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Abstract

Non-iterative co-simulation is an increasingly important technique for the simulation of

complex mechanical systems. Adopting co-simulation schemes enables the simultaneous use

of computational resources and makes it possible to select the most appropriate modelling

techniques and algorithms to describe and solve the dynamics of each system component.

However, it inherently requires the coupling of different subsystems at discrete communi-

cation times, which may compromise the stability of the overall integration process. One of

the negative effects of discrete-time communication is the introduction of artificial energy in

the system dynamics, which can render the simulation unstable if it accumulates over time.

Excess energy can be dissipated introducing virtual damping elements in the subsystem mod-

els. The actual amount of damping must be adjusted as the simulation progresses to ensure

that all the artificially generated energy is removed from the system while keeping the dy-

namics realistic. In this paper, we introduce a monitoring framework to keep track of this

excess energy, and put forward a dissipation methodology to eliminate it. The ability of this

framework to achieve stable non-iterative co-simulation was tested with several mechanical

system examples.
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1 Introduction

Forward-dynamics simulation is an important method to predict the behaviour of mechanical

systems for complex industrial applications. Due to advances in computational power and so-

lution algorithms, the range of problems that can be addressed this way has considerably ex-

panded during the last decades. On the other hand, the expectations about simulation output

have grown at a similar pace. Nowadays, dynamics simulation is expected to accurately pre-

dict the behaviour of sophisticated engineering systems in an efficient and stable way. In the

case of mechanical systems, currently used models often include challenging phenomena such

as contacts and friction, flexibility, and interactions with non-mechanical components such as

hydraulics and electronics. Although the size and required level of detail of the systems under

study continue to increase, efficient execution is required from the simulation software; in some

cases, such as Human- and Hardware-in-the-Loop (HiL) environments, real-time performance

must be achieved.

The coupling of several solver tools in a co-simulation setup is a way to deal with these

requirements [15, 1] that represents a modular alternative to monolithic solution methods

[24, 21]. This can be done following different approaches; a wide variety of co-simulation tech-

niques have been proposed during recent years and new methods keep on being developed to

deliver efficient and robust simulation procedures [12, 10]. Dividing the overall application into

subsystems enables the selection of different solution strategies for each, making it possible to

tailor the solver parameters to particular physical properties and time scale. Additionally, co-

simulation makes it easier to share the computational workload among several processors or

CPU cores when they are available [2]. Moreover, each subsystem needs to share only a lim-

ited amount of information, namely its inputs and outputs or coupling variables, with the rest

of the components, avoiding the need to disclose its internal implementation details. This is

an attractive feature when using software models protected by intellectual property rights. Co-

simulation, however, brings in the need to synchronize the execution of the different solvers,

and this can only take place through the exchange of the coupling variables at discrete commu-

nication instants. Between these communication points, in the time interval often referred to as

the macro time-step, the integration of each subsystem proceeds on its own, without any inputs

from the rest of the components with which it interacts.

The discrete-time nature of the communication between subsystems in co-simulation envi-
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ronments gives rise to a series of issues that do not exist when a single simulation tool is used to

solve the dynamics of the whole system. From the implementation point of view, it is necessary

to define communication standards according to which all the components can exchange infor-

mation in a unified format. This need has been addressed with the definition of the Functional

Mock-up Interface (FMI) [6]. Another problem derived from subsystem coupling is the intro-

duction of discontinuities in the numerical integration that may render the simulation unstable

if they are not handled appropriately. The origins of this instability can be explained in different

ways. In many cases the inputs and outputs exchanged between subsystems, i.e., the coupling

variables, are updated at the communication points and kept constant during the integration

of the subsystems within macro time-steps, following a zero order hold (ZOH) extrapolation

approach. This introduces a discontinuity in the subsystem inputs every time that they are up-

dated; the problem remains even when polynomial approximations are used to extrapolate the

inputs within the macro time-step [7]. In co-simulation environments in which physical, real-

time components, are coupled to numerical models, additional communication problems such

as time delays, data loss and noise may arise and further compromise stability [30]. Ways to

deal with these discontinuities and errors include the use of iterative co-simulation coupling

schemes [15] and using information about the Jacobian matrices that relate coupling variables

and subsystem states [26]. These options cannot always be used, however. It is not guaranteed

that the outputs of every subsystem will include the necessary Jacobian matrices. Also, some

co-simulation environments cannot use iterative coupling schemes and must rely on single-step

co-simulation, either because one or more subsystems do not allow retaking an integration time-

step, or because the available time to carry out the computations is limited. Another possibility

is monitoring the coupling error in the frequency domain, and adjusting the macro step-size

accordingly [3]; this method can be used in non-iterative co-simulation and uses information

obtained from the coupling signal itself.

Considering the energy exchanges in the simulated system is another possible way to assess

its stability properties and the accuracy of the numerical integration [11]. The interpretation

of the coupling errors due to input extrapolation as generated or dissipated energy led to the

definition of the NEPCE (Nearly Energy-Preserving Coupling Element) [4], that corrects the cou-

pling variables to ensure energy conservation at the interface. Also, when the coupling variables

carry information about the power exchanged between subsystems at the interface, it is possible

to adjust the macro step-size accordingly and improve simulation accuracy [23].

