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Abstract: There are typically several perturbation methods for approaching the solution of weakly
nonlinear vibrations (where the nonlinear terms are “small” compared to the linear ones): the Method
of Strained Parameters, the Naive Singular Perturbation Method, the Method of Multiple Scales, the
Method of Harmonic Balance and the Method of Averaging. The Straightforward Expansion Perturbation
Method (SEPM) applied to weakly nonlinear vibrations does not usually yield to correct solutions.
In this manuscript, we provide mathematical proof of the inaccuracy of the SEPM in general cases.
Nevertheless, we also provide a sufficient condition for the SEPM to be successfully applied to weakly
nonlinear vibrations. This mathematical formalism is written in the syntax of the first-order formal
language of Set Theory under the methodology framework provided by the Category Theory.

Keywords: numerical analysis; approximation theory; nonlinear vibration; perturbation method;
Banach space; unitary algebra; sup norm

MSC: 47L05; 47L90; 49J30; 90B50

1. Introduction

This paper originates from and is motivated by a recently published manuscript [1],
where the influence of different support types in the nonlinear vibrations of beams is ana-
lyzed. During the development of this latter paper, the authors searched for a mathematical
proof of the Straightforward Expansion Perturbation Method (SEPM), not reaching any
manuscript containing a proper and rigorous definition and proof of the method. The main
objective of this paper is to provide a mathematical formalism of SEPM.

Currently, a large number of nonlinear vibration problems in Engineering are solved
by the Nonlinear Finite Element Method. However, in many cases, it is necessary to find
an analytical solution in order to better understand the contribution of forces, masses or
geometries. In the process of searching for an analytical solution, hypotheses, simplifi-
cations and linearizations are raised, which usually lead to approximations of the exact
analytical solutions. Traditionally, nonlinear problems have been solved by perturbations
methods in order to eliminate the generated secular terms. According to these techniques,
the solution is represented by a few terms of an expansion, usually no more than two or
three terms. Therefore, the deviation between the approximate analytical solution and
the exact analytical solution depends on the number of selected expansion terms and the
amplitude of the vibration [2–6].

In accordance with ([7], Subsection 3.5.1), there are typically three perturbation methods
for approaching the solution of weakly nonlinear vibrations: the Method of Multiple Scales,
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the Method of Harmonic Balance and the Method of Averaging. There is a fourth method, sim-
pler to apply than the previous three but much more imprecise, called the Straightforward
Expansion Perturbation Method (SEPM). This perturbation method applied to weakly nonlin-
ear vibrations does not usually yield to correct solutions, as shown in ([7], Subsection 3.5.2).
The appearance of secular terms, i.e., terms of the form t sin(t + ϕ0), leads to incorrect so-
lutions due to, among other physical reasons, the unbounded growth of the term with time
t. In Theorem 3 and Corollary 4, we prove that, if the terms of the expansion are uniformly
bounded, then the SEPM leads to a correct solution of a weakly nonlinear vibration.

There are other perturbation methods such as the Method of Strained Parameters (also
known as Lindstedt-Poincaré Method) ([6], Section 3.1) and the Naive Singular Perturbation
Method [8]. Both methods can also be consider expansion methods, in the sense that the
solution of the nonlinear equation is calculated by means of an expansion series, like it
occurs with SEPM. The main difference between the SEPM and the previous two methods
relies on the way that the expansion terms are computed. On the other hand, as mentioned
above, we provide a mathematical proof that assures that, under uniform boundedness of
the expansion terms, the expansion series in the SEPM converges to the solution. We have
conveyed a search and we have found no mathematical theorems or formalism for the
Method of Strained Parameters or the Naive Singular Perturbation Method. Both methods
are described by means of examples and successfully applied in many situations. In this
direction, we refer the reader to several works by Van Groesen and his students Karjanto
and Cahyono [9–12], who accomplished more successful applications of perturbartion
methods in different settings, such as wave modelling.

In 1998, Liao [13] provided a new analytic technique, called Homotopy Analysis
Method (HAM), which differs from perturbation methods in the essential fact that the va-
lidity of HAM is independent on whether or not there exist small parameters in considered
nonlinear equations. Therefore, HAM is a powerful tool to deal with strongly nonlinear
problems. As we will show throughout this manuscript, the existence of small parameters
is crucial towards the convergence of SEPM (see Theorem 3 and Section 4). In fact, SEPM is
a powerful tool for weakly nonlinear vibrations in which the norm of the expansion terms
(θi)i≥0 can be uniformly controlled. It is worth mentioning that we provide a mathematical
proof for the validity of SEPM in the previously mentioned weakly nonlinear vibrations,
whereas no mathematical proof is given for a general validation of HAM. However, Liao
applied HAM successfully in several situations such as boundary element methods [14],
the laminar viscous flow over a semi-infinite flat plate [15], and nonlinear oscillations [16].
In [17], HAM is compared with Euler transformations.

Many authors have investigated the SEPM and developed formulations. However,
a rigorous mathematical treatment has not been carried out. Therefore, it is necessary to
define the limit of the SEPM in order to provide mathematical formalism and contribute to
the advancement of this method. A Banach algebra of differentiable functions endowed
with an extended supremum norm has been used in this work. Many theorems, corollaries
and lemmas have been formulated with the purpose to assure the stability of the solutions
found with this method. In addition, all the methodology used has been applied to the
example of the famous pendulum [18].

2. Materials and Methods

The form of the motion equation of nonlinear vibrations is generally expressed as [7]:
θ̈(t) + cθ̇(t) + kθ(t) = g

(
t, θ(t), θ̇(t)

)
,

with initial conditions θ(0) and θ̇(0),
θ ∈ C2([a, b],R),
k, c ∈ R, c2 − 4k < 0,
g ∈ C3(R3,R

)
.

(1)

Notice that the homogeneous equation θ̈ + cθ̇ + kθ = 0 has harmonic solutions if
and only if c2 − 4k < 0. This is why this condition is imposed in Equation (1). On the
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other hand, θ0 ∈ R is said to be an equilibrium point of Equation (1) provided that the
constant function θ(t) := θ0 is a solution of Equation (1). It is trivial to check that θ0 ∈ R
is an equilibrium point of Equation (1) if and only if θ0 is a solution of g(t, θ, 0)− kθ = 0
for all t ∈ [a, b]. When the “size” of the nonlinear terms of Equation (1), g

(
t, θ(t), θ̇(t)

)
, is

small compared to the one of the linear terms, then we call Equation (1) a weakly nonlinear
vibration. Later on, in the next section, we will rigorously define the “size” of a function by
means of a norm (see Equation (2)).

