo secundario de un canal curvo, en extensión e intensidad. 

Sin embargo, el gradiente de presión generado por la fuerza centrípeta no es el único 

mecanismo que genera el flujo secundario. Las corrientes Prandtl de "segunda clase" son aquellas 

originadas por turbulencias anisotrópicas y no homogéneas (Nezu & Nakagawa, 1993). Ambas 

propiedades se ven favorecidas cuando un fluido turbulento está confinado en un dominio en el 

que los grados de libertad son diferentes según los ejes de movimiento. Los canales abiertos se 

caracterizan por la presencia de una dimensión longitudinal varios órdenes de magnitud mayor 

que su ancho y profundidad. Asimismo, como se explicó en el párrafo anterior, existe un 

desequilibrio en la distribución de la cantidad de movimiento entre el lado interior y exterior de 

la curva y otro en el eje vertical entre la capa límite del fondo y el efecto sutil de la superficie 

libre. El resultado general es la aparición de estructuras coherentes caracterizadas por su 

vorticidad que conservan su forma a lo largo del tiempo. Estas estructuras, a diferencia de las 

corrientes de primera clase, se pueden encontrar en canales rectilíneos porque no son generadas 

por la fuerza centrípeta. Sin embargo, en los canales curvos, estos remolinos interactúan de forma 

no lineal con el PDC generando patrones complejos. La fuerza relativa de estas corrientes 

turbulentas es menor que las de la primera clase, pero su presencia es clave para comprender la 

distribución de velocidades y tensiones en los márgenes del lecho y del canal. En tramos curvos, 

estas corrientes de segunda clase se manifiestan en forma de un vórtice adicional que gira en la 

dirección opuesta al PDC y está confinado entre la superficie libre y el margen exterior del canal. 

Por esta razón, a menudo se la denomina ‘outer-bank cell’ (OBC); Bathurst & Thorne (1979) la 

describieron por primera vez. 



166 

 

Esta tesis explora nuevos modelos tridimensionales para canales abiertos curvos y 

serpenteantes. Estos modelos, basados en la dinámica de fluidos computacional (CFD), deben 

poder capturar la complejidad de estos escenarios, lo que requiere un enfoque no hidrostático, y 

al mismo tiempo ser asequibles en términos de capacidad computacional y tiempo. Respecto a 

este último punto, buscamos modelos que se puedan ejecutar en ordenadores personales, sin tener 

que recurrir a superordenadores y tiempos de espera que en ocasiones superan los días o las 

semanas. Por otro lado, la inversión requerida para un modelo tridimensional debe estar 

justificada por una mejora cualitativa de los resultados con respecto a lo que pueden ofrecer los 

modelos bidimensionales o hidrostáticos. En ese sentido, esta investigación se centra en la 

predicción de flujo secundario, tensiones tangenciales en el lecho y márgenes, y la evolución de 

la energía cinética turbulenta. 

El análisis de flujo en canales abiertos curvos se nutre de los resultados de diferentes modelos. 

La diferencia fundamental entre ellos radica en el tratamiento de la turbulencia. Todos los casos 

analizados en este trabajo son totalmente turbulentos, con altos números de Reynolds. Como 

consecuencia, los perfiles de velocidad son los de un flujo turbulento, las tensiones tangenciales 

tienen una naturaleza abrumadoramente turbulenta y, en consecuencia, las estructuras coherentes 

y las corrientes secundarias están muy fuertemente influenciadas por la turbulencia. Por lo tanto, 

una representación correcta de la turbulencia es clave para describir con precisión los fenómenos 

físicos detrás de los comportamientos observables en la naturaleza y el laboratorio. Sin embargo, 

resolver numéricamente todas las escalas espacio-temporales de las ecuaciones de Navier-Stokes, 

cubriendo todo el espectro de escalas turbulentas desde la producción hasta el subrango inercial 

y las escalas disipativas, es tremendamente costoso computacionalmente, cuando no inviable. 

Esto obliga al uso de modelos de cierre por turbulencia para abordar la predicción de caudales 

ambientales con un alto número de Reynolds a un coste computacional razonable. En general, los 

modelos de mecánica de fluidos computacional se pueden segregar en función de la proporción 

del espectro turbulento que se resuelve frente al que se modela. En este contexto, la palabra 

