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D. González-Iglesias, D. Esperante, B. Gimeno, Member, IEEE, M. Boronat, C. Blanch, N. Fuster-Martı́nez,
P. Martinez-Reviriego, P. Martı́n-Luna, J. Fuster

Abstract—The main aim of this work is to present a simple
method, based on analytical expressions, for obtaining the tem-
perature increase due to the Joule effect inside the metallic walls
of an RF accelerating component. This technique relies on solving
the 1D heat transfer equation for a thick wall, considering that
the heat sources inside the wall are the ohmic losses produced
by the RF electromagnetic fields penetrating into the metal with
finite electrical conductivity. Furthermore, it is discussed how the
theoretical expressions of this method can be applied to obtain
an approximation to the temperature increase in realistic 3D
RF accelerating structures, taking as an example the cavity of
an RF electron photoinjector and a travelling wave linac cavity.
These theoretical results have been benchmarked with numerical
simulations carried out with a commercial Finite Element Method
(FEM) software, finding good agreement among them. Besides,
the advantage of the analytical method with respect to the
numerical simulations is evidenced. In particular, the model could
be very useful during the design and optimization phase of RF
accelerating structures, where many different combinations of
parameters must be analysed in order to obtain the proper
working point of the device, allowing to save time and speed
up the process. However, it must be mentioned that the method
described in this manuscript is intended to provide a quick
approximation to the temperature increase in the device, which of
course is not as accurate as the proper 3D numerical simulations
of the component.

Index Terms—RF pulse heating, thermal analysis, RF acceler-
ating structures.

I. INTRODUCTION

RF pulse heating is a phenomenon by which metals are
heated by the electric induced currents generated by a pulsed
high power RF electromagnetic field. This heating has two
different effects. The first one, which happens during the RF
pulse, causes a superficial temperature increase within the RF
skin depth range in a short time compared to the expansion
mechanical time response of the material. Stress is induced
on the metallic surface when the heating occurs faster than
the expansion time of the material, which is governed by
the speed of sound in it. Such material will suffer cyclic
fatigue in which damage in the form of surface roughening
and microcracks will occur over time if the induced stress
is greater than the material elastic limit. According to recent
studies of breakdown rates in high gradient linear accelerators,
there is a direct correlation between these rates and RF pulse
heating [1], [2]. Because of that, the reliable operating gradient
could be potentially limited by the thermal stress suffered by
these structures. The second effect occurs after the RF pulse
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ends and consists in the heat diffusion along the metallic slab
and the temperature decrease in the surface until the next RF
pulse. As a result, there is an overall temperature rise on the
metallic walls of the cavity from one pulse until the arrival
of the next. After many RF pulses the device temperature
increases, the body expands and the resonant frequency shifts.
This frequency shift will detune the cavities and might reflect
the RF power.

This entails that the RF pulse heating effects must be
taken into consideration when designing high gradient RF
accelerating structures. There are several commercial codes
(ANSYS [3], SIMULIA [4], MAFIA [5], etc.), based on
Finite Differences in Time Domain (FDTD) or Finite Elements
Method (FEM) [6], which allow a thermal analysis of the ac-
celerating components. However, these software tools, which
rely on numerical methods to solve the heat transfer equation
to obtain the temperature distribution inside the component,
usually have a considerable computational cost in terms of
time and hardware in order to get accurate results. This fact
can be even more problematic if a parametric study of different
working points for the device is desired, in which many
different simulations must be carried out.

To the best of the authors’ knowledge, no analytical models
can be found in the technical literature to estimate the average
temperature increase in the metallic wall of an accelerator
component after many RF pulses have been injected. With
regard to the sharp temperature increase induced during the
RF pulse, there is an approximate analytical formula that gives
such magnitude at the metallic surface next to the RF fields
[7]. However, this expression assumes an RF square pulse
within the device, and is not valid for the Standing Wave
(SW) structures where the square pulse is transformed into
a transient one.

In this paper we describe a single procedure for analysing
the RF pulse heating within a thick metallic wall exposed to
an RF pulsed high power electromagnetic field is described.
On the one hand, an exact analytical expression for obtaining
the sharp temperature increase during the RF pulse is deduced.
This is done for both a square RF pulse and a transient. On the
other hand, an analytical formula for the average temperature
increase in the wall after many pulses have been driven is
provided. The procedure to reach such formulas is based on
solving analytically the 1D heat transfer equation, which has
the advantage of being much faster than any numerical method
employed for solving such partial differential equation.

This paper is organized as follows. In Section II, the theo-
retical model employed for deriving analytical expressions for
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the thermal heating induced inside the component is discussed.
In Subsection II-A analytical expressions for the temperature
increase during the RF pulse are derived for the cases of a
square RF pulse and for the SW structure in which the square
pulse is transformed into a transient. In addition, numerical
simulations with the commercial software Ansys Fluent [8]
were also performed for benchmarking against the theoretical
model. Next, in Subsection II-B, theoretical expressions are
derived for the average temperature increase after many RF
pulses. As in Subsection II-A, the model is verified by means
of numerical simulations of the Ansys Thermal Transient
(TTA) commercial software. Afterwards, in Sections III and
IV the feasibility of using the 1D theoretical expressions for
analysing the RF pulse heating phenomenon in 3D structures
is explored by means of performing the thermal analysis of
an RF photoinjector and a linac cavity. Finally, in Section V,
the main conclusions of this study are outlined.

II. THEORETICAL MODEL

In this Section we present the theoretical background re-
quired to derive the analytical formulas that allow to describe
the temperature increase inside the device wall as a function
of time, caused by an electromagnetic RF pulsed signal. A
typical RF pulsed signal consists in a gated harmonic signal.
To analyse this phenomenon, the component wall is modelled
as a metallic layer with thickness L (see Fig. 1) that extends
infinitely in the y and z dimmensions. The left side of the
wall corresponds to the inner side of the device, i.e., where
the RF electromagnetic fields are present. The right side of the
wall is in contact with the cooling mechanism of the device,
modelled as a convective heat exchange, which is characterized
by its heat transfer coefficient h and the fluid temperature T8.
Assuming the metal has a finite electrical conductivity σ, the
RF electromagnetic fields inside the cavity (vacuum side in
Fig. 1) penetrate into the conductor wall and are attenuated
exponentially in a characteristic length δ, known as the skin
depth. Here, it is assumed that the RF electromagnetic field
in the vacuum wall boundary has no dependece on the y and
z coordinates. The time harmonic RF electromagnetic fields
inside the metallic wall are given by [9]:

