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1

Resumen amplio en castellano

Las levaduras sonmicroorganismos eucariotas que llevan a cabomultitud de procesos

fermentativos con gran importancia biotecnológica. Entre ellas, el género Saccharomyces

es uno de los más estudiados, ya que participa en distintos procesos fermentativos de

valor en la industria alimentaria. En la actualidad, ocho especies se engloban en el

género: S. arboricola, S. cerevisiae, S. eubayanus, S. jurei, S. kudriavzevii, S. mikatae,

S. paradoxus, y S. uvarum, siendo la segunda y la última las únicas especies que han

colonizado los ambientes fermentativos. Además, también es posible encontrar híbridos

entre dos o más especies de Saccharomyces principalmente en fermentaciones, pero

también en ambientes naturales.

La industria vínica utiliza levaduras seleccionadas para llevar a cabo la fermentación

del vino de una manera controlada y que produzca un vino homogéneo, con la misma

calidad año tras año. A consecuencia del cambio climático, existe un desequilibrio en las

características de las uvas a partir de las cuales se obtienen los vinos. En el momento

de la recolección, la uva presenta un desfase entre su madurez industrial y fenólica, lo

que provoca que el vino final tenga un grado alcohólico mayor, un pH mayor y una acidez

total menor a la esperada, características no deseables en el vino.

Entre las demandas del sector enológico está la utilización de cepas Saccharomyces
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con las que se obtengan vinos con un menor contenido en etanol, con pHmás bajos y con

cierta acidez. Además, es necesario que el vino tenga un buen aroma y que su contenido

en glicerol sea alto, para darle cuerpo al vino, ya que todo esto agrada al consumidor

final.

En los últimos años, se han estudiado las características de cepas de levadura de

distintas especies del género Saccharomyces con potencial para ser utilizadas en la

industria vínica. La finalidad de estos trabajos es tener caracterizadas y así poder

seleccionar aquellas que resulten de interés para un proceso fermentativo concreto.

Hay que tener en cuenta que las diferencias entre levaduras del género

Saccharomyces se encuentran tanto a nivel de especie como de cepa, por lo que es

necesario estudiar el comportamiento de cada cepa de levadura de manera individual. A

grandes rasgos, las levaduras de la especie S. cerevisiae han sido las más utilizadas en la

industria vínica, ya que poseen una elevada tolerancia al etanol, que es el principal estrés

al que se enfrentan las levaduras durante el proceso de fermentación. Sin embargo,

en los últimos años se ha intentado utilizar en la producción de vino cepas de otras

especies como S. uvarum y S. kudriavzevii, así como sus híbridos con S. cerevisiae,

ya que producen un mayor contenido en glicerol, una mayor diversidad de aromas, un

menor contenido en etanol y son más tolerantes a las bajas temperaturas.

Una posible estrategia para conservar los aromas del vino es llevar a cabo las

fermentaciones a temperaturas bajas, ya que facilitan la retención de los aromas. No

obstante, estas condiciones no son las más idóneas para el crecimiento de las levaduras,

y podría dar lugar a fermentaciones largas o, incluso, a paradas de fermentación. Una

parada de fermentación representa un gran problema para la industria, ya que se pretende

que toda la uva se transforme en vino en el menor tiempo posible y sin percances que

generen grandes pérdidas económicas. En este sentido, la tolerancia de S. kudriavzevii

y S. uvarum a las bajas temperaturas supondría una ventaja a la hora de llevar a cabo
2
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estos procesos a esas temperaturas.

Otra posible causa de una parada de fermentación es la cantidad creciente de etanol

que las levaduras van produciendo a lo largo de la fermentación, especialmente a partir

de concentraciones altas de azúcares. El etanol resulta tóxico para el crecimiento de la

propia levadura y lamentablemente, las levaduras de las especies S. kudriavzevii y S.

uvarum son menos tolerantes que las de S. cerevisiae, por lo que su utilización se vería

favorecida si se pudiese mejorar su tolerancia.

En términos generales, la presencia de etanol durante la fermentación es el mayor

estrés al que se ven sometidas las levaduras durante los procesos industriales. La primera

barrera con el medio exterior que presentan las células es la membrana, y el etanol

­también la temperatura­ altera la organización de los lípidos presentes en la misma,

modificando su fluidez y provocando cambios en su fisiología.

Una de las estrategias para seleccionar una levadura que lleve a cabo un proceso

fermentativo concreto, es su estudio en condiciones controladas para evaluar su

comportamiento durante las situaciones de estrés a las que se puede enfrentar como

son las fermentaciones en las que se añade una cantidad controlada de alcohol,

fermentaciones que son realizadas a bajas temperaturas, etc. También, es posible llevar

a cabo fermentaciones con una cepa de levadura concreta y evaluar la composición

de los distintos metabolitos presentes en el vino final. Esto nos permite clasificar a las

levaduras, según sean mejores o peores, para ser utilizadas en un contexto fermentativo

determinado.

En otras ocasiones no se busca seleccionar una cepa de levadura ya existente y

presente en la naturaleza, sino mejorar el comportamiento de una cepa de levadura de

interés. En Europa, la mejora genética mediante la obtención de Organismos Modificados

Genéticamente (OMGs, en inglés GMOs), está muy limitada por la legislación y la

3
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percepción social; pero existen estrategias de mejora genética cuya levadura resultante

no es considerada un OMG. Entre ellas destacan la evolución adaptativa en laboratorio y

la obtención de híbridos entre dos cepas de levadura.

La obtención de híbridos permite que se forme una nueva cepa de levadura que puede

presentar propiedades fisiológicas de ambos parentales. Por ejemplo, es posible obtener

un híbrido que reúna la capacidad de fermentar de manera rápida los azúcares y la

alta tolerancia al alcohol de S. cerevisiae, y la tolerancia a las bajas temperaturas y la

producción de un buen perfil aromático y de composición final del vino de S. kudriavzevii

y S. uvarum.

Otra posible estrategia para la mejora de una cepa de levadura es llevar a cabo

su evolución adaptativa en el laboratorio. Esta técnica, considerada no GMO, permite

obtener cepas adaptadas a ciertas condiciones mediante el cultivo de una población

grande y heterogénea de la levadura de interés durante un periodo largo de tiempo

en unas condiciones selectivas crecientes, los individuos que mejor resistan a dichas

condiciones, se reproduzcan y seleccionen en detrimento del resto de individuos peor

adaptados.

Si se utiliza alguna de estas estrategias de mejora, además de comprobar que la

nueva cepa de levadura tiene ventajas con respecto a las cepas originales, también es

importante comprobar que la nueva cepa obtenida sea estable, es decir que su genoma

no se altera después de su obtención, y que se siga comportando igual con el paso del

tiempo en las distintas situaciones, no solo en condiciones de laboratorio, sino también a

nivel industrial.

Desde hace unos años, el auge de las tecnologías ómicas nos permite obtener

datos complejos de organismos de interés, como en el caso de las levaduras. Con las

tecnologías de secuenciación de nueva generación (NGS, del inglés), es posible estudiar

4
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el genoma y el transcriptoma de los individuos seleccionados u obtenidos tras llevar a

cabo una estrategia de mejora. Esto nos permite relacionar cambios fenotípicos en las

cepas de levadura con cambios a nivel genético en las mismas. En el caso de que una

levadura haya sido seleccionada por su capacidad de resistencia a un factor con influencia

en la membrana plasmática, como la temperatura o el etanol, resulta muy útil el estudio

de la composición de membrana plasmática de la misma. Esto se puede realizar con

estudios lipidómicos que utilizan la espectrometría de masas para identificar los lípidos

presentes en un organismo concreto. Así, podemos intentar relacionar composiciones

concretas de membrana plasmática con una mayor resistencia a factores de estrés.

Teniendo en cuenta todo lo expuesto, en esta tesis nos propusimos la caracterización

y la mejora de distintas cepas de levadura del género Saccharomyces con el fin de

perfeccionar su comportamiento durante el proceso de fermentación vínica y de obtener

un mejor producto: el vino final. Nos hemos centrado en la mejora de la tolerancia a

etanol, ya que como hemos mencionado, la presencia de una elevada concentración de

alcohol durante los procesos fermentativos supone un factor de estrés de alto impacto

para las levaduras. Además, hemos hecho hincapié en tratar de relacionar el distinto

comportamiento de las levaduras ante el etanol con su composición de membrana.

Con el conocimiento previo de que las cepas de S. cerevisiae son las más tolerantes

al etanol, en el primer capítulo (Capítulo 1) de la presente tesis se seleccionaron un

total de 61 cepas de esta especie, aisladas de distintos ambientes fermentativos y con

distintos orígenes, para llevar a cabo su caracterización respecto a su tolerancia al

etanol. Para ello, se analizó el crecimiento de estas cepas en medios sólido y líquido con

distintas concentraciones de etanol. El crecimiento en medio líquido con concentraciones

crecientes de un tóxico (el etanol) puede ser modelizado hasta obtener dos parámetros:

el NIC (Concentración no inhibitoria) y el MIC (Concentración mínima inhibitoria) que

informan de la susceptibilidad y resistencia al etanol de las distintas cepas. Cuanto
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más altos son estos parámetros, menos susceptible y más resistente es una cepa a

etanol, respectivamente. El crecimiento en medio sólido consiste en observar si un

microorganismo es capaz de crecer o no en una determinada concentración del tóxico.

Después de analizar el crecimiento de las cepas, se procedió a seleccionar 5 de

ellas que mostraron comportamientos distintos: AJ4 (cepa comercial de la empresa

Lallemand), que resultó la cepa más tolerante de todas ante altas concentraciones de

etanol; MY26 (cepa aislada de agave) que mostró una baja tolerancia al etanol, MY29

(cepa usada en la fermentación de los vinos de flor) con una tolerancia intermedia y

MY3 y MY14, dos cepas vínicas que crecieron bien en medio sólido, pero presentaron

problemas de crecimiento en medio líquido.

Estas 5 cepas fueron coinoculadas en fermentaciones con un 0%, 6% y 10% de etanol.

AJ4 resultó ser la cepa dominante en los medios de 0% y 10% de etanol, mientras que

MY29 fue la cepa dominante en el medio con un 6%de etanol. Se investigó la composición

de la membrana de estas 5 cepas en presencia y ausencia de etanol. La composición

lipídica de cada cepa se estudió por espectrometría demasas acoplada a la cromatografía

líquida (LCMS) y por cromatografía de capa fina (TLC).

Los estudios lipidómicos mediante LCMS demostraron que la cepa que mostraba

una composición lipídica más distinta a la del resto de cepas cuando fue crecida en

un medio sin etanol era MY29. En concreto, esta cepa mostró una menor cantidad

de ceramida­1­fosfatasa (CerP), diacilglicerol (DG), ácido glicerofosfatídico, (GPA),

glicerofosfatidilserina (GPSer) y monoacilgilcerol (MG) y mayor cantidad de cardiolipina

(CL) y glicerofosfatidiletanolamina (GPEth). Sin embargo, cuando se crecieron las cepas

en un medio con un 6% de etanol, MY29 sufre una gran variación en su composición de

membrana, que se hizo más similar a la del resto de cepas.

Se estudiaron también los cambios en la saturación y longitud de las cadenas y
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aunque no hubo cambios entre cepas en la longitud de las mismas, sí que se encontraron

diferencias en cuanto a la saturación. MY29 presentó una menor cantidad de cadenas

saturadas en especies DG y en GPSer monoinsaturadas; en cambio, presentó una

mayor cantidad en GPA, GPEth y GPSer saturadas; en CL monoinsaturadas, y en MG

poliinsaturadas. MY29 volvió a ser la cepa con más diferencias en cuanto a especies

saturadas en un 0% de etanol y cuando hubo presente un 6% de etanol en el medio, las

membranas de las cepas tuvieron una composición más parecida entre sí.

En los estudios mediante TLC, la cepa menos tolerante de todas, MY26, mostró una

mayor concentración de fosfatidiletanolamina (PE) en 0% y 6% de etanol, lo que podría

indicar que este lípido está relacionado con la sensibilidad a etanol. En estudios previos

se había relacionado unamayor cantidad de PC y de PI con unamayor tolerancia a etanol,

y nosotros aquí asociamos una mayor cantidad de PE con una menor tolerancia a etanol.

También se midió la fluidez de la membrana de cada cepa en distintos puntos de

fermentaciones con y sin etanol haciendo uso de una sonda fluorescente, el Laurdan,

que es sensible a la polaridad del ambiente. La fluidez de las membranas de levadura

disminuyó con el tiempo de cultivo y AJ4, la cepa más tolerante a etanol fue la cepa cuya

membrana se hizo más fluida en presencia de etanol. MY26, cepa poco tolerante, resultó

ser la cepa que menos fue capaz de modular su fluidez de membrana.

Una vez caracterizadas las membranas lipídicas de 5 de las cepas de S. cerevisiae,

tanto en ausencia como en presencia de etanol, nos interesamos en dilucidar cuáles son

los mecanismos moleculares que hacen que distintas cepas presenten tanto tolerancias

a etanol, como composiciones de membrana distintas. Por ello, en el Capítulo 2 de esta

tesis, decidimos llevar a cabo un crecimiento por triplicado de 3 de las cepas (AJ4, MY3

y MY26) en medio de cultivo GPY con etanol (un 6% y un 10%) y sin etanol para poder

tomar muestras en distintos puntos y así llevar a cabo un estudio más completo a nivel

transcriptómico de las tres.
7



RESUMEN

El primer punto de muestreo o tiempo cero, fue tomado durante la primera hora de

crecimiento en GPY sin etanol, y fue utilizado como la condición con la que comparar el

resto de puntos. Tras añadir etanol en las concentraciones ya indicadas, se tomaron para

cada cepa muestras en fase exponencial temprana (t1 o ESP); en fase exponencial tardía

(t2 o LEP) y en fase estacionaria (t3 o SP) y se comparó con el t0.

Tras la extracción del RNA mensajero presente en estas muestras, su

retrotranscripción a cDNA, y secuenciación en un equipo Illumina HiSeq, se llevó a

cabo un análisis transcriptómico, que consistió en alinear las lecturas obtenidas contra

un pangenoma de referencia (mapping), el conteo de la expresión de cada gen haciendo

uso de htseq­count y el análisis de expresión diferencial de cada gen en cada muestra

con respecto al t0 para lo que se utilizaron los paquetes de R, DESeq2 y limma.

Comparando las listas de genes que cambian su expresión significativamente

entre cepas, nos dimos cuenta de que su número era muy grande, y por ello nos

centramos en llevar a cabo un análisis de enriquecimiento de términos GO con los

genes sobreexpresados e infraexpresados, lo que nos permite agruparlos en categorías

funcionales. Es interesante destacar que la categoría de biosíntesis de ergosterol,

un compuesto lipídico de membrana que le proporciona fluidez a la misma, está

infrarrepresentada en las cepas MY26 y MY3 cuando hay etanol (6% y 10%) mientras

que en AJ4 esto no sucede. Sin embargo, la expresión de estos genes en las tres

cepas cuando no hay etanol presente en el medio es muy similar. En cambio, AJ4 tiene

sobreexpresados distintos genes de la ruta de biosíntesis de ergosterol en presencia de

etanol entre los que cabe destacar ERG20 y a ERG1.

Además, la cepa AJ4 presenta una expresión significativamente más alta en presencia

de etanol de HMN1 y de EKI1 que son genes que codifican enzimas presentes en la

ruta de síntesis de fosfolípidos de membrana. Es interesante destacar que todos estos

genes están regulados por el factor de transcripción Ino2p. Su secuencia presenta dos
8
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mutaciones en la cepa AJ4, que son compartidas con cepas altamente tolerantes a

etanol (datos provenientes de un artículo científico en el que se analizan 1000 cepas

de S. cerevisiae). Lo mismo sucede con el activador transcripcional Gnc4p, que presenta

cambios en su secuencia en la cepa AJ4 y está sobreexpresado en distintas condiciones

durante el crecimiento en etanol de AJ4.

Todos estos datos generados nos han provisto de conocimiento a nivel molecular

de qué genes pueden estar implicados en la distinta tolerancia al etanol. Estos genes

son susceptibles de ser utilizados como dianas específicas para su edición genómica

y comprobar su importancia en la tolerancia a etanol de las cepas. Sin embargo, la

modificación de un solo locus mediante esta técnica, además de laborioso, puede tener

un efecto ligero o moderado en la mejora de la tolerancia al etanol, ya que se trata de un

carácter poligénico que depende de múltiples loci.

Por ello, en el Capítulo 3 de la presente tesis nos planteamos mejorar una cepa S.

uvarum de interés haciendo uso de otra técnica: la obtención de un híbrido de esta cepa

con una cepa S. cerevisiae altamente tolerante a etanol. Como ya se ha mencionado,

las cepas de levadura de S. uvarum son criotolerantes y presentan características muy

interesantes para ser utilizadas en la industria vínica, ya que generalmente producen

vinos con alto contenido en glicerol y aromas y con poco ácido acético. Sin embargo, su

tolerancia a etanol esmenor que la de cepas deS. cerevisiae. Por estemotivo, se propuso

obtener mediante una técnica conocida como ’rare mating’ un híbrido interespecífico S.

cerevisiae x S. uvarum con el fin de aunar las ventajas de ambas especies en un solo

híbrido. Esta técnica se ha utilizado con anterioridad en numerosos trabajos de nuestro

grupo y ha permitido obtener híbridos con características muy interesantes y aptos para

ser usados en la industria al no ser considerados GMO.

La cepa de S. uvarum que se quiso mejorar fue la Velluto BMV58TM (BMV58),

seleccionada en nuestro grupo para su uso en la industria por su bajo rendimiento en
9
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etanol y alto rendimiento en glicerol. En primer lugar, se analizó el crecimiento en etanol

de distintas cepas S. cerevisiae proporcionadas por Lallemand para seleccionar aquella

con mayor tolerancia a etanol, que resultó ser AJ4, la misma que se seleccionó en el

Capítulo 1 como una cepa muy tolerante a etanol. Estas dos cepas, se crecieron por

separado en placas de agar α­AA y 5­FAA con el objetivo de obtener espontáneamente

mutantes auxotrófos lys­ y trp­, respectivamente. De esta manera se seleccionaron un

auxóstrofo lys­ de AJ4 y uno trp­ de BMV58, que fueron usados para obtener híbridos

mediante el procedimiento de ’rare mating’, los cuales fueron recuperados en medios

de selección y comprobados mediante amplificación por PCR de distintos genes y el

subsiguiente análisis de restricción (RFLPs). Algunos de los híbridos obtenidos fueron

capaces de esporular y de estos derivados monospóricos se comprobó también su

estabilidad. Todos aquellos que resultaron estables fueron evaluados y clasificados según

su crecimiento en mosto sintético con un 6,5% de etanol.

Dado que su crecimiento fue el mejor en condiciones de estrés por etanol, se

seleccionó el derivado monospórico H14A7 y se analizó, junto al de sus parentales AJ4

y BMV58, su tolerancia al etanol mediante la estima de sus valores de NIC y MIC a

15ºC y 25ºC en medio YNB. El valor de NIC de H14A7 a 15ºC fue el más alto de las

3 cepas, y su valor de MIC fue intermedio al de AJ4 y BMV58 en ambas temperaturas. A

continuación, se evaluaron las propiedades enológicas de H14A7, AJ4 y BMV58 llevando

a cabo fermentaciones en mosto de vino Verdejo a 15 y a 25ºC. Se concluyó que la

rápida actuación durante la fermentación y la producción de ácidos orgánicos de H14A7

es similar a la del parental S. cerevisiae y su alta síntesis de glicerol a la del parental S.

uvarum.

Para determinar la constitución genómica del híbrido obtenido, se llevó a cabo la

secuenciación de los genomas de H14A7 y de AJ4 mediante el sistema Illumina Miseq.

El genoma anotado de BMV58 ya estaba disponible de un trabajo previo en nuestro
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laboratorio y el genoma de AJ4 fue ensamblado y anotado para la presente tesis. Las

lecturas del híbrido se mapearon contra los genomas de AJ4 y de BMV58. El análisis de

composición genómica se complementó con un análisis de citometría de flujo. Aunando

los resultados se determinó que H14A7 es un alotriploide y no un alodiploide como

se esperaría tras la esporulación de un alotretraploide. Este alotriploide tendría un

subgenoma S. cerevisiae diploide, con dos copias heterozigotas de cada cromosoma,

y un subgenoma S. uvarum haploide. La única excepción es el cromosoma III, en el que

ambos subgenomas presentan solo una copia. Esta constitución sugiere que el híbrido

original a partir del que se obtiene el derivado monospórico H14A7 era el resultado de un

evento de ’rare mating’ entre una célula competente S. cerevisiae diploide y una célula S.

uvarum haploide o diploide con distinto locus MAT.

Durante las fermentaciones en mosto de vino Verdejo se tomaron muestras de RNA

que fueron secuenciadas para llevar a cabo un estudio transcriptómico que permitiera

comparar la expresión génica de H14A7 a lo largo del proceso. La expresión de H14A7

fue comparada estudiando las diferencias de expresión entre los subgenomas de H14A7

así como con la de sus parentales AJ4 y BMV58. En el análisis de expresión comparativa

entre los subgenomas del híbrido, las diferencias más significativas se dieron en la fase

de latencia. A 15ºC, el subgenoma S. cerevisiae sobreexpresa genes relacionados con

actividad catalítica y toma de nutrientes (iones, unión de proteínas, cofactores, etc.)

mientras que el subgenoma S. uvarum tiene una alta expresión de genes de biogénesis

de ribosomas, involucrados en la maquinaria de traducción necesaria para el crecimiento

y división, y en el metabolismo de ergosterol.

En resumen, en este apartado del trabajo conseguimos obtener y tener caracterizado

un derivadomonospórico estable, H14A7, que presenta ventajas con respecto a las cepas

parentales AJ4 y BMV58 para poder ser utilizado para llevar a cabo la fermentación vínica.

Como resultado de este trabajo, H14A7 está siendo comercializado en la actualidad por
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Lallemand Inc. con el nombre comercial de Velluto EvolutionTM.

En el Capítulo 4 de la tesis quisimos estudiar qué sucedía si sometíamos a este

híbrido estable a unas condiciones de alto estrés que simularan el mosto presente en

etapas tardías de una fermentación vínica y así estudiar a nivel genómico y fenotípico este

híbrido entre S. uvarum y S. cerevisiae. Para ello, llevamos a cabo distintas rondas de

fermentación en un mosto sintético (SM) modificado con alto contenido en metabisulfito,

y concentraciones crecientes de etanol y decrecientes de azúcares. El metabisulfito,

K2S2O5, en el mosto se convierte en sulfito, un conservante que se utiliza en la industria

vínica para prevenir la oxidación y la contaminación del vino, y que al igual que el etanol,

puede resultar tóxico para la levadura.

La caracterización fenotípica del híbrido adaptado, al que llamaremos H14A7­etoh,

mostró que esta cepa era ligeramente más resistente a etanol. Aunque se mejoró la

tolerancia a etanol de H14A7, su impacto fue muy leve si lo comparamos con la mejora

que se produjo en la cepa BMV58 tras su hibridación con AJ4, ya que el híbrido H14A7 ya

esmuchomás tolerante a etanol que BMV58 (Capítulo 2). Sin embargo, sí quemejoramos

de manera clara la tolerancia de H14A7 al sulfito.

Se testó el comportamiento de H14A7­etoh en fermentaciones en mosto Verdejo a

15ºC y a 25ºC y se observó que este híbrido evolucionado había empeorado su capacidad

de fermentar los azúcares presente en el vino. Este hecho demuestra que cuando se

busca evolucionar una cepa para una característica concreta, esta cepa puede también

cambiar alguna de sus propiedades a una no deseable.

El genoma de H14A7­etoh fue secuenciado y se detectaron diferentes señales de

adaptación, siendo la más relevante de todas la fijación de aneuploidías durante el

proceso selectivo, observándose la duplicación del cromosoma III de S. cerevisiae y del

cromosoma VII­XVI de S. uvarum. Además, se observó en H14A7­etoh una pérdida del
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cromosoma I de S. uvarum y una pérdida de heterozigosidad (LOH) en el cromosoma I

de S. cerevisiae. El genoma de H14A7­etoh también presenta pequeñas deleciones y

duplicaciones, así como la fijación de algunos SNPs. La duplicación del cromosoma III

de S. cerevisiae podría ser el resultado de la restauración de su diploidia para igualarse

a la de los restantes cromosomas S. cerevisiae de H14A7 o bien el resultado de una

duplicación por adaptación a etanol, ya que un incremento del número de copias del

cromosoma III se ha demostrado que está relacionado con un incremento de la tolerancia

a etanol. En cuanto a la duplicación del cromosoma VII­XVI de S. uvarum, este presenta

una translocación afecta al promotor del gen SSU1, que codifica un trasportador de sulfito,

y da lugar a un incremento de su expresión, lo que confiere unamayor resistencia al sulfito.

Por tanto, la duplicación de este cromosoma translocado de S. uvarum es una señal clara

de adaptación a un estrés mediante el aumento del número de copias.

Tras llevar a cabo un estudio de RNA­seq se evaluó la expresión diferencial (DE)

entre los genes presentes en H14A7­etoh y en H14A7 durante las fermentaciones

vínicas, prestando especial atención a los genes presentes en el cromosoma III de S.

cerevisiae y en el cromosoma VII­XVI de S. uvarum. En términos generales, H14A7­etoh

sobreexpresa estos genes, debido al incremento de la dosis génica y en particular se

expresan más en H14A7­etoh a 25ºC los genes SSU1 y FZF1, que codifica un factor de

transcripción de SSU1, y que también se localiza en el cromosoma VII­XVI duplicado.

Se estudió también la composición demembrana de estas dos cepas, mediante LCMS

y TLC. La diferencia más significativa que se encontró fue que H14A7­etoh presenta

menor cantidad de PE; lo que podría ser una respuesta adaptativa a estrés por etanol. La

PE regula la fluidez de la membrana, ya que a mayor cantidad, menor es la fluidez de la

membrana. Se llevaron a cabo experimentos de fluidez de membrana con Laurdan, que

confirmaron que la membrana de H14A7­etoh es más fluida que la de H14A7, tal como

indicaban los resultados de TLC.
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Como la adaptación de H14A7 en unas condiciones estresantes con alto etanol y

con sulfito consiguieron mejorar ligeramente la tolerancia al etanol de esta cepa, nos

planteamos utilizar una estrategia similar para evolucionar adaptativamente otras cepas

del géneroSaccharomyces en el laboratorio y ver si se conseguíamejorar su resistencia al

etanol. Así pues, en el quinto capítulo de la tesis doctoral, llevamos a cabo una estrategia

de evolución adaptativa en el laboratorio de dos cepas S. uvarum (CECT 12600 y BMV58)

y de dos cepas S. kudriavzevii (CR85 y CA111). Todas estas cepas son menos tolerantes

al etanol que H14A7 y nunca se ha llevado a cabo una evolución adaptativa de ellas

en presencia de este compuesto, por lo que nos interesaba estudiar qué pasaba en sus

genomas si se las sometía a este estrés.

En un primermomento se procedió a crecer las cepas en unmosto sintético, simulando

una parada de fermentación, hasta alcanzar una concentración de un 8% de etanol en

el caso de BMV58 y de CR85 y una concentración de un 9% en el caso de CA111 y

de 12600. Las cepas así adaptadas fueron denominadas BMV58­EVO8, 12600­EVO9,

CA111­EVO9, CR85­EVO8. En una segunda etapa se continuó la evolución siguiendo

una estrategia de cuellos de botella en los que se sometía a las levaduras a un choque

con una concentración aún más elevada de etanol (16% en placas) seguidos por periodos

de estabilización en un mosto sintético con una composición normal de azúcares. Así,

obtuvimos cepas evolucionadas hasta un 11% de etanol: BMV58­EVO11, 12600­EVO11,

CA111­EVO11 y CR85­EVO11. La tolerancia al etanol de las cepas finalmente obtenidas

fue caracterizada, revelando así que todas las cepas mejoraron su tolerancia al etanol,

con la una única excepción de BMV58.

A su vez, se secuenciaron y analizaron los genomas de estas cepas evolucionadas

observándose también distintas señales adaptativas en cada cepa de levadura. Las

cepas que presentan unos cambios más drásticos a nivel de genoma fueron las cepas

evolucionadas de S. kudriavzevii: CA111 y CR85, ya que se producen duplicaciones de
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cromosomas completos durante su evolución. CA111­EVO9 adquirió una copia extra de

su cromosoma VIII (pasa de 2 a 3 copias) para después volver a perder una de las

copias en un paso de evolución posterior, es decir, CA111­EVO11 vuelve a presentar

dos copias de este cromosoma. Por su parte, CR85­EVO8 adquirió una copia extra de

sus cromosomas II, IX y XVI y estas copias extra se mantuvieron también en algunos

individuos de la población secuenciada CR85­EVO11, pero en otros solo se mantiene la

copia extra del cromosoma IX y se pierde la del II y la del XVI.

Se estudiaron también mutaciones puntuales y cambios en los SNPs de todas estas

cepas evolucionadas en comparación a los de las cepas originales, resultando ser CECT

12600 la cepa que más cambios no sinónimos presentaron.

Los ensayos de fluidez de membrana mostraron que las cepas evolucionadas de

BMV58 y CR85 presentaban membranas más fluidas ante la presencia de etanol con

respecto a las cepas originales. La cepa CA111 evolucionada en el primer punto de

la evolución, CA111­EVO9, adquiere fluidez de membrana, mientras que CA111­EVO11

presenta la misma rigidez que la cepa original. Este cambio podría estar relacionado

con la ganancia y posterior pérdida del cromosoma VIII durante la evolución. El resto

de cepas no mostraron cambios significativos en cuanto a fluidez de membrana. En

cuanto a la composición lipídica de las cepas, CA111­EVO9 y 12600−EVO11 fueron las

que presentaron una composición lipídica más distinta en cuanto al número de especies

identificadas para las clases lipídicas principales.

Las conclusiones obtenidas durante esta tesis doctoral son varias. Por un lado, se

comprobó que la tolerancia a etanol es variable entre distintas cepas de S. cerevisiae

y que se puede correlacionar con la composición de membrana y con la respuesta

transcriptómica en presencia de etanol de cada una de ellas. Por otro lado, se determinó

que es posible obtener mediante hibridación una nueva cepa de levadura que mejore a

dos parentales con características de interés distintas entre sí, en nuestro caso, la alta
15



RESUMEN

tolerancia a etanol y la buena producción de aromas, de glicerol y tolerancia a las bajas

temperaturas. A su vez, un híbrido así obtenido puede ser adaptado en presencia de una

concentración alta de sulfito y de concentraciones crecientes de etanol, lo que provoca

que se seleccionen distintas características genómicas que al final le proporcionan una

mayor tolerancia a estos factores de estrés. En último lugar, se determinó que la evolución

adaptativa de distintas especies del género Saccharomyces en un medio con etanol

provoca cambios distintos en sus genomas y en la fluidez de membrana de las mismas,

revelando así la presencia de una gran variedad de mecanismos evolutivos que pueden

actuar en presencia de etanol.
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Introduction

1. The origins of alcoholic beverages

Nowadays, alcohol is present in all human cultures, but it also played a central role

in the beginnings of civilizations. Our ancestors have produced fermented food and

beverages from sugar sources available in their local habitats (McGovern et al., 2004),

as they early realized that the product of the fermentation, ethanol, seemed to provide

beverages and food health benefits, as it preserves fermented foods from undesired

microbes.

Food fermenting practices seem to have emerged independently in ancient civilizations

worldwide (Hornsey, 2003). The early hunter­gatherer societies were spurred by

these nutritious and mind­altering alcoholic beverages, that bring people together.

Indeed, there is evidence of intentional production of fermented beverages since the

Neolithic (McGovern et al., 1997), when Neolithic people settlements made possible the

domestication of plants and animals (Zeder, 2006) and the storage and processing of

food (Tamang et al., 2020). Archaeologists have found different pieces of evidence of

fermented beverages in form of pottery vessels, paintings, and bronze sculptures. The

first documented evidence of a fermented beverage was found in China at ca. 7000
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FIGURE 1 The early spreading and world distribution of fermented beverages (Figure adapted
from Pretorius (2000)

BC (McGovern et al., 2004) and consisted of a mixture of rice, honey, and fruit. Other

archaeological evidence of the forebears of modern grape wines and barley beers are

documented in Iran at ca. 6000 BC (McGovern et al., 1997).

The conversion from Nomadic farming to agriculture development changed the bases

of society (Underhill, 2002), leading to economic and social progress and allowing the

development of the first great civilizations (Katz and Voigt, 1986). It is believed that from

Mesopotamia, beverage production spread across the Mediterranean Sea throughout the

World (Legras et al., 2007). This was an intense process, especially led by Romans

colonization. By 500 BC wine was spread out through the Mediterranean, being produced

in Italy, Sicily, France, Spain, Portugal, and North Africa (Pretorius, 2000).

European conquistadors took vines into the New World in the 16th century. In 1530

the Spanish explorers planted Vitis vinifera, the common grape vine, in Mexico, Argentina,

Peru, and Chile, and in the 17th century, Dutch also planted vineyards in South Africa and

shortly after, in California and Australia (Jagtap et al., 2017; Pretorius, 2000; Pretorius

et al., 2015) (Figure 1).
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Fermented beverages were very popular and present in all civilizations. The reason for

this is that our ancestors find on them different beneficial characteristics, compared with

no processed foods. Apart from an enhanced nutritional and sensorial value of food and

beverages, people perceived pharmacological, analgesic, disinfectant, and mind­altering

or psychopharmacological effects in them. Thus, religious and social traditions have been

tightly associated with the control of these foods (McGovern, 2003; Earle, 2002; Katz and

Voigt, 1986).

At the time, our ancestors used covered containers or recipients in which they

introduced fruits and grains. After leaving these foods for a long time, they were converted

into beverages as the first wines and beers, but it was not fully understood how this process

occurred (Alba­Lois and Segal­Kischinevzky, 2010). In Europe, this process was named

fermentation, about the word ”fervere”, which means ”to boil” in Latin, because when

substances react during crushing, they produce bubbles, as though they were boiling

(Alba­Lois and Segal­Kischinevzky, 2010). Through observation, producers learned that

two key factors led to a successful fermentation process: temperature and air exposure.

Moreover, production time influenced the process too: if the mixture was not left enough

time, alcohol was not produced.

It was not until the 17th century, when Antonie van Leeuwenhoek, a Dutch cloth

merchant, was able to observe yeasts, the actual responsible for converting the fruits

into alcoholic beverages, in beer worst by using high­quality lenses. However, he did not

establish a relation between yeasts and alcoholic fermentation (Ribereau­Gayon et al.,

2006). In the following years, several chemists, as Lavoisier and Gay­Lussac, began

the study of alcoholic fermentation. Finally, the chemist Louis Pasteur experimentally

demonstrated that sugars, as glucose, were converted into alcohol in the absence

of oxygen because microorganisms, such as yeasts, were capable of carrying out

fermentation (Barnett, 2000).
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Fermentations were then considered spontaneous processes, in which yeasts present

in fermentation vessels were transferred fermentation after fermentation. In the later 19th

century, new discoveries changed this paradigm. During these years, yeast metabolism

was studied, leading to fundamental discoveries in biochemical and cell biology fields,

and Saccharomyces cerevisiae was described as the main yeast responsible for carrying

out alcoholic fermentation (Lachance, 2003), as being able to grow in a media containing

increasing amounts of ethanol (Boulton et al., 1999). The first yeast pure culture was

obtained in 1888 by Emil Christian Hansen in Carlsberg foundation, Copenhaguen; and

the first wine yeast pure culture in 1890 by Müller­Thurgau (Dequin, 2001).

The industrial production of wine yeasts as we know it today began in the 1960s in the

form of a product with the pressed baker’s yeast with 70%moisture. However, this product

was difficult to maintain, and in 1964 active dried yeasts were developed (González et al.,

2011).

2. Winemaking process and alcoholic fermentation

The production of wine, winemaking, or vinification is a process that starts with the

selection of the grapes, continues with their fermentation into alcohol, and finishes with

the bottling of the wine liquid. Wine production is a highly conserved process, as industrial

wineries usually follow a production process that has not been essentially modified through

the years. It consists of 5 steps: harvesting of the grape, crushing and pressing,

fermentation, clarification, and aging and bottling (Figure 2).

The quality of the the final wine depends on multiple factors at different stages of

the process. The first one is the cultivar of the grape. Most grapes come from Vitis

vinifera cultivars. This grapevine is native to the Mediterranean and Central Asia regions.

The quality and quantity of the fruit depends on multiple factors that are conditioned by
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FIGURE 2 A schematic outline of wine production process (Goold et al., 2017).

the plant’s environment. Climate and weather are the main factors because the plant

needs heat and sunlight in combination with CO2 and water to grow. Then, when the

grapes reach a great balance between sugar levels and maturity, fruits are selected and

harvested. After that, grapes are subjected to destemming, crushing, macerating, and

pressing. In the case of red wines, alcoholic fermentation occurs at the same time as

maceration, that is, fermentation is carried out in contact with the grape skins and seeds.

In the case of Rosé wine, the macerating time is reduced in comparison with red wines.

However, white wines are usually fermented directly after crushing without maceration

(Querol et al., 2018). Alcoholic fermentation is the main stage of the process, and it is

conducted mainly by yeasts of the Saccharomyces genus. Yeast converts most of the

sugars into ethanol and carbon dioxide. After alcoholic fermentation, a second type of

fermentation, called malolactic fermentation (MLF), takes place. This is carried out by

lactic acid bacteria (LAB), which consume malolactic acid from wines and produce lactic

acid and other metabolites. This step softens the acidic taste of the wines and changes
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their aroma profile (Bartowsky, 2005; Cappello et al., 2017). The maturation of wine takes

from months to years. Red wine is sometimes stored in oak barrels for maturation. Before

bottling, a clarification step is needed to remove suspended material in wines.

Alcoholic fermentation is usually conducted by Saccharomyces yeasts which are

naturally present in the grape or fruit (Pretorius, 2000) or are inoculated in the

fermenter to control the fermentation process in industrial conditions (Querol et al., 1992).