"resolver" se utiliza para indicar la caracterización de las escalas de movimiento obtenidas al 

resolver las ecuaciones de Navier-Stokes, es decir, partiendo de principios fundamentales. Sin 

embargo, "modelar" implica aplicar hipótesis y simplificaciones de estos principios 

fundamentales y relaciones constitutivas para aproximar una solución. Los modelos de 

turbulencia a menudo representan el efecto de la turbulencia en el flujo como un fenómeno 

meramente disipativo que altera el flujo promedio, generalmente vinculado a gradientes de 

velocidad y tensores de tensión y vorticidad. En el presente trabajo, hay resultados generados con 

tres familias de modelos: Unsteady Reynolds-Averaged Navier-Stokes (URANS), que está 

diseñado para modelar toda las turbulencia; Partially-Averaged Navier-Stokes (PANS), que 

utiliza coeficientes de amortiguación para reducir el peso de la disipación turbulenta y permitir la 

resolución de una parte mínima de las escalas de movimiento; Large-Eddy Simulation (LES), en 

el que se resuelven aquellas escalas que contienen una cantidad significativa de energía cinética. 

Dentro de la alternativa URANS, se probaron diferentes modelos de cierre de turbulencia, y para 

PANS se probaron hasta cinco valores diferentes del coeficiente de amortiguamiento de energía 

cinética. 

Los resultados proporcionados por estos modelos se analizan, comparan y validan con datos 

experimentales. El análisis incluye la influencia de varios parámetros (además del tratamiento de 

turbulencia) sobre el rendimiento del modelo y la calidad de las predicciones. Este análisis se 

centra especialmente en el análisis del flujo secundario, los mecanismos de generación y 

modulación de estructuras coherentes y su influencia en los mapas de velocidad primarios y 

secundarios y los esfuerzos cortantes. Se analizaron tres casos: un canal curvo de 270º con ligera 

pendiente, un canal meandriforme con dos curvas consecutivas de 180º y un meandro periódico. 

Los resultados presentados y analizados en esta tesis son el resultado de simulaciones 

numéricas, contrastadas con datos experimentales o proporcionados por otros modelos. La 



167 

 

principal herramienta de trabajo utilizada en esta investigación fue el código Freeflow3D 

desarrollado por el Dr. Luis Cea Gómez en el Grupo de Ingeniería del Agua y Medio Ambiente 

de la Universidad de A Coruña. Freeflow3D es un código de Volúmenes Finitos escrito en 

FORTRAN que se desarrolló originalmente para resolver las Reynolds-Averaged Navier-Stokes 

(RANS), incluida la variable de tiempo, en dominios tridimensionales para fluidos de lámina libre 

no hidrostáticos e incompresibles. Este modelo se había aplicado previamente con éxito a casos 

de propagación de ondas de poca amplitud (Cea et al., 2009). En este trabajo se utilizó para 

modelar canales abiertos. Para ello, se han implementado nuevas potencialidades en el código, 

especialmente en lo que respecta al modelado de turbulencias, siendo los más relevantes los 

modelos turbulentos no lineales y PANS. 

La sección 6.5 de esta tesis analiza el caso de un meandro periódico y compara los resultados 

de URANS y PANS obtenidos con Freeflow3D con los de LES proporcionados por el código 

Hydro3D (Bominayuni & Stoesser, 2011), desarrollado por el Dr. Thorsten Stoesser en 

GeorgiaTech (USA) y en la Universidad de Cardiff (Reino Unido). Esta herramienta también se 

programó en FORTRAN en una arquitectura de Volúmenes Finitos. A diferencia de Freeflow3D, 

este código resuelve las variables en una malla alterna, en la que hay ubicaciones separadas para 

los nodos de presión y para cada uno de los componentes de velocidad. 

Los resultados obtenidos aportan conclusiones relevantes tanto desde el punto de vista del 

modelado como del comportamiento de canales abiertos en geometría curva. Este trabajo 

constituye la primera aplicación de PANS a la hidráulica de canal abierto. A pesar de la diferente 

naturaleza de los tres casos investigados, PANS con fk = 0.6 y fε = 1 es el modelo que proporciona 

los mejores resultados entre todas las alternativas utilizadas con Freeflow3D (es decir, excepto 

LES). La validación de la velocidad primaria, que sigue el eje longitudinal del canal, no es 

significativamente mejor para PANS que para URANS, sin embargo PANS fk = 0.6 logró 

resultados notables tanto en el canal de 270º como en los canales meandriformes. Esta mejora 

comparativa con respecto a URANS no es solo cuantitativa, los resultados presentados en este 

trabajo constituyen la primera vez que se reporta la presencia de la célula de recirculación del 

margen exterior (OBC) en una simulación de una sola curva (canal 270º) con un modelo con 

menor resolución que LES. URANS no pudo reproducir OBC para una sola curva y mostró 

limitaciones significativas para predecir su creación, magnitud y persistencia en el meandro de 

dos curvas. En canales meandriformes, PANS produjo resultados que describen con precisión las 

estructuras coherentes descritas por LES, incluida su evolución longitudinal y su interacción entre 

curvas sucesivas. 