ÝÑ
H||px, tq � H||,0e

�j xδ e�
x
δ ejωtû||

ÝÑ
E px, tq � �1� j

δσ
px̂�ÝÑ

H||px, tqq (1)

δ �
c

2

σµ0ω

where H||,0 is the amplitude of the parallel RF magnetic
field at the interface, x is the cartesian coordinate according
to the reference scheme defined in Fig. 1, x̂ is the unitary
vector along the x coordinate, j � ?�1 is the imaginary
unit, û|| is the unitary vector parallel to the surface, µ0 is the
vacuum permeability, ω � 2πf , and f is the RF frequency.
As it is well known, the RF electric field inside the metal will
induce an electric current in the form ~J � σ ~E, which will

dissipate an average power over an RF period Pdis due to the
Joule effect [9]:

Pdis � 1

2
Re

»
V

p ~J � ~E�qdV

where ~E� represents the conjugate complex of the RF electric
field phasor. Thus, the average power dissipated per unit area
at a local position inside the wall and at a certain time during
the RF pulse can be obtained as:

P px, tq � Rs
δ
|H||,0ptq|2e�

2x
δ (2)

where the surface resistance is Rs � 1{pδσq, and it is assumed
that the harmonic amplitude of the RF magnetic field varies
with time t as in fact occurs for an RF pulse, i.e., H||,0 �
H||,0ptq. This dissipated power constitutes the heat source that
increases the temperature of the component walls.

As a consequence of the symmetry of the slab in the y-z
plane, the RF electromagnetic fields only depend on the x-
coordinate and the thermal problem is reduced to 1-D. Thus,
the heat transfer equation that describes the thermal behaviour
of the metallic layer for this 1D case can be written as follows
[10]:

BT
Bt �

κ

ρCe

B2T
Bx2 � fpx, tq (3)

where T is the temperature, κ is the thermal conductivity, ρ
is the density, Ce is the specific heat, and fpx, tq represent
the heat sources which, in our case, are related to the RF
dissipated power in the form fpx, tq � P px, tq{pρCeq.

Fig. 1. Scheme of the device metallic wall. The inner surface (x � 0)
corresponds to the vacuum side inside the component, the outer surface (x �
L) corresponds to the cooling side modelled as a convective heat exchange.
The slab extends infinitely in the y and z directions.

The 1D heat transfer equation can be solved analytically
as an infinite series in some cases. The particular form of
the solution will vary depending on the initial conditions
(spatial distribution of the temperature at the initial time)
and the imposed boundary conditions. In the case we are
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interested in, the heat sources are time-dependent since the
RF electromagnetic signal is composed by a succession of
pulses with a repetition rate fp � 1{Tp (Tp being the pulse
repetition period). During the pulse (characterized by ton), the
electromagnetic fields oscillate harmonically in time, with an
harmonic amplitude that also varies with time depending on
the characteristic shape of the pulse. When the pulse ends there
is a time lapse in which there are no heat sources in the wall
until the start of the next one. In this work, two pulse shapes
will be taken into consideration, namely, the square pulse (see
Fig. 2), and the pulse with transient (see Fig. 3), which is the
transformation of the square pulse in a SW structure.

A. Temperature increase during the pulse

First, we will focus on obtaining the temperature increase
during the RF pulse. The typical values of ton in pulsed RF
accelerators is usually within the range from several hundred
nanoseconds to a few microseconds. These time lapses are
shorter than the typical times that takes the diffusion mecha-
nism to transfer the heat across the wall from the vacuum side
to the cooling boundary. Afterwards, this point will be demon-
strated (see Example II) by means of solving numerically the
heat transfer equation, using a set of parameters within the
typical range for RF accelerating devices. Since a negligible
amount of heat is transferred across the wall during the RF
pulse, the heat exchange between the convection medium and
the right wall boundary will affect the temperature only in
the neighbourhood of such boundary. If we are interested in
obtaining the temperature increase during the pulse, which
only is noticeable in a length of a few skin depths from the
vacuum wall, the convection mechanism of the right wall can
be dropped from the calculations by assuming a thermally iso-
lated wall, i.e., h � 0Wm�2K�1. This assumption simplifies
the mathematical problem of solving the heat transfer equation,
which allows to obtain a simple analytical expression for the
temperature increase during the pulse. Next, the procedure to
solve the 1D heat transfer equation, assuming that the right
boundary is thermally isolated, is detailed.

Hence, in this case both sides of the metallic wall are
assumed to be thermally isolated, i.e., no heat exchange occurs
between the body under study and the environment. This as-
sumption implies that the radiative heat exchange mechanism
is neglected in this study. This approximation can be done
since the heat source term due to the RF losses is much
larger than the power radiated, for the typical temperature
values of the wall cavities that are of interest in the area of
RF accelerators. Mathematically, this imposes the following
boundary conditions to the eq. (3):

BT
Bx
���
x�0

� 0,
BT
Bx
���
x�L

� 0

With regard to the initial conditions, an uniform temperature
T0 along the wall is assumed. The last information required
to solve the differential equation is to specify the temporal
dependence of the RF pulse, i.e., to define the time variation of
the harmonic envelope of the RF magnetic field at the vacuum
wall: H||,0ptq. Next, the heat transfer equation will be solved

assuming two typical different RF pulse profiles. The first case
is a flat square pulse with length ton. This case matches well
with the operation in a Travelling Wave (TW) structure. The
second case will be a flat square pulse of duration ton feeding
a Standing Wave (SW) structure. Here, there is a rising field
in the cavity, that depends on the cavity filling time, until the
RF electromagnetic field amplitude reaches its maximum value
[11].

Hence, the following differential equation with the previous
boundary conditions needs to be solved:

BT
Bt � D2 B2T

Bx2 � fpx, tq (4)

where D2 � κ
ρCe

. Let us assume that the temperature can be
described as the sum of two auxiliary functions, vpx, tq and
wpx, tq:

T px, tq � vpx, tq � wpx, tq (5)

Bv
Bx
���
x�0

� 0,
Bv
Bx
���
x�L

� 0, vpx, 0q � 0

Bw
Bt � D2 B2w

Bx2

Bw
Bx

���
x�0

� 0,
Bw
Bx

���
x�L

� 0, wpx, 0q � T px, 0q
First, we solve the partial differential equation for wpx, tq. If

we try the following variable separation: wpx, tq � UptqXpxq,
the partial differential equation becomes uncoupled and a set
of two differential equations is obtained:

d2X

dx2
� λX � 0 (6)

dU

dt
�D2λU � 0 (7)

where λ is a constant. The solution of the differential equation
given by eq. (6) is well known [12] and, after imposing the
boundary conditions to the derivatives, the following possible
values for λ are found: λk � pπkL q2, being k � 0, 1, 2, .. a posi-
tive integer number. Thus, it is reached Xkpxq � sk cospπkL xq,
where sk is a coefficient. Similarly, the solution for eq. (7) is
straightforward and arises Ukptq � dke

