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a b s t r a c t 

A theoretical energy-based model to capture the ballistic response of sandwich structures made of composite 

material peels and a crushable foam core was developed. The model was based on the wave propagation the- 

ory and it was split in six stages with their corresponding energy-absorption mechanisms. The division of the 

stages was based on the physical interpretation of the perforation process involving reasonable hypotheses and 

simplifications. The energy-absorption was analysed at velocities below, near and above the ballistic limit within 

all the stages showing the general trends in terms of their relative importance. The time and velocity at each 

stage was separately analysed within a wide range of velocities in order to see the stage contribution to the 

energy-absorption. The model was validated against experimental results obtained in the literature showing a 

good agreement in terms of the impact-residual velocity curve. 
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. Introduction 

Composite materials are used in different structural applications be-

ause of their good mechanical properties. The main attraction of these

aterials is the low density compared to the traditional engineering

aterials such as steel or aluminium. These characteristics allow for

he reduction of costs [9,12,13,16,17,29,46] , which is an important re-

uirement in any kind of industry. In general, composites can be used

n such industries as aerospace, maritime or transport where they may

e subjected to impulsive loads during their service life. In this con-

ext, laminates are a very common typology which implies several ef-

ects that may cause structural weakening such as free-edge interlam-

nar stresses [11,18] that vary depending on the stacking sequence or

ly-orientation [49] . In addition, the operation and manufacture of such

tructures involve the presence of notches and holes that produces stress

ntensification and, hence, failure mechanisms as delamination [34,51] .

n this sense, the determination of the presence of affected areas by

he mentioned mechanisms has led to make efforts in proposing models

ased on the continuum mechanics [32] , capable of predicting matrix

amage, debonding of fiber and even fibre failure [41] . Woven lam-

nates are also used to strengthen more complex structures in order

o accomplish with all the structural requirements. Specifically, sand-

ich structures made of peels of composite materials and a lightweight

ore are used to manufacture components in aerospace and maritime

pplications in which compression and crushable loads are important
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27,28,30] . In these applications, high-velocity impacts is a common

cenario [4,21,22,54,55] . Consequently, the study of the ballistic per-

ormance of sandwich structures is a hot topic for researchers and en-

ineers who look for design improvements in terms of safety and cost

eduction. 

There are different approaches to tackle the high-velocity impact

henomenon on sandwich structures: experimental, analytical and nu-

erical. Every methodology has their advantages and inconveniences.

nalytical and theoretical approaches are less expensive not only re-

arding to direct but to computational costs. The main advantage of

nalytical models is the quick estimation they can provide in terms of

mportant aspects such as the ballistic limit using less resources than

ther methodologies [6,33,35–38,40] . Reyes Villanueva and Cantwell

44] carried out experiments to determine the ballistic limit in sand-

ich structures made of woven and unidirectional E/glass fibre peels

nd aluminium core. Ramadhan et al. [43] performed high-velocity im-

act tests on sandwich structures based on Kevlar-29 fibre/epoxy resin

ombined with aluminium in different stacking sequences and compared

he results with a finite element model developed in Ansys obtaining a

ood agreement. Iváñez et al. [27] developed a finite element model to

ompare the ballistic response of sandwich plates made of E-glass fibre

olyester facesheets and a crushable foam, which captured well the ex-

erimental results [8] . Regarding numerical and experimental studies of

igh-velocity impact on sandwich structures, less models are available

1,5,7,15,23,24,28,39,47,52] . 
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Fig. 1. Regular constitutive behaviour of an isotropic PVC crushable foam in 

terms of the strain versus stress curve and definition of the characteristic regions: 

linear-elastic (1), plastic (2) and densification (3). 
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There are a relevant number of studies regarding numerical mod-

lling of impact on sandwich structures [10,31,43,53] . Nevertheless,

iterature is less extensive regarding analytical models for high-velocity

mpact on sandwich structures. Hoo Fatt and Sirivolu [26] developed an

nalytical model based on the wave propagation theory to calculate the

allistic response of sandwich structures with crushable foams impacted

y a hemispherical-nose cylindrical projectile. This model is divided

nto different stages depending on the distance reached by the through-

hickness waves and considers different failure and deformation mecha-

isms using the Lagrangian method. Hoo Fatt and Park [25] also devel-

ped dynamic models for low-velocity impact on composite sandwich

anels based on the phenomenon of indentation using the Lagrangian

ethod. Feli and Namdari-Pour [14] formulated an analytical model for

omposite sandwich panels made of composite peels with honeycomb

ore subjected to high-velocity impact. The formulation is divided into

hree stages that take into account the different perforation processes

nd the first stage is based on the wave propagation theory. Energy-

bsorption mechanisms such as deformation of fibres, core crushing and

inetic energy transfer are considered. Reyes Villanueva and Cantwell

44] used a ballistic limit model to study sandwich structures based on

lain composite and fibre-metal laminate (FML). This perforation model

s based on the comparison of the resistive pressures generated in the

tructure to the failure stresses of the material in different directions.

nalytical models can also be used to analyse interactions between dif-

erent effects such as plastic bending or shear stresses and their conse-

uences regarding the projectile indentation in the facesheet or internal

ore [42] . Moreover, the study of interesting effects as buckling can be

ndertaken using analytic perspectives, enabling the design of compos-

te blades for wind turbines [50] . Another example may be the through-

hickness thermal conductivity of each sandwich component including

he foam core, facesheet and the bonding elements, which constitute

henomena of extraordinary complexity that can be also tackled using

nalytical models [45] . 

The gap regarding analytical models for sandwich structures sub-

ected to high-velocity impact found in the literature has motivated this

ork. A new energy-based theoretical model for predicting the ballistic

esponse of sandwich structures made of woven composite plates and

rushable foams is presented. The model is based on the wave propaga-

ion theory and it is split into six stages, each one with their correspond-

ng energy-absorption and failure mechanisms. The first and sixth stages

re based on previous models developed by the authors [2,3] and the

tages involving the foam behaviour are formulated using novel physi-

ally motivated hypotheses. The model is validated against experimental

esults obtained from the literature and interesting conclusions are ob-

ained in terms of the energy-absorption contributions of the stages and

he role they play. 

. Theoretical model 

This section includes a detailed exposition of the proposed model

o describe the behaviour of sandwich composite structures subjected

o high-velocity impact. Such structures are manufactured with the as-

embly of two composite peels and a crushable foam core in between.

he impact process takes into account several energy-absorption mech-

nisms which absorb the kinetic energy of the impactor. The entire pro-

ess occurs in six different stages taking place sequentially with the pro-

ectile trajectory. The model is split into the mentioned stages, making

 correspondence with the physics involved. 

In the first subsection, the sandwich structure is described by means

f the parameters used in the model, which allows to characterise the

eels as well as the foam core. In the second subsection, the phase veloc-

ties of the different wave movements involved are determined using the

xpressions of the wave theory. The foam region affected by the plastic

nd transverse waves is also modelled by considering different possibil-

ties. The third subsection exposes the hypotheses taken into account in

rder to state the stages described in the latest six subsections. 
2 
.1. Characterisation of the constituents 

Both peels are woven E-glass/polyester laminates while the core is

 PVC crushable foam. Note that the mechanical properties presented

n Table 1 are dynamic values. The dynamic properties of the E-glass

bre at high strain rates used in the theoretical model are estimated

rom the static properties obtained in the tests taking into account the

elations proposed by Harding and Ruiz [19] , Harding and Welsh [20] .

he high-strain rate correction factors for the failure limits and for the

hear and Young’s moduli are estimated at 3 and 1.5 respectively. All

he parameters used are listed in Table 1 : 

The first composite plate is assumed to have a behaviour similar to

he one proposed by Alonso et al. [3] for thick woven laminates. Even

hough the front laminate is thin, the foam and the back laminate pro-

ide an extra resistance in the through-thickness direction preventing

he front laminate from bending. This hypothesis is based on experimen-

al observations [27,28] . Due to these boundary conditions, the energy-

bsorption mechanisms considered for this laminate are: compression,

ensile failure of fibres, shear plugging, kinetic energy transfer to the

acesheet, matrix cracking and delamination. In this model, the main

ariable used to describe the penetration process is the geometric posi-

ion of the projectile from the impact surface of the front plate. When

he compressive out-of-plane failure strain is reached, the front laminate

ails. After composite failure, a plug of material is formed. This plug is

ulled up by the projectile. The friction between both bodies once fail-

re has occurred is considered negligible because of the short laminate

hickness. 

