
Direct sensitivity analysis of multibody systems with

holonomic and nonholonomic constraints via an index-3

augmented Lagrangian formulation with projections

Daniel Dopico, Francisco González, Alberto Luaces,
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Abstract

Optimizing the dynamic response of mechanical systems is often a necessary step dur-

ing the early stages of product development cycle. This is a complex problem that requires

to carry out the sensitivity analysis of the system dynamics equations if gradient-based op-

timization tools are used. These dynamics equations are often expressed as a highly non-

linear system of Ordinary Differential Equations (ODEs) or Differential-Algebraic Equations

(DAEs), if a dependent set of generalized coordinates with its corresponding kinematic con-

straints is used to describe the motion. Two main techniques are currently available to per-

form the sensitivity analysis of a multibody system, namely the direct differentiation and the

adjoint variable methods.

In this paper, we derive the equations that correspond to the direct sensitivity analysis of

the index-3 augmented Lagrangian formulation with velocity and acceleration projections.

Mechanical systems with both holonomic and nonholonomic constraints are considered. The

evaluation of the system sensitivities requires the solution of a Tangent Linear Model (TLM)

that corresponds to the Newton-Raphson iterative solution of the dynamics at configuration

level, plus two additional nonlinear systems of equations for the velocity and acceleration

projections. The method was validated in the sensitivity analysis of a set of examples, in-

cluding a five-bar linkage with spring elements, which had been used in the literature as

1

http://dx.doi.org/10.1007/s11071-018-4306-y


D. Dopico et al.

benchmark problem for similar multibody dynamics formulations, a point-mass system sub-

jected to nonholonomic constraints, and a full-scale vehicle model.

Keywords: Sensitivity analysis, Multibody system dynamics, Index-3 augmented Lagrangian

method

1 Introduction

During the last decades many different formulations of the equations of motion of multibody

systems have been derived using several coordinate sets [40, 45, 46, 33, 23]. Because sensitivity

analysis of the dynamics is essential for gradient-based design optimization and optimal control,

the sensitivity equations for several of these formulations have been derived too, in parallel

to the evolution of multibody dynamics techniques. Dynamic sensitivities, when needed, are

often calculated by means of finite differences but this procedure can be very demanding in

terms of time and the accuracy poor in many cases, especially if real finite differences are used

[19]. Other strategies to obtain them include the use of detailed analytical expressions [20, 19],

symbolic differentiation [2], or automatic differentiation [9, 10]. Two main methods have been

employed in the literature for the analytical calculation of sensitivities: forward differentiation

and the adjoint variable method [11].

As a general rule, a set of dependent coordinates is needed to write the dynamic equations

of complex systems and, assuming that these dependent coordinates are related by a set of

holonomic rheonomic constraint equations, the basic form of the dynamics equations is usu-

ally admitted to be a system of index-3 Differential-Algebraic equations (DAE system). In the

early days of multibody dynamics, the sensitivity equations for the index-3 DAE formulation

were derived, [32]. Unfortunately, the direct solution of the index-3 DAE entails some numer-

ical difficulties [8, 28] that make it convenient to reformulate the problem in some way. Since

the underlying formulation of the equations of motion is generally not useful to solve general

problems in multibody dynamics, the sensitivity equations cannot be considered useful in many

cases either. In [19] the sensitivity equations of the index-3 DAE formulation were derived as a

basis for more complex formulations. A stability analysis of the adjoint sensitivity equations was

also presented in [41].

Most of the contemporary methods to reformulate the original DAE include one or more

2



Direct sensitivity analysis of multibody systems via an index-3 augmented Lagrangian formulation

of the following techniques [3] to deal with the algebraic constraints present in the system:

reducing the index and stabilizing the original DAE [4, 27]; removing the constraints by writ-

ing the equations of motion in the configuration space [44, 47]; adding penalty or augmented

Lagrangian terms [5]; or using projections onto the constraint manifolds [6, 21, 13]. The afore-

mentioned possible choices of coordinates and techniques to write the equations of motion,

along with the different time-stepping schemes available to integrate the equations of motion,

give rise to the vast amount of methods proposed in the bibliography for the forward dynamics

of multibody systems [23].

The most popular alternative based on index reduction is the Lagrange index-1 formulation[23].

Some authors have derived and proposed the use of this formulation for sensitivity analysis of

multibody systems [7, 15, 42]. This method, however, suffers from drift-off [21] and it is not

able to deal with redundant constraints and singular configurations, very common in multibody

systems. These reasons have led to the development of more advanced formulations that do not

suffer from the above mentioned problems.

In order to circumvent the drift-off-effect of the Lagrange index-1 formulation, [4] proposed

a stabilization technique for the constraints. The sensitivity equations for Baumgarte’s formu-

lation were derived in [12] and used for design optimization. Although this formulation solves

the drift-off problem, it introduces some amount of numerical damping in the solutions and it is

still not able to deal with redundant constraints and singular configurations.

In [5] the penalty method in the context of multibody dynamics was introduced. The formu-

lation solves the problems mentioned before for index-3 and index-1 formulations and reduces

the dynamics equations to a system of ordinary differential equations (ODE), instead of the

original DAE. The sensitivity equations for this formulation are also available in [37, 38, 19]

and they were even used for the dynamic optimization of a whole vehicle in [48]. Accordingly

the penalty method is a good candidate for the optimization of industrial problems. The solu-

tions of its dynamics equations are equivalent to the original DAE for infinite penalty factors,

but in floating point computing loss-of-significance errors and ill-conditioning appear for large

penalties. Thus, the selection of the penalty factors is a sensitive issue that the analyst has to

face and, moreover, the formulation tends to dissipate a non-negligible amount of energy. These

difficulties point to the need for more advanced formulations for both dynamics and sensitivities.

Another option is deriving the sensitivity equations of multibody formulations based on in-
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dependent coordinates: in [1] the dynamics sensitivities based on Kane equations [34] were

covered; in [20], the sensitivity analysis using the Matrix R formulation was accomplished; in

[31] the sensitivity analysis of the recursive Maggi’s formulation was solved.

The consideration of nonholonomic constraints in the system makes the problem more com-

plex and requires special methods to deal with them, as pointed out in [43], with the use of

the virtual power principle [34, 23] for formulations in minimal coordinates. In the case of

formulations in dependent coordinates, the use of special penalty terms was proposed in [5]

to consider nonholonomic constraints in the framework of an augmented Lagrangian formu-

lation. The Index-3 Augmented Lagrangian formulation with Projections (ALI3-P formulation)

for holonomic and nonholonomic systems presented in [16] outperforms the behavior of the

precedent penalty and augmented Lagrangian formulations in [5], sharing the advantages of

those and removing many of their drawbacks. It represents the extension of the formulations

presented in [6, 13] to nonholonomic systems and their generalization to more advanced inte-

gration schemes. This formulation constitutes a good exponent of what it should be expected

from a modern multibody method: it is efficient, accurate, and robust; it exactly satisfies the con-

straints at position, velocity, and acceleration levels; it has predictable and controllable energy

decaying properties [26, 24, 25]; it can deal with redundant constraints and singular configu-

rations without special considerations [29] and it can handle both holonomic (scleronomic and

rheonomic) and nonholonomic constraints.