3
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Besides its use in co-simulation applications, monitoring energy generation and flow has also

been used in passivity control of haptic devices [13, 22]. Haptic devices are human-operated

mechanical systems that interact with a virtual environment through a physical-virtual interface

in which force and velocity quantities are exchanged. Haptics applications can be considered

as a special case of co-simulation with two coupled subsystems, one of which is the human-

operated haptic device and the other is a computational model of a virtual environment. The

communication between these subsystems takes place at discrete instants only, and this can

cause energy leaks, i.e., the artificial introduction or removal of energy in the system [13].

Several approaches have been proposed in the haptics research community to detect and

remove energy leaks. The concepts of passivity observer (PO) and passivity controller (PC) were

introduced in [13]. A passivity observer keeps track of the energy that flows in and out of the

subsystems, based on the inputs and outputs that they exchange. A passivity controller dissi-

pates the superfluous energy that can cause passivity violations by acting on the input variables

of the subsystems. Early passivity observers and controllers made use only of the information

conveyed by the coupling variables at the interface between subsystems. However, when infor-

mation about the internal energy of the controlled subsystems is available, more robust algo-

rithms can be designed. These strategies include the modification of the exchanged force values

at the interface [22] and the introduction of adaptive damping coefficients that are adjusted to

dissipate the energy leaks monitored by the PO [16, 17]. We propose in this paper to develop

similar energy-based methods for co-simulation setups.

Most software tools for the simulation of multibody dynamics are able to provide infor-

mation about internal system energy. In a computational environment for the co-simulation of

mechanical systems, this information can be used to keep track of energy leaks and introduce

actions to remove them and make the co-simulation stable. The approach can be particularly

convenient in such co-simulation setups in which the coupling variables carry information about

the exchanged energy, e.g., in force-displacement coupling cases. Ideally, in co-simulation en-

vironments, energy leaks must be monitored in all the coupled subsystems. In a haptic device

the physical component and the operator can often be assumed to be passive, and so there is

no need to monitor their energy. When coupling numerical models, however, this assumption

cannot be made, and so information is required about the energy behaviour of all subsystems.

In this paper, we introduce an energy-leak monitoring and correction framework intended to

keep stable the co-simulation of mechanical systems with force-displacement coupling, via the
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correction of energy losses or superfluous energy generation that would cause the co-simulation

to become inaccurate. This framework does not require the modification of the internal proper-

ties of the subsystems; the energy correction takes place at the co-simulation interface. It also

avoids the modification of the communication step-size, which may not be feasible in some

hard-real time simulation environments, such as those used in certain HiL applications. On the

other hand, the subsystems must provide information about their energy behaviour through

their output coupling variables, in particular about their internal energy and the work exerted

on them by non-conservative forces. The technique is illustrated using two examples composed

of mechanical subsystems.

2 Passivity-based control of virtual environments

Let M be a mechanical system whose inputs u and outputs y are the interface forces f i and

velocities vi, respectively. Superscript i in these variables stands for interface. This system can be

represented as a one-port network as shown in Fig. 1.

M

u = f i

y = vi

Figure 1: Representation of a mechanical system as a one-port network

A one-port network can be considered passive if [22, 16]

E0 +

∫ t

0
uTy dτ ≥ 0, ∀t ≥ 0 (1)

where E0 is the initial energy level of M. The integral term corresponds to the mechanical

work exchanged at the interface. A system that satisfies the continuous passivity condition (1),

however, may become active when coupled to a discrete-time input/output interface.

The loss of passivity due to discretization at the communication interface can be illustrated

with the simulation of a simple test example. Figure 2 represents an undamped physical mass

m attached to a virtual spring-virtual mass (VS-VM) component, a system that has been used

as sampled-data benchmark for haptics applications [16]. Its behaviour can be approximated

via the co-simulation of two mechanical sub-systems, one of which represents mass m and is
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ξ η
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m M
fu fV

VS-VM

ξi

f i

Figure 2: Simplified diagram of a haptic system

Table 1: Parameters of the haptic system simulation example

Mass of first block m 0.1 kg

Mass of second block M 0.1 kg

Spring stiffness k 100 N/m

Integration step-size of first subsystem hm 10−5 s

Integration step-size of second subsystem hM 4 · 10−3 s

Applied force on first block fu 0 N

Applied force on second block fV 0 N

Initial distance between blocks d0 = η0 − ξ0 0.1 m

Initial velocity of first block ξ̇0 0 m/s

Initial velocity of second block η̇0 0 m/s

integrated with a small step-size hm to represent its continuous nature, and another one that

includes mass M and the coupling stiffness k and is integrated with a larger step-size hM . The

interface between both subsystems is sampled with a macro step-size ∆t = hM . The exchanged

variables are the displacement of the first mass, ξi, and the coupling force at the interface, f i.

The system should remain passive when its parameters match those in Table 1, as the VS-VM

subsystem verifies the continuous passivity condition in Eq. (1). However, as it can be seen in

Fig. 3, the discrete sampling of the VS-VM artificially introduces energy into the system when

the coupling variables are assumed to remain constant during the sampling time-step ∆t, i.e.,

a zero order hold (ZOH) extrapolation scheme is used. This effect is observed even though the

integration step-sizes and the communication intervals are small enough so that the magnitudes

of interest can be considered constant within them. The accumulation of energy leaks eventually

leads to an unstable behaviour.
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Figure 3: Coupling force at the physical-virtual interface of the haptic system

Different kinds of passivity observers and controllers have been proposed in the literature

to address the above mentioned problem. Among these, those based on reference energies ob-

tained from model information [22, 16] have shown very good stability and accuracy properties.