On the other hand, the back composite plate is assumed to behave

s a thin laminate as proposed by Alonso et al. [2] . In that work, a phe-

omenological function 𝑘 ( 𝑡, 𝑣 ( 𝑡 )) which depends on the flexural rigidity,

s defined to take into account the velocity of the laminate due to bend-

ng effects ( Eq. (55) ). Therefore, the effects cause by bending are consid-

red. Once again, this hypothesis is based on experimental observations

27,28] . In this model, the relevant variable is the relative displacement

etween the projectile and the position of the first impacted facesheet

f the back plate. Since thin laminate behaviour is assumed, the energy

bsorption mechanisms considered for this laminate are: kinetic energy

ransfer to the facesheet, elastic deformation of fibres, tensile failure

f fibres, delamination and matrix cracking. The stop condition is met

hen the relative displacement between the projectile and the facesheet

quals the laminate thickness. 

The main novelty of this work is the model proposed for the foam

ore. The considerations assumed allow for the determination of the

andwich structure ballistic limit. The model gives information about

he time spent by the projectile within each stage and the amount of

nergy absorbed by each energy-absorption mechanism. The foam be-

aviour can be described in the strain versus stress curve shown in Fig. 1
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Table 1 

Summary of the parameters used in the theoretical model. 

Parameter Nomenclature Value 

Projectile 

Projectile Diameter 𝜙𝑝 7.5 [ mm ] 
Projectile Density 𝜌𝑝 7809 [kg m 

−3 ] 

Impact Velocity 𝑣 𝑖 [m s −1 ] 

E-glass Fibre Laminate 

Laminate Thickness 𝑒 𝑡 3 [ mm ] 
Laminate Density 𝜌𝑙 1980 [kg m 

−3 ] 

In-Plane Young’s Modulus 𝐸 15.2 [ GPa ] 
Compressive Out-of-Plane Young’s Modulus 𝐸 𝑐 6.75 [ GPa ] 
In-Plane Failure Strain 𝜀 𝑟 0.0725 

Compressive Out-of-Plane Failure Strain 𝜀 𝑟𝑐 0.217 

Out-of-Plane Failure Shear Stress 𝑆 𝑆𝑃 𝑙 201.42 [ MPa ] 
In-plane Failure Stress 𝜎𝑟 1.102 [ GPa ] 
Absorbed Energy Density by Matrix Cracking 𝐸 𝑀𝑇 10 6 [J m 

−3 ] 

Critical Dynamic-Strain Energy-Release Rate in Mode II 𝐺 𝐼 𝐼 𝐶𝐷 3000 [J m 

−2 ] 

Yarn Width 𝐵 5 [ mm ] 
Stress Wave Transmission Factor 𝑏 0.9 

Poisson’s Ratio 𝜈 0.16 

Constant 𝑐 0.25 [N m] −1∕6 

Shape Factor of Delamination 𝛼𝐷𝐿 1 

Shape Factor of Matrix Cracking 𝛼𝑀𝐶 1 

Foam 

Yield Stress 𝑞 2.63 [ MPa ] 
Maximum Elastic Foam Strain 𝜀 𝐸 0.0302 

Plastic Limit Strain 𝜀 𝛼 0.5115 

Densification Limit Strain 𝜀 𝐷 0.6264 

Densification Limit Stress 𝜎𝐷 3.549 [ MPa ] 
Density 𝜌𝑓 130 [kg m 

−3 ] 

In-Plane Young’s Modulus 𝐸 𝑓 87 [ MPa ] 
In-Plane Poisson’s Modulus 𝜈𝑓 0.32 

Out-of-Plane Failure Shear Stress 𝑆 𝑆𝑃 𝑓 2 [ MPa ] 
Thickness 𝑒 𝑒 30 [ mm ] 
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ssuming the material is isotropic. Note that three different zones can

e distinguished in the mentioned curve. The first one corresponds to

he foam elastic behaviour limited by the yield stress, 𝑞, and the maxi-

um elastic strain, 𝜀 𝐸 , respectively. Then, an ideal plastic deformation

here stress remains constant is assumed up to 𝜀 𝛼 . From this point, a

inear densification process takes place up to the maximum densification

tress, 𝜎𝐷 , and strain, 𝜀 𝐷 , where the complete failure occurs. 

.2. Wave theory 

The foam model proposed is based on the wave theory described by

mith et al. [48] and, consequently, considers independent wave move-

ents. The transverse, 𝐶 𝑉 𝑡 𝑙 
, and through-thickness, 𝐶 𝑉 𝑥 𝑙 

, wave velocities

ithin the laminates are given by: 

 𝑉 𝑡 𝑙 
= 

√ 

(1 + 𝜀 𝑟 ) 
𝜎𝑟 

𝜌𝑙 
− 

√ 

𝐸 

𝜌𝑙 
𝜀 𝑟 (1)

 𝑉 𝑥 𝑙 
= 

√ 

𝐸 𝑐 

𝜌𝑙 
(2)

here 𝜌𝑙 , 𝜎𝑟 and 𝜀 𝑟 are the laminate density and the in-plane failure

tress and strain while 𝐸 and 𝐸 𝑐 are the in-plane and compressive out-

f-plane Young’s modulus respectively. Regarding the foam, given that

he compression elastic wave can be neglected when the foam particles

aximum velocity in the elastic zone is small compared to the projec-

ile velocity [26] , only the plastic wave is needed to be considered to

easure the energy absorbed by compression. The phase velocity of the

ompression plastic wave, 𝐶 𝑝 is: 

 𝑝 = 

√ 

( 𝜎𝐷 − 𝑞) 
𝜌𝑓 𝜀 𝐷 

(3)

here 𝜌𝑓 is the foam density, 𝜎𝐷 is the densification limit stress, 𝑞 is

he yield stress and 𝜀 is the densification limit strain. In addition, the
𝐷 

3 
ave responsible for the foam acceleration is the transverse wave that

ravels with a phase velocity, 𝐶 𝑉 𝑡 𝑓 
, by Smith et al. [48] : 

 𝑉 𝑡 𝑓 
= 

√ 

(1 + 𝜀 𝐸 ) 
𝑞 

𝜌𝑓 
− 

√ 

𝐸 𝑓 

𝜌𝑓 
𝜀 𝐸 (4)

here 𝐸 𝑓 is the in-plane foam Young’s modulus and 𝜀 𝐸 is the maximum

lastic foam strain. This approach considers that the expansion of the

ransverse perturbation has a moving boundary that spreads away ra-

ially from the impact point up to a distance 𝐶 𝑉 𝑡 𝑓 
𝑡 (the origin of 𝑡 is

eferred to the instant when the plastic wave reaches the foam). Un-

er the projectile, the plastic wave front advances a distance 𝐶 𝑝 𝑡 in the

hrough-thickness direction along with the lateral perturbation. This lat-

ral perturbation diminishes linearly from a radial value equal to 𝐶 𝑉 𝑡 𝑓 
𝑡

n the front face of the foam to zero at a distance equal to 𝐶 𝑝 𝑡 right

nderneath the projectile. The region affected by the two mentioned

ave fronts is represented in Fig. 2 . Depending on the instant 𝑡, the re-

ion can be a cone or a truncated cone respectively. If 𝑡 ≤ 

𝑒 𝑒 

𝐶 𝑝 
(being 𝑒 𝑒 

he foam thickness), the situation is represented in Fig. 2 (a). Otherwise,

he region affected by the plastic wave is a truncated cone ( Fig. 2 (b)).

his last situation occurs when the plastic wave front reaches the sec-

nd composite laminate. Hence, the account of the energy absorbed by

ompression in the foam implies the determination of the volume of the

egion affected by compression according to the two possibilities shown

n Fig. 2 (being 𝑒 𝑡 is the peels thickness). Consequently, the volume 𝑉 𝑐 
f the region affected by compression is: 

 𝑐 ( 𝑡 ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ 
𝜋𝐶 𝑝 𝐶 

2 
𝑉 𝑡 𝑓 

3 𝑡 3 , if 𝑡 ≤ 

𝑒 𝑒 

𝐶 𝑝 
𝜋𝐶 𝑝 ( 𝐶 𝑉 𝑡 𝑓 

) 2 

3 

[ 
𝑡 3 − ( 𝑡 − 

𝑒 𝑒 

𝐶 𝑝 
) 3 
] 
, if 𝑡 > 

𝑒 𝑒 

𝐶 𝑝 

(5)
⎩ 
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Fig. 2. Representation of the foam region 

affected by the plastic wave (striped area), 

marked out by the cone or the truncated cone 

defined by the growth of the transverse ( 𝐶 𝑉 𝑡 𝑓 𝑡 ) 
and the plastic ( 𝐶 𝑝 𝑡 ) waves, accounting for the 

two admissible possibilities: (a) Case 𝑡 ≤ 𝑒 𝑒 
𝐶 𝑝 
, (b) 