Fermentation consists of the degradation of six­carbon molecules, usually glucose and

fructose, to the two­carbon compound ethanol, as well as CO2 (Barnett, 2000).

Under aerobic conditions, yeast can degrade sugars using two metabolic pathways:

alcoholic fermentation and respiration. During wine conditions, high glucose

concentrations are present in the must, and Saccharomyces yeasts prefer to metabolize

sugars by the fermentative pathway. The first step of fermentation is the conversion of

sugar to pyruvate and is a common step in both alcoholic fermentation and respiration.

This metabolic process is called glycolysis and is important because it generates ATP,

and thus energy. During glycolysis, the redox cofactor NAD+ is reduced to NADH. This

reduced NADH needs to be reoxidized. In the case of alcoholic fermentation, NAD+ is

regenerated by converting pyruvate to ethanol and CO2. This process is necessarily

carried out by S. cerevisiae under anaerobic conditions, when oxygen is not available.

However, S. cerevisiae also outperforms alcoholic fermentation even if oxygen is present

in the media, according to this final stoichiometry:

C6H12O6 → 2 CH3CH2OH + 2 CO2

During alcoholic fermentation, around 90­95% of sugars are transformed into ethanol

and carbon dioxide to produce ATP, and only 1­2% of the carbon source is used for cell

growth. It is important to note that the 4­9% is transformed into secondary metabolites,

such as glycerol, acetic acid, high alcohols, and esters (Boulton et al., 1999). Yeast
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metabolism determines the proportion of sugars that are converted into each compound.

The ability to conduct alcoholic fermentation under high sugar concentration conditions

and even in the presence of oxygen was called the Crabtree effect (De Deken, 1966).

This phenomenon is produced in grape must, at any level of aeration, when yeasts

are only capable of fermenting because of the high glucose and fructose concentrations

(Ribereau­Gayon et al., 2006). In the first stages, glucose represses respiration, but after

sugar is depleted from the medium, yeast metabolism switches to aerobic consumption

of ethanol. Crabtree effect represented a paradox at first, as respiration generates much

more ATP via the citric acid cycle and electron transport chain, but S. cerevisiae, the

predominant yeast in fermentations, only uses respiration during sugar­limited cultivation

and in the presence of oxygen.

More recently, it was discussed that the outstanding capability of S. cerevisiae

is an advantage that guaranteed its implementation success in grape juice (Hagman

et al., 2013). S. cerevisiae and other Saccharomyces’ yeasts superiority during wine

fermentation can be explained by the “make­accumulate­consume” strategy. These

yeasts rapidly consume the sugars present in the must, transforming them into ethanol,

which inhibits the growth of other competing microorganisms. Then, when all fermentable

sugars are depleted and Saccharomyces’ yeasts are the only microorganisms present in

the media, the ethanol is consumed (Dashko et al., 2014; Piskur et al., 2006; Thomson

et al., 2005). Ethanol is a toxic compound that affects most of the microorganisms, and

Saccharomyces is imposed on their competitors killing them by producing ethanol, and

lately, consuming the ethanol when needed (Piskur et al., 2006).

At present, it is well known that the fermentation of grape must and the production

of quality wines is a complex ecological and biochemical process (Pretorius, 2000) .

Fermentation can be spontaneously carried out by the microorganisms present in

the wine must. Microorganism composition on grape surfaces varies according to
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climatic conditions, stage of grape ripening, physical damages of the grapes, viticultural

practices, and the presence of fungicides in vineyards (Pretorius, 2000) . The grape

microbiota includes fungi, yeasts, lactic acid bacteria, acetic acid bacteria, as well as the

mycoviruses and bacteriophages (Fleet and Heard, 1993; Fleet, 1998; Pretorius, 2000) .

The spontaneous alcoholic fermentation of grape must is initiated by fermentative yeasts,

most of them weakly and oxidative yeasts (Baker et al., 2015; Ghosh et al., 2015; Jolly

et al., 2003). Traditionally, these yeasts are indigenous and present on the grapes or

are resident in the cellar. Physicochemical conditions of the fermentation influence the

metabolic activity of yeasts, and hence, their prevalence (Mendoza et al., 2009; Sainz

et al., 2003). 

3. Yeasts

Yeasts are defined as unicellular ascomycetous or basidiomycetous fungi with a

vegetative growth based on budding or fission mitotic divisions, and which do not form

their sexual states within or upon a fruiting body (Kurtzman et al., 1998a). Yeasts are

saprophyte organisms that can grow in an enormous variety of niches, especially in

sugar­rich ones, and can also be plant or animal parasites.

Yeasts have been used for millennia because they are responsible for a lot of beneficial

activities for human beings and they are the major producer of biotechnology products

worldwide. This way, yeasts produce a high variety of fermented food and beverages,

antibiotics, vitamins, and enzymes, whose annual biomass production exceeds the

millions of tons, being the microorganism with higher economic revenue in industrial

processes. Nevertheless, yeasts are also responsible for harmful activities, like food

spoilage, and can cause infectious diseases to both animals and humans.

If we follow the classification of ”The Yeasts, A Taxonomic Study” (Kurtzman
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et al., 2011) there are 15 genera associated with winemaking: Brettanomyces and

its sexual (‘perfect’) equivalent Dekkera; Candida; Cryptococcus; Debaryomyces;

Hanseniaspora and its asexual counterpart Kloeckera; Kluyveromyces; Metschnikowia;

Pichia; Rhodotorula; Saccharomyces; Saccharomycodes; Schizosaccharomyces; and

Zygosaccharomyces (Pretorius et al., 2017; Pretorius, 2000).

Commercially and genetically, Saccharomyces is the most studied yeast genus and

the yeast species with the highest biotechnological interest is Saccharomyces cerevisiae

(Moyad, 2007).

3.1 Yeasts cytology

Yeasts are themost simple of the eukaryotic microorganisms, but unicellular yeast cells

contain all subcellular structures typical of eukaryotes. Yeast cellular architecture consists

of different parts, which are, from outside to inside: a cell wall, the cell membrane, a

cytoplasm with the organelles, and a nucleus surrounded by a membrane, which encloses

the chromosomes (Ribereau­Gayon et al., 2006). The cytoplasm and the membrane

conform the protoplast or spheroplast, cells whose cell wall have artificially been removed.

The two cellular envelopes (the cell wall and the cell membrane) play an essential role

during wine fermentation as they release constituents that are added to the resulting wine’s

composition (Ribereau­Gayon et al., 2006).

3.1.1 Cell wall

It is the first yeast barrier, and its primary function is to protect yeast cells. Without the

cell wall, cells are lysed because of the internal osmotic pressure. Cell wall composition

consists of β­glucans (about 60% of the dry weight of the S. cerevisiae cell wall) and

mannoproteins (25–50% of the cell wall of S. cerevisiae) and a small proportion of chitin

(Ribereau­Gayon et al., 2006).
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3.1.2 Membrane

The yeast membrane is a selective barrier that controls the exchanges between

the cell and the environment. Its composition in S. cerevisiae consists of 40% lipids

and 50% protein, with a small proportion in glucans and mannans. The lipids of

the membrane are essentially phospholipids (PL) and sterols, but also sphingolipids

and glycerophospholipids are present in membranes (Figure 3) (Daum et al., 1998;

Ribéreau­Gayon et al., 2006). They are amphipathic molecules (a polar head composed

of phosphorylated alcohol and a hydrophobic part composed of fatty acid chains) that

spontaneously form bimolecular films or lipid bilayers in an aqueous medium.

The simplest phospholipid is a phosphatidic acid (PA), and it acts as a biosynthetic

precursor for the formation (directly or indirectly) of all the lipids in the cell. Various

molecules such as choline, ethanolamine, serine, myoinositol, and glycerol can be linked

to the phosphoryl group of the PA to form the phospholipids (López­Malo, 2013).

The three principal phospholipids in yeast membranes are phosphatidylethanolamine

(PE), phosphatidylcholine (PC), and phosphatidylinositol (PI) which represent

70–85% of the total (Ribereau­Gayon et al., 2006). Phosphatidylserine (PS) and

diphosphatidylglycerol or cardiolipin (PG, CL) are less prevalent (López­Malo, 2013;

Tronchoni, 2011). PI is a phospholipid that is essential for yeast (Nikawa and Yamashita,

1997), whereas PS is a minor component of total cell phospholipids, but an important

intermediate in de novo synthesis of PE and PC. The de novo pathway is the major

route for PE synthesis in yeast, and it takes place through decarboxylation of PS. It is

also possible to generate PE and PC through the Kennedy pathway, which converts

ethanolamine to these compounds. Phospholipids present in yeast membranes play a

key role in ethanol tolerance and in low temperature adaptation (Chi et al., 1999b; Redón

et al., 2012). For years, PC has been considered the main phospholipid that has a role

in ethanol tolerance (Mishra and Kaur, 1991). However, the positive influence of PI on
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FIGURE 3 Yeast membrane composition adapted from Van Der Rest et al. (1995); Lisa (2016)

ethanol tolerance has been demonstrated (Chi et al., 1999b).

The fatty acids of the membrane phospholipids contain an even number (14 to 24) of

carbon atoms (Ribereau­Gayon et al., 2006). The most abundant are C16 and C18 acids

as oleic acid (18:1) and palmitoleic acid (16:1), linoleic acid (18:2), linolenic acid (18:3),

palmitic acid (16:0), and stearic acid (18:0) (Daum et al., 1998).

Acyl chains of phospholipids and glycolipids determine membrane fluidity. In general

terms, short­chain fatty acids or with cis­unsaturations decrease transition temperature,

favoring the transition from a gel state (solid) to a liquid crystal state (more fluid). The

medium­chain fatty acids (MCFA) (from C6 to C14) are present in a lower proportion in the

membranes but their concentration increases during fermentations (Redón et al., 2009).

Apart from phospholipids, sterols are present in a high proportion in the membrane,

being ergosterol the main sterol in fungi (Daum et al., 1998; López­Malo, 2013).
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Membrane composition is important to preserve both the function and the activity of

membrane­associated proteins and transporters (López­Malo, 2013). This way, yeasts

have a membrane composition that can adapt its fluidity and properties depending on the

ambient and which has been correlated with tolerance to stresses (Alexandre et al., 1994;

Bisson, 1999; Navarro­Tapia et al., 2018).

3.2 Saccharomyces genus

The Saccharomyces genus (previously called Saccharomyces sensu stricto) belongs

to the kingdom Fungi, the phylum Ascomycota (as the sexual reproduction is based on the

formation of ascospores), the subphylum Saccharomycotina, the class Saccharomycetes,

the order Saccharomycetales and the family Saccharomycetaceae.

The species included in this genus have been revised several times during the 20th

century. All over the years, researchers have added and removed many taxa based on

morphological or physiological properties, like nitrogen and carbon assimilation, which

are not found in other genera. Nevertheless, phylogenetic analyses which started being

done in the final years of the 20th century delimited Saccharomyces genus classification

(Kurtzman, 2003; Naumov, 1996; Vaughan­Martini and Martini, 1995). 

As mentioned before, a singularity in the Saccharomyces genus is their ability to carry

out fermentation, either in the presence or in absence of oxygen, to transform sugars into

ethanol. Saccharomyces yeasts are involved in a myriad of biotechnological applications,

from wine fermentation to bioethanol production (Sicard and Legras, 2011; Walker and

Walker, 2018). Currently, and based on increasing number of sequenced strains of the

Saccharomyces genus, eight species are considered when we refer to this genus: S.

cerevisiae, S. kudriavzevii, S. uvarum, S. paradoxus, S. jurei, S. mikatae, S. arboricola,

and S. eubayanus (Borneman and Pretorius, 2015; Boynton and Greig, 2014; Dujon and

Louis, 2017; Naseeb et al., 2017) (Figure 4); although other species within this genus may
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FIGURE4 Phylogeny of theSaccharomyces (formerlyS. sensu stricto) group (Dujon and Louis,
2017)

remain to be isolated (Legras et al., 2018; Peter et al., 2018). They can be differentiated

based on the sequences of their internal transcribed spacer (ITS) and 26S rRNA D1/D2

regions (Naseeb et al., 2017; Kurtzman and Robnett, 1998b, 2003).

Moreover, numerous natural hybrid strains between twoSaccharomyces species, have

been found in industrial processes (Almeida et al., 2016; Borneman and Pretorius, 2015;

Boynton and Greig, 2014; Hittinger, 2013; Legras et al., 2018; Naseeb et al., 2017; Peter

et al., 2018), many of them associated with human biotechnological processes. Two

former species were later classified as species hybrids: S. bayanus (S. eubayanus x S.

uvarum) and S. pastorianus (S. cerevisiae x S. eubayanus). Other natural hybrids such as

S. cerevisiae x S. kudriavzevii, S. cerevisiae x S. uvarum, and triple hybrids S. cerevisiae x

S. kudriavzevii x S. uvarum (González et al., 2006; Lopes et al., 2010; Pérez­Torrado et al.,

2018; Pérez­Través et al., 2014b; Peris et al., 2012a,b, 2018) have been also reported.

The most important species due to their relevance in the wine industry are S. cerevisiae,

S. uvarum, and S. kudriavzevii as well as their natural hybrids. 

3.2.1 S. cerevisiae

Saccharomyces cerevisiae is themost studied eukaryotic organism besides the human
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being. The study of Saccharomyces cerevisiae as a model organism has contributed to

the development of different scientific areas as cell biology, biochemistry and genomics

(Goffeau et al., 1996). This species has been found in different environments, including

soil, plant exudates, animal tissues, and vineyards in different geographical areas (Fay

and Benavides, 2005; Landry et al., 2006).

Different authors have addressed the study of S. cerevisiae origin. This task is

challenging, as this species is present in a different number of niches, but with the

widespread use of whole­genome data, we now have a better understanding. Goddard

and Greig (2015) proposed that S. cerevisiae is a natural yeast with no niche, that

changes its location using insects as vectors (Buser et al., 2014). Some independent

domestication events may have taken place to give rise to different geographically

separated domesticated lineages. Liti et al. (2009) classified them into five major clades:

Wine/European, Malaysian, West African, North America, and Sake groups, and a series

of mosaic strains with genetic admixtures of these groups (Figure 6). Last studies

suggest that S. cerevisiae originated in Far­East Asia (‘out­of­China’ origin) and that

various independent events eventually led to the domestication of this species into the

aforementioned clades (Peter et al., 2018; Wang et al., 2012) (Figure 5).

S. cerevisiae is the predominant species in the production of wine, beer, sake, and

other traditional fermented beverages. This Saccharomyces species exhibits the highest

ethanol tolerance (Arroyo­López et al., 2010b) and is better suited to survive at high

temperatures, with an optimal temperature of 32.3ºC and a maximum growth temperature

of 45.4ºC (Salvadó et al., 2011b). As a high ethanol content is one of the selective

pressures faced by yeasts during fermentation, S. cerevisiae is the most widely used

species in the wine industry. It is also used for bioethanol production, as it also allows

the achievement of high ethanol yields (Greetham et al., 2014; Wimalasena et al., 2014).
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FIGURE 5 Neighbor­joining tree of 1011 S. cerevisiae strains (Peter et al., 2018)
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FIGURE 6 Neighbor­joining tree of S. cerevisiae strains (Figure adapted from Liti et al. (2009).

3.2.2 S. uvarum

S. uvarum is a cryophilic species in the Saccharomyces genus, whose fermentation

profile in grape must differs from S. cerevisiae. It has been mainly found in human­related

niches, such as wine and cider fermentations performed at low temperatures in regions of

oceanic and continental climates (Demuyter et al., 2004; González Flores, 2019; Naumov

et al., 2000b, 2001; Rodríguez et al., 2014), although it has also been isolated from insects,

tree fluxes and mushrooms (Naumov et al., 2003; Stribny, 2016).

When used in wine fermentations, it produces lower levels of amyl alcohols

and ethanol, but more glycerol, succinic acid, malic acid, isobutyl alcohol, isoamyl

alcohol (Bertolini et al., 1996; Giudici et al., 1995; Sipiczki, 2008). It also generates

numerous secondary compounds during alcoholic fermentation, such as phenylethanol

and phenylacetate (Masneuf­Pomarède et al., 2010). These compounds are volatile,

and wines produced with S. uvarum yeasts are perceived as more aromatic than

those produced by S. cerevisiae (Coloretti et al., 2006; Gamero et al., 2013). These
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characteristics make commercial S. uvarum strains a very interesting starter to produce

several types of wines and ciders, usually at low temperatures.

3.2.3 S. kudriavzevii

S. kudriavzevii is also a cryophilic species within the Saccharomyces genus, and it has

been reported as the best adapted to cold temperatures among all the Saccharomyces

species (Salvadó et al., 2011a). It was first isolated from decayed leaves in Japan

(Naumov et al., 2000a), but later also from oak trees in France, Portugal and Spain

(Erny et al., 2012; Lopes et al., 2010; Sampaio and Gonçalves, 2008), as well as in

Taiwan (Naumov et al., 2013). Although S. kudriavzevii isolates are distributed in different

geographical areas, they show low divergence in their genomes (Hittinger et al., 2010).

S. kudriavzevii is a potential starter to be used in the wine industry; besides its

capability to conduct fermentation at low temperature (Tronchoni et al., 2012), it gives

interesting oenological properties to the final wine. Wines produced by S. kudriavzevii

contain more glycerol and less ethanol (González et al., 2007; Pérez­Torrado et al., 2018;

Peris et al., 2016), with no increase in the acetic acid levels (Alonso­del Real et al., 2017a;

Henriques et al., 2018). This species also generates higher content in aromatic higher

alcohols and 2­phenylethanol (rose aroma) at low temperatures (Coloretti et al., 2006;

Stribny et al., 2015). However, it is the species within the Saccharomyces with the lower

ethanol tolerance (Arroyo­López et al., 2010b) , a trait that is necessary to conduct wine

fermentations.

3.2.4 Natural hybrid strains

Saccharomyces interspecific hybrids are frequent, and they have also been isolated

in nature. Prezygotic reproductive barriers are absent or very limited between

Saccharomyces species (Gorter de Vries et al., 2019; Morales and Dujon, 2012). This

fact has facilitated hybridization, although spore viabilities of the resulting hybrids are very
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low (Kurtzman et al., 2011; Naumov et al., 2000a; Sampaio and Gonçalves, 2008).This

sterility is likely due to the inability of diverged homeologous chromosomes to recombine

during meiosis (Greig et al., 2003; Greig, 2009).

Despite this, several hybrids have been found associated with human­related

environments, and they usually combine beneficial traits from their parental species,

resulting in especial interest to conduct fermentative processes. The most known

Saccharomyces hybrid is S. pastorianus, responsible for lager brewing. Their strains

are hybrids between S. cerevisiae and S. eubayanus, and it has been proposed that S.

eubayanus parental complements the fermentation capability of S. cerevisiae parental

with its cryotolerance (Bing et al., 2014; Libkind et al., 2011; Peris et al., 2014). S.

bayanus strains are hybrids between S. uvarum and S. eubayanus and are found in cider

fermentation processes (Naumov et al., 2001).

Double hybrids between S. cerevisiae and S. kudriavzevii or S. uvarum, as well as

triple hybrids among these three species, have been found in wine and cider fermentations

(Belloch et al., 2008; González et al., 2008; Le Jeune et al., 2007; Lopandic et al., 2007;

Masneuf et al., 1998; Querol and Bond, 2009). Hybrids often show a dynamic genome

and their phenotype can change with the genomic content in very few generations (Morard

et al., 2020b; Van den Broek et al., 2015).

3.3 Saccharomyces genome characteristics related to the domestication history

S. cerevisiae was the first eukaryotic genome to be sequenced in 1996 (Dolinski and

Botstein, 2005; Goffeau et al., 1996). The characterization of the laboratory strain S288c

revealed that S. cerevisiae genome was relatively small, with 5885 open reading frames

(ORFs) which defined the same number of potential protein­encoding genes. The first

studies revealed that about 60% of S. cerevisiae genes have orthologs in the human

genome, and that important metabolic and cell signaling pathways are also present.
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With the advent of new whole­genome sequencing technologies, a huge number of

strains belonging to the Saccharomyces genus have been sequenced so on (Almeida

et al., 2016; Baker et al., 2015; Barbosa et al., 2016; Liti et al., 2009; Nespolo et al., 2020;

Peter et al., 2018; Scannell et al., 2011; Strope et al., 2015; Walther et al., 2014; Zhang

et al., 2015) . The different species of the Saccharomyces genus have a small highly

packed 12 Mb genome, that is composed of sixteen chromosomes and the 2­µm plasmid

in the nucleus, and the mitochondrial DNA. Chromosome synteny is generally conserved,

except for some translocation events (Borneman and Pretorius, 2015). For example, S.

cerevisiae and S. uvarum genomes are largely syntenic, except for 3 large reciprocal

translocations in chromosomes (Kellis et al., 2003) and in their telomeres (Brown et al.,

2010; Kellis et al., 2004). Some S. cerevisiae strains also have different transposable

elements on its genomes, like Ty retrotransposons.

Saccharomyces strains can have different ploidies. The ploidy is the number of

complete sets of chromosomes in a cell. Saccharomyces strains exist as stable haploid,

diploid, or polyploid (e.g. triploid and tetraploid) cells (Todd et al., 2017). Aneuploidy is an

abnormal chromosome number, due to the gain or loss of chromosomes.

S. cerevisiae industrial strains show a wide range of ploidies and different levels of

aneuploidy (Strope et al., 2015). Moreover, polyploid strains have different heterozygosity

levels in their genomes, which are related to differences in strain life cycles (Magwene

et al., 2011). High heterozygosity levels are present in strains present in industrial

environments rather than in natural strains, as these strains reproduce asexually (Gallone

et al., 2016; Morard et al., 2019; Peter et al., 2018). Several events of loss of

heterozygosity (LOH) are also present in heterozygous strains, especially in industrial

strains.

Some of the S. cerevisiae genomes particularities are signs of domestication, which

could have recently been characterized. The genomes of Saccharomyces species
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related to food and beverage fermentations have been shaped by the selective pressures

introduced by man practices throughout the history (Steensels et al., 2019). This process

started unconsciously in the Neolithic, at the same time as the domestication of plants

and animals. However, the effect of microbial domestication is less evident and was a

less­controlled process. During spontaneous fermentation, there was a practice called

backslopping, which consisted of transferring material (and so microbes) from the last

fermentation product to the new batch. Artisans unconsciously promoted the adaptation

of microbes to the human­manipulated fermentation environment in that way. As a result

of this passive domestication, nowadays, industrial strains are genetically distinct from

wild strains and, with a few exceptions, they cluster together according to their related

product (wine, beer, bread, fermented milk, sake, etc.) and source of isolation rather

than to their geographic origins, which is an evidence of their domestication and selection

history (Gallone et al., 2016; Legras et al., 2007; Peter et al., 2018; Steensels et al., 2019).

Yeasts are used in a wide range of fermentation processes, and that has led to

the selection of strains with specific phenotypes, that eventually are tailored to specific

industrial applications (Dequin and Casaregola, 2011; Marsit et al., 2017).

For example, wine yeasts are more tolerant to sulfites and copper (sterilization agents

used in both the winery and the vineyard) and beer yeasts can metabolize maltotriose,

a sugar present in barley (Marsit et al., 2015, 2017; Pérez­Ortín et al., 2002; Underhill,

2002; Warringer et al., 2011). 

In the Saccharomyces genus, the emergence of interspecific hybrids is an adaptation

to man­made fermentation environments. As we previously mentioned, these hybrids

often combine the vigorous fermentation capacity of S. cerevisiae with the tolerance to

cold temperatures of cryotolerant species, such as S. eubayanus, S. kudriavzevii or S.

uvarum (Baker et al., 2015; Libkind et al., 2011; Peris et al., 2012b). There are some

genetic changes related to domestication in S. cerevisiae strain genomes. Within the
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possible adaptation mechanisms described for yeast, it is worth mentioning SNPs, CNVs,

SVs, CCNVs, chromosomal rearrangements, and LOH.

3.3.1 SNPs

The presence of Single Nucleotide Polymorphisms (SNPs) in Saccharomyces from

different lineages is one genome trait related to domestication in Saccharomyces strains.

Some studies report that SNP variation has changed sugar metabolism and reduced

undesired flavors in yeasts (Bergström et al., 2014; Gallone et al., 2016; Gonçalves et al.,

2016). Although SNPs only represent a small fraction of genome variation, they are easy

to detect using short­read sequencing technologies.

3.3.2 Gene copy number variations

Another hallmark of adaptation to fermentation practices is the presence of Copy

Number Variations (CNV). CNVs are small genetic loci, such as genes or clusters of

few genes, which due to deletions and duplications vary in their absolute number across

individuals from a population (Bergström et al., 2014) . One example is the copy number

variation of the gene CUP1, which encodes a copper­binding protein. This gene is

present in a higher copy number in wine strains because it protects against a fungicide

used in vineyards (Strope et al., 2015) . In beer yeasts, MAL genes (encoding maltose

transporters) improve consumption of maltose and maltotriose, the main sugars available

during the fermentation of beer wort, and they are also in a higher number in these strains

(Gallone et al., 2019).

3.3.3 Chromosomal copy number variation

Another domestication strategy is chromosomal copy number variation (CCNV) or

karyotype variation (chromosome loss or gain), which leads to the previously mentioned

aneuploidy state. Karyotype variations are well­tolerated by yeasts and they are often

observed in yeast when they adapt to new, stressful environments (Dunham et al., 2002;
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Gresham et al., 2008; Voordeckers and Verstrepen, 2015b; Yona et al., 2012) , and

CCNV are frequently involved in industrially relevant traits acquired during evolutionary

engineering (Gorter de Vries et al., 2017) . One example is the increase in the copy number

of chromosome VIII, which harbors the CUP1 gene, and improves copper tolerance in

yeast (Zimmer et al., 2014). Another example is the gain of chromosome III involved in

high­temperature and ethanol tolerances, or chromosome V, involved in high pH tolerance

(Yona et al., 2012)), and the increase of chromosome III numbers related to ethanol

tolerance (Morard et al., 2019; Voordeckers et al., 2015a).

3.3.4 Large­scale structural variants

Large­scale structural variants (SV) are other structural variations that are larger

than CNV. This is the case of large deletions and duplications, inversions, reciprocal

translocations, transpositions and novel insertions (Marsit et al., 2017). SVs are difficult

to trace with traditional short­read sequencing but with the advent of new sequencing

platforms, such as those of Pacific Biosciences (PacBio) and Oxford Nanopore, we now

have long­read sequences and continuous assemblies of each chromosome of a strain,

with the especially complex genomic regions, as repetitive or telomeres regions, resolved

(Chin et al., 2013; Gordon et al., 2016; Yue et al., 2017).

InSaccharomyces spp., long­read sequencing revealed that S. cerevisiaemore rapidly

accumulates unbalanced rearrangements (deletions and duplications, insertions) in its

chromosomal core compared with its non­domesticated sister­speciesS. paradoxuswhich

faster accumulates balanced rearrangements (inversions, reciprocal translocations and

transpositions) (Marsit et al., 2017). Besides, S. cerevisiae shows a higher degree of

interchromosomal reshuffling in its subtelomeric regions.

3.3.5 Chromosome rearrangements

Chromosome rearrangements or interchromosomal reshuffling are other examples
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of genome adaptive strategies on Saccharomyces chromosomes. A well­characterized

example is the modification of the upstream region of the SSU1 gene, which encodes

a sulfite pump that confers sulfite resistance. At least two mechanisms have been

documented in Saccharomyces yeasts to adapt to the high levels of sulfite present in

wine. The first­documented gross chromosomal rearrangement was amongst VIII­t­XVI

chromosomes (produced by a cross­over between 5’ upstream regions of the SSU1 and

ECM34 genes) (Pérez­Ortín et al., 2002) . The second documented translocation involved

in sulfite tolerance is amongst chromosomes XV­t­XVI, and it involves the promoter region

ofADH1 and the geneSSU1 (Zimmer et al., 2014) . These two translocations are present in

different domesticated yeast strains, and it is proposed that they were selected by human

activity. More recently, an inversion in chromosome XVI (inv­XVI) that increases the sulfite

resistance capacity of a wine yeast strain was observed (García­Ríos et al., 2019d).

3.3.6 Loss of Heterozygosity

The term Loss of Heterozygosity (LOH) refers to genomic regions that have become

homozygous for the polymorphisms present in them. They are produced during mitotic

cell divisions when recombination events take place in the chromosomes. There are two

types of LOH: interstitial events (conversions) resulting in a short LOH and terminal events

(mostly cross­overs) in which the LOH tract extends to the end of the chromosome (Sui

et al., 2020).

3.4 The life cycle of Saccharomyces

Yeast cells have both diploid and haploid modes of existence and can multiply either

asexually or sexually. Saccharomyces yeasts present a sexual locus MAT with two

possible alleles: MATa and MATα (MAT(a/α)) that determine the mating type and thus

display simple sexual differentiation. There are three different cell types: haploids of two

mating types, a and α, and a/α diploids (Herskowitz, 1988; Madhani, 2007). Most of the
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FIGURE 7 Schematic life cycle of S. cerevisiae from Hanson and Wolfe (2017).

yeast cells are diploid, which is the ideal state, and are heterozygous for the MAT locus

(they possess MATa and MATα alleles). Saccharomyces haploids can turn into diploids

by three different strategies: by the mating of unrelated haploids (amphimixis), by the

mating between spores from the same tetrad (automixis or intratetrad mating) and by the

mating between a mother and daughter cells after the type switching of one of the cells

involved (haplo­selfing) (Hanson and Wolfe, 2017; Knop, 2006) (Figure 7).

 Both haploid and diploid yeasts, can multiply either asexually by vegetative growth

(mitosis), or sexually by sporulation and crossing (meiosis). The vegetative multiplication

process is the predominant way of reproduction under optimal nutritional conditions (on

average only onemeiotic cycle per 1000mitotic divisions) (Ruderfer et al., 2006; Steensels

et al., 2014a; Tsai et al., 2008; Zörgö et al., 2012).

During these asexual reproductive cycles, spontaneous mutations, such as point

mutations (SNPs), InDels and recombination events, can arise on yeast genomes

(Steensels et al., 2014b). Vegetative multiplication can be divided into four phases: M,
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G1, S and G2. M corresponds with mitosis, G1 is the period preceding S, which is the

synthesis of DNA and G2 is the period before cell division. Once mitosis is concluded, the

nascent nucleus and organelles migrate into the bud, cytokinesis starts and the septum is

formed in the isthmus between mother and daughter cells, completing cell division.

If conditions in the culture media are nutrient­poor, diploids can undergo sporulation

(meiosis followed by spore formation). This results in the conversion of a diploid cell into

four haploid spores, two with mating type a and two with mating type α (Steensels et al.,

2014a).

Moreover, most Saccharomyces strains are homothallic, meaning that the two types

of haploid can mate if an a and an α cells meet when growing vegetatively, resulting in

a diploid cell MAT(a/α) (Martin et al., 2013). MATα cells secrete α factor pheromone, a

13 residue peptide, and respond to a­Factor. MATa cells secrete a­Factor, a 12 residue

peptide that is covalently attached to a lipid (farnesyl) group, and respond to α­Factor. If a

yeast cell secreted its pheromone (a­Factor or α­Factor) and a nearby yeast cell with the

receptor for this factor is stimulated by it, its receptor Ste3 and Ste2 (for a and α factor,

respectively), activates a signaling response which leads to ultimately fuse themembranes

and nuclei of the mating partners. The entire process takes about 4h (Bardwell, 2004;

Martin et al., 2013).

In homothallic strains, the haploid derivatives can also switch their mating type,

that is, a haploid a cell can become a haploid α cell, by changing its genotype at the

mating­type (MAT) locus from MATa to MATα, or vice versa. This process is mediated

by an endonuclease, encoded by the HO gene, that cleaves DNA specifically at the MAT

locus (Steensels et al., 2014b). The MAT locus is located on chromosome III flanked by

Hidden MAT Left and Right (HML and HMR, respectively), carrying a silenced copy of

MATa and MATα, respectively. After the breakdown of the MAT locus by exonucleases,

a gene conversion event occurs, where HML or HMR is used as a template to repair
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the DNA strand. The mating­type switch occurs frequently because cells often prefer to

change their former mating type, that is, a MATa cell will rather use HMR as a template to

copy MATα and viceversa (Herskowitz, 1988; Steensels et al., 2014b).

If a mating type­switched cell crosses with a near sister cell of the opposite mating type,

the result is a homozygous diploid MAT(a/α) homozygous for all of the genes except the

MAT locus (Steensels et al., 2014b). In heterothallic strains, the HO gene is typically

inactive and therefore haploid derivatives cannot switch their mating types (Steensels

et al., 2014b). Laboratory strains are usually heterothallic and this increases their stability.

4. Growth kinetics in fermentation

4.1. Yeast population dynamics during wine fermentation

In a typical fermentation, yeasts follow growth kinetics very similar to a standard

microbial growth curve. It comprises a predictable succession of events divided into four

main stages: latency or lag phase, exponential or log phase, diauxic phase, and stationary

phase (Figure 8).

The lag phase is the first stage, in which yeasts adapt to the new environment and

its duration depends on the appropriateness of the media conditions and of the initial

population size. In this phase, oxygen is important as it is needed for lipids’ biosynthesis

and to end a successful fermentation and long­term health of the culture. During the

lag phase, yeasts acclimatize to the must and prepare to consume massive amounts

of sugars, amino acids, peptides, other proteins and nutrients, and finally, they start

synthesizing the ribosomes and enzymes that are needed to reach a higher growth rate.

The second growth stage, the exponential phase, or log phase, starts once yeast cells

start metabolizing actively, DNA replication starts and cells divide. While the cells are
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FIGURE 8 A schematic outline of yeast growth phases.

reproducing, nutrients are consumed. During this period yeasts rapidly multiply, reaching

the specific maximal growth rate (μmax). Under optimal nutritional conditions, yeasts

reproduce asexually by budding; and this generates a daughter cell that is genetically

identical to the parental strain. Generation time is the time needed for a population to

double its size, it is usually 90­120 min. During this exponential phase, many aromatic

compounds which are by­products of cell growth are synthesized.

The third stage is the diauxic phase, a slow growth period. Due to a lack of fermentable

carbon sources in the media, yeasts change their fermentative metabolism to a respiratory

one in which they metabolize ethanol. The stationary phase is the last stage, which

happens when the remaining sugars or nutrients are depleted or when there are growth

inhibitors in the media, that prevent yeast cells to continue growing. In this phase, the

yeast population reaches maximum density and the yeasts begin to prepare for a possible

period of starvation. Yeasts can survive during long periods thanks to modifications in their

cell wall and their storage of carbon, but after prolonged periods in the stationary phase,

cells may die and autolysate.
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One strategy to assess microbial growth data in the media, and be aware of the

growing stage of the yeast, consists of taking absorbance measurements of the yeast in

the media. Yeast growth can be conducted by taking optical density (OD) measurements

at a wavelength of 600 nm: OD600.

This permits the obtainment of kinetic parameters, which are further transformed into

variables such as lag time; maximum growth rate, which is the slope of the tangent

of exponential phase; and maximum population density, the asymptotic level of OD

(Miranda Castilleja et al., 2017).

4.2 Stresses suffered by yeasts during wine fermentation

Fermentative yeasts’ main purpose is simply to convert simple sugars into ethanol

(Pretorius, 2000). Several environmental factors affect the yeast ability to multiply and

ferment in the media. Some of these environmental stresses are the temperature

fluctuations, the high osmotic pressure and high sugar initial concentrations, low pH,

high ethanol presence, low O2 in the media, sulfite presence and nutrient starvation,

especially nitrogen (Bauer and Pretorius, 2000; García­Ríos, 2016; García­Ríos and

Guillamón, 2019b; Marks et al., 2008; Su, 2020). Although they are stressing factors

for all microorganisms, S. cerevisiae yeasts possess different physiological features to

overcome these stresses that made this species very suitable for alcoholic fermentation

and explain its competitive advantage over other yeast species. These stress factors,

however, can cause ”stuck” and ”sluggish” fermentations. Incomplete or ”stuck”

fermentations are defined as those fermentations having a higher levels of residual sugars

in the final alcoholic product. The ideal sugar content should be lower than 2­4 g L­1. Slow

or ”sluggish” fermentations are those which need a big period of time, or that are delayed,

to consume all the sugars present in the initial must (Bisson, 1999; García­Ríos, 2016).

We refer as a stress response to both the physiological and molecular response of
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an organism to changes in the environment; while the ability to withstand unfavorable

or unstable external conditions is called stress ”resistance” or stress ”tolerance” (Bauer

and Pretorius, 2000). It has been studied in several organisms, S. cerevisiae included,

that their exposure to mild stress results in improved resistance to subsequent exposures

to more severe forms of the same stress or other related stresses. This phenomena has

been defined as ”cross­protection” or ”acquired stress resistance” and have its basis in the

fact that the molecular response to a stress actives pathways that are common to different

stresses (Bauer and Pretorius, 2000; Ruis and Schüller, 1995; Siderius and Mager, 1997).

4.2.1 Temperature

Today, most wine fermentations are conducted under temperature­controlled

conditions; red wine fermentation is performed at 18­25°C and white and rosé

fermentations at 10°C­15°C. This temperature of fermentation directly affects the

microorganisms present in the fermentation process, their ability to grow and their

metabolism (Fleet, 2003; García­Ríos, 2016). Every living microorganism has an optimal

growth temperature. In the case of yeasts, apart from that temperature range, which

varies between species and even strains, during fermentations, cells release a significant

amount of energy in the form of heat, and every temperature change is perceived as a

stress by the cell (Bauer and Pretorius, 2000; Piper, 1997).

 Temperature affects yeast biochemical reactions, and as a result, the formation of

secondarymetabolites such as glycerol, acetic acid, succinic acid, higher alcohols, acetate

esters, and ethyl esters, etc (Lafon­Lafourcade, 1983; Torija et al., 2003). These aromatic

compounds are essential for the organoleptic profile of wines (Saerens et al., 2010).