These are based on the principle that the total energy input to systemM should be equal to its

accumulated internal energy E plus the energy D that has been dissipated during motion

∫ t

0
f iTvi dτ = E (t) +D (t) , ∀t ≥ 0 (2)

For discretely sampled interfaces, the integral term in Eq. (2) can be approximated at time

instant tk assuming that the coupling variables at the interface remain constant during the sam-

pling period as

∫ tk

0
f iTvi dτ ≈ ∆t

k∑
j=1

f iT (tj)v
i (tj) (3)

If information about the energy behaviour of the mechanical system is available, then it is possi-

ble to define a PO-PC scheme to remove the energy leaks [22]. Defining Wk = EPO,k − Sk −Dk

and approximating the interface velocity with finite differences,

EPO,k = E0 +
k∑

j=1

(
f ij−1 + fPC

j−1
) (

xi
j − xi

j−1
)

(4a)

fPC
k =


0, Wk ≥ 0

−Wk∥∥xi
k − xi

k−1
∥∥eiu, otherwise

(4b)
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where Eq. (4a) is the PO, and Eq. (4b) is the PC. Terms Sk and Dk denote the energy accumu-

lated and dissipated, respectively, in the mechanical system at time instant tk, eiu is a unit vector

in the direction of the interface velocity, and xi is the displacement at the coupling interface, so

vi = ẋi. The PC controller cancels the energy leaks by introducing the dissipative force fPC
k at

the interface, adding it to the interface force f i. The scheme in Eqs. (4) can be further improved

introducing one-step-ahead energy prediction terms [16].

3 Energy-leak monitoring and correction for co-simulation

The energy-leak monitoring and dissipation schemes discussed in Section 2 can be adapted for

their use in the co-simulation of mechanical systems when the coupling variables carry informa-

tion about the energy of each component.

M1 :
∫
M1

, h1

q1,v1

Co-simulation
Manager

H1 H2

M2 :
∫
M2

, h2

q2,v2

y1

y2u1

u2

Figure 4: Two mechanical subsystems,M1 andM2, coupled in a co-simulation setup

A simple co-simulation setup with two mechanical subsystems is shown in Fig. 4. Each sub-

system features its own states qb and vb, integrator
∫
Mb

, and step-size hb, where b = 1, 2. The

subsystems exchange their coupling variables through a co-simulation manager, that receives

their outputs yb and sends their inputs ub at discrete-time communication points. The manager

communicates with the subsystems with macro time-steps H1 and H2, which have different val-

ues in multi-rate co-simulation environments. Besides being responsible for coordinating the

numerical integration of the subsystems, the co-simulation manager may also perform differ-

ent adjustments on the subsystem inputs, e.g., extrapolating their values from the available

time-history in the previous time-steps. In this work, a non-iterative, parallelizable Jacobi co-

simulation scheme is used to couple the subsystems.

In such a co-simulation setup, several sources of errors can exist, which may affect the sys-

tem energy balance. In the first place, energy leaks can result from the discrete sampling at

the communication interface between the co-simulation manager and each subsystem. Input

extrapolation may alleviate these leaks sometimes; however, it can also worsen them in other

cases [4, 19]. Moreover, the accumulation of errors in the numerical integration process within
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each subsystem usually results in an inexact fulfillment of the energy balance. The energy leaks

thus generated within a given subsystem can then be transferred to other components in the

co-simulation setup through their common interface.

We assume from here on that M1 represents a mechanical system with slower dynamics

than its counterpartM2 and that the macro time-step H1 is an exact multiple of H2. It will also

be assumed that the coupling variables at the interface contain information about the energy ex-

changed by the subsystems, e.g., through force-displacement or force-velocity coupling schemes.

Moreover, these must also provide information about the internal energy E accumulated by each

subsystem, and the work exerted on it by non-conservative forces, Wnc, as described in the fol-

lowing subsections.

3.1 Energy leak monitoring

Ideally, each subsystem in Fig. 4 satisfies the energy balance at time t

∫ t

0
f iTvi dτ = E (t) +Wnc (t) , ∀t ≥ 0 (5)

where f i and vi are the forces and velocities at the co-simulation interface, and their scalar

product represents the energy that enters the subsystem through it. Note that Eq. (5) differs

from Eq. (2) in that term Wnc, that stands for the work exerted on the subsystem by non-

conservative forces from time t = 0, replaces the dissipated energy D. Thus, the energy balance

in Eq. (5) applies also to systems subjected to the action of external forces that may increase the

total energy.

Figure 5 shows the exchange of coupling variables and the subsystem integration steps dur-

ing macro time-step Tj , which goes from tj−1 to tj = tj−1 + H1. During Tj the energy balance

of subsystemM1 can be approximated as

E1,j − E1,j−1 +W nc
1,j −W nc

1,j−1 = H1

(
f i1,j−1

)
Tvi

1,j (6)

where E1,j , f i1,j , and vi
1,j stand for the energy, interface forces, and interface velocities of sub-

system M1 at time tj , respectively, W nc
1,j −W nc

1,j−1 is the work exerted by the non-conservative

forces on subsystemM1 during time-step Tj , and the right-hand side approximates the integral
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H1