Case 𝑡 > 
𝑒 𝑒 

𝐶 𝑝 
. 
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.3. Description of the stages and hypotheses 

The six stages considered in this model are independent, so that the

utputs of a previous stage are the inputs for the next. The first stage

tarts when the projectile reaches the front plate. From this moment on,

everal waves are transmitted through the plate in different directions

nd different energy-absorption mechanisms are considered according

o the thick woven laminates theory hypotheses formulated by Alonso

t al. [3] . This stage ends when the complete compression failure of the

aminate takes place. At that moment, a plug with a certain kinetic en-

rgy is formed. Since there are not external forces, an instantaneous lin-

ar momentum transfer to the plug is assumed to take place in the second

tage. The unique body formed by the composite plug and the projectile

tarts to penetrate the foam in the third stage until the foam fails by shear

orces. In this stage, compression and shear energy-absorption mecha-

isms are considered. Once the foam has failed by shear, the plug formed

n the foam experiments a densification process during the fourth stage.

his stage ends when the foam reaches a deformation equal to 𝜀 𝐷 . In

he fifth stage, an instantaneous linear momentum transfer is assumed

o calculate the final velocity to the body conformed by the projectile

nd both plugs (laminate and foam). The last stage consists on the pen-

tration into the back composite peel which behaves as a thin woven

aminate according to the hypotheses also considered by Alonso et al.

2] . The relative displacement between the projectile and the front face

ovement reaching the back facesheet thickness is the stop condition

f the entire process. 

As described above, the first and sixth stages are described using

he hypotheses and ideas proposed by Alonso et al. [2 , 3 ], so those hy-

otheses are also considered for the first and last stage in this work.

dditionally, some hypotheses regarding the foam are assumed: 

• The core of the sandwich structure is considered isotropic. 
• Since 

𝜌𝑓 

𝜌𝑝 
, 
𝜌𝑓 

𝜌𝑙 
<< 1 (being 𝜌𝑝 and 𝜌𝑙 the projectile and laminates den-

sity respectively 1 ), the kinetic energy transfer by the projectile to the

foam is neglected. Hence, the only energy-absorption mechanisms

considered are compression and shear. 
• Two different waves are considered in the foam: a plastic compres-

sion wave and a transverse wave. All wave velocities remain constant

during the impact process. 
• The impact process is divided into the six stages described below. 
• The first stage ends when the complete failure of the front laminate

takes place. 
• At the end of the second and fifth stages, it is assumed that a unique

body is formed by the projectile and different material plugs. 
• The third stage ends when the complete shear failure of the foam

takes place. 
• The fourth stage ends when the foam densification strain reaches 𝜀 𝐷 .
• The energy absorbed by heat transfer and friction between the pro-

jectile and the foam is assumed to be negligible. 
1 Some reference values are 
𝜌𝑓 

𝜌𝑝 
∼ 1 

100 
, 
𝜌𝑓 

𝜌𝑙 
∼ 1 

20 

4 
In the following sections, all the stages are fully described. 

.4. Stage 1 

The first stage is formulated in terms of an instantaneous energy

alance. The initial kinetic energy of the projectile, 𝐸 0 , is equal to the

inetic energy of the projectile, 𝐸 𝑝 ( 𝑡 ) , plus the energy absorbed by the

nergy-absorption mechanisms until the current instant 𝑡, 𝐸 𝐴𝐵 ( 𝑡 ) : 

 0 = 𝐸 𝑝 ( 𝑡 ) + 𝐸 𝐴𝐵 ( 𝑡 ) (6)

here 𝐸 𝐴𝐵 ( 𝑡 ) is defined as: 

 𝐴𝐵 ( 𝑡 ) = 𝐸 𝑓 ( 𝑡 ) + 𝐸 𝐶1 ( 𝑡 ) + 𝐸 𝐶2 ( 𝑡 ) + 𝐸 𝑇𝐹 ( 𝑡 ) 

+ 𝐸 𝐶𝐿 ( 𝑡 ) + 𝐸 𝑆𝑃 ( 𝑡 ) + 𝐸 𝑀𝐶 ( 𝑡 ) + 𝐸 𝐷𝐿 ( 𝑡 ) (7) 

here 𝐸 𝑓 ( 𝑡 ) is the energy absorbed by compression in the foam, 𝐸 𝐶1 ( 𝑡 )
nd 𝐸 𝐶2 ( 𝑡 ) are the energy absorbed by compression in the laminate,

 𝑇𝐹 ( 𝑡 ) is the energy absorbed by tensile failure of fibres, 𝐸 𝐶𝐿 ( 𝑡 ) is the en-

rgy absorbed by kinetic energy transfer, 𝐸 𝑀𝐶 ( 𝑡 ) is the energy absorbed

y matrix cracking and 𝐸 𝐷𝐿 ( 𝑡 ) is the energy absorbed by delamination.

ll these mechanisms and their expresions are fully explained in Alonso

t al. [3] except for 𝐸 𝑓 ( 𝑡 ) that will be shown up next. 

To account for the energy absorbed by compression in the foam,

hree possibilities arises depending on the distance travelled by the

hrough-thickness and plastic waves: if 2 𝑡 ≤ 

𝑒 𝑡 

𝐶 𝑉 𝑥 𝑙 

, the energy absorbed by

his mechanisms is zero, else if 
𝑒 𝑡 

𝐶 𝑉 𝑥 𝑙 

< 𝑡 ≤ 

𝑒 𝑡 

𝐶 𝑉 𝑥 𝑙 

+ 

𝑒 𝑒 

𝐶 𝑝 
the energy absorbed

s the energy below the stress-strain curve 3 shown in Fig. 1 times the

olume of the cone ( Fig. 2 (a)), else if 𝑡 > 

𝑒 𝑡 

𝐶 𝑉 𝑥 𝑙 

+ 

𝑒 𝑒 

𝐶 𝑝 
the energy absorbed

y compression in the foam is the energy below the stress-strain curve

hown in Fig. 1 times the volume of the truncated cone ( Fig. 2 (b)): 

 𝑓 ( 𝑡 ) = 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

0 , if 𝑡 ≤ 𝑒 𝑡 

𝐶 𝑉 𝑥 𝑙 

𝜋

3 
𝑞𝜀 𝛼𝐶 𝑝 𝐶 

2 
𝑉 𝑡 𝑓 

( 
𝑡 − 𝑒 𝑡 

𝐶 𝑉 𝑥 𝑙 

) 3 
, if 

𝑒 𝑡 

𝐶 𝑉 𝑥 𝑙 

< 𝑡 ≤ 𝑒 𝑡 

𝐶 𝑉 𝑥 𝑙 

+ 𝑒 𝑒 
𝐶 𝑝 

𝜋

3 
𝑞𝜀 𝛼𝐶 𝑝 𝐶 

2 
𝑉 𝑡 𝑓 

[ ( 
𝑡 − 𝑒 𝑡 

𝐶 𝑉 𝑥 𝑙 

) 3 
− 
( 
𝑡 − 𝑒 𝑡 

𝐶 𝑉 𝑥 𝑙 

− 𝑒 𝑒 
𝐶 𝑝 

) 3 ] 
, if 𝑡 > 

𝑒 𝑡 

𝐶 𝑉 𝑥 𝑙 

+ 𝑒 𝑒 
𝐶 𝑝 

(8) 

Note that the expressions to calculate the energy absorbed by kinetic

nergy transfer and compression [3] are replaced for the following ones

f the through-thickness wave reaches the laminate before laminate fail-

re occurs 

( 

𝑡 > 

𝑒 𝑡 

𝐶 𝑉 𝑥 𝑙 

) 

: 

 𝐶𝐿 ( 𝑡 ) = 

𝜋𝜌𝑙 𝑒 𝑡 

24 
𝑣 ( 𝑡 ) 2 𝜙( 𝑥 ) 2 (9)

 𝐶1 ( 𝑡 ) = 

𝜋

8 
𝑒 𝑡 𝐸 𝑐 𝜀 

2 
𝑟𝑐 
𝜙( 𝑥 ) 2 (10)
2 𝑡 is referred to the instant the projectile reaches the laminate front face 
3 This energy will be estimated by 𝑞𝜀 𝛼 according to Eq. (23) . 
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Derivation of Eq. (6) with respect to time, gives the non-linear

econd-order differential equation governing the first stage: 

 ( 𝑡 ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

𝑔 ( 𝑡, 𝑥 ( 𝑡 ) , 𝑣 ( 𝑡 ) ) − ℎ ( 𝑡 ) ( 𝑡, 𝑣 ( 𝑡 ) ) 𝑣 ( 𝑡 ) − 𝑓 ( 𝑡, 𝑥 ( 𝑡 ) ) − 𝑝 ( 𝑡 ) − 