Low­temperature fermentation improves the production and retention of these volatile

compounds (Ough and Killian, 1979). This leads to the current tendency of conducting

fermentations at low temperatures, so that the resulting wines present richer and more
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complex aroma profiles acquired during the process. However, S. cerevisiae has a

higher optimal growth temperature, and at low temperatures the duration of fermentation

processes, especially the lag phase, and the risk to stuck increases (Bisson, 1999;

Salvadó et al., 2011b).

In particular, low temperatures seriously compromise S. cerevisiae wine yeasts, as

the composition of the growth substrate, the must, is not optimal, and the high levels of

ethanol produced during their growth, mutually affect and amplify cellular sensitivity to both

stresses (Bauer and Pretorius, 2000; Deed et al., 2015; Piper, 1995). S. kudriavzevii and

S. uvarum strains are better adapted to grow at low temperatures as a result of enhanced

translation, glycolysis and amino acid metabolism (García­Ríos et al., 2016a).

Besides, if we modify the temperature, we have the risk of non­Saccharomyces

yeast prevalence (Fleet, 2003). From a biotechnological point of view, the application

of cryotolerant Saccharomyces species, different from S. cerevisiae (SNC), as starters

for wine fermentation at low temperatures could avoid the colonization by undesirable

microorganisms (Alonso­del Real et al., 2017a; Ciani and Comitini, 2006). Previous

studies carried out in our research group, have shown that unconventional SNC yeast

species, such as S. kudriavzevii and S. uvarum,are good candidates to use at low

temperatures fermentations. They resist lower temperatures, and also produce wines

with interesting traits, such as aromatic profiles, high content of glycerol and low content

of ethanol (Alonso­del Real et al., 2017b; Arroyo­López et al., 2010a; González et al.,

2008; Lopandic et al., 2007; Salvadó et al., 2011a).

During fermentation at low temperatures, cell viability is increased (Beltran et al., 2006;

Du et al., 2012). This may be due to the presence of stress­protective compounds that are

induced during these conditions, such as heat shock proteins, trehalose, and to changes

in the fatty acid and sterol composition of the cell membrane (Beltran et al., 2008; Beney

et al., 2001; Deed et al., 2015; Gasch and Werner­Washburne, 2002).
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Besides, low temperature rearranges lipid membrane composition, whose fluidity

decreases with temperature, and affects the transport of metabolites (Tronchoni et al.,

2012, 2009). Recently, genes AHP1, MUP1, and URM1 related to low­temperature

resistance have been identified (García­Ríos et al., 2016b). Moreover, four genomic

regions involved in the adaptation at low temperature were recently described in

García­Ríos et al. (2017). Three of these regions are located in subtelomeric regions

of chromosomes XIII, XV, and XVI.

 4.2.2 High osmotic pressure

At the beginning of wine fermentations, fermentable sugars (glucose and fructose) are

present in the must in high concentrations. These musts usually contain 16­26% (w/v) but

it may be as high as 50% (w/v) for the production of noble late­harvest or ice wines (Fleet

and Heard, 1993; Margalit, 1997). That causes osmotic stress on yeast cells, because

they lose intracellular water and turgor (Hohmann, 1997). Some authors have related

yeast growth with sugar concentration (Carrasco et al., 2001; Zuzuarregui and Del Olmo,

2004) and in the case of S. cerevisiae, if the initial concentration of sugar is above 200 g/L

its growth rate and completeness of the fermentation will decay (Lafon­Lafourcade, 1983;

Monk and Osmond, 1984). The response of yeast to osmotic stress is regulated by the

high­osmolarity glycerol (HOG) mitogen­activated protein kinase (MAPK) pathway (Chen

and Thorner, 2007; Gustin et al., 1998).

4.2.3 Low pH

Grape must acidity is due to its low pH. Natural must have a different composition,

that influences its pH, with ranges from 2.75 to 4.20 (Arroyo­López et al., 2009; Belloch

et al., 2008). White wines are usually in ranges from 3 to 3.3 and red wines in the range

of 3.3­3.6, but there are remarked exceptions depending on the grape variety, climate,

region, or viticultural and enological practices. Most S. cerevisiae strains grow in a wide
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pH range between 2.50 and 8.50, but they grow better under acidic conditions with optimal

pH ranges from 4.00 to 6.25 (Carmelo et al., 1996; Liu et al., 2015; Narendranath and

Power, 2005).

The ability to grow at low pH depends on temperature, the presence of the oxygen and

the strain; but it could be considered common to all species in the Saccharomyces group,

and consequently, grape must or beer with low pH should not be considered a stress factor

for yeasts in alcoholic fermentation (Belloch et al., 2008; Liu et al., 2015; Serra et al., 2005),

but it affects other microorganisms growth and prevents contamination. However, a lot of

research about low pH or weak acid stress on S. cerevisiae has been made (Liu et al.,

2015). The cell wall structure can be affected by weak acids, such as acetic acid (Zhao

et al., 2014), lactic acid (Abbott et al., 2009), citric acid (Nielsen and Arneborg, 2007),

benzoic acid (Hazan et al., 1999) and sorbic acid (Papadimitriou et al., 2007). These

acids affect both the conformation of proteins and the lipid organization and function of

membranes (Liu et al., 2015; Torija et al., 2003).

4.2.4 Ethanol

Among all the environmental stresses that yeast cells undergo during alcoholic

fermentation, ethanol is considered the main one. Ethanol is a toxic compound, that from

a physiological point of view, inhibits yeast growth and viability, affects different transport

systems such as the general amino acid permease system and glucose uptake, and

inhibits the activity of key glycolytic enzymes (Alexandre and Charpentier, 1998; Alexandre

et al., 2001; Bisson, 1999).

The main target of ethanol is the plasma membrane, the fluidity of which is altered

during ethanol stress even for small concentrations in the order of 1% (Jones and

Greenfield, 1987; Lloyd et al., 1993; Marza et al., 2002; Navarro­Tapia et al., 2018). As

ethanol has a small size and a hydroxyl group, it is soluble in both aqueous and lipidic
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media, being able to cross the plasmatic membrane and increase its fluidity.

This alteration results in changes in permeability to ionic species, especially protons

(Cartwright et al., 2009). Moreover, ethanol damages mitochondria, reduces respiratory

flux and ATP levels, and leads to the formation of ROS and acetaldehyde, generating DNA

damage, lipid peroxidation, and oxidative stress (Alexandre et al., 2001; Du and Takagi,

2007; Costa and Moradas­Ferreira, 2001). Another direct effect caused by ethanol is

the inhibition of nutrient transport across the membrane. In this way, glucose, maltose,

and ammonia transport system are affected, as well as the general amino acid permease

(GAP), due to the alcohol and hydrophobic membrane regions interaction, that finally

destabilize all proteins embedded (Leão and Van Uden, 1984).

Yeast cells have developed a panel of stress responses and adaptation mechanisms

to cope with the deleterious effects of ethanol. This way, the synthesis of trehalose and

heat shock proteins (HSPs) has been reported to occur during ethanol stress (Alexandre

et al., 2001; Singer and Lindquist, 1998). Trehalose is considered a stress protectant,

and HSPs have been reported to stabilize membranes and proteins and suppress protein

aggregation (Singer and Lindquist, 1998). The role of these proteins remains to be fully

understood, and it has to be determined whether they play a similar role that those exhibit

during heat shock, where they prevent aggregation and assist the posterior refolding of

proteins.

Recently, ethanol stress has been directly described as an activator of the unfolded

protein response UPR, a conserved intracellular signaling pathway that regulates the

transcription of ER homeostasis­related genes (Navarro­Tapia et al., 2016, 2017). These

authors observed up­regulation of key genes, including INO1, involved in lipid metabolism

and also significant changes in lipid composition, which correlate with major alterations of

membrane fluidity by this amphipathic molecule (Navarro­Tapia et al., 2018).
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4.2.5 Low oxygen levels

Oxygen is a structural component in numerous organic molecules (Visser et al., 1990).

During alcoholic fermentation, Saccharomyces yeasts do not strictly need oxygen for their

energy production, but it is an essential compound for its efficient growth, mainly in the

early fermentation hours. The addition of oxygen at the beginning of fermentation prevents

stuck or sluggish fermentations, as yeasts grow better with a small quantity of oxygen that

generates survival factors. Moreover, aeration during specific fermentation phases has

beneficial effects on fermentation kinetics (Fleet and Heard, 1993; Ribereau­Gayon et al.,

2000). The presence of oxygen is also relevant to increase yeast ethanol resistance, as

oxygen is needed to generate the unsaturated fatty acids and ergosterol present in yeast

membranes, which better resist the high levels of ethanol (Alexandre et al., 1994; Bauer

and Pretorius, 2000).

4.2.6 Sulfite concentration

Sulfite (SO3
2­) is a normal but potentially toxic intermediate metabolite of

microorganisms. It is widely used as a preservative in wine­making because yeasts

can still grow normally (Divol et al., 2012) under high sulfite concentrations. Sulfite is

produced by the dissolution of sulfur dioxide (SO2) in water, and it is usually added

in wine fermentation in the form of metabisulfite (K2S2O5). Yeast can cope with sulfite

toxicity through different strategies­ for a review see (García­Ríos and Guillamón, 2019a).

Among them, we can cite the increase of acetaldehyde production, up­regulation of sulfate

uptake and assimilation pathway, and sulfite efflux from the cell by the membrane pump

Ssu1p (Casalone et al., 1992; Nadai et al., 2016; Park and Bakalinsky, 2000). The most

common mechanism to cope with sulfites in S. cerevisiae is the latter one, via promoting

the sulfite efflux through the plasma membrane pump encoded by the SSU1 gene (Avram

and Bakalinsky, 1997; Avram et al., 1999).
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The presence of sulfite in must wines is also interesting, as it forms complexes with

aldehydes and ketones generating hydrogen sulfide and mercaptan, aromatic ingredients

which improve the stability of flavor and the quality of wine products (Liu et al., 2017).

4.2.7 Nutrient starvation

Another stressing factor for yeasts is the limitation or lack of certain nutrients, especially

in wine fermentations, where the phosphate limitation (Boulton et al., 1999), zinc starvation

(Lyons et al., 2002), copper starvation (Gross et al., 2000) and nitrogen starvation (Sui

et al., 2020) has provoked fermentation problems. Of all of these nutrients, nitrogen is

the main limiting nutrient during wine fermentation. Although it is naturally present in the

wine must, changes in the availability of specific nitrogen­containing compounds often

represent a stress for yeasts.

4.2.8 Nitrogen composition

Nitrogen is an essential nutrient in alcoholic fermentation (Agenbach, 1977; Cramer

et al., 2002). Grape musts contain different nitrogen sources such as ammonium ions,

amino acids, and peptides, but not all of them can be metabolized under fermentation

conditions, and yeasts do not prefer all of these nitrogen sources equally (Tesnière

et al., 2015). The utilization of nitrogen­containing compounds by S. cerevisiae follows

a complex, relatively well­established pattern during wine fermentation, and although it

depends on the yeast strain, in general, a minimum of 140 mg/L of YAN is required for

yeast to complete alcoholic fermentation (Bell and Henschke, 2005; Bely et al., 1990;

Butzke, 1998).

Although wine yeasts can metabolize more than 20 substances as unique sources of

nitrogen (Tesnière et al., 2015), S. cerevisiae starts metabolizing preferentially aspartate,

glutamate, glutamine, and ammonium, while their presence in the media represses the

uptake of other, less efficient nitrogen sources, an effect known like nitrogen catabolite
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repression (NCR) (Tesnière et al., 2015). Once these sources have been depleted,

other nitrogen compounds like proline and other amino acids will be utilized (Cooper,

1982a,b). These compounds are mainly derived from the nitrogen of the amino acid alpha

amines (Henschke and Jiranek, 1993) and ammonium. When yeast cells have to switch

from a preferred nitrogen source to another compound because of the availability, they

experience mild stress, that in laboratory conditions, results in a transient reduction in

growth rate. On the other hand, in later phases of fermentation, nitrogen starvation could

become a real problem, as it compromises both the fermentation kinetics and the formation

of yeast metabolites. In most cases, nitrogen starvation is a consequence of the presence

of ethanol, which inhibits the uptake (Boulton et al., 1999).

Recently, Su et al. (2019) demonstrated the existence of a differential behavior in

nitrogen requirements among strains of the cryotolerant species S. uvarum, S. eubayanus,

and S. kudriavzevii. Another recent review has focused on the consequences of nitrogen

addition and its effect on volatile compound composition (Gobert et al., 2019).

5. Current wine market challenges and the use of tailored yeast

starters

5.1 Wine industry problems, demands, and trends

The wine industry is facing different challenges related to both the market demand and

the production process. The number of wine drinkers has declined due to a variety of

health and lifestyle reasons. Nowadays, there are diverse and interesting offers in spirits,

beer and cider, and consumers are more exigent with wine characteristics and quality.

For instance, sweeter wines and fruity aromas fit better with young people’s preferences.

There is also an increasing consciousness about the effects of alcohol uptake on health as
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well as road safety. Therefore, the wine industry must respond to these trends producing

aromatic wines with lower ethanol content.

Moreover, the composition and properties of the grape have varied due to climate

change (Borneman et al., 2013). The vast majority of the scientific community agrees on

the reality of climate change caused by human activities (IPCC, 2014).

Among human activities, agriculture ­and in particular viticulture­ is highly dependent

upon climatic conditions. Global warming and climate change make it more difficult to

identify the point of enological maturity in vineyards. This enological maturity corresponds

to the optimum harvesting moment of the grapevine which permits the production of the

best wine in a given year and under specific conditions. This depends on three factors:

industrial maturity, aromatic ripeness, and phenolic ripeness (Querol et al., 2018).

Industrial maturity depends on the sugar content and acidity of the starting must, which

determines the final ethanol concentration in the wine. Phenolic ripeness depends on

polyphenolic compound concentration, which gives color and astringency to the wine and

aromatic aromas.

Higher temperatures accelerate the sugar maturity of grapes, lower the grape acidity­

particularly the malic acid content­ and disrupt phenolic maturity, thus, provoking an

unbalance between these two factors (Jones et al., 2005; Mozell and Thachn, 2014; van

Leeuwen and Darriet, 2016). In addition, high temperatures negatively affect relevant

secondary metabolites involved in red wine color, like anthocyanins (Spayd et al., 2002).

Thus, an imbalance between sugar content and phenolic maturity is present in grapevines,

and a correct enological maturity point cannot be reached (Jones et al., 2005; Querol et al.,

2018).

If wineries wait until the phenolic maturity is achieved in grapes before harvesting, the

higher amount of sugars in the fruit results in the overproduction of ethanol in the final
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wine. Thus, winemakers are forced to produce more alcoholic wines, with a decrease

in the color intensity and stability and a different aroma profile. However, if the grapes

are harvested earlier, when sugar content is optimum to prevent the overproduction of

ethanol, the grape tannins and phenols have not reached their optimal maturation state,

which results in astringent wines (Querol et al., 2018).

Consumers tend to dislike these wines ­both the ones with high ethanol content and the

ones with unripe tannins­ (Querol et al., 2018). To avoid a lack of competitiveness in the

wine sector, the industry is adopting different solutions. One of them is the use of yeasts

whose metabolism produces lower ethanol and higher glycerol yields, as this combination

of compounds balances wine astringency (Querol et al., 2018; White et al., 2006).

5.2 Wine strain selection

At present, most wine­producing companies add a pure Saccharomyces yeast strain

to the must, also known as a starter cultures, to have a reproducible fermentation process

and to maintain a high final product quality (González et al., 2011; Querol et al., 2018). To

provide suitable yeast strains for specific industrial processes, as wine production, many

strategies have been carried out, being the selection of strains the most used as it is the

simplest one.

S. cerevisiae is the preferred yeast strain to initiate the fermentation process (Jolly

et al., 2014), due to its high fermentation performance and ethanol tolerance. “Ethanol

tolerance” is a term that is frequently used in the literature referring to the ability of yeasts

to grow and survive in the presence of ethanol and ethanol resistance is a term that is

commonly used as a synonym of ethanol tolerance (Morard et al., 2019; Snoek et al.,

2016).

Different S. cerevisiae strains are known, and it is possible to characterize on a

laboratory scale the differences among them for the desired trait to then use the selected
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strain as a starter for the industrial process. Yeasts are a group of organisms with high

diversity, and besides the differences among species, even strains of the same species

show a high level of genetic divergence and different industrial behaviors (Steensels et al.,

2014b).

For example, related to ethanol resistance, it is possible to quantitatively estimate

the ethanol tolerance of a set of S. cerevisiae strains by growing the yeast under

controlled amounts of this stressor, and then model the growing curves to obtain two

parameters: MIC and NIC. MIC is considered the lowest concentration at which no growth

is observed, while NIC is the lowest concentration at which any inhibitory effect is observed

(Miranda Castilleja et al., 2017). This strategy can be followed to select strains with better

performance under other stressors, as can be drugs, SO2, etc. (Medina et al., 2012;

Miranda­Castilleja et al., 2015; Sánchez­Rubio et al., 2017; Türkkan and Erper, 2014).

However, in recent years, stress tolerance is not the only factor that should be taken

into account to choose a yeast strain as a starter for carrying out a fermentative process.

This way, curbing wine ethanol content and enhancing aromas in wines is highly desirable,

and this is possible with the usage of yeasts with a different metabolism that permits the

generation of the compounds of interest. A lot of research in the use of alternative starters

for winemaking has been made, as fungal diversity is high and the current industrial

strains are only representing a small fraction of the natural biodiversity available (Steensels

et al., 2014b; Tilloy et al., 2015). Moreover, it is possible to use different species to S.

cerevisiae. These yeasts can be either Saccharomyces or non­Saccharomyces species

with oenological properties, which can be selected to conduct the wine fermentation.

5.2.1 The selection of non­Saccharomyces yeasts

Under spontaneously fermenting wine, a succession of non­Saccharomyces yeasts

of Candida, Cryptococcus, Hanseniaspora (Kloeckera), Metschnikowia, Pichia and
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Rhodotorula genera, are present in the fermentation (Jolly et al., 2003, 2014). However,

as natural S. cerevisiae strains have a higher tolerance to the fermentation stresses, they

dominate the middle and end of the fermentation (Bagheri et al., 2015; Ghosh et al., 2015;

Jolly et al., 2003; Portillo and Mas, 2016). Saccharomyces strains quickly outcompete

non­Saccharomyces species and so non­Saccharomyces contribution to final wine flavor

is low (Bellon et al., 2011).

For this reason, industrial wineries are interested in the co­inoculation or sequential

inoculation of these non­Saccharomyces species with one or more wine strains of S.

cerevisiae. non­Saccharomyces species have a different respire­fermentative metabolism

and Crabtree effect distribution, which allows them to reduce the final content in ethanol

(González et al., 2013). They also contribute to wine flavors, secreting metabolites with

impact in the primary and secondary aroma of wines, glycerol production, release of

mannoproteins, low volatile acidity, or contributions to wine color stability (Bely et al., 2008;

Canonico et al., 2016; Goold et al., 2017; Varela, 2016)  . Moreover, several interactions

between yeast species result in different yeast population dynamics during fermentation

(Rossouw et al., 2015) . Finally, it is known that the sensory profile of a fermentation

product varies if a combination of S. cerevisiae and non­Saccharomyces yeasts is used

(Canonico et al., 2015; Varela, 2016).

Oliveira and Ferreira (2019) proved that the sequential inoculation of

non­Saccharomyces yeasts (Pichia kluyveri, Torulaspora delbrueckii and Lachancea

thermotolerans) followed by S. cerevisiae produced wines with aromatic changes,

such as lower levels of isoamyl alcohol, etc. In González­Royo et al. (2015), the

sequential inoculation of T. delbrueckii and Saccharomyces cerevisiae increased glycerol

concentration and reduced volatile acidity among other interesting properties.

Non­Saccharomyces yeast species usage needs to be more investigated because

although they reduce the ethanol yield in favor of biomass production and by­product
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formation, because their compatibility with S. cerevisiae needs to be determined

(Contreras et al., 2014; Esteve­Zarzoso et al., 1998; Gobbi et al., 2014).

5.2.2 Saccharomyces non­cerevisiae yeast selection based on growth at low

temperature

One of the trends in enology is to conduct low­temperature fermentation, as wines

produced at low temperatures more efficiently keep volatile aroma compounds and final

wines have better sensory attributes. If S. cerevisiae strains are used in low­temperature

fermentation, their growth rate is reduced and the risk of stuck or sluggish fermentations

is high (López­Malo et al., 2013).

Different studies have been performed to understand S. kudriavzevii and S. uvarum

behavior during fermentation. Tronchoni et al. (2012) determined that 3 S. kudriavzevii

strains (CR85, CA111 and IFO1802) required less time than the T73 S. cerevisiae strain

to consume sugars at 12ºCwine fermentations. These authors also studied themembrane

composition of this yeast species, as it can confer a better adaptation to low temperature.

Moreover, S. kudriavzevii produces less alcohol than S. cerevisiae (Torija et al., 2003).

S. uvarum behavior has also been analyzed at low­temperature fermentations. In

another study, S. uvarum strains showed a shorter lag phase and the ability to complete

alcoholic fermentation at 13ºC when compared with S. cerevisiae (Masneuf­Pomarède

et al., 2010).

5.2.3 Saccharomyces non­cerevisiae yeast selection based on high glycerol

production and low ethanol yield

Other winemaking trend that can be achieved by the use of Saccharomyces

non­cerevisiae yeasts is the production of wines with higher glycerol yields and lower

ethanol yields. Glycerol is a compound that contributes to wine quality because it provides

sweetness, smoothness and fullness to wine, while reducing wine astringency (Goold
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et al., 2017; Remize et al., 2000). It is the third by­product of alcoholic fermentation, after

ethanol and carbon dioxide, in quantitative terms. The quantity of glycerol produced by

yeasts is highly dependent on the environment, and its production can be optimized by

using specific cultivation conditions. (Arroyo­López et al., 2010a).

Glycerol seems to play also an important role in low­temperature tolerance as a

cryoprotectant agent in yeasts (Izawa et al., 2004), as it gives resistance to osmotic and

cold stress. It has been reported that cryotolerant wine strains produce more glycerol than

non­ cryotolerant yeasts (Bertolini et al., 1996; Castellari et al., 1994) . Under stressful

conditions such as low temperature, low pH, and high sugar concentration, carbon flux is

directed towards glycerol instead of ethanol (Arroyo­López et al., 2010a) and this effect is

more remarkable in S. uvarum and S. kudriavzevii.

Arroyo­López et al. (2010a) observed that the S. kudriavzevii type strain (IFO 1802)

produces higher glycerol concentrations under fermentation at low temperature (14ºC)

when compared with a wine S. cerevisiae strain (T73). Pérez­Torrado et al. (2016) also

proposed that the reason for higher glycerol content in wines produce by S. kudriavzevii

is the differentiated import/efflux capacity under hyperosmotic stress.

In the presence of sulfite, the fermentation of glucose by yeasts produces equivalent

quantities of glycerol, carbon dioxide, and acetaldehyde in its bisulfite form. This is called

glyceropyruvic fermentation (Ribereau­Gayon et al., 2006). In this kind of fermentation,

glycerol has an important role in keeping redox balance in the cell oxidizing NADH to NAD+

(Hohmann, 1997). Since the acetaldehyde combined with sulfite cannot be reduced into

ethanol, dihydroxyacetone phosphate (DHAP) becomes the terminal electron acceptor

instead (Figure 9).

Thus, glycerol is synthesized from DHAP in two steps that are catalyzed

by glycerol­3­phosphate dehydrogenase (GPDH), which reduces DHAP to
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FIGURE 9 Glyceropyruvic fermentation (Ribereau­Gayon et al., 2006)

glycerol­3­phosphate and this to glycerol by the glycerol­3­phosphatase (GPP). The

rate­controlling step of glycerol production is GPDH (Hohmann, 1997). This enzyme

exists as two isoenzymes, Gpd1p, which is osmotically induced, and Gpd2p, which is

constitutive and plays a key role in maintaining the NADH/ NAD+ ratio (Ansell et al., 1997;

Remize et al., 2001).

A low ethanol yield in the final wine can be achieved using different strategies.

In previous studies, it has been demonstrated that the combination of sulfite with

acetaldehyde prevents acetaldehyde from being reduced to ethanol (Albertyn et al., 2015;

Ansell et al., 1997; Remize et al., 2001). This reduces glycolytic flux due to a shortage of

NAD+ that would have been produced during ethanol fermentation, which can be restored

by redirecting carbon to dihydroxyacetone­1­phosphate (DHAP), which becomes electron

acceptor of NADH produced during glycolysis, regenerating NAD+ (Goold et al., 2017;

Petrovska et al., 1999; Tilloy et al., 2015) and producing glycerol instead of ethanol. All

this knowledge is necessary to further produce tailored yeasts with these physiological
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differences.

5.3 Strategies to improve yeast strains

In the previous sections, we have commented on the use of some alternative yeasts

to conduct wine fermentations. However, industrial fermentations sometimes require

strains with phenotypic traits that might not be encountered in nature. Therefore, to fulfill

the selective and specific conditions of each industrial process, several techniques have

been developed to improve yeast’s behavior (Steensels et al., 2014b) . This way, there

is the possibility to generate artificial diversity in yeasts, using different methods. Current

legislation in different countries limit the use of Genetically Modified Organisms (GMOs) in

food (Álvarez­Pérez et al., 2014; Jolly et al., 2014; Lambert and Pearson, 2000). According

to the definition of the Directive 2001/18/EC of the European Parliament and of the Council

of 12 March 2001, GMOmeans an organism, with the exception of human beings, in which

the genetic material has been altered in a way that does not occur naturally by mating

and/or natural recombination.

Apart from the general and strict legislation on GMOs, consumers have also concerned

in their use in the wine industry (Cebollero et al., 2007). For that reason, we will first focus

on non­GMO techniques to create artificial diversity in yeasts.

5.3.1 Artificial hybridization

Hybridization among closely related species of Saccharomyces yeasts has been

proposed as a good method for obtaining new Saccharomyces strains that are suitable

for its use under enological conditions (Pérez­Través, 2015). This practice is similar to

‘selective breeding’ or ‘artificial selection’ that has been used in agriculture and animal

breeding for thousands of years for the crossbreed of superior plants and domestic animals

(Chambers et al., 2009; Steensels et al., 2012, 2014a). Similarly, human intervention may

have given rise to new chimeric Saccharomyces strains in industrial environments where
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twoSaccharomyces species with interesting attributes, were put non­intentionally together

and eventually crossed. Although these processes occurred naturally, recent knowledge

on yeast physiology and technological advances have led to the targeted breeding of

yeast strain by hybridization (Steensels et al., 2014b). Since then, many works report

the successful hybridization of yeast strains, some of them are summarized in Table 1.

TABLE 1 List of artificial hybrids obtained among Saccharomyces species

Species combination Hybrid phenotype Reference

S. cerevisiae x S. uvarum
Ability to perform low­temperature
fermentations; higher production
of flavor compounds in wine

Kishimoto (1994)

S. cerevisiae x S. bayanus
Greater fermentative vigor;
wider temperature range;
intermediate compound production

Zambonelli et al. (1997)

S. cerevisiae × S. uvarum
Low­temperature
fermentation capacity

García­Ríos et al. (2019c)

S. cerevisiae x S. uvarum;
S. cerevisiae x S. kudriavzevii

Increased ethanol and glycerol
production and better sugar
consumption than their parental strains

Lopandic et al. (2016)

S. cerevisiae x S. uvarum

Low ethanol production,
high glycerol synthesis,
growth at low temperature;
malic acid production with
a particular aroma profile

Origone et al. (2018)

S. cerevisiae × S. kudriavzevii Pérez­Través et al. (2012)
S. cerevisiae × S. kudriavzevii Ortiz­Tovar (2018)
S. cerevisiae x S. paradoxus;
S. cerevisiae x S. kudriavzevii

Different volatile fermentation
product profiles

Bellon et al. (2011)

S. cerevisiae x S. eubayanus
Improved low­temperature fermentation
and fruitier cider production

Magalhães et al. (2017)

S. cerevisiae × S. uvarum
Different secondary metabolite
production profiles

Da Silva et al. (2015)

S. cerevisiae x S. arboricola
S. cerevisiae x S. eubayanus
S. cerevisiae x S. mikatae
S. cerevisiae x S. uvarum

Improved low­temperature
fermentation in lager
brewing conditions

Nikulin et al. (2018)

S. cerevisiae × S. bayanus Improved low­temperature fermentation Sato et al. (2002)
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Hybrids often show heterosis or hybrid vigor, which refers to the common superiority of

hybrids over their parents for quantitative traits (Petrizzelli et al., 2019). The mainly used

methodologies to obtain these artificial hybrids are rare mating and spore to spore mating.

Spore to spore mating has been widely used, but it is a time­consuming method; whereas

rare­mating is an easier methodology to generate these hybrids (Cebollero et al., 2007;

Pretorius and Hoj, 2005; Schilter and Constable, 2002). Although there are other methods

as protoplasts fusion to generate hybrids, they are considered GMO strategies and so the

resulting hybrids cannot be transferred to the industry.

5.3.2 Rare mating

The rare mating technique is based on the natural rare event of mating­type switching

in industrial yeasts, which are normally diploids. This results in the occurrence of mating

cells at a low frequency, that can then conjugate with a known laboratory mating strain of

either a, aa, α or αα mating type (Pérez­Través et al., 2012).

The first step to conduct a rare mating strategy is to select two strains (the ones with the

properties of interest that we want to merge in the hybrid) that carry different auxotrophic

markers. Auxotrophy is defined as the inability of an organism to synthesize a particular

organic compound required for its growth. The selection of natural auxotrophic parental

strains can be done by seeding onto plates with a selective agent that only allows the

growth of a strain if they have a mutant genotype. For example, α­aminoadipic (α­AA)

plates are used to select lys− auxotrophs and fluoroorotic acid (5­FOA) agar plate for

ura3− auxotrophs (Spencer and Spencer, 1996).

Then, auxotrophs are placed together to let switching mating type and subsequent

hybridization occur. After this incubation, the culture is spread on Minimal Media (MM)

plates. If prototrophic colonies grow in this minimal media, they are isolated and purified

to check their hybrid nature. If hybrids are obtained, their phenotypes are assessed to see
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if the obtained hybrid has improved the characteristics of their parental strains.

Over the years, many natural interspecific Saccharomyces hybrids have been isolated

from wine­related habitats (Boeke et al., 1987; Zaret and Sherman, 1985), and these

hybrids show intermediate characteristics from both their parental strains that make them

suitable for wineries demands. When hybrids are obtained by rare mating they often

contain the complete genome of both parents (González et al., 2007; Lopandic et al.,

2007; Pérez­Través et al., 2015; Peris et al., 2016).

However, the newly formed hybrids sometimes experiment a genome reduction and

rearrangements in their genomes. If hybrids are going to be used in industrial processes,

their genomes need to be stable, to ensure that the same strain is always used and

the produced wines are consistent in successive vintages (Gunge and Nakatomi, 1972;

Krogerus et al., 2016).

Some studies have addressed how to generate stable hybrids through a stabilization

process (Pretorius, 2000).   A major aspect of hybrids obtainment is the careful selection

of stabilization conditions. The stabilization process consists on inoculate the obtained

hybrids in media and at the end of the fermentation in that media characterize different

obtained colonies.

It has also been proved that the use of selective pressure, mimicking the unfavorable

conditions found in industrial environments, can be imposed during the stabilization.

Sporulation of hybrids has also been applied as a stabilization method that accelerates

the genome reduction process (Belloch et al., 1997, 1998; Fernandez­Espinar et al., 2003;

Querol et al., 1992).

To check that the hybrid genomes are stable after the stabilization process, different

characterization methods can be used to compare the profile present in the hybrid before

and after the stabilization. Some of them are inter­δ sequences, random amplified
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polymorphic DNA–PCR (RAPD–PCR) analyses and mtDNA­restriction fragment length

polymorphism (mtDNA­RFLP) patterns (Antunovics et al., 2005; Bellon et al., 2013;

Pérez­Través et al., 2012, 2014b). After the genetic stabilization of the hybrids, they are

assessed for their industrial applicability on a laboratory scale.

5.3.3 Adaptive laboratory evolution

Another scientific approach towards the improvement of yeast strains is the use of

adaptive laboratory evolution (also known as directed evolution or ALE). Darwin’s theory

of evolution describes how species change over time through variation and selection.

Classical evolutionary theory says that genetic variation is the major source of heritable

variation and natural selection acts on this basis (Bódi et al., 2017). This way, if

a heterogeneous big population is under fluctuating or stressful conditions, only the

individuals with the better traits will reproduce.

Adaptive evolution is based on a long­term adaptation of yeast under environmental

or metabolic constraints, that finally lead to evolution. This strategy is useful for

microorganisms as they can rapidly adapt to different environmental conditions. During

microbial ALE, a microorganism is cultivated for a prolonged period which allows the

selection of the improved phenotypes, under clearly defined conditions (Dragosits and

Mattanovich, 2013).

ALE has been used to improve yeast strains for biotechnological applications, including

wine making (Çakar et al., 2005; McBryde et al., 2006; Stanley et al., 2010c; Wisselink

et al., 2009). Some examples of evolved strains to improved different traits can be seen

in Table 2. Among them, and due to their potential application in the wine industry, we

can highlight the obtainment of a S. cerevisiae yeast that enhances their parental glycerol

production by 41% (Kutyna et al., 2012), and the evolution of a S. cerevisiae yeast that

improved the growth of the parental strain at low temperatures (López­Malo et al., 2015).
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TABLE 2 List of strains evolved in the laboratory belonging to Saccharomyces species

Evolved species Evolved trait Reference

S. cerevisiae
Oxidative stress, ethanol
stress, heat stress,
freezing/thawing stress

Çakar et al. (2005)

S. cerevisiae Winelike fermentation stresses McBryde et al. (2006)
S. cerevisiae Ethanol stress Stanley et al. (2010c)
S. cerevisiae Glycerol production Kutyna et al. (2012)

S. cerevisiae
Consumption of xylose
and arabinose

Wisselink et al. (2009)

S. cerevisiae
Consumption of
gluconate

Cadière et al. (2011)

S. cerevisiae
Fermentation at
low temperatures

López­Malo et al. (2015)

S. cerevisiae Ethanol Voordeckers et al. (2015a)
S. cerevisiae Heat, high pH Yona et al. (2012)
S. cerevisiae x
S. eubayanus

Lager­brewing conditions Gorter de Vries et al. (2019)

S. cerevisiae, S. paradoxus,
S. mikatae, S. uvarum, and
S. uvarum x S. cerevisiae

Growth on media
with sulfate limitation

Sanchez et al. (2017)

S. cerevisiae Methanol assimilation Espinosa et al. (2020)

S. cerevisiae
Growth on high
temperature

García­Ríos et al. (2021)

One common method to perform ALE is the use of batch cultivation in shake flasks that

propagate microbial cells (Dragosits and Mattanovich, 2013) in controlled environmental

conditions and factors like temperature and spatial culture homogeneity. At regular

intervals, an aliquot of the culture is transferred to a new flask with a fresh medium. This

strategy allows massive parallel cultures on a cheap equipment. Shake flasks can be

replaced with systems with well plates with smaller culture volumes, thus allowing the

growth of hundreds of microbial cultures in parallel (Chambers et al., 2009; González

et al., 2013). 

During the ALE process, a new population mainly composed of cells with beneficial
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FIGURE 10 Strategies to select and obtain strains for industrial applications.

mutations can be obtained. Multiple genetic characteristics that naturally occur in yeast

strains are selected and, as a consequence, mutations in the evolved cells can be

observed in the form of SNP, InDels, large deletions and duplications, translocations and

changes in ploidy.

A summary of the three strategies which are most frequently used for strain selection

and obtainment can be seen in Figure 10.

6. Omics technologies

Currently, new techniques are available to study in­depth the genome, transcriptome,

proteome and metabolome of a strain of particular interest in defined conditions. These

methods aim to globally characterize a biological sample at a certain level (genes

in genomics, mRNA in transcriptomics, proteins in proteomics and metabolites in
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metabolomics). Metabolomics, at the same time, encompasses more specific techniques

such as lipidomics, which studies the lipids present in a biological sample. All of all these

techniques, and the integration of them from a systems biology perspective are known as

’Omic’ technologies (Delneri et al., 2001; García­Ríos, 2016; Horgan and Kenny, 2011;

Kitano, 2002; Oliver, 2002; Oliver et al., 2002; Paget et al., 2014; Petranovic and Nielsen,

2008).

The functional genomics field comprises different techniques that allow the biology

study at different levels. It is important to differentiate between studies at the genome level,

as genomic DNA of a particular strain is condition independent; from gene expression

studies at the level of mRNA, or proteomics and metabolomics studies at protein or

metabolite levels, as they are strongly dependent on environmental conditions and growth

phase (Horgan and Kenny, 2011). Thus, comparative analyses of strains at these levels

have to be carried out under carefully defined conditions (Saerens et al., 2010).

For that reason, using genomics to identify the different genes present in an organism

with its genome sequenced, would be the first approach to have an initial idea of the

genome composition and evolutionary story of that strain. Then, to elucidate the roles that

play those genes, it is necessary to apply a functional study that involves transcriptomics,

proteomics, or metabolomics. These three classes of functional genomic analysis are

distinct. Messenger RNA molecules, the subject of transcriptome analysis, are not

functional entities within the cell, but simply transmitters of the instructions for synthesizing

proteins, and so transcriptome analyses only indirectly approach functionality, while both

proteins and metabolites represent true functional entities within cells (Delneri et al.,

2001). However, global gene expression analysis at the level of proteins (proteomics)

is more laborious, less sensitive, and less reproducible than transcriptomics, as the

sequencing technologies available for both genome and transcriptome understanding are

well implemented and are easy to follow.
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6.1 Sequencing technologies

Since two decades from now, we are experiencing a “genomic revolution” that has

provided new knowledge in science. The advent of genome and transcriptome sequencing

has enabled the studies of a wide variety of yeast strains and species. They are widely

used as functional genomics tools that provide information about genes, their function and

mechanisms of regulation, and which role play them on biology at different levels.