H2

Manager

M1

M2

t1

t2

tj−1 tj

tltl−1

f i1,j−1

f i2,j−1

f i1,j

f i2,jf i2,l

vi
1,j−1

vi
2,j−1

vi
1,j

vi
2,jvi

2,l

Figure 5: Exchange of coupling variables and integration process during macro time-step Tj =
[tj−1, tj ]

term in Eq. (5) for time-step Tj . During the same time-step Tj , subsystem M2 takes b macro

time-steps of size H2, and so its energy balance can be approximated as

E2,j − E2,j−1 +W nc
2,j −W nc

2,j−1 = H2

b∑
l=1

(
f i2,l−1

)
Tvi

2,l (7)

where f i2,l−1 and vi
2,l denote the interface force and velocity evaluated at times tl−1 and tl,

respectively. If a ZOH approach is used to evaluate force f i2,l−1, then its value equals f i2,j−1,

received by subsystem M2 at the start of macro step Tj . The energy leaks for the subsystems

during macro time-step Tj can be written as

L1,j = ∆E1,j + ∆W nc
1,j −H1

(
f i1,j−1

)
Tvi

1,j (8)

L2,j = ∆E2,j + ∆W nc
2,j −H2

b∑
l=1

(
f i2,l−1

)
Tvi

2,l (9)

or in terms of the displacements at the interface, ∆xi
1 and ∆xi

2,

L1,j = ∆E1,j + ∆W nc
1,j −

(
f i1,j−1

)
T∆xi

1,j (10)

L2,j = ∆E2,j + ∆W nc
2,j −

b∑
l=1

(
f i2,l−1

)
T∆xi

2,l (11)

where ∆xi
1,j = xi

1,j − xi
1,j−1 and ∆xi

2,l = xi
2,l − xi

2,l−1. The evaluation of the energy leaks of the
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slow subsystem in Eqs. (8) or (10) takes place after macro time-step Tj has been completed, so

the required coupling variables vi
1,j or ∆xi

1,j are available.

3.2 Energy leak correction

The accumulation of energy errors at the interface is often detrimental for the accuracy of the

co-simulation process, and can eventually render it unstable. The energy leaks evaluated with

Eqs. (8) and (9) or Eqs. (10) and (11) can be corrected acting on the force exchanged at the

co-simulation interface. The total accumulated energy error of the co-simulated system at macro

time-step j is defined as

Lj =

j∑
k=1

L1,k + L2,k (12)

If Lj is positive, superfluous energy has been generated in the co-simulation process and it must

be dissipated. Otherwise, energy has been lost and must be restored to the system.

A corrective term in the coupling force, f cj , is introduced at the interface once that the energy

leaks corresponding to the previous macro step have been evaluated. In other words, the total

accumulated leak Lj must be available prior to the evaluation of the corrective force f cj . In

practice, this means that the energy correction takes place with a delay of a macro step H1.

Assuming that inputs u2 contain the force transmitted at the interface, it is possible to define

the corrective force f cj with the objective to remove all the accumulated energy leak during the

next co-simulation macro step, j + 1, as

f cj = −γjv2,j (13)

where γj is the scalar coefficient

γj =
Lj∥∥∥(∆xi

2,j

)
Tv2,j

∥∥∥ (14)

If f i∗2,j is the force transmitted by the interface to subsystemM2 in the absence of energy correc-

tions, the introduction of the corrective term makes f i2,j = f i∗2,j + f cj . Equation (13) shows that γj

plays the role of a damping coefficient when the accumulated energy leak Lj is positive. Equa-
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tions (13) and (14) are conceptually similar to Eq. (4b), although they correct both positive and

negative energy deviations.

It must be mentioned that, according to Eqs. (13) and (14), very large values of the corrective

force f cj would be needed to remove the accumulated leaks when the velocity v2,j approaches

zero. Such large force values would introduce impulses in the co-simulation process, resulting

in unreal oscillatory behaviour and compromising stability. For this reason, the magnitude of

the maximum corrective force was capped to remain below a fraction of
∥∥∥f i∗2,j∥∥∥. This makes the

correction scheme unable to completely remove the energy leaks when v2,j is close to zero, but

it is beneficial for the overall stability of the co-simulation process.

3.3 Energy monitoring and correction algorithm

Algorithm 1 describes the energy monitoring and correction method introduced in Sections 3.1

and 3.2. The pseudocode is written for a co-simulation setup with two subsystems with matching

time grids; tend denotes the final time of each communication time step and tfinal is the final

simulation time.

4 Examples

The energy monitoring and correction method introduced in Section 3 was tested in the multi-

rate co-simulation of two examples composed of mechanical subsystems.

4.1 Linear oscillator

The first test problem is a linear oscillator system composed by two masses m1 and m2. The

overall system has two degrees of freedom. The masses are connected to each other and to

the ground by means of linear springs and dampers. Similar systems have been employed as

benchmark problems in the co-simulation literature, e.g., [11, 26, 25, 7].