2.1. The Banach Space Unitary Algebra Cm([a, b],R)
We will deal with the unitary algebra Cm([a, b],R) of Cm-differentiable real-valued

functions defined on the real interval [a, b] with a < b, i.e., real-valued functions which are
m times continuously differentiable on [a, b]. We will endowed it with the norm

‖ f ‖(m) := max
{
‖ f ‖∞,

∥∥ f ′
∥∥

∞, . . . ,
∥∥∥ f (m)

∥∥∥
∞

}
, (2)

where ‖ · ‖∞ stands for the sup norm on C([a, b],R), i.e.,

‖ f ‖∞ := max
a≤t≤b

| f (t)|,

for each f ∈ C([a, b],R). Recall that C([a, b],R) is a Banach algebra endowed with the sup
norm, i.e., ‖ f g‖∞ ≤ ‖ f ‖∞‖g‖∞ for every f , g ∈ C([a, b],R). Note also that the uniform
convergence of functions in C([a, b],R) is precisely the ‖ · ‖∞-convergence (see [19] for a
complete study on Banach algebras). It is trivial to check that ‖ f ‖(p) ≤ ‖ f ‖(q) whenever
p ≤ q and f ∈ Cq([a, b],R).

For the sake of completeness and to make this manuscript as self-contained as possible,
we will prove that Cm([a, b],R) is a Banach space when endowed with the norm (2). We first
need a technical lemma.

Lemma 1. Let ( fn)n∈N be a sequence in C1([a, b],R). Assume that the following conditions hold:

1. There exists t0 ∈ [a, b] such that ( fn(t0)) is convergent.
2. There exists g ∈ C([a, b],R) such that ( f ′n)n∈N is ‖ · ‖∞-convergent to g.

Then there exists f ∈ C1([a, b],R) such that f ′ = g and ( fn)n∈N is ‖ · ‖∞-convergent to f .

Proof. Let L := lim
n→∞

fn(t0) and define

Fn(t) :=
∫ t

a
f ′n(s)ds + fn(t0)−

∫ t0

a
f ′(s)ds, n ∈ N,

and

f (t) :=
∫ t

a
g(s)ds + L−

∫ t0

a
g(s)ds

for every t ∈ [a, b]. Observe that fn(t) = Fn(t) for every t ∈ [a, b] and every n ∈ N. Thus, it
only remains to prove that (Fn)n∈N is ‖ · ‖∞-convergent to f . For every t ∈ [a, b] and every
n ∈ N, we have that

|Fn(t)− f (t)| =

∣∣∣∣∫ t

a
f ′n(s)ds + fn(t0)−

∫ t0

a
f ′(s)ds−

∫ t

a
g(s)ds− L +

∫ t0

a
g(s)ds

∣∣∣∣
≤

∫ t

a

∣∣ f ′n(s)− g(s)
∣∣ds + | fn(t0)− L|+

∫ t0

a

∣∣ f ′n(s)− g(s)
∣∣ds

≤
∥∥ f ′n − g

∥∥
∞(t− a) + | fn(t0)− L|+

∥∥ f ′n − g
∥∥

∞(t0 − a)

≤ 2
∥∥ f ′n − g

∥∥
∞(b− a) + | fn(t0)− L|.
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This shows that, for all n ∈ N,

‖Fn − f ‖∞ ≤ 2
∥∥ f ′n − g

∥∥
∞(b− a) + | fn(t0)− L|.

Since ( f ′n)n∈N is ‖ · ‖∞-convergent to g and ( fn(t0))n∈N is convergent to L by hypothesis,
we deduce that (Fn)n∈N is ‖ · ‖∞-convergent to f .

Now, we are in the right position to prove that Cm([a, b],R) is a Banach space. In the
following theorem and throughout the rest of this manuscript, f−1 stands for the inverse
of f with respect to the multiplication operation in the algebra Cm([a, b],R).

Theorem 1. The unitary algebra Cm([a, b],R) becomes a complete normed space endowed with
the norm (2) and satisfies, for all f , g ∈ Cm([a, b],R), that:

1. ‖1‖(m) = 1.
2. ‖ f g‖(m) ≤ 2m‖ f ‖(m)‖g‖(m).
3. If f is invertible, then

∥∥ f−1
∥∥
(m) ≥ 2−m‖ f ‖−1

(m)
.

Proof. Let ( fn)n∈N ⊆ Cm([a, b],R) be a Cauchy sequence for the norm given in (2). Since∥∥∥ f (j)
p − f (j)

q

∥∥∥
∞
≤
∥∥ fp − fq

∥∥
(m)

for all p, q ∈ N and all j ∈ {0, . . . , m}, we conclude that(
f (j)
n

)
n∈N

is a Cauchy sequence in C([a, b],R) for the sup norm. The completeness of

C([a, b],R) endowed with the sup norm assures the existence of gj ∈ C([a, b],R) such that(
f (j)
n

)
n∈N

is ‖ · ‖∞-convergent to gj for all j ∈ {0, . . . , m}. At this stage, we only need to

call on Lemma 1 to deduce that, if f := g0, then f ∈ Cm([a, b],R) and f (j) = gj for all

j ∈ {0, . . . , m}. Then
(

f (j)
n

)
n∈N

is ‖ · ‖∞-convergent to f (j) for all j ∈ {0, . . . , m}. Since j

ranges a finite set, we can conclude that ( fn)n∈N converges to f in Cm([a, b],R). Next, we
will prove the three items of the statement of the theorem:

1. It is clear ‖1‖(m) = 1 since

‖1‖(m) = max{‖1‖∞, ‖0‖∞, . . . , ‖0‖∞} = 1.

2. We will prove, by induction on m ∈ N∪ {0}, that

( f g)(m) =
m

∑
i=0

(
m
i

)
f (m−i)g(i) (3)

and ∥∥∥( f g)(m)
∥∥∥
(m)
≤ 2m‖ f ‖(m)‖g‖(m). (4)

For m = 0. It is clear that (3) holds if m = 0. Since C([a, b],R) is a Banach algebra
endowed with the sup norm, we have that

‖ f g‖(0) = ‖ f g‖∞ ≤ ‖ f ‖∞‖g‖∞ = ‖ f ‖(0)‖g‖(0) = 20‖ f ‖(0)‖g‖(0).

For m = 1. By using the product rule, we have that ( f g)′ = f ′g + f g′, therefore∥∥( f g)′
∥∥

∞ ≤
∥∥ f ′
∥∥

∞‖g‖∞ + ‖ f ‖∞
∥∥g′
∥∥

∞ ≤ 2‖ f ‖(1)‖g‖(1).