�pπDkL q2t, where dk is
a coefficient. Combining both solutions, the function wpx, tq
can be written as an infinite linear combination of the possible
values of λ:

wpx, tq �
�8̧

n�0

an cos
�πn
L
x
	
e�p

πDn
L q2t

where an � sn dn.
Finally, the initial conditions for wpx, tq at t � 0 are

imposed, which correspond to the initial temperature distri-
bution, i.e., wpx, 0q � T px, 0q. Now, it remains to solve the
differential equation for vpx, tq. Taking a look at the solution
for wpx, tq, we will try a solution of this kind:
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vpx, tq �
�8̧

n�0

unptq cos
�πn
L
x
	

Substituting this expression in the differential equation, it
leads:

�8̧

n�0

�
dun
dt

�
�
πDn

L


2

un

�
cos

�πn
L
x
	
� fpx, tq (8)

We can make the ansatz that the heat sources can be split
in the following form: fpx, tq � gpxqhptq. For the physical
problem under consideration, the heat source term is obtained
from the RF power losses given by eq. (2), which is in
fact compatible with the above assumption. The gpxq can be
developed as a Fourier series:

gpxq � g0
2
�

�8̧

n�1

gn cos
�πn
L
x
	

where the coefficients gn are given by

gn � 2

L

» L
0

gpxq cos
�πn
L
x
	
dx, g0 � 2

L

» L
0

gpxqdx

Substituting this development of the heat transfer function into
eq. (8), we reach:

du0
dt

� g0
2
hptq (9)

dun
dt

�
�
πDn

L


2

un � gnhptq, n ¥ 1 (10)

The solution for both eqs. (9) and (10) results in an ho-
mogeneous solution and a particular solution. Homogeneous
solutions are straightforward in both cases, whilst the partic-
ular solutions depend on the specific form that hptq takes.
When the functions unptq are known, the integration constant
is determined by imposing the initial condition unp0q � 0,
which is derived from vpx, 0q � 0.

Finally, according to eq. (5), the temperature within the wall
is obtained by combining the solutions of vpx, tq and wpx, tq.

Next, the solution of the heat transfer differential equation
is provided for the square pulse and the pulse with transient
cases.

1) Square pulse: The harmonic amplitude of a square pulse
of duration ton is described as:

H||,0ptq �
#
H||,0, 0 ¤ t ¤ ton

0, t ¡ ton
(11)

In Fig. 2 the scheme of a sequence of square pulses is
shown. By solving the eq. (4) for a single square RF pulse,
the induced temperature increase is given by:

∆T px, tq � g0t�
8̧

n�1

gn

pπDnL q2
�

1� e�p
πDn
L q2t

	
cos

�πnx
L

	
,

0 ¤ t ¤ ton
(12a)

∆T px, tq � g0ton�
8̧

n�1

gn

pπDnL q2
�

1� e�p
πDn
L q2ton

	
e�p

πDn
L q2pt�tonq cos

�πnx
L

	
, t ¡ ton (12b)

with

g0 � 2α

L

�
1� e�

2L
δ

	
(13a)

gn � 8αL

4L2 � π2δ2n2

�
1� e�

2L
δ p�1qn

	
(13b)

α � Rs|H||,0|2
2ρCe

; D �
c

κ

ρCe

Fig. 2. Scheme of pulsed signal consisting of a train of square pulses.
The pulse has a length of ton and the pulse repetition period is Tp (with
a repetition frequency of fp).

2) Pulse with transient: Let us assume that the RF gen-
erator provides a square pulse (similar to eq. (11)) to the RF
circuit. For a SW cavity, such square pulse will be transformed
into a transient given by the following expressions [11]:

H||,0ptq �
$&
%
H||,0

�
1� e�

t
τ

	
, 0 ¤ t ¤ ton

H||,0

�
1� e�

ton
τ

	
e�

t�ton
τ , t ¡ ton

(14)
where τ is the filling time of the cavity. In Fig. 3 it is shown
the scheme of a sequence of pulses with transient.

After solving the eq. (4) for one single transient pulse, the
following expressions for the temperature increase arise:

∆T px, tq � u0ptq �
8̧

n�1

unptq cos
�πnx
L

	
, 0 ¤ t ¤ ton

(15a)

∆T px, tq � u0ptonq � 1

2
v0pt� tonq�

8̧

n�1

�
vnpt� tonq � unptonqe�pπDnL q2pt�tonq

	
cos

�πnx
L

	
, t ¡ ton (15b)
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with

u0ptq � g0
2

�
t� τ

�
2e�

t
τ � 1

2
e�

2t
τ � 3

2


�

unptq � gn�
πDn
L

�2 �1� e�pπDnL q2t	�
gn�

πDn
L

�2 � 2
τ

�
e�

2t
τ � e�pπDnL q2t	

� 2gn�
πDn
L

�2 � 1
τ

�
e�pπDnL q2t � e�

t
τ

	

vnptq �
gn

�
1� e�

ton
τ

	2
�
πDn
L

�2 � 2
τ

�
e�

2t
τ � e�pπDnL q2t�

where g0 and gn are the same as in eqs. (13a)-(13b).

Fig. 3. Scheme of pulsed signal consisting of a train of pulses with transient.
The pulse has a length of ton (as it is seen by the RF power source) and the
pulse repetition period is Tp (with a repetition frequency of fp).

Now, these deduced expressions can be applied to study the
temperature increase during the RF pulse. First, the results
provided by the theoretical formulas are shown for a particular
case (Example I), and the theory is benchmarked with the
Ansys Fluent numerical simulations. In the Example II it is
demonstrated that, for the typical range of parameters of the
RF accelerators, the temperature increase near the vacuum
wall during the RF pulse is not affected by the presence
of a cooling mechanism in the opposite wall of the device.
Finally, in Example III, the maximum temperature increase in
the wall is obtained as a function of the RF pulse length in the
case with transient. Furthermore, a comparison between the
results provided by the analytic theory and the approximate
expression given in [7] (see eq. (3.38), in pag. 99) for
estimating the RF pulse heating is presented.

