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A B S T R A C T

Blockchain provides an immutable distributed ledger for storing transactions. One of the challenges of
blockchain is the particular processing of dynamic queries due to accumulating costs. Complex Event Processing
(CEP) provides efficient and effective support for this in a way, however, that is difficult to integrate with
blockchain. This paper addresses the research challenges of integrating blockchain with CEP. More specifically,
we envision an effective development environment in which (i) event-driven smart contracts are modeled in
a graphical way, which are, in turn, (ii) automatically transformed into complementary code that is deployed
in both a CEP engine and a blockchain network, and then (iii) executed on off-chain CEP applications
which, connected to different data sources and sinks, automatically invoke smart contracts when event pattern
conditions are met. We follow a classic systems engineering approach for defining the concepts of our system,
called CEPchain, which addresses the described requirements. CEPchain was evaluated using a real-world case
study for vaccine delivery, which requires an unbroken cold chain. The results demonstrate that our approach
can be applied without requiring experts on event processing and smart contract languages. Our contribution
simplifies the design of integrated CEP and blockchain functionality by hiding implementation details and
supporting efficient deployment.
1. Introduction

Blockchain is an emerging technology that supports the exchange of
tangible and intangible assets without the need for third-party interme-
diaries (Preukschat, 2017). Gartner estimates that by 2023, blockchain
will support the global movement and tracking of $2 trillion/year of
goods and services (Gartner, 2020). Conceptually, blockchain is based
on a distributed digital ledger of cryptographically signed transactions,
which are grouped into blocks. Each block is cryptographically linked
to the previous one once validated (Yaga et al., 2018). A new block is
replicated across the blockchain network in such a way that conflicts
are automatically resolved. In this way, blockchain addresses functional
requirements of data storage, communication services and computa-
tion services, as well as non-functional requirements of immutability,
transparency, integrity, non-repudiation and equal rights (Xu et al.,
2019).

The behavior of the blockchain can be programmed using smart
contracts. Smart contracts can be used to specify agreements between
different parties at design time and to validate the fulfillment of what
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was agreed upon conditions at runtime. However, the implementation
of smart contracts is a cumbersome and difficult task not only for
domain experts, but also for software developers for several reasons.
Firstly, programming requires advanced knowledge of special-purpose
languages such as Solidity, which is executable on the Ethereum Virtual
Machine (EVM) (Ethereum Foundation, 2021). Secondly, languages like
Solidity do not directly support business rules with temporal event
correlation and have constraints on the value types and length. For
instance, long-type and fixed-point numbers are not supported by the
current 0.6.8 Solidity version (Ethereum, 2021), which implies limita-
tions in defining more complex and temporal logic for smart contracts.
Thirdly, on permissionless blockchain platforms such as Ethereum,
smart contracts are executed locally by miners, which are compen-
sated for validating and recording transactions. The required data
computation and storage to conduct each transaction, data storage,
function execution and contract deployment can be prohibitively high
for scenarios that require continuous querying.
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In this paper, we address these research challenges. We build on the
idea proposed by Fournier and Skarbovsky (2019) of enriching smart
contracts with temporal business rule processing using Complex Event
Processing (CEP) (Luckham, 2012). In this way, temporal queries can
be delegated from the blockchain to a CEP component that provides
temporal reasoning in real time by matching event patterns over time
and quickly reacting to them. More specifically, we address the fol-
lowing concrete requirements, which have not been addressed by prior
research:

• R1: Graphically modeling event-driven smart contracts.
• R2: Automatically transforming event-driven smart contract mod-

els into code and then deploying this code in both a CEP engine
and a blockchain network.

• R3: Executing off-chain CEP applications which, connected to
different data sources and sinks, automatically invoke smart con-
tracts when event pattern conditions are met.

o this end, we build on concepts of Model-Driven Development
MDD) (Brambilla et al., 2017) to integrate CEP with blockchain via
graphical model-driven solution, called CEPchain. Our model-driven

pproach is subdivided into the three following layers. The off-chain
esign time layer supports the definition of high-level models of event-
riven smart contracts, which can be transformed into code that is
xecutable on a CEP engine and a blockchain network. The off-chain
untime layer is responsible for deploying all automatically generated
ode. The on-chain runtime layer provides the blockchain network in
hich a smart contract can be deployed and automatically invoked
pon pattern detection. In order to avoid cost, the domain expert
an decide which complex event types will invoke smart contract
unctions and which will not. In this way, complex event types that
re intermediate can be managed and stored off the blockchain. Our
pproach was evaluated in a real-world case study for vaccine delivery,
hich requires an uninterrupted cold chain.

The rest of the paper is organized as follows. Section 2 describes
he background of blockchain and CEP, and then relates our work
o prior research. Section 3 presents CEPchain, our graphical model-
riven proposal for integrating such technologies. Section 4 describes
nd discusses the application of the proposal to a real-world case study.
inally, Section 5 draws conclusions and identifies directions for future
esearch.

. Preliminaries

In this section, we describe the background of the blockchain and
EP technologies and discuss related works.

.1. Blockchain

The concept known as blockchain is formed by several components.
e follow the terminology used in Xu et al. (2019) and Yaga et al.

2018), and discuss these components in turn, namely blockchain,
lockchain network, and smart contracts.

Firstly, a blockchain can be defined as a distributed digital ledger of
cryptographically signed transactions, which are grouped into blocks.
Each block is cryptographically linked to the previous one once it is
validated and has undergone a consensus decision (Yaga et al., 2018).
Secondly, a new block is replicated across copies of the ledger within
the blockchain network, with any conflicts that occur being automati-
cally resolved. Blockchain networks can be classified according to their
permission model (Yaga et al., 2018): (i) permissionless, if anyone can
publish a new block without requiring permission from any authority,
(ii) permissioned, if only particular users, who are authorized by a
centralized or decentralized authority, can publish blocks, and (iii)
consortium, if a permissioned blockchain network is deployed and gov-
erned by a group of individuals and organizations. Ethereum (Ethereum
2
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Foundation, 2021) is an example of a permissionless blockchain plat-
form, while Hyperledger Fabric (Linux Foundation, 2021) is a permis-
sioned/consortium one.