Los resultados obtenidos en las simulaciones con PANS reflejan una redistribución del 

momentum en la sección transversal a cargo del flujo secundario más eficiente que la predicha 

por URANS. El meandro periódico permitió una comparación directa entre los resultados de 

PANS y LES. Ambos modelos coinciden en la cuantificación de velocidades secundarias, energía 

cinética turbulenta y esfuerzos cortantes turbulentos. Los resultados obtenidos con PANS son 

cualitativamente más cercanos a LES que a URANS y, sin embargo, comparte la economía 

computacional de este último. PANS empleó menos del 20% del número total de nodos 

computacionales utilizados por LES, a pesar de lo cual resolvió aproximadamente el 60% de la 

energía cinética turbulenta. Esto hace que la combinación de PANS con la ley del muro para 

resolver las capas límite con límites sólidos sea muy atractiva para modelar flujos turbulentos de 

estas características. Entre las diferentes configuraciones de PANS que se ejecutaron, se apreció 

que los resultados son sensibles a la elección de fk. El factor de amortiguación ejerce una 

influencia no lineal sobre la fracción de escalas turbulentas resueltas, siempre dentro de los límites 

permitidos por la discretización, es decir, escalas de baja frecuencia y alta energía. Sin embargo, 

los resultados mostraron que, para la resolución espacial considerada, PANS no permite resolver 

el subrango inercial del espectro turbulento. 
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Dentro de la familia de modelos URANS, la configuración más explorada en el presente trabajo 

fue URANS junto con el modelo de turbulencia k-ε. Este dúo proporciona resultados consistentes 

para todos los escenarios considerados, con predicciones particularmente fieles a los resultados 

experimentales para el flujo primario, incluso superiores a PANS en algunos casos. Sin embargo, 

la conocida naturaleza disipativa del modelo k-ε, que le proporciona robustez, penaliza las 

estimaciones de flujo secundario, la energía cinética turbulenta y las tensiones tangenciales. En 

general, tiende a sobreestimar el PDC y los esfuerzos cortantes. No se ha demostrado que URANS 

tenga la capacidad de describir la capa de cizallamiento generada por la separación del flujo en el 

margen interior de la curva. Sin embargo, URANS es capaz de predecir la presencia de OBC en 

aquellos casos en los que existe la "memoria" de una curva anterior, pero no en una sola curva. 

Además de k-ε, en este trabajo también se analizan otros modelos de cierre URANS menos 

convencionales. Se implementaron y probaron tres formulaciones diferentes de segundo y tercer 

orden, específicamente desarrolladas para flujos de curva, en todos los escenarios. Estos modelos 

comparten con k-ε el concepto de viscosidad turbulenta, pero la forma en que se calcula es más 

compleja, utilizando coeficientes no lineales que reflejan teóricamente características de la 

naturaleza del flujo como la anisotropía. Los modelos cúbicos, especialmente Lien-Leschziner, 

funcionan mejor que los cuadráticos y proporcionaron resultados razonables, pero no mejoraron 

las predicciones de k-ε. Además, el grado de disipación proporcionado por estos modelos parece 

depender del caso a considerar. En general, los resultados de los modelos de turbulencia no 

lineales son decepcionantes y sus formulaciones complejas dificultan las interpretaciones directas 

de los fenómenos físicos que representan. A diferencia de los PANS, estas alternativas de 

modelado tienen un rango de aplicación más restringido. 

Las condiciones de los contorno de entrada del agua en el canal tienen un impacto relevante en 

el desarrollo posterior del flujo. En escenarios con sucesivos meandros, este tema se aborda 

implícitamente observando las diferencias entre el flujo de un meandro y el siguiente, así como 

la interacción entre ellos. Respecto al caso de estudio consistente en una sola curva, se implementó 

un método para generar turbulencias sintéticas isotrópicas (Davidson, 2008) como condición de 

entrada en el canal 270º. Como efecto colateral, se puede eliminar de la simulación la entrada 

recta al canal de 6,13 m de longitud, y al inicio de la curva se prescribe un perfil de velocidad 

basado en una simulación previa superpuesta a las fluctuaciones turbulentas sintéticas. El efecto 

de la turbulencia sintética depende en gran medida de la elección del esquema convectivo. Los 

resultados obtenidos con la combinación de turbulencia sintética y el esquema Gamma no mejoran 

los de la condición de entrada uniforme; las fluctuaciones turbulentas se disipan rápidamente. Sin 

embargo, el esquema de diferencias centrales generó una buena sinergia con la turbulencia 

sintética. Los resultados con esta combinación presentan una mayor presencia de escalas de 

movimiento resueltas en el desarrollo inicial de la curva. De hecho, las simulaciones con PANS 

que utilizan el esquema de diferencias centrales y la turbulencia sintética como condición límite 

en la entrada proporcionan la mejor predicción de flujo secundario para el canal de 270º, sin coste 

computacional adicional. 