A considerable number of non-academic multibody systems are currently solved using the

ALI3-P formulation, since complex phenomena like contact with friction and tire forces [17, 39],

flexible bodies [14], or even multiphysics [35] can be naturally accommodated to the formula-

tion. Given the fact that the evaluation of the sensitivity equations relies on the previous solution

of the forward dynamics, obtaining the sensitivity equations for the ALI3-P formulation is a valu-

able contribution for the optimization and control of such systems. In general, it is advisable,

and more rigorous, to use the same formulation for dynamics and sensitivity analysis. For in-

stance, if a forward-dynamics simulation has been carried out using the ALI3-P method, using

the Matrix R approach to evaluate the sensitivity terms would require the evaluation of the

velocity transformation terms and their derivatives at each integration time-step, with the cor-

responding computational overhead. Moreover, the Matrix R method does not explicitly provide

constraint reactions, and so the objective function could not be explicitly dependent on them, a

problem that does not affect the ALI3-P formulation.
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The sensitivity equations of the ALI3-P formulation derived in this work are novel and

present important differences with respect to their counterparts for the formulations already

developed in [20, 19]. In particular, the derivation of the sensitivities of the projections onto

the constraint manifolds is a significant contribution of this work. This paper also shows that

correctly evaluating the sensitivity of the projections is crucial to obtain accurate solutions in

systems with nonholonomic constraints. The properties of the newly proposed method have

been compared to those of existing ones in terms of accuracy, stability, and efficiency in the

sensitivity analysis of a set of examples.

2 The ALI3-P formulation for systems with nonholonomic constraints

The equations of motion of the ALI3-P formulation were thoroughly described in [6] and [13]

and subsequently extended to nonholonomic systems in [16]. The generalized-α integration

scheme was used in [16]; this integrator is replaced here with the Newmark formulas [36] to

obtain a simpler version of the algorithm.

Let us consider a multibody system modeled in terms of a set of parameters, ρ ∈ Rp, with

q (ρ, t) ∈ Rnc dependent coordinates related by m holonomic

Φ (q,ρ, t) = 0 (1)

and m̌ nonholonomic constraints

Φ̌ (q, q̇,ρ, t) = A (q,ρ, t) q̇ + b (q,ρ, t) = 0 (2)

Eq. (2) is expressed at the velocity level and, given the nonholonomic nature of these con-

straints, no configuration-level equivalent expression exists for it. Eq. (1) can be differentiated

with respect to time to obtain the velocity-level expression of the holonomic constraints

Φ̇ (q, q̇,ρ, t) = Φqq̇ + Φt = 0 (3)

where Φq ≡ ∂Φ/∂q ∈ Rm×nc is the Jacobian matrix of the holonomic constraints, and Φt ≡

∂Φ/∂t. Differentiation of Eqs. (3) and (2) with respect to time yields the acceleration-level
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constraint equations

Φ̈ (q, q̇, q̈,ρ, t) = Φqq̈ + Φ̇qq̇ + Φ̇t = 0 (4)

˙̌Φ (q, q̇, q̈,ρ, t) = Aq̈ + Ȧq̇ + ḃ = 0 (5)

The ALI3-P algorithm solves the system dynamics through an iterative algorithm in which

only the configuration-level constraints Φ = 0 are enforced. Simplifying the generalized-α ALI3-

P equations formulated in [16], the dynamic equilibrium at a single time step, tn+1, can be

established as

[
Mq̈ + ΦT

qλ
∗(i+1) + ΦT

qαΦ
]
n+1

= Qn+1 (6a)

λ
∗(i+1)
n+1 = λ

∗(i)
n+1 +αΦ

(i+1)
n+1 ; i > 0. (6b)

where M (q,ρ) ∈ Rnc×nc is the system mass matrix, term Q (q, q̇,ρ) ∈ Rnc represents the

generalized applied forces and λ∗ (ρ, t) ∈ Rm are approximate Lagrange multipliers, evaluated

iteratively and converging to the exact solution of the original index-3 DAE system, λ, when i→

∞. The Lagrange multipliers of the previous integration time-step are usually taken to start the

iterative process in Eq. (6b), λ∗(1)
n+1 = λ∗

n. Termα ∈ Rm×m contains the penalty factors associated

with the holonomic constraints; an interpretation of its physical meaning was provided in [30].

The dynamics equations (6) are usually combined with the integrator expressions, adopt-

ing the generalized coordinates q as primary variables, and solved through a Newton-Raphson

iterative procedure. The Newmark method formulas are

q̇n+1 =
γ

βh
qn+1 + ̂̇qn ; where ̂̇qn = − γ

βh
qn −

(
γ

β
− 1

)
q̇n − h

(
γ

2β
− 1

)
q̈n (7a)

q̈n+1 =
1

βh2
qn+1 + ̂̈qn ; where ̂̈qn = − 1

βh2
qn −

1

βh
q̇n −

(
1

2β
− 1

)
q̈n (7b)

where h stands for the integration step-size and β and γ are scalar parameters of the integrator;

subscript n denotes the time step. If β = 0.25 and γ = 0.5, Eqs. (7) become the well-known

implicit trapezoidal rule method. The integrator equations (7) are introduced in the equations

of motion (6a) and the dynamic equilibrium established at time tn+1 to formulate the dynamics
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as the following system of nonlinear equations

[f (qn+1,ρ)](i) = 0 = βh2M̂̈qn +
[
Mq + βh2ΦT

q

(
λ∗(i+1) +αΦ

)
− βh2Q

]
n+1

(8)

with λ∗(i+1)
n+1 given by Eq. (6b).

In each iteration i of the solution process the generalized coordinates, q
(i)
n+1, are updated

with an increment ∆q(i+1), evaluated as

[
∂f (qn+1,ρ)

∂qn+1

](i)

∆q(i+1) = − [f (qn+1,ρ)](i) (9)

with the approximate tangent matrix

[
∂f (qn+1,ρ)

∂qn+1

]
= M + γhC + βh2

(
ΦT

qαΦq + K
)

(10)

where K = −Qq = −∂Q/∂q and C = −Qq̇ = −∂Q/∂q̇. It was suggested in [13] that the

approximate Lagrange multipliers λ∗ are also updated during this iterative process with Eq.

(6b). Upon convergence, the generalized coordinates at time-step n + 1, qn+1 are obtained.

The integrator expressions (7) then yield the approximate sets of generalized velocities and

accelerations q̇∗
n+1 and q̈∗

n+1.

It must be stressed that, as a configuration-level expression does not exist for nonholonomic

constraints, the algorithm in Eqs. (6)–(10) does not enforce the kinematic relations in Eq. (2).