Thirdly, smart contracts (aka. chaincode in some blockchain plat-
orms such as Hyperledger Fabric) are programs that can be deployed
nd executed on a blockchain. Once deployed, the code of the smart
ontract is immutable and deterministic. Smart contracts can imple-
ent business logic, conditions and triggers to manage programmable

ransactions (Xu et al., 2019). A smart contract is a piece of executable
ode (functions), a private storage to register its internal state and,

optionally, the account balance for cryptocurrency blockchain platforms
such as Ethereum. On the Ethereum blockchain, smart contracts are
implemented in the Solidity language and then compiled into bytecode,
which is executed by the EVM. A contract creation transaction is needed
to deploy a smart contract on the blockchain. The implementation code
of the smart contract is contained in the transaction’s payload. In order
to create the smart contract on the blockchain, this transaction must be
authorized by the sender’s signature. Once the contract creation trans-
action is processed, a contract address will uniquely identify this smart
contract. Upon smart contract deployment on blockchain, users of the
Ethereum blockchain can send Ethers (ETHs) to this contract through
a monetary transaction. Smart contracts can be invoked externally or
from other smart contracts. By sending contract invoking transactions
to a smart contract’s address, users of the blockchain can invoke its
functions. When an invoking transaction is conducted, a smart contract
can emit events and store event logs in the blockchain. These event
logs can be further consumed by external systems for data and process
analytics (Mühlberger et al., 2019).

There are two ways of storing data in Ethereum smart contracts: (i)
as a variable in a smart contract and (ii) as a log event. On the Ethereum
blockchain, smart contracts are executed locally by miners, which are
compensated for validating and recording transactions. The Ethereum
yellow paper (Wood, 2019) proposes the cost model for quantifying
the required data computation and storage to conduct each transaction,
data storage, function execution and contract deployment. This cost is
expressed in gas, i.e. the fee required to successfully execute a smart
contract or conduct a transaction on Ethereum. Depending on the gas
rice established by the user, gas cost is converted to ETH, as explained
elow. According to this cost model, every transaction has a fixed
ost of 21,000 gas. As an example, we can use the exchange rate of
S$188/ETH from May 10th, 2020. We also assume a gas price of 2 x
0-9 ETH (2 Gwei) on Ethereum. The cost of storing data as a variable in
smart contract depends on the number of SSTORE operations required

or the variable (Xu et al., 2019). Every simple type variable in Solidity
32-bytes) requires only one SSTORE operation that costs 20,000 gas
lus 68 gas per every non-zero byte of data. So, the total cost of storing
2-byte data as a variable is 21,000 gas (transaction) + 20,000 gas
SSTORE operation) + 32 bytes x 68 gas = 43,176 gas x 2 x 10-9 x

$188 = US$0.016.
Storing data as a log event requires a log topic that costs 375 gas

plus 8 gas per every byte of data in the log topic. So, the total cost
of storing 32-byte data as a log event is 21,000 gas (transaction) +
375 gas (topic) + 32 bytes x 8 gas = 21,631 gas x 2 x 10-9 x $188

US$0.008. Therefore, storing data as log events is cheaper than as
ariables and can be consumed by other external systems for real-time
ata analysis. However, log events only allow up to three parameters
o be queried. In contrast, storing data as a variable is more efficient
o manage (Xu et al., 2019) but is less flexible because of the Solidity
onstraints on the value types and length; for instance, the long type
nd fixed point numbers are not supported by the current 0.6.8 Solidity
ersion (Ethereum, 2021).

.2. Complex event processing

CEP is a cutting-edge technology for real-time big data analyt-

cs (Boubeta-Puig et al., 2015a). CEP allows us to analyze and correlate
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Fig. 1. CEP stages.

continuous streams of data on the fly by matching event patterns over
time and quickly reacting to them. This technology fundamentally
performs as a real-time expert system (Cummins, 2009).

An event occurrence or event sequence requiring an immediate
reaction is known as a situation (Etzion & Niblett, 2010). While simple
events are indivisible and occur at a specific point in time, complex
events provide meaningful and valuable information by combining and
summarizing other events that happen before (Event Processing Tech-
nical Society, 2011; Luckham, 2012). Complex events are automatically
created by a CEP engine when the conditions previously defined in an
event pattern are satisfied. A CEP engine is a powerful software that
provides programmers with the ability to implement such patterns by
using Event Processing Languages (EPLs) (Boubeta-Puig et al., 2014).
However, the implementation of event patterns is generally a complex
and cumbersome task (Burgueño et al., 2018). Additionally, a CEP
engine can trigger real-time actions and alerts upon pattern detection.

Fig. 1 shows the three stages of CEP technology:

1. Event capture: the reception of real-time simple events to be
analyzed and correlated. A simple event might be a new tem-
perature sensor value.

2. Analysis: the prompt detection of situations of interest when the
conditions defined in event patterns are met. As an example,
in the context of a logistics scenario, the TemperatureWarning
event pattern could detect when a temperature sensor value is
outside the 2–8 ◦C range, warning that the current temperature
of a vaccine is not the recommended by the World Health
Organization (2006).

3. Response: the actions to be carried out for such detected sit-
uations and their notification to the interested consumers. For
instance, if a TemperatureWarning is triggered, it may then be
delivered directly to a monitoring dashboard, an email account
or other applications. The novelty of the present paper is that the
functions of a smart contract, already deployed in a blockchain,
can be automatically invoked by complex events, such as the
TemperatureWarning ones.

CEP technology has several benefits, such as faster and automatic
reply, human workload reduction, information overload prevention
and decision quality improvement (Chandy & Schulte, 2010). Since
situations of interest can be detected and reported in real time, latency
in the decision-making process is decreased in comparison to traditional
event analysis techniques. Thereby, CEP-based systems have gained
many applications in a variety of areas including logistics, monitoring
critical infrastructure and financial applications (Hinze et al., 2009).