𝜋

24 𝜌𝑙 𝐶 𝑣 𝑥 𝑙 

[
2 𝑣 ( 𝑡 ) 3 𝜙

𝑚 𝑝 𝑣 ( 𝑡 ) + 

𝜋

12 𝜌𝑙 𝐶 𝑣 𝑥 𝑙 
𝑣 ( 𝑡 ) 𝜙( 𝑥 ) 2 𝑡 

𝑔 ( 𝑡, 𝑥 ( 𝑡 ) , 𝑣 ( 𝑡 ) ) − ℎ ( 𝑡 ) ( 𝑡, 𝑣 ( 𝑡 ) ) 𝑣 ( 𝑡 ) − 𝑓 ( 𝑡, 𝑥 ( 𝑡 ) ) − 𝑝 ( 𝑡 ) − 

𝜋

12 𝜌𝑙 𝑒 𝑡 𝑣

𝑚 𝑝 𝑣 ( 𝑡 ) + 

𝜋

12 𝜌𝑙 𝑒 𝑡 𝑣 ( 𝑡 ) 𝜙( 𝑥 ) 
2 

Both equations are subjected to the following initial conditions: 

 (0) = 0 
 (0) = 𝑉 𝑖 

(12) 

In order to obtain Eq. (11) , the following functions are defined to

perate easier: 

 ( 𝑡, 𝑣 ( 𝑡 )) = 

𝑑 

𝑑𝑡 

[
𝐸 𝑇𝐹 ( 𝑡 ) + 𝐸 𝑆𝑃 ( 𝑡 ) 

] 1 
𝑣 ( 𝑡 ) 

(13)

( 𝑡, 𝑥 ( 𝑡 ) , 𝑣 ( 𝑡 )) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
− 

𝑑 

𝑑𝑡 
[ 𝐸 𝐷𝐿 ( 𝑡 ) + 𝐸 𝑀𝐶 ( 𝑡 )] , if 𝑡 ≤ 

𝜙( 𝑥 ) 
2 𝐶 𝑉 𝑡 𝑙 

− 

𝑑 

𝑑𝑡 
[ 𝐸 𝐶2 ( 𝑡 ) + 𝐸 𝐷𝐿 ( 𝑡 ) + 𝐸 𝑀𝐶 ( 𝑡 )] , if 𝑡 > 

𝜙( 𝑥 ) 
2 𝐶 𝑉 𝑡 𝑙 

(14)

( 𝑡, 𝑥 ( 𝑡 )) = 

𝑑 𝐸 𝐶 1 ( 𝑡 ) 
𝑑𝑡 

(15)

 ( 𝑡 ) = 

𝑑𝐸 𝑓 ( 𝑡 ) 
𝑑𝑡 

(16)

This stage finishes when the failure condition given by Eq. (17) is

et. At this moment, the velocity of the projectile is the initial velocity

or the second stage. 

 ( 𝑡 ) = 𝑒 𝑡 𝜀 𝑟𝑐 (17)

From this point, the parameters 𝑡 𝑓 1 and 𝑉 𝑓 1 = 𝑉 𝑖 2 
are defined as the

nd time of the first stage and the initial velocity of the second stage

espectively. 

.5. Stage 2 

When the first stage finishes, a plug of material is formed. In the sec-

nd stage a perfect instantaneous inelastic shock is assumed between the

rojectile and the plug formed. After the shock, the two bodies moves

ith the same velocity. Conservation of linear momentum provides a

calar equation from which the final velocity of the whole can be ob-

ained, 𝑉 𝑓2 = 𝑉 𝑖 3 : 

 1 𝑙 + 𝑚 𝑝 𝑉 𝑖 2 
= ( 𝑚 𝑝 + 𝑚 𝑙 ) 𝑉 𝑓 2 (18)

here 𝑚 𝑝 is the projectile mass, 𝑚 𝑙 is the plug mass, 𝑝 1 𝑙 is the linear

omentum of the plug an instant before failure and can be calculated

ssuming a linear profile of velocities between the point in contact with

he projectile and the distance travelled by the through-thickness wave

cross the laminate as explained in Alonso et al. [3] : 

 𝑝 = 

𝜋

6 
𝜌𝑝 𝜙

3 
𝑝 

(19)

 𝑙 = 

𝜋

4 
𝜌𝑙 𝑒 𝑡 𝜙

2 
𝑝 

(20) 

 1 𝑙 = 

𝜋

8 
𝜌𝑙 𝐶 𝑉 𝑥 𝑙 

𝑉 𝑖 2 
𝜙1 

2 𝑡 𝑓 1 (21)

here 𝜙𝑝 is the projectile diameter and 𝜙1 is the indented diameter of

he projectile when the first stage ends. Therefore, the initial velocity of

he third stage is given by: 

 𝑖 3 
= 

𝑝 1 𝑙 + 𝑚 𝑝 𝑉 𝑖 2 

𝑚 𝑝 + 𝑚 𝑙 

(22)
t  

5 
 

𝑡 + 𝑣 ( 𝑡 ) 2 𝜙( 𝑥 ) 2 
]

if 𝑡 ≤ 

𝑒 𝑡 

𝐶 𝑉 𝑥 𝑙 

 𝑥 ) 𝑑𝜙
dx 

if 𝑡 > 

𝑒 𝑡 

𝐶 𝑉 𝑥 𝑙 

(11)

.6. Stage 3 

In this section, the penetration process of the body formed by the

rojectile and the composite plug in the foam core is described. As al-

eady stated, two different energy-absorption mechanisms are taken into

ccount: plastic compression and shear. 

.6.1. Energy absorbed by plastic compression in the foam 

The energy absorbed by compression, 𝐸 𝐶𝑓3 , in the third stage may

e calculated as the energy below the compressive stress-strain curve in

he thickness direction times the volume 𝑉 𝑐 of the affected region. 

 Cf 3 ( 𝑡 ) = 𝑉 𝑐 ( 𝑡 ) ∫
𝜀 𝛼

0 
𝜎( 𝜀 ) 𝑑𝜀 ≈ 𝑉 𝑐 ( 𝑡 ) 𝑞𝜀 𝛼 (23) 

here the area below the stress-strain curve in the plastic region is es-

imated by 𝑞𝜀 𝛼 and the volume affected, 𝑉 𝑐 (represented by the striped

reas in Fig. 3 ) must be calculated depending on the situation and

he region previously affected by the plastic compression wave at the

tarting instant 𝑡 𝑓 1 of the third stage. If 𝑡 𝑓 1 = 𝑡 𝑓 2 
≥ 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

+ 

𝑒 𝑒 

𝐶 𝑝 
, the initial

lastic compression wave front has traveled through the entire foam

hickness (case shown in Fig. 3 (e)). On the other hand, if 𝑡 𝑓 1 > 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

nd 𝑡 𝑓 1 < 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

+ 

𝑒 𝑒 

𝐶 𝑝 
the initial plastic compression wave front is located

omewhere in the foam thickness ( Fig. 3 (c) and (d)). Otherwise, the ini-

ial compression wave front has not reached the foam yet, therefore,

he last cases occur when 𝑡 𝑓 1 ≤ 

𝑒 𝑡 

𝐶 𝑉 𝑥 𝑙 

(cases shown in Fig. 3 (a) and (b)).

dditionally, depending on the value of 𝑡 ( 𝑡 is measured from the initial

nstant 𝑡 𝑓 1 of the third stage), the region affected by plastic compression

an acquired different shapes. 