Example I: The heating of the wall will be examined
for an RF pulse with transient. It is assumed that the right
side is thermally isolated (h � 0Wm�2K�1), and the
initial temperature distribution is uniform. The wall material
is copper. The simulation parameters are: ton � 400ns, τ �

112.5ns, fp � 400Hz, H|| � 405200A{m, δ � 0.595µm,
L � 1mm, κ � 401Wm�1K�1, ρ � 8940 kg{m3,
Ce � 376.818 J kg�1K�1. All the previous parameters (with
the exception of L) correspond to a preliminary design of an
X-band photoinjector cavity operating with 200 MV/m cathode
field at f � 11.994GHz [13].

Since the copper skin depth value is much smaller than
the slab length, a multiple mesh with two different sizes has
been employed for the Ansys Fluent simulations. A fine mesh
is used in the region where the heat sources are present,
i.e., from the left boundary up to 12µm (� 20δ) and a
coarser one in the rest of the slab. With regard to the step
size, a fixed value of 10µm was chosen for the coarse mesh
region and three different values were tested for the fine
mesh: 0.06µm, 0.1µm, and 0.5µm. The choice of different
step sizes was aimed at testing the convergence of the Ansys
Fluent simulations. The final time of the thermal simulations
is tend � 2000ns. The time of computation required to
run each of the above Ansys Fluent simulations ranged from
10 to 12 minutes, depending on the step size, employing a
standard PC (Intel Core i5, 3.40 GHz, 8 GB RAM). Hence, the
total computational time required to analyse the temperature
increase within the slab is approximately 32 minutes.

It is interesting to compare the Ansys Fluent simulations
computational times with the time required to calculate the
analytical solution, which is provided by the eqs. (15a) and
(15b). For the analytical solution, the convergence of the sum
can be checked by trying different number of terms in the
sum. The results of this test are presented in Fig. 4, where
the absolute temperature difference between the cases with N
terms considered in the sum and the case with 105 terms is
shown. It can be noticed that with the lower number of sum
terms considered, namely N � 10000, the difference with
respect to N � 100000 is the range of 10�19 �C, which proves
the convergence of the analytical sum even with the lower
number of terms considered. Regarding the computational
times of the analytical solution, these are summarized in the
Table I.

TABLE I
ANALYTICAL SOLUTION COMPUTATIONAL TIMES

N Computational time (s)
10000 0.4
20000 0.8
50000 2.1

100000 4.1

The computational time required for the thermal analysis
employing the analytical solution is around seven seconds,
whilst the time needed for the Ansys Fluent computation was
a bit more than half an hour. This means that the analytical
solution is more than 200 times faster than the Ansys Fluent
analysis. Hence, it becomes evident the huge improvement
in terms of computational time that is achieved by using
the analytical formula compared to the numerical solutions
provided by Ansys Fluent.

Now, we can compare the temperature increase in the slab
obtained with the analytical formula and with Ansys Fluent,
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Fig. 4. Absolute temperature difference between the analytical solution with
different number of terms in the sum (N ) and the analytical solution with
N � 105. These results belong to the slab temperature along the wall depth,
for a time of t � 2000ns.

which are summarized in Fig. 5. In Fig. 5(a) it is depicted
the temperature variation with time at the vacuum wall end
(x � 0), whilst in Fig. 5(c) it is shown the spatial variation of
the wall temperature at the end of the simulation time (tend �
2000ns). In Figs. 5(b) and 5(d) show the absolute temperature
difference between the Ansys Fluent and the analytical results
of Figs. 5(a) and 5(c), respectively, for a better comparison. In
addition, the chi-squared statistical test is performed to give a
quantitative view of the concordance or disagreement between
the analytical and the numerical results [14]. For the data of
Fig. 5(a), it is found a reduced chi-squared of χ̃2

0 � 0.0012,
the probability of a χ̃2 equal or greater than χ̃2

0, is P pχ̃2 ¥
χ̃2
0q � 100%. Similarly, for the data of Fig. 5(c), we found

that χ̃2
0 � 0.014 and P pχ̃2 ¥ χ̃2

0q � 100%. According to [14],
values of P pχ̃2 ¥ χ̃2

0q   5% indicate significant disagreement
between the data. Hence, values of P pχ̃2 ¥ χ̃2

0q ¥ 5% will
indicate acceptable or good match. For a qualitative description
of the agreement based on the chi-squared statistics, we define
the following criterion: when 5% ¤ P pχ̃2 ¥ χ̃2

0q   60%
we will consider acceptable match or concordance, whilst if
P pχ̃2 ¥ χ̃2

0q ¥ 60% we will talk about good concordance.
According to this, in the plots of Fig. 5 a good concordance
is found among the analytical results (eqs. 15a and 15b) and
the Ansys Fluent calculations.

Example II: In this case, the heating of the wall will be
examined for an RF pulse with transient under two different
scenarios: with and without the cooling system. The cooling
system is assumed to be in contact with the right wall surface
and it is modelled as a convection heat exchange mechanism
described by the heat transfer coefficient of the fluid, h, and
its temperature, T8. For this example we take T8 � 0 �C
and h � 1.2 � 104Wm�2K�1, where the value of h
corresponds to a typical value for a water cooling channel in
RF accelerators [7]. The remaining parameters are the same
as in Example I.

In Fig. 6, the temperature increase along the metallic wall
is depicted at a certain time after the end of the pulse
(t � 2000ns). No significant differences are found between
the numerical simulations with Ansys Fluent for the case with

Fig. 5. (a) Temperature increase at the left wall surface (x � 0) as a function
of time. (b) Absolute temperature difference between the analytical model and
the ANSYS Fluent results shown in a). (c) Temperature increase as a function
of the depth in the wall, for t � 2000ns.(d) Absolute temperature difference
between the analytical model and the ANSYS Fluent results shown in (c).

cooling and the analytical expression that assumes perfect
heat isolation. In fact, the chi-squared test analysis gives
χ̃2
0 � 0.014 and P pχ̃2 ¥ χ̃2

0q � 100%. Therefore, a good
agreement between both cases is found. Very similar results
are obtained when comparing the temperature increase at the
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left wall surface (x � 0) as a function of time. This plot, that
is analogous to Fig. 5(a), has been omitted for the sake of
brevity.

At the view of the results, it has been demonstrated that, for
a time lapse up to several times the RF pulse length, there is
no significant difference in the temperature increase between
the case in which the right wall side is cooled and the case
with the right boundary thermally isolated. As argued before,
the pulse durations in RF accelerator systems are too short
to allow effective heat diffusion across the wall and the heat
remains focused on the neighbourhood of the heat sources
region, i.e. the vacuum wall. Moreover, for this example the
wall depth is L � 1mm, which is smaller than the typical
wall depths employed in realistic devices that can span up to
several centimetres. Hence, if the previous statement is true
for L � 1mm it will also be valid for higher values of L.
As it has been evidenced, the theoretical model presented in
Subsection II-A is able to provide an accurate estimation of the
temperature increase in the wall, even when there is a cooling
system.