En cuanto a la estructura del flujo, las simulaciones describen claramente cómo el flujo 

primario que penetra en la curva se proyecta hacia el borde exterior. PANS y LES simulan de 

manera similar este proceso, llegando a predecir una zona de separación de flujo con presiones 

negativas junto al margen interno de la curva, pero esto no se refleja en las simulaciones con 

URANS. La redistribución de la cantidad de movimiento en la sección transversal del flujo la 

realiza el PDC, lo cual es consecuencia de dos desequilibrios: el generado por la fuerza centrípeta 

y el debido a la diferencia en el eje vertical entre la capa límite del fondo y la superficie libre. La 

evolución de los flujos primarios y secundarios está fuertemente vinculada. Esta recirculación es 

promovida por el gradiente de la presión dinámica, que evoluciona a lo largo de la curvatura. En 

el meandro periódico, URANS y PANS señalan un aumento significativo en el gradiente de 
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presión entre el lado exterior e interior durante la primera mitad de la curva, mientras que LES 

predijo un mayor crecimiento una vez que supere los 90º. 

El remolino del margen exterior, el OBC, es un producto de las fluctuaciones turbulentas 

confinadas a la esquina de la sección transversal donde el PDC es menos dominante. El origen de 

esta estructura es dual. Por un lado, está la turbulencia, que es una condición necesaria y suficiente 

para la ocurrencia de OBC. En los canales meandriformes, adicionalmente, la vorticidad residual 

de los meandros anteriores contribuye a su formación. Es por eso que OBC solo se encuentra en 

simulaciones realizadas con URANS cuando hay una sucesión de curvas. Sin embargo, la 

memoria de flujo no es necesaria para describir esta estructura utilizando PANS. Es importante 

tener en cuenta que incluso si aparece el OBC, solo las simulaciones con cierto grado de 

resolución de las escalas turbulentas más grandes pueden describir con precisión su generación, 

evolución y desvanecimiento. Esto tiene una gran relevancia práctica para el hecho de que OBC 

actúa como un amortiguador de la erosión en el margen exterior de un canal y puede afectar el 

transporte de sedimentos. Las simulaciones analizadas también muestran claramente que la 

velocidad máxima en las secciones transversales está consistentemente por debajo de la hoja libre 

y en la interfaz entre el PDC y el OBC. 

Un hallazgo importante de este trabajo es la confirmación y visualización de la interacción 

entre estructuras de meandro consecutivas. Específicamente, se ha encontrado que la vorticidad 

residual de PDC de un meandro persiste y puede "reciclarse" como el OBC del siguiente meandro. 

Sin embargo, contrariamente a lo que afirman algunos trabajos anteriores, los resultados no 

muestran evidencia de que lo contrario también sea cierto. De hecho, sugieren que el PDC se 

recrea en cada curva sucesiva, sin depender mucho de la memoria del flujo. 

Los resultados con respecto a las tensiones tangenciales en los bordes y el fondo confirman la 

sobreestimación de los modelos URANS versus PANS y LES en el canal periódico. Entre las 

evidencias presentadas, también se utiliza el análisis de cuadrantes para caracterizar la anisotropía 

de la turbulencia en los centros de los vórtices de recirculación secundarios (PDC y OBC). Las 

fluctuaciones pronosticadas por PANS son alrededor de 4 o 5 veces menores en magnitud que las 

obtenidas con LES, pero reproducen fielmente las tendencias representadas por éste. Estas 

tendencias revelan turbulencias fuertemente anisotrópicas en la mayoría de los puntos analizados. 

La magnitud de las fluctuaciones obtenidas con URANS son 100 veces menores que las de LES. 

El análisis del espectro de turbulencia del campo de velocidad muestra que ni PANS ni URANS 

pueden reproducir claramente un espectro canónico comparable al de LES. Sin embargo, PANS 

tiene una energía espectral más alta en todo momento que URANS, lo que indica una mayor 

amplitud de sus fluctuaciones, las cuales están alineadas con la línea recta de -5/3. La presencia 

de escalas de turbulencia resueltas en PANS es, aunque pequeña en relación con LES, decisiva 

para predecir la evolución de estructuras de flujo coherentes.  
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