If 𝑡 𝑓1 ≥ 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

+ 

𝑒 𝑒 

𝐶 𝑝 
, the energy absorbed by plastic compression in the

oam is (the volume of the region affected is represented by stripes in

ig. 3 (e)): 

 𝐶𝑓3 ( 𝑡 ) = 

𝜋

3 
𝐶 𝑝 ( 𝐶 𝑉 𝑡𝑓 

) 2 𝑞𝜀 𝛼
[ ( 

𝑡 𝑓1 − 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

+ 𝑡 

) 3 

− 

( 

𝑡 𝑓1 − 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

+ 𝑡 − 

𝑒 𝑒 

𝐶 𝑝 

) 3 

− 

( 

𝑡 𝑓1 − 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

) 3 

+ 

( 

𝑡 𝑓1 − 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

− 

𝑒 𝑒 

𝐶 𝑝 

) 3 ] 
(24) 

Conversely, if 𝑡 𝑓 1 > 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

, 𝑡 𝑓1 < 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

+ 

𝑒 𝑒 

𝐶 𝑝 
and 𝑡 + 𝑡 𝑓1 − 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

≤ 

𝑒 𝑒 

𝐶 𝑝 
the

olume of the region affected represented in Fig. 3 (c) leads to the fol-

owing expression for the energy absorbed by compression: 

 𝐶𝑓3 ( 𝑡 ) = 

𝜋

3 
𝐶 𝑝 ( 𝐶 𝑉 𝑡𝑓 

) 2 𝑞𝜀 𝛼
⎡ ⎢ ⎢ ⎣ 
( 

𝑡 𝑓1 − 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

+ 𝑡 

) 3 

− 

( 

𝑡 𝑓1 − 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

) 3 ⎤ ⎥ ⎥ ⎦ (25) 

Analogously, if 𝑡 𝑓 1 > 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

, 𝑡 𝑓1 < 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

+ 

𝑒 𝑒 

𝐶 𝑝 
and 𝑡 + 𝑡 𝑓1 − 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

> 

𝑒 𝑒 

𝐶 𝑝 
,

he volume of the region affected is represented in Fig. 3 (d) and thus
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Fig. 3. Representation of the foam region affected by the plastic wave from the beginning of the third stage on, defined by the body of revolution delimited by the 

striped area and considering all the possible situations depending on the impact and wave velocities: (a) 𝑡 𝑓1 ≤ 𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

∪ 𝑡 ≤ 𝑒 𝑒 
𝐶 𝑝 
, (b) 𝑡 𝑓1 ≤ 𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

∪ 𝑡 > 
𝑒 𝑒 

𝐶 𝑝 
, (c) 𝑡 𝑓1 > 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

∪

𝑡 𝑓1 < 
𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

+ 𝑒 𝑒 
𝐶 𝑝 

∪ 𝑡 + 𝑡 𝑓1 − 
𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

≤ 𝑒 𝑒 
𝐶 𝑝 
, (d) 𝑡 𝑓1 > 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

∪ 𝑡 𝑓1 < 
𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

+ 𝑒 𝑒 
𝐶 𝑝 

∪ 𝑡 + 𝑡 𝑓1 − 
𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

> 
𝑒 𝑒 

𝐶 𝑝 
, (e) 𝑡 𝑓1 ≥ 𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

+ 𝑒 𝑒 
𝐶 𝑝 

. 
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Fig. 4. Scheme of the impact phenomenon at a generic instant of time in the 

third stage when the composite material plug has already been formed and trav- 

els alongside the projectile. The foam absorbs energy by compression and shear 

plugging with the coupled through-thickness movement of the two bodies. 

a  

b

𝐸  

w  

t  

i  

r  
he energy absorbed may be expressed as: 

 𝐶𝑓3 ( 𝑡 ) = 

𝜋

3 
𝐶 𝑝 ( 𝐶 𝑉 𝑡𝑓 

) 2 𝑞𝜀 𝛼
⎡ ⎢ ⎢ ⎣ 
( 

𝑡 𝑓1 − 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

+ 𝑡 

) 3 

− 

( 

𝑡 𝑓1 − 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

) 3 

− 

( 

𝑡 𝑓1 − 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

+ 𝑡 − 

𝑒 𝑒 

𝐶 𝑝 

) 3 ⎤ ⎥ ⎥ ⎦ (26) 

Finally, if 𝑡 𝑓1 ≤ 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

and 𝑡 ≤ 

𝑒 𝑒 

𝐶 𝑝 
or 𝑡 𝑓1 ≤ 

𝑒 𝑡 

𝐶 𝑉 𝑥𝑙 

and 𝑡 > 

𝑒 𝑒 

𝐶 𝑝 
, the volumes

ffected by plastic compression are represented in Fig. 3 (a) and (b) re-

pectively. Consequently, the energy absorbed by plastic compression is

espectively: 

 𝐶𝑓3 ( 𝑡 ) = 

𝜋

3 
𝐶 𝑝 ( 𝐶 𝑉 𝑡𝑓 

) 2 𝑞𝜀 𝛼𝑡 3 (27)

 𝐶𝑓3 ( 𝑡 ) = 

𝜋

3 
𝐶 𝑝 ( 𝐶 𝑉 𝑡𝑓 

) 2 𝑞𝜀 𝛼

[ 

𝑡 3 − 

( 

𝑡 − 

𝑒 𝑒 

𝐶 𝑝 

) 3 
] 

(28)

.6.2. Energy absorbed by shear plugging in the foam 

In the modelling of this stage, a certain capacity of the foam to with-

tand shear stresses is considered. The unique body composed by the

rojectile and the composite plug in contact with the foam is respon-

ible for these stresses. If the value of the shear stress transmitted to

he foam exceeds the maximum shear strength of the material 𝑆 𝑆𝑃 𝑓 , the

aminate will fail by shear plugging. Therefore, the energy absorbed by

his mechanism can be calculated by multiplying the annular contact
6 
rea by the maximum material shear stress in directions 13 and 23 and

y the formed body displacement as follows: 

 𝑆𝑃 𝑓 
( 𝑡 ) = 𝜋𝜙𝑝 𝑒 𝑒 𝑆 𝑆𝑃 𝑓 

𝑥 ( 𝑡 ) (29)

here 𝑥 ( 𝑡 ) is the position of the body conformed by the projectile and

he composite plug respect to the front face of the foam as can be seen

n Fig. 4 . While the moving body is shown in grey, the dash line cylinder

epresents the projected area that will be affected by shear plugging as
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.6.3. Energy balance and governing equation of the third stage 

In order to obtain the governing equation that describes the advance

f the body in terms of 𝑥 ( 𝑡 ) in the third stage, an energy balance is for-

ulated. This balance consists of applying the conservation of energy.

he kinetic energy of the body at the beginning of the third stage, 𝐸 03 ,

s equal to the actual kinetic energy of the body, 𝐸 𝑝 ( 𝑡 ) , plus the energy

bsorbed by compression and shear, 𝐸 𝐴𝐵 3 
( 𝑡 ) : 

 03 = 𝐸 𝑝 ( 𝑡 ) + 𝐸 𝐴𝐵 3 
( 𝑡 ) (30)

 𝑝 ( 𝑡 ) = 

1 
2 
( 𝑚 𝑝 + 𝑚 𝑙 ) 𝑣 ( 𝑡 ) 2 (31)

 𝐴𝐵 3 
( 𝑡 ) = 𝐸 𝐶𝑓3 ( 𝑡 ) + 𝐸 𝑆𝑃 𝑓 

( 𝑡 ) (32)

The differential equation governing this stage is obtained by deriving

q. (30) with respect to time: 

 = 

(
𝑚 𝑝 + 𝑚 𝑙 

)
𝑣 ( 𝑡 ) 𝑎 ( 𝑡 ) + 

𝑑𝐸 Cf 3 ( 𝑡 ) 
dt 

+ 

𝑑 𝐸 SP 𝑓 ( 𝑡 ) 
dt 

(33) 

here 
𝑑𝐸 𝑆𝑃 𝑓 

( 𝑡 ) 

dt 
is the shear energy absorption derivative with respect to

, which can be calculated as: 

𝑑𝐸 𝑆𝑃 𝑓 
( 𝑡 ) 

𝑑𝑡 
= 𝜋𝜙𝑝 𝑒 𝑒 𝑆 𝑆𝑃 𝑓 

𝑣 ( 𝑡 ) (34)

In order to obtain 
𝑑𝐸 𝐶𝑓3 ( 𝑡 ) 

𝑑𝑡 
, it is required to derive with respect to 𝑡

n Eqs. (24) –(28) depending on the actual case as shown in Fig. 3 . Sub-

tituting Eq. (34) in Eq. (33) and clearing 𝑎 ( 𝑡 ) , the governing equation

s obtained: 

 ( 𝑡 ) = − 

1 
( 𝑚 𝑝 + 𝑚 𝑙 ) 𝑣 ( 𝑡 ) 

𝑑𝐸 𝐶𝑓3 ( 𝑡 ) 
𝑑𝑡 

− 

𝜋𝜙𝑝 𝑒 𝑒 𝑆 𝑆𝑃 𝑓 

( 𝑚 𝑝 + 𝑚 𝑙 ) 
 (0) = 0 
 (0) = 𝑉 𝑖 3 

(35) 

The stop condition for the second-order differential equation given

n Eq. (35) is met when the maximum shear deformation is reached.

his parameter can be approximated by 𝑆 𝑆𝑃 𝑓 = 

𝐸 𝑓 

2(1+ 𝜈𝑓 ) 
𝛾13 , 23 . In this ap-

roach, 𝛾13 , 23 is estimated by 2 𝑥 ( 𝑡 ) 
𝜙𝑝 

. Taking all these considerations into

ccount, the stop condition can be formulated in terms of 𝑥 ( 𝑡 ) = 𝑋 𝑓 3 
by:

 𝑓3 = 

𝑆 𝑆𝑃 𝑓 
(1 + 𝜈𝑓 ) 𝜙𝑝 
𝐸 𝑓 

(36)

When such condition is met, the actual velocity 𝑉 𝑓3 = 𝑉 𝑖 4 of the body

s the initial condition of the next stage and the foam densification starts.