Fig. 6. (a) Temperature increase as a function of the wall depth for t �
2000ns under two scenarios: with and without water cooling system. (b)
Absolute temperature difference between the analytical and ANSYS Fluent
cases depicted in (a).

Example III: Here, the maximum temperature increase in
the wall during the RF pulse for the case with transient is
analysed using the analytical formulas presented in Subsection
II-A. The same parameters as in Example I are chosen,
with the exception of L � 20mm. As previously argued,

the vacuum wall boundary is the region where the highest
temperature rise is expected. In Fig. 7 the temperature increase
at the vacuum wall side as a function of time is depicted for
a pulse length of ton � 400ns. As expected, the maximum
temperature increase takes place when the RF power level is
maximum, corresponding with the time at which the RF source
is switched off (t � ton).

Fig. 7. Temperature increase at x � 0 as a function of time, for ton �
400ns.

Next, the maximum temperature increase for different val-
ues of the RF pulse duration is investigated. This is done in
Fig. 8, where such maximum temperature increase is depicted
using the analytical formulas for the cases with and without
transient. Besides, the results provided by the approximate
expression for the pulse heating using square RF pulses in Ref.
[7] are also included in the plot. In this figure, a meaningful
difference in the temperature increase between the case with
and without transient is evidenced. It is also shown that the
formula in Ref. [7] gives good predictions for the case without
transient, since the exact analytical formula for that case is
similar to the results obtained with the formula in Ref. [7].
However, using the formula in Ref. [7] for a case with transient
will not provide an accurate solution, since this formula was
not intended for such case (of course, it is possible to use the
theory in Ref. [7] to obtain the proper temperature increase by
evaluating numerically the Green’s functions). At the view of
the results, it has been shown the utility of using the accurate
analytical expressions presented in this article (eq. (15a) and
(15b)) for estimating the RF pulse heating during the pulse
when there is a transient.

B. Average temperature increase after many RF pulses

Once the temperature increase during the RF pulse is
known, the next step is to obtain the average temperature
increase in the wall after many RF pulses have been driven
through the device. In order to do this, the heat transfer
equation is analytically solved under two assumptions that
simplify the mathematical procedure, allowing to obtain sim-
ple formulas that can be easily applied. First, the heat sources
in the wall given by eq. (2) are replaced by an equivalent
superficial heat flux entering through the vacuum wall. This
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Fig. 8. (a) Maximum temperature increase at the wall as a function of the
RF pulse length. (b) Absolute temperature difference between the analytical
with transient and the analytical without transient/approximation in Ref. [7]
cases depicted in (a).

equivalent superficial heat flux is obtained by integrating
the total contribution of eq. (2) along the wall depth. This
assumption gives good results since the skin depth values in
RF accelerators is much shorter than the wall depth and hence
the volume distribution of the heat sources is focused on the
neighbourhood of the vacuum wall. The second assumption
considers that the temporal variation of the heat source can be
replaced by a time-constant heat source with the time-average
value of the heat generated along the RF pulse sequence.
For this case, the presence of the cooling system cannot be
neglected in the calculations and it is taken into account.
The differential heat transfer equation and its corresponding
boundary conditions take the form:

BT
Bt � D2 B2T

Bx2

BT
Bx
���
x�0

� �qs,0
κ
,

BT
Bx
���
x�L

� �h
κ
rT pL, tq � T8s

with

qs,0 � 1

tend

» tend
0

dt

» L
0

P px, tqdx

where tend is the time that spans the RF pulsed sequence.
The procedure to solve analytically such differential equation
is very similar to the described previously in Subsection II-A

and it will be omitted here for the sake of brevity. Thus, the
average temperature along the wall as a time function is given
by the following expressions, assuming as initial conditions a
uniform temperature along the wall T0:

T px, tq � T8 � qs,0
κ

�
L� κ

h

	
� qs,0

κ
x (16)

�
8̧

n�1

Cn cos pλnxqe�pDλnq
2t

Cn �
1
λn

sin pλnLqrT0 � T
1

8s � qs,0
λ2
nκ

�
1� �

1� hL
κ

�
cos pλnLq

�
L
2 � sin 2λnL

4λn

where
T

1

8 � T8 � qs,0
κ

�
L� κ

h

	

λn tan pλnLq � h

κ
(17)

Eq. (17) has to be solved numerically to obtain the eigen-
values λn that allow us to get the coefficients Cn. As it can
be noticed in eq. (16), the function dependence on time is
of the form e�pDλnq

2t. Thus, for a sufficiently long time the
temperature in the wall will reach a steady state distribution
given by

Tsteadypxq � T8 � qs,0
κ

�
L� κ

h

	
� qs,0

κ
x (18)

Next, in Example IV the theoretical results provided by eq.
(16) for the average temperature in the wall, and the results
provided by the Thermal Transient Ansys (TTA) numerical
simulations [3], are presented for benchmarking between them.

Example IV: For this case, the same parameters as in
Example III are taken, with the exception of L � 15mm.
The average temperature increase of the wall will be examined
after many RF pulses have been driven throw the device and
the steady state has been achieved. In Fig. 9(a) the average
temperature increase at the vacuum side of the wall (i.e.,
x � 0) is depicted as a function of time for the analytical
formula (eq. (16)) and the TTA simulations. In Fig. 9(b) the
absolute temperature difference between the analytical and the
TTA results is shown. The results for the chi-squared test are
χ̃2
0 � 0.707 and P pχ̃2 ¥ χ̃2

0q � 98.41%. Thus, there is a good
agreement between both data series.

Similarly, the average temperature increase along the wall
at the steady state is depicted in Fig. 10(a). For comparison,
in Fig. 10(b) the absolute temperature difference between
the analytical and the TTA data is shown. In this case, the
chi-squared test also outcomes a good match with values of
χ̃2
0 � 6.56 � 10�6 and P pχ̃2 ¥ χ̃2

0q � 100%. It is worth
mentioning that the linear variation of the temperature along
the wall predicted at the steady state by eq. (18) is indeed
observed in the plot.

Regarding the computational time, 7 minutes were required
to get the results from the TTA simulations in an Intel Core
i5, 3.40 GHz, with 8 GB RAM. For the analytical solution,
firstly the eigenvalues given by eq. (17) must be obtained.
For this purpose, we employed the Matlab routine fzero that
solves the roots of nonlinear functions. This method was able
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Fig. 9. (a) Average temperature increase at the vacuum side of the wall
(x � 0) as a function of time. (b) Absolute temperature difference between
the analytical and the TTA cases shown in (a).