By induction hypothesis, ‖ f g‖∞ ≤ ‖ f g‖(0) ≤ ‖ f ‖(0)‖g‖(0) ≤ 2‖ f ‖(1)‖g‖(1), so we
conclude that

‖ f g‖(1) = max
{
‖ f g‖∞,

∥∥( f g)′
∥∥

∞

}
≤ 21‖ f ‖(1)‖g‖(1).
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For m = 2. For the second derivative, we have ( f g)′′ = f ′′g + 2 f ′g′ + f g′′, so∥∥( f g)′′
∥∥

∞ ≤
∥∥ f ′′

∥∥
∞‖g‖∞ + 2

∥∥ f ′
∥∥

∞

∥∥g′
∥∥

∞ + ‖ f ‖∞
∥∥g′′

∥∥
∞ ≤ 4‖ f ‖(2)‖g‖(2).

By induction hypothesis, ‖ f g‖∞ ≤ ‖ f g‖(0) ≤ ‖ f ‖(0)‖g‖(0) ≤ 22‖ f ‖(2)‖g‖(2) and
‖( f g)′‖∞ ≤ ‖( f g)′‖(1) ≤ 2‖ f ‖(1)‖g‖(1) ≤ 22‖ f ‖(2)‖g‖(2), thus we obtain that

‖ f g‖(2) = max
{
‖ f g‖∞,

∥∥( f g)′
∥∥

∞,
∥∥( f g)′′

∥∥
∞

}
≤ 22‖ f ‖(2)‖g‖(2).

Suppose that (3) and (4) hold for m ≥ 2. Let us prove it for m + 1. By relying again on
the product rule,

( f g)(m+1) =
(
( f g)(m)

)′
=

(
m

∑
i=0

(
m
i

)
f (m−i)g(i)

)′
=

m

∑
i=0

(
m
i

)(
f (m−i)g(i)

)′
=

m

∑
i=0

(
m
i

)
f (m+1−i)g(i) +

m

∑
i=0

(
m
i

)
f (m−i)g(i+1)

= f (m+1)g +
m

∑
i=1

(
m
i

)
f (m+1−i)g(i) +

m−1

∑
i=0

(
m
i

)
f (m−i)g(i+1) + f g(m+1)

= f (m+1)g +
m

∑
i=1

(
m
i

)
f (m+1−i)g(i) +

m

∑
i=1

(
m

i− 1

)
f (m−(i−1))g(i) + f g(m+1)

= f (m+1)g +
m

∑
i=1

(
m

i− 1

)
f (m+1−i)g(i) +

m

∑
i=1

(
m
i

)
f (m+1−i)g(i) + f g(m+1)

= f (m+1)g +
m

∑
i=1

(
m + 1

i

)
f (m+1−i)g(i) + f g(m+1)

=
m+1

∑
i=0

(
m + 1

i

)
f (m+1−i)g(i).

Next, we will prove that ‖ f g‖(m+1) ≤ 2m+1‖ f ‖(m+1)‖g‖(m+1) by relying on our

induction Hypothesis (4). Notice that it is sufficient to show that
∥∥∥( f g)(k)

∥∥∥
∞
≤

2m+1‖ f ‖(m+1)‖g‖(m+1) for all k = 0, . . . , m + 1. If k ∈ {0, . . . , m}, by (4) we know that∥∥∥( f g)(k)
∥∥∥

∞
≤ ‖ f g‖(m) ≤ 2m‖ f ‖(m)‖g‖(m) ≤ 2m+1‖ f ‖(m+1)‖g‖(m+1).

It only remains to show that
∥∥∥( f g)(m+1)

∥∥∥
∞
≤ 2m+1‖ f ‖(m+1)‖g‖(m+1). Observe that

∥∥∥( f g)(m+1)
∥∥∥

∞
=

∥∥∥∥∥m+1

∑
i=0

(
m + 1

i

)
f (m+1−i)g(i)

∥∥∥∥∥
∞

≤
m+1

∑
i=0

(
m + 1

i

)∥∥∥ f (m+1−i)g(i)
∥∥∥

∞
≤

m+1

∑
i=0

(
m + 1

i

)∥∥∥ f (m+1−i)
∥∥∥

∞

∥∥∥g(i)
∥∥∥

∞

≤ ‖ f ‖(m+1)‖g‖(m+1)

m+1

∑
i=0

(
m + 1

i

)
≤ 2m+1‖ f ‖(m+1)‖g‖(m+1).
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3. Finally, if f is invertible, by applying Theorem 1(2),

1 = ‖1‖(m) =
∥∥∥ f f−1

∥∥∥
(m)
≤ 2m‖ f ‖(m)

∥∥∥ f−1
∥∥∥
(m)

so ∥∥∥ f−1
∥∥∥
(m)
≥ 2−m‖ f ‖−1

(m)
.

Remark 1. If f , g, h ∈ Cm([a, b],R), then in view of Theorem 1(2),

‖ f gh‖(m) ≤ 2m‖ f g‖(m)‖h‖(m) ≤ 4m‖ f ‖(m)‖g‖(m)‖h‖(m).

Remark 2. The inequality ‖ f g‖(m) ≤ 2m‖ f ‖(m)‖g‖(m) proved in Theorem 1(2) for the Banach
space unitary algebra Cm([a, b],R), does not turn Cm([a, b],R) into a Banach algebra, unless
m = 0. However, a very simple renorming does:

‖| f |‖(m) := 2m‖ f ‖(m).

With this new equivalent norm on Cm([a, b],R), we can trivially obtained that

‖| f g|‖(m) ≤ ‖| f |‖(m)‖|g|‖(m)

for all f g,∈ Cm([a, b],R), turning Cm([a, b],R) into a Banach algebra. However, we will keep
working with the norm given by (2).

Corollary 1. A sequence ( fn)n∈N is convergent in Cm([a, b],R) to f ∈ Cm([a, b],R) if and only
if
(

f (p)
n

)
n∈N

is convergent to f (p) in C([a, b],R) for every 0 ≤ p ≤ m.

The following corollary will be crucial towards accomplishing our results.

Corollary 2. Let ε ∈ (0, 1) and let (θi)i≥0 ⊆ C2([a, b],R) be a bounded sequence. Then θ :=
∑∞

i=0 εiθi ∈ C2([a, b],R). Furthermore, θ̇ = ∑∞
i=0 εi θ̇i in C1([a, b],R) and θ̈ = ∑∞

i=0 εi θ̈i in
C([a, b],R).