In this work, we propose the integration of CEP and blockchain
to provide an external CEP-based system that can process the event-
driven temporal logic outside smart contracts for the following two
reasons. On the one hand, making inferences and reasoning on-chain
can be costly, with it being more appropriate for heavy computation
3

Table 1
A comparison between our proposal and existing related works.

Approach R1 R2 R3

Fournier’s proposal (Fournier & Skarbovsky, 2019) – – +/–
CEPchain (our proposal) + + +

(inferences) to occur off-chain, thus reducing the cost of the associated
transactions (Idelberger et al., 2016). For this reason, an off-chain CEP-
based system is essential to make inferences and reasoning by matching
event patterns and enriching the generated complex events with the
ability to invoke smart contract functions upon pattern detection. This
makes it possible to simplify the logic and size of smart contracts. As
explained in Section 2.1, the smaller the size of a contract, the lower
is its cost. On the other hand, smart contracts use business rules for
defining conditions in which transactions occur, but lack the capability
to reason over time (Fournier & Skarbovsky, 2019). In particular,
smart contract languages support neither data windows nor temporal
operators, and certain languages, such as Solidity, do not support long
type and fixed point numbers, among others. Using EPLs supported
by CEP engines, rich pattern expressions over events and time can be
defined outside smart contracts.

2.3. Related work

This subsection presents related work on model-driven approaches
integrating CEP and blockchain with reference to the requirements
established in Section 1, comparing our proposal with other existing
ones. To the best of our knowledge, the work by Fournier and Skar-
bovsky (2019) is the only existing study that proposes a model-driven
approach combining CEP and blockchain. Indeed, both works make use
of the CEP technology to enable smart contracts to reason over time.
However, as summarized in Table 1, there are significant differences
between our proposal and that of Fournier.

Firstly, our proposal provides domain experts with a graphical mod-
eling editor for designing event-driven smart contracts, i.e. smart con-
tract functions that can be automatically invoked by complex events.
The modeled pattern conditions are then automatically transformed
into Esper EPL code, which is executable on an Esper CEP engine (Es-
perTech, 2021), and the smart contracts are transformed into Java
code, which can interact with an Ethereum blockchain network
(Ethereum Foundation, 2021). Therefore, while our proposal supports
automatic model-to-text transformations, Fournier and Skarbovsky pro-
vide a textual editor, and code is generated manually. In addition,
Fournier’s proposal partly addresses requirement R3, providing a CEP
application that is capable of managing smart contracts with temporal
aspects, a simulator that generates temperature sensor readings and
a mobile user interface that interacts with the system. Additionally,
our proposal allows for the configuration and connection with different
data sources and sinks such as files, message brokers and other external
systems according to application domains needs.

Secondly, our proposal currently uses the Esper CEP engine and the
Ethereum blockchain, while Fournier’s makes use of the Proton CEP en-
gine (Skarbovsky, 2020) and the Hyperledger Fabric blockchain (Linux
Foundation, 2021). Since our solution is based on a graphical model-
driven approach, new model-to-text transformation rules could be cre-
ated and added for automatically transforming graphical pattern mod-
els into both code executable by other CEP engines such as Proton
and Siddhi (WSO2, 2020), and code executable by other blockchain
platforms, like Hyperledger Fabric. Depending on the particular needs
of each real-world application domain, with examples being e-voting
(Kshetri & Voas, 2018; Yang et al., 2020), health (Calvo et al., 2019;
Kshetri, 2018), IoT security and fraud detection (Ali et al., 2019; Far-
rugia et al., 2020; Moin et al., 2019; Roldán et al., 2020), air pollution
and road traffic (Díaz et al., 2020), business process outsourcing (Eshuis
et al., 2016) and agricultural supply chains (Xu et al., 2019), the use
of a specific blockchain platform could be more appropriate, as shown
in Table 2.
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Table 2
A comparison between the Ethereum and Hyperledger Fabric platforms.
Feature Ethereum Hyperledger Fabric

Purpose Enterprises and generalized applications Enterprises
Confidentiality Transparent Confidential transactions
Mode of participation Public/private network and without permissions Private and authorized network
Algorithm Proof of work and proof of stake Consensus (no mining required)
Decentralized Yes Yes
Cryptocurrency Yes (ETH) No
Need for blockchain knowledge Yes Yes
Automatic generation of smart contract code No No
f
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3. The CEPchain approach to integration of blockchain and CEP

This section presents our novel model-driven approach to address
the integration of CEP and blockchain. Recall that blockchain mainly
provides immutability and transparency, but not data analysis in real
time. This is why the integration of blockchain and CEP is adequate for
application domains which require detecting critical situations in real
time and storing them in a blockchain for transparency and immutabil-
ity purposes.

Fig. 2 gives an overview of the CEPchain approach and its three
layers: off-chain design time, off-chain runtime and on-chain runtime.
The two off-chain layers consist of a set of software components that
are kept off-chain and computed at design time (CEPchain graphical
tool) or runtime (data sources, data sinks and the CEPchain graphical
tool including a CEP engine). The third on-chain layer includes the
components that are placed and computed on-chain (smart contract,
account balance, private storage and event logs). These layers are
deeply detailed in the following subsections.

The CEPchain approach addresses the three requirements estab-
lished in Section 1. More specifically, R1 (graphically modeling event-
driven smart contracts) is fulfilled by the off-chain design time layer,
R2 (automatically transforming event-driven smart contracts models
into code and then deploying this code in both a CEP engine and a
blockchain network) is fulfilled by the off-chain design time and off-
chain runtime layers, and R3 (executing off-chain CEP applications
which, connected to different data sources and sinks, automatically
invoke smart contracts when event pattern conditions are met) is
fulfilled by off-chain runtime and on-chain runtime layers.