Fig. 10. (a) Average temperature increase along the wall at the steady state
(t � 40 s). (b) Absolute temperature difference between the analytical and
the TTA cases shown in (a).

to get 1000 eigenvalues in 0.43 s. Then, a convergence test of
the analytical solution (given by eq. (16)) was carried out by
considering different number of terms in the summation. It was

found that very few summation terms were needed to reach the
convergence for this particular problem. In fact, the maximum
absolute difference in the temperature between 1 and 10 terms
is 6 � 10�3 �C. Similarly, the maximum absolute difference
in the temperature between the cases with 2 and 10 terms is
2.6� 10�10 �C. Thus, for this particular case, the summation
convergence is reached with just the first two terms. Once the
required number of eigenvalues are known, the computational
time required to calculate the analytical summation given by
eq. (16) is 0.3 s. In total, the computational time required
to obtain the data depicted in the figures of Example IV is
approximately 1 s. From these results it is shown the huge
improvement in terms of computational time achieved when
using the analytical model instead of the TTA numerical
simulations.

III. THERMAL ANALYSIS OF AN RF ELECTRON GUN
PHOTOINJECTOR

The purpose of this Section is to analyse the suitability of
applying the 1D theoretical expressions (derived in Section
II) in order to obtain a first approximation of the temperature
increase caused by the RF pulse heating phenomenon in 3D
cavities which are part of RF accelerating systems. In Section
II the temperature increase in a 1D metallic wall was studied
by considering separately two effects due to the RF pulse
heating. First, the sharp temperature increase occurring during
the RF pulse very close to the vacuum side of the wall. Second,
the average temperature increase in the wall after many RF
pulses are driven into the structure, which finally evolves to a
steady state case with a spatial temperature distribution along
the wall.

In the first case, the pulse duration in typical RF accelerating
devices is too short to allow effective thermal diffusion across
the wall, as it was already discussed in Example II of Section
II. Therefore, the sharp temperature increase during the RF
pulse is a phenomenon depending only on the electromagnetic
field intensity at the local point of the surface. According to
this, the 3D details of the device (including the cooling system)
can be neglected in the analysis. And consequently, the 1D
theoretical model presented in Subsection II-A is expected to
give good results for realistic 3D devices.

In the second case, for the temperature increase at the steady
state after many RF pulses, the 3D details of the geometry of
the device might play an important role in the final temperature
distribution. Hence, further investigation must be carried out
for this case in order to evaluate the goodness of using the 1D
theoretical expressions to approximate the RF pulse heating
phenomenon in realistic 3D devices. To reach this aim, the
average temperature increase at the steady state is analysed
for an RF electron gun accelerating cavity, comparing the
results obtained with the TTA numerical simulations and the
predictions of the 1D theoretical expressions.

The geometry of the device that we have studied is shown in
Fig. 11, which is similar to other RF electron guns developed
for X-band operation [15], [16]. It consists of six accelerating
cavities, each of them with length λ{2 (being λ the wavelength
of the RF electromagnetic wave in free space), except the first
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one which is 0.6 times the length of the others. The present
RF gun is designed to operate in SW mode with the π-mode
advance per cell operating at a frequency of f � 11.994 GHz.
The RF gun is connected to the RF generator external circuit
by means of a coaxial coupler. The filling time of the RF
gun is τ � 2QL

ω � 112.5ns, QL being the loaded quality
factor of the RF gun cavity. The gun is intended to operate
in pulsed mode with an RF pulse duration of ton � 400 ns
and fp � 400Hz repetition rate. The RF electric field profile
along the RF electron gun axis after the filling transient is
depicted in Fig. 12. As it can be noticed, the magnitude of
the RF electric field is almost the same for all the cavities
despite the first cathode half-cell has a geometry different
from the others. This regular RF electric field in each cavity
indicates that the energy stored in each cavity is mostly the
same. Taking this fact into account, the thermal analysis of
the photoinjector can be reduced to the study of one single
full cell. This assumption greatly diminishes the computational
requirements and time needed to perform the TTA thermal
simulations. Therefore, we will focus on the thermal analysis
of the full cells and disregard the analysis of the half-cell since
its complex geometry cannot be studied with a 1D model. As
we will see next, this assumption is reasonable since the results
between methods are compatible.

Fig. 11. Scheme of a 5.6 cell RF electron gun photoinjector.

Fig. 12. Axial RF electric field along the RF electron gun photoinjector axis
(normalized to 1 MV/m at cathode).

To proceed with such simulations, firstly the surface losses
due to the RF electromagnetic field in the gun cavity are
computed with the software Ansys HFSS. In Fig. 13 the
surface losses are depicted for the case where the RF electron
gun is excited with a 200 MV/m cathode field. Then, the

surface losses are exported from HFSS to TTA in order to
perform the thermal simulations. It is worth mentioning that
the surface losses provided by HFSS constitute the average
power lost per unit area assuming a harmonic constant ampli-
tude signal. Since in the case of the photoinjector there will
be a transient, the values provided by HFSS must be scaled
to consider accurately the average power losses. Recalling eq.
(14), the magnetic field amplitude along the cavity walls can be
decomposed as H||,0ptq � H||,0 F ptq, being F ptq the function
that contains the temporal variation due to the transient. Thus,
to take into account the transient in TTA, the surface loss
density imported from HFSS, PHFSS , must be scaled when
it is read in TTA in the following way:

PTTA �
�
fp

» Tp
0

rF ptqs2dt
�
PHFSS (19)

Fig. 13. Surface loss density in the walls of the cavity computed with HFSS
for a cathode field of 200 MV/m.

Furthermore, the scheme of the photoinjector cavity in
TTA is depicted in Fig. 14. The cavity radius is Rc �
11.029 mm and the cavity length is Lcav � 12.498mm.
The presence of a water cooling channel has been considered,
with square section (a � 10mm), heat transfer coefficient
h � 1.2� 104Wm�2K�1, and fluid temperature T8 � 0�C.
The separation between the top of the cavity and the lower side
of the cooling channel is L � 15mm. The material for the
bulk of the photoinjector is copper, with the same properties as
described in the Example I. The initial temperature is assumed
to be uniform for all the cavity bulk, T0 � 0�C.

The temperature distribution in the RF electron gun cavity
after the steady state has been reached is shown in Fig.
15. When the RF gun is operated with a cathode field of
200 MV {m, the maximum temperature increase found along
the cavity wall is Tmax � 11.9�C.