Actually, the velocities q̇∗
n+1 and accelerations q̈∗

n+1 obtained upon convergence of the algo-

rithm do not satisfy exactly the velocity- and acceleration-level expressions of the holonomic

constraints (3) and (4) either. These velocity- and acceleration-level expressions must be satis-

fied through the projection of the generalized velocities and accelerations onto their respective

constraints manifolds. The correction introduced by the projections is usually small in the case of

holonomic constraints, because their configuration-level expression has been satisfied as a result

of the convergence of the Newton-Raphson iteration. In the case of nonholonomic constraints,

however, the whole contribution of the constraint to the dynamics is imposed by the projections.
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2.1 Velocity and acceleration projections

The velocity and acceleration projections arise as the solution of a minimization process [16]

that consists on finding the velocities q̇ and accelerations q̈ which are closest, in the sense of a

norm defined by the selected projection matrix, to the ones delivered by the Newton-Raphson

iteration, q̇∗
n+1 and q̈∗

n+1, while fulfilling the kinematic constraints in Eqs. (2)–(5). For the sake

of clarity, both the holonomic and the nonholonomic constraints in Eqs. (2) and (3) will be

treated together at this stage of the algorithm, grouping the velocity-level constraints in term

Φ̄ (q, q̇,ρ, t) =

Φ̇

Φ̌

 = Āq̇ + b̄ = 0 (11)

where

Ā =

 Φq

A

 ; b̄ =

 Φt

b

 (12)

The total number of velocity-level constraints is m̄ = m+ m̌.

The projection of velocities is carried out with the iterative algorithm

(
P + ςĀTᾱĀ

)
q̇(i+1) = Pq̇∗ − ςĀTᾱb̄− ĀTσ̄(i+1) (13a)

σ̄(i+1) = σ̄(i) + ςᾱΦ̄ (13b)

where P is the n × n projection matrix, σ̄ contains the m̄ Lagrange multipliers of the mini-

mization problem associated with the velocity projection; ς is a scalar weighting constant and

ᾱ ∈ Rm̄×m̄ is a penalty matrix that now includes the penalty factors for the holonomic and

nonholonomic constraint equations, α̌ ∈ Rm̌×m̌, as well

ᾱ =

 α 0m×m̌

0m̌×m α̌

 (14)
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Similar equations are used to project the accelerations

(P +ςĀTᾱĀ
)
q̈(i+1) = Pq̈∗ − ςĀTᾱ

(
˙̄Aq̇ + ˙̄b

)
− ĀTκ̄(i+1) (15a)

κ̄(i+1) = κ̄(i) + ςᾱ ˙̄Φ (15b)

where κ̄ are the Lagrange multipliers of the acceleration minimization problem and ˙̄Φ is a vector

containing both the holonomic, Φ̈, and nonholonomic, ˙̌Φ, constraints at acceleration level,

˙̄Φ =

Φ̈

˙̌Φ

 = Āq̈ + ˙̄Aq̇ + ˙̄b = 0 (16)

Several options exist for the selection of the projection matrix P and the weighting constant

ς. A possibility is using the mass-orthogonal projections in [6]. In this case

P = M (17a)

ς = 1 (17b)

The mass-stiffness-damping-orthogonal projections in [13] are also frequently found in multi-

body applications. The extension of these to the nonholonomic case yields the following expres-

sions [16]

P = M + γhC + βh2K− ςATα̌A (18a)

ς = βh2 (18b)

3 Sensitivity analysis of the ALI3-P formulation

Let ψ ∈ Ro be a collection of o objective functions defined in terms of the parameters ρ, the

generalized coordinates and their derivatives q, q̇, q̈, the Lagrange multipliers of the dynamics

λ∗ and, possibly, the Lagrange multipliers of the projections, σ̄ and κ̄. If t0 and tF are the starting

and final time of the system motion, then the objective functions can be expressed as the sum of
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a term that depends on the final state of the system and an integral from t0 to tF .

ψ = w (q, q̇, q̈,λ∗, σ̄, κ̄,ρ)F +

∫ tF

t0

g (q, q̇, q̈,λ∗, σ̄, κ̄,ρ) dt (19)

where w ∈ Ro and g ∈ Ro are column vectors of o scalar functions of the variables and the

subscript F stands for evaluation at time tF . The sensitivity of the cost functions is expressed by

the gradient

∇ρψT =
∂ψ

∂ρ
=
(
wqqρ + wq̇q̇ρ + wq̈q̈ρ + wλ∗λ∗

ρ +wσ̄σ̄ρ + wκ̄κ̄ρ + wρ

)
F

+

∫ tF

t0

(
gqqρ + gq̇q̇ρ + gq̈q̈ρ + gλ∗λ∗

ρ +gσ̄σ̄ρ + gκ̄κ̄ρ + gρ
)

dt

(20)

where the subscripts stand for derivatives. In Eq. (20) the derivatives of functions w and g are

known, since the objective function has a known expression. This is not the case of magnitudes

qρ, q̇ρ, q̈ρ ∈ Rnc×p, λ∗
ρ ∈ Rm×p, and σ̄ρ, κ̄ρ ∈ Rm̄×p. These are the sensitivity matrices solution

of a set of p DAE systems called the Tangent Linear Model (TLM) of the equations of motion,

plus p velocity and p acceleration sensitivity projections.

The TLM of the dynamics equations can be obtained differentiating Eq. (6) with respect of

each one of the p system parameters

dM

dρk
q̈ + M

dq̈

dρk
+

dΦT
q

dρk
(λ∗ +αΦ) + ΦT

q

(
dλ∗(i+1)

dρk
+α

dΦ

dρk

)
=

dQ

dρk
; (21a)

dλ∗(i+1)

dρk
=

dλ∗(i)

dρk
+α

dΦ

dρk
, i > 0; k = 1, . . . , p (21b)

and following the same strategy employed for the dynamics, the iteration of the sensitivities of

the Lagrange multipliers has to be started as

dλ
∗(1)
n+1

dρk
=

dλ∗
n

dρk
(22)

10



Direct sensitivity analysis of multibody systems via an index-3 augmented Lagrangian formulation

The differentiation of the velocity projections (13) with respect to the parameters ρ yields

[
dP

dρk
+ ς

(
dĀT

dρk
ᾱĀ + ĀTᾱ

dĀ

dρk

)]
q̇ +

(
P + ςĀTᾱĀ

) dq̇(i+1)

dρk

=
dP

dρk
q̇∗ + P

dq̇∗

dρk
− dĀT

dρk

(
σ̄ + ςᾱb̄

)
− ĀT

(
dσ̄(i+1)

dρk
+ ςᾱ

db̄

dρk

) (23a)

dσ̄(i+1)

dρk
=

dσ̄(i)

dρk
+ ςᾱ

dΦ̄

dρk
(23b)