3.1. Off-chain design time layer

The purpose of the off-chain design time layer is to define high-level
models of event-driven smart contracts in a way that is understandable
to domain experts. These models will be automatically transformed
into code, which can then be deployed in both a CEP engine and a
blockchain network.

The off-chain design time layer provides the following functionali-
ties. Firstly, the Smart contract interface/implementation loading supports
loading smart contract code. Interface definitions can be automati-
cally generated in an Application Binary Interface (ABI) definition by
existing tools such as web3j (Web3 Labs Ltd, 2020), a Java library
for working with smart contracts and integrating with nodes on the
Ethereum network, as well as Caterpillar (López-Pintado et al., 2019),
a business process execution engine on the Ethereum blockchain that
can automatically transform a Business Process Model and Notation
(BPMN) process model with Solidity extension into an ABI definition.
Alternatively, the implementation of a smart contract can be directly
loaded but should be implemented by smart contract programmers.
Secondly, Smart contract graphical modeling facilitates the graphical
design and syntactical validation of smart contract models. More specif-
ically, a smart contract is modeled by specifying its functions with
input and output parameters. This graphical modeling can be done
manually by a domain expert or automatically by loading a smart
contract interface/implementation. Thirdly, the CEP domain graphi-
4

cal modeling supports the graphical design and syntactical validation a
of a CEP domain model, which conforms to the CEP domain meta-
model (Boubeta-Puig et al., 2015b). A CEP domain is modeled by
specifying the simple event types required for a particular application
domain. This graphical modeling can be addressed by a domain expert.
Fourthly, the Event-driven smart contracts graphical modeling facilitates
the design and syntactic validation of event-driven smart contracts
in a user-friendly way. An event-driven smart contract is a model
defining the event pattern conditions to be satisfied to detect a certain
type of situations of interest (complex events). This type of complex
event can then be graphically linked to the particular smart contract
functions to be automatically invoked upon pattern detection. Finally,
there are several types of generation. The Simple event types automatic
generation automatically transforms the modeled simple event types of
a CEP domain into code. The Event pattern code automatic generation
automatically transforms the modeled pattern conditions into code. The
Smart contract code automatic generation automatically transforms the
modeled event-driven smart contracts into code.

To support all these functionalities, we provide a graphical Domain-
Specific Language (DSL) and editor for smart contracts as well as
a graphical DSL and editor for event-driven smart contracts (event
patterns modeled with smart contracts), as explained below. DSLs are
characterized by the following advantages (Fowler & Parsons, 2010):
improvements in both the development productivity and communica-
tion with domain experts, ease of adaptation to changes and a more
rigorous definition, conducted by such experts, of what the system
should do.

3.1.1. Graphical DSL and editor for smart contracts
This graphical DSL allows for the definition of smart contracts as

graphical models and their syntactic validation. This DSL is composed
of two parts. Firstly, the abstract syntax consists of both a metamodel,
which is a model describing smart contract concepts and relationships
between them, and the validation rules to check whether a model is
well formed. Secondly, the concrete syntax provides a set of useful
graphical symbols for drawing smart contract diagrams.

The proposed metamodel for user-friendly definition of smart con-
tracts is illustrated in Fig. 3. This metamodel is composed of various
metaclasses. SmartContracts is the root metaclass of the metamodel and
is composed of a set of one or more smart contracts (SmartContract)
or an application domain. It is necessary to specify its name (name), a
extual description (description) and creation date (creationDate). Smart-
ontract describes a particular smart contract. This is the key class since

t contains the most sensitive information and is the only one that can
e linked by complex events (ComplexEvent). Every smart contract has a
ype name (typeName), a path of the image (imagePath) that represents
t graphically, the private key (privateKey) of the blockchain account to
e used for deploying or invoking the smart contract, and the contract
ddress (contractAddress), which will not be empty if the smart contract
as previously deployed in the blockchain network. Moreover, every

mart contract will be composed of one or more contract functions
ContractFunction). ContractFunction describes a function of a smart con-
ract. Every function must have a name (name) and, optionally, a path
f the image (imagePath) that represents it graphically. Additionally, a
unction can contain one or more input parameters (InputParameter),

nd may have an output parameter (OutputParameter). Parameter is an
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Fig. 2. Overview of the proposed model-driven approach.
abstract metaclass that defines the attributes common to the different
types of parameters: parameter name (name) and parameter type (type).
The type will be one of those defined in PropertyTypeValue: Unknown,
Boolean, Integer, Long, Double, Float or String. InputParameter repre-
sents an input parameter of a smart contract function. It has a value
string (value). In turn, OutputParameter describes the output parameter,
i.e. what the function returns.

The validation rules are a fundamental part of the DSL. The fol-
lowing rules must be satisfied by any model that conforms to the
metamodel for smart contracts:

• The values of these attributes cannot be empty: name and type-
Name of the SmartContracts metaclass, name of the ContractFunc-
tion metaclass and name of the Parameter metaclass.

• The values of these attributes must exist: typeName of the Smart-
Contract metaclass, and name of the ContractFunction, InputParam-
eter and OutputParameter metaclasses.

• The values of the following attributes must have a defined type
and must be correct: type of the InputParameter metaclass and type
of the OutputParameter metaclass.

• The SmartContract metaclass is the only one that may have an
inbound link connected with a complex event.

This DSL, together with its concrete syntax, was implemented using
Eclipse Modeling Framework (EMF) (Steinberg et al., 2008) and its
Ecore metamodeling language, as well as the following Eclipse Epsilon
languages (Kolovos et al., 2018): Epsilon Object Language (EOL) for
creating, querying and modifying EMF models, and Epsilon Validation
Language (EVL) for validating models. Additionally, EuGENia, a front-
end for Graphical Modeling Framework (GMF), was used to create the
graphical modeling editor for this DSL. Fig. 4 depicts the built editor for
5

smart contract definition. This editor has four parts: (i) a tool palette
(right panel) from which domain experts can select the elements to
be incorporated into their models, (ii) a canvas (central panel) into
which users can drag and drop smart contract types along with contract
functions from the palette, (iii) a menu (top menu bar) that allows them
to easily select the editor action to be executed, and (iv) a property view
(lower panel) for adding or editing information related to the different
elements of a designed model, for example, the name of a modeled
smart contract.