Now, it remains to estimate the maximum temperature
increase at the steady state in the photoinjector cavity using the
corresponding analytical expression of the 1D model (recall
the eq. (18)). Two aspects must be taken into consideration
to explore properly this 1D formula to the case of the 3D
cavity. First, an equivalent heat transfer coefficient heq must be
chosen for the 1D model in order to compensate the possible
difference between the area size of the pillbox inner surface,
Aheat, where the heat sources are located; and the area of the
water cooling channel, Acooling, where the heat transfer due
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Fig. 14. Scheme of the RF gun cavity with water cooling channel analyzed
with TTA.

Fig. 15. Temperature distribution in the RF electron gun cavity at the steady
state (cooling channel is out of the frame); results from TTA when there is a
cathode electric field of 200MV {m.

to the convection phenomenon occurs. In the 1D model, it is
implicitly assumed that the vacuum surface (where the heat
sources are) and the cooling system surface have the same
area. As a general rule, for 3D devices, it is not expected that
both areas are equal. To adjust this mismatch, we propose to
take in the 1D model an equivalent heat transfer coefficient
defined as:

heq � Acooling
Aheat

h (20)

where h represents the heat transfer coefficient of the water
cooling channel of the 3D structure. Regarding the area of the
water cooling channel, Acooling, only the area corresponding
to the bottom and the lateral faces (neglecting the top face)

is taken into account. In Fig. 14 those surfaces are marked in
grey. According to this, the area of cooling is given by

Acooling � 2πpL�Rcqa� 2πrpL�Rc � aq2 � pL�Rcq2s
The physical reason that motivates neglecting the top face

is that this surface has no direct line of sight with the heat
sources and hence no significant effects in the cooling are
expected. This choice might seem a rough approximation but
in fact gives satisfactory results as we will see next. For the
particular case of this example, heq � 5.087h.

The second consideration is related to the fact that in the
gun cavity the surface losses are not uniform, whilst the
1D model assumes uniform power losses per unit area, qs,0.
Consequently, a spatial average power losses per unit area
coefficient qs,0,avg has to be defined and employed in eq. (18):

qs,0,avg � Ploss
Aheating

(21)

where Ploss is the total RF power lost by Joule effect in
the walls of the cavity, and Aheating is the area of the
cavity in contact with the RF electromagnetic fields. The
value of Ploss can be calculated using either HFSS or other
RF electromagnetic codes. For example, the free distribution
software SUPERFISH [17] would be a good option for such
purpose.

In Fig. 16 the maximum temperature increase in the RF gun
cavity at the steady state is depicted for different values of
the RF electric field amplitude at the photoinjector cathode.
The results of both TTA simulations and the 1D model are
included for comparison. With respect to the chi-squared
test, it is obtained χ̃2

0 � 0.01 and P pχ̃2 ¥ χ̃2
0q � 100%.

Besides, it is observed that the maximum absolute difference
between the TTA results and the analytical approximation is
always below 0.6�C or, in terms of the relative difference,
below 6%. Note that the relative difference is defined as
Dp%q � 100 � pTTTA � Tanalyticalq{TTTA, where TTTA
and Tanalytical are the temperatures obtained with TTA and
the 1D analytical model, respectively. For many practical
applications that require the thermal analysis of an RF accel-
erating structure, like the assessment of thermal stresses that
can cause surface roughening and microcracks, the design of
the cooling system, and the RF breakdown risk, the current
values of accuracy found are good enough. For example, in
order to prevent high RF breakdown rates, in the technical
literature it is recommended that the maximum temperature
increase is maintained below the safe limit of 60�C [18],
or 50�C according to other authors [19]. Therefore, an ap-
proximation that gives the maximum temperature increase
in the device with a maximum difference between the real
value and the approximation of only one or two Celsius
degrees, is accurate enough for the purpose of assessing the
design of RF accelerating structures aiming to keep a low RF
breakdown rate. It is worth mentioning that in [18], the thermal
analysis of a SW RF accelerating cavity is performed using
the approximate expression of the 1D model described in [7].
This approximation from [7] is found to have differences with
the accurate expression of the 1D model up to 1.5�C (recall
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Fig. 8(a)) and, despite this, it is employed for the design of
a 3D realistic RF accelerating component. Another example
of the usefulness of the analytical approximations provided in
this paper would be the analysis of the thermal stresses caused
by the RF pulse heating. Indeed, in [20] a theoretical model
to analyse the thermal fatigue in the material is developed
by using the temperature increase approximation described in
[7]. This fact also supports the statement that the accuracy of
the theoretical approximations presented in this paper is good
enough for practical applications.

Fig. 16. Maximum temperature increase in the RF gun at the steady state for
different values of electric field amplitude at cathode. Comparison between
the TTA simulations and the results of the 1D model.

For completeness, the comparison between the TTA sim-
ulations and the 1D model is performed for other working
points of the RF cavity. In Fig. 17, the temperature increase
for the RF cavity is shown with the same parameters, with the
exception of fp � 200Hz and h � 0.5�104Wm�2K�1. For
this case, the chi-squared statistical parameters are χ̃2

0 � 0.012
and P pχ̃2 ¥ χ̃2

0q � 100%. Besides, the maximum absolute
temperature difference is 0.6�C, which in terms of relative
difference is below the 5%. Similarly, in Fig. 18 the results for
fp � 1000Hz, h � 1.0 � 104Wm�2K�1, and L � 25mm
are depicted. For this case, it is found χ̃2

0 � 0.097 and
P pχ̃2 ¥ χ̃2

0q � 99.85%. The maximum absolute temperature
difference of 2.5�C, which in terms of relative difference is
below the 6%. Once again, the temperature difference between
the analytical approximation and the TTA results are within
the range of usefulness for practical applications.

Finally, it is interesting to compare the computational times
required by the 1D analytical analysis and the TTA numer-
ical simulations. The following results belong to an Intel(R)
Core(TM) i7- 865U CPU @ 2.10 GHz, 16 GB RAM. With
regard to the TTA simulations, firstly it is required to compute
the power losses with HFSS. This step has to be performed
only once for each device and, for this geometry, the HFSS
analysis took 5 minutes. Then, a TTA simulation must be
carried out to obtain the temperature increase for each value
of the RF electric field amplitude E0 shown in Figs. 16-18.
The computational time for each of these TTA simulations is
approximately 7 minutes. Hence, the total time to generate the
data required for Figs. 16-18, which have a total of 24 points, is
173 minutes, i.e., approximately 2 hours and 53 minutes. With
regard to the 1D analytical analysis, a total computational time

Fig. 17. Maximum temperature increase in the RF gun at the steady state for
different values of electric field amplitude at cathode. Comparison between
the TTA simulations and the results of the 1D model.