Similarly, differentiating the acceleration projections (15) one obtains

[
dP

dρk
+ ς

(
dĀT

dρk
ᾱĀ + ĀTᾱ

dĀ

dρk

)]
q̈ +

(
P + ςĀTᾱĀ

) dq̈(i+1)

dρk

=
dP

dρk
q̈∗ + P

dq̈∗

dρk
− dĀT

dρk

[
κ̄+ ςᾱ

(
˙̄Aq̇ + ˙̄b

)]
− ĀT

[
dκ̄(k+1)

dρk
+ ςᾱ

(
d ˙̄Aq̇

dρk
+

d ˙̄b

dρk

)] (24a)

dκ̄(i+1)

dρk
=

dκ̄(i)

dρk
+ ςᾱ

d ˙̄Φ

dρk
(24b)

Expanding the total derivatives and grouping them together in tensor-matrix notation leads

to the following set of p DAEs for the TLM of the dynamics in Eq. (21)

(Mqq̈∗ + ΦT
qq (λ∗ +αΦ) + ΦT

qαΦq + K
)
qρ + Mq̈∗

ρ + Cq̇∗
ρ + ΦT

qλ
∗(i+1)
ρ

= Qρ −Mρq̈
∗ −ΦT

qρ (λ∗ +αΦ)−ΦT
qαΦρ

(25a)

λ
∗(i+1)
ρ = λ

∗(i)
ρ +α (Φqqρ + Φρ) (25b)

where the following terms are tensor-vector products: Mqq̈ ≡Mq⊗ q̈, ΦT
qq (λ∗ +αΦ) ≡ ΦT

qq⊗

(λ∗ +αΦ), Mρq̈ ≡Mρ ⊗ q̈, ΦT
qρ (λ∗ +αΦ) ≡ ΦT

qρ ⊗ (λ∗ +αΦ).

The corresponding system of equations for the sensitivity of the projected velocities (23) is

(P + ςĀTᾱĀ
)
q̇

(i+1)
ρ = Pq̇∗

ρ +
dP

dρ
(q̇∗ − q̇)

− ĀT
q

(
σ̄ + ςᾱΦ̄

)
qρ − ĀT

ρ

(
σ̄ + ςᾱΦ̄

)
− ĀT

(
σ̄

(i+1)
ρ + ςᾱbρ

) (26a)

σ̄
(i+1)
ρ = σ̄

(i)
ρ + ςᾱ

dΦ̄

dρ
(26b)
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and the system for the projected accelerations (24) takes the form

(P + ςĀTᾱĀ
)
q̈

(i+1)
ρ = Pq̈∗

ρ +
dP

dρ
(q̈∗ − q̈)

− ĀT
q

(
κ̄+ ςᾱ ˙̄Φ

)
qρ − ĀT

ρ

(
κ̄+ ςᾱ ˙̄Φ

)
− ĀT

(
κ̄

(i+1)
ρ + ςᾱcρ

) (27a)

κ̄
(i+1)
ρ = κ̄

(i)
ρ + ςᾱ

d ˙̄Φ

dρ
(27b)

where

dΦ̄

dρ
= Āq̇ρ + bρ (28)

d ˙̄Φ

dρ
= Āq̈ρ + cρ (29)

bρ =
(
Āqq̇ + b̄q

)
qρ + Āρq̇ + b̄ρ = ˙̄Aqρ + Φ̄ρ (30)

cρ =
(
Āqq̇ + ˙̄A + b̄q

)
q̇ρ +

(
Āqq̈ + ˙̄Aqq̇ + ˙̄bq

)
qρ

+ Āρq̈ + ˙̄Aρq̇ + ˙̄bρ = 2 ˙̄Aq̇ρ + ˙̄Φqqρ + ˙̄Φρ

(31)

It must be noted that term dP/dρ depends on the selection of the projection matrix. For all

the numerical experiments solved in this work, the mass-orthogonal projections, P = M, ς = 1

will be used.

3.1 Algorithm implementation

The evaluation of the numerical sensitivities of a mechanical system must take place after the

system dynamics has been solved and integrated, using to this end the expression in Section 2.

Once the dynamics is known, it is possible to proceed to the evaluation and integration of the

system sensitivities.

The TLM in Eqs. (25) features four sets of unknowns, namely qρ, q̇∗
ρ, q̈∗

ρ, and λ∗
ρ. This TLM

requires 2ncp initial conditions in the form

qρ (t0) = qρ0 ; q̇ρ (t0) = q̇ρ0 (32)
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These initial conditions have to satisfy the following constraint equations

dΦ (t0)

dρ
= 0→ [Φqqρ]0 = −Φρ0 (33a)

dΦ̄ (t0)

dρ
= 0→

[
Āq̇ρ

]
0

= − [bρ]0 (33b)

Eqs. (25) can be reduced to a nonlinear system of equations with the sensitivities qρ and λ∗
ρ

as only unknowns introducing in Eq. (25a) the numerical integrator expressions.

If the Newmark integration scheme is used, then

q̇∗
ρ,n+1 =

γ

βh
qρ,n+1 + ̂̇qρ,n ; where

̂̇qρ,n =
−γ
βh

qρ,n −
(
γ

β
− 1

)
q̇ρ,n − h

(
γ

2β
− 1

)
q̈ρ,n

(34a)

q̈∗
ρ,n+1 =

1

βh2
qρ,n+1 + ̂̈qρ,n ; where

̂̈qρ,n = − 1

βh2
qρ,n −

1

βh
q̇ρ,n −

(
1

2β
− 1

)
q̈ρ,n

(34b)

Introducing Eqs. (34) in Eq. (25a), the TLM becomes, at time t = tn+1,

[M + γhC + βh2 (Mqq̈∗ + ΦT
qq (λ∗ +αΦ) + ΦT

qαΦq + K
)]

qρ

= βh2
(
Qρ −Mρq̈

∗ −ΦT
qρ (λ∗ +αΦ) −ΦT

qαΦρ −ΦT
qλ

∗
ρ −M̂̈qρ,n −Ĉ̇qρ,n) (35a)

λ
∗(i+1)
ρ = λ

∗(i)
ρ +α (Φqqρ + Φρ) (35b)

Note that both sides in Eq. (35a) were scaled with βh2 to match the expression of the system

dynamics in Eq. (8). Equation (35a) is a linear system of equations in qρ; even though, an iter-

ative solution process is required to ensure the convergence of the sensitivities of the Lagrange

multipliers, λ∗
ρ, which enter the right-hand side of Eq. (35a). Accordingly, this equation must be

solved together with the iterative update provided in Eq. (35b). Upon convergence, the values of

the sensitivities qρ,n and λ∗
ρ,n are known, and the approximate values of the sensitivities of the

velocities and accelerations, q̇∗
ρ,n and q̈∗

ρ,n can be obtained from the integrator equations, (34).

Finally, the sensitivities of the projected velocities and accelerations, q̇ρ,n and q̈ρ,n are obtained

from the solution of the iterative processes in Eqs. (26)–(31). During this stage the sensitivities

of the Lagrange multipliers of the projections, σ̄ρ and κ̄ρ, are evaluated as well.
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The evaluation of terms ̂̇qρ,n and ̂̈qρ,n at time t0 requires the availability of the initial sen-

sitivities of the system accelerations, q̈ρ0. Similarly, an initial value of the sensitivities of the

Lagrange multipliers, λ∗
ρ0 is needed to start the iterative process in Eq. (25b). Both these terms

can be provided at t = t0 by means of an index-1 direct sensitivity algorithm, such as the penalty

or the index-1 augmented Lagrangian (ALI1) formulations described in [19].