The system properties were set to m1 = m2 = 1 kg, k1 = 10 N/m, k2 = 1000 N/m, and
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Algorithm 1 Energy monitoring and correction for non-iterative co-simulation

1: function INITIALIZE

2: Establish initial configuration in subsystems
3: Exchange coupling variables at t = 0
4: Verify compatibility of initial conditions
5: t = 0, t1 = 0, t2 = 0, tend = H1

6: Set initial energy leaks to zero
7: end
8: function SIMULATION LOOP

9: while tend < tfinal
10: Parallel execution (b1 and b2):
11: b1 while t1 < tend
12: Send outputs and receive inputs
13: Integrate subsystem 1
14: t1 = t1 +H1

15: Accumulate leaks, Eq. (8) or (10)
16: end
17: b2 while t2 < tend
18: Send outputs and receive inputs
19: Integrate subsystem 2
20: t2 = t2 +H2

21: Accumulate leaks, Eq. (9) or (11)
22: end
23: Evaluate total leak, Eq. (12)
24: Evaluate correction force to be applied during next step, Eqs. (13), (14)
25: tend = tend +H1

26: end
27: end

kc = 100 N/m. For the damping, three cases were considered; case 1 (c1 = c2 = cc = 0 Ns/m),

case 2 (c1 = c2 = cc = 0.1 Ns/m), and case 3 (c1 = c2 = cc = 1 Ns/m). The initial system

displacements from the equilibrium configuration were set to x1,0 = x2,0 = 0 m; the spring

forces are zero, accordingly. The initial system velocities were ẋ1,0 = 100 m/s, x2,0 = −100 m/s.

The oscillator can be decomposed into two subsystems using a force-displacement co-simulation

approach as shown in Fig. 7. Because stiffness k2 is higher than k1, subsystemM2 will have faster

dynamics thanM1. The coupling variables are the force exerted by the coupling spring-damper

system, f c, and the displacement of the second mass, ξc. A 10-s simulation of the motion was

carried out using a multi-rate co-simulation interface, in which linear extrapolation was used

to evaluate the force f c2 transmitted to subsystemM2 when H1 6= H2; for this reason, f c1 6= f c2

in general. Both subsystems were integrated using the semi-implicit, single-step Euler formula,

with an integration step-size equal to its corresponding macro step-size. The results were com-

pared to those obtained with the analytical solution of the dynamic model, which was used as
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m1 m2

x1 x2

kc

cc

k1

c1

k2

c2

Figure 6: A two-degree-of-freedom linear oscillator

m1 m2

x1 x2

kc

cc

k1

c1

k2

c2

f c1 f c2

ξc1 ξc2

H1 H2

SubsystemM1 SubsystemM2Manager

Figure 7: The linear oscillator arranged following a force-displacement coupling scheme

reference, and to a monolithic implementation of the dynamics, in which x1 and x2 were in-

tegrated together. The maximum correction in the coupling force was limited to remain below∥∥∥f i∗2,j∥∥∥ /4.

4.1.1 Results

The obtained results confirmed that the use of a discrete-time co-simulation interface gives rise

to energy inconsistencies, even when both subsystems are sampled at the same rate, H1 = H2.

Figure 8 shows the total mechanical energy of the linear oscillator when the system motion

is co-simulated using the same macro step-size for both subsystems. The system is a conservative

one but, if no corrective action is taken, the co-simulation approach results in the total energy

increasing over time; on the other hand, the method described in Section 3.2 was able to correct

the energy deviation to keep the total energy constant. The increase of the mechanical energy

over time was not observed when the dynamics of the linear oscillator was solved using the

monolithic implementation with the same integration formula.

As shown in Fig. 9, energy errors result into the co-simulated system motion departing from

the reference solution. SubsystemM2 has faster dynamics thanM1, which makes it more sen-
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Figure 8: Mechanical energy in the absence of damping (case 1) in the co-simulation of the
linear oscillator

9 9.2 9.4 9.6 9.8 10
−10

−5

0

5

10

t [s]

P
os
it
io
n
x
2
,
[m

]

Corrected Uncorrected

Reference

(a) H1 = H2 = 10−4 s

9 9.2 9.4 9.6 9.8 10
−10

−5

0

5

10

t [s]

P
os
it
io
n
x
2
,
[m

]

Corrected Uncorrected

Reference

(b) H1 = H2 = 10−3 s

Figure 9: Time history of the x2 coordinate in the absence of damping (case 1) in the co-
simulation of the linear oscillator

sitive to energy leaks at the interface. Accordingly, the amplitude of the oscillation of coordinate

x2 increases as a result of the accumulation of residual energy. The energy correction method

brings the motion amplitude closer to that of the reference, although a certain time offset re-

mains in the solution.

A similar behaviour can be observed in the case of multi-rate co-simulation. Figure 10 shows

the effect on the oscillator energy of using a larger macro step H1 while keeping H2 = 10−4 s.

Two extrapolation approaches were used to evaluate the coupling force received by subsystem

M2, namely linear extrapolation (LE) and zero order hold (ZOH). Results showed that, in this
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Figure 10: Mechanical energy in the absence of damping (case 1) in the multi-rate co-simulation
of the linear oscillator

example, extrapolating the values of the coupling variable f c2 using linear polynomials, instead of

following a ZOH approach, reduced the rate at which energy leaks were accumulated. However,

it did not prevent the increase of the mechanical energy of the oscillator over time.
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Figure 11: Time history of the x2 coordinate in the absence of damping (case 1) in the multi-rate
co-simulation of the linear oscillator

Figure 11 shows the way in which the accumulation of energy leaks in the co-simulation

environment affected the time history of coordinate x2. The linear extrapolation of f c2 reduced

the motion amplitude of this coordinate, bringing it closer to the reference. A much more precise

correction, however, was obtained by means of controlling the system energy.