.7. Stage 4 

In this stage, the densification process represented in the last zone

n Fig. 1 is mathematically described. The only energy absorbed in this

tage is the area below the strain-stress curve times the foam volume

ffected by densification. Such energy and its derivative with respect to

ime can be expressed respectively as: 

 𝐷 ( 𝑡 ) = 𝑞( 𝜀 − 𝜀 𝛼) 
𝜋

4 
𝜙2 
𝑝 
𝑒 𝑒 = 𝑞 

𝜋

4 
𝜙2 
𝑝 
𝑥 ( 𝑡 ) (37)

𝑑𝐸 𝐷 ( 𝑡 ) 
𝑑𝑡 

= 𝑞 
𝜋

4 
𝜙2 
𝑝 
𝑣 ( 𝑡 ) (38)
4 This cone is a simplification of the affected plastic region made for clarity. 

he exact volume of the region affected by plastic compression in each step must 

e calculated by identification of the actual situation of those given in Fig. 3 . 

s  

m  

e  

p

7 
here the relative strain ( 𝜀 − 𝜀 𝛼) is considered to be 
𝑥 ( 𝑡 ) 
𝑒 𝑒 

. The energy

onservation equation is obtained again equaling the initial kinetic en-

rgy of the body at the beginning of the stage 𝐸 04 to the actual kinetic

nergy 𝐸 𝑝 ( 𝑡 ) plus the energy absorbed by densification 𝐸 𝐷 ( 𝑡 ) : 

 04 = 𝐸 𝑝 ( 𝑡 ) + 𝐸 𝐷 ( 𝑡 ) (39)

Deriving Eq. (39) with respect to time, the governing equation of this

tage is obtained: 

 = ( 𝑚 𝑝 + 𝑚 𝑙 ) 𝑣 ( 𝑡 ) 𝑎 ( 𝑡 ) + 

𝑑𝐸 𝐷 ( 𝑡 ) 
𝑑𝑡 

(40)

By replacing Eqs. (38) in (40) and clearing 𝑎 ( 𝑡 ) , a uniform accelerated

ovement equation is obtained: 

 ( 𝑡 ) = − 𝑞 
𝜋

4 
𝜙2 
𝑝 

1 
( 𝑚 𝑝 + 𝑚 𝑙 ) 

= 𝑎 (41)

The stop condition is given by considering that the densification limit

train is reached. Hence, the position that implies the foam failure is: 

 𝑓4 = 𝜀 𝐷 𝑒 𝑒 − 𝑋 𝑓3 (42)

By integration of Eq. (41) twice with respect to time and substitution

f 𝑋 𝑓4 , the end time and velocity, 𝑡 𝑖 5 , 𝑉 𝑖 5 , at the end of densification

rocess can be calculated respectively: 

 𝑖 5 = − 

𝑉 𝑖 4 
𝑎 

+ 

√ ( 

𝑉 𝑖 4 
𝑎 

) 2 
+ 

2 𝑋 𝑓4 

𝑎 
(43)

 𝑖 5 = 𝑎𝑡 𝑖 5 + 𝑉 𝑖 4 (44)

When the strain 𝜀 𝐷 is reached, the foam fails and a foam plug is

ormed and pulled up from the foam core. To determine the initial ve-

ocity in the sixth stage, a linear momentum balance is considered in the

fth stage. 

.8. Stage 5 

Same as in the second stage just before failure, the unique body

ormed by the projectile and the composite plug moves with a certain

inear momentum. In addition, some kinetic energy has been transferred

o the foam. After failure, the new ensemble conformed by the projectile

nd both material plugs moves along with the same velocity. This linear

omentum transfer is assumed to be instantaneous. Since in this stage

here are no external forces, the conservation of linear momentum in

he x-direction can be established in the next scalar equation: 

 𝑚 𝑝 + 𝑚 𝑙 ) 𝑉 𝑖 5 + 𝑝 𝑒 = ( 𝑚 𝑝 + 𝑚 𝑙 + 𝑚 𝑒 ) 𝑉 𝑖 6 (45)

here 𝑝 𝑒 is the linear momentum transmitted to the foam and 𝑚 𝑒 is the

ass of foam plug that has been pulled up being: 

 𝑒 = 𝜌𝑓 ∫𝑉 𝑓 𝑣 ( 𝑟 ) 𝑑𝑉 (46)

 𝑒 = 

𝜋

4 
𝜙2 
𝑝 
𝑒 𝑒 𝜌𝑓 (47)

here 𝑉 𝑓 is the affected foam volume and 𝑣 ( 𝑟 ) is the foam particles veloc-

ty in the x-direction in each position. However, the linear momentum

cquired by the foam 𝑝 𝑒 can be supposed to be of the order of ∼ 𝜌𝑓 𝑉 𝑓 𝑉 𝑖 5 
efore failure. Hence, it can be neglected as the ratios 

𝜌𝑓 

𝜌𝑝 
, 
𝜌𝑓 

𝜌𝑙 
are much

maller than one. In balance terms, this aspect means that the linear

omentum transferred to the foam is negligible with respect to the lin-

ar momentum of the body formed by the projectile and the composite

lug. 



L. Alonso and A. Solis International Journal of Mechanical Sciences 201 (2021) 106459 

 

i

𝑉  

2

 

e  

t  

e  

e  

𝐸

𝐸  

𝐸  

𝐸  

w  

t  

a  

m  

t  

e  

d  

p  

d  

g  

p  

f  

i  

p

 

s

𝑎

 

e

ℎ  

𝑔  

𝑘

 

p

𝛿  
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provided by the theoretical model presented and experimental data taken from 

the literature [27] . 
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Taking these aspects into account and clearing 𝑉 𝑖 6 from Eq. (45) , the

nitial velocity in the sixth stage is: 

 𝑖 6 = 

( 𝑚 𝑝 + 𝑚 𝑙 ) 
( 𝑚 𝑝 + 𝑚 𝑙 + 𝑚 𝑒 ) 

𝑉 𝑖 5 (48)

.9. Stage 6 

Following the same procedure from the other stages an instantaneous

nergy balance is formulated. The initial kinetic energy of the projec-

ile and plugs at the beginning of this stage, 𝐸 06 , is equal to the kinetic

nergy of the projectile and plugs at any moment, 𝐸 𝑝 ( 𝑡 ) , plus the en-

rgy absorbed by the energy-absorption mechanisms until this moment,

 𝐴𝐵 6 
( 𝑡 ) : 

 06 = 𝐸 𝑝 ( 𝑡 ) + 𝐸 𝐴𝐵 6 
( 𝑡 ) (49)

 𝑝 ( 𝑡 ) = 

1 
2 
( 𝑚 𝑝 + 𝑚 𝑙 + 𝑚 𝑒 ) 𝑣 ( 𝑡 ) 2 (50)

 𝐴𝐵 6 
( 𝑡 ) = 𝐸 𝐿 ( 𝑡 ) + 𝐸 𝐸𝐷 ( 𝑡 ) + 𝐸 𝑇𝐹 ( 𝑡 ) + 𝐸 𝐷𝐿 ( 𝑡 ) + 𝐸 𝑀𝐶 ( 𝑡 ) (51)

here 𝐸 𝐿 ( 𝑡 ) is the kinetic energy transferred to the laminate, 𝐸 𝐸𝐷 ( 𝑡 ) is
he energy absorbed by elastic deformation of fibres, 𝐸 𝑇𝐹 ( 𝑡 ) is the energy

bsorbed by tensile failure of fibres, 𝐸 𝑀𝐶 ( 𝑡 ) is the energy absorbed by

atrix cracking and 𝐸 𝐷𝐿 ( 𝑡 ) is the energy absorbed by delamination. All

hese mechanisms and their expressions are fully explained in Alonso

t al. [2] . Since this laminate is assumed to behave as thin a relative

isplacement between the laminate and the previous body (projectile

lus the plugs), 𝛿( 𝑡 ) , is assumed to account for the penetration. The main

ifference respect to the model proposed by Alonso et al. [2] is that the

eometry of the impactor is assumed to be cylindrical because the plugs

enetrates first. Hence, the impactor diameter is assumed to be constant

rom the beginning with a value equal to the projectile diameter. The

mpactor mass is calculated as the sum of the projectile mass plus the

lug masses. 