4 Numerical experiments

The formulation described in Section 3 was tested in the sensitivity analysis of three mechanical

systems.

4.1 Five-bar mechanism

The first test problem is a two-degree-of-freedom five-bar linkage, shown in Fig. 1. The five bars

are connected by revolute joints at points A, 1, 2, 3, and B. Points A and B are fixed to the

ground. The masses of the rods are mA1 = 1 kg, m12 = 1.5 kg, m23 = 1.5 kg, and m3B = 1 kg.

The rotational moments of inertia are evaluated assuming an uniform mass distribution in each

rod. The system moves under gravity effects, g = 9.81 m/s2 along the negative vertical direction,

and is subjected to the action of two linear springs with elastic constants k1 = k2 = 100 N/m.

The natural lengths of these springs are the system parameters, ρ = [L01, L02]T, and their initial

values are selected to match the initial configuration shown in Fig. 1, L01 =
√

22 + 12 m and

L02 =
√

22 + 0.52 m. The sensitivities of this system are well known because they were evaluated

in previous research using different formulations and approaches [20, 19].

The ALI3-P formulation was used to conduct the sensitivity analysis of this mechanism with

the following objective function, dependent on the solution of the dynamics equations

ψ =

∫ tF

t0

(r2 − r20)T (r2 − r20) dt (36)

where r2 stands for the global position of point 2, r20 is the position of point 2 at time t0, and

tF is set to 5 s. This objective function has an interesting physical interpretation: minimizing

the objective function in Eq. (36) is equivalent to finding the natural lengths of the springs for
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Figure 1: The five-bar mechanism used as test problem

which the initial position given in Fig. 1 is a static equilibrium configuration.

4.2 Nonholonomic two point-mass system

The second test example is a double point-mass system, shown in Fig. 2, and used in [16]

to validate the ALI3-P formulation for systems with nonholonomic constraints. The two point

masses move on the xy plane; the only external action on the system is the force fB acting along

the y direction on mass B, whose magnitude is chosen as parameter in this example.

Figure 2: A double point-mass system featuring a nonholonomic constraint

The values of the point masses are mA = 5 kg and mB = 7 kg. The system motion can be

described using five generalized coordinates, namely the x and y coordinates of points A and B

and the angle θ between the global x-axis and the segment defined by points A and B, together

with the holonomic constraint

Φ = yB − yA − (xB − xA) tan θ = 0 (37)
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A nonholonomic constraint is added to enforce that the velocity of point A is always aligned

with segment A-B

Φ̌ = (yB − yA) ẋA − (xB − xA) ẏA = 0 (38)

Initially, xA = 1 m, xB = 3 m, yA = yB = 1 m, and both masses are moving with ẋA = ẋB = 1

m/s, while ẏA = ẏB = 0. The required output of this problem is the evaluation of the system

sensitivities with respect to parameter ρ = fB during a 5 s forward-dynamics simulation.

4.3 Buggy vehicle

As a third test example, a full-scale three-dimensional vehicle model was developed, represent-

ing a four-wheeled buggy vehicle that features an articulated suspension system. This model

consists of 18 rigid bodies, including the tubular framework, the wheels and the suspension

parts. The multibody model is defined by means of natural, or fully Cartesian, coordinates plus

some additional distance and angle coordinates (mixed coordinates). In total, 168 dependent

coordinates are used, along with 154 constraints in order to enforce the rigid-body nature of

each element and each kind of joint between each pair of bodies. This system features 14 de-

grees of freedom, namely six for the chassis, four for the suspension, and four more for each

wheel. The steering mechanism does not introduce any additional degree of freedom since it is

kinematically guided.

External forces acting on the vehicle, such as gravity, wheel-ground interactions, and braking

and throttling actions on the wheels are considered. The vehicle follows a straight path at a

constant speed over a flat terrain, until a transverse step is found at a certain distance from the

starting point, and the wheels have to abruptly descend a step of 0.01 m. The purpose of the

simulation is to compute the sensitivity of the system with respect to the natural length, the

stiffness and the damping parameters

ρT =
[
kfront, krear, cfront, crear

]
(39)

of the suspension of the front and rear wheels in order to minimize the fourth power vibration
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Figure 3: A view of the buggy vehicle, depicting the point and vector coordinates used in the numerical model

dose value of the chassis ψ, which is a measure of the riding comfort according to ISO 2631-1:

ψ =

∫ tF

t0

z̈4 dt (40)

4.4 Reference formulations

The numerical results obtained with the ALI3-P formulation reported in Section 5 were validated

against the solutions provided by sensitivity analysis formulations previously published in the

literature. In particular, the index-1 DAE and penalty formulations with their corresponding sen-

sitivity analysis equations described in [19] were used to provide reference results. The Matrix

R formulation [20], was used as well to evaluate the correctness of the results for the vehicle in

Section 4.3.

The index-1 DAE formulation obtains the system accelerations and Lagrange multipliers from

the direct solution of the equations of motion

 M ĀT

Ā 0


 q̈

λ

 =

 Q

− ˙̄Aq̇− ˙̄b

 (41)
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The numerical integration of Eq. (41) will lead to drift-off errors because the kinematic con-

straints are not stabilized. The penalty formulation solves this problem by making the Lagrange

multipliers proportional to the violation of constraints at the configuration, velocity, and accel-

eration levels, which reduces the system of DAEs in Eq. (41) to a system of ODEs

M̄q̈ = Q̄ (42)

where

M̄ = M + ĀTαĀ (43a)

Q̄ = Q− ĀTα
(

˙̄Aq̇ + ˙̄b + 2ωξ
(
Āq̇ + b̄

))
+ ω2ΦT

qαΦ (43b)

Terms ξ and ω are stabilization parameters that play a role similar to those in Baumgarte’s

method [4].