The first available sequencing method was the Sanger technology (Sanger et al.,

1977) , which sequences a single DNA fragment at a time. It uses dideoxynucleotides

to terminate the chain amplification.

The advent of next­generation sequencing technologies (NGS) marked the start of a

genetic and genomic revolution (Giordano et al., 2017). NGS significantly lowered the

cost of sequencing using massively parallel sequencing methods (Goodwin et al., 2016;

Liu et al., 2014). Two major paradigms are present in next­generation sequencing (NGS)

technology: short­read and long­read sequencing (Goodwin et al., 2016) . Short­read

sequencing approaches provide accurate data at a low cost. The typical length of the

generated fragments is between 50 and 400 bases long (Goodwin et al., 2016).

The first commercially successful next­generation system was Roche 454, which

used pyrosequencing technology, that uses the detection of pyrophosphate released

during nucleotide incorporation. Another next­generation sequencing system is AB SOLiD

(Sequencing by Oligo Ligation Detection) (Mardis, 2008) . It uses 8 base­probe ligations

that complement the template strand and emit a fluorescent signal.

The last next­generation sequencing system, which is nowadays the most commonly

used, is the Illumina GA/HiSeq System. Illumina uses a sequencing by synthesis (SBS)

technology which consists of the addition of labeled nucleotides as the DNA chain is copied

in a massively parallel approach that results in less time­consuming. Depending on the
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study, Illumina reads can be either used in de novo assembly projects, for the assembly

of an organism without using a reference or in resequencing projects for the detection of

variants by mapping the Illumina reads from a strain onto a reference genome from the

same species (Wolfe et al., 2019).

The problem in NGS technologies that generate short reads is that these reads are

not able to solve complex genome features like highly repetitive regions longer than

sequenced reads or copy number variations (Giordano et al., 2017). To solve this,

long­read sequencing technologies have been developed. Pacific Biosciences and Oxford

Nanopore MinION technologies produce long sequencing reads with average fragment

lengths of over 10 000 base­pairs. These long fragments, which can reach the 100

000 base­pair, allow the obtainment of complete genomes with contig continuity even

in problematic and repetitive regions. Their major drawbacks are the higher rate of

sequencing errors (5–20%), their lower high­throughput, and their higher price (Giordano

et al., 2017), but these issues are being solved, especially the error rate.

These sequencing technologies can be used with a large number of organisms.

Yeast genomes are relatively small and easy to characterize by using these sequencing

technologies. After the obtainment of this data, the different bioinformatic analyses need

to be performed on them.
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Objectives

In recent decades, the wine­producing sector in Spain has experienced important

growth, becoming the world’s leading exporter. Unfortunately, this has not been translated

into a higher economic benefit, mainly due to the low average price of exported wine and

a reduction in domestic consumption. To maintain competitiveness and consolidate its

international market, the sector must take steps to adapt to both new market demands

and the challenges imposed by climate change. On one hand, consumers demand new

products with lower alcohol content and with more fruity aromas. On the other, climate

change entails changes in the characteristics of the grape must (acidity, sugar or tannin

content, etc.) that affect the quality of the final product.

Previous projects have shown that non­conventional Saccharomyces species, such as

S. uvarum and S. kudriavzevii, seem to be good candidates to achieve such objectives:

they exhibit good fermentation properties at low temperatures and produce wines with

lower alcohol and higher glycerol content than S. cerevisiae and result in a good aromatic

profile. Despite their potential, these species cannot compete on an industrial level with

S. cerevisiae, which has greater resistance to ethanol and the ability to ferment at higher

temperatures.

The main demand within the oenological sector is to select and use yeast strains which
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perform well and resist to high­stress conditions that yeasts have to face during industrial

processes. Wine fermentations are carried out under high ethanol concentrations, which

are toxic to yeasts. The first target of this stressful situation is the plasma membrane of

the cell because it acts as a barrier between the external environment and the inside of

the cell.

Accordingly, in the present thesis, I focus on characterizing and improving different

Saccharomyces yeast strains that have interesting physiological characteristics, suitable

for their use in the wine industry. The global objective is to provide the market with yeast

strains that both fulfill the sector demands; especially high ethanol tolerant yeasts for the

industrial processes and consumers’ demands: yeasts that produce final wines with a

lower ethanol and higher glycerol contents and good aroma profiles.

This global aim has been subdivided into five partial objectives:

1) Physiological characterization of S. cerevisiae strains from different origins. Study

of their ethanol resistance and membrane composition.

2) Transcriptome analysis of three selected S. cerevisiae strains with different ethanol

tolerances

3) Improving the ethanol tolerance of a S. uvarum strain by obtaining a Saccharomyces

cerevisiae x S. uvarum hybrid. Characterization, genomic and transcriptional

analysis of this artificial hybrid and their parental strains.

4) Study of the Saccharomyces cerevisiae x S. uvarum artificial hybrid adaptation

to a must media similar to that present in wine fermentation at advanced stages:

high ethanol, high sulfites, and low sugar concentrations. Analysis of the genome,

membrane composition, and transcriptome of the adapted hybrid.

5) Improvement of ethanol tolerance through adaptive evolution in the laboratory

of different strains of S. uvarum and S. kudriavzevii. Study of its genome and
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composition of the membrane.

This thesis is organized into 5 chapters:

1) Analysis of lipid composition reveals mechanisms of ethanol tolerance in the model

yeast Saccharomyces cerevisiae.

2) Transcriptome analysis in S. cerevisiae strains under ethanol stress reveals different

specific responses related to the synthesis of membrane lipids.

3) Differential contribution of the parental genomes to a S. cerevisiae × S. uvarum

hybrid, inferred by phenomic, genomic, and transcriptomic analyses, at different

industrial stress conditions.

4) Adaptive response to wine selective pressures shapes the genome of a

Saccharomyces interspecies hybrid.

5) Adaptive evolution of S. kudriavzevii and S. uvarum strains under ethanol stress.
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CHAPTER 1

Analysis of lipid composition reveals mechanisms of

ethanol tolerance in the model yeast

Saccharomyces cerevisiae

This chapter is published in Lairón­Peris et al. (2021), Applied and Environmental Microbiology.
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1.1 Introduction

Saccharomyces cerevisiae is a unicellular eukaryotic microorganism that has been

employed as a model organism to study diverse relevant phenomena in biology at

molecular level (Smith and Snyder, 2006).  Due to its high fermentative capability, it is

also widely used in the biotechnology field for the performance of industrial fermentations

of products such as wine, beer or bread (Legras et al., 2007) or traditional Latin American

beverages like pulque, masato, chicha, tequila or cachaça (Arias García, 2008; Badotti

et al., 2014; Stringini et al., 2009; Suárez Valles et al., 2005). S. cerevisiae also has a

relevant role in bioethanol production (van Zyl et al., 2007).

S. cerevisiae has been isolated from different sources and environments all over the

world, including fruits, soils, cactus, insects, oak, and cork tree barks (Eberlein et al., 2015;

Liti et al., 2009). The physiological and genetic diversity among the Saccharomyces genus

is high, due to their colonization of different environments; the most studied species are

those associated with industrial processes of economic importance as wine production

(Alba­Lois and Segal­Kischinevzky, 2010; Camarasa et al., 2011; Franco­Duarte et al.,

2014; Querol et al., 2003, 1994; Schuller et al., 2012), cider (Pando Bedriñana et al.,

2010) and beer (Alba­Lois and Segal­Kischinevzky, 2010).

Saccharomyces yeasts that have been selected to carry out these fermentations in a

controlled manner, show particular characteristics, as selective pressures imposed by the

fermentative environment, such as low pH and the high ethanol levels in the media, favor

yeasts with the most efficient fermentative catabolism, particularly S. cerevisiae strains,

but there are species in the Saccharomyces genus which are also found spontaneously

in these fermentation products including S. uvarum (Pretorius and Lambrechts, 2000).

Depending on the fermentation process, other factors apart from alcohol concentration,

as temperature, can be considered stress factors (Ganucci et al., 2018; Salvadó et al.,
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2011a,b).

Ethanol (CH3CH2OH) is a small molecule containing a methyl group and a hydroxyl

group and consequently it is soluble in both aqueous and lipidic phases. Because of these

properties, it can penetrate inside cells, which generates important stresses; incorporation

into the cell membrane can increase fluidity, which is a fundamental driver of membrane

properties (Jones and Greenfield, 1987; Lloyd et al., 1993) .

This fluidity change induces a loss of membrane integrity, becoming more permeable

(Marza et al., 2002). Ethanol causes other detrimental effects to the cells, including

alterations on mitochondrial structure, reducing ATP levels and respiratory frequency and

favoring acetaldehyde and reactive oxygen species (ROS) generation, which can cause

lipid peroxidation, DNA damage and oxidative stress (Alexandre et al., 2001; Yang et al.,

2012).   As a consequence, a notable reduction in cellular viability occurs.

Cell membranes are composed of lipids (mainly phospholipids and sterols, but also

sphingolipids and glycolipids) and proteins. Membrane lipids are amphipathic, possessing

hydrophobic (apolar) and hydrophilic (polar) regions. Embedded membrane proteins are

strongly associated with the apolar core of the bilayer and peripheral proteins are more

loosely associated with the membrane via several mechanisms. A key factor contributing

to membrane fluidity is the fatty acids and sterol composition of the membrane (Zinser

et al., 1991) .

The molecular structure of ethanol allows passive diffusion across the membrane

and likely incorporation into the bilayer structure (Peña and Arango, 2009) . When

this happens, van der Waals attractive forces decrease, increasing membrane fluidity

(Ingram and Buttke, 1985). Using fluorescence anisotropy studies, a direct relationship

between plasma membrane fluidity and ethanol concentration  has been reported

(Sánchez­Gallego, 2009; Simonin et al., 2008). This increase in fluidity, together with
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the loss of structural integrity previously mentioned, result in loss of various intracellular

components components including amino acids and ions (Marza et al., 2002), producing

alterations in a cellular homeostasis.

The alterations in membrane properties are fundamental in the mechanism of ethanol

toxicity, but the physical changes that the membrane structure undergoes as a result of

ethanol presence in the media have not been completely described. It is widely accepted

that ethanol is intercalated in lipidic heads of the membrane, with the OH group of the

ethanol associated with the phosphate group of the lipidic heads and the hydrophobic

tails aligned with the hydrophobic core of the membrane. When this interaction takes

place, ethanol molecules substitute interfacial water molecules, generating lateral spaces

between polar heads, and, as a consequence, spaces in the hydrophobic core (Chiou

et al., 1992). These gaps result in unfavorable energy, so the system tries to minimize it

by creating an interdigitated phase. This modification in the membrane causes a decrease

in its thickness of at least a 25% (Kranenburg et al., 2004; Vanegas et al., 2010) and as a

consequence of this thinning, alterations in membrane protein structure and function can

occur, leading to cellular inactivation during the fermentation process (Lee, 2004).

It has been demonstrated that membrane thickness affects membrane protein

functionality, in which maximum activity takes place with a defined thickness (Montecucco

et al., 1982; Yuan et al., 2004). If this thickness changes, exposure of hydrophobic amino

acid residues in integral membrane proteins can take place, resulting in a phenomenon

known as hydrophobic maladjustment (Lee, 2004), that can lead to aggregation of

membrane proteins to minimize the exposition of their hydrophobic parts in the aqueous

media (Leão and Van Uden, 1984) . Studies that use membrane models formed by

phosphatidylcholine and ergosterol that are exposed to different ethanol concentrations

have demonstrated that lipid composition protects the membrane because interdigitated

phase formation is delayed (Tierney et al., 2005).
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In Arroyo­López et al. (2010b), different Saccharomyces species were characterized

for their ethanol tolerance, identifying S. cerevisiae as the most ethanol tolerant one. In the

present work, we have selected 61S. cerevisiae strains, from different origins and isolation

sources. The purpose of this study was to establish differences in the behavior of strains

that represent the different S. cerevisiae groups, to determine the most resistant ones,

so they are better to perform industrial fermentations. With this aim, we both monitored

the growth in a liquid medium with different ethanol concentrations, using absorbance

measurements, and in a solid media, carrying out drop test analysis on ethanol plates.

Growth data were statistically analyzed for each of the S. cerevisiae strains and strains

showing a different behavior under ethanol stress were selected to conduct membrane

studies that allow correlations of lipid composition in yeast populations with responses to

environmental stress such as ethanol.

1.2 Materials and Methods

1.2.1 Strains and media conditions

The Saccharomyces cerevisiae yeast strains used in this study are listed in Table 1.1.

A total number of 61 strains from different isolation sources were selected. These strains

were maintained in GPY­agar medium (%w/v: yeast extract 0.5, peptone, 0.5, glucose 2,

agar 2). Yeast identity was confirmed by sequencing the D1/D2 domain of the 26S rRNA

gene (Kurtzman and Robnett, 1998b).
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Table 1.1: List of the 61 Saccharomyces cerevisiae
strains used in this work.

Strain
name

Strain repository /
Collection

Isolation source
and origin

Strain properties /
Description

Wine comercial fermentation strains
MY1 Lallemand Wine White and rosé wines
MY2 Lallemand Wine White wines
MY3 Lallemand Wine Rosé and red wines
MY4 Lallemand Wine White and rosé wines
MY6 Lallemand Wine White, rosé and red wines
MY7 Lallemand Wine Red wines
MY8 Lallemand Wine Red wines
MY11 Lallemand Wine White wines
MY12 Lallemand Wine Red wines
MY13 Lallemand Wine White, red and rosé wines

MY14 Lallemand Wine Sparkling wines, fruit
wines and ciders

MY15 Lallemand Wine White wines
MY16 Lallemand Wine White, red and rosé wines
MY17 Lallemand Wine White wines
MY18 Lallemand Wine Stuck fermentations
MY19 Lallemand Wine Red wines
MY20 Lallemand Wine Red wines
MY21 Lallemand Wine Red wines
MY51 Lallemand / AQ29 Wine Red wines
MY62 Lallemand Wine White winesa

MY63 Lallemand Wine White and rosé wines
Wine non comercial fermentation strains
MY52 AQ1336 Wine, South Africa ­
MY53 AQ923 Wine, Spain ­
MY54 AQ924 Wine, Spain ­
MY55 AQ2371 Bili wine, West Africa ­
MY56 AQ2375 Bili wine, West Africa ­
MY61 AQb Wine, Hungary High Temperature
MY28 AQ2492 Flor wine, Spain ­
MY29 AQ2356 Flor wine, Spain ­
MY30 AQ94 Flor wine, Spain ­
MY31 AQ636 Flor wine, Spain ­
Other commercial fermentation strains
AJ4 Lallemand Fermentations ­
MY50 Lallemand Fermenting cacao ­
MY60 Fermentis Bioethanol Ethanol Red
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Table 1.1 continued from previous page
Strain
name

Strain repository /
Collection

Isolation source
and origin

Strain properties /
Description

Other non commercial fermentation strains
MY25 AQ2579 Agave salmiana, Peru ­
MY26 AQ2493 Agave salmiana, México ­
MY27 AQ2591 Chicha de jora, Perú ­
MY32 AQ594 Sake, Japan ­
MY33 AQ1312 Sakeye, Japan ­
MY34 AQ1314 Sakeye, Japan ­
MY35 AQ2332 Chicha de jora, Perú ­
MY36 AQ2469 Chicha de jora, Perú ­
MY37 AQ2363 Masato, Perú ­
MY38 AQ2473 Masato, Perú ­
MY43 AQ1180 Cider, Ireland ­
MY44 AQ1182 Cider, Ireland ­
MY45 AQ1184 Cider, Ireland ­
MY46 AQ2851 Sugar cane, Brazil ­
MY47 AQ2543 Sugar cane, Brazil ­
MY48 AQ2506 Sugar cane, Brazil ­
MY57 AQ843 Beer, Belgium ­
MY58 AQ1323 Sorghum beer, Burkina Faso ­
MY49 AQ1085 Fermenting cacao, Indonesia ­
MY59 UFLA Bioethanol, Brazil ­
Natural Environmental strains
MY22 AQ2458 Agelaia vicina, Peru ­
MY23 AQ2163 Quercus faginea, Spain ­
MY24 AQ997 Prunus armeniaca, Hungary ­
Clinical strains
MY39 AQ2587 Dietetic product, Spain ­
MY40 AQ2654 Faeces, Spain ­
MY41 AQ435 Vagina, Spain ­
MY42 AQ2717 Lung, Spain ­

a S. cerevisiae strain containing a limited amount of S. kudriavzevii genome (Erny et al., 2012)

b Kindly provided by M. Sipiczki

AQ = Amparo Querol Collection

UFLA = Universidade Federal de Lavras
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1.2.2 Drop test experiments. Assay in ethanol plates

To assess yeast strains’ ethanol tolerance, drop test experiments were carried out. Rectangular

GPY plates supplemented with different ethanol percentages (0, 6, 10, 14, 16 and 18%) were

prepared. Yeast cells were grown overnight at 28ºC on GPY media and diluted to an OD600= 0.1

in sterile water. Then, serial dilutions of cells (10−1 to 10−3) were transferred on the plates with

replicates and incubated at 28ºC for ten days with the plates wrapped in parafilm to avoid ethanol

evaporation. Each strain was inoculated twice on the same plate but at different positions, and an

exact replicate of the plate was made. With this method, four biological replicates of each strain

were performed. Growth values were assigned to each of the replicates: 0 no growth, 1 weak

growth, 2 intermediate growth and 3 remarked growth. Median growth values were assigned for

each ethanol concentration. Hierarchical clustering used in heatmap plot was elaborated using

www.heatmapper.ca tool, (Babicki et al., 2016) with Euclidean distance measurement method and

group clustering was based on growth in different ethanol media averages (average linkage).

1.2.3 Growth in liquid media. Optical density measurements.

GPY precultures of each strain were prepared and incubated at 28ºC overnight. These

cultures were washed with sterile water and adjusted to an OD600 = 0.1 in each one of the

culture media (YNB liquid media supplemented with different ethanol percentages (0, 1, 6, 8, 10,

13, 16 and 18 %)). YNB is composed of 6.7 g/L of aminoacids and ammonium sulfate (YNB,

Difco) and is supplemented with 20 g/L of D­glucose as carbon source. Growth was monitored

in a SPECTROstar Omega instrument (BMG Labtech, Offenburg, Germany) at 28ºC. NuncTM

MicroWellTM 96 well plates (ThermoFisher Scientific) wrapped in parafilm and with water in each

of its 4 repositories were employed. Measurements were taken at 600 nm every 30min, with 10

seconds of preshaking before each measurement until 64 hours of growth monitoring. All the

experiments were carried out in triplicate.
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1.2.4 Estimation of the NIC and MIC parameters

The basis of the technique, used as in Arroyo­López et al. (2010b) is the comparison of the

area under the OD–time curve of positive control (absence of ethanol, optimal conditions) with

the areas of the tested condition (presence of ethanol, increasing inhibitory conditions). As the

amount of inhibitor in the well increases, the effect on the growth of the organism also increases.

This effect on the growth is manifested by a reduction in the area under the OD–time curve relative

to the positive control at any specified time.

Briefly, the areas under the OD–time curves were calculated by integration using GCAT

software (http://gcat­pub.glbrc.org/). Then, for each ethanol condition and strain replicate, the

fractional area (ƒa) was obtained by dividing the tested area between the positive control area

( ƒa = (test area ) / (positive control area ). The plot of the ƒa vs log10 ethanol concentration

produced a sigmoid­shape curve that could be well fitted with the modified Gompertz function for

decay (Lambert and Pearson, 2000):

ƒa = A + C × exp−expB(x −M)

After this modelling, the NIC (non­inhibitory concentration) and MIC (Minimum Inhibitory

Concentration) parameters could be estimated as in Lambert and Pearson (2000):

NIC = 10[M−(1.718/B)] MIC = 10[M+(1/B)]

To check for significant differences among yeast species for NIC and MIC parameters, an

analysis of variance was performed using the one­way ANOVA module of Statistica 7.0 software.

Tukey test was employed for mean comparison. ggplot2 package (Wickham, 2009) implemented

in R software, version 3.2.2 (R Core Team, 2013) was employed for graphic representation of these

NIC and MIC values.
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FIGURE 1.1 Theoretical restriction profile of MMS1 region digested with enzyme RsaI. Lane 1
corresponds to AJ4; lane 2 to MY29; and lane 3 to MY14. Calculations were made based on strain
specific haplotypes. MY14 shares an haplotype with MY29 that is indicated in blue for lane 3, and
has differencial haplotype which is represented by black lines in lane 3.

1.2.5 Strains selection and competition fermentation

5 strains were selected based on their different growth in liquid media and in solid media with

ethanol: AJ4, MY3, MY14, MY26 and MY29. Competition fermentations were carried out in 30

mL GPY, GPY+6% ethanol and GPY+10% ethanol in triplicate. 0.1 OD of each of the 5 strains

were inoculated in every initial culture. Every 3­5 days 1 mL of the culture was transferred into

the corresponding fresh media. After 5 and 10 rounds, culture plates of samples from every tube

were obtained. 20 colonies from every plate were randomly picked for their identification. This was

carried out by means of mitochondrial digestion profile identification (Querol et al., 1992), which

allowed differentiation of all of the strains except for MY14 and MY29, which shared the same

exact profile. As an alternative, as we had available the genome sequences of MY14 and MY29

(Morard et al., 2019), we identified a divergent region among these two strains which encomprises

geneMMS1. We amplified a region of geneMMS1with primers f1 (AACGGATCCTTTTTCCCAAC)

and r1 (CGGTCGCAAAAATTAACG) and used RsaI digestion to differentiate specially these two

strains. Theoretical results for digestion bands sizes in a agarose were calculated based on Sanger

sequencing of the amplicon for the strains of interest (Figure 1.1).
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1.2.6 Lipid extraction and quantification by ammonium ferrothiocyanate assay

Yeast precultures of each one of the five selected strains (AJ4, MY3, MY14, MY26 and MY29)

were first propagated in 25 mL of GPY media at 200 rpm and 28°C. The cultures were harvested

after 24 h and total lipids were extracted using a modified Bligh and Dyer protocol (Spickett et al.,

2011). To quantify the lipids, 10 µL sample was taken from the above 100 µL reconstituted lipids

in chloroform and added to 2 mL chloroform with 1 mL of assay reagent (0.1M FeCl3.6H2O, 0.4 M

ammonium thiocyanate) in a 15 mL glass tube. Samples were vortexed for 1 min and centrifuged

at 14,500 g for 5 mins. The lower layer was collected into quartz cuvettes. The absorbance was

measured at 488 nm, and the concentration of lipid was determined by comparison with a standard

curve of a mixture of phospholipid standards (POPC, POPE and POPG) (Sigma).

1.2.7 Mass spectrometry of lipids present in the strains

The lipids from each of the five yeast strains extracted as previously described were

reconstituted in 100 µL chloroform to contain 5 μg/μL lipid as determined by ammonium

ferrothiocyanate assay, and then diluted 1 in 50 in solvent A (50:50 acetonitrile:H2O, 5 mM

ammonium formate and 0.1% v/v formic acid). Analysis of 10 µL samples was performed by

LCMS. LC was performed on a U3000 UPLC system (Thermo scientific, Hemel Hempstead) using

a Kinetex C18 reversed phase column (Phenomenex, 2.6 µm particle size, 2.1 mm x 150 mm), at a

flow rate of 200 µL/min with a gradient from 10% solvent B to 100% solvent B (85:10:5 isopropanol:

acetonitrile: H2O, 5 mM ammonium formate and 0.1% v/v formic acid) with the following profile: t=0

10% A, t=20 86%A, t=22 96%A, t=26 95%A. MS analysis was carried out in positive and negative

ionization mode on a Sciex 5600 Triple TOF. Source parameters were optimized on infused

standards. Survey scans were collected in the mass range 250­1250 Da for 250 ms. MM data was

collected using top 5 information dependent acquisition and dynamic exclusion for 5 s, using a fixed

collision energy of 35V and a collision energy spread of 10V for 200 ms per scan. ProgenesisQI®

was used for quantification and LipidBlast (https://fiehnlab.ucdavis.edu/projects/LipidBlast) for
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identification. All data were manually verified and curated. Data were analyzed by two­way

ANOVA and Tukey’s multiple comparisons test, where n = 5. Data sets were uploaded to:

https://doi.org/10.17036/researchdata.aston.ac.uk.00000495

1.2.8 TLC analysis

Yeast lipids extracted as above after 24 h growth were analyzed by TLC. Briefly, 20 µg of lipid

sample and 10 µg phospholipid lipid standards (POPE and POPS) (Sigma) were loaded onto silica

gel TLC plates (Sigma) and separated using chloroform/methanol/acetic acid/water 25:15:4:2. The

plates were air dried and sprayed with ninhydrin reagent (0.2% ninhydrin in ethanol) (Sigma) and

charred at 100ºC for 5mins. Images of plates were captured with a digital camera and spot intensity

was determined using ImageJ software.

1.2.9 Laurdan membrane fluidity assay

Yeast cultures were set up in GPY and incubated at 200 rpm and 28ºC overnight. Then,

25 mL of GPY media containing 0% ethanol, 6% ethanol or 10% ethanol was inoculated

to an OD595 of 0.5. Samples were taken at different time points during the fermentation,

and live yeast were diluted to an OD595 of 0.4 in GPY and incubated with 5 μM Laurdan

(6­dodecanoyl­2­dimethylaminonaphthalene) for 1 h. Fluorescence emission of these cells stained

with Laurdan was taken using a microplate reader (Mithras, Berthold) with the following filters;

λex=460 λem=535. Generalized Polarization (GP), derived from fluorescence intensities at critical

wavelengths, can be considered as an index of membrane fluidity and is calculated as GP = (I460 ­

I535)/(I460 + I535) Data were analyzed by one­way ANOVA and Tukey’s multiple comparisons test,

where n = 3.
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1.2.10 Carboxyfluorescein dye leakage assay

Lipids for each of the five selected yeast strains extracted as described previously were used to

generate 400 nm liposomes loaded with 100 mM Carboxyfluorescein (CF) in protein buffer (50 mM

tris, 50mMNaCl, pH 7.4). Dye leakage assays were performedwith at 0.125mg/mL liposomes and

increasing concentrations of ethanol in protein buffer at room temperature, and the fluorescence

emission measured (λex= 492 nm, λem=512 nm). Liposomes were treated with 5% Triton X­100

to fully disrupt them, and fluoresecence measurements were normalized to the maximum reading

for each liposome composition. Data were analyzed by one­way ANOVA and Tukey’s multiple

comparisons test, where n = 3.

1.2.11 PCA analysis

To visualize the relationships among different ethanol tolerance parameters and lipid

composition of the selected S. cerevisiae strains, a principal component analysis (PCA) was

performed using the prcomp function and ggbiplot (0.55 version) and ggplot (3.2.1 version)

implemented in R.

1.3 Results

1.3.1 Ethanol tolerance of the strains in solid media

A total of 61 yeast strains belonging to S. cerevisiae were selected to asses the ethanol

tolerance. The sequencing of the D1/D2 26S rRNA gene of these strains were deposited in

GenBank with the accession numbers MW559910­MW559970. 21 are industrial strains and

were selected for their use in winemaking and 40 of them belong to the IATA­CSIC collection.

The sources from which these 40 strains were retrieved are diverse: agave, beer, bioethanol,

chicha, cider, cocoa, honey water, masato, sake, sugar cane, wine, natural wild strains, etc. S.
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cerevisiae yeast strains’ ethanol tolerance was first assessed in plates with GPY + different ethanol

percentages. To observe the influence of ethanol on these strains we performed four biological

replicates of each strain growth in 6 different media. One biological replicate for each of the strains

and media can be seen in Supplementary Figure 1.1.

With the growth data of each of the strains and taking into account, the 4 replicates values of

growth for each strain, a heatmap with the growth data in ethanol was constructed (Figure 1.2).

This heatmap is hierarchically clustered into two big clusters with different subclusters. The first

cluster is made up of the strains which are more tolerant of ethanol (a total number of 22 of the 61

strains) and another one with the rest of the strains which show intermediate and low growth with

this compound (39 strains). Among the first cluster, with the most tolerant strains, it is interesting

that 19 of the 22 strains belong to commercial wine strains. The other 3 strains which are included

in this heatmap are AJ4, a Lallemand commercial strain, which is also one of the most tolerant

strains of all the screened ones; MY48, a cachaça strain and MY43, a cider yeast strain.

The other cluster, with the 39 intermediate­low tolerant strains, appears to be divided into two

subclusters too. One of the subclusters is composed of MY33 and MY34, which are the less

ethanol tolerant strains, and that belong to the sake group. It is interesting to note that in the other

subcluster, there are strains with different behaviors. As an example, strains MY46 (cachaça)

and MY44 (cider) growth in ethanol media are affected by low ethanol concentrations (ethanol

percentage of 6%), but they can grow (at a low rate) until 16% of ethanol is present in solid media.

On the other hand, there are other strains, such as MY37 (Masato) and MY22 (natural), whose

growth is not affected until 10% of ethanol is present in GPY solid media but in the next ethanol

step (14%) they do not grow at all.

1.3.2 Ethanol tolerance of the strains in liquid media

Ethanol tolerance of the set of S. cerevisiae strains was evaluated in minimal YNB liquid

media at 28ºC. Yeast growth was evaluated by OD600 determination in microtiter plates containing

this media with different ethanol concentrations and for each strain, the area under the curve
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SUPPLEMENTARY FIGURE 1.1 Images with one of the replicates per plate of the ethanol drop
tests. For each one of the 61 strains, 4 replicates in GPY plates containing 6 different ethanol
percentages (0%, 6%, 10%, 14%, 16% and 18%) were performed, using 3 serial dilutions of cells
(10­1 to 10­3 OD).
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FIGURE 1.2 Heatmap representation of growth values (from 0 to 3) of the analyzed strains
at plates with increasing ethanol concentrations. Each line corresponds to a strain (AJ4,
MY1­MY63) and each column to a particular ethanol concentration (0%, 6%, 10%, 14%, 16%
and 18%). The color key bar at the top indicates growth values, from yellow (low growth value) to
pink (high growth value). Hierarchical clustering is showed on the left. Color dots on the right of
the Figure indicate the source/origin of each one of the strains. In Supplementary Figure 1 can be
seen one of the four replicates from which these heatmap was constructed.
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during these growths was calculated. With the area under the curve reduction due to the

addition of ethanol, NIC (non­inhibitory concentration) and MIC (minimum inhibitory concentration)

parameters were calculated for 57 of the 61 strains. Not all of the 61 strains could be evaluated

following this method: the data obtained with flor strains MY28 and MY31 could not be used

because these strains flocculate and the data obtained with them are not reproducible. The data

obtained with the strains MY55 and MY56 was not used as they have problems growing in minimal

media YNB. The complete list with the NIC and MIC values for each one of the selected strains

can be found in Table 1.2. Figure 1.3 depicts a graph representing these values for each one of

the strains.

1.3.3 Strain selection

After performing the phenotypic characterization in ethanol of our collection of 61 strains, to

further characterize some representatives of the different behaviors we decided to select 5 of them

as they showed a range of tolerances: AJ4, MY3, MY14, MY26, and MY29. Figure 1.4A shows

the results of the drop test in GPY+ethanol media of these 5 strains and Figure 1.4B the NIC and

MIC parameters of growth in YNB liquid media+ethanol.

AJ4 shows high NIC and MIC values during YNB growth in liquid media, and in solid media

in GPY + ethanol it clusters amongst the most tolerant S. cerevisiae strains too. This strain, is a

Lallemand commercial strain that has been reported as a highly tolerant ethanol strain (Lairón­Peris

et al., 2020). It has a high NIC value 11.62% ± 0.33%, which means that a high concentration of

ethanol is needed to affect its growth.

MY29, which is a flor strain isolated from sherry wine, is classified within the second cluster

with the strains that show an intermediate growth in GPY+ethanol in solid media. It grows well

until 14% ethanol; however, viability is reduced in 16% ethanol, and it is unable to grow at 18%

ethanol. Regarding the liquid assay in YNB+ethanol, its MIC value is amongst the highest MIC

values of all of the strains (15.41% ± 2.93%), but its NIC value (7.5% ± 1.48%) can be classified as

a medium­low value. This result shows that MY29 is a S. cerevisiae strain whose behavior can be
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FIGURE 1.3 Representation of each strain NIC (yellow) and MIC (red) parameters in relation
with its ethanol tolerance (%). Values are averages from triplicate experiments and standard
deviation is represented too. Color dots on the right of the Figure indicate the source/origin of
each one of the strains. Strains are ordered by MIC value.
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TABLE 1.2 NIC and MIC values of the Saccharomyces cerevisiae strains evaluated

Strain NIC (%) MIC (%)
MY2 5.08 ± 1.01 12.36 ± 1.80
MY8 10.44 ± 0.51 13.18 ± 1.18
MY6 9.07 ± 0.97 15.69 ± 0.27
MY16 9.60 ± 0.26 12.69 ± 0.09
MY17 9.87 ± 0.60 14.97 ± 1.69
MY4 6.58 ± 0.65 10.12 ± 0.43
MY3 8.89 ± 1.26 12.97 ± 0.19
MY11 10.10 ± 0.17 13.87 ± 0.42
MY19 8.97 ± 0.87 12.72 ± 0.69
MY20 11.43 ± 1.51 14.84 ± 1.49
AJ4 11.62 ± 0.33 16.41 ± 0.71
MY10 4.97 ± 0.60 9.51 ± 0.00
MY5 5.54 ± 0.59 8.30 ± 0.25
MY51 8.28 ± 0.72 11.71 ± 2.13
MY1 9.36 ± 0.06 14.63 ± 0.56
MY21 7.05 ± 1.26 15.78 ± 1.98
MY7 8.85 ± 0.73 15.89 ± 0.13
MY9 7.28 ± 1.00 13.48 ± 1.12
MY15 10.63 ± 0.18 15.91 ± 0.17
MY22 6.67 ± 1.36 13.76 ± 1.04
MY23 9.38 ± 1.19 13.75 ± 0.65
MY24 8.32 ± 0.23 11.46 ± 0.36
MY25 9.26 ± 0.83 11.78 ± 1.75
MY26 7.24 ± 0.77 15.34 ± 0.40
MY27 7.34 ± 0.52 13.81 ± 2.20
MY29 7.50 ± 1.48 15.41 ± 2.93
MY30 7.61 ± 1.70 13.14 ± 0.29
MY32 4.96 ± 0.65 12.38 ± 0.30
MY33 6.04 ± 1.06 10.28 ± 0.64
MY34 8.02 ± 0.57 12.20 ± 1.55

Strain NIC (%) MIC (%)
MY35 6.99 ± 0.44 11.68 ± 0.65
MY36 7.56 ± 0.82 15.00 ± 1.82
MY37 10.22 ± 1.87 16.72 ± 0.58
MY38 7.40 ± 0.55 15.04 ± 0.83
MY39 7.37 ± 0.07 9.13 ± 0.39
MY40 8.01 ± 0.49 13.15 ± 2.28
MY41 7.59 ± 1.05 12.41 ± 0.53
MY42 8.23 ± 1.43 10.51 ± 0.39
MY43 7.69 ± 0.21 12.38 ± 0.24
MY44 8.12 ± 0.85 10.86 ± 0.41
MY45 6.61 ± 0.43 13.60 ± 1.70
MY46 7.15 ± 0.52 10.93 ± 0.22
MY47 8.70 ± 0.34 12.95 ± 0.28
MY48 6.26 ± 0.31 10.71 ± 0.78
MY49 6.56 ± 0.70 11.66 ± 0.66
MY50 4.92 ± 0.44 8.52 ± 1.03
MY52 6.29 ± 0.59 7.82 ± 0.76
MY53 8.43 ± 0.52 11.49 ± 0.95
MY54 7.68 ± 0.78 11.58 ± 0.99
MY59 8.12 ± 0.99 10.79 ± 0.65
MY60 7.19 ± 0.40 11.40 ± 0.55
MY61 7.54 ± 0.60 11.79 ± 1.52
MY14 6.78 ± 0.33 13.93 ± 0.91
MY18 11.58 ± 0.01 13.65 ± 0.21
MY13 12.99 ± 0.47 14.17 ± 1.28
MY12 7.56 ± 0.29 15.54 ± 0.68
MY57 8.03 ± 0.92 14.06 ± 0.97
MY58 9.09 ± 1.05 10.94 ± 0.95
MY62 8.84 ± 0.88 11.26 ± 1.34
MY63 8.34 ± 0.06 14.34 ± 0.17
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FIGURE 1.4 Photograph of the drop tests in ethanol plates (A) and the NIC andMIC parameters
(B) for each one of the 5 selected strains.

classified as intermediate in ethanol conditions. Moreover, MY29 is the most tolerant sherry wine

strain of the five strains analyzed.

MY26, which is an agave strain, is among the least tolerant strains in solid media and is also

the strain which shows the lowest growth among the three agave strains that we selected for our

study. In liquid media, its NIC value is also low, being affected by an ethanol concentration of

7.24% ± 0.77% but its MIC value is high (15.34% ± 0.4%). This strain shows similar behavior in

liquid media as MY29, but in solid media, it proved to be less tolerant as it was not able to grow in

14% ethanol plates, and MY26 could grow in this condition too.

MY3 and MY14 are commercial wine strains, which are classified in the cluster of the most
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tolerant strains regarding their growth on ethanol plates. Nevertheless, MY14 appears to be

affected by the ethanol at low concentrations (NIC value of 6.78% ± 0.33% and MIC value of

13.93% ± 0.91%) and MY3 seems to start being affected by ethanol at higher concentrations but

has a low range, as it has a low MIC value (NIC 8.89% ± 1.26% and MIC 12.97% ± 0.13%).

1.3.4 Competition fermentations

These five strains, AJ4, MY3, MY14, MY26, and MY29 were selected for their different

behavior regarding ethanol susceptibility. They were inoculated into mixed culture fermentations to

assess the correlation between ethanol tolerance and competition capacity under different ethanol

concentrations (0%, 6%, and 10%). As one GPY fermentation would be insufficient for observing

domination of the culture by one single strain, we followed a method in which we inoculated a

sample of the culture after sugar depletion into new fresh media with the corresponding ethanol

concentration.