The presence of damping in the subsystems often helps to stabilize the co-simulation process.
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Fig. 12 shows the energy behaviour of the numerical integration when the damping elements in

the linear oscillator have nonzero coefficients. In case 2 the uncorrected co-simulation process

went unstable when a ZOH approach was used to evaluate f c2 . When linear extrapolation was

used instead, the system energy decreased as the motion proceeded in time, but a significant

difference with respect to the reference solution persisted. In case 3, the energy dissipation

within the subsystems made the co-simulation stable and all methods delivered similar results.
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(b) Case 3: c1 = c2 = cc = 1 Nm/s

Figure 12: Mechanical energy in the multi-rate co-simulation of the linear oscillator for nonzero
damping coefficients, H1 = 2 · 10−3 s, H2 = 10−4 s

Figure 13 confirms that, for damping case 3, the predicted motion of subsystem M2 was

similar with all the co-simulation approaches. For damping case 2, on the other hand, correcting

the energy leaks still played an important role in keeping the amplitude of the displacement x2

close to the reference. When the energy corrections were not carried out, the motion amplitude

was about 2.4 times larger than that of the reference, for the case in which f c2 was linearly

extrapolated, or four times larger when ZOH was used to evaluate this coupling variable.

It is worth mentioning that the energy correction method in Section 3.2 introduced discon-

tinuities in the coupling force f c2 , especially when the derivative with respect to time of the

coupling variable ξc was close to zero. As discussed in Section 3.2, the magnitude of the correc-

tion in the coupling force was limited to be one quarter of the uncorrected force at the interface.

Figure 14 shows that the discontinuities in the coupling force f c2 introduced by the energy

correction method did not significantly modify the force profile. The corrected force remained

closer to the reference than the uncorrected one during most of the simulation time.
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Figure 13: Time history of the x2 coordinate in the multi-rate co-simulation of the linear oscilla-
tor for nonzero damping coefficients, H1 = 2 · 10−3 s, H2 = 10−4 s
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Figure 14: Time history of the coupling force f c2 in the multi-rate co-simulation of the linear
oscillator, H1 = 2 · 10−3 s, H2 = 10−4 s

4.1.2 Effect of system properties on the method performance

The physical properties selected for the linear oscillator result in the system having two natu-

ral frequencies of 10 and 33.3 rad/s for the undamped case. Modifying these properties causes

a variation of the natural frequencies of the system, as well as a change in the energy distri-

bution between the subsystems. The effect of such changes on the performance of the energy

monitoring and correction method was investigated for damping case 1, i.e., c1 = c2 = cc = 0.

Table 2 shows 10-s simulation results obtained varying the mass of the second subsystem,m2,
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Table 2: Effect of varying m2 on algorithm performance

m2 ω1 ω2 Tmax
1 Tmax

2 ∆Euncorr
max ∆Ecorr

max

[kg] [rad/s] [rad/s] [J] [J] [J] [J]

0.01 10.05 331.68 5000.0 69.8 1.3·1045 191.6

0.1 10.04 104.92 5000.0 697.6 7.4·106 51.7

1 10.00 33.32 5000.0 6937.6 9174.3 18.9

2 9.95 23.69 5000.0 13646.9 6874.4 15.9

5 9.70 15.35 5000.0 27956.3 5084.7 7.8

10 11.90 8.85 49895.6 50000.0 2419.2 235.4

100 10.54 3.16 43808.4 500000.0 5150.7 100.2

while keeping every other parameter of the mechanical system unchanged. The communication

step-sizes of both subsystems were set to H1 = 1 ms and H2 = 0.1 ms. Linear extrapolation

was used to evaluate the input forces of subsystem 2. The second and third column of Table 2

contain the natural frequencies of the system. Terms Tmax
1 and Tmax

2 represent the maximum

kinetic energy of each subsystem obtained with monolithic integration; they provide insight

into the energy distribution between the subsystems. The maximum incurred energy error is

denoted as ∆Euncorr
max for the uncorrected co-simulation; it is compared to the maximum error

∆Ecorr
max delivered by the energy monitoring method.
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Figure 15: Time history of the accumulated energy error in the multi-rate co-simulation of the
linear oscillator for different values of m2

Results in Table 2 confirm that the energy monitoring and correction method succeeded

in reducing the energy drift of the linear oscillator in all cases. The improvement was more
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noticeable for small ratios of the mass and energy of the subsystem 2 relative to subsystem 1.

Figure 15 shows, moreover, that while the uncorrected co-simulation results in the accumulation

of energy errors as the integration progresses, the energy correction method is able to prevent

the system energy from increasing indefinitely in all cases. On the other hand, for m2 = 10

kg, the energy correction was conducted at the expense of introducing a slight deviation in the

position with respect to the analytical solution. In such cases, this problem can be alleviated by

reducing the maximum admissible value of the correction force f cj introduced by the algorithm,

as shown in Fig. 16. It must be mentioned, nonetheless, that in this case both natural frequencies

of the oscillator are very similar, which decreases the interest of using a multi-rate co-simulation

setup to integrate its motion.
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Figure 16: Time history of the x1 and x2 coordinates of the linear oscillator, compared to ana-
lytical reference solution, for m2 = 10 kg

Table 3 shows the effect of modifying the stiffness of the spring that connects the second

mass to the ground, k2. Again, the energy correction method was able to keep the energy er-

ror under control in all cases, preventing its growth as the numerical integration progressed,

although higher values of the stiffness k2 increased the second natural frequency of the system

and introduced a larger error in the results.