The direct sensitivity analysis equations for the index-1 DAE formulation are

 M ĀT

Ā 0


 q̈ρ

λρ

 =

 Qρ −Mρq̈− ĀT
ρλ−Cq̇ρ −

(
Mqq̈ + ĀT

qλ+ K
)
qρ

cρ − Āρq̈ + cq̇q̇ρ −
(
Āqq̈− cq

)
qρ

 (44)

where

cq = − ˙̄Aqq̇− ˙̄bq (45a)

cq̇ = −Āqq̇− ˙̄A− b̄q (45b)

cρ = − ˙̄Aρq̇− ˙̄bρ (45c)

The expression of the gradient ∇ρψ for the index-1 DAE formulation is

∇ρψT = (wqqρ + wq̇q̇ρ + wq̈q̈ρ + wλλρ + wρ)F +∫ tF

t0

(gqqρ + gq̇q̇ρ + gq̈q̈ρ + gλλρ + gρ) dt
(46)

The direct sensitivity analysis equations for the penalty method read

M̄q̈ρ + C̄q̇ρ +
(
K̄ + M̄qq̈

)
qρ = Q̄ρ − M̄ρq̈ (47)
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where

K̄ = −∂Q̄

∂q
, C̄ = −∂Q̄

∂q̇
(48)

The objective function for the penalty formulation may include terms that depend on its approx-

imate Lagrange multipliers λ∗ [38]

ψ = w (qF , q̇F , q̈F ,ρF ,λ
∗
F ) +

∫ tF

t0

g (q, q̇, q̈,ρ,λ∗) dt (49)

Accordingly, the expression of gradient ∇ρψ in this case is

∇ρψT =
dψ

dρ
=
[
wqqρ + wq̇q̇ρ + wq̈q̈ρ + wρ + wλ∗λ∗

ρ

]
F

+∫ tF

t0

[
gqqρ + gq̇q̇ρ + gq̈q̈ρ + gρ + gλ∗λ∗

ρ

]
dt

(50)

where

λ∗
ρ = α

(
d ˙̄Φ

dρ
+ 2ξω

dΦ̄

dρ
+ ω2 dΦ̃

dρ

)
, (51a)

d ˙̄Φ

dρ
=Āq̈ρ +

(
Āqq̇ + ˙̄A + b̄q

)
q̇ρ

+

(
Āqq̈ +

(
˙̄A
)
q

q̇ +
(

˙̄b
)
q

)
qρ + Āρq̈ +

(
˙̄A
)
ρ

q̇ +
(

˙̄b
)
ρ
,

(51b)

dΦ̄

dρ
= Āq̇ρ +

(
Āqq̇ + b̄q

)
qρ + Āρq̇ + b̄ρ , (51c)

dΦ̃

dρ
= Āqρ + Φ̃ρ , (51d)

Φ̃ =

 Φ

0m̌×1

 (51e)

The Matrix R formulation for holonomic systems transforms the original DAE into a set of

ODEs by means of the following transformations of velocities and accelerations,

q̇ = Rż− SΦt (52a)

q̈ = Rz̈− S
(
Φ̇qq̇− Φ̇t

)
= Rz̈ + Sc (52b)

where ż is a set of independent generalized velocities and matrices S and R are, respectively,
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a right inverse of the constraints Jacobian matrix, Φq, and a basis of its nullspace, if no redun-

dant constraints are present. Only holonomic constraints were considered in Eqs. (52) for the

sake of simplicity, because the extension of this formulation to nonholonomic systems is not

straightforward.

The dependent velocities, accelerations and virtual displacements can be expressed in terms

of the independent degrees of freedom by means of these matrices to write the system dynamics

equations as:

(
RTMR

)
z̈ = RT (Q−MSc) (53)

which is a system of ODEs whose size equals the number of degrees of freedom of the system.

The detailed expression of the sensitivity analysis terms for the Matrix R formulation is provided

in [20].

5 Results

The methods described in Sections 2–3 were implemented as MATLAB code and applied to

the simulation of the first two numerical experiments in Sections 4.1 and 4.2 using MATLAB

R2016a 64-bit. The method described in Section 3 was also implemented as a general sensitivity

formulation in the framework of MBSLIM [18] in Fortran 2008 and applied to the simulation of

the buggy vehicle in Section 4.3. The ALI3-P formulation for the dynamics, described in Section

2, was already available in MBSLIM. The numerical experiments were performed running the

code in an Intel Core i7-6700K CPU at 4.00 GHz running Windows 10 Pro built with Fortran

Intel Parallel Studio XE 2018.

5.1 Five-bar mechanism

The 5 s forward-dynamics simulation of the motion of the five-bar linkage was carried out

with the ALI3-P formulation with an integration step-size h = 10−2 s. A single penalty factor

α = 107 was applied to all the kinematic constraints. The values of the integration constants

were adjusted to β = 0.25 and γ = 0.5 so that Eqs. (7) and (34) matched the trapezoidal
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rule scheme. The integrator tolerance was set to 10−12, limiting with this value the maximum

admissible difference in the norm of the integration variables between two consecutive solver

iterations. The number of velocity and acceleration projections per time-step was set to five. The

sensitivity analysis was conducted immediately after each integration time-step was completed.

The simulation was repeated using the penalty formulation in Eq. (42) and the trapezoidal

rule in a Newton-Raphson iteration scheme to integrate the motion and the corresponding sen-

sitivity equations (47). The same penalty factor and tolerances as in the ALI3-P case were used.

The stabilization parameters were set to ξ = 1 and ω = 10.
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Figure 4: Time-history of the x- and y-velocity components of point 2 of the five-bar linkage
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Figure 5: Components of the mechanical energy of the five-bar linkage

Both methods delivered very similar results in the integration of the dynamics. Fig. 4 shows

the x- and y- components of the velocity of point 2 obtained with each formulation. Fig. 5
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contains the time-history of the kinetic, potential gravitatory and potential elastic energies of the

mechanism. All the forces that act on the system are conservative; accordingly, the mechanical

energy remained constant during motion. The obtained results matched those obtained with

other formulations, such as velocity projection methods, reported in [20].
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Figure 6: Sensitivities x2,L01 and x2,L02 of the x coordinate of point 2 in the five-bar linkage with respect to the
system parameters
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Figure 7: Sensitivities ẋ2,L01 and ẋ2,L02 of the x component of the velocity of point 2 in the five-bar linkage with
respect to the system parameters

Figures 6–8 show the time-history of the sensitivities of the x-coordinate of point 2 at the

configuration, velocity, and acceleration levels, with respect to the system parameters L01 and

L02. The gradient ∇ρψ = [ dψ/dL01, dψ/dL02 ] obtained upon completion of the integration

of the sensitivities at time tF = 5 s with the ALI3-P formulation was∇ρψ = [ −4.2294, 3.2112 ].

The penalty formulation yielded∇ρψ = [ −4.2294, 3.2111 ]. These results fall within the range
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reported in [19].
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It must be mentioned that the five-bar linkage is subjected only to holonomic constraints

and, accordingly, the contribution of the velocity and acceleration projections in Eqs. (26) and

(27) to the sensitivity analysis is relatively small. The corrections introduced in q̇ρ and q̈ρ by

the projections do not modify significantly the values q̇∗
ρ and q̈∗

ρ obtained after the solution of

the TLM in Eq. (35). Fig. 9 shows the differences in the sensitivities of the x-component of the

acceleration of point 2 when the velocity and acceleration projections are omitted altogether

during the analysis. The gradient of the objective function obtained at the end of the integra-

tion process was also modified slightly, its new value being ∇ρψ = [ −4.2276, 3.2062 ]. In

systems with nonholonomic constraints, however, the sensitivity of the projections could not
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be neglected, because these constraints are not enforced by the Newton-Raphson iteration in

Eq. (9), as discussed in Section 5.2. This would also be the case in systems with rheonomic

constraints.