Derivation of Eq. (49) with respect to time, gives the non-linear

econd-order differential equation governing the sixth stage: 

 ( 𝑡 ) = 

𝑔 ( 𝑡,𝑥 ( 𝑡 ) ,𝑣 ( 𝑡 ) ) − ℎ ( 𝑡,𝑣 ( 𝑡 ) ) 𝑣 ( 𝑡 ) (
𝑚 𝑝 + 𝑚 𝑙 + 𝑚 𝑓 

)
𝑣 ( 𝑡 ) + 𝜋𝑒 𝑡 𝜌𝑙 𝐶 𝑉 𝑡 𝑙 

2 
⎡ ⎢ ⎢ ⎣ 𝑡 2 𝑘 ( 𝑡,𝑣 ( 𝑡 ) ) 2 𝑣 ( 𝑡 ) + 2 𝑐𝐷 

1∕6 

𝑉 𝑖 6 2 

( 
𝐶 𝑉 𝑡 𝑙 
𝑒 𝑡 

) 1∕2 
𝑡 5∕2 𝑘 ( 𝑡,𝑣 ( 𝑡 ) ) 𝑣 ( 𝑡 ) 3 

⎤ ⎥ ⎥ ⎦ 
− 

− 

𝜋𝑒 𝑡 𝜌𝑙 𝐶 𝑉 𝑡 𝑙 
2 
⎡ ⎢ ⎢ ⎣ tk ( 𝑡,𝑣 ( 𝑡 ) ) 2 𝑣 ( 𝑡 ) 2 + 𝑐𝐷 

1∕6 

𝑉 𝑖 6 2 

( 
𝐶 𝑉 𝑡 𝑙 
𝑒 𝑡 

) 1∕2 
𝑡 3∕2 𝑘 ( 𝑡,𝑣 ( 𝑡 ) ) 𝑣 ( 𝑡 ) 4 

⎤ ⎥ ⎥ ⎦ (
𝑚 𝑝 + 𝑚 𝑙 + 𝑚 𝑓 

)
𝑣 ( 𝑡 ) + 𝜋𝑒 𝑡 𝜌𝑙 𝐶 𝑉 𝑡 𝑙 

2 
⎡ ⎢ ⎢ ⎣ 𝑡 2 𝑘 ( 𝑡,𝑣 ( 𝑡 ) ) 2 𝑣 ( 𝑡 ) + 2 𝑐𝐷 

1∕6 

𝑉 𝑖 6 2 

( 
𝐶 𝑉 𝑡 𝑙 
𝑒 𝑡 

) 1∕2 
𝑡 5∕2 𝑘 ( 𝑡,𝑣 ( 𝑡 ) ) 𝑣 ( 𝑡 ) 3 

⎤ ⎥ ⎥ ⎦ 
𝑥 ( 0 ) = 0 
𝑣 ( 0 ) = 𝑉 𝑖 6 

(52) 

The following functions are defined to facilitate the handling of the

quations which leads to Eq. (52) : 

 ( 𝑡, 𝑣 ( 𝑡 )) = 

𝑑𝐸 𝑇𝐹 ( 𝑡 ) 
𝑑𝑡 

1 
𝑣 ( 𝑡 ) 

(53)

( 𝑡, 𝑥 ( 𝑡 ) , 𝑣 ( 𝑡 )) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
− 

𝑑 

𝑑𝑡 
[ 𝐸 𝐷𝐿 ( 𝑡 ) + 𝐸 𝑀𝐶 ( 𝑡 )] , if 𝑡 ≤ 

𝜙𝑝 

2 𝐶 𝑉 𝑡 𝑙 

− 

𝑑 

𝑑𝑡 
[ 𝐸 𝐸𝐷 ( 𝑡 ) + 𝐸 𝐷𝐿 ( 𝑡 ) + 𝐸 𝑀𝐶 ( 𝑡 )] , if 𝑡 > 

𝜙𝑝 

2 𝐶 𝑉 𝑡 𝑙 

(54)

 ( 𝑡, 𝑣 ( 𝑡 ) ) = 𝑐𝐷 

1∕6 
( 

𝑣 ( 𝑡 ) 
𝑉 𝑖 

) 2 
( 

𝐶 𝑉 𝑡 𝑙 
𝑡 

𝑒 𝑡 

) 1∕2 

, 𝑘 ∈ ( 0 , 1 ] (55) 

This stage finishes when the parameter controlling the penetration

rocess, 𝛿( 𝑡 ) , equals the laminate thickness: 

( 𝑡 ) = 𝑒 𝑡 (56)

When Eq. (56) is met, the residual velocity is obtained. 
8 
. Verification and results 

The aim of this section is, on the one hand, to validate the theoreti-

al model by comparing against experimental results taken from previ-

us literature studies. This comparison is carried out in the first subsec-

ion. On the other hand, two set of results regarding the impact process

nd the energy absorbed by the different energy-absorption mechanisms

ithin each stage are obtained and properly discused in the second and

hird subsections. 

.1. Validation of the model 

With validation purposes, we focus on the ballistic limit as the most

mportant feature for the theoretical model to capture as well as the

allistic behaviour in terms of the impact velocity versus the residual

elocity curve. In Fig. 5 , the experimental impact velocity [27] versus

he residual velocity curve is represented with circles and it is compared

ith those values (represented with a continuous line) obtained from the

heoretical model proposed in the previous section. 

As it can be seen, the results derived from the theoretical model pro-

osed in this work present a good agreement with the experimental val-

es. The ballistic limit predicted by the model is found to be 322 ms −1 

hile the experimental one [27] is 343 ms −1 . Therefore, the theoretical

odel provides a ballistic limit prediction with differences lower than

% as well as a good fit to the high velocities range of the curve. 

.2. Study of the stage initial velocity of the projectile and stage duration 

imes 

Additionally, the initial velocities and duration times of each stage

s. impact velocity are shown in Fig. 6 (a) and (b) respectively. These

esults allow to analyse the evolution of the penetration process in terms

f the impact velocity. 

In view of the results shown in Fig. 6 (a), the energy absorbed in the

rst stage produces a mild decrease in the velocity (represented in the

V St2 curve) compared to the diminish that occurs in the linear mo-

entum transfer in the second stage. This latter is represented in the

V St3 curve. Analogously, as it can be inferred from the fact that the

V St3 , IV St4 and IV St5 curves are coincident, no remarkable velocity

ecrease can be observed in the third and fourth stages. An important

ecrease can be appreciated in the last linear momentum transfer that

akes place in the fifth stage, which is represented in terms of stage
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Fig. 6. (a) Impact velocity versus initial velocity in all stages within a velocity range from 300 m s −1 to 780 m s −1 , (b) Impact velocity versus stage duration time 

within a velocity range from 300 m s −1 to 780 m s −1 . 
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nitial velocities in the IV St6 curve. If the initial projectile kinetic en-

rgy is low enough so that its value corresponds to a velocity under the

allistic limit, projectile and material plugs are always stopped in the

ear facesheet, providing this last stage, the characteristic shape of the

allistic curve represented in Fig. 5 or in the RV curve in Fig. 6 (a). 

Furthermore, the behaviour of the curves shown in Fig. 6 (b) reveals

hat the fourth stage ( Δ𝑡 4-5 curve) is the longest process within the

mpact event. The duration times of the fourth and sixth stages may

dopt values up to 80 μs and 30 μs respectively. The first and third

tages 5 have a duration up to forty times shorter than the last ones be-

oming negligible in terms of time. The increasing impact velocity pro-

uces decreasing duration time curves for all stages as already shown in

ig. 6 (b). This observation has a unique exception located in the lowest

elocities of the Δ𝑡 6 curve. In this part, the time spent rises as the im-

act velocity increases until the ballistic limit is reached (point where

he contact time is maximum), adopting a decreasing curve shape from

his point on. The time of this stage increases as long as the penetra-

ion is longer before the ballistic limit. Once the ballistic limit has taken

lace, the resident time becomes shorter when increasing the impact

elocity. 

.3. Study of the energy-absorption mechanisms by stage 

The other set of results are related to the analysis of the energy-

bsorption mechanisms, which can be fundamental to understand the

ain failure and deformation mechanisms taking place during an im-

act. In Fig. 7 the energy-absorption mechanisms evolution with time

re represented for all the stages (except for the instantaneous stages)

or an impact velocity equal to the ballistic limit prediction provided by

he theoretical model. 