Proof. We will prove first that
(
∑n

i=0 εiθi
)

n≥0 is convergent in C2([a, b],R). Indeed, take
M := sup

i≥0
‖θi‖(2). Notice that ∑n

i=0
∥∥εiθi

∥∥
(2) ≤ M ∑n

i=0 εi for every n ≥ 0, so
(
∑n

i=0 εiθi
)

n≥0

is absolutely convergent in C2([a, b],R) because 0 < ε < 1. Since C2([a, b],R) is a Banach
space, we conclude that

(
∑n

i=0 εiθi
)

n≥0 is convergent in C2([a, b],R). Finally, Corollary 1
assures that θ̇ = ∑∞

i=0 εi θ̇i in C1([a, b],R) and θ̈ = ∑∞
i=0 εi θ̈i in C([a, b],R).

We finalize this section with the following technical lemma of great importance
towards the development of the upcoming sections.

Lemma 2. If h ∈ C2([a, b],R), then H ∈ C2([a, b],R) and ‖H‖(2) ≤ ‖h‖(2) max{b − a, 1},
where H(t) :=

∫ t
a h(s)ds.

Proof. In the first place,

|H(t)| =
∣∣∣∣∫ t

a
h(s)ds

∣∣∣∣ ≤ ∫ t

a
|h(s)|ds ≤ ‖h‖∞(t− a) ≤ ‖h‖∞(b− a) ≤ ‖h‖(2)(b− a)
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for all t ∈ [a, b], therefore ‖H‖∞ ≤ ‖h‖∞(b − a) ≤ ‖h‖(2)(b − a). Next, Ḣ = h, thus∥∥Ḣ
∥∥

∞ = ‖h‖∞ ≤ ‖h‖(2). Finally, Ḧ = ḣ, thus
∥∥Ḧ
∥∥

∞ =
∥∥ḣ
∥∥

∞ ≤ ‖h‖(2). As a consequence,

‖H‖(2) = max
{
‖H‖∞,

∥∥Ḣ
∥∥

∞,
∥∥Ḧ
∥∥

∞

}
≤ ‖h‖(2) max{b− a, 1}.

Observe that, in the settings of Lemma 2, H is, in fact, in C3([a, b],R).

2.2. Perturbation to Second-Order Linear Ordinary Differential Equations with
Constant Coefficients

We will deal with the solutions of a second-order linear ordinary differential equation
(ODE) with constant coefficients whose independent term has been applied a perturbation
to. Consider the following Initial Value Problem (IVP):

θ̈(t) + cθ̇(t) + kθ(t) = g(t),
with initial conditions θ(0) and θ̇(0),
θ ∈ C2([a, b],R),
k, c ∈ R, c2 − 4k < 0,
g ∈ C2([a, b],R).

(5)

An example of perturbation of the IVP (5) is the following IVP:{
θ̈(t) + cθ̇(t) + kθ(t) = h(t),
with initial conditions θ(0) and θ̇(0),

(6)

where h ∈ C2([a, b],R) and ‖g− h‖(2) < ε for a certain 0 < ε < 1.
Our objective is to estimate ‖θ − ϑ‖(2), where θ and ϑ are the unique solutions of (5)

and (6), respectively. Notice that θ − ϑ is the unique solution of the IVP:
θ̈(t) + cθ̇(t) + kθ(t) = g(t)− h(t),
θ(0) = 0,
θ̇(0) = 0.

(7)

Therefore, everything is reduced to estimate the norm of the unique solution of
the IVP: 

θ̈(t) + cθ̇(t) + kθ(t) = r(t),
θ(0) = 0,
θ̇(0) = 0.

(8)

where r ∈ C2([a, b],R).
Suppose now that {θc, θs} is a basis of the vector space of solutions of the homoge-

neous equation θ̈(t) + cθ̇(t) + kθ(t) = 0. Let W(θc(t), θs(t)) be the Wronskian of {θc, θs},
i.e.,

W(θc(t), θs(t)) :=
∣∣∣∣ θc(t) θs(t)

θ̇c(t) θ̇s(t)

∣∣∣∣ = θc(t)θ̇s(t)− θ̇c(t)θs(t).

Recall that if c1, c2 ∈ C2([a, b],R) satisfy

ċ1(t) =
−θs(t)r(t)

W(θc(t), θs(t))
and ċ2(t) =

θc(t)r(t)
W(θc(t), θs(t))

, (9)

then it is trivial that {
ċ1θc + ċ2θs = 0,
ċ1θ̇c + ċ2θ̇s = r.
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Hence, c1θc + c2θs is a particular solution of θ̈(t) + cθ̇(t) + kθ(t) = r(t). Thus, the general
solution of θ̈(t) + cθ̇(t) + kθ(t) = r(t) is given by

θ(t) := C1θc(t) + C2θs(t) + c1(t)θc(t) + c2(t)θs(t), (10)

where C1, C2 ∈ R are constants. Let us find the unique solution of (8). Notice that

c1(t) :=
∫ t

a

−θs(s)r(s)
W(θc(s), θs(s))

ds and c2(t) :=
∫ t

a

θc(s)r(s)
W(θc(s), θs(s))

ds

both satisfy that c1, c2 ∈ C2([a, b],R) and verify Equation (9). Next, since c2 − 4k < 0 by
initial assumption, we can choose

θc(t) := e−
c
2 t cos

(
t

√
k− c2

4

)
and θs(t) := e−

c
2 t sin

(
t

√
k− c2

4

)
.

It is not hard to check that{
θc(0) = 1,
θ̇c(0) = − c

2 ,
and

{
θs(0) = 0,

θ̇s(0) =
√

k− c2

4 .

Then {
0 = θ(0) = C1 + c1(0),

0 = θ̇(0) = C1
(
− c

2
)
+ C2

√
k− c2

4 + ċ1(0) + c1(0)
(
− c

2
)
+ c2(0)

√
k− c2

4 .

Observe that
C1

(
− c

2

)
+ c1(0)

(
− c

2

)
= 0,

therefore, we obtain that 
C1 = −c1(0),

C2 =
−ċ1(0)− c2(0)

√
k− c2

4√
k− c2

4

.

Now, we are in the right position to estimate the norm of the unique solution of (8).

Theorem 2. If θ ∈ C2([a, b],R) is the unique solution of the IVP (8), then

‖θ‖(2) ≤

160‖θc‖(2) max{b− a, 1}+ 16√
k− c2

4

‖θs‖(2)

‖θs‖(2)
∥∥∥(θc θ̇s − θs θ̇c

)−1
∥∥∥
(2)
‖r‖(2).