5.2 Nonholonomic two point-mass system

The forward-dynamics simulation of the 5 s motion of the double point-mass system was carried

out with the ALI3-P formulation using an integration step-size h = 10−3 s. Every other parameter

in the method was assigned the same value as in Section 5.1. The dynamics was also simulated

with the penalty formulation, with h = 10−3 s, α = 105, ξ = 1, and ω = 10, using the trapezoidal

rule as integrator with a tolerance of 10−12.
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Figure 10: Accelerations of points A and B during motion of the double point-mass system

Figure 10 shows the accelerations of points A and B in the double point-mass system; both

methods delivered almost identical results. As expected, the acceleration of point B does not

change with time.

After completing the integration of the dynamics, the sensitivity analysis of this problem

was carried out with the ALI3-P algorithm in Section 3.1 and compared to the results delivered

by the index-1 DAE method in Eq. (44). The results are summarized in Fig. 11. Both formula-

tions resulted in identical sensitivities in practice. It must be noted that the projection steps in

Eqs. (26) and (27) are now absolutely necessary to correctly evaluate the sensitivities of the

velocities and the accelerations, q̇ρ and q̈ρ, if the ALI3-P method is used. The nonholonomic
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Figure 11: Acceleration-level sensitivities of the double point-mass system

kinematic constraint (38) does not enter in the TLM in Eq. (35) and the integration scheme in

Eqs. (34) consistently returns ẍ∗A = 0 and ÿ∗A = 0 during the whole motion. The correct val-

ues of ẍA and ÿA, shown in Fig. 11, were imposed entirely during the projection step in Eqs.

(27). The corrections introduced by the projections were also necessary to properly evaluate the

acceleration-level sensitivity of angle θ, θ̈ρ, and the velocity-level sensitivities ẋA,ρ, ẏA,ρ, and θ̇ρ.

-0.02

-0.015

-0.01

-0.005

0

0.005

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

V
er

ti
ca

l 
co

o
rd

in
at

e 
o

f 
p

o
in

t 
1

, 
(m

)

Time (s)

Matrix-R

ALi3-P

Figure 12: Vertical coordinate of point 1 during the buggy vehicle maneuver

25



D. Dopico et al.

5.3 Buggy vehicle

The first 4.5 s of the maneuver described in Section 4.3 were simulated using the ALI3-P and

the Matrix R methods, both implemented in Fortran in the MBSLIM library. The sensitivity terms

and the objective function in Eq. (40) were obtained as well. The integration step-size was set

to h = 10−3 s, and the penalty factor of the ALI3-P formulation, to α = 1010. The rest of the

parameters of the method matched the values of the Section 5.1.
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Figure 13: Value of the objective function ψ during the buggy vehicle maneuver

Figure 12 shows the vertical coordinate of point 1 of the vehicle, evaluated using both meth-

ods. The value of the objective function ψ is depicted in Fig. 13. Figure 14 details the evolution

of the sensitivities ∂ψ/∂ρ during the simulation.

In both cases, the ALI3-P and Matrix R methods delivered practically the same results, which

confirms the correctness of the ALI3-P sensitivity equations. The small differences observed be-

tween both formulations come from the slightly higher numerical damping introduced in the

dynamics of the vehicle by the ALI3-P formulation, compared to Matrix R.
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maneuver

6 Discussion

The correctness of the direct sensitivity analysis described in Section 3 relies on the accurate

solution of the forward-dynamics problem. The ALI3-P algorithm presented in Section 2 has

been proven to be more robust to parameter changes than its penalty and index-1 DAE counter-

parts in the forward-dynamics simulation of mechanical systems [29]. It can also deal, without

special adjustments, with systems that undergo singular configurations, which is not the case

of conventional velocity-transformation based methods. On the other hand, the tangent matrix

used by the ALI3-P algorithm has been shown to become ill-conditioned when the integration

step-size of the method, h, is reduced [13].

In this section, the effect of the most relevant integration and formulation parameters on the

accuracy of the sensitivity analysis of the ALI3-P method is discussed. The obtained results were

compared to those yielded by the sensitivity analysis of the reference methods in Section 4.4.
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6.1 Integration parameters

The integration step-size h usually has an important effect on the accuracy of the results ob-

tained in forward-dynamics simulations. The configuration-level Newton-Raphson iteration of

the ALI3-P method enables it to obtain accurate results for relative large integration step-sizes.

Conversely, when the step-size decreases, its tangent matrix may become ill-conditioned, and

the accuracy of the integration, compromised.

Table 1: Effect of integration step-size h on the gradient of the objective function of the five-bar example

h (s) ALI3-P Penalty

10−1 [−4.1458, 3.0476] [NaN,NaN]

5 · 10−2 [−4.2340, 3.1865] [−4.3059, 4.1385]

10−2 [−4.2294, 3.2112] [−4.2294, 3.2111]

5 · 10−3 [−4.2290, 3.2116] [−4.2290, 3.2115]

10−3 [−4.2291, 3.2115] [−4.2293, 3.2112]

5 · 10−4 [−4.2296, 3.2108] [−4.2305, 3.2196]

10−4 [−4.2313, 3.2063] [−4.2278, 3.2435]

5 · 10−5 [−4.2334, 3.2002] [−4.2658, 3.3159]

10−5 [−4.2271, 3.2063] [−3.5680, 2.3032]

Table 1 shows the values of the gradient∇ρψ for the five-bar linkage obtained with the ALI3-

P method for different values of the integration step-size h. All the other method parameters

retained the values assigned to them in Section 5. The method remained stable and accurate for

step-sizes as low as 10−5 s, although at the cost of increasing the number of iterations required
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during the Newton-Raphson procedure. The results obtained with the penalty formulation are

shown as well. It must be noted that, regardless of the integration step-size, both methods were

able to correctly carry out the forward-dynamics simulation of the mechanism motion; however,

the penalty method only delivered correct sensitivities when 10−4 s ≤ h ≤ 10−2 s. Fig. 15

illustrates the degradation of the acceleration-level sensitivity ẍ2,L02 evaluated with the penalty

formulation for small step-sizes h. The ALI3-P method did not suffer from this problem in the

studied range of h.

The integration step-size was also varied between h = 10−1 s and h = 10−5 s in the evalu-

ation of the sensitivities of the double mass example. The methods and parameters were kept

the same as in Section 5.2; in all cases the results of the forward-dynamics simulation were

practically the same. The ALI3-P method delivered correct sensitivities for the whole range of h,

while its index-1 DAE counterpart yielded wrong acceleration-level sensitivities for h ≤ 10−4 s.