Fig. 18. Maximum temperature increase in the RF gun at the steady state for
different values of electric field amplitude at cathode. Comparison between
the TTA simulations and the results of the 1D model.

of 0.004 s was required to calculate the temperature increase
of the 24 points corresponding to Figs. 16-18. Thus, the 1D
analytical analysis is found to be more than two million times
faster than the TTA numerical simulations, evidencing the
usefulness of this method to obtain a fast approximation of
the maximum temperature increase for the RF photoinjector
cavity.

IV. THERMAL ANALYSIS OF A LINAC CAVITY

In this Section we perform the thermal analysis of a Linac
structure both using the 1D theoretical expressions and the
TTA numerical simulations. The procedure will be very similar
to that described above for the study of the RF photoinjector
cavity. Similarly, the objective is to obtain the maximum
average temperature increase along the device surface at the
steady state.

The Linac structure under analysis is composed of 108
accelerating cells operating in the Travelling Wave (TW)
configuration at X-band [21]. The geometry of the accelerating
cells is shown in Fig. 19, where three of them are depicted.
The thermal analysis will be carried out for one single of
these cavities. The phase advance between neighbour cavities
is 2π{3 and the RF frequency is f � 11.994GHz. The Linac
structure is excited in pulsed mode with rectangular RF pulses
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with duration ton � 400ns and fp � 400Hz repetition rate.
The RF electric field profile of one single of the linac cavities
is shown in Fig. 20.

Fig. 19. Partial view of the Linac accelerating structure (three cells are
shown).

Fig. 20. Modulus of the axial RF electric field along the linac cavity
(normalized for 1 MV/m at cathode).

Similarly to the RF photoinjector case, the RF power
losses along the device surfaces are computed with HFSS and
exported to TTA for the thermal analysis. The scheme of the
linac cavity in TTA is depicted in Fig. 21. The cavity radius is
Rc � 9.869 mm and the cavity length is Lcav � 8.333mm. It
has been considered the presence of a water cooling channel,
with square section (a � 6.933mm), heat transfer coefficient
h � 1.0� 104Wm�2K�1, and fluid temperature T8 � 0�C.
In the scheme, the cooling channel surfaces that are accounted
for the calculation of heq (recall that this parameter is required
for the 1D model temperature increase estimation) are marked
in green. The same criterion as in the photoinjector case was
taken, leading to heq � 3.297h. The separation between the
top of the cavity and the bottom of the cooling channel is
L � 15mm. The material for the bulk of the cavity is copper,
with the same properties as described in the Example I. The
initial temperature is assumed to be uniform for all the cavity
bulk, T0 � 0�C.

In Fig. 22 the maximum temperature increase in the linac
cavity at the steady state is depicted for different values of
the RF electric field amplitude. The results of both TTA
simulations and the 1D model are included for comparison.
Regarding the chi-squared statistics, it is found χ̃2

0 � 0.012
and P pχ̃2 ¥ χ̃2

0q � 100%. The maximum absolute difference
between the TTA results and the analytical approximation is

Fig. 21. Scheme of the linac cavity with water cooling channel analyzed with
TTA.

always below 0.65�C or, in terms of the relative difference,
below 4%.

Fig. 22. Maximum temperature increase in the linac cavity at the steady state
for different values of the RF electric field amplitude. Comparison between
the TTA simulations and the results of the 1D model.

Concerning to the computational time, very similar results to
the previous example for the RF photoinjector were found. The
HFSS analysis took 6 minutes, whilst each TTA simulation for
a certain value of the RF electric field amplitude E0 lasted 7
minutes. For the 1D analytical analysis, a total computational
time below 0.004 s was required to calculate the temperature
increase for the seven different values of the RF electric field
amplitude E0. Thus, it is clear again the usefulness of the
1D analytical method to obtain a quick approximation for the
maximum temperature increase in the device.
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V. CONCLUSIONS

In this paper, the temperature increase due to the RF pulse
heating phenomenon has been analysed in RF accelerator
structures. For this purpose, the 1D heat transfer differential
equation has been solved in a thick metallic slab for certain
specific cases, allowing to obtain simple analytic mathematical
expressions. The peak temperature increase during the pulse
is obtained for the cases of a square RF pulse and an RF pulse
with transient. Similarly, the average temperature increase
after many RF pulses is also provided. In the latter case, the
theoretical model assumes that the device exchanges heat with
the environment by means of the convection mechanism. This
allows us to consider the interesting case of a cooling system
based on a water turbulent flow through a pipe.

The 1D analytical expressions for the temperature increase
in the slab presented in this paper are aimed at improving
the design procedure of RF accelerating cavities. This is
accomplished by reducing the computational time required to
perform the thermal analysis with regard to using of 3D FEM
codes. For instance, as it is discussed throughout the paper,
the computational time required to analyse the temperature
increase during the RF pulse can be accelerated up to 200
times with respect to the Ansys Fluent numerical simulations,
for a standard PC (Intel Core i5, 3.40 GHz, 8 GB RAM). Thus,
an analysis that Ansys Fluent would require a bit more than
half an hour can be reduced to only seven seconds. This time
reduction allows us to explore the effect of a wide range of
parameters in the thermal behaviour of the device in very short
times compared with a numerical analysis. For instance, this is
useful for the optimization of the geometry and dimensions of
a cavity in order to reduce as much as possible the temperature
increase due to RF pulsed heating during its operation.

It is worth mentioning that, for many practical applications
that motivate the thermal analysis of an RF accelerating
structure, the accuracy achieved with the 1D analytical ex-
pressions is good enough when comparing with the accurate
3D numerical simulations performed with Ansys Fluent or
Ansys Thermal Transient. Some examples of the applications
that could be analysed using the 1D analytical model are
the assessment of thermal stresses that can cause surface
roughening and microcracks, the design of the cooling system,
and the analysis of the RF breakdown risk.

In this paper, two realistic 3D structures have been analysed
both with the 1D analytical formulas and the Ansys numerical
simulations. These two devices are an RF photoinjector cavity,
and a linac accelerating cavity. In both cases the results
evidence that the 1D analytical formulas provide an useful
approximation to the temperature increase in the devices.
However, it must be remarked that the method described in
this manuscript is intended to provide a quick approximation
to the temperature increase in the device, but of course it will
not be as accurate as proper 3D numerical simulations.
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