4.2 Pendulum-cable assembly

The second example is a mechanical assembly composed of two subsystems: a rigid pendulum

and a flexible cable described with gradient-deficient absolute nodal coordinate formulation
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Table 3: Effect of varying k2 on algorithm performance

k2 ω1 ω2 Tmax
1 Tmax

2 ∆Euncorr
max ∆Ecorr

max

[N/m] [rad/s] [rad/s] [J] [J] [J] [J]

0.1 14.32 2.22 5491.9 5000.0 5116.1 7.5

1 14.34 2.32 5438.7 5000.0 5152.5 7.5

10 14.49 3.16 5000.0 5000.0 5463.3 7.4

100 6.73 16.27 5000.0 8742.0 8615.6 9.3

500 9.51 24.89 5000.0 8494.6 10091.0 10.2

1000 10.00 33.32 5000.0 6937.6 9174.3 18.9

2000 10.25 45.88 5000.0 5983.0 8570.3 45.8

104 10.44 100.50 5000.0 5199.2 8076.4 88.7

105 10.48 316.39 5000.0 5018.9 8805.3 207.3

(ANCF) based elements [27, 5], moving under gravity effects, shown in Fig. 17. Unlike the

oscillator in Section 4.1, this system exhibits a highly nonlinear behaviour. The pendulum and

the cable are connected to the ground with spherical joints at points O and B respectively.

Another spherical joint at point A connects the pendulum and the cable to each other. The

system can be split into two subsystems: MP, which comprises the pendulum, and MC that

includes the cable. The coupling variables exchanged at the interface are the position of point

A, qA = [xA, yA, zA]T, evaluated by the pendulum and sent as input to the cable, and the force

at this spherical joint, fA = [fAx, fAy, fAz]
T, which is an output of the cable subsystem.

O

A B

x

y

z
gu1

u2

Figure 17: A simplified scheme of the pendulum-cable assembly
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The pendulum is made up of a single rod of length LP = 5 m, square section of width

wP = 0.1 m, and density ρP = 2700 kg/m3. It was modelled using a set of nine natural co-

ordinates [14], qP, namely the x, y, and z coordinates of point A and unit vectors u1 and u2,

that move with the reference frame of the pendulum rod. A set of six kinematic constraints was

introduced to ensure the rigid-body behaviour of this coordinate set. The system dynamics was

integrated making use of an index-3 augmented Lagrangian method with velocity and acceler-

ation projections [8]. This numerical method incorporates the numerical integrator, in this case

the Newmark implicit formula [18], into the time-stepping algorithm.

The cable is composed of five cylindrical ANCF beam elements with radius rC = 0.02 m and

total length LC = 8 m. The density of the cable elements was set to ρC = 7200 kg/m3 and their

elasticity modulus to EC = 2·107 N/m2. The cable motion was integrated using the semi-implicit

forward Euler method. The details of the ANCF cable element modelling are given in Appendix

A.

Fixed points O and B have global coordinates qO = [0, 0, 0]T and qB = [LP cos θ0+LC, 0, LP sin θ0]
T,

respectively. At t = 0, the pendulum axis is contained in the x − z plane, at an angle θ0 = π/6

rad with respect to the positive x-axis. The initial global coordinates of point A are, accordingly,

qA = [LP cos θ0, 0, LP sin θ0]
T. Initially, all the system velocities are zero.

A 20-s long simulation of the motion of the pendulum-cable assembly was carried out follow-

ing a multi-rate co-simulation approach in which the coupling variables were exchanged using

a ZOH scheme. The correction term in the coupling force was constrained to remain below∥∥∥f i∗2,j∥∥∥ /10.

4.2.1 Results

The cable-pendulum system exhibits a motion with fast dynamics and high values of the elastic

forces in the cable. This makes it difficult to find a reference solution, even by trying to achieve

the convergence of different numerical solutions of the problem. However, the system is conser-

vative, and so its total mechanical energy can be used as indicator of the stability and quality of

the simulation.

In a first set of numerical experiments, both the cable and the pendulum were integrated

using the same step-size; the communication step-size was made equal to these two values as
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Figure 18: Total mechanical energy of the pendulum-cable system when both subsystems were
integrated with the same step-size

well, hC = hP = H. Fig. 18 shows that the system energy increases over time if no corrective

action is carried out. The effect is more noticeable for larger macro steps H. The energy correc-

tion method in Section 3.2 was not able to keep the system energy completely constant, but it

managed to keep its variation around zero.

Different integration step-sizes were used for the pendulum and the cable in a second series

of numerical experiments. The communication step-size was made equal to the pendulum step-

size, H = hP, which was always larger than the one used for the cable, hP > hC = 1 ms.
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Figure 19: Results of the 15 first second of the multi-rate integration of the cable-pendulum
system with uncorrected co-simulation (u) and applying the energy correction method (c), for
hC = 1 ms
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Figure 19 illustrates the different behaviour of the uncorrected and corrected co-simulation

processes. In the absence of corrective action, the mechanical energy of the cable-pendulum as-

sembly increases quickly, and this causes the oscillation amplitude of point A to grow over time.

In the case in which H = 5 ms, the integration failed after t = 17.5 s due to the accumulation of

energy errors. Conversely, the application of the energy corrections kept the integration stable.

It can be noticed that the results obtained for yA with H = 5 and H = 2 ms are not exactly

identical, which is due to the fast dynamics of the cable subsystem under study.