Proof. Following Equation (10), we have that

θ(t) = C1θc(t) + C2θs(t) + c1(t)θc(t) + c2(t)θs(t),

where 
C1 = −c1(0),

C2 =
−ċ1(0)− c2(0)

√
k− c2

4√
k− c2

4

,

and

c1(t) :=
∫ t

a

−θs(s)r(s)
W(θc(s), θs(s))

ds and c2(t) :=
∫ t

a

θc(s)r(s)
W(θc(s), θs(s))

ds.
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In view of Lemma 2 and by taking into consideration Theorem 1 together with Remark 1,
we have that

|C1| = |c1(0)| ≤ ‖c1‖∞ ≤ ‖c1‖(2) ≤
∥∥∥∥ −θsr

W(θc, θs)

∥∥∥∥
(2)

max{b− a, 1}

≤ 16‖θs‖(2)‖r‖(2)
∥∥∥(θc θ̇s − θs θ̇c

)−1
∥∥∥
(2)

max{b− a, 1}

and

|C2| ≤
|ċ1(0)|√

k− c2

4

+ |c2(0)| ≤
‖ċ1‖∞√

k− c2

4

+ ‖c2‖∞ ≤
‖ċ1‖(2)√

k− c2

4

+ ‖c2‖(2)

≤

∥∥∥∥ −θsr
W(θc, θs)

∥∥∥∥
(2)√

k− c2

4

+

∥∥∥∥ θcr
W(θc, θs)

∥∥∥∥
(2)

max{b− a, 1}

≤ 16√
k− c2

4

‖θs‖(2)‖r‖(2)
∥∥∥(θc θ̇s − θs θ̇c

)−1
∥∥∥
(2)

+ 16‖θc‖(2)‖r‖(2)
∥∥∥(θc θ̇s − θs θ̇c

)−1
∥∥∥
(2)

max{b− a, 1}.

Finally, by using again Lemma 2 and Theorem 1, we have that

‖θ‖(2) ≤ |C1|‖θc‖(2) + |C2|‖θs‖(2) + ‖c1θc‖(2) + ‖c2θs‖(2)
≤ |C1|‖θc‖(2) + |C2|‖θs‖(2) + 4‖c1‖(2)‖θc‖(2) + 4‖c2‖(2)‖θs‖(2)
≤ 16‖θs‖(2)‖r‖(2)

∥∥∥(θc θ̇s − θs θ̇c
)−1
∥∥∥
(2)

max{b− a, 1}‖θc‖(2)

+
16√

k− c2

4

‖θs‖2
(2)‖r‖(2)

∥∥∥(θc θ̇s − θs θ̇c
)−1
∥∥∥
(2)

+ 16‖θc‖(2)‖r‖(2)
∥∥∥(θc θ̇s − θs θ̇c

)−1
∥∥∥
(2)

max{b− a, 1}‖θs‖(2)

+ 64‖θs‖(2)‖r‖(2)
∥∥∥(θc θ̇s − θs θ̇c

)−1
∥∥∥
(2)

max{b− a, 1}‖θc‖(2)

+ 64‖θc‖(2)‖r‖(2)
∥∥∥(θc θ̇s − θs θ̇c

)−1
∥∥∥
(2)

max{b− a, 1}‖θs‖(2)

=

160‖θc‖(2) max{b− a, 1}+ 16√
k− c2

4

‖θs‖(2)

‖θs‖(2)
∥∥∥(θc θ̇s − θs θ̇c

)−1
∥∥∥
(2)
‖r‖(2).

Corollary 3. If θ, ϑ ∈ C2([a, b],R) are the unique solutions of the IVPs (5) and (6), respec-
tively, then

‖θ − ϑ‖(2) ≤ L‖g− h‖(2),

where

L :=

160‖θc‖(2) max{b− a, 1}+ 16√
k− c2

4

‖θs‖(2)

‖θs‖(2)
∥∥∥(θc θ̇s − θs θ̇c

)−1
∥∥∥
(2)

.

Proof. Like we previously mentioned, θ− ϑ is the unique solution of the IVP (7). Thus, we
only need to apply Theorem 2
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Observe that L ≥ 0 and, since L only depends on the homogeneous equation θ̈(t) +
cθ̇(t) + kθ(t) = 0, i.e., on the real numbers a, b, c, k and the fundamental set of solutions
{θc, θs}, we can state that, under the settings of Corollary 3, if h approaches g, then ϑ
approaches θ.

2.3. Functions of Polynomial Behavior

To accomplish our goals, we will strongly rely on the algebra of polynomials with
several variables, R[x1, . . . , xn], and on the algebra of formal series R[[x]] (see [20]). We
recall the reader that

R[x1, . . . , xn] :=

{
p

∑
k1+···+kn=k, k=0

ak1 ...kn xk1
1 · · · x

kn
n : p ∈ N∪ {0}, ∀k ∈ {0, . . . , p}

∀i ∈ {1, . . . , n} ki ∈ N∪ {0}, k1 + · · ·+ kn = k, ak1 ...kn ∈ R
}

and

R[[x]] :=

{
∞

∑
k=0

akxk : ∀k ∈ N∪ {0} ak ∈ R
}

.

Notice that R[[x]] is a purely algebraic object, so no convergence is required for the series
(in fact, no topology is given).

Definition 1. A function g ∈ C2(R2,R
)

is said to have polynomial behavior provided that there
exists a sequence (gi)i≥0 of functions gi ∈ C2(Ri+1 ×Ri+1,R

)
such that

g

(
∞

∑
i=0

εiai,
∞

∑
i=0

εibi

)
=

∞

∑
i=0

εigi(a0, . . . , ai, b0, . . . , bi)

for every bounded sequences (ai)i≥0, (bi)i≥0 of real numbers and every 0 < ε < 1.

As expected, polynomials in two variables have polynomial behavior.

Proposition 1. Every p(x, y) ∈ R[x, y] has polynomial behavior.

Proof. Let

p(x, y) =
k

∑
i+j=n, n=0

cijxiyj.

If α(z) = ∑∞
i=0 αizi ∈ R[[z]] and β(z) = ∑∞

i=0 βizi ∈ R[[z]] are formal series, then δ(z) :=
p(α(z), β(z)) ∈ R[[z]] is another formal series because R[[z]] is an algebra. Then we can
write δ(z) = ∑∞

i=0 δizi and, since the coefficients cij of p(x, y) are fixed, we have that δi is a
function of α0, . . . , αi, β0, . . . , βi, i.e.,

δi = δi(α0, . . . , αi, β0, . . . , βi)

for every i ≥ 0. Finally, it only suffices to define

gi(x0, . . . , xi, y0, . . . , yi) := δi(x0, . . . , xi, y0, . . . , yi)

∈ R[x0, . . . , xi, y0, . . . , yi]

⊆ C2
(
Ri+1 ×Ri+1,R

)
for every i ≥ 0. Indeed, if 0 < ε < 1 and (ai)i≥0, (bi)i≥0 are bounded sequences of real
numbers, then
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p

(
∞

∑
i=0

εiai,
∞

∑
i=0

εibi

)
=

∞

∑
i=0

δi(a0, . . . , ai, b0, . . . , bi)ε
i =

∞

∑
i=0

εigi(a0, . . . , ai, b0, . . . , bi).