This editor checks that the user uses the palette correctly. As an
example, if the user tries to drag and drop an input parameter directly
into the canvas, the editor will not allow this to be done since parame-
ters must always be added into contract functions. Moreover, this editor
provides the Smart Contract menu with the following options. Via New,
a domain experts can create a new smart contract graphical model.
Load and Model from Caterpillar automatically creates a new smart
contract graphical model by loading an ABI smart contract interface,
which is on-demand generated by the Caterpillar tool through the
invocation of its REST API (Representational State Transfer Application
Programming Interface). Load and Model from Solidity File automatically
creates a new smart contract graphical model by loading a smart
contract implemented in Solidity. Domain experts can also Deploy Smart
Contract on a blockchain network, Open a smart contract model that
has already created before, Save and Validate the designed model, and
Delete the current open smart contract model.

3.1.2. Graphical DSL and editor for event-driven smart contracts
To enable the modeling of event patterns together with smart con-

tracts, we extended the ModeL4CEP DSL for event patterns (Boubeta-
Puig et al., 2015b) to include our metamodel for smart contracts
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Fig. 3. Metamodel for smart contracts.

Fig. 4. A screenshot of the graphical modeling editor for smart contracts.



Expert Systems With Applications 184 (2021) 115578J. Boubeta-Puig et al.
Fig. 5. Metamodel for event-driven smart contracts.
Fig. 6. Model-to-text transformation rules.

presented in Section 3.1.1. More specifically, the SmartContract meta-
class is included in the ModeL4CEP metamodel as an extra component
of the CEPEventPatternmetaclass (see Fig. 5). This is very powerful since
an event pattern can be modeled including a complex event linked to
smart contract functions, i.e. upon detection of a complex event, certain
smart contract functions will be automatically invoked.

Moreover, using Eclipse Epsilon Generation Language (EGL) and
web3j we implemented a set of model-to-text transformation rules for
automatically transforming event-driven smart contract models into: (i)
the pattern condition implementation in Esper EPL code, which is exe-
cutable in an Esper CEP engine, (ii) the smart contract implementation
in Java code, and (iii) the Java code required to interact with the smart
contract in an Ethereum blockchain (see Fig. 6). Note that, since we are
using model-driven techniques, other new model-to-text transformation
rules could be created to automatically generate code for other CEP
engines and blockchain platforms.

The graphical modeling editor for event-driven smart contracts,
which is based on MEdit4CEP (Boubeta-Puig et al., 2015a), was also
7

implemented using EMF, the Eclipse Epsilon languages and EuGENia.
The key feature of this editor is that its palette can be dynamically
reconfigured with both the simple event types and smart contract types
previously modeled by the domain expert (see Simple Events and Smart
Contracts tool categories in Fig. 7).

This editor provides the Event Pattern menu with the following
options. New creates a new event pattern model. Duplicate Existing
Pattern facilitates the creation of a new event pattern model from
another previously modeled one. Furthermore, the user can Open one of
the previously modeled event patterns, Save and Validate, and Delete the
active event pattern model. Generate Pattern Code transforms the condi-
tions of the active validated event pattern model into code executable
in a CEP engine, while Generate Smart Contract Code generates the smart
contract code to be automatically invoked by the active validated event
pattern model when the conditions are satisfied.

3.2. Off-chain runtime layer

The off-chain runtime layer is responsible for deploying all the code
automatically generated from the off-chain design time layer. Specifi-
cally, the simple event types and event pattern code are deployed in a
CEP engine, while the smart contract code is deployed in a blockchain
network at runtime. Fig. 2 shows its four components: (i) data sources,
which provide raw and real-time data coming from sensors and other
devices and external systems through files, message brokers and other
adapters, (ii) a CEP engine, which is the software for analyzing and cor-
relating such data received and transformed into simple events to detect
event patterns in real time, (iii) data sinks, which subscribe to and
register complex events, generated by the CEP engine, through files,
message brokers and other devices and systems, and (iv) the CEPchain
graphical tool, which integrates the CEP engine component and func-
tionalities for deploying event type, event pattern and smart contract
code. The Simple event transformation and sending is in charge
of receiving heterogeneous and raw data from data sources, such as
Comma-Separated Values (CSV) or JavaScript Object Notation (JSON)
files and Message Queue Telemetry Transport (MQTT) or Advanced
Message Queuing Protocol (AMQP) message brokers, transforming this
data to simple events and sending them to a CEP engine. The Complex
event sending sends the complex events automatically generated by
the CEP engine to data sinks such as CSV or JSON files and MQTT or
AMQP message brokers to store and share this meaningful information
with other external systems. The Smart contract automatic invoca-
tion transaction is the key functionality of our approach, which makes
it possible to integrate CEP and blockchain. When an event-driven



Expert Systems With Applications 184 (2021) 115578J. Boubeta-Puig et al.
Fig. 7. A screenshot of the graphical modeling editor for event-driven smart contracts.
smart contract previously modeled in the off-chain design time layer
is detected by the CEP engine, the corresponding generated complex
event will then automatically invoke the specified functions of a smart
contract already deployed in a blockchain. So the heavy computation of
processing real-time events, reasoning about time and matching event
patterns, is performed outside smart contracts, reducing the size and
the complexity of smart contracts as well as the cost of their associated
transactions (see Section 2).