5 Conclusions

Direct, non-iterative co-simulation of mechanical systems may become unstable in some cases

due to the introduction of energy inconsistencies at the discrete-time interface between sub-

systems. This problem is especially likely to occur when the subsystems in the co-simulation

environment do not contain dissipative elements or are only slightly damped. In this work,

an energy-leak monitoring and correction method for the co-simulation of mechanical sys-

tems has been introduced. The method requires the knowledge or estimation of the internal

mechanical energy and the work of non-conservative forces in each subsystem, and a set of

coupling variables that carries information about the energy exchanged at the interface, e.g.,

force-displacement or force-velocity couplings, a coupling arrangement commonly found in the

simulation of mechanical systems. When this information is available, it is possible to keep track

of the artificial energy introduced in the simulation by discontinuities at the discrete-time in-

terface. Energy errors can then be removed by modifying the values of the coupling variables

exchanged between subsystems.

The proposed method was evaluated in the co-simulation of linear and nonlinear mechan-

ical systems. Results showed that the energy monitoring and correction approach was able to

stabilize the integration of the examples under study, enabling the use of larger communication

step-sizes while preventing the accumulation of energy residuals over time.
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Appendix A ANCF cable description

The cable model used in Section 4.2 is based on the ANCF gradient-deficient beam element [5],

which does not show locking issues. Each cable element consists of two nodes with position

vectors q1 and q2, shown in Fig. A.1:

qj =

[
rT rTx

]T
, rTx =

∂r

∂x
(A.1)

where j = 1 and 2. The element nodal coordinate vector (q) is then defined as:

q =

[
qT
1 qT

2

]T
∈ R12 (A.2)

X

YZ

x

yz

0P

r

0t

t

P

1q
2q

xr

Figure A.1: Position field of an ANCF element at undeformed (t0) and deformed (t) configura-
tions.
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The centerline of the element is interpolated with a cubic shape function as follows:

r =


r1

r2

r3

 =


a0 + a1x+ a2x

2 + a3x
3

b0 + b1x+ b2x
2 + b3x

3

c0 + c1x+ c2x
2 + c3x

3

 ∈ R3 (A.3)

The position of any point on the centre line is calculated as:

r =

[
S1I S2I S3I S4I

] [
qT
1 qT

2

]T
= Sq (A.4)

where S ∈ R3×12 is the shape function or interpolation matrix and its parameters are calculated

as [9]:

S1 =1− 3ξ2 + 2ξ3

S2 =L
(
ξ − 2ξ2 + ξ3

)
S3 =3ξ2 − 2ξ3

S4 =L
(
−ξ2 + ξ3

)
(A.5)

where ξ = x
L is a dimensionless local coordinate, L is the undeformed length of the element,

and 0 ≤ ξ ≤ 1.

The mass matrix of the cable element is constant and calculated by integration over volume

of the element [9]:

M =

∫
V

ρSTSdV ∈ R12×12 (A.6)

where ρ is the mass density of the cable element. In this work, a cable structure of circular cross-

section and constant mas density is used. The constant mass matrix for each cable element is
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computed as:

M = ρAL


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105 0 0 13L
420 0 0 −L2

140 0 0

0 11L
210 0 0 L2

105 0 0 13L
420 0 0 −L2
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35 0 0 −11L
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105 0
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210 0 0 L2

105



(A.7)

where A is the cross-section area of the cable.

The expressions of the internal or elastic forces of the cable element are achieved using the

principle of virtual work. Two types of strain fully define the internal forces of this element,

longitudinal stretch εx and curvature κ. The variation of the virtual work resulted from these

strains is

δWe =

∫
L

[EAεxδεx + EIκδκ] dx (A.8)

where E is Young’s modulus and I is second moment of area of the cable element. Based on the

Green’s strain definition, the longitudinal stretch is defined as:

εx =
1

2

(
rTx rx − 1

)
(A.9)

and the curvature can be computed as [20, 29, 9]:

κ =
|rx × rxx|
|rx|3

, rxx =
∂2r

∂x2
(A.10)

The generalized elastic force vector of the longitudinal deformation, Qel, can then be calculated

as the derivative of the strain energy of this deformation with respect to the element coordinate
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vector:

Qel =

(
∂Wel

∂q

)T

= EA

∫ L

0

(
∂εx
∂q

)T

εxdx = EA

∫ L

0

(
ST
xSxq

) [1

2

(
qTST

xSxq− 1
)]

dx (A.11)

The generalized elastic force vector of the transverse deformation, Qet, is similarly calculated

as:

Qet =
∂Wet

∂q
= EI

∫ L

0

(
∂κ

∂q

)T

κdx

= EI

∫ L

0

(
1

(rTx rx)3

((
qTST

xxr̃
T
x

)
(r̃xSxx − r̃xxSx)

−3

(
qTST

xxr̃
T
x

)
(rx × rxx)

(rTx rx)

(
rTxSx

)))T

dx

(A.12)

where r̃x and r̃xx are skew-symmetric matrices of vectors rx and rxx. Gaussian quadrature with

three and five integration points as suggested in [9] is used to compute the vector of internal

forces using the expressions of Eqs. A.11 and A.12.

The principle of virtual work can be used to develop the vector of the generalized external forces

[28]:

δWext = FTδr = FTSδq = QT
extδq (A.13)

where δWext is variation of the virtual work caused by the external force vector F acting on an

arbitrary point on the element and Qext is the vector of the generalized external forces associ-

ated with the nodal coordinates. For a distributed force such as gravity forces, the generalized

external force vector can be obtained by integrating Eq. A.13 over the volume of the element:

Qg = ρA

∫ L

0
STgdx (A.14)

where g is vector of the gravitational acceleration.
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