3. Results

After the application of the proposed methodology in this work, we obtain as a result
the mathematical formalism which yields to the validity of the SEPM. In particular, this
method will be applied to a simplified version of Equation (1) by introducing a perturbation
(0 < ε < 1) and a function with polynomial behavior (g). We will deal with Equation (11):

θ̈ + cθ̇ + kθ = εg
(
θ, θ̇
)
,

with initial conditions θ(0) and θ̇(0),
θ ∈ C2([a, b],R),
ε ∈ (0, 1),
k, c ∈ R, c2 − 4k < 0,
g ∈ C2(R2,R

)
with polynomial behavior.

(11)

Algorithm of Application for the Straightforward Expansion Perturbation Method

Since g ∈ C2(R2,R
)

is of polynomial behavior, in view of Definition 1, there exists a
sequence (gi)i≥0 of functions gi ∈ C2(Ri+1 ×Ri+1,R

)
such that

g

(
∞

∑
i=0

εiai,
∞

∑
i=0

εibi

)
=

∞

∑
i=0

εigi(a0, . . . , ai, b0, . . . , bi)

for every bounded sequences (ai)i≥0, (bi)i≥0 of real numbers and every 0 < ε < 1.
By relying on the sequence (gi)i∈N, we will follow an inductive process:

1. θ0 is the unique solution of the second-order linear IVP
θ̈0 + cθ̇0 + kθ0 = 0,
θ0(0) = θ(0),
θ̇0(0) = θ̇(0).

2. θ1 is the unique solution of the second-order linear IVP
θ̈1 + cθ̇1 + kθ1 = g0

(
θ0, θ̇0

)
,

θ1(0) = 0,
θ̇1(0) = 0.

3. θ2 is the unique solution of the second-order linear IVP
θ̈2 + cθ̇2 + kθ2 = g1

(
θ0, θ1, θ̇0, θ̇1

)
,

θ2(0) = 0,
θ̇2(0) = 0.

4. And so on.

We can summarize this inductive process as follows: For i ≥ 0, θi is the unique solution of
the IVP

i = 0⇒


θ̈0 + cθ̇0 + kθ0 = 0,
θ0(0) = θ(0),
θ̇0(0) = θ̇(0),

i ≥ 1⇒


θ̈i + cθ̇i + kθi = gi−1

(
θ0, . . . , θi−1, θ̇0, . . . , θ̇i−1

)
,

θi(0) = 0,
θ̇i(0) = 0.

(12)

Notice that

θ0(t) = θ(0)e−
c
2 t cos

(
t

√
k− c2

4

)
+

θ̇(0) + θ(0) c
2√

k− c2

4

e−
c
2 t sin

(
t

√
k− c2

4

)
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for all t ∈ [a, b] and it is infinitely differentiable on [a, b]. Therefore,

gi−1
(
θ0, . . . , θi−1, θ̇0, . . . , θ̇i−1

)
∈ C2([a, b],R)

and, according to Theorem 2,

‖θi‖(2) ≤ L
∥∥gi−1

(
θ0, . . . , θi−1, θ̇0, . . . , θ̇i−1

)∥∥
(2) (13)

for all i ≥ 1.

Theorem 3. For every i ≥ 0, let θi ∈ C2([a, b],R) be a solution of (12). If (θi)i≥0 is bounded in
C2([a, b],R), then θ := ∑∞

i=0 εiθi ∈ C2([a, b],R) is the unique solution of (11).

Proof. By bearing in mind Corollary 2, θ := ∑∞
i=0 εiθi ∈ C2([a, b],R). Furthermore,

θ̇ = ∑∞
i=0 εi θ̇i in C1([a, b],R) and θ̈ = ∑∞

i=0 εi θ̈i in C([a, b],R). Finally, if we take into
consideration that, for every t ∈ [a, b], (θi(t))i≥0 and

(
θ̇i(t)

)
i≥0 are bounded sequences of

real numbers since

sup
{
|θi(t)|,

∣∣θ̇i(t)
∣∣ : i ≥ 0, t ∈ [a, b]

}
≤ sup

{
‖θi‖∞,

∥∥θ̇i
∥∥

∞ : i ≥ 0
}

≤ sup
{
‖θi‖(2) : i ≥ 0

}
< ∞,

then we have that

θ̈(t) + cθ̇(t) + kθ(t) =
∞

∑
i=0

εi θ̈i(t) + c
∞

∑
i=0

εi θ̇i(t) + k
∞

∑
i=0

εiθi(t)

=
∞

∑
i=0

εi(θ̈i(t) + cθ̇i(t) + kθi(t)
)
=

∞

∑
i=1

εi(θ̈i(t) + cθ̇i(t) + kθi(t)
)

=
∞

∑
i=1

εigi−1
(
θ0(t), . . . , θi−1(t), θ̇0(t), . . . , θ̇i−1(t)

)
= ε

∞

∑
i=1

εi−1gi−1
(
θ0(t), . . . , θi−1(t), θ̇0(t), . . . , θ̇i−1(t)

)
= ε

∞

∑
i=0

εigi
(
θ0(t), . . . , θi(t), θ̇0(t), . . . , θ̇i(t)

)
= εg

(
∞

∑
i=0

εiθi(t),
∞

∑
i=0

εi θ̇i(t)

)
= εg

(
θ(t), θ̇(t)

)
.

Please note that by bearing in mind Equation (13), if
(

gi
(
θ0, . . . , θi, θ̇0, . . . , θ̇i

))
i≥0 is a

bounded sequence in C2([a, b],R), then so is (θi)i≥0.
Sometimes, for computation reasons, (12) is perturbated to obtain an easier IVP, such as

i = 0⇒


θ̈0 + cθ̇0 + kθ0 = 0,
θ0(0) = θ(0),
θ̇0(0) = θ̇(0),

; i ≥ 1⇒


θ̈i + cθ̇i + kθi = hi−1,
θi(0) = 0,
θ̇i(0) = 0.

(14)

where hi ∈ C2([a, b],R) is closed to gi
(
θ0, . . . , θi, θ̇0, . . . , θ̇i

)
in the norm of C2([a, b],R).