In order to move towards smart factory applications, it is essential
to automate the Business Process Management (BPM) (vom Brocke &
Mendling, 2018; Dumas et al., 2018), such as the logistics required
to deliver the manufactured products and the payments to be made.
This automation can be achieved through the use of smart contracts
provided by blockchain technology (Mendling et al., 2018; Preukschat,
2017). Since our model-driven approach allows for integration with
the Caterpillar tool, business experts are provided with the CEPchain
graphical tool for modeling event patterns connected to the smart
contracts that were automatically generated from business processes
modeled with Solidity extensions. Therefore, our approach makes it
possible to combine BPM, CEP and blockchain.

3.3. On-chain runtime layer

The on-chain runtime layer provides the blockchain in which a
smart contract can be deployed through a contract creation transaction.
As previously mentioned, in our approach, this type of transaction is
currently performed in an Ethereum blockchain by the CEPchain tool.

As illustrated in Fig. 2, a smart contract has functions, a private
storage to register its internal state and, optionally, the account balance
for cryptocurrency blockchain platforms, such as Ethereum. In our
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approach, smart contract functions can be executed automatically by
complex events that are produced in real time by the Esper CEP engine.
Additionally, when an invocation transaction is done, a smart contract
can emit events and store event logs in the blockchain. Therefore, this
layer supports the two ways data can be stored in Ethereum smart
contracts: (i) as a variable in a smart contract, and (ii) as a log event.
As previously described in Section 2.1, storing data as log events is
cheaper than as variables. However, log events only allow up to three
parameters to be queried. In contrast, storing data as a variable is
more efficient to manage but is less flexible because of the Solidity
constraints on the value types and length.

It should be noted that our approach is appropriate for managing
and storing critical situations of interest, i.e. situations that are unlikely
to occur. In order to avoid a high cost when automatically invoking
transactions and storing data in an Ethereum blockchain, the domain
expert, by using the CEPchain graphical tool, can decide and then
model which complex event types will invoke smart contract functions
and which will not. Thus, the complex event types that are intermediate
and not so important for the application domain should not be managed
and stored by blockchain. Evidently, the domain expert could model all
complex event types linked to smart contracts, but assuming extra gas
costs and time consumption.

Since we are using a model-driven approach, event-driven smart
contract models are independent of specific blockchain platforms.
Therefore, by adding new model-to-text transformation rules, the gen-
erated code could be deployed in permissioned blockchain platforms,
such as Hyperledger Fabric (Linux Foundation, 2021), in which gas cost
is not taken into consideration.
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Fig. 8. Vaccine delivery scenario.
4. Evaluation

The purpose of this evaluation is to demonstrate that the CEPchain
approach fulfills the requirements established in Section 1. To this end,
our implementation is applied to a real-world case study and the results
are then obtained and discussed.

4.1. Case study description

Blockchain technology can be used in a variety of industrial sectors,
such as transport, healthcare, manufacturing, tourism and agriculture.
Supply chains are one of the well-known applications in which the
movement of goods between participants is critical. By using smart
contracts, the execution of the supply chain process can be controlled.
The key events produced as a consequence of tracking such goods can
be registered and communicated through data stored on a blockchain.
Thus, supply chain quality and logistics visibility can be provided and
improved (Xu et al., 2019).

In particular, we adopt CEPchain for a vaccine supply chain sce-
nario. Fig. 8, adapted from Fournier and Skarbovsky (2019), shows
all the steps typically involved in a vaccine supply chain. Firstly,
pharmaceutical companies deliver vaccines to both pharmacies and
hospitals through distributors. Next, these pharmacies and hospitals
distribute them to doctors through local distributors. Finally, doctors
administer vaccines to patients.

One of the main challenges to be addressed during the transport of
vaccines is monitoring temperature conditions in real time to promptly
detect when they are exposed to temperatures above or below those
recommended by the World Health Organization (2006), as excessive
exposure to heat or cold can render vaccines unusable. To address
the real-time detection of abnormal vaccine temperatures and the im-
provement of logistics visibility through the storage of key temperature
events on blockchain, we use our model-driven approach integrating
CEP and blockchain.

In this scenario, vaccines are transported in containers that have a
unique identifier and are equipped with a temperature sensor sending a
reading every minute. Different event patterns can be identified. Firstly,
TemperatureWarning is a pattern that detects when a temperature sensor
value is outside the 2–8 ◦C range, warning that the current temperature
of a vaccine is not that recommended by the World Health Organization
(2006). Secondly, TemperatureWarningStatistic calculates the number of
TemperatureWarning complex events produced, as well as the maximum
and minimum temperature values per hour. Thirdly, TemperatureAlert
detects when vaccines have been exposed to inadequate temperatures
on several occasions over a short period of time. Specifically, this
pattern checks whether more than 50 TemperatureWarning complex
events are detected during an hour, which means the vaccine might
be rendered obsolete. If this occurs, the generated TemperatureAlert
is a key event in our application domain, and this complex event
will automatically invoke a smart contract in charge of storing critical
complex events in the blockchain.

4.2. Results

Next, considering the case study description, we demonstrate that
CEPchain fulfills the requirements established in Section 1. Please
note that all files used and obtained in this vaccine delivery case
study, conducted to test our CEPchain model-driven solution, have been
published as a dataset in the Mendeley Data repository (Boubeta-Puig
et al., 2021).
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4.2.1. R1: Graphically modeling event-driven smart contracts
In order to graphically model event-driven smart contracts in a

graphical way, as previously explained in Section 3 and illustrated
in Fig. 2, the following steps were followed. Firstly, our CEPchain
graphical tool allowed us to load the interface of a smart contract
and then automatically model it in a graphical way by using the
Load and Model from Caterpillar menu option. In this case study, this
interface was automatically generated from the BPMN process model
with Solidity extension modeled using the Caterpillar tool (see Fig. 9).
So, Caterpillar generated the VaccineDelivery smart contract, which
captures the underlying behavior of the modeled BPMN process, and
the CEPchain tool automatically designed its interface as a model and
validated it (see Fig. 4).