After the tenth pass, AJ4 completely dominated the 0% and the 10% fermentations. However,

in 6% fermentations, MY29 strain completely dominated one of the three replicate fermentations

and clearly dominated the other two. The other 2 strains which are present in this 6% fermentation

when sugar is depleted are AJ4 and MY14, although in low proportion. Neither MY3 nor MY26

colonies were found in any of the fermentation (Figure 1.5).

AJ4 dominating high ethanol concentration cultures was quite an expected result regarding its

ethanol tolerance determined in the present work. However, it does not seem clear why MY29

dominates 6% ethanol cultures, given it moderate tolerance compared to other strains such as

AJ4, MY3 or even MY14. Here, probably, complex interaction among strains play an important

role in domination, which has been studied previously for another set of strains (Rossouw et al.,

2015), and demonstrated to be of importance together with growth capacity under the studied

media conditions (Alonso­del Real et al., 2017b).
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FIGURE 1.5 Percentage of strains present in GPY+ethanol media determined by molecular
identification after 10 rounds of fermentations. Every biological replicate is indicated by letters
A, B and C and the ethanol concentration present in the media in the X axis.

1.3.5 Lipid composition and membrane properties

Several studies have demonstrated that yeast are able to adapt their membrane composition

in response to ethanol stress (Alexandre et al., 1994; Beaven et al., 1982; Chi and Arneborg,

1999a). To better understand the effects of ethanol upon the yeast strains, we investigated the

properties of the membranes in the presence and absence of ethanol. We determined the total

lipid composition of each of the strains by mass spectrometry. The number of species identified for

major lipid classes for strains grown in media containing 0% or 6% ethanol is shown in Figure 1.6.

For the strains grown in the absence of ethanol, for ceramide 1­phosphates (CerP), there were

significantly fewer species observed in MY29 (109.6 ± 6.61) compared to AJ4 and MY3 (128.2

± 1.49 and 130 ± 0.55), where P < 0.01 (two­way anova and Tukey’s multiple comparisons test)

and MY14 (126.6 ± 1.86) where P < 0.05. For cardiolipin species (CL), there were significantly

fewer observed in AJ4 and MY3 (3.0 ± 0.45 and 3.0 ± 0.31); (P < 0.01), and MY14 and MY26

(4.2 ± 1.3 and 4.0 ± 0.55); (P< 0.05) when compared to MY29 (9.67 ± 1.8). There were fewer

diacylglycerols observed in MY29 compared to MY3 (180.2 ± 1.93 and 193.0 ± 1.41); (P < 0.05).

For glycerophosphatidic acid (GPA) species, there were significantly fewer species identified for

MY29 (126.4 ± 15.17) compared to AJ4 (178.0 ± 2.28; P < 0.0001), MY3 (175.0 ± 1.05; P < 0.001),

MY14 (170.4 ± 5.30; P < 0.001), and MY26 (167.8 ± 6.67; P < 0.01). There were also fewer
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FIGURE 1.6 Number of species identified by lipid class for AJ4, MY3, MY14, MY26 and MY29
strains. Lipids were extracted and analyzed by LC­MS in positive and negative ion mode. n = 5.

glycerophosphatidylethanolamine (GPEth) species identified for MY29 compared to each of the

strains (P < 0.01 in each case) (259.6 ± 3.2 AJ4; 258.4 ± 1.36 MY3; 254.8 ± 2.85 MY14; 252.4 ±

3.26 MY26 and 186.2 ± 35.034 for MY29). For glycerophosphoserine species (GPSer), there were

fewer species in MY29 (120.0 ± 12.99) compared to AJ4 and MY3 (157.6 ± 2.50 and 159 ± 1.41;

P < 0.001), MY14 (151.6 ± 3.41; P < 0.01) and MY26 (147.4 ± 3.94; P < 0.05). Lastly, there were

less monoacylglycerols (MG) species observed in MY29 (19.0 ± 0.84) than for MY3 (24.6 ± 0.51;

P < 0.01).

There were no significant differences observed between the species grown in the presence of

6% ethanol; however, significant changes were seen between the 0% and 6% ethanol samples.

For CL, there were significantly fewer species observed for MY29 grown in 6% compared to 0%

ethanol (3.0 ± 0.44 and 9.66 ± 1.80; P < 0.01). For DG, there were more species in 0% MY3 than

6% (193.0 ± 1.41 and 178.4 ± 2.13; P < 0.05), for GPA there were significantly fewer species in

MY29 at 0% compared to 6% (126.4 ± 15.17 and 157.0 ± 4.03; P < 0.05), and for GPEth there

were also significantly fewer species in MY29 at 0% compared to 6% ethanol (186.2 ± 35.04 and
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SUPPLEMENTARY FIGURE 1.2 Average carbon length of the acyl chains for AJ4, MY3, MY14,
MY26 and MY29 strains in the presence of 0% ethanol and 6% ethanol. Lipids were extracted
and analysed by LC­MS in positive and negative ion mode (n = 5).

241.2 ± 1.82; P < 0.05). There were significantly more MG species in MY3 at 0% (24.6 ± 0.51 and

20 ± 1.22; P < 0.05) and more TG species in MY3 at 0% compared to 6% ethanol (73.2 ± 1.39 and

66.6 ± 1.03; P < 0.01). Strikingly, MY29 seems to have the most different total lipid composition at

0% ethanol and to remodel this most dramatically, in terms of species diversity, at 6%. However, at

6% ethanol, species diversity in MY29 is similar to the other strains, perhaps indicating an optimal

membrane composition for ethanol tolerance.

Acyl chain length and saturation have been shown to be important factors in regulating

membrane fluidity and ethanol tolerance in yeast (Alexandre et al., 1994; Beaven et al., 1982; Chi

and Arneborg, 1999a). We therefore investigated this for AJ4, MY3, MY14, MY26 andMY29 strains

in both 0% and 6% ethanol. While there were no significant to changes in average carbon length

of the acyl chains for each of the strains grown in 0% compared to 6% ethanol (Supplementary

Figure 1.2), there were significant differences in saturation (Figure 1.7).

For the strains grown in 0% ethanol (Figure 1.7A), DG species contained a significantly lower
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FIGURE 1.7 Percentage of saturated, monounsaturated and polyunsaturated chains by lipid
class showing significant changes. A) AJ4, MY3, MY14, MY26 and MY29 strains in the
presence of 0% ethanol, and B) AJ4, MY3, MY14, MY26 and MY29 strains in the presence of
6% ethanol. Lipids were extracted and analysed by LC­MS in positive and negative ion mode (n =
5).
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FIGURE 1.8 TLC analysis of PE and PS abundance for AJ4, MY3, MY14, MY26 and MY29
strains. Samples were loaded in triplicate and spot intensity was analyzed using ImageJ. Spot
intensity is plotted relative to phospholipid standards loaded onto each plate.
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percentage saturated acyl chains in MY29 compared to AJ4 (37.95 ± 0.35 and 40.22 ± 0.30; P <

0.01). There was a significantly higher percentage of monounsaturated CL species in MY29 (30

± 7.83) compared to AJ4 and MY3 (0 ± 0.0 in both cases; P < 0.01), and MY26 (3.33 ± 3.33; P

< 0.05). For GPA, there was a significantly higher percentage saturated chains in MY29 (34.51 ±

1.07) compared to MY14 (31.30 ± 0.88); P < 0.05. For GPEth, there were more saturated chains in

MY29 compared to AJ4, MY3, MY14, and MY26 (31.21 ± 3.79; 25.30 ± 0.24; 24.92 ± 0.16; 24.96 ±

0.26; 24.38 ± 0.26; P < 0.05 in each case). There was a significantly greater number of saturated

GPSer species in MY29 compared to MY26 (32.44 ± 1.70 and 29.24 ± 0.22; P < 0.05) and a lower

number of monounsaturated species in MY29 (40.07 ± 2.20) compared to MY3 and MY14 (45.11 ±

0.62 and 44.7 ± 0.59; P < 0.05). Lastly, there was a significantly higher percentage of MG species

containing two unsaturations in MY29 (10.59 ± 0.40) compared to MY3 (8.14 ± 0.17) (P < 0.05).

Once again, MY29 is the most different in terms of saturated species at 0% ethanol and remodels

its membrane to be more similar to the other strains at 6%.

There were no significant differences observed between strains for 6% ethanol samples

(Figure 1.7B), but there were between strains grown in 0% compared to 6% ethanol. There was

a significantly higher percentage of saturated DG species for AJ4 at 0% than 6% ethanol (40.22 ±

0.30 and 38.08 ± 0.44), and a lower percentage of monounsaturated species for AJ4 (32.80 ± 0.09

and 34.75 ± 0.38; P < 0.001) and MY3 (33.06 ± 0.21 and 34.54 ± 0.25; P < 0.05) at 0% compared to

6% ethanol. For saturated GPEth species, there was a significantly higher percentage in 0%MY29

than 6% MY29 (31.21 ± 3.79 and 24.65 ± 0.26; P < 0.05), and significantly fewer monounsaturated

species in 0% MY29 compared to 6% (40.23 ± 0.55 and 41.94 ± 0.42; P < 0.05). There were

significantly more monounsaturated GPGro species in MY29 at 0% compared to 6% ethanol (19.12

± 4.95 and 12.37± 1.05). In addition, there were significantly fewer monounsaturated GPSer

species in 0% MY29 than in 6%. Lastly, for TG species, there were significantly more saturated

species in MY14 at 0% ethanol than in MY14 at 6% (35.94 ± 0.58 and 30.86 ± 1.16; P < 0.001),

more monounsaturated species in AJ4 6% (26.33 ± 0.503; P < 0.01), MY14 6% (6.24 ± 0.55; P <

0.01), and MY26 6% (25.73 ± 0.26; P < 0.05) compared to the 0% samples (23.40 ± 0.64; 23.60 ±

0.40 and 23.55 ± 0.25 respectively), and fewer species containing two unsaturations in MY3 (26.50
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± 0.47; P < 0.01) and MY14 at 0% (26.98 ± 0.55; P < 0.05) compared to 6% (29.43 ± 0.68 and

29.39 ± 0.48) samples.

To assess variation in overall lipid unsaturation the unsaturation index (UI) was calculated at

the lipid level by lipid class for species identified in each strain at 0% and 6% ethanol (Table 1.3)

using the percentage of lipids weighted by the number of unsaturated bonds: UI = % with one

unsaturation + (2 x % with two unsaturations) + (3 x % with three unsaturations) + (4 x % with four

unsaturations). The UI for DG was significantly lower for AJ4 compared to MY29 at 0% ethanol

(86.76 ± 0.64 and 90.03 ± 0.61, P < 0.01) and higher for GPEth species in the 0% AJ4, MY14,

MY26 strains compared to MY29 (108.72 ± 0.35, 108.72 ± 0.28, 109.36 ± 0.60 and 97.36 ± 7.13

respectively, where P < 0.05 in each case). The UI for MY29 at 0% was also significantly lower

than at 6% ethanol (108.73 ± 0.92, P < 0.05). Lastly, the UI for MG species at 0% ethanol was

significantly lower for MY3 compared to MY29 (73.30 ± 16.58 and 83.27 ± 18.95, P < 0.05), and

the UI for MY29 at 0% ethanol was significantly higher compared to 6% MY29 (83.27 ± 18.95 and

78.74 ± 1.52, P < 0.05).

Due to changes observed in PE and PS species diversity in Figure 1.6, we undertook

quantitative TLC analysis of these lipids. This showed significant differences in the abundance

of PE in MY26 grown in 0% ethanol (0.41 ± 0.02), where the abundance was higher compared to

AJ4 (0.03 ± 0.01 ; P < 0.0001), MY3 (0.08 ± 0.01; P < 0.0001), MY14 (0.17 ± 0.01; P < 0.0001)

and MY29 (0.18 ± 0.04; P < 0.0001) grown in 0% ethanol as illustrated by Figure 1.8).

There was also a significantly greater abundance of PE in 6% MY26 (0.41 ± 0.05) compared

to 6% AJ4 (0.08 ± 0.03; P < 0.05), MY3 (0.07 ± 0.02; P < 0.0001), MY14 (0.09 ± 0.01; P < 0.0001)

and MY29 (0.13 ± 0.01; P < 0.0001). In addition, there was a lower abundance of PE in MY26

at 10% ethanol (0.20 ± 0.06) compared to MY26 at both 0% (0.41 ± 0.02) and 6% ethanol (0.41

± 0.051); P < 0.001). There was a significantly lower abundance of PS in AJ4 at 0% ethanol

(0.06 ± 0.01) compared to MY14 and MY29 (0.36 ± 0.06 and 0.30 ± 0.09; P < 0.01 and P <

0.05, respectively). There was also a significantly lower abundance of PS in MY3 compared to

MY14 at 0% ethanol (0.09 ± 0.01 and 0.36 ± 0.06; P < 0.05). It is notable that MY26, the least

100



CHAPTER 1.

TA
BL

E
1.
3
U
ns

at
ur
at
io
n
in
de

x
(U
I)
fo
r
lip

id
s
id
en

tif
ie
d
in

ea
ch

st
ra
in

w
as

ca
lc
ul
at
ed

us
in
g
th
e
pe

rc
en

ta
ge

of
lip

id
s
w
ith

ea
ch

nu
m
be

r
of

un
sa
tu
ra
te
d
bo

nd
s:

on
e
un

sa
tu
ra
tio

n
+
(2

x
tw
o
un

sa
tu
ra
tio

ns
)+

(3
x
th
re
e
un

sa
tu
ra
tio

ns
)+

(4
x
fo
ur

un
sa
tu
ra
tio

ns
).
St
at
is
tic
al
ly

si
gn
ifi
ca
nt
di
ffe
re
nc
es

be
tw
ee
n
st
ra
in
s
an
d
et
ha
no
lc
on
di
tio
ns

ar
e
hi
gh
lig
ht
ed

in
bo
ld
(tw

o­
w
ay

an
ov
a
an
d
Tu
ke
y’
s
m
ul
tip
le
co
m
pa
ris
on
s
te
st
).

Er
ro
rs
(S
D
)a
re
sh
ow

n
in
br
ac
ke
ts
,n

=
5.

0%
et
ha

no
l

6%
et
ha

no
l

Li
pi
d

sp
ec
ie
s

A
J4

M
Y3

M
Y1

4
M
Y2

6
M
Y2

9
A
J4

M
Y3

M
Y1

4
M
Y2

6
M
Y2

9

C
er
P

41
.3
8
(±
1.
09
)

42
.5
0
(±
1.
01
)

41
.8
6
(±
0.
54
)

41
.9
0
(±
0.
50
)

40
.2
3
(±
4.
34
)

83
.2
5
(±
0.
58
)

82
.9
3
(±
0.
41
)

84
.3
9
(±
1.
17
)

83
.9
3
(±
0.
43
)

83
.2
5
(±
0.
58
)

C
L

33
.3
3
(±
13
.9
2)

70
.0
0
(±
8.
15
)

62
.2
2
(±
23
.3
6)

90
.0
0
(±
31
.8
3)

88
.0
0
(±
35
.9
1)

10
7.
24

(±
34
.5
6)

60
.0
0
(±
4.
08
)

11
1.
79

(±
32
.3
1)

30
.0
0
(±
19
.9
6)

84
.3
3
(±
32
.5
3)

D
G

86
.7
6
(±

0.
64
)

89
.0
2
(±
0.
29
)

88
.9
9
(±
0.
62
)

89
.2
5
(±
0.
48
)

90
.0
3
(±

0.
61
)

89
.1
0
(±
4.
08
)

89
.9
1
(±
0.
31
)

88
.3
1
(±
0.
63
)

87
.6
5
(±
0.
64
)

89
.7
1
(±
0.
69
)

G
PA

10
4.
16

(±
0.
98
)

10
3.
65

(±
0.
34
)

10
7.
60

(±
1.
63
)

10
4.
22

(±
1.
01
)

10
3.
12

(±
0.
87
)

10
3.
96

(±
23
.3
1)

10
4.
26

(±
1.
00
)

10
5.
53

(±
0.
34
)

10
4.
08

(±
1.
02
)

10
5.
09

(±
1.
13
)

G
PC

ho
50
.2
0
(±
0.
57
)

50
.2
9
(±
0.
17
)

50
.0
3
(±
0.
43
)

50
.7
2
(±
0.
32
)

50
.3
6
(±
0.
35
)

96
.6
4
(±
19
.9
6)

96
.6
6
(±
0.
49
)

96
.4
7
(±
0.
59
)

96
.3
5
(±
0.
50
)

95
.7
7
(±
0.
71
)

G
PE

th
10
8.
72

(±
0.
35
)

10
8.
20

(±
0.
35
)

10
8.
72

(±
0.
28
)

10
9.
36

(±
0.
60
)

97
.3
6
(±

7.
13
)

10
9.
69

(±
32
.5
3)

11
0.
43

(±
0.
50
)

11
0.
04

(±
1.
06
)

10
9.
81

(±
0.
36
)

10
8.
73

(±
0.
92
)

G
PG

ro
12
4.
20

(±
0.
97
)

12
3.
76

(±
1.
02
)

11
9.
56

(±
1.
01
)

12
4.
69

(±
2.
03
)

12
5.
84

(±
5.
31
)

12
1.
53

(±
3.
14
)

12
0.
00

(±
0.
31
)

12
0.
03

(±
2.
85
)

12
0.
87

(±
2.
67
)

12
7.
20

(±
2.
24
)

G
PI
ns

82
.2
4
(±
1.
21
)

88
.8
0
(±
3.
42
)

80
.5
5
(±
2.
65
)

88
.0
5
(±
3.
25
)

92
.0
6
(±
2.
02
)

81
.0
6
(±
2.
40
)

84
.2
6
(±
1.
81
)

85
.2
4
(±
4.
14
)

90
.5
6
(±
2.
16
)

86
.0
7
(±
2.
39
)

G
PS

er
96
.6
8
(±
0.
59
)

95
.8
5
(±
0.
33
)

95
.9
2
(±
0.
62
)

97
.3
0
(±
0.
43
)

95
.0
6
(±
1.
70
)

97
.8
3
(±
22
.3
2)

96
.8
0
(±
22
.0
9)

96
.5
2
(±
22
.0
1)

97
.0
0
(±
22
.1
3)

96
.6
8
(±
22
.0
5)

M
G

77
.4
2
(±
17
.6
8)

73
.3
0
(±

16
.5
8)

78
.0
9
(±
17
.7
1)

78
.4
3
(±
17
.7
7)

83
.2
7
(±

18
.9
5)

79
.9
0
(±
1.
88
)

83
.2
1
(±
1.
26
)

80
.5
9
(±
2.
78
)

78
.7
4
(±
0.
90
)

78
.7
4
(±

1.
52
)

TG
11
6.
88

(±
1.
35
)

11
8.
43

(±
2.
36
)

11
8.
00

(1
.1
6)

11
4.
93

(±
0.
62
)

11
8.
19

(±
0.
54
)

11
8.
75

(±
1.
18
)

12
0.
76

(±
1.
65
)

12
5.
55

(±
2.
90
)

11
8.
22

(±
0.
91
)

12
2.
29

(±
1.
91
)

101



CHAPTER 1.

-0.050

-0.025

0.000

0.025

0.050

0 5 10 15 20 25

AJ4 0% ethanol
AJ4 6% ethanol
AJ4 10% ethanolG

en
er

al
iz

ed
 p

o
la

ri
za

ti
o

n
 c

h
an

g
e

 (
re

la
ti

ve
 v

al
u

e)

-0.050

-0.025

0.000

0.025

0.050

0 5 10 15 20 25

-0.050

-0.025

0.000

0.025

0.050

0 5 10 15 20 25 0 5 10 15 20 25
-0.050

-0.025

0.000

0.025

0.050

-0.050

-0.025

0.000

0.025

0.050

0 5 10 15 20 25

***

MY14 0% ethanol
MY14 6% ethanol
MY14 10% ethanol

MY26 0% ethanol
MY26 6% ethanol
MY26 10% ethanol

**

*

MY29 0% ethanol
MY29 6% ethanol
MY29 10% ethanol

MY3 0% ethanol
MY3 6% ethanol
MY3 10% ethanol

Time (h)

Time (h)

Time (h)

Time (h)

Time (h)

A

C

B

D

E

G
en

er
al

iz
ed

 p
o

la
ri

za
ti

o
n

 c
h

an
g

e
(r

el
at

iv
e 

va
lu

e)

G
en

er
al

iz
ed

 p
o

la
ri

za
ti

o
n

 c
h

an
g

e
(r

el
at

iv
e 

va
lu

e)

G
en

er
al

iz
ed

 p
o

la
ri

za
ti

o
n

 c
h

an
g

e
(r

el
at

iv
e 

va
lu

e)

G
en

er
al

iz
ed

 p
o

la
ri

za
ti

o
n

 c
h

an
g

e
(r

el
at

iv
e 

va
lu

e)

FIGURE 1.9 The effects of ethanol upon the fluidity of live yeast throughout the fermentation,
measured by changes to Laurdan GP.
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tolerant strain, is the most different at 0% and 6% ethanol, but has a similar composition to the

other strains at 10%. Qualitatively, the amount of PE in the membrane at 0% ethanol correlates

well (MY26>MY29>MY14>MY3>AJ4; Figure 1.8) with the NIC (MY29<MY26<MY14<MY3<AJ4;

Figure 1.4).

We next examined the effect of ethanol upon the fluidity of the yeast membranes as they grew in

cultures with and without ethanol. We utilized the fluorescent dye, Laurdan, which has been used to

study phase properties of membranes as it is sensitive to the polarity of the membrane environment

(Learmonth and Gratton, 2011). GP (Generalized Polarization) values, which inversely correlate

with fluidity, were calculated at six timepoints during the growth of AJ4, MY3, MY14, MY26 and

MY29 strains in GPY, GPY containing 6% ethanol and GPY containing 10% ethanol. The assay

suggests that the fluidity of the yeast membranes decreases with culture time as shown by the

increase in GP (Figure 1.9).

AJ4 and MY14 strains demonstrated large changes in fluidity when treated with 10% ethanol

(AJ4 showed a GP value change of ­0.0002 ± 0.0009 at 10% and a GP value change of 0.0233

± 0.0025 at 0% and MY14 showed a GP value change of ­0.0101 ± 0.002 at 10% and a GP

value change of 0.009 ± 0.002 at 0%) (P < 0.001 and P < 0.01, respectively). MY29 also became

significantly more fluid at 10% ethanol (GP value change of ­0.0016 ± 0.0011 at 10% and a GP

value change of 0.0084 ± 0.0019 at 0%) (P < 0.05) . However, these strains did not show any

increases in fluidity with 6% ethanol. The other strains showed no significant differences to fluidity

with ethanol treatment. It is notable that the most tolerant strains show the largest increases in

membrane fluidity in response to ethanol exposure.

To examine membrane permeability, we investigated the integrity of liposomes composed

of lipids extracted from each of the strains and loaded with carboxyfluorescein (CF) dye.

The liposomes were challenged with increasing concentrations of exogenous ethanol, and the

fluorescence increase from CF dye release was measured. The data in Figure 1.10 shows that the

liposomes containing lipids extracted from AJ4 demonstrated a signigficantly greater increase in

fluorescence at high ethanol concentrations than those composed of lipids from the other strains
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FIGURE 1.10 The effects of ethanol upon liposomes composed of lipids extracted from AJ4,
MY3, MY14, MY26 and MY29 strains normalized to the maximum amount of dye released
upon treatment with 5% Triton X­100.
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(ANOVA and Tukey’s multiple comparisons test (90.98 ± 4.29 fluorescence increase; P < 0.001).

MY3 and MY26 liposomes were less “leaky” overall (46.38 ± 2.97 and 47.41 ± 7.84 of fluorescence

increase). This increase in fluorescence indicates increased “leakiness” of the membranes.

1.3.6 Principal component analysis of the 5 strains

With the aim of grouping the 5 selected strains based on their lipid composition and their ethanol

tolerance, the data obtained in the previous sections was used to perform a PCA (Figure 1.11).

The data from the variables NIC, MIC, and the drop test growth value at 14% and 16% of ethanol

in the plates, related to the ethanol tolerance were used. For the lipid composition, the data of

the carboxyfluorescein release at the last time point; the data from the Laurdan experiments of the

differential GP value at 10% of ethanol and when no ethanol is present in the last time point, and

the PE abundance at 0% and 6% of ethanol in the media was used. The two commercial wine

strains MY3 and MY14 group together, and MY26 (the most sensitive to ethanol) and AJ4 (the

most tolerant) are the two strains that show more differences among them. It is interesting to note

that MY26 is associated in the PCA with an accumulation of PE in the membrane at low ethanol

concentration and a higher membrane rigidity, and the most tolerant stain, AJ4, associated with a

high membrane fluidity in the presence of ethanol.

105



CHAPTER 1.

NIC

M
IC

MY26

MY29

MY14

MY3

CARBO
XYFLU

O
REXCEIN

DROP TEST (14% ETHANOL)

DROP TEST (16% ETHANOL)

PE (6% ETHANOL)PE (0% ETHANOL)

LAURDAN

AJ4

PC1 (62.7% explained var.)

P
C

2 
(2

4.
1%

 e
xp

la
in

ed
 v

ar
.)

2

1

0

-1

0 2-2

FIGURE 1.11 PCA of the five S. cerevisiae selected strains regarding their lipid composition

and their ethanol tolerance.

1.4 Discussion

In this study, we investigated the membrane properties of the selected yeast strains to try to

understand their different levels of ethanol tolerance. The mass spectrometry analysis of the lipid

composition of each strain in the absence of ethanol highlighted differences in particular between

MY29 and the other strains, not only in the variety of species observed for the lipid classes but also

in their saturation. MY29 is a flor yeast. These yeasts constitute a separate phylogenetic group

within S. cerevisiae species. They are characterized by forming a layer on top of wine known as

flor, which allows them to access the oxygen during the fermentation of sherry wines, so they show

different behavior and thus, physiological characteristics to wine yeast. Moreover, they have been

reported to survive under extreme conditions (ethanol content over 15%) (Aguilera et al., 2006;

Naumov, 2017)  which could relate to their membrane structure.

Upon treatment with 6% ethanol, the lipid composition of MY29 underwent significant changes;
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the composition was then found to be more similar to that of the other strains, suggesting that the

membrane of MY29 underwent more drastic changes than the other strains in response to ethanol.

The lack of significant differences at 6% ethanol suggests that each of the strains move towards

a more common lipid composition in response to ethanol. However, despite the fewer differences

to lipid composition at 6% ethanol between the strains, MY29 dominated the fermentation at this

concentration. In addition, the lipid composition of AJ4 was not significantly different from the other

strains at 6% ethanol, although it is the most tolerant to ethanol. It is possible that there may be

further adaptation of the membrane at higher ethanol concentrations than were investigated in this

study, but it is likely that other factors contribute to the ethanol tolerance of these strains. Indeed,

this has been suggested by other studies, where the relationship between H+­ATPase activity

and ergosterol content as well as the sterol to phospholipid and protein to phospholipid ratios are

important (Aguilera et al., 2006; Alexandre et al., 1994; Shobayashi et al., 2005). Ethanol tolerance

is a complex phenotype, and different mechanisms may lead to improved tolerance. Fluidisation

of the yeast membranes by ethanol is also known to activate the unfolded protein response (UPR),

and it is speculated that a better response could lead to greater tolerance (Navarro­Tapia et al.,

2018). Moreover, yeast cells can increase their tolerance to ethanol by other mechanisms, such

as the increase the biosynthesis of some amino acids, as tryptophan (Yoshikawa et al., 2009) and

trehalose accumulation (Bandara et al., 2009).

Nevertheless, it is striking that yeast species with different membrane compositions in the

absence of ethanol, become more similar upon exposure, suggesting a common, or limited

number, of membrane compositions that maximize tolerance to ethanol.

Incorporation of longer acyl chains and a decrease in shorter chains has previously been shown

to occur in yeast in response to ethanol (Chi and Arneborg, 1999a; You et al., 2003); however,

we did not observe any significant changes in chain length. Our study does suggest that there

were significant differences in saturation between the species upon ethanol treatment. These

changes occurred in GPGro and GPEth in MY29, and occurred predominantly in DG and TG for

the other strains, with shifts towards increased saturation for AJ4 and increased unsaturation for

MY3 and MY14. These changes appear to be complex and specific to each strain. Documented
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changes to the membrane of yeast upon ethanol challenge are conflicting (Henderson and Block,

2014); while some studies have shown that increased levels of unsaturated fatty acids are linked to

improved ethanol tolerance (Chi and Arneborg, 1999a), changes to the unsaturation index may not

necessarily be associated with improved tolerance, or lead to the expected changes in membrane

fluidity and it is rather the potential of the cell to alter its composition (Alexandre et al., 1994;

Huffer et al., 2011). The lipid membrane is a highly complex environment and multiple factors

can influence membrane fluidity and permeability. Further study of these strains is required to

determine if their different compositions have similar biophysical properties.

We investigated the fluidity of the membranes and the Laurdan assay demonstrated that the

fluidity of the membranes for each strain decreased over the duration of the fermentation, which

has been observed previously (Ishmayana et al., 2017), andmay be linked to nutrient depletion and

changes in the growth rate of the cells. In our study, the most tolerant strain, AJ4, underwent the

largest changes in fluidity, where the membranes were significantly more fluid at 10% ethanol than

in the other conditions. AJ4 lipid­containing liposomes were also the “leakiest” when compared

to the other strains. This strain may therefore be better able to tolerate the fluidising effects of

ethanol upon the membrane or to modulate its membrane composition to lead to an increase

in fluidity; this more fluid composition may allow more efficient movement of ethanol across the

membrane. The membranes of one of the least tolerant strains, MY26, did not alter in fluidity in

any of the conditions and liposomes comprised of MY26 lipids were less leaky when challenged

with ethanol. In addition, our analysis of PE abundance shows that MY26 contained significantly

more PE than the other strains in both 0% and 6% ethanol, while the most tolerant strain, AJ4,

contained less PE in general than other strains. PE has a small headgroup and can form hydrogen

bonds with adjacent PE molecules (Murzyn et al., 2005). It influences lipid packing and therefore

membrane fluidity, where increased PE content results in less fluid membranes (Ballweg et al.,

2020; Dawaliby et al., 2016), consistent with our hypthesis. Lower PE content in relation to PC

has been correlated with more tolerant strains (Chi and Arneborg, 1999a; Jurešić et al., 2009).

These findings suggest that more tolerant strains are more fluid and permeable, while less tolerant

strains are more rigid and less permeable. Several studies have correlated membrane fluidity and
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ethanol tolerance, and many of these point to increased fluidity being associated with more tolerant

strains (Alexandre et al., 1994; Huffer et al., 2011), although another study suggests that less fluid

membranes are associated with more tolerant strains (Ishmayana et al., 2017). In this study we

provide further support for the concept that a low PE content is beneficial for ethanol tolerance. This

result can guide engineering to improve ethanol tolerance towards the reduction of PE synthesis.

This compound is produced by four separate pathways, but the Psd pathway, which utilizes PS as

a substrate is the predominant in S. cerevisiae (Birner et al., 2001; Bürgermeister et al., 2004), so

future works can be addressed in this direction.

In summary, the lipid composition of most of the yeast strains in this study were comparable but

there were significant differences between these and the MY29 strain. Upon ethanol treatment,

this composition changed significantly and a more similar composition was reached, suggesting an

adaptation mechanism in common with the other strains. Changes in saturation were observed for

each of the strains upon ethanol treatment, but it is not clear if these changes have a direct impact

upon fluidity and tolerance, and it is likely that other factors beyond the scope of this study play

a critical role and further investigation is needed. The PE abundance of the least tolerant strain,

MY26, was significantly higher than in the other strains. Our investigation therefore suggests that

the membranes of more tolerant strains are more fluid and contain less PE. Overall, our results

point to a reduced set of desirable membrane compositions and features that promote ethanol

tolerance with increased fluidity and permeability appearing to be key.
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2.1 Introduction

During fermentation processes, yeasts have to cope with a wide variety of environmental

stresses, including low and high temperatures (Cardona et al., 2007), high sugar concentrations

(Charoenchai et al., 1998), oxidation (Sha et al., 2013), and ethanol accumulation (Bauer and

Pretorius, 2000). Among them, ethanol toxicity is considered the primary factor limiting the

fermentation process (Kasavi et al., 2016; Lam et al., 2014). Ethanol reduces cell growth, limits cell

cycle and also alters many functions in microorganisms, such as lipid and amino acid metabolism,

trehalose biosynthesis, and mitochondrial function (Snoek et al., 2016; Navarro Tapia, 2016).

Moreover, cell membranes are primary targets of ethanol presence, and they are particularly

affected by its presence (Alexandre et al., 1994; Beaven et al., 1982).

Due to the relevant and limiting role of ethanol toxicity during fermentations, many studies have

addressed how this compound affects the behavior of industrial yeast strains of theSaccharomyces

genus. The response of yeast to ethanol stress is associated with general stress response

mechanisms (Alexandre et al., 2001; Stanley et al., 2010a). However, it is possible that apart

from general responses shared by this genus, each Saccharomyces strain has its strategy to cope

with ethanol present in the media (Kasavi et al., 2016).

At the same time, the fatty acid compositions of lipid membranes have been associated

with the ethanol tolerance of different Saccharomyces strains (Ghareib et al., 1988; Mishra and

Prasad, 1989; Sajbidor et al., 1995; You et al., 2003). Even though, the underlying mechanisms

for these associations remain unclear and more evidences are needed to understand how the

ethanol presence can change gene expression of these involved in lipid biosynthesis and thus

lipid membrane composition.

Over the past decade, transcriptomic analysis are gaining popularity as they provide a precise

and comprehensive technique to measure levels of transcripts in a determined biological context

(Li et al., 2017; Stark et al., 2019). The advent of next generation sequencing (NGS) technologies

has developed RNA sequencing (RNA­seq), which is an indispensable tool for transcriptome
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wide analysis in the form of differential gene expression which enable the comparison between

conditions and strains (Li et al., 2017; Stark et al., 2019). Many transcriptomic analyses after

the exposure of selected S. cerevisiae strains to ethanol stress conditions have been carried out,

revealing particularities for each strain in response to ethanol (Alexandre et al., 2001; Li et al.,

2010, 2017; Navarro­Tapia et al., 2016; Stanley et al., 2010b).

The aim of this study was to further investigate molecular mechanisms and pathways leading

to different ethanol tolerances in three S. cerevisiae strains, especially those that affect membrane

composition. The novelty of this study is that these S. cerevisiae strains have an industrial

interest and that they have been previously characterized for their ethanol tolerance andmembrane

composition. For this purpose, the genome­wide transcriptional responses of three S. cerevisiae

strains selected in the previous chapter (MY3, MY26, and AJ4) were investigated in the absence

and in the presence of ethanol at three different time points.

2.2 Materials and Methods

2.2.1 Strains’ selection

Three strains: AJ4, MY26, and MY3, which show different ethanol tolerances and whose lipid

compositions have been characterized in the previous chapter (Lairón­Peris et al., submitted) were

used. AJ4 is a strain from Lallemand used in fermentations and it is a high ethanol tolerant strain;

MY3 is a wine strain from Lallemand, mainly used in the fermentation of rosé and red wines and

it is a tolerant strain to ethanol; and MY26 is a strain used in the Agave fermentation, and it was

described as a low tolerant strain. The three strains are diploid, with no aneuploidies on their

genomes.
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2.2.2 Growth conditions and experimental design for acquiring the biological

samples

The experimental design consisted in growing the three yeast strains in GPY media with 0%,

6%, and 10%of ethanol. The growth of the strains was followed byODmeasurements and samples

were extracted in triplicate for posterior transcriptomic analyses.

First, strains were inoculated in GPY media without ethanol, and after a short acclimatization

phase of 1h, ethanol was added in some cultures to reach a final ethanol concentration of 6%

and 10% respectively. The remaining cultures in which no ethanol was added were used as a 0%

ethanol growing condition (control without ethanol). Samples were retrieved at four different time

points: t0 (before the ethanol addition, which is a control time point), t1 (early exponential phase

or EEP), time t2 (late exponential phase or LEP), and t3 (stationary phase or SP).

A high cell quantity was needed in the samples for extracting a sufficient amount of RNA from

these cells. An overnight preinocula for each one of the three strains was done in 500 mL of

GPY (OD600=0.2). The next day, 1 L Erlenmenyer flasks containing 750 mL of GPY media were

inoculated with an OD600=0.2.

We prepared a total number of 63 flasks, 21 flasks per strain: AJ4, MY3, and MY26 (21 x 3)

and 7 flasks per ethanol condition: 0%, 6% and 10% of ethanol (7 x 3). Fermentations were carried

out at 28ºC with orbital agitation at 150 rpm. Strain’s growth at the three ethanol conditions were

followed by measuring the OD600 at different time points.

At t0 we extracted the total volume of three of the flasks per strain. These samples were treated

as control samples. Then, we added ethanol to the media in the other 18 flasks per strain (6% in

9 of the flasks and 10% in the other 9, respectively). Cell samples were retrieved at three more

time points: t1 using the entire volume of a flask; and time t2 and t3 using the volume of the other

flask. Cells were harvested by centrifuging and then stored at −80ºC. A scheme of the retrieved

samples can be seen in Figure 2.1.
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FIGURE 2.1 Experiment design of the samples retrieved during the growth of the three strains
under ethanol stress conditions. AJ4, MY3, and MY26 Saccharomyces strains were grown
under ethanol and non­ethanol media and samples were retrieved at different time points: t0, t1,
t2, and t3. The NIC and MIC parameters were calculated in a previous work(Lairón­Peris et al.,
submitted, Chapter 1.3.3)

114



CHAPTER 2.

2.2.3 RNA-seq analysis

Extractions of total RNA were carried out following a protocol based on phenol chloroform

as in Lairón­Peris et al. (2020). It consisted in an initial step of washing the cells with

DEPC­treated water; subsequently, cells were treated with phenol­tris, phenol­chloroform (5:1),

and chloroform­isoamyl alcohol (24:1). The two final steps consisted in two precipitations with LiCl

and ethanol with sodium acetate respectively. The obtained RNA was sequenced (Illumina Hiseq

2000, paired end reads 75 bases long).