Fig. 7 (a) shows that the most important energy-absorption mech-

nisms are compression in region 1 and shear plugging. The great im-

ortance of these mechanisms is related to the thick behaviour assumed

or the front peel, since no relevant bending is considered, compression

nd important shear stresses are generated leading to a plug formation

n the second stage. Consequently, the failure assumed by compression

n this stage is proven to be a good hypothesis. Fibre failure and ki-

etic energy transfer from the projectile to the laminate are secondary

nergy-absorption mechanisms. In addition, matrix cracking, delamina-
5 It is worth reminding that the second and fifth stages happen to be instan- 

aneous as described above. 

v  

p  

p  

9 
ion, compression in the foam and compression in region 2 play a mi-

or role. Furthermore, a change in the slopes trend is observed in com-

ression in region 1 and kinetic energy transfer from a time of 1.6 μs.

his effect is a consequence of the through-thickness compression wave

rrival to the foam. Since there is no more laminate material, the ex-

ressions described by Alonso et al. [3] for these mechanisms change

o Eqs. (9) and (10) . From this moment on, the foam starts absorbing

nergy by compression though is not perceptible in Fig. 7 (a). Fig. 7 (b)

hows that the energy absorbed by the foam is negligible compared to

he other stages. Within this stage the energy absorbed by shear is some

rders of magnitude larger than compression. Therefore, the failure as-

umed by shear in this stage is reasonable. Fig. 7 (c) represents the en-

rgy absorbed by densification in the fourth stage. The absorbed energy

s linear with respect to time in this stage since the movement of the pro-

ectile is uniformly decelerated. Finally, Fig. 7 (d) shows the evolution

f the energy-absorption mechanisms in the sixth stage. This stage ab-

orbs the most important amount of energy by far, being fibre failure the

ost important energy-absorption mechanism followed by elastic defor-

ation of fibres. This result is in concordance with the thin laminates

ypothesis assumed in this stage. Since there is an important bending of

he rear peel, fibres are subjected to important tensile stresses and defor-

ation leading to a failure of the fibre. Delamination, matrix cracking

nd kinetic energy transfer are proven to be minor energy-absorption

echanisms. 

In order to see the change in the relative importance of the energy-

bsorption mechanisms with the impact velocity, the total energies

bsorbed by all the energy-absorption mechanisms are represented in

ig. 8 within a range of impact velocities from 80 ms −1 to 772 ms −1 ,

hich are the limit experimental values available. 

Fig. 8 (a) shows the final values of the energy-absorption mecha-

isms for different velocities in the first stage. It is interesting to analyse

he change in trends of the mechanisms. In this regard, compression in

oth regions, shear plugging and fibre failure grow monotonously with

mpact velocity because the energy to absorb is higher and there is also

ore time until the projectile stops. This tendency changes when the

aminate failure takes place, represented by the abrupt change in the

nergy curves. From that moment on, the contact time in the first stage

ecreases so there is less time to absorb energy ( Fig. 6 (b)). Consequently,

bre failure and compression in region 2 decrease. The latter reaches the

alue of zero when the initial velocity provokes an indentation of the

rojectile faster than the transverse wave in the laminate before com-

lete failure. Kinetic energy transfer increases because the laminate ab-
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Fig. 7. Energy-absorption mechanisms evolution with respect to time for an impact velocity of 322 ms −1 with the initial time starting from 0 in all stages: (a) Stage 

1 (b) Stage 3 (c) Stage 4 (d) Stage 6. 
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orbs some kinetic energy from the projectile. Compression in region 1

nd shear plugging remain constant because they reach their maximum

alue when there is perforation in the first peel. However, compression

n region 1 starts decreasing when the initial velocity is high enough to

rovoke the laminate failure before the through-thickness wave reaches

he last layer of the first peel, absorbing less energy by compression.

he kinetic energy transfer changes its tendency too due to the change

n the expression ( Eq. (9) ) explained by the previous fact. The other

nergy-absorption mechanisms play a minor role. 

Fig. 8 (b) represents the energy lost by the projectile in the instanta-

eous kinetic energy transfer to the plug in the second stage. Since the

elocity before the stage is linearly dependent of the velocity after the

tage ( Eq. (22) ), the energy lost with respect to impact velocity presents

 quadratics shape. Furthermore, this stage becomes the most important

ne for high velocities. Fig. 8 (e) can be analysed in the same way. The

nly difference is the least absorbed-energy due to the fact that the foam

ensity is an order of magnitude lower than the peels. Therefore, it takes

ess energy to move this plug than the plug in the second stage, leading

o a less energy lost. 

Fig. 8 (c) and (d) represent the stages related to the foam and as

an be seen the total energy absorbed is really low in all cases. It can

e inferred that the foam is not very relevant in the energy-absorption

rocess. Fig. 8 (c) shows that the energy absorbed by shear is by far

ore important than the energy absorbed by compression in the foam
10 
eing both very small. Both energy-absorption mechanisms rise when

ull perforation of the first peel takes place. Since the energy absorbed

s really low, energy absorbed by shear remains constant (because is the

aximum value the foam can absorb) from that moment. Nevertheless,

ompression in the foam decreases with impact velocity because the

rojectile provokes the failure by shear before the through-thickness

lastic wave travels through all the foam, absorbing less energy as long

s the impact velocity increases. 

Fig. 8 (f) shows the final values of the energy-absorption mecha-

isms for different velocities in the sixth stage. A growing trend is shown

or all the mechanisms until full penetration except for the kinetic en-

rgy transfer. The more time the projectile interacts with the laminate

he more energy absorbed. Nevertheless, since the laminate eventually

tops if full penetration does not take place, the final value of the ki-

etic energy transfer is zero. The amount of energy absorbed by elastic

eformation of fibres, fibre failure, delamination and matrix cracking

ecreases because there is less time to absorb energy. Since kinetic en-

rgy transfer is proportional to the projectile velocity and this latter is

ffected by the other energy-absorption mechanisms the trend of this

echanism presents a different shape. In general terms, the rear peel

bsorbs more energy than the front peel. Some energy-absorption mech-

nisms are more important as delamination and matrix cracking in the

ear peel because the bending of the peel provokes important matrix

reakage and layer debonding. 
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Fig. 8. Total energy absorbed versus impact velocity for all the energy-absorption mechanisms within a velocity range from 80 to 772 m s −1 : (a) Stage 1 (b) Stage 

2 (c) Stage 3 (d) Stage 4 (e) Stage 5 (f) Stage 6. 
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. Conclusions 

In this work, a new energy-based theoretical model to analyse the

erformance of sandwich composite structures with PVC crushable foam

ore under high-velocity impact was proposed. The six stages considered

ere described by combining three different models based on the wave

ropagation theory. Two of them dealt with the front and rear peels

f the sandwich assuming thick and thin woven laminates behaviour
11 
espectively. These considerations were made beforehand, supported in

xperimental observations and were proven analytically reasonable in

iew of the results obtained. Furthermore, the third stage was an original

roposition to describe the projectile penetration through the foam core.

Additionally, a validation against experimental data was carried out

n terms of the impact versus residual velocity curve, finding a good

greement regarding the ballistic limit and the values and trend of the

urve. Different results such as the duration of the stages and the energy-
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bsorption mechanisms were analysed leading to the following conclu-

ions: 

• The ballistic response was accurately predicted within the whole ve-

locity range, showing a ballistic limit error smaller than 7% . 
• The major decrease in the projectile velocity took place in the rear

laminate, followed by the ones produced in the instantaneous linear

momentum transfers if the impact velocity was high enough. Never-

theless, the amount of energy lost by projectile was hardly noticeable

in the foam stages. 
• The forth and sixth stages were the most time spending ones. The

time spent in the other stages was negligible in analytical terms. 
• The most important energy-absorption mechanisms were the ones

occurring in the sixth stage, especially fibre failure and elastic defor-

mation of fibres. The energy absorbed in the remaining stages was

two order of magnitude lower, having the compression in region 1

and shear plugging in the first stage the highest values. Moreover,

kinetic energy transfer, fibre failure in the first stage, foam densi-

fication and shear plugging energy-absorption mechanisms played

a secondary role. The energy absorbed in the foam due to plastic

compression was negligible. All these conclusions correspond to the

ballistic limit regime. 
• The amount of energy absorbed by the most relevant energy-

absorption mechanisms in the first stage increased as the projec-

tile velocity approached to the failure condition. All the energy-

absorption mechanisms affected by through-thickness wave de-

creased their importance when increasing the impact velocity be-

cause there was a point where the wave did not have time to cover

all the peel/core distance. The reduction of kinetic energy exper-

imented by the projectile in the instantaneous linear momentum

transfers increased their importance with impact velocity becoming

the most important for high-velocities. The energy absorbed by the

foam was negligible within all the range of velocities. The last stage

was the most important along with the kinetic energy transfers in

terms of energy-absorbed. The behaviour of the energy-absorption

mechanisms was the same than in the first stage. First, the energy

absorbed rose until failure and then it diminished as the impact ve-

locity increased. Energy absorbed by matrix cracking and delamina-

tion were more important in this stage compared to their values in

the first stage since bending was considered. 
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