This smart contract contains a function, generated and named as reg-
isterEvent_complete by Caterpillar, which has the following three input
parameters. The _name parameter is the name of the complex event type
to be automatically registered in the blockchain, e.g. TemperatureAlert.
The _info parameter refers to all information about the complex event to
be registered, i.e. each property of the event with its value, for example:
‘‘timestamp: 1591983419, shipmentId: id1, temperatureWarnings: 53, tem-
peratureMax: 15.2, temperatureMin: -1.2’’. The elementIndex parameter
is internally used by Caterpillar to refer a particular BPMN element.

We then graphically designed the CEP domain model for our case
study, containing the TemperatureReading simple event type (see
Fig. 10). This event type has three properties: the timestamp (in epoch
format) in which the temperature was taken by a sensor located in a
shipment container; the unique shipmentId of a particular shipment,
which involves the transport of several vaccines; and the temperature
value measured at a specific time instant.

Once the smart contract and CEP domain had been modeled, the
TemperatureWarning, TemperatureWarningStatistic and TemperatureAlert
event patterns were modeled with the CEPchain tool (see Figs. 10, 11
and 7, respectively). As illustrated in Fig. 7, this is an event-driven
smart contract in which TemperatureAlert complex events, generated
by a CEP engine at runtime, can themselves automatically invoke
the registerEvent_complete function of the VaccineDelivery smart contract
previously deployed in a blockchain.

Therefore, we can state that our CEPchain tool satisfies requirement
R1, i.e. graphically modeling event-driven smart contracts.

4.2.2. R2: Automatically transforming event-driven smart contracts models
into code and then deploying this code in both a CEP engine and a
blockchain network

Once the interface of the VaccineDelivery smart contract (see Fig. 4)
had been modeled, it was automatically generated into code and stored
in the ContractName.java file. This file contains definitions of all the
functions that can be invoked. Table 3 shows the total number of Lines
of Code (LoC) automatically generated by the CEPchain tool.

To conduct the automatic deployment of a smart contract, a new
Java file, named ContractName_deploy.java, was automatically gen-
erated. This file contains only the deployment function. This file
was then automatically invoked, with a contract address being as-
signed to this smart contract by the Ethereum blockchain (in this
case, 0x0375b5851AAfd27c0DD4a52C1E06D5641480Fa5d).
Subsequently, this address was automatically registered in the graphical
contract model. Note that this address is needed to later invoke the
smart contract.
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Fig. 9. VaccineDelivery BPMN process with Solidity extension modeled with the Caterpillar tool.
Fig. 10. TemperatureWarning event pattern modeled with the CEPchain tool.

Table 3
LoCs per file automatically generated by the CEPchain tool.

File generated LoC generated

VaccineDelivery.java 208
VaccineDelivery_deploy.java 73
VaccineDelivery_invocation_TemperatureAlert.java 67
TemperatureWarning.epl 5
TemperatureWarningStatistic.epl 10
TemperatureAlert.epl 9

To address the automatic invocation, the event-driven smart con-

tract model was automatically transformed into Java code. The Con-

tractName_invocation_ PatternName.java contains the implementation of
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the functions to be invoked, i.e. the functions that were graphically
linked by a complex event in the event pattern model.

Additionally, every event pattern model was automatically trans-
formed into Esper EPL code and then deployed in an Esper engine.
Table 3 also shows the Esper EPL files and LoCs automatically gener-
ated by the CEPchain tool for this case study. Therefore, our graphical
modeling tool also fulfills requirement R2, i.e. automatically transform-
ing event-driven smart contracts models into code and then deploying
this code in both a CEP engine and a blockchain network.

4.2.3. R3: Executing off-chain CEP applications which, connected to differ-
ent data sources and sinks, automatically invoke smart contracts when event
pattern conditions are met

Once the event patterns are graphically modeled (see Figs. 7, 10
and 11), the CEPchain tool allows domain experts to define off-chain
CEP applications. These applications are composed of data sources,
event patterns and data sinks. As explained in Section 3, data sources
can be files or message queues in charge of receiving external raw and
heterogeneous data in formats such as CSV and JSON. These data are
then transformed and sent to the Esper CEP engine. By making use of
event patterns, the CEP engine can detect situations of interest (com-
plex events), and also invoke the smart contract functions specified in
the event-driven smart contract models. These complex events are then
notified through data sinks, such as files and message queues, which
could be connected to external applications like dashboards or mobile
apps.

To demonstrate that our solution allows domain experts to execute
CEP applications integrating data sources, event-driven smart contracts
and data sinks, firstly, we implemented a Java simulator that generates
Fig. 11. TemperatureWarningStatistic event pattern modeled with the CEPchain tool.
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Fig. 12. Simple and complex events detected automatically from shipment id 5 by the Esper engine.
Table 4
Simple and complex events detected automatically by the Esper engine for the vaccine
delivery case study.

Event name Event type Detected events

TemperatureReading Simple 300
TemperatureWarning Complex 102
TemperatureWarningStatistic Complex 102
TemperatureAlert Complex 2

temperature readings from five different vaccine shipments (id1, id2,
d3, id4, id5) during an hour. Temperature values are generated ran-
omly, normally between 2 and 8 ◦C; from time to time, a temperature
alue is generated out of this range.

We then defined a CEP application that received such temperature
eadings generated by the simulator and transformed them into Temper-
tureReading simple events. By using such modeled event patterns, the
EP engine generated TemperatureWarning, TemperatureWarningStatistic

and TemperatureAlert complex events in real time. Table 4 shows the
number of the simple events and complex events automatically gener-
ated by the Esper CEP engine. These complex events were then stored
in CSV files (once per complex event type). Fig. 12 depicts the simple
events (TemperatureReading) and complex events (TemperatureWarning
and TemperatureAlert) detected automatically from shipment id 5 by the
Esper engine. In particular, the following events were detected: 60 Tem-
peratureReading simple events (once every 1 min during 1 h), 51 Tem-
peratureWarning complex events for temperature readings lower than
2 ◦C, and 1 TemperatureAlert since more than 50 TemperatureWarning
events were previously generated.