In other words, we require that∥∥hi − gi
(
θ0, . . . , θi, θ̇0, . . . , θ̇i

)∥∥
(2)
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be sufficiently small for all i ≥ 0 in such a way that

sup
{∥∥hi − gi

(
θ0, . . . , θi, θ̇0, . . . , θ̇i

)∥∥
(2) : i ≥ 0

}
will also be small.

In this situation, under certain circumstances, we can assure that the solutions of the
perturbated IVP approach the solution of the original IVP (11).

Corollary 4. For every i ≥ 0, let ϑi ∈ C2([a, b],R) be a solution of (14). If (ϑi)i≥0 is bounded in
C2([a, b],R), then ϑ := ∑∞

i=0 εiθi ∈ C2([a, b],R) satisfies that

‖ϑ− θ‖(2) ≤
ε

1− ε
L sup

{∥∥hi − gi
(
θ0, . . . , θi, θ̇0, . . . , θ̇i

)∥∥
(2) : i ≥ 0

}
,

where θ ∈ C2([a, b],R) is the unique solution of (11).

Proof. By relying on Theorem 2 and on the fact that θ0 = ϑ0, it only suffices to observe that

‖ϑ− θ‖(2) =

∥∥∥∥∥ ∞

∑
i=0

εiϑi −
∞

∑
i=0

εiθi

∥∥∥∥∥
(2)

≤
∞

∑
i=0

εi‖ϑi − θi‖(2) =
∞

∑
i=1

εi‖ϑi − θi‖(2)

≤
∞

∑
i=1

εiL
∥∥hi−1 − gi−1

(
θ0, . . . , θi−1, θ̇0, . . . , θ̇i−1

)∥∥
(2)

= ε
∞

∑
i=1

εi−1L
∥∥hi−1 − gi−1

(
θ0, . . . , θi−1, θ̇0, . . . , θ̇i−1

)∥∥
(2)

= ε
∞

∑
i=0

εiL
∥∥hi − gi

(
θ0, . . . , θi, θ̇0, . . . , θ̇i

)∥∥
(2)

≤ εL sup
{∥∥hi − gi

(
θ0, . . . , θi, θ̇0, . . . , θ̇i

)∥∥
(2) : i ≥ 0

} ∞

∑
i=0

εi

=
ε

1− ε
L sup

{∥∥hi − gi
(
θ0, . . . , θi, θ̇0, . . . , θ̇i

)∥∥
(2) : i ≥ 0

}
.

4. Discussion

In this section, we will validate the formalism proposed in the previous section by
means of the pendulum example for a fixed bounded time interval.

Validation Example (Pendulum) for a Fixed Bounded Time Interval

In this subsection, we will apply our theorems to the weakly nonlinear vibration
example of the famous pendulum. This problem can be expressed by Equation (15) by
using Taylor approximations and can be found in [7] (see also [6,18]):

θ̈ + θ = ε 1
6 θ3,

with initial conditions θ(0) and θ̇(0),
θ ∈ C2([a, b],R),
ε ∈ (0, 1).

(15)

In this situation, c = 0, k = 1 and g(x, y) = 1
6 x3 ∈ R[x, y] ⊆ C2(R2,R

)
is a polynomial

in two variables so it is of polynomial behavior in view of Proposition 1. In fact:

g

(
∑
i=0

εiai, ∑
i=0

εibi

)
=

1
6

(
∑
i=0

εiai

)3

=
1
6

(
a0 + εa1 + ε2a2 + · · ·

)3
=

1
6

a3
0 +

1
2

a2
0a1ε + · · · ,
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therefore 

g0(x, y) =
1
6

x3,

g1(x, y) =
1
2

x2y,
...

The SEPM applied to (15) follows the next steps:

1. θ0 is the unique solution of the IVP


θ̈0 + θ0 = 0,
θ0(0) = θ(0),
θ̇0(0) = θ̇(0).

2. θ1 is the unique solution of the IVP


θ̈1 + θ1 = 1

6 θ3
0 ,

θ1(0) = 0,
θ̇1(0) = 0.

3. θ2 is the unique solution of the IVP


θ̈2 + θ2 = 1

2 θ2
0θ1,

θ2(0) = 0,
θ̇2(0) = 0.

4. And so on.

Notice that θ0 can be easily computed, in fact,

θ0(t) = θ(0) cos(t) + θ̇(0) sin(t)

for all t ∈ [a, b]. As a consequence, by relying on the Hölder’s inequality (see [21]),

‖θ0‖(2) ≤
√
|θ(0)|2 +

∣∣θ̇(0)∣∣2. (16)

Since, in the case of (15), θc(t) := cos(t) and θs(t) := sin(t), the constant L can also be
bounded above by

L :=

160‖θc‖(2) max{b− a, 1}+ 16√
k− c2

4

‖θs‖(2)

‖θs‖(2)
∥∥∥(θc θ̇s − θs θ̇c

)−1
∥∥∥
(2)

≤ 160 max{b− a, 1}+ 16.

In view of Theorem 3, the SEPM leads to a correct solution of (15) if we can control
the norms ‖θ1‖(2), ‖θ2‖(2), . . .

Next, keep in mind that Theorem 2 together with Theorem 1(2) applied to 1
6 θ3

0 and
1
2 θ2

0θ1 yield 

‖θ1‖(2) ≤ L
∥∥∥∥1

6
θ3

0

∥∥∥∥
(2)
≤ 8

3
L‖θ0‖3

(2),

‖θ2‖(2) ≤ L
∥∥∥∥1

2
θ2

0θ1

∥∥∥∥
(2)
≤ L8‖θ0‖2

(2)‖θ1‖(2) ≤
64
3

L2‖θ0‖5
(2),

...

At this stage, in order to control the norms ‖θ1‖(2), ‖θ2‖(2), . . . , we need ‖θ0‖(2) to be

sufficiently small in such a way that ‖θ0‖3
(2), ‖θ0‖5

(2), . . . can counteract the growth of the
constants 8

3 L, 64
3 L2, . . . . In view of Equation (16), by choosing the initial conditions, θ(0)

and θ̇(0), sufficiently small, the SEPM leads to a correct solution of (15) by bearing in mind
our Theorem 3.
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5. Conclusions

The main conclusion that we infer from our work is that the SEPM works in certain
cases (see Theorem 3 and Corollary 4), contrary to what is stated in ([7], Subsection 3.5.2).
In ([7], Subsection 3.5.2), the SEPM is neglected as a perturbation method simply because
it does not yield to correct solutions in only one example. No mathematical proof is
provided to show that the SEPM never works. Therefore, the SEPM should have never
been disregarded as a perturbation method, at least, until a mathematical proof states
so. In fact, here in this work, we demonstrate that the SEPM cannot be rejected as a
perturbation method because we provide a rigorous mathematical proof that shows the
validity of the SEPM by leading to a correct solution of the nonlinear vibration in the case
where the sequence of expansion terms (θi)i≥0 is uniformly bounded. As an application of
our theorems, if we look at Section 4, then we can see that if we choose the initial conditions,
θ(0) and θ̇(0), sufficiently small as well as the length of the interval [a, b] around 0, then
the SEPM successfully converges to the correct solution of (15).