Table 2: Effect of integrator tolerance on the gradient of the objective function of the five-bar example

Tolerance (m) ALI3-P Penalty

10−12 [−4.2294, 3.2112] [−4.2294, 3.2111]

10−11 [−4.2297, 3.2117] [−4.2287, 3.2110]

10−10 [−4.2297, 3.2115] [−4.2298, 3.2157]

10−9 [−4.2400, 3.2113] [−4.1707, 3.2049]

10−8 [−4.3320, 3.2303] [−4.3133, 3.3029]

10−7 [−4.3320, 3.2304] Did not converge

Regarding robustness with respect to changes in integration tolerances, the ALI3-P method

also showed a superior behaviour when compared to the reference formulations. The gradients

obtained for different maximum admissible errors in the iteration process of the five-bar linkage

are compared in Table 2.

6.2 Formulation parameters

The penalty factor α is the only formulation parameter present in the ALI3-P, the index-1 DAE,

and the penalty methods. Using large penalty factors usually improves the convergence rate

of the algorithms, leading to faster computations. However, the integration procedure may be-

come unstable if α goes beyond a certain threshold. In the five-bar linkage, the ALI3-P method

obtained correct sensitivities for α ≤ 1010, while the penalty method required the use of α ≤ 108.
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Figure 16: Sensitivity ÿA,ρ of acceleration ÿA in the double point-mass system, evaluated with the index-1 DAE
formulation for different values of the penalty factor α

Regarding the double mass example with the nonholonomic constraint, the selection of fac-

tor α in the solution of the dynamics with Eqs. (42) and (43) was found to have a significant

effect on the sensitivity analysis results delivered by the index-1 DAE formulation. Although

the dynamics of the double point-mass assembly was correctly integrated, and no noticeable

differences could be appreciated in the values of q, q̇, and q̈ during motion, instabilities were

introduced in the evaluated sensitivities q̈ρ for penalty factors α ≥ 106, as illustrated in Fig. 16.

Conversely, varying the penalty factor up to α = 1010 did not affect the sensitivities yielded by

the ALI3-P formulation.
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Another important difference between the ALI3-P method and the index-1 DAE and penalty

algorithm used for comparison is the way in which kinematic constraints are enforced. The

ALI3-P algorithm uses mass-orthogonal projections to obtain sets of generalized velocities and

accelerations that comply with the constraints. The index-1 DAE and the penalty formulations

resort to Baumgarte stabilization, instead, which requires the selection of appropriate values of

parameters ξ and ω [22]. Simulation results confirmed that selecting low values for ξ and ω may

lead to an inaccurate fulfillment of the kinematic constraints. Increasing their values, although

not affecting noticeably the computed sensitivities, has a negative effect on the convergence rate

of the algorithms, causing them to iterate longer to converge to similar results and significantly

reducing computational efficiency. For instance, obtaining the sensitivities of the five-bar linkage

with the parameters set in Section 5.1 needed an average of 7.3 iterations of the integrator per

time-step. Raising ω from 10 to 25 delivered practically the same solution for the dynamics

and the sensitivities, but an average of 74.3 iterations were required per time-step instead. The

number of necessary convergence iterations to meet the same tolerances exceeded 500 several

times. Less severe cases are illustrated in Fig. 17.

The optimum values for ξ and ω depend on the dynamic response of the mechanical system,

and finding them often leads to a time consuming trial-and-error tuning procedure. This problem

is avoided with the ALI3-P method, because the satisfaction of the kinematic constraints at

velocity and acceleration levels is ensured by the projections in Eqs. (13) and (15). For the

correction of velocity- and acceleration- level sensitivities, Eqs. (26) and (27) are used. In the

examples discussed in this paper, two projection iterations were enough to arrive at correct

sensitivities. Increasing the number of projection iterations beyond two did not result in the

improvement of the results.

6.3 Performance comparison

The vehicle example in Section 4.3 was used to compare the performance of the ALI3-P and Ma-

trix R methods. Integration step-sizes h = 10−2 s and h = 10−3 s were used for the comparison.

The results obtained with h = 10−2 s matched closely those shown in Figs. 12–14. For the same

integration step-size, the ALI3-P formulation exhibited noticeably shorter computation elapsed

times. Table 3 shows that both formulations are above real-time performance when h = 10−2 s,

but even in that case the ALI3-P is about 2.5 times faster in this example.
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h = 10−2 s h = 10−3 s

ALI3-P 1.672 10.500

Matrix R 4.141 34.781

Table 3: Elapsed times (s) in the simulation and sensitivity analysis of the buggy maneuver

Table 4 illustrates the fact that both formulations delivered very similar results regardless

of the integration step-size used. Each of the columns displays the sensitivity of the objective

function with respect to a system parameter p, where ψp = ∂ψ/∂p.

h(s) ψk front ψc front ψk rear ψc rear

ALI3-P
10−2 9.496 · 10−5 9.303 · 10−4 −3.553 · 10−5 7.927 · 10−4

10−3 1.090 · 10−4 9.401 · 10−4 −3.663 · 10−5 7.636 · 10−4

Matrix R
10−2 9.580 · 10−5 9.293 · 10−4 −3.552 · 10−5 7.901 · 10−4

10−3 1.023 · 10−4 9.228 · 10−4 −4.011 · 10−5 7.964 · 10−4

Table 4: Final sensitivities at time t = 4.5 s of the buggy maneuver

The small discrepancies between the final sensitivity values can be attributed to the larger

dissipation of the ALI3-P formulation, resulting in a slight timing offset between the motion

computed by both formulations.

7 Conclusions

The present paper reports the sensitivity equations that correspond to the index-3 augmented

Lagrangian formulation with velocity and acceleration projections (ALI3-P), for multibody sys-

tems with holonomic and nonholonomic constraints. The sensitivity equations were formulated

as a Tangent Linear Model (TLM) for the Newton-Raphson iterative solution of the dynamics at

the configuration level, plus two additional nonlinear systems of equations for the velocity and

acceleration projections. The algorithm equations can be combined with numerical integration

formulas to deliver the sensitivities of the generalized coordinates as the solution of a system of

linear equations; the sensitivities of the generalized velocities and accelerations are subsequently

obtained solving the systems of equations that result from the differentiation of the projections

equations with respect to the parameters.

The proposed method was validated with the sensitivity analysis of three test problems. The
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first one was a five-bar linkage with linear springs, which had been previously used in the lit-

erature as test problem for other sensitivity formulations. The second problem consisted of a

two-mass system that featured a nonholonomic constraint and highlighted the relevance of the

velocity and acceleration projections for the method to yield correct results. The ALI3-P formula-

tion showed a more robust behavior in both test cases, delivering correct results while decreasing

the effort associated with tuning the penalty and other parameters required by similar formu-

lations. Moreover, the computational performance of the ALI3-P was tested in the sensitivity

analysis of a full-scale vehicle model. The results confirmed the ability of the method to evaluate

correct sensitivity values of complex systems in an efficient way.
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[29] González, F., Dopico, D., Pastorino, R., Cuadrado, J.: Behaviour of augmented Lagrangian

and Hamiltonian methods for multibody dynamics in the proximity of singular configura-

tions. Nonlinear Dynamics 85(3), 1491–1508 (2016). DOI 10.1007/s11071-016-2774-5
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