Upon every TemperatureAlert pattern detection, the
registerEvent_complete function of the smart contract previously de-
ployed was automatically invoked by the Esper engine. Fig. 13 illus-
trates that this function was in fact invoked twice, storing the two
critical detected TemperatureAlert complex events in the Ethereum
blockchain. Therefore, our graphical modeling tool also fulfills require-
ment R3, i.e. executing off-chain CEP applications which, connected to
different data sources and sinks, automatically invoke smart contracts
when event pattern conditions are met.

As a result, we can conclude that CEPchain, our model-driven
approach integrating CEP and blockchain, allows end users to address
the real-time detection of abnormal vaccine temperatures and the
improvement of logistics visibility through the automatic storage of
11

critical temperature events on the public Ethereum blockchain.
4.3. Discussion

Our model-driven approach integrating CEP and blockchain is ap-
propriate for managing and storing immutably critical situations of
interest, i.e. situations that are unlikely to occur. As an example, and
as previously shown, CEPchain is adequate for vaccine delivery, since
this case study requires real-time data to be processed (temperatures)
over time in order to detect critical situations of interest. This can be
addressed by using the processing power of a CEP engine. We can
assume that a temperature alert, meaning that a particular vaccine
might be unusable from that moment, will rarely happen. Thus, man-
aging and storing these few alert events in blockchain will be neither
time-consuming nor expensive in terms of gas.

Moreover, CEPchain is a no-code platform, providing end users with
the ability to graphically define event-driven smart contracts (event
patterns in which their complex events are linked to smart contract
functions), without requiring the implementation of any code. This tool
can then automatically transform the defined graphical models into
error-free code. For example, for the vaccine delivery case study, 6
files needed to be automatically generated with a total of 372 LoCs:
24 LoCs were needed to implement the event patterns in Esper EPL,
while 348 LoCs were required to implement the VaccineDelivery smart
contract and its invocation in Java code. It is worth noting that if
CEPchain were not used, then end users would need to be experts
not only in Esper EPL (or other EPLs), but also in Solidity (or even
other smart contract languages). Although we might find an expert in
both CEP and blockchain, this expert could then make errors when
implementing event-driven smart contracts. Note that a simple error
in the implementation of a smart contract deployed in an Ethereum
blockchain could imply a significant loss of money.

Implementing the required logic of this case study by using our
model-driven approach has various benefits. Firstly, design becomes
feasible for domain experts. When defining event patterns, users do not
have to explicitly implement the sequence of steps to define what has to
be done. However, by using Solidity, programmers have to write what
must be done and how to obtain it. Secondly, errors can be avoided.
Event patterns can be graphically modeled and the generated code
is validated syntactically, facilitating changes in models. In contrast,
the order of instructions manually implemented in Solidity can affect
the correctness of the obtained smart contract. Thirdly, we obtain
expressiveness for time and events. By using CEPchain, the logic of
event-driven smart contracts can be more powerful and complete com-
pared to the logic defined by using Solidity, as Solidity currently has the
following limitations: (i) long type is not supported, being needed for
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Fig. 13. VaccineDelivery smart contract creation transaction, and invocation transactions automatically executed upon event pattern detection.
real-time timestamp; (ii) fixed point numbers are not fully supported;
they can be declared but assigned to or from (e.g. a temperature
value of 37.5 should be stored as 375); (iii) aggregation functions
as count(), max() and min() are not supported, thus complicating the
definition of logic for detecting temperature warning statistics; and
(iv) data windows and temporal operators are not supported, so it
is not possible to detect situations of interest dealing with temporal
restrictions/aspects.

According to the study conducted for MEdit4CEP (Boubeta-Puig
et al., 2015a), on which CEPchain is based, this tool has an appropriate
level of usability for the following two groups of users: experts in an
application domain but not in CEP, and experts in both a domain and
CEP. Indeed, most users reported that the graphical tool could notably
reduce the time needed to define event patterns, instead of implement-
ing them manually by using a specific EPL. As CEPchain allows domain
experts to load and automatically model a smart contract thanks to its
integration with Caterpillar, these users can model event-driven smart
contracts by means of drag and drop. This means that their validation,
model-to-text transformation and deployment in both a CEP engine and
a blockchain are transparently performed.

5. Conclusions and future work

In this paper, we proposed the integration of the CEP and blockchain
technologies through a model-driven solution, CEPchain, for graphical
event-driven smart contract design, automatic code generation and
execution in both a CEP engine and a blockchain network. CEPchain
allows domain experts to load and automatically model a smart con-
tract thanks to its integration with the Caterpillar tool, giving support
for modeling business process declarations as graphical models and
transforming them into smart contract models. These users can then
graphically design event patterns in which such smart contracts can
be associated as actions to be carried out upon pattern condition
detection. Pattern conditions are automatically transformed into Esper
EPL code, which is deployed and executed on an Esper CEP engine,
and smart contracts are transformed into Java code, which is deployed
and executed on an Ethereum blockchain. Therefore, this approach
supports event-driven smart contracts, i.e. smart contract functions can
be automatically invoked by complex events generated in real time.

This model-driven solution was validated through a real-world case
study for vaccine delivery ensuring the cold chain. More specifically,
this case study highlights that CEPchain is able to process and correlate
temperature readings taken from shipment containers with the aim
of detecting temperature alerts in real time, indicating that certain
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vaccines would become obsolete as a result of the loss of the cold chain.
This information is then registered in a blockchain, making this vaccine
supply transparent and traceable for any user. The results showed that
this proposal is adequate for integrating CEP and blockchain through
a graphical model-driven tool and can be applied to different applica-
tion domains without requiring experts in event processing and smart
contract languages.

As future work, we plan to create new model-to-text rules for
transforming the modeled event-driven smart contracts into other pro-
gramming languages such as Visual Studio and JavaScript, allowing
their deployment on other blockchain platforms like IBM Blockchain
Platform (Gupta, 2018) and Hyperledger Fabric.
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