Author Contributions: Conceptualization, S.M.-P., F.J.G.-P., A.S.-A. and A.R.-C.; Formal analysis,
S.M.-P., F.J.G.-P., A.S.-A. and A.R.-C.; Investigation, S.M.-P., F.J.G.-P., A.S.-A. and A.R.-C.; Methodol-
ogy, S.M.-P., F.J.G.-P., A.S.-A. and A.R.-C. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by Ministry of Science, Innovation and Universities of Spain,
grant number PGC-101514-B-I00; and by the 2014–2020 ERDF Operational Programme and by the
Department of Economy, Knowledge, Business and University of the Regional Government of
Andalusia, grant number FEDER-UCA18-105867.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would also like to thank Fulgencio Meseguer Galán for his financial
support. The authors would also like to thank the reviewers for their constructive and supportive
comments and remarks that helped improved the presentation and scientific quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

SEPM Straightforward Expansion Perturbation Method
HAM Homotopy Analysis Method
ODE Ordinary Differential Equation
IVP Initial Value Problem

References
1. Rincón-Casado, A.; González-Carbajal, J.; García-Vallejo, D.; Domínguez, J. Analytical and numerical study of the influence of

different support types in the nonlinear vibrations of beams. Eur. J. Mech. A Solids 2021, 85, 104113. [CrossRef].
2. He, J.H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [CrossRef]
3. He, J.H. A New Perturbation Technique which is also valid for Large Parameters. J. Sound Vib. 2000, 229, 1257–1263. [CrossRef]
4. Jordan, D.; Smith, P.; Smith, P. Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers; Oxford

University Press on Demand: Oxford, UK, 2007; Volume 10, p. viii+531.
5. Kevorkian, J.; Cole, J.D. Perturbation Methods in Applied Mathematics; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 1981; Volume 34, p. x+560. [CrossRef]
6. Nayfeh, A.H. Perturbation Methods, 1st ed.; Physics Textbook; John Wiley & Sons: New York, NY, USA, 1973; p. xxi+404.

[CrossRef]
7. Thomsen, J.J. Vibrations and Stability, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2003; p. xxi+404. [CrossRef]
8. O’Malley, R.E., Jr. Naive Singular Perturbation Theory. Math. Models Methods Appl. Sci. 2001, 11, 119–131. [CrossRef]

http://doi.org/10.1016/j.euromechsol.2020.104113
http://dx.doi.org/10.1016/S0045-7825(99)00018-3
http://dx.doi.org/10.1006/jsvi.1999.2509
http://dx.doi.org/10.1007/978-1-4757-4213-8
http://dx.doi.org/10.1002/9783527617609
http://dx.doi.org/10.1007/978-3-662-10793-5
http://dx.doi.org/10.1142/S0218202501000787


Mathematics 2021, 9, 1036 16 of 16

9. Van Groesen, E. Wave Groups in Uni-Directional Surface-Wave Models. J. Eng. Math. 1998, 34, 215–226. [CrossRef]
10. Cahyono, E. Analytical Wave Codes for Predicting Surface Waves in a Laboratory Basin; ProQuest LLC: Ann Arbor, MI, USA, 2002;

p. 111.
11. Karjanto, N. Mathematical Aspects of Extreme Water Waves. Ph.D. Thesis, The University of Texas at Austin, Austin, TX,

USA, 2006.
12. Karjanto, N. On the method of strained parameters for a KdV type of equation with exact dispersion property. IMA J. Appl. Math.

2014, 80, 893–905. [CrossRef]
13. Liao, S.J. Homotopy analysis method: A new analytic method for nonlinear problems. Appl. Math. Mech. 1998, 19, 885–890.

[CrossRef]
14. Liao, S.J. General boundary element method: An application of homotopy analysis method. Commun. Nonlinear Sci. Numer.

Simul. 1998, 3, 159–163. [CrossRef]
15. Liao, S.J. An explicit, totally analytic solution of laminar viscous flow over a semi-infinite flat plate. Commun. Nonlinear Sci.

Numer. Simul. 1998, 3, 53–57. [CrossRef]
16. Liao, S.J.; Chwang, A.T. Application of homotopy analysis method in nonlinear oscillations. Trans. ASME J. Appl. Mech. 1998,

65, 914–922. [CrossRef]
17. Liao, S.J. On the relationship between the homotopy analysis method and Euler transform. Commun. Nonlinear Sci. Numer. Simul.

2010, 15, 1421–1431. [CrossRef]
18. Nayfeh A.H., Mook D.T. Nonlinear Oscillations; John Wiley & Sons: Hoboken, NJ, USA, 1995; p. xiv+704. [CrossRef]
19. Megginson, R.E. An Introduction to Banach Space Theory; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1998;

p. xix+599. [CrossRef]
20. Bourbaki, N. Algebra II: Chapters 4–7; Springer: Berlin/Heidelberg, Germany, 2003; p. vii+453. [CrossRef]
21. Brezis, H. Analyse Fonctionnelle: Théorie et Applications; Elsevier Masson: Paris, France, 1983; p. xiv+234.

http://dx.doi.org/10.1023/A:1004355418313
http://dx.doi.org/10.1093/imamat/hxu020
http://dx.doi.org/10.1007/BF02457955
http://dx.doi.org/10.1016/S1007-5704(98)90007-7
http://dx.doi.org/10.1016/S1007-5704(98)90061-2
http://dx.doi.org/10.1115/1.2791935
http://dx.doi.org/10.1016/j.cnsns.2009.06.008
http://dx.doi.org/10.1002/9783527617586
http://dx.doi.org/10.1007/978-1-4612-0603-3
http://dx.doi.org/10.1007/978-3-642-61698-3

	Introduction
	Materials and Methods
	The Banach Space Unitary Algebra  Cm ([a,b], R)
	Perturbation to Second-Order Linear Ordinary Differential Equations with Constant Coefficients
	Functions of Polynomial Behavior

	Results
	Discussion
	Conclusions
	References