The obtained sequenced reads were quality trimmed using sickle (length 50, quality 23) and

aligned to the S. cerevisiae pangenome from Peter et al. (2018) reference using bowtie2. The

mapped reads were subsequently counted using htseq­count (union mode) (Anders et al., 2015).

We used a new pipeline to generate these counts using a pangenome and a nucleotide blast

search for the detection of non­reference ORF (Alonso­del­Real and Morard, in preparation). The

pangenome consists of 7,796 ORFs collected from sequencing 1,011 strains. After the mapping of

the sample reads using this pipeline, each strain presented a different number of expressed ORFs:

5,495 AJ4; 5,655 MY26, and 5,304 mapped MY3.

The R software was used for statistical analyses (R Core Team, 2013). The data was imported,

processed, and normalized by removing low expressed genes and using the variance stabilizing

transformation method implemented in DESeq2 (Love et al., 2014). The data sets were then

transformed using the limma package (v.3.32.2) (Ritchie et al., 2015). Limma voom was used

to transforms counts to log­cpm and then, differential expression analysis was performed using

limma. Differentially expressed genes with an adjusted P value lower than 0.05 (Benjamini

Hochberg correction) (Benjamini and Hochberg, 1995) were used to GO terms enrichment search

by using Funspec (Robinson et al., 2002) (p­value < 0.05, Benjamini Hochberg correction).
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2.3 Results

2.3.1 Differential growth in ethanol of the three strains

AJ4, MY3, and MY26 are three S. cerevisiae strains from isolation sources related to

fermentative environments, that were previously characterized as high, moderately and slightly

tolerant to ethanol, respectively (Lairón­Peris et al., submitted). They were cultivated in rich media

at 0%, 6%, and 10% ethanol, and their growth was followed by OD600 measurements (Figure 2.2).

After their growth in GPY + ethanol, different behaviors were observed. AJ4 growth was similar

in GPY without ethanol and in GPY+6% of ethanol. MY26 growth showed the same behavior, but

at GPY+10% of ethanol, its growth was dramatically reduced. Regarding MY3, it was the most

affected strain by the presence of ethanol at a concentration of 6%, but it showed better growth

than MY26 at a concentration of 10% of this compound.

The three sampling points were selected based on these growth curves, to capture samples

in a similar growth phase instead of strictly refer to the same time point. However, exact times in

hours are depicted in Table 2.1.

TABLE 2.1 Time points in which samples from the three S. cerevisiae strains growth in ethanol
were collected

t1 t2 t3
AJ4 0% 4h 9h 24h
AJ4 6% 4h 9h 24h
AJ4 10% 5h 23h 30h
MY3 0% 4h 8.5h 24h
MY3 6% 4h 9.5h 24h
MY3 10% 5h 23.5h 29.5h
MY26 0% 4h 8h 24h
MY26 6% 5h 8h 23h
MY26 10% 4h 28h 43h
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A B

FIGURE 2.2 Growth analysis of strains AJ4, MY3, and MY26 in GPY media with 0%, 6% and
10% of ethanol. Samples were grouped by ethanol concentration (panel A) and by strain (panel
B) for its easier visualization.
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2.3.2 Transcriptomic analysis of AJ4, MY3, and MY26 during their growth in

ethanol media

To elucidate the differential transcriptomics response to ethanol that might explain the range

of sensitivities to ethanol, samples were retrieved during different time points for their RNA­seq

analysis. The first sampling was carried out before ethanol addition (t0). Further cell samples

were taken at the early exponential phase (t1), late exponential phase (t2) and stationary phase

(t3) (Figure 2.1).

Thus, establishing t0 as the reference in our experimental design, we focused on the genes

that were differentially expressed (DE) at one time point and ethanol condition exclusively in a

strain with respect to another. The large amount of strain exclusive genes is indicative of highly

variable transcriptome profiles among the studied strain (Figure 2.3). In addition, these exclusive

genes are variable depending on the ethanol presence.

Genes related to lipid metabolism and membrane homeostasis were investigated with special

attention by filtering out all the genes not present in the functional categories plasma membrane

(GO:0005886) or lipid metabolism (GO:0044255) from to Gene Ontology (Ashburner et al., 2001).

The lists of the functional enrichment analyses can be seen in Table 2.2 and Table 2.3.

Interestingly, in ethanol 6% and 10% conditions, protein­coding genes involved in ergosterol

biosynthesis were repressed at every time point in the case of MY26 and MY3 strains, but not in

AJ4. In contrast, the expression of these genes seemed to be similar for all strains in absence of

ethanol (Figure 2.4A).

Looking at the expression of every single gene in the pathway, it is clear that most of them were

repressed in the cases above mentioned, rather than one or few genes standing out (Figure 2.4B).

Following the same tendency, ERG20 and ERG1 genes were strongly overexpressed in AJ4 in

ethanol presence, moderately overexpressed in MY3 in some cases, and not overexpressed at all

in MY26 (Figure 2.4C).
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FIGURE 2.3 Venn diagrams with the number of exclusively up­regulated and down­regulated
genes for AJ4, MY3, and MY26 strains. These samples were retrieved at 3 time points (t3, t2,
t1) and compared with the t0 gene expression at the three ethanol conditions (0, 6 and 10% of
ethanol in GPY media). Genes were retrieved after carrying out the DE analysis if their adjusted
p­value (BH correction) was lower than 0.05.
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FIGURE 2.4 Differential expression analysis of genes involved in ergosterol synthesis. Fold
change value from the global analysis of ergosterol synthesis genes and of each ergosterol gene is
depicted, when compared with each strain (AJ4, MY3 and MY26) at three ethanol concentrations
and time points with the basal level of expression at t0 with no ethanol added in the media.
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Among the main biosynthesis processes of membrane lipids, there were others with genes

that presented a differential behavior among strains. It is the case of HMN1, the transporter

of phospholipid precursors such as choline and ethanolamine, and EKI1, the first enzyme in

the transformation of ethanolamine into PE (phosphatidylethanolamine). Both genes presented

similar expression dynamics in absence of ethanol for the three studied strains. However, we

observed that their expression changed in the presence of ethanol, being AJ4 the one keeping

higher transcriptional levels for both genes (Figure 2.5A). Besides, OLE1, responsible for the

desaturation step in the synthesis of oleic and palmitoleic acid, was repressed in MY26 under

alcoholic conditions. In contrast, AJ4 and MY3 showed higher expression levels (Figure 2.5B).

Interestingly, all these genes are regulated by the transcription factor Ino2p according to

Yeastract (DNA binding and expression evidence) (Monteiro et al., 2020). A multiple alignment

of the Ino2p protein sequence from our three strains revealed two variations in AJ4 with respect

to the other strains: H86R and V263I, but the totality of the amino acidic changes is marked as

conservative by Clustal Omega (Sievers and Higgins, 2014). We carried out a multiple alignment

of sequences of the protein Ino2p from 979 different strains (Peter et al., 2018) plus our three

sequences in order to assess the presence of the same mutations observed in AJ4 in other strains.

V263I is present only in other 9 strains, and H86R can be found in these same 9 strains as well as

in other 5 strains. To question the possible impact of these variants on ethanol tolerance further

data by Peter et al. (2018) work was used. This work included a phenotypic assay under multiple

conditions for all the strains we mentioned, including growth in a medium containing 15% ethanol.

The strains presenting exclusively the H86R mutation have relatively moderate ethanol tolerance,

however, the strains presenting both mutations are clearly above the median (Figure 2.6B). Ino2p

C­terminal domain has been proved to interact with Ino4p (Schwank et al., 1995), forming a dimer

required for derepression of inositol­choline­regulated genes involved in phospholipid synthesis.

When selecting Yeastract ”without expression evidence” option for the same group of input

genes, Gnc4p appeared as the first hit. This activator of transcription presents changes in its

sequence for AJ4 compared to MY3 and MY26: D91A, D196E and N275K. Again, multiple

alignment analysis with the 979 strains was performed. A91, A196, and N275 in AJ4 are the most
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FIGURE 2.5 Differential expression of genes HMN1, EKI1 and OLE1 in AJ4, MY3 and
MY26. Samples were retrieved at three time points EEP, LEP and SP corresponding to early
exponential phase, late exponential phase, and stationary phase respectively, and at three ethanol
concentrations and compared with the expression at the latency time point without ethanol. In the
right part of the figure, a scheme representing the synthesis rout of different phospholipids in which
HMN1 and EKI1 genes are involved is depicted too.
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FIGURE 2.6 Changes in Ino2p transcription factor. Alignment of Ino2p sequence of AJ4, MY3 and
MY26 strains (A) and representation of the ethanol tolerance of 979 strains (Peter et al., 2018),
indicating the presence of mutations in V263I and in H86R in Ino2p (B)
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common amino acids for these positions (83%, 80% and 98% of the total amount of compared

strains, respectively). However, GCN4 expression could have a role, since it was found to be

overexpressed in AJ4 in several of the studied conditions (Figure 2.7).

2.4 Discussion

Multiomic approaches are largely contributing to the understanding of the mechanisms

underlying differential yeast tolerance to different stresses. Thanks to these approaches, a better

comprehension of yeast behavior under certain stressing conditions ­high and low temperature,

ethanol, availability of nitrogen, etc.­ is nowadays possible.

Ethanol toxicity is the condition which more remarkably affects yeast cells used in industrial

biotechnology. For that reason, elucidation of ethanol tolerance mechanisms in yeast is essential

for understanding the role of specific genes and therefore apply more directed methodologies to

improve strains which can provide more sustainable processes.

In previous studies, ethanol has been associated with different molecular changes. Recently,

ethanol stress has been correlated with the activation of the unfolded protein response (UPR) in S.

cerevisiae strains (Navarro­Tapia et al., 2016). The UPR is a conserved signalling pathway which

is activated to counteract stresses, thus activating homeostasis mechanisms in yeast cells.

Moreover, the presence of ethanol has been associated with membrane lipidic changes. In

Navarro­Tapia et al. (2017), the UPR was further studied revealing that when inositol levels are

low this pathway is also activated. Inositol is an important component of the structural lipids, and

in Navarro­Tapia et al. (2018) it was observed that after ethanol stress, key genes involved in lipid

metabolism, like INO1 were up­regulated at the same time that the UPR was activated. These

authors proposed that membrane fluidification ­caused by either ethanol or other agents­ activate

the UPR (Navarro­Tapia et al., 2018) and that this activation leads to changes to counteract and

better resist environmental changes in yeast cells.
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FIGURE 2.7 Alignment of YEL009C (GCN4) gene sequence of AJ4, MY3 and MY26 strains (A)
and representation of its log fold change expression (B). Three time points (EEP, LEP and
SP) and three ethanol conditions (0%, 6% and 10%) were used for this analysis.)
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In this work, we have focused our analysis in gene expression in three S. cerevisiae strains

under different ethanol concentrations and stages, paying special attention to differential changes

which affect the lipid yeast membranes.

Different genes involved in ergosterol synthesis were more up­regulated in AJ4 strain under

ethanol concentrations in comparison with MY3 and MY26 strains. Ergosterol is the predominant

sterol in yeast, and it plays an important role in modulating the lipid membrane, especially in

the presence of high ethanol (Bisson, 1999; Ma and Liu, 2010; Vanegas et al., 2012; You et al.,

2003). As AJ4 is the most ethanol tolerant strain of the three strains evaluated, we propose that

its differential expression of ergosterol synthesis genes could have changed the lipid composition

of the membrane of this strain under ethanol growth, thus providing a better tolerance to ethanol.

We also observed up­regulation in genes related with the biosynthesis of membrane

phospholipids, such as HMN1 and EKI1 in AJ4 strain under ethanol growth. These genes have

a consensus sequence (5’­CATGTGAAAT­3’) in their promoter region, which is known as the

inositol­sensitive upstream activation sequence (UASINO) (Bachhawat et al., 1995; Wimalarathna

et al., 2011). Ino2p protein activates their transcription in response to inositol depletion. When

inositol levels are low, Ino2p and Ino4p proteins interact and form an heterodimer which binds to

this promotor fragment (UASINO), activating the transcription of genes related with phospholipids

biosynthesis (Bachhawat et al., 1995; Jesch et al., 2005; Kasavi et al., 2016).

The characterization of Ino2p sequence in the three strains, AJ4, MY3 and MY26 revealed that

AJ4 Ino2p had two mutations in comparison with the other two strains. The ethanol tolerance

analysis of 979 strains performed in (Peter et al., 2018) showed that strains containing these

two mutations in Ino2p are above the median on its ethanol tolerance. These differences in the

regulation of key membrane genes suggest important regulation mechanisms in which both the

ethanol and the inositol are involved and whose response vary among S. cerevisiae strains and

are in accordance with previous works (Navarro­Tapia et al., 2016, 2017, 2018).

Moreover, genes up­regulated in AJ4 under growth in ethanol conditions are also regulated by

the transcription factor GCN4, which also presents changes in its sequence for AJ4 compared
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to MY3 and MY26. Although Gcn4p has been described as a regulator of gene expression

during amino acid starvation in yeast (Natarajan et al., 2001), its expression is also induced under

other stress conditions besides, including growth on the non­fermentable carbon source ethanol

(Hinnebusch and Natarajan, 2002; Yang et al., 2000). Taken together, our results showed that

genes involved in the biosynthesis of membrane phospholipids had different expressions in the

three selected S. cerevisiae strains when they were grown in ethanol media. This suggests that

molecular regulation mechanisms involved in lipid biosynthesis are different in S. cerevisiae strains

and could be the reason for the different ethanol tolerances found in the strains of this species.

However, further studies need to be done in order to confirm the function of the specific genes

here analyzed, such as the transcription factor Ino2p and the GCN4 gene. It would be necessary

to perform specific allele changes in these strains, and then test the phenotypic effects of the

changes. The available approaches to do that include reciprocal hemizygosity and allele swapping

(Biot­Pelletier and Martin, 2016; Glazier et al., 2002; Kessi­Pérez et al., 2016; Mans et al., 2015;

Parts et al., 2011; Salinas et al., 2016; Su et al., 2021; Tapia et al., 2018).

Despite this, ethanol tolerance in S. cerevisiae is regulated by several complicated and

sophisticated systems. Thus, the ethanol tolerance can be expected to be a result from the

collaboration of a group or many groups of genes. A further in­depth analysis should be conducted

to decipher the general genetic pattern that determines yeast ethanol tolerance and its relation with

membrane properties.
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TABLE 2.2 List of GO retrieved from the list of unique differentially expressed genes in AJ4
and MY26. U means that the GO term genes are up­regulated and D that are down­regulated.

Ethanol Time MY26 AJ4

10% 1

Ergosterol biosynthetic process (D) [GO:0006696]:
ERG28 ERG26 ERG4 ERG7 ERG6 HMG1
ERG13 ERG5 ERG2 ERG8 ERG24 ERG10
Isoprenoid biosynthetic process (D) [GO:0008299]:
HMG1 ERG13 ERG8 MVD1 IDI1
Fatty acid biosynthetic process (D) [GO:0006633]
FEN1 OLE1 PHS1 ELO1 SUR4
Carbohydrate transport (U) [GO:0008643]
RGT2 MPH2 HXT7 HXT3 HXT10 HXT1 HXT14
Integral to membrane (U) [GO:0016021]
TAT1 ADP1 HSP30 ARE1 RGT2 MPH2 HXT7
HXT3 PDR15 PUG1 HXT10 YFR012W YGL010W
SCS3 MTL1 FHN1 CHO2 SNG1 DUR3 HXT1
PDR11 ASG7 GEX2 ORM2 VID22 SCS7 CPT1 PRM1
HXT14 KRE1 GAS5 RSB1 YOR059C CRC1
MUM3 PDR10 YOR365C VTC3 KRE6

Amino acid transmembrane
transport(D) [GO:0015171]
AGP2 AGP1 CAN1 GAP1 DIP5
Integral to membrane (D/U) [GO:0016021]
D: YAR028W AGP2 PHO89 AGP1 SNQ2
ENA5 YDR089W YDR090C GPI19 CAN1 PMA1
FLC3 MEP1 SFK1 GAP1 PTR2 GAL2 PUN1
GPI12 MEP2 YNL194C FRE3 SUR1 PDR12 DIP5
YPR003C SGE1
U: ITR1 FTR1 DNF1 HNM1 YSR3
VBA5 FPS1 GAS2 BUD8 NTE1 PHO84
GAS4 MCH5 SSU1

10% 2

Ergosterol biosynthetic process (D) [GO:0006696]:
ERG7 ERG27 ERG6 HMG1 ERG2 ERG12 ERG10
Integral to membrane (D) [GO:0016021]
YBR219C YBR220C GNP1 ZRT1 TNA1 ELO1
ZRT2 HMG1 HXT2 VBA1 ERG2 TCB2 SLA2
ARE2 FRE4 ENB1 NRT1 TPO4 ERI1 ANT1

Transmembrane transport (U) [GO:0055085]
FLC2 VBA2 SUL1 PCA1 ATO3 ITR1
STL1 ALR2 PMC1 HNM1 DUR3 PHO90
TPO5 STE6 AQR1 ALP1 THI72 YOR378W
Fatty acid biosynthetic process (U) [GO:0006633]
OLE1 HTD2 OAR1 FAS1 FAS2
Integral to membrane (U) [GO:0016021]
FLC2 GPI18 CDS1 VBA2 SUL1 PCA1 YCR007C
IPT1 ATO3 PDR15 ITR1 STL1 STE2 ALR2 PMC1
OLE1 HNM1 BUD9 YGR149W ERG1 DUR3 PHO90
YJR054W TPO5 STE6 PUN1 NTE1 FKS3 GAS1 AQR1
ALP1 GAS4 THI72 PDR10 YOR378W FRE3 FRE5
PMA2 SUR1 FLC1

6% 1

Ergosterol biosynthetic process (D) [GO:0006696]:
ERG4 ERG11 ERG7 ERG3 ERG27 ERG12
Fatty acid metabolic process (U) [GO:0006631]
AGP2 FAA2 OAR1 CAT2 CRC1 MCT1
Transport(U) [GO:0006810]
TAT1 AGP2 PHO89 ADY2 KIN82 OSH2
SNF3 HXT7 PDR15 JEN1 YCT1 CAT2 LST8
YPT53 BIO5 PDR18 HXT17 RSB1 CRC1

Transport (D) [GO:0006810]
ITR1 OLE1 HNM1 TPO2 VBA5
THI7 PHO84 AQR1 NRT1 MCH5

6% 2

Ergosterol biosynthetic process (D) [GO:0006696]:
ERG4 ERG6 ERG12 ERG10
Transport (U)
TAT1 OSH2 DNF1 HXT10 ARN1 YHK8
OPT1 ALP1 HOL1 BIO5 RSB1 PDR10 FRE3

Transmembrane transport (U) [GO:0055085]
FLR1 ENA5 BAP3 HXT3 HXT10
YGL114W MUP1 VHT1 MEP1 TPO2
MUP3 ARN2 DAL4 OPT1 TPO5
TE6 LYP1 THI72 TPO4 DIP5 SAM3 MEP3 SGE1

6% 3

Ergosterol biosynthetic process (D) [GO:0006696]
ERG25 ERG11 ERG7 ERG13 ERG5 ERG12 ERG10
Transmembrane transport (D) [GO:0055085]
FLC2 RGT2 VBA4 GNP1 SPF1 FCY21
FTR1 FLC3 ZRT1 HXT4 PHO90 FPS1 ZRT2
NHA1 VBA1 ITR2 ENB1 NRT1 SSU1
Integral to membrane (D) [GO:0016021]
FLC2 CHS3 RGT2 MRH1 LCB2 VBA4 GPI8 GNP1 PMP2
SPF1 FCY21 SHO1 FTR1 FLC3 ZRT1 ERG25
ERG11 HXT4 DFG10 AXL2 MGA2 PHO90 YJR054W
MCD4 SAC1 GPI13 FPS1 FRE6 RAX2 ZRT2 NHA1
FKS1 SUR4 VID22 YLR413W PGA3 VBA1 SSO2 LCB1

Integral to membrane (D/U) [GO:0016021]
GPI18 FLR1 FUS1 ARE1 ENA5 BAP3
HXT3 PFA5 ISC1 HXT10 STE2 YGL114W GSC2 MUP1
VHT1 MEP1 TPO2 MUP3 ARN1 ARN2 SYG1
DAL4 OPT1 TPO5 STE6 GAS2 PUN1 PGA1 LYP1
ARE2 FRE4 THI72 TPO4 MUM3 PDR10 FRE3
FLC1 DIP5 SAM3 MEP3 KRE6 SGE1
Amino acid transmembrane
transport (U) [GO:0015171]
BAP3 MUP1 MUP3 TPO5 LYP1 DIP5 SAM3
Siderophore transport (U) [GO:0015891]
ARN1 ARN2 FRE4 FRE3
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TABLE 2.3 List of the GO retrieved from the list of unique genes with differential expression
in AJ4 and MY3. U means that the GO term was retrieved from the up­regulated genes and D
from the down­regulated genes.

Ethanol Time MY3 AJ4

10% 1

Phospholipid biosynthetic process (D) [GO:0008654]
PGS1 YDR018C CHO1 EPT1 URA8 PAH1 PDR17 INO4 PIS1
Endocytosis (D) [GO:0006897]
SNC1 OSH2 SAC6 GTS1 PIL1 YAP1802
YSC84 YPK1 YPT53 LSP1 KES1
Lipid biosynthetic process (D) [GO:0008610]
TSC13 ERG28 ERG26 PHS1 ELO1 HMG2 MVD1 KES1

Transmembrane transport (D) [GO:0055085]
PHO89 AGP1 PMA1 FLC3 TAM41 MEP1
GAL2 DIP5 YPR003C OPT2 SGE1

10% 2
Esterol biosynthetic
process (D) [GO:0016126]
ECM22 ERG6 HMG1 ERG2

Nucleobase, nucleoside, nucleotide and
nucleic acid transport (D) [GO:0015931]
FCY21 FCY22 TPN1 SNG1
Transmembrane transport (U) [GO:0055085]
FLC2 VBA2 SUL1 PCA1 ATO3 ITR1
STL1 ALR2 PMC1 HNM1 TPO2 DUR3 PHO90
TPO5 STE6 GEX2 AQR1 ALP1 THI72 MCH5 YOR378W

10% 3 ­

Gluconeogenesis (D) [GO:0006094]
PGI1 PGK1 TPI1 TDH3 ENO2 FBA1
Nucleobase transport (D) [GO:0015851]
FUI1 FCY2 FCY21 FCY22 TPN1
Transmembrane transport (D) [GO:0055085]
FUI1 UGA4 ATO3 FCY2 FCY21 FCY22 TPN1
HIP1 QDR2 GAP1 ZRT2 PHO84 VBA1 TAT2 SSU1 OPT2
Signal transducer activity (U) [GO:0004871]
GPB2 GPR1 STE2 GPA1 RHO2 RGS2

6% 1

Ergosterol biosynthetic process (D) [GO:0006696]
ERG25 ERG11 ERG3 ERG6 HMG1
ERG13 ERG5 ERG2 ERG8 ERG10
Isoprenoid biosynthetic process (D) [GO:0008299]
HMG1 ERG13 ERG8 MVD1 IDI1
Lipid catabolic process (U) [GO:0016042]
TGL2 TGL1 NTE1 PLB2 SPO1

ATP catabolic process (D) [GO:0006200]
SNQ2 AUS1 PDR5 PDR12

6% 2

Tetracyclic and pentacyclic triterpenes
(cholesterin, steroids and hopanoids)
metabolism (D) [01.06.06.11]
ERG6 ERG10 KES1

Steroid biosynthetic process (D) [GO:0006694]
ERG3 ERG27 ERG6 HMG1
ERG13 ERG5 ERG2 ERG8 KES1
Transmembrane transport (D) [GO:0055085]
GNP1 MUP1 MEP1 ARN2 GAL2
HXT2 ALR1 TPO4 DIP5 SGE1

6% 3

Steroid biosynthetic process (D) [GO:0006694]
ERG25 ERG11 ERG13 ERG5 MVD1 KES1
Cellular cell wall organization (D) [GO:0007047]
CHS3 ECM33 EXG2 CIS3 YLR194C FKS1 DFG5 GAS1 CHS1
Fatty acid beta­oxidation (U) [GO:0006635]
MDH3 POT1 TES1 FOX2 ECI1 IDP3
Cardiolipin metabolic process (U) [GO:0032048]
CLD1 UPS2 UPS1 TAZ1
Phospholipid biosynthetic process (U) [GO:0008654]
CDS1 YDR018C GPT2 CKI1 INO4 TAZ1

Nucleobase transport (D [GO:0015205]
FCY2 FCY22 TPN1
Amino acid transmembrane
transport (U) [GO:0015171]
BAP3 HNM1 MUP1 MUP3 TPO5 LYP1
Transmembrane transport (U) [GO:0055085]
BAP3 HXT10 ALR2 HNM1 MUP1 VHT1
TPO2 MUP3 TPO5 LYP1 THI72 SGE1
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CHAPTER 3.

3.1 Introduction

Wine fermentation is a complex process in which yeasts have the most predominant role

(Cavalieri et al., 2003) . Traditionally, yeasts present on grapes spontaneously convert sugars into

ethanol and carbon dioxide, as well as other metabolites, such as glycerol, acetate, succinate,

pyruvate, higher alcohols, and esters (Pretorius and Lambrechts, 2000) . Saccharomyces

cerevisiae is the predominant yeast in most wine fermentations (Pretorius, 2000) , however, in cold

areas, it is frequently replaced by S. uvarum (Origone et al., 2017; Rainieri, 1999), or its hybrids

with S. kudriavzevii and S. uvarum (Antunovics et al., 2005; Demuyter et al., 2004; Erny et al.,

2012; González et al., 2007; Le Jeune et al., 2007; Lopandic et al., 2007; Masneuf et al., 1998;

Peris et al., 2012c; Sipiczki, 2008).

Wine S. cerevisiae and S. uvarum strains are adapted to grow in wine fermentation

environments, characterized by high sugar contents, low pH, and high sulfur dioxide concentrations

(Alonso­del Real et al., 2019; Morard et al., 2019; Pérez­Torrado et al., 2015, 2018; Querol et al.,

2018) . However, each Saccharomyces species exhibits unique physiological properties that give

the final wine different characteristics. The most important differences between these two species

are ethanol tolerance and optimal growth temperature. S. cerevisiae exhibits a higher optimum

growth temperature and higher ethanol resistance (up to 15%) (Arroyo­López et al., 2010b;

Belloch et al., 2008; Salvadó et al., 2011a) , which explains its dominance at high fermentation

temperatures.

The present challenges in the wine industry are related to the effects of global climate change

on winemaking and to consumer’s preferences. The global climate change has different effects on

grapevines, which include a lower acidity, an altered phenolic maturation, a different tannin content,

and notably, higher sugar levels by the time of harvest, especially in warm climates (Jones et al.,

2005; Mozell and Thachn, 2014). At the same time, consumers prefer wines with less ethanol

content and fruitier aromas. The excess of ethanol compromises the perception of wine aromatic

complexity, as well as rejection by health­conscious consumers, road safety considerations, or
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trade barriers and taxes. To face these challenges, yeasts may have an important role. Thus, a

new trend to respond to the wine industry demands is the selection of yeasts which reunite different

characteristics, such as a lower ethanol yield, a higher glycerol production­ to mask astringency

due to unripe tannins­ and which exhibit a more complex aromatic profile (Querol et al., 2018).

However, these properties are not so frequent amongwineS. cerevisiae strains, because they were

unconsciously selected for millennia by humans to produce increasing amounts of ethanol in the

warm climate regions, Fertile Crescent and Mediterranean basin, where vines were domesticated

and winemaking was developed (This et al., 2006).

A possible solution to fulfill the wine industry demands comes from the use of wine S. uvarum

strains, which exhibit interesting enological properties. S. uvarum is considered a cryotolerant

yeast (Salvadó et al., 2011b) with several enological advantages over S. cerevisiae, such as lower

ethanol and acetic acid productions, and higher glycerol and succinic acid synthesis (Bertolini et al.,

1996). This species also produces high levels of a larger variety of fermentative volatiles, e.g.

phenyl ethanol and phenylacetate (Gamero et al., 2013; Masneuf­Pomarède et al., 2010; Stribny

et al., 2015). Nonetheless, the most important limitation of S. uvarum as a starter to conduct wine

fermentation is its lower ethanol tolerance (Arroyo­López et al., 2010b), which explains why it is

outcompeted by S. cerevisiae in wine fermentations performed at temperatures > 20ºC (Alonso­del

Real et al., 2017b), as in the production of red wines. Therefore, an ethanol tolerance improvement

in S. uvarum would be an important achievement for its beneficial use in the wine industries.

Ethanol tolerance is a quantitative trait determined by > 200 genes involved in many different

cellular processes affected by ethanol (Snoek et al., 2016). Although many efforts have been

made, mechanisms of ethanol tolerance are hardly understood yet.

Hybridization between Saccharomyces species has been proposed as an adaptation

mechanism to different stresses (Sipiczki, 2008). As mentioned, natural hybrids between S.

cerevisiae and S. uvarum or S. kudriavzevii are present in, and even dominate, wine fermentations

at low temperatures in regions of Continental or Oceanic climates (Erny et al., 2012; González

et al., 2007; Le Jeune et al., 2007; Lopandic et al., 2007; Masneuf et al., 1998; Peris et al., 2012c).

132



CHAPTER 3.

The physiological and enological characterization of these hybrids showed that they inherited the

ethanol tolerance and a good fermentation performance from S. cerevisiae, and adaptation to

grow at low temperatures from S. uvarum and S. kudriavzevii (Pérez­Torrado et al., 2018; Querol

et al., 2018). This observation prompted artificial hybridization as a good approach to improve

industrial yeasts (Steensels et al., 2014b). This way, in previous works, S. cerevisiae × S. uvarum

hybrids were generated, by different methods (Origone et al., 2018; Sipiczki, 2008), to improve

cryotolorance in wine S. cerevisiae strains (García­Ríos et al., 2019c; Kishimoto, 1994; Origone

et al., 2018; Sebastiani et al., 2002; Solieri et al., 2005).

In the present study, we used artificial hybridization of a commercial wine S. uvarum strain with

a S. cerevisiae strain to improve its ethanol tolerance. This commercial S. uvarum strain, Velluto

BMV58TM, is characterized by its low ethanol yield and high glycerol production in wines at the

industrial level, improving the roundness, and a soft mid­palate mouthfeel. It also produces richer

secondary aromas, which confer floral and fruity notes to wines. Although this strain possesses

all these interesting properties, which fulfill the consumers’ demands, its ethanol tolerance during

wine fermentation is low. To improve its ethanol tolerance, we selected a highly alcohol­tolerant

S. cerevisiae strain to obtain an interspecies hybrid with the properties of both parents. Hybrids

were obtained by rare­mating and subsequently sporulated to obtain diverse hybrid derivatives.

The rare­mating hybrids, their spore derivatives and the parental strains were physiologically

characterized, and one spore­derivative hybrid, H14A7, was selected because it shows the best

fermentative profile, an improved ethanol tolerance, and a higher glycerol yield. The genomes of

this spore­derivative hybrid, as well as those of the parental S. uvarum and S. cerevisiae strains,

were sequenced to determine which is the genome composition of the hybrid compared to its

parents. Finally, we also analyzed the transcriptomic response of the spore­derivative hybrid during

wine fermentations performed at two different temperatures, 15 and 25ºC, to be compared with its

parental strains under the same fermentation conditions.
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3.2 Materials and Methods

3.2.1 Strains and sequencing

The strains used in the present work were the S. uvarum wine strain BMV58 (Velluto BMV58TM

from Lallemand), a commercial wine strain that was selected in our laboratory, and three wine S.

cerevisiae strains, AJ4, AJB, and AJW, provided by Lallemand Inc.

3.2.2 Sporulation assays

Yeast cells were incubated on acetate medium (1% sodium acetate, 0.1% glucose, 0.125%

yeast extract, and 2% agar) for 5–7 days at 25ºC to induce sporulation. 16 asci were collected for

each strain when they were present. Ascus wall was digested with β 1,3­glucuronidase (Sigma)

adjusted to 2 mg mL­1, and spores were then dissected in GPY agar plates with a Singer MSM

manual micromanipulator. Spores were incubated at 28ºC for 3–5 days, and then, their viability

was measured as the percentage of spores able to form colonies.

3.2.3 MAT locus analysis

DNA from each strain was extracted according to Querol et al. (1992). The MAT locus was

amplified with the same ’MATα’ (5’­ GCACGGAATATGGGACTACTTCG ­3’) primer described forS.

cerevisiae by Huxley et al. (1990), but with degenerated ’MATα’ (5’­ACTCCRCTTCAAGAGTYTG

­3’), and ’MAT common’ primers (5’­ AGTCACATCAAGATCRTTTATG ­3’) to also allow the

amplification of the MAT locus from S. uvarum. PCR reactions were performed in 100 µl

final volume following the NZYTAqII DNA polymerase supplier instructions, under the following

conditions: initial denaturing at 94ºC for 5 min, then 30 PCR cycles with the following steps:

denaturing at 94ºC for 30 s, annealing at 58ºC for 30 s and extension at 72ºC for 30 s; and a

final extension at 72ºC for 7 min. The S. cerevisiae and S. uvarum MAT locus were differentiated
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by restriction analysis with endonuclease MseI. Simple digestions of the PCR products with MseI

(FastDigest SaqAI, Thermo Scientific) were performed with 15 µl of amplified DNA to a final volume

of 20 µl at 37ºC according to supplier’s instructions. Restrictions fragments were separated on

3% agarose gel in 0.5× TBE buffer and a mixture of 50­bp 100­bp DNA ladder markers (Roche

Molecular Biochemicals, Mannheim, Germany) served as size standards.

3.2.4 Evaluation of ethanol tolerance

Ethanol tolerance of the strains was evaluated by performing growing tests in synthetic must

(SM) with 10 g L−1 glucose, 20 g L−1 fructose, and 60 mg L−1 potassium metabisulfite, and

increasing ethanol concentrations [0 to 10, 12, 15, and 20% (v/v)]. Strain growth was monitored

by measuring absorbance at 600 nm in a SPECTROstar Omega instrument (BMG Labtech,

Offenburg, Germany). The wells of the microplate were filled with 0.25 mL of SM and inoculated

with 1 × 106cells mL−1 for each strain and ethanol concentration. The experiments were performed

at 15 and 25ºC. Uninoculated wells were included in every plaque as a negative control to establish

a threshold to discard OD600 values due to background noise. Measurements were taken every 30

min during over 3 days, after a pre­shaking of 20 s. The overall yeast growth was estimated as the

area under the OD vs. time curve using Origin Pro 8.0 software (OriginLab Corp., Northampton

MA), and the NIC and MIC parameters were obtained as described elsewhere (Arroyo­López et al.,

2010b). The most ethanol tolerant S. cerevisiae strain was subsequently used for the hybridization

experiments.

3.2.5 Hybridization by rare-mating

For the selection of natural auxotrophic markers, cells were grown on 15mL of GPYmedium (%

w/v: 0.5 yeast extract, 0.5 peptone, 2 glucose) for 5 days at 28ºC. One milliliter of each culture was

seeded in 15 mL of fresh GPY medium and incubated again in the same conditions. This process

was repeated 10 times. At the 5th and subsequent repetitions, aliquots of each culture were seeded

135



CHAPTER 3.

onto α­aminoadipic (α­AA), 5­fluoroanthranilic acid (5­FAA) and 5­fluoroorotic acid (5­FOA) agar

plates to select natural lys−, trp−, and ura− mutant colonies, respectively (Boeke et al., 1987;

Toyn et al., 2000; Zaret and Sherman, 1985). Colonies were grown on α­AA, 5­FAA or 5­FOA

plates and picked again on a new α­AA, 5­FAA or 5­FOA plate, respectively. Auxotrophies were

confirmed by spotting a cell suspension onto GPY­A (GPYmediumwith 2%w/v agar­agar), minimal

medium (MM; 0.17% Yeast Nitrogen Base without amino acids, 2% glucose and 2% agar) and MM

supplemented with proline (1 g L−1), and uracil (10 mg L−1), lysine (30 mg L−1) or tryptophan (30

mg L−1), depending on the auxotrophy. Plates were incubated for 5 days at 28ºC.

Auxotrophic colonies were grown separately in 25 mL GPY broth for 48 h at 28ºC. Cells were

recovered by centrifugation and suspended in the residual supernatant. Pairs of yeast cultures

to be hybridized were placed together in the same tube and aliquots of these mixed strains were

inoculated in 2 mL of fresh GPY medium. After 5–10 days of static incubation at 28ºC in a slanted

position, cells were recovered by centrifugation, washed in sterile water, suspended in 1 mL of

starvation medium and incubated for 2 h.

The parental strains AJ4 and BMV58 were assayed for sporulation in the rich GPY medium

used for the rare­mating. In the case of AJ4, no sign of sporulation was detected after more than

ten days, however, sporulation efficiency for BMV58 was very low and difficult to observe in this

medium, but a few asci were present.

A concentrated suspension of the mixed culture was spread on MM plates and incubated at

28ºC. Prototrophic colonies usually appeared after 3–5 days. These colonies were isolated and

purified by restreaming on the same medium (Pérez­Través et al., 2012). The hybrid nature of the

colonies selected in MM was confirmed by PCR­RFLP of the genes UGA3 and GSY1 to confirm

that they showed hybrid profiles (Pérez­Través et al., 2014b).
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3.2.6 Test of stability

Two strategies were carried out to determine the stability of hybrids: adaptive stabilization

by vegetative growth without sporulation and adaptive stabilization by vegetative growth after

sporulation. The stability test by vegetative growth was done as described elsewhere

(Pérez­Través et al., 2012), with some modifications. The media was a synthetic must with 40

g L−1 of glucose, 45 g L−1 of fructose, 2.5% of EtOH and 60 mg L−1 of potassium metabisulfite,

and the experiment was incubated at 28ºC. A single colony of each hybrid strain was individually

inoculated into 20 mL of this must and they grew in those conditions for 10 days. At that moment,

200 µL of each fermentation, were inoculated in a new fresh media at the same conditions. The

process was repeated 5 times. Once the fifth fermentation ended, for each one of the hybrids

10 colonies were tested for their molecular characterization by mtDNA­RFLP and delta elements

analysis to be compared with the original hybrid and among them. We considered a genetically

stable hybrid when all colonies recovered after individual growths maintained the same molecular

pattern than the original culture. Only hybrids that maintained the same molecular pattern in its 10

colonies at the end of the process were considered for the artificial hybrid selection (next section).

Only one of the ten colonies of each stable hybrid was randomly selected as a representative for

subsequent artificial hybrid selection.

The test of adaptive stability by vegetative growth after sporulation was performed by incubating

the hybrids in acetate­ agar plates as described in the ‘sporulation assays’ section. For each hybrid,

10 spores were selected and characterized by PCR­ RFLP analysis of 4 nuclear genes (APM3,

UGA3, GSY1, and BRE5) and the internal transcribed spacer (ITS) region to confirm that they still

showed a hybrid profile in at least one gene region. These genome regions were tested pairwise

and when a hybrid pattern was obtained with the first pair, the next ones were not analyzed. The

colonies showing a hybrid profile in at least one region (out of 5) were used for the same adaptive

stability test described above for the adaptive stability without sporulation. At the end of the last

fermentation, 10 colonies were isolated and they were also tested by mtDNA­RFLP (Querol et al.,

1992) and delta elements analysis (Legras and Karst, 2003). Again, only hybrids that showed
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identical molecular patterns in the 10 derivative colonies at the end of the process were considered

for the artificial hybrid selection.

3.2.7 Artificial hybrid selection

Those strains exhibiting a hybrid pattern, according to the different molecular markers used,

and that were stable during vegetative growth in fermentation without or after sporulation were

considered to screen its phenotype for selection. Their growth in the presence of ethanol was

monitored by measuring absorbance at 600 nm in a SPECTROstar Omega in SM with 10 g L−1

glucose, 20 g L−1 fructose, 60 mg L−1 potassium metabisulfite and 6.5% of ethanol. Growth

conditions and the statistical analysis were performed as described above.

The same ethanol tolerance assay, described above, was performed using these selected

hybrid strains, as well as the two parental strains, both at 15 and 25ºC. For the enological

characterization of the selected artificial hybrids, triplicate fermentations were conducted in 250

mL bottles, closed with Müller valves, containing 200 mL of Verdejo natural must, supplemented

with 0.3 g L−1 of nutrients, and incubated with shaking (100 rpm) at two different temperatures, 15

and 25ºC. The parental strains AJ4 and BMV58 were also included for comparative purposes.

Fermentations were followed by weight loss as in Pérez­Través et al. (2014a). At the end of

fermentation, supernatant samples were analyzed by HPLC to determine the amount of residual

sugar (glucose and fructose), glycerol, ethanol, and organic acids. For this purpose, a Thermo

chromatograph (Thermo Fisher Scientific, Waltham, MA), equipped with a refraction index detector,

was used. The column employed was a HyperREZTM XP Carbohydrate H + 8µm (Thermo

Fisher Scientific) and it was protected by a HyperREZTM XP Carbohydrate Guard (Thermo Fisher

Scientific). The conditions used in the analysis were as follows: eluent, 1.5 mM sulfuric acid; flux,

0.6 mLmin−1; and oven temperature, 50ºC. Samples were 5­fold diluted, filtered through a 0.22­µm

nylon filter (Symta, Madrid) and injected in duplicate.

Weight loss data was corrected with respect to the percentage of consumed sugars

(Pérez­Través et al., 2014a). Percentages of consumed sugars over time were fitted to a Gompertz
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equation (Zwietering et al., 1990), and the following kinetic parameters were calculated from the

adjusted curves: m, maximum sugar consumption rate (g L−1 h−1); l, latency or lag phase period

(h); and t50 and t90, time to consume 50% and 90% of sugars (h), respectively. All the data were

tested to find significant differences among them by using the one­way ANOVA module of the

Statistica 7.0 software (StatSoft, Tulsa, OK, United States). Means were grouped using the Tukey

HSD test (α = 0.05).

3.2.8 Genome sequencing, assemblage, and annotation

Total DNA from the artificial hybrid strain and from the S. cerevisiae parental strain AJ4 were

extracted according to Querol et al. (1992) and sequenced using the Illumina Miseq system,

with paired­end reads of 250 bp (NCBI accession number SRP148850). The genome of Velluto

BMV58TM, the other parental strain, was already sequenced, assembled, and annotated in a

previous study from our lab (Macías et al., in preparation).

Sequencing reads were trimmed and quality filtered using Sickle (Joshi and Fass, 2011), and

then assembled following a semiautomatic pipeline (Macías et al., 2019; Morard et al., 2019) that

uses programs Velvet (Zerbino and Birney, 2008), Sopra (Dayarian et al., 2010), SSPACE (Boetzer

et al., 2011), Gapfiller (Boetzer et al., 2012) and MUMMER (Kurtz et al., 2004). The assembly was

confirmed by comparison with that of the reference S. cerevisiae strain S288C genome (version

R64­2­1, Saccharomyces genome database, http://www.yeastgenome.org).

Genes were annotated combining the ab initiomethodwith Augustus (Stanke andMorgenstern,

2005) and annotation transfer method with RATT (Otto et al., 2011). Genes were manually curated

using Artemis (Rutherford et al., 2000), NCBI BLAST web interphase (Johnson et al., 2008) and

the SGD Database (Macías et al., 2019; Morard et al., 2019).
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3.2.9 Flow cytometry analysis

The DNA contents of the selected hybrid and the parental strains were assessed by flow

cytometry using a FACSVerseTM flow cytometer (BD Biosciences). Cells were grown overnight in

GPY and 1 OD600 of each culture was harvested by centrifugation. DNA staining was performed

using dye SYTOX Green (Haase and Reed, 2002) . Fluorescence intensity was compared with a

haploid (S288C) and diploid (FY1679) reference S. cerevisiae strains.

3.2.10 Copy Number Variation analysis

The S. cerevisiae reads were mapped against the reference genome of S288c using Bowtie2

version 2.3.2 (Langmead and Salzberg, 2012). Genome annotations were visualized using Artemis

(Rutherford et al., 2000) with the mapped reads to predict deletions and duplications present in the

S. cerevisiae parental. Artificial hybrid reads were mapped to a combination of the S. cerevisiae

and S. uvarum parental consensus sequences, including mitochondrial genomes, by using bowtie2

version 2.3.2 (Langmead and Salzberg, 2012), with the default settings.

SppIDer (Langdon et al., 2018) was used to visualize the genome composition of the selected

hybrid. By using this tool, the reads of the hybrid genome were mapped to the reference genome

of its parental S. cerevisiae and S. uvarum strains.

Bedtools (Quinlan and Hall, 2010) was used to obtain the coverage “per base”. These coverage

files were processed to reduce the noise using a sliding windows method with a window size of

1000 positions. As a complementary approach, CNVnator was used for copy number variation

discovery (Abyzov et al., 2011).

3.2.11 Variant calling analysis

The gdtools command installed as part of breseq (Barrick et al., 2014; Deatherage and Barrick,

2014) was used to identify single nucleotide polymorphisms (SNPs) on Genome Diff files. The
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minimum polymorphism frequency to call an SNP using breseq was set to 0.20. To calculate

heterozygosity levels, the SNP number was divided by the genome size of each strain. We

subtracted and annotated SNP regions that were not present in the parental genomes but present

in the hybrid genome, with an in­house python script.

3.2.12 RNA-Seq analysis

The RNA­seq analysis was performed using the cells collected from the Verdejo must micro

vinifications, described above. We used white natural must to avoid RNA degradation due to the

oxidation of polyphenols present in red musts. Fermentations were followed by weight loss; kinetic

parameters were analyzed as explained above.

Cell samples were collected at two different fermentation time points: at the lag phase (4 h)

and at the mid­exponential growth phase (24 h at 25ºC and 48 h at 15ºC respectively). Cells

were harvested by centrifugation and then stored at −80ºC. Total RNA was extracted following a

protocol based on an initial step of washing with DEPC­treated water and subsequent treatments

with phenol­Tris, phenol­chloroform (5:1) and chloroform­ isoamyl alcohol (24:1), and finally, a first

precipitation with LiCl, and a second with sodium acetate and ethanol. After RNA extraction, we

combined equal proportions of RNAs from the two parental strains in the same sample to reduce

the number of libraries to sequence. Instead of 36 original RNA extracted samples (3 strains

×2 temperatures ×2 time points × triplicate), we had 24 samples to sequence. These samples

were sequenced using the Illumina Hiseq 2000, paired­end reads 75 bases long (NCBI accession

number PRJNA473074). Sequence reads were trimmed and quality filtered using Sickle (Joshi

and Fass, 2011) (length 50, quality 23) and aligned to a combined concatenated reference of both

genomes (AJ4 and BMV58) using bowtie2 version 2.3.2 (Langmead and Salzberg, 2012). Read

counts for each gene were obtained using HTSeq­count version 0.9.0 (Anders et al., 2015), with a

combination of BMV58 and AJ4 annotations and themapping files ordered by names. Themapping

reads with a quality score lower than 2 or those that aligned in more than one genome position

were discarded.
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All the samples were split into two files: One containing the S. cerevisiae gene counts and the

other with the S. uvarum gene counts, as we had half of the sample containing hybrid reads and

the other half with the merged sequences, which corresponded to the S. cerevisiae and to the S.

uvarum parental strains during fermentation. The data was analyzed by a principal component

analysis (PCA) among samples using the DESeq2 package (Anders and Huber, 2010). Read

counts for each one of the 48 files were extracted and used for differential expression analyses with

the EdgeR package (Robinson et al., 2009). Normalization factors were calculated among reads to

scale the raw library sizes, the negative binomial conditional common likelihoods were maximized

to estimate a common dispersion value across all genes, and finally, the tagwise dispersion values

were estimated by an empirical Bayes method based on weighted conditional maximum likelihood.

Finally, genewise exact tests were computed for differences in the means between two

groups of negative­binomially distributed counts, only retrieving a gene if the number of counts

in all samples is > 1. Differential expression levels (relative RNA counts) between the different

conditions were considered as significantly different with a false discovery rate (FDR) (Benjamini

and Hochberg, 1995) at a threshold of 5%. Venn Diagrams were constructed with the number

of differential expressed genes for each assayed condition and Gene Ontology (GO) terms were

attributed using SGD. Statistical overrepresentation tests for the differentially expressed genes

were also performed using Panther Version 14.1 (released 2019­03­12) with default settings (Mi

et al., 2019). We retrieved p­values and fold enrichment for each GO term. Fold enrichment

indicates if the observed gene number for each category in the list is higher than the expected,

based on the number of uploaded genes. If > 1, it indicates that the category is overrepresented

in our experiment. The p­values indicate the probability that the number of genes observed in this

category occurred by chance, as determined by our reference list.
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3.3 Results

3.3.1 S. cerevisiae parental strain selection according to ethanol tolerance

The main objective of the present work is to improve ethanol tolerance in a wine S. uvarum

strain, Velluto BMV58TM (Lallemand Inc.), by interspecific hybridization. First, we characterized

and selected a S. cerevisiae parental strain that can complement BMV58 with its high ethanol

tolerance. For this, we analyzed the growth in several ethanol concentrations of three industrial

S. cerevisiae strains, previously selected by Lallemand for its tolerance to ethanol in industrial

processes. Accordingly, we confirm that S. uvarum strain BMV58TM is the one with the lower

non­inhibitory concentration (NIC) and minimum inhibitory concentration (MIC) values, being

unable to grow in concentrations that did not affect the growth of the S. cerevisiae strains

(Table 3.1). The S. cerevisiae strain AJ4 was selected for hybridization because it exhibits the

highest NIC and MIC values (11.6% and 18.6%, respectively). The parental strains AJ4 and

BMV58 were assayed for their mating competence, with an analysis of their MAT locus and both

were heterozygous MATa/MATα. Their sporulation efficiency and spore viability was tested both

on acetate plates and in the rich GPY liquid medium used for rare mating. As mentioned, no sign

of sporulation for S. cerevisiae AJ4 was detected in GPY after more than ten days. However,

sporulation efficiency in GPY was very low and difficult to observe for BMV58, but a few asci were

present. On acetate plates, both strains sporulated with spore viabilities of 75% for AJ4 and > 95%

for BMV58. Several dissected spores were also assayed for theMAT locus and were heterozygous

MATa/MATα, indicating that both parental strains are homothallic (data not shown).

3.3.2 Hybrid generation and characterization

Selection procedures of hybrids based on auxotrophic complementation of parental strains

is difficult since industrial strains are prototrophic. For this reason, spontaneous auxotrophic

mutants for AJ4 (lys−) and BMV58 (trp−) were selected by growth on α­AA and 5­FAA agar plates,
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TABLE 3.1 One­way ANOVA analysis for the NIC and MIC parameters of 4 different
Saccharomyces strains. NIC and MIC parameters were obtained for the S. uvarum BMV58
and S. cerevisiae AJ4, AJB, and AJW strains in SM + ethanol media at 28ºC. Standard deviations
were obtained from triplicate experiments. Values followed by different superscript letters, within
the same column, are significantly different according to an ANOVA and Tukey HSD tests, α =
0.05.

Strain NIC (%) MIC (%)

AJ4 11.65 ± 0.32d 18.56 ± 1.48c

AJB 10.03 ± 0.16c 13.76 ± 0.19b

AJW 8.63 ± 0.45b 14.94 ± 0.49b

BMV58 5.69 ± 0.9a 10.8 ± 1.19a

respectively. However, no ura− auxotrophs were isolated on 5­FOA plates (Pérez­Través et al.,

2012).

A rare­mating approach was used to obtain putative allotetraploid hybrids with the

whole­genome content of both parents (Pérez­Través et al., 2012). After the rare­mating process,

15 prototrophic colonies were recovered in the selection media. Eight of them were confirmed

to be hybrids by PCR amplification and restriction analysis of UGA3 and GSY1 gene regions

(Pérez­Través et al., 2014b). Seven out of eight colonies (H3 to H5, H8, H12, H14, and H15)

showed a hybrid profile in both genes (data not shown).

These 7 hybrids were subjected to a test of stability by vegetative growth during fermentation.

Each hybrid was inoculated into synthetic must during five passages. Once the fifth fermentation

ended, we isolated colonies and 10 of them were randomly selected for each hybrid. These

colonies weremolecularly characterized bymtDNA­RFLP and delta element analysis. The analysis

of the hybrids revealed that only the 10 colonies from hybrid H8 showed different delta profiles.

For the subsequent phenotypic characterization, one of these 10 colonies of each hybrid, showing

the same molecular patter, was randomly selected for each hybrid. From now on, these vegetative

stabilized hybrids will be named H3, H4, H5, H12, H14 and H15.

Three of the original hybrids (H3, H4, and H14) were able to sporulate with a sporulation

efficiency > 95%. Therefore, they were sporulated and more than 16 asci were dissected. Hybrid

spore viabilities were: 76.7%, 53.6% and 39% for H3, H4, and H14, respectively. However, only 10
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viable spores were selected for each hybrid. These monosporic derivatives were named after the

original hybrid name (H3, H4, or H14) followed by a letter and a number indicating the dissection

plate coordinates.

The hybrid nature of the monosporic­derivative strains was analyzed by PCR amplification and

subsequent restriction analysis of six gene regions to determine the presence of at least one hybrid

pattern. According to this analysis, only 9 monosporic strains, all of them recovered from hybrid

H14, showed an interspecific hybrid pattern for at least one the genes assayed. These monosporic

derivative hybrids were also subjected to a test of stability by performing fermentation in synthetic

must at 25ºC. In the end, 10 colonies from each fermentation were isolated and the genome stability

was confirmed using δ elements and mtDNA­RFLP patterns (Legras and Karst, 2003; Querol et al.,

1992). All these hybrid monosporic derivatives were stable in their patterns along the fermentation.

3.3.3 Phenotypic and enological characterization of the artificial hybrids for the

selection of the best suitable strain

The strains that showed to be stable during vegetative growth without and after sporulation,

along with the two parental strains AJ4 and BMV58, were evaluated for growth in SM (30 g L−1 of

glucose) supplemented with 6.5% ethanol ( Figure 3.2). We observed that the maximum growth

rate varied between the different artificial hybrids and spore derivatives. It is interesting to point out

that the monosporic derivative H14A7 showed a higher growth rate, even better than S. cerevisiae

AJ4. The kinetic parameters for the other strains were intermediate between those of their parents,

except H14B1 and H14A6, which show lower maximum growth rates (µmax). Accordingly, we

selected the hybrid spore derivative H14A7 because showed a µmax higher than both parents did

Figure 3.1.

H14A7 was an isolate from a three­spored ascus obtained of H14. Only two of the spores from

this ascus were viable (H14A6 and H14A7), being one of them, H14A7 the selected strain.

Ethanol tolerance assays of the derivative hybrid were performed at 15 and 25ºC using the two

145



CHAPTER 3.

AJ4
S. cerevisiae

BMV58
S. uvarum

H14A7
AJ4 x BMV58

FIGURE 3.1 Scheme of H14A7 obtainment. AJ4 and BMV58 strains were selected to obtain
different S. cerevisiae x S. cerevisiae hybrids. Finally, one of the hybrids, H14A7 was selected.
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FIGURE 3.2 Maximum growth rate (µ max) of the different colonies after stabilization by
vegetative growth and sporulation. µ max data is represented as the mean value of three
replicates with its standard deviation. The data was retrieved after growing the colonies in SM with
30 g/L of sugars and 6.5%(v/v) of exogenous ethanol. Colonies stabilized by vegetative growth are
filled in light green color, and those stabilized by sporulation in dark green; Parental AJ4 is shown
in blue, and BMV58 in red.
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TABLE 3.2 One­way ANOVA analysis for the NIC and MIC parameters of S. uvarum BMV58 and
H14A7 strains at 15 and 25ºC. NIC and MIC parameters were obtained for the S. uvarum BMV58,
S. cerevisiae AJ4 and H14A7 S. cerevisiae × S. uvarum strains in SM + ethanol media at 25 and
15ºC. Standard deviations were obtained from triplicate experiments. Values followed by different
superscript letters, within the same column, are significantly different according to an ANOVA and
Tukey HSD tests, α = 0.05.

Strain NIC MIC
15ºC 25ºC 15ºC 25ºC

BMV58 8.93 ± 0.67a,b 6.05 ± 0.26a 11.86 ± 0.86a,b 9.52 ± 0.14a

AJ4 6.84 ± 1.26a,b 7.97 ± 0, 62a,b 17.45± 1.16c 16.73 ± 0.18c

H14A7 9.19 ± 0.63b 7.56 ± 0.49a,b 12.16 ± 0.22b 11.44 ± 0.30b

parental strains AJ4 and BMV58 as controls. Their NIC and MIC values at both temperatures can

be seen in Table 3.2. H14A7 NIC value at 15ºC is the highest, and its MIC values are between

both parents at both temperatures.

Enological properties of the hybrid monosporic derivative H14A7 and the parental strains AJ4

and BMV58 were evaluated by performing fermentations in Verdejo grape musts at 15 and 25ºC.

Their sugar consumption profiles, kinetic parameters, and metabolite production are shown in

Figure 3.3 and Table 3.3. Sugars (glucose and fructose) of the Verdejo musts were practically

exhausted at the end of all fermentations performed at both temperatures.

Glycerol production was higher at 25ºC in the H14A7 strain and the S. uvarum parental,

whereas at 15ºC the hybrid derivative showed an intermediate profile of glycerol production,

higher than AJ4 but lower than BMV58. The analysis of the production of organic acids showed

that parental AJ4 and the hybrid monosporic derivative produce higher amounts of lactic acid

compared to BMV58. It is worth to note that H14A7 presented a longer latency phase at both

temperatures compared to its parents but, during the exponential phase, exhibited the maximum

sugar consumption rate and fermentation speed at 25ºC, and an intermediate sugar consumption

rate between those of AJ4 and BMV58 at 15ºC. Therefore, we can conclude that the hybrid

derivative strain inherited the good fermentation performance and the higher production of organic

acids from the S. cerevisiae AJ4 parent, and the higher synthesis of glycerol from BMV58

(Table 3.3).
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FIGURE 3.3 Main analytical and kinetic parameters of the fermentation carried out with both
parental strains and the obtained hybrid in Verdejo must at 15 and 25ºC. Sugar consumption
represents the percentage of sugars consumed at different time points of the fermentation for AJ4
(blue), BMV58(red) and H14A7 (green), at 25ºC (A) and 15ºC (B). Arrows indicate the time points
when samples for transcriptomic analysis were taken (t = 4 h and t = 24 h at 25ºC, and t = 4 h and
t = 48 h at 15ºC).

148



CHAPTER 3.

TA
BL

E
3.
3
K
in
et
ic
pa

ra
m
et
er
s
an

d
ch

em
ic
al
co

m
po

si
tio

n
of

fe
rm

en
ta
tio

n
in
Ve

rd
ej
o
m
us

ti
no

cu
la
te
d
w
ith

A
J4
,B

M
V5

8
an

d
H
14
A
7
st
ra
in
s

at
15

an
d
25
ºC
.m

is
th
e
m
ax
im
um

su
ga
rc

on
su
m
pt
io
n
ra
te
,l

is
th
e
fe
rm
en
ta
tio
n
la
g
ph
as
e
du
ra
tio
n,

an
d
t5
0,

t9
0
ar
e
th
e
tim

es
em

pl
oy
ed

to
co
ns
um

e
50
%
an
d
90
%
of
th
e
su
ga
rs
pr
es
en
ti
n
th
e
m
us
t.
Th
es
e
va
lu
es

w
er
e
ob
ta
in
ed

af
te
ra
dj
us
tm
en
tt
o
G
om

pe
rtz

eq
ua
tio
n
of
th
re
e
bi
ol
og
ic
al

re
pl
ic
at
es
.V

al
ue
s
ar
e
a
m
ea
n
of
th
e
th
re
e
bi
ol
og
ic
al
re
pl
ic
at
es

fo
llo
w
ed

by
th
ei
rs
ta
nd
ar
d
de
vi
at
io
n.

D
iff
er
en
ts
up
er
in
de
xe
s
in
th
e
sa
m
e
ro
w
an
d

be
lo
ng
in
g
to
th
e
sa
m
e
te
m
pe
ra
tu
re
ar
e
si
gn
ifi
ca
nt
ly
di
ffe
re
nt
ac
co
rd
in
g
to
th
e
Tu
ke
y
H
SD

te
st
(α

=
0.
05
).

25
ºC

fe
rm

en
ta
tio

ns
15
ºC

fe
rm

en
ta
tio

ns

H
14
A
7

A
J4

B
M
V5

8
H
14
A
7

A
J4

B
M
V5

8
Fi
na

lm
us

tc
om

po
si
tio

n
Fi
na

lm
us

tc
om

po
si
tio

n

G
lu
co

se
(g
/L
)

0.
02

±0
.0
2a

0.
00

±
0.
00

a
0.
03

±
0.
04

a
0.
00

±
0.
00

a
0.
00

±0
.0
0a

0.
00

±0
.0
0a

Fr
uc

to
se

(g
/L
)

0.
77

±0
.1
6a

1.
01

±
0.
44

a
0.
39

±
0.
1a

1.
41

±
0.
53

a
2.
39

±1
.0
1a

0.
47

±0
.8
2a

G
ly
ce
ro
l(
g/
L)

11
.2
3
±
0.
13

a
10
.2
2
±
0.
51

b
11
.6
6
±
0.
43

a
8.
70

±
0.
09

b
7.
52

±
0.
23

a
11
.0
7
±
0.
29

c

Et
ha

no
l(
%
)

12
.7
2
±0
.3
6a

12
.8
3
±0
.5
1a

12
.3
8
±
0.
13

a
12
.8
6
±
0.
12

c
12
.3
5
±0
.1
b

11
.6
9
±
0.
02

a

C
itr
ic
ac
id

(g
/L
)

0.
39

±
0.
01

b
0.
27

±0
.0
2a

0.
23

±
0.
02
a

0.
28

±0
.0
5a

0.
29

±0
.0
2a

0.
3
±
0.
01

a

Ta
rt
ar
ic
ac
id

(g
/L
)

2.
4
±
0.
12

a
2.
22

±
0.
09

a
2.
19

±
0.
12

a
1.
92

±
0.
09

a
2.
23

±0
,2
3a

1.
88

±0
.1
2a

M
al
ic
ac
id

(g
/L
)

1.
96

±
0.
14

b
2.
68

±0
.2
6a

1.
94

±
0.
22

b
1.
79

±0
.0
7a

2.
66

±0
.7
8a

1.
92

±
0.
11

a

L­
La

ct
ic
ac
id

(g
/L
)

1.
02

±
0.
14
b

1.
95

±
0.
31

a
0.
73

±
0.
03

b
0.
38

±
0.
03

a
0.
32

±0
.0
2a

0.
26

±0
.0
6a

K
in
et
ic
pa

ra
m
et
er
s

K
in
et
ic
pa

ra
m
et
er
s

m
(g

L−
1
h−

1 )
1.
76
1
±
0.
09
85
b

1.
48
5
±
0.
07
06
a

1.
51
3
±
0.
11
4a

0.
78

±
0.
02
65

ab
0.
75

±0
.0
5a

0.
92
4
±0
.0
89

b

l(
h)

9.
84

±
0.
80
19
4b

6.
96

±
0.
55
1a

8.
08
1
±
0.
54

a
23
.9
5
±
2.
17

b
22
.0
71

±
1.
89

ab
18
.3
7
±
0.
97

a

t5
0
(h
)

43
.2
0
±
1.
61

b
40
.8
8
±
1.
80

b
36
.7
2
±
1.
37

a
77
.9
1

87
.9
1
±
4.
13

b
89
.8
9
±4
.4
3b

73
.2
1
±4
.1
3a

t9
0
(h
)

93
.6
2
±
4.
44

b
88
.8
4
±
4.
47

a,
b

77
.9
1
±4
.2
9a

18
6.
96

±7
.6
1a

,b
20
7.
20
6
±
3.
22

b
15
7.
26

±
3.
96

a

G
ly
ce
ro
l/s
ug

ar
yi
el
d
(g
/g
)

0.
05
6
±
0.
00
05

a
0.
05
12

±
0.
00
04

b
0.
05
8
±0
.0
00
5a

0.
04
4
±0
.0
00
2b

0.
03
8
±0
.0
00
4a

0.
05
5
±0
.0
00
4b

c

149



CHAPTER 3.

3.3.4 Comparative genome analysis between the best artificial hybrid and its

parents

To determine the genome constitution of the artificial hybrid and those changes that occurred

during the process of rare­mating hybridization and the subsequent sporulation, a comparative

genome analysis between the artificial hybrid derivative and its parents was performed. For this

purpose, we sequenced, assembled and annotated the whole genome of monosporic derivative

H14A7 and the S. cerevisiae AJ4 parental strain. The BMV58 genome sequence and annotation

were already available in our laboratory (Macías et al. unpublished data).

A total of 6182 genes of AJ4 were annotated and manually revised. The retrieved BMV58

annotation consists of a set of 5710 manually revised genes. A total of 5393 gene sequences

were well annotated and shared between AJ4 and BMV58.

The H14A7 sequence reads were mapped against the genomes of AJ4 and BMV58 strains

to unveil its genome constitution by means of an analysis of copy number variations (CNV) in

its chromosomes. It is interesting to note that the artificial hybrid H14 and its spore derivative

H14A7 inherited the S. cerevisiae mitochondrial genome. This genome constitution analysis was

complemented with an analysis of ploidy by flow cytometry. Strikingly, although both parents are

diploid strains (AJ4, 2.28 ± 0.01; and BMV58, 2.28 ± 0.01), H14A7 is allotriploid (2.98 ± 0.02),

and not allodiploid as expected after sporulation of a putative allotetraploid. The analysis of

genome sequences confirmed these results and provided more information on the H14A7 genome

composition. Average read depths across the S. cerevisiae subgenome were twice of the S.

uvarum subgenome (Figure 3.4). Together with the flow cytometry results, this suggests that the

monosporic derivative H14A7 is allotriploid with a diploid S. cerevisiae subgenome and a haploid S.

uvarum subgenome. An exception was observed for chromosome III, which in both subgenomes

appeared in only one copy. These observations were also confirmed by the CNVnator analysis.

When we searched for deletions and duplications of small regions with CNVNator, no significant

changes were detected.
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SUPPLEMENTARY FIGURE 3.1 Agarose gel electrophoresis showing the MAT locus restriction
patterns of the artificial hybrid spore derivative H14A7 and the S. cerevisiae AJ4 and S.
uvarum BMV58 parental strains (indicated in red and blue, respectively). PCR fragments
were amplified with MATa (amplicon length 544 bp) and MATα (404 bp) specific primers and
digested with endonuclease MseI to differentiate the MAT alleles of the parental species. The
length of the diagnostic bands, specific of S. cerevisiae and S. uvarum, are indicated in red and
blue, respectively. Restriction fragments were separated on 3% agarose gel in 0.5× TBE buffer
and a mixture of 50­bp 100­bp DNA ladder markers was used as size standards (m).

TheMAT locus was also tested for strain H14A7, containing aMATa allele in the monosomic S.

cerevisiae chromosome III and aMATα allele in the haploidS. uvarum subgenome (Supplementary

Figure 3.1).

To better understand how the selected spore­derivative hybrid could be originated, we

compared single nucleotide polymorphisms SNPs in H14A7, AJ4, and BMV58. The heterozygosity

levels are higher in the S. cerevisiae parental strain (0.067% SNPs in the genome) than in the S.

uvarum one (0.022% SNPs). The hybrid S. cerevisiae subgenome maintains the same levels of

heterozygosity than AJ4 for each chromosome pair, except for the homozygous chromosome III,

due to the single copy maintained in the hybrid. Apart from the SNPs located in chromosome

III, H14A7 only showed the fixation of three non­synonymous homozygous SNPs, present in its

parental S. cerevisiae strain in the form of heterozygous sites, likely by a loss of heterozygosity

mechanism. These three homozygous SNPs occurred in gene TRK2 (YKR050W), located on

chromosome XI, which is part of the Trk1p­Trk2p potassium transport system.
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FIGURE 3.4 Graphic representation of the hybrid H14A7 genome composition. Obtained with
sppIDer (https://github.com/GLBRC/sppIDer), a pipeline that uses bwa –mem to map the reads of
the hybrid genome to the reference genome of its parental strains, BMV58 and AJ4.

3.3.5 Comparative expression analysis during wine fermentation

To better understand the properties acquired by the hybrid respect to both parents, we

performed a comparative study of gene expression during Verdejo must fermentations. A total

number of 36 samples (3 strains × 2 times × 2 temperatures × triplicates) of RNA were retrieved

during the fermentations and sequenced. In the case of the artificial monosporic derivative H14A7

samples, transcriptomic data of the S. uvarum and S. cerevisiae genes were treated separately.

A principal component analysis (PCA) with the DESeq2 package was performed. Figure 3.5

showed that triplicates group together and that the greater variance (61%) in the samples

correspond to the fermentation phase variable. The first principal component (PC1) separated

samples from latency and exponential growth phases. The second component (PC2), which

explains 24% of the variance, is the subgenome (S. cerevisiae or S. uvarum). The PCA also

showed clustering of samples into 4 separate groups: samples belonging to S. cerevisiae gene

expression in the exponential phase; S. cerevisiae gene expression in the latency phase; S.

uvarum gene expression in exponential phase; and S. uvarum gene expression in latency phase.
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FIGURE 3.5 Principal component analysis of the transcriptome variation in S. uvarum BMV58,
S. cerevisiae AJ4, and the S. uvarum and S. cerevisiae subgenomes of the artificial hybrid
under two different temperatures and fermentation phases. All sequenced transcriptomic
samples were plotted in this PCA. The PCA plot shows the greater variation in the fermentation
phase and in the species gene expression. Triplicates are shown in the same color and shape, as
follows: blue, AJ4; red, BMV58; orange, H14A7­uvarum; turquoise, H14A7­cerevisiae; squares,
exponential phase; circles, latency phase; filled, 15ºC; a cross, 25ºC.

We conducted a first differential expression analysis using only the samples corresponding to

H14A7 fermentations to compare S. cerevisiae and S. uvarum gene­specific expressions in this

hybrid. We performed simple assays comparing gene expression between the hybrid subgenome

genes in 4 conditions (the latency phase at 15 and at 25ºC, and the exponential phase at 15

and at 25ºC), with adjusted p­values < 0.01 (FDR). We normalized S. cerevisiae and S. uvarum

subgenome expressions according to the number of copies of each gene present in the hybrid.

Gene­ specific overexpression differences can be seen in Figure 3.6. At 15ºC, the number of

differentially expressed DE genes was higher in the latency phase than in the exponential stage,

whereas at 25ºC both phases showed a similar number of differentially expressed genes in the

hybrid. A GO term enrichment analysis was performed, and the 5 GO terms with a lower p­value

for each condition are represented against their fold­enrichment in Figure 3.7 and Figure 3.8.

It is remarkable that the fatty acid catabolic process and short­chain fatty acidmetabolic process

are overrepresented terms in the S. uvarum subgenome when compared with the S. cerevisiae

subgenome during the exponential phase at 25ºC. These two GO terms could be related to the
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FIGURE 3.6 Venn diagrams with the number of differentially expressed genes when
performing differential expression analysis between the S. cerevisiae and S. uvarum
subgenomes of the H14A7 monosporic derivative. Up­regulated genes in S. cerevisiae
genome against S. uvarum subgenome at 25◦C at two phases (A), Up­regulated genes in S.
uvarum genome against S. cerevisiae subgenome at 25ºC at two phases (B), up­regulated genes
in S. cerevisiae genome against S. uvarum subgenome at 15◦C at two phases (C), up­regulated
genes in S. uvarum genome against S. cerevisiae subgenome at 15ºC at two phases (D).
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S. cerevisiae overrepresented GO
in H14A7 vs S. uvarum

(25 ºC latency)

S. uvarum overrepresented GO
in H14A7 vs S. cerevisiae

(25 ºC latency)

S. cerevisiae overrepresented GO
in H14A7 vs S. uvarum

(25 ºC exponential)

S. uvarum overrepresented GO
in H14A7 vs S. cerevisiae

(25 ºC exponential)
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FIGURE 3.7 Top 5 significant GO terms retrieved from the differentially expressed genes
between the S. cerevisiae and S. uvarum subgenomes in the H14A7 monosporic derivative
at 25ºC. For each of the 4 graphs (S. uvarum latency overrepresented, S. cerevisiae
latency overrepresented, S. uvarum exponential overrepresented and S. cerevisiae exponential
overrepresented) the x­axis represents de fold­enrichment and the y­axis the p­value, retrieved
from Panther Gene List Analysis. The sizes of the circles represent the number of terms that are
included in each GO.
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S. uvarum overrepresented GO
in H14A7 vs S. cerevisiae

(15 ºC latency)

S. uvarum overrepresented GO
in H14A7 vs S. cerevisiae

(15 ºC exponential)

S. cerevisiae overrepresented GO
in H14A7 vs S. uvarum

(15 ºC exponential)

S. cerevisiae overrepresented GO
in H14A7 vs S. uvarum

(15 ºC latency)
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FIGURE 3.8 Top 5 significant GO terms retrieved from the differentially expressed genes
amongst S. cerevisiae and S. uvarum subgenomes in the H14A7 monosporic derivative
at 15ºC. For each one of the 4 graphs (S. uvarum latency overrepresented, S. cerevisiae
latency overrepresented, S. uvarum exponential overrepresented and S. cerevisiae exponential
overrepresented) the x­axis represents de fold­enrichment and the y­axis the p­value, retrieved
from Panther Gene List Analysis. The sizes of the circles represent the number of terms that are
included in each GO.
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H14A7 behavior during alcoholic fermentation, as they are related to membrane composition of

yeast cells and, thus, to ethanol tolerance.

In the subsequent differential expression analyses, we compared gene expression during

fermentation of the S. cerevisiae genes of H14A7 monosporic derivative and those from the

parental AJ4, and of the S. uvarum genes of H14A7 and those from the parental BMV58. We

analyzed H14A7 differentially expressed genes against AJ4 (adjusted p­values of 0.05) and

only found 5 up­regulated genes, including FSH1, encoding a serine hydrolase, and ARG1,

involved in the arginine biosynthesis pathway. Of the 66 down­regulated genes, 36 of them are

located on chromosome III, present as a single copy in the hybrid. It is important to remark this

under­expression is significant considering that expression levels were corrected according to the

number of copies of the genes. Other underexpressed genes in the hybrid are GPX2, encoding a

glutathione peroxidase; ARE1, an acyl­coenzyme A; NDE2, a NADH dehydrogenase; and ADH2,

alcohol dehydrogenase II, which catalyzes the conversion of ethanol to acetaldehyde.

RNA seq analysis of S. uvarum allele expression between H14A7 and BMV58 showed

that there were 33 differentially expressed genes (adjusted p­values of 0.05): 17 of them are

up­regulated in H14A7 and 16 up­regulated in BMV58. It is worth noticing that the gene ADH5,

encoding an alcohol dehydrogenase involved in ethanol synthesis, is overexpressed in the hybrid

derivative H14A7. The function of ADH5 is uncharacterized, though it has been proposed to

share a common ancestor with ADH1/ADH2, from which it appeared to have diverged as part

of a whole­genome duplication occurred in the ancestor of the Saccharomyces lineage (Wolfe and

Shields, 1997).

As a complementary approach to compare AJ4 and BMV58 parental strains with H14A7

gene expression, we also compared each gene expression of the parental (AJ4 and BMV58,

respectively) with the total addition of the S. cerevisiae and S. uvarum alleles expression of the

hybrid. With this approach, we could compare the whole genome expression of the hybrid with

the expressions of each parent. We found more significant differentially expressed genes than

in the subgenome comparisons. A PCA analysis that groups samples according to their gene
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FIGURE 3.9 Principal Component Analysis (PCA) of the transcriptome variation in S. uvarum
BMV58, S. cerevisiae AJ4, and the monosporic derivative H14A7 genome (S. uvarum + S.
cerevisiae subgenomes) under two different temperatures and fermentation phases. All
sequenced transcriptomic samples were plotted in this PCA (3 strains × 2 phases × 2 temperatures
× triplicates). The PCA plot shows the greater variation in expression levels in the fermentation
phase and in the species­specific gene expression. Triplicates are shown in the same color and
shape, as follows: blue, AJ4; red, BMV58; green, H14A7; squares, exponential phase; circles,
latency phase; filled, 15ºC; a cross, 25ºC.

expressions can be seen in Figure 3.9.

At the latency phase of fermentations at 25ºC, the hybrid showed up­regulation in amino acid

biosynthesis when compared with both AJ4 and BMV58 strains, in 46 and 43 genes, respectively.

Genes ARO1, ARO80, and HIS2 are more expressed in H14A7 than in BMV58, CYS3, MET8,

and TRP2 are more expressed in H14A7 with respect to AJ4, and HIS1, MET6, and ARO8 are

up­regulated in comparison to both parents.

At the exponential phase during fermentations at 25ºC, H14A7 showed an up­regulation in

oxidative­reduction processes with respect to BMV58, and in glycogen biosynthesis, galactose

degradation and hexose catabolism in comparison with AJ4. At the latency phase during

fermentations at 15ºC, the hybrid derivative overexpressed the ribosome biosynthesis genes

in comparison with AJ4, and transmembrane transport genes and genes that respond to

oxidative stress with respect to BMV58. Finally, at the exponential phase at 15ºC, the hybrid

overexpressed alpha­amino acid metabolism genes in comparison to BMV58 and ergosterol and
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sterol biosynthesis genes in comparison to AJ4.

It has to be mentioned that, during the exponential phase, the GO terms: positive regulation

of ergosterol biosynthetic process, positive regulation of steroid biosynthetic process, positive

regulation of steroid metabolic process, and positive regulation of sterol biosynthetic process,

are over­represented in the genome expression of H14A7 against AJ4 at 15ºC, and theGO term:

positive regulation ofalcohol biosynthetic process, at 25ºC. At 15ºC during the exponential phase,

the GO terms: alpha­aminoacid metabolic process and cellular amino acid metabolic process are

among the overrepresented GO terms from the differentially expressed genes between H14A7 and

BMV58.

As a short summary, S. cerevisiae and S. uvarum alleles are differentially expressed in

H14A7. This differential expression among alleles is very evident in the latency stage at

15ºC, genes involved in the ergosterol biosynthetic process and in cellular lipid biosynthetic

process are overexpressed in the S. uvarum subgenome, whereas the S. cerevisiae subgenome

overexpressed genes are involved in catalytic activities, among others. When comparing H14A7

total genes against AJ4 and BMV58 parents, the most interesting result is the differential

expression of genes related to amino acid biosynthesis.

3.4 Discussion

In the last decade, a great effort has been devoted to the study of natural Saccharomyces

hybrids present in industrial fermentations (Kodama et al., 2005; Peris et al., 2018). These

Saccharomyces hybrids have mainly been isolated from fermentative environments in European

regions with Continental and Oceanic climates, and they were originated by spontaneous

hybridization between S. cerevisiae and a cryophilic species: S. eubayanus, S. kudriavzevii, or S.

uvarum (Boynton and Greig, 2014). The best­known example is the lager yeasts S. pastorianus,

a hybrid between S. cerevisiae and S. eubayanus (Monerawela and Bond, 2017).

The physiological characterization of natural hybrids demonstrated that they inherited the good
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fermentation performance and ethanol tolerance of S. cerevisiae and the ability to grow at lower

temperatures of the S. non­cerevisiae partner, as well as other properties of enological interest

(Pérez­Torrado et al., 2018). These interesting properties contributed by the Saccharomyces

non­cerevisiae species prompted the development of artificial interspecific hybrids for industrial

applications. The main purpose was the generation of new hybrids to increase diversity, such as

in the case of lager yeasts (Hebly et al., 2015; Mertens et al., 2015), or to improve low­temperature

tolerance to wine strains (García­Ríos et al., 2019c; Kishimoto, 1994; Origone et al., 2018).

However, the main purpose of this study is to obtain an artificial S. cerevisiae × S. uvarum hybrid

conjugating the interesting enological properties of a commercial wine S. uvarum strain, and the

high ethanol tolerance of a S. cerevisiae strain, able to grow at ethanol concentrations in which

most of the Saccharomyces yeasts are not able to grow (Arroyo­López et al., 2010b).

It has been reported that increased genome size on the hybrids can confer adaptive flexibility

fermenting under different conditions (Miklos and Sipiczki, 1991; Pfliegler et al., 2014) and in the

case of our hybrid derivative strain, that proved to be true.

Ploidy of hybrids influences fermentation performance, a triploid strain, as in our case, is

improving fermentation when compared with diploid strains (Krogerus et al., 2016). This effect

was more remarkable when fermentation took place at 25ºC, in which maximum growth rate of

the hybrid was higher than the parental rates, but also at 15ºC, in which the hybrid showed an

intermediate behavior, as described for other S. cerevisiae × S. uvarum hybrids (Coloretti et al.,

2006).

Artificial hybrids are usually obtained by ‘canonical’ mating between haploid cells/spores of

opposite mating types, either by spore­to­spore crosses or by mass mating between haploid

spores/cells (Antunovics et al., 2005; Caridi et al., 2002; Zambonelli et al., 1997). However, the

genomic characterization of natural S. cerevisiae × S. kudriavzevii hybrids (Morard et al., 2020a)

suggests that, in these hybrids, the most probable mechanism of hybridization is ‘rare’ mating,

although not the only one. Diploid Saccharomyces cells can become mating competent by a

mating­type conversion to a homozygous genotype (Gunge and Nakatomi, 1972), being able
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to cross with another mating­competent haploid or diploid cell. This technique, known as rare

mating, is less common because hybridization frequency is lower (’rare’) than those obtained by

spore­to­spore or mass­mating conjugations. However, as hybrid genomic architectures will differ

according to the mating involved in the hybridization, rare mating has the advantage of maintaining

the heterozygosity levels of the parents in all the initial putative allotetraploid hybrids (Bellon et al.,

2015; Pérez­Través et al., 2012). The first step required for rare mating is the selection of natural

auxotrophic markers in the strains to hybridize, so the prototrophic recovery technique can be used

to select the hybrids.

Theoretically, when diploid strains are used to obtain hybrids, as in the case of our S. cerevisiae

andS. uvarum selected parental strains, allotetraploids with the same putative genomic constitution

of the parents are obtained. If a hybrid strain is going to be transferred to the industry, it is necessary

to ensure its genomic stability. Then, an adaptive stability test needs to be performed. In our

case, it was carried out by vegetative growth in fermentative conditions, mimicking the winemaking

process, for hybrids and spore­derivative hybrids. During the mitotic or meiotic divisions, different

genomic rearrangements or chromosome segregations can be produced, giving rise to a variety

of derived allopolyploids (during vegetative growth) and allodiploids (after sporulation) and even

mosaic strains with potential physiological differences ofinterest. An autotetraploid produces

autodiploid spores possessing two complete sets of chromosomes, but malsegregation of the

octavalent chromosomes during meiosis usually results in aneuploidies. An allotetraploid also

produces diploids but these are not autodiploids but allodiploids due to the phenomenon referred

to as autodiploidization of the allotetraploid meiosis (Karanyicz et al., 2017). If we take into account

all the obtained hybrids, the different behavior and genome composition can be due to different

factors considered above, and on the other hand, during the stabilization process, we did not use

a high selective pressure, so chromosome losses and stabilization can occur in different ways by

chance.

Artificial interspecific hybrids are often disadvantageous compared with their parental species

because of their potential reduced viability (Mercer et al., 2007; Piotrowski et al., 2012). However,

one of the hybrid monosporic derivatives, H14A7, showed hybrid vigor (Lippman and Zamir, 2007).
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Thus, H14A7 performed wine fermentations at 25ºC faster than its parents and the other derived

hybrid, and at lower temperatures showed a better behavior than the S. cerevisiae parental strain.

As a monosporic derivative of a putative allotetraploid hybrid generated by rare mating, strain

H14A7 was expected to be an allodiploid hybrid. However, a combination of flow cytometry and

genome sequencing data indicated that H14A7 strain is an almost perfect allotriploid, with one

copy of the S. uvarum genome, and two heterozygous copies of each S. cerevisiae chromosome,

except chromosome III, which is present in one copy. Moreover, the levels of heterozygosity of the

S. cerevisiae subgenome of the hybrid, except for the monosomic chromosome III, were identical

to those of the parental S. cerevisiae genome. This indicates that the hybrid maintains the two

homologous copies ofthe S. cerevisiae parental chromosomes, with the exception of chromosome

III.

There are two possible explanations for the genome composition of this monosporic­derivative

hybrid H14A7. In the first, the original hybrid H14 could be a perfect allotetraploid, and the

missegregation of the homologous S. cerevisiae chromosomes during the meiotic division I

generated the H14A7 allotriploid. The different meiotic behavior of the subgenomes is consistent

with the autodiploidization ofthe allotetraploid meiosis Sipiczki (2018). This scenario is supported

by previous studies with artificial S. cerevisiae × S. uvarum hybrids (García­Ríos et al., 2019c).

Allotetraploids are more prone to malsegregation than the autotetraploids, supposedly due to

occasional allosyndetic pairing between homeologous chromosomes of the subgenomes (Sipiczki,

2018). In H14A7, it could be hypothesized that the S. cerevisiae subgenome, as a whole, failed

to perform normal meiosis I. Another scenario, which could have produced an allotriploid from an

allotetraploid, is the loss of the S. uvarum part of the hybrid during the course of successive meiotic

divisions (Antunovics et al., 2005), a process termed genome autoreduction in meiosis (GARMe)

(Sipiczki, 2018). This scenario is less relevant here because it takes place after the breakdown of

the sterility barrier and cannot result in a one­step malsegregation of all chromosomes of the S.

uvarum subgenome.

In the second hypothesis about the origin of the H14A7 monosporic derivative, the original
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hybrid H14 could be originated by a rare mating event between a mating­competent S. cerevisiae

diploid cell and a S. uvarum haploid cell. The subsequent sporulation of this allotriploid, the two S.

cerevisiae homologous chromosomes and the S. uvarum homeologous one should move together

during the wrong meiosis I division. In this case, two spores would be viable and the other two non­

viable, which is congruent with the tetrad composition from which the H14A7 spore was dissected.

This scenario is supported by a previous study in our laboratory, in which an artificial S. cerevisiae

× S. kudriavzevii hybrid was generated by rare mating (Morard et al., 2020a). This S. cerevisiae

× S. kudriavzevii hybrid showed the same genome composition than H14A7, it was an allotriploid

with one copy of the non­cerevisiae (in this case, S. kudriavzevii) genome and two heterozygous

copies of each S. cerevisiae chromosome (the same than its S. cerevisiae parental strain T73),

except a monosomic chromosome III.

Both parental S. kudriavzevii (CR85) and S. uvarum (BMV58) strains were able to sporulate

in the rare­mating rich media, although the first much more efficiently than the latter. The most

important difference between both studies is the fact that the artificial S. cerevisiae × S. uvarum

hybrid H14 was subjected to sporulation to generate H14A7, but the artificial S. cerevisiae × S.

kudriavzevii hybrid not, but in both cases converged to analogous genome compositions.

Therefore, the genome composition of H14A7 indicates that the original hybrid H14 could be

the result of a ’rare mating’ event involving a mating­competent S. cerevisiae AJ4 diploid cell and

a S. uvarum BMV58 haploid or mating­competent diploid cell with the opposite mating type.

However, our spore­derivative hybrid resulted to be an aneuploid allotriploid with one S.

uvarum genome copy, and two heterozygous copies of each S. cerevisiae chromosome, with the

exception of a single copy of chromosome III, which contains the MAT locus. This result opens

the possibility that the parental diploid S. cerevisiae strain acquired mating­competence, not by

becoming homozygous for theMAT locus due to gene conversion, but because of the loss of one of

the chromosomes III. A mating­competent diploid S. cerevisiae cell, monosomic for chromosome

III with the MATa allele, could conjugate with a MATα haploid or MATα/MATα diploid cell of S.

uvarum to generate H14. This scenario is supported by the fact that the artificial S. cerevisiae
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× S. kudriavzevii hybrid generated by rare mating (Morard et al., 2020a), but not subjected to

sporulation, also was an allotrianeuploid with one copy of the S. kudriavzevii genome and two

highly heterozygous copies of each S. cerevisiae chromosome, except a monosomic chromosome

III. This is also congruent with the fact that the S. cerevisiae chromosome III, one of the smallest,

shows the highest loss frequency (Kumaran et al., 2013), and the fact that the presence of a single

copy of chromosome III in diploid hybrid sub­genomes is common in rare mated hybrids (Krogerus

et al., 2016).

However, as the genome sequence of the original hybrid H14 is not available, we cannot

completely discard that the rare mating, originating H14, could involve a S. cerevisiae euploid cell

competent for mating due to gene conversion. In that case, the presence of only one S. cerevisiae

chromosome III copy in H14A7 could be the result of a chromosome loss during the meiotic division

of the H14 hybrid, as chromosome III is one of the least stable chromosomes also in alloploid hybrid

genomes (Kumaran et al., 2013). In other words, as the genome composition of H14 is unknown,

we cannot determine if the lack ofone copy ofthe S. cerevisiae chromosome III in H14A7 is due to a

prezygotic (occurring in AJ4, the S. cerevisiae parent, before the hybridization) or to a postzygotic

(taking place during the meiotic division of the hybrid cell) event.

The availability of artificial hybrids, in addition to their biotechnological interest, offers new

challenges to study how two genomes, two transcriptomes, two proteomes, and two metabolomes

interact to merge into a single system in the hybrid, and what are the consequences of this fusion

to generate functional innovations for the adaptation to wine fermentation environments. In our

case, we analyzed transcriptomic data obtained during fermentation at two temperatures, 15ºC

typical for white and rosé wines, and 25ºC for red wines. Multivariate analysis showed that the first

two principal components, corresponding to the fermentation phase and species, respectively,

described 84% of the variability. This result corroborates that strain behavior depends strongly on

the wine fermentation phase (Marks et al., 2008; Varela et al., 2005; Zuzuarregui et al., 2006) and

on the properties of each strain (James et al., 2003; Tronchoni et al., 2014, 2017). The third factor

that affected gene expression was the temperature, mainly due to cold stress response (Tronchoni

et al., 2014, 2017).
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In the comparative expression analysis between hybrid subgenomes, previous studies (Duval

et al., 2010; Pfliegler et al., 2014) reported that each parental fraction act differentially during

fermentation; being the S. cerevisiae subgenome more efficient in fermentation performance and

the S. uvarum in temperature adaptation. In our case, we observed the most significant differences

in the fermentation latency phase, when yeasts have to cope with the new stress conditions of

the beginning of fermentation, such as high osmolarity due to increased sugar concentrations,

high sulfite levels, acid stress, and low temperature, in the case of fermentation at 15ºC. At this

temperature, whilst the S. cerevisiae hybrid subgenome focuses on catalytic activity and nutrient

uptake (cofactor, ion, and vitamin binding), congruent with its better nutrient uptake efficiency

(Alonso­del Real et al., 2019), S. uvarum fraction of the hybrid shows a higher expression in

ribosome biogenesis, involved in the translation machinery necessary for growth and division, as

well as in the metabolism of ergosterol, a membrane compound required for membrane protein

trafficking at low temperature (Abe and Minegishi, 2008; Parks et al., 1995). An analysis of the

differential expression betweenS. cerevisiae andS. kudriavzevii, another cryophilic species, during

fermentation at low temperature, concluded that S. kudriavzevii, under cold stress, enhances

translation efficiency by synthesizing ribosomes to overcome the alteration in the stability of

functional RNAs (Tronchoni et al., 2014). This response to low temperature was also observed in a

transcriptome analysis of natural S. cerevisiae × S. kudriavzevii hybrids (Tronchoni et al., 2017), in

which, as occurs in our S. cerevisiae × S. uvarum hybrid, the most remarkable group of upregulated

genes corresponded to the translation machinery category and membrane composition due to the

response of the non­cerevisiae subgenome to cope with the cold shock.

In the latency phase of the fermentation at 25ºC, the S. uvarum subgenome showed two

up­regulated genes, GPD1 and GPD2, of great importance because they encode glycerol­

3­phosphate dehydrogenases involved in glycerol synthesis. The higher production of glycerol,

typical of cryophilic species such as S. uvarum and S. kudriavzevii, has been proposed as a

mechanism to adapt to low­temperatures, high osmolarity, and also to maintain the NAD + /NADH

redox balance during fermentation (Oliveira et al., 2014; Pérez­Torrado et al., 2016). According to

these results, we can conclude that the interactions between the two subgenomes in the hybrid
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improve those differential species­specific adaptations to the wine fermentation environments,

already present in the parental species.

Regarding the ethanol tolerance of H14A7, which proved to be higher than BMV58 but lower

than AJ4 at the tested temperatures, it is difficult to analyze specific gene expression, as yeast

answer to ethanol stress is complex and not fully understood yet (Mager and Moradas Ferreira,

1993). However, there are some traits that have been related to ethanol tolerance answer: changes

in membrane composition, as unsaturated fatty acid and ergosterol content (Mishra and Prasad,

1989; Vanegas et al., 2012), and different amino acid presence in media (Hirasawa et al., 2007).

When we compared GO term over­representation in S. uvarum and S. cerevisiae subgenomes

of the hybrid that could be related to ethanol tolerance, we focused on transcriptomic data obtained

in the exponential phase because, during the latency phase, the amount of ethanol in the media

is low. In H14A7, some of the GO terms of genes that are differentially regulated in the species

subgenomes of the hybrid, are fatty acid catabolic process and short­chain fatty acid metabolic

process (S. uvarum vs. S. cerevisiae exponential 25ºC) as well as cellular amino acid metabolic

process (S. cerevisiae vs. S. uvarum exponential 25ºC). The two first processes are related to

membrane composition modification as a response to the effect of the ethanol on membrane fluidity

(Ma and Liu, 2010). Our results suggest that H14A7 is combining S. cerevisiae and S. uvarum

strategies to respond to ethanol stress.

Nevertheless,this transcriptomic analysis is an attempt to determine the relative contribution

ofeach subgenome in H14A7, but the equilibrium acquired between both subgenomes in the hybrid

is the result of complex processes, and some up­regulated genome­specific alleles may be under

the control of regulators of the other species (Tronchoni et al., 2017).
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4.1 Introduction

Winemaking is one of the human fermentation practices in which yeast species play an

important role, by converting sugar present in the grape must into ethanol, CO2, and different

metabolites. Yeast cells undergo different stresses during fermentation: osmotic pressure due to

the high sugar concentration in grape musts at the beginning of the process, ethanol accumulation

that can represent a percentage up to a 16% in the media, low pH, SO2 presence, etc. (Alexandre

and Charpentier, 1998; Arroyo­López et al., 2009; Belloch et al., 2008; Charoenchai et al., 1998;

Fleet and Heard, 1993; Margalit, 1997).

S. cerevisiae is the Saccharomyces species most widely used in fermentation, as it can

overcome these stressful conditions, especially ethanol stress conditions (Arroyo­López et al.,

2010b), during the fermentation process. S. uvarum is a cryotolerant species that produce more

glycerol and less acetic acid than S. cerevisiae as well as presenting rich aroma profiles (Castellari

et al., 1994; Giudici et al., 1995; González et al., 2007). S. cerevisiae x S. uvarum hybrids (Masneuf

et al., 1998) are also found in natural habitats and mainly in alcoholic fermentation environments

(González et al., 2006). It has been stated that they can present an advantage in winemaking,

especially for white wines, which are fermented at low temperatures (González et al., 2007).

Hybrid genomes are known to fix mutations under selective pressure and undergo adaptive

evolution through genome re­organization (Gorter de Vries et al., 2019; Pérez­Través et al., 2014a;

Peris et al., 2017). This way, Saccharomyces interspecies hybrids can be used asmodel organisms

for studying adaptation to stressful environments and better understand the interactions of their

subgenomes in the adaptation to these conditions (Lopandic, 2018).

Although the study of how genome adaptation occurs is an interesting area of study, adaptation

strategies have also been carried out with the aim to improve yeasts at industrial level. The

use of sequential batch fermentations with selected strains has proved to increase the fitness of

Saccharomyces hybrids in sulfate limitation conditions and in lager­brewing conditions (Gorter de

Vries et al., 2019; Sanchez et al., 2017).
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As for wine strains, it is possible to use a media simulating wine fermentation and its stresses to

adapt strains to that particular must (McBryde et al., 2006) . Adaptation to wine must is interesting

as this media contains a high ethanol concentration and sulfite, which are toxic compounds for

yeast cells. In response to ethanol exposure, yeasts incorporate this molecule into the membrane,

which causes an increase in the membrane fluidity and an alteration in the lipid composition of

membranes (Jones and Greenfield, 1987; Lloyd et al., 1993). Sulfite (SO3
2­), is usually added in

the form of potassium metabisulfite (K2S2O5) and it is used because it inhibits the presence of

other undesirable microorganisms, but it also affects yeast cells (Ribéreau­Gayon et al., 2006).

In a previous study, we obtained a S. cerevisiae x S. uvarum hybrid, H14A7 (Lairón­Peris et al.,

2020), which showed a high glycerol production during natural musts fermentations in comparison

to S. cerevisiae parental strain and a higher ethanol tolerance than the S. uvarum parental strain,

which are interesting traits for wine strains. This hybrid was stabilized by vegetative growth in

fermentative conditions.

In the present work, we aimed to characterize what happens in H14A7 hybrid genome when

we perform a laboratory adaptation strategy by mimicking a must media similar to that present in

wine fermentations advanced stages, when a high sulfite content and reduced levels of sugars and

increasing levels of ethanol are present. H14A7 has two subgenomes: S. cerevisiae, conferring

ethanol tolerance, and S. uvarum, conferring higher glycerol production and capacity to grow at

low temperatures (Lairón­Peris et al., 2020); so the analysis of how adaptation to this stressful

media affects each subgenome is one of the main goals of this work.

The adapted strain genome was sequenced and wine fermentations at 15ºC and 25ºC were

performed. Analysis of the transcriptomic and the lipidomic profiles of the newly generated hybrid

during the fermentation was carried out to compare the expression and the membrane composition

of the adapted hybrid with the original H14A7 strain.
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4.2 Materials and Methods

4.2.1 Growth on modified synthetic must

Adaptation to a stressful media of the S. cerevisiae AJ4 x S. uvarum BMV58 hybrid H14A7,

obtained in Lairón­Peris et al. (2020) was performed using batch cultures in triplicate, in bottles

of 100 mL with 60 mL of modified synthetic must (M­SM) (Rossignol et al., 2003). Different

M­SM compositions were used with different sugar and ethanol concentrations, which are specified

in Table 4.1. In all conditions 100 mg/L of metabisulfite, K2S2O5 were added to M­SM. The

inoculated cell population in each bottle was approximately 2 x106, and once stationary phase

was achieved the culture was transferred in fresh media and cultivated the same way. The initial

ethanol concentration was 2.5% (v/v). The media was refreshed approximately every 7 days.

Ethanol concentration was increased every two or three weeks depending on the latency period

and the time the cultures took to reach the stationary phase. All the adaptation processes were

performed at an incubation temperature of 28ºC and orbital continuous shaking at 100 rpm. When

an ethanol concentration of 9% in the media was reached, a pool of colonies was selected and

named H14A7­etoh (Figure 4.1).

TABLE 4.1 Composition of the modified synthetic must (M­SM) used during the adaptive
laboratory evolution. Besides the compounds described in (Rossignol et al., 2003) for synthetic
must, different ethanol percentages were added and sugar content was modified. In all conditions
100mg/L of metabisulfite, K2S2O5, were added to M­SM.

Condition Ethanol % (v/v) Glucose (g/L) Fructose (g/L)

0 2.5 75 75
1 5 50 50
2 6 40 45
3 6.5 35 40
4 7 30 40
5 7.5 25 35
6 8 20 35
7 9 20 35
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H14A7-etoh

Adaptation to 

FIGURE 4.1 Scheme of H14A7­etoh obtainment.

4.2.2 Yeast growth media conditions.

Tolerance to ethanol was determined by growing H14A7 and H14A7­etoh strains in YNB with

increasing ethanol concentrations (0; 1; 2.5; 4; 6; 8; 10; 12.5; 14; 15.5; 17; 18; 20 (%)) in microtitter

plates. The overall yeast growth was estimated as the area under the OD vs. time curve using

GCAT (Bukhman et al., 2015), and the NIC and MIC parameters, which are ethanol­tolerance

indicators, were obtained as described elsewhere (Arroyo­López et al., 2010b).

Tolerance to sulfite stress was evaluated by drop tests. Sulfite plates were prepared by using

YEPD+TA (tartaric acid) agar plates and supplementing themwith different K2S2O5 concentrations.

YEPD+TA plates were prepared as described in Park et al. (1999) (YEPD:2% glucose, 2% peptone

and 1% yeast extract; 75 mM L­tartaric acid buffered at pH 3.5). YEPD+TA+K2S2O5, sulfite plates,

were prepared by pouring and spreading freshly prepared K2S2O5 to each YEPD+TA solid plate

to reach the following concentrations of metabisulfite: 0; 0.5; 1; 1.5; 2; 2.5; 3; 3.5 and 4 mM.

Yeast precultures were grown overnight in GPY (peptone 0.5%, yeast extract 0.5%, glucose 2%)

medium. Cell cultures were diluted to OD600 = 0.1. Then, serial dilutions of cells were transferred
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to the plates and incubated at 25ºC for a week.

4.2.3 Genome sequencing, copy number analysis, and SNPs fixation analysis

The sequenced reads of H14A7 original hybrid and the genome assemblies and genome

annotation files of BMV58 and AJ4 strains were available from a previous work (Lairón­Peris

et al., 2020). H14A7­etoh DNA was extracted according to Querol et al. (1992) and sequenced

using the Illumina Miseq system, with paired end reads of 250 pair bases. These reads were

trimmed and quality filtered to a quality of 28 and a length of 180 using Sickle (Joshi and Fass,

2011)  (NCBI accession number PRJNA604709). H14A7­etoh reads were mapped to the S.

cerevisiae and S. uvarum parentals AJ4 and BMV58 concatenated sequences using BOWTIE2

with the default settings. Bedtools was used to obtain the coverage “per base”. These coverage

files were processed to reduce the noise using sliding windows with a windows size of 1000

positions. As a complementary approach, CNVnator was used for the discovery of copy number

variation (CNV) (Abyzov et al., 2011) . We used sppIDer (https://github.com/GLBRC/sppIDer) to

plot chromosomes’coverage.

The gdtools command installed as part of breseq (version 0.27.1) was used to identify

single nucleotide polymorphisms (SNPs) in H14A7­etoh genome which were not present

in neither the parental genomes (AJ4 and BMV58) nor in the hybrid H14A7. We used

H14A7­etoh read files and the annotation files of AJ4 and BMV58 as a reference, with option­p

–polymorphism­frequency­cutoff of 0.20. The same procedure was performed with H14A7, AJ4

and BMV58 reads to only retain variants which are only present in H14A7­etoh. We manually

curated the SNPs present in non synonymous positions using the software Tablet (Milne et al.,

2013), by visualizing the reads of H14A7 and H14A7­etoh against the assemblies of AJ4 and

BMV58 parentals, to only take into account SNPs that were fixed in the adapted hybrid. Only indels

and SNPs which were supported by more than 20 reads in a region were taken into account.
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4.2.4 Flow cytometry analysis

The DNA content of the adapted hybrid was assessed by flow cytometry using a FACSVerse™

flow cytometer (BD Biosciences). Cells were grown overnight in GPY and 1 OD600 of each

culture was harvested by centrifugation. DNA staining was performed using dye SYTOX Green as

previously described (Haase and Reed, 2002) . Haploid (S288c) and diploid (FY1679) reference

S. cerevisiae strains were used to compare the fluorescence intensity.

4.2.5 Microfermentations in Verdejo must and transcriptomic analysis

Microvinifications were conducted in triplicate in Verdejo must with the strain H14A7­etoh at

two different temperatures: 25ºC and 15ºC, as described previously (Lairón­Peris et al., 2020) 

for S. cerevisiae AJ4, S. uvarum BMV58, the hybrid H14A7 strains. Final metabolites were

measured by HPLC in the last stage of fermentation. Weight loss data was followed during

the fermentations and corrected to the percentage of consumed sugar as described previously

(Pérez­Través et al., 2015) . Data on the percentage of consumed sugars was fitted to theGompertz

equation (Zwietering et al., 1990) . Kinetic parameters D, maximum sugar consumption value

reached (the asymptotic maximum, (%)), m (maximum sugar consumption rate, (g L­1 h­1)), l (lag

phase period, (h)) were calculated. These data were tested to find significant differences among

them by using the one­way ANOVA module of the Statistica 7.0 software (StatSoft, Tulsa, OK,

USA). Means were grouped using the Tukey HSD test (α=0.05).

Samples for RNA­seq were collected at two different time points: lag phase (which

corresponded to 4h of fermentation at both temperatures) and mid­exponential growth phase

(which corresponded to 24h of fermentation at 25ºC and to 48h of fermentation at 15ºC

respectively) and were analyzed as in (Lairón­Peris et al., 2020) . Reads were sequenced using

the Illumina Hiseq 2000, paired end reads of 75 bases long were generated and submitted to

NCBI SRA (accession number PRJNA604708). These reads were quality trimmed using sickle

(length 50, quality 23) and aligned to the fasta reference using bowtie2. We used HTSeq­count
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(Anders et al., 2015)  with both annotated file and the mapping files ordered by names and

generated the counts table. The mapping reads with a quality score lower than 2 and with more

than one alignment were discarded. Data were analyzed using the EdgeR package to look for

differential expression genes (Robinson et al., 2009) . We calculated normalization factors to scale

the raw library sizes and then we tested for differential expression between two groups of count

libraries. Differential expression levels (relative RNA counts) between the different conditions

were considered significantly different with a false discovery rate (FDR) (Benjamini and Hochberg,

1995) at a threshold of 5%. Gene Ontology (GO) terms were attributed to the lists of differentially

expressed genes by using YeastMine from SGD Database ( https://yeastmine.yeastgenome.org/).

GO terms enrichment were retrieved with p­values < 0.05 after computing the Benjamini and

Hochberg correction for multiple hypotheses.

4.2.6 Mass spectrometry of lipids present in the membrane of the strains

Four yeast strains (AJ4, BMV58, H14A7 and H14A7­etoh) were grown in 25 mL GPY media,

with five flasks set up per strain. After 4h of growth, the cultures were harvested and total lipids

were extracted using a modified Bligh and Dyer protocol (Spickett et al., 2001). The lipids were

reconstituted in 100 µL chloroform and then diluted 1 in 50 in solvent A (50:50 acetonitrile:H2O, 5

mM ammonium formate and 0.1% v/v formic acid). Analysis of 10 µL samples was performed by

LCMS. LC was performed on a U3000 UPLC system (Thermo scientific, Hemel Hempstead) using

a Kinetex C18 reversed phase column (Phenomenex, 2.6 µm particle size, 2.1 mm x 150 mm), at a

flow rate of 200 µL/min with a gradient from 10% solvent A to 100% solvent B (85:10:5 isopropanol:

acetonitrile: H2O, 5 mM ammonium formate and 0.1% v/v formic acid) with the following profile:

t=0 10% A, t=20 86%A, t=22 96%A, t=26 95%A. MS analysis was carried out in positive and

negative ionization mode on a Sciex 5600 Triple TOF. Source parameters were optimized on

infused standards. Survey scans were collected in the mass range 250­1250 Da for 250 ms.

MSMS data was collected using top 5 information dependent acquisition and dynamic exclusion

for 5 s, using a fixed collision energy of 35V and a collision energy spread of 10V for 200 ms per
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scan. ProgenesisQI® was used for quantification and LipidBlast for identification. All data were

manually verified and curated.

4.2.7 Lipid quantification by ammonium ferrothiocyanate assay

To quantify the lipids, 10 µL sample was taken from the above 100 µL reconstituted lipids in

chloroform and added to 2 mL chloroform with 1 mL of assay reagent (0.1M FeCl3.6H2O, 0.4 M

ammonium thiocyanate) in a 15 mL glass tube. Samples were vortexed for 1 min and centrifuged

at 14 500 g for 5 mins. The lower layer was collected into quartz cuvettes. The absorbance was

measured at 488 nm, and the concentration of lipid was determined by comparison with a standard

curve of a mixture of phospholipid standards (POPC, POPE and POPG) (Sigma).

4.2.8 TLC analysis

Yeast lipids extracted as above after 24 h growth were analyzed by TLC. Briefly, 20 µg of lipid

sample and 10 µg phospholipid lipid standards (POPC, POPE and POPS) (Sigma) were loaded

onto silica gel TLC plates (Sigma) and separated using chloroform/methanol/acetic acid/water

25:15:4:2. The plates were air dried and either sprayed with molybdenum blue reagent (1.3 %

molybdenum oxide in 4.2 M sulphuric acid) (Sigma), or sp ninhydrin reagent (0.2% ninhydrin in

ethanol) (Sigma) and charred at 100°C for 5 mins. Spot intensity was determined using ImageJ

software.

4.2.9 Laurdan membrane fluidity assay

Yeast precultures of each one of the four selected strains (AJ4, BMV58, H14A7 and

H14A7­etoh) were first propagated overnight in 25 mL of GPY media at 200 rpm and 28ºC. Then,

10 mL of GPY media in 15 mL falcon tubes was inoculated to an OD595 of 0.4 and incubated at

200 rpm, 28ºC. Samples were taken after 24 h and live yeast were diluted to an OD595 of 0.4
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in GPY and incubated with 5 μM laurdan (6­dodecanoyl­2­dimethylaminonaphthalene) for 1 h.

Fluorescence emission of these cells stained with Laurdan was taken using a microplate reader

(Mithras, Berthold) with the following filters; λex=460 λem=535. Generalized Polarization (GP),

derived from fluorescence intensities at critical wavelengths, can be considered as an index of

membrane fluidity and is calculated as GP = (I460 ­ I535) / ( I460 + I535 )

4.3 Results

4.3.1 Characterization of the hybrid after the adaptation process.

Hybrid H14A7 was subjected to adaptation to ethanol in liquid media. A series of synthetic

musts with increasing ethanol content mimicking different stages of the fermentation process were

used to that end, maintaining a high concentration of metabisulfite in all cases (Table 4.1). H14A7

was exposed to these media conditions for approximately 200 generations and the obtained strain

was named H14A7­etoh.

After that process, we carried out drop tests in plates containing different concentrations of

sulfite to see if the presence of metabisulfite in our adaptation media had an effect on sulfite

tolerance in the adapted strain. Interestingly, the phenotypes of the different tested strains (H14A7,

H14A7­etoh, BMV58, and AJ4) showed remarkable differences, with H14A7­etoh being the most

resistant (Figure 4.2).

We tested the ethanol tolerance of H14A7­etoh and H14A7 strains to see if the addition of

ethanol had an impact on the phenotype too. The NIC (non­inhibitory concentration) and MIC

(minimum inhibitory concentration) which are two parameters that respectively indicate which

ethanol concentration affects a strain and at which ethanol concentration the strain is not able

to grow, were calculated. H14A7 NIC and MIC values were 8.51±0.27 (%) and 14.5±0.354 (%);

whereas H14A7­etoh NIC and MIC values were 7.93±0.26 (%) and 15.3±0.143 (%). The adapted

hybrid showed slightly more ethanol tolerance than H14A7 in its MIC value, (P < 0.1, ANOVA and
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2 mM 2.5 mM 3 mM 3.5 mM

0 mM 0.5 mM 1 mM 1.5 mM
      

H14A7

H14A7

AJ4

BMV58

H14A7-etoh

H14A7-etoh

FIGURE 4.2 Sulfite tolerance analysis of BMV58, AJ4, H14A7 and H14A7­etoh Saccharomyces
strains. Plates’ media is YEPD + TA + different K2S2O5 concentrations. Images were taken after
seven days of growth at 25ºC.

Tukey’s test) being NIC values non­significant (P < 0.05, ANOVA and Tukey’s test).

4.3.2 H14A7-etoh shows different signals of adaptation to the selection media on

its genome: CCNV

This part of the study aimed to detect genomic differences of the adapted hybrid in comparison

to the original strain. After obtaining the sequenced reads of the H14A7­etoh genome, they were

quality trimmed and reduced to a total number of 6767268 reads, which represents a coverage

of approximately 67.5x. With these reads, we performed analyses to identify differences from the

original H14A7 hybrid genome.

From a previous work, (Lairón­Peris et al., 2020) we knew that H14A7 had two copies of each

S. cerevisiae chromosome, except for chromosome III, which was present only in one copy; and

one copy of each S. uvarum chromosome. After analysis with sppIDer and CNVnator, we noticed

large modifications in the chromosomes of the adapted strain H14A7­etoh compared to the hybrid

H14A7 genome; S. cerevisiae (III­cer) and S. uvarum chromosome VII­XVI (VII­XVI­uva) had been

duplicated. Moreover, a chromosomal loss of S. uvarum chromosome I (I­uva) had taken place.
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Analysis by flow cytometry revealed that the ploidy of H14A7­etoh is 3.27±0.1, whereas H14A7

had a ploidy of 2.98±0.02 (Lairón­Peris et al., 2020)  . This increased ploidy can be explained

because of the aneuploidies mentioned above, especially S. uvarum VII­XVI duplication. S.

cerevisiae chromosome III and S. uvarum chromosome I are small chromosomes, and their

contribution to the ploidy is smaller than S. uvarum VII­XVI. In Figure 4.3A and Figure 4.3B, a

representation of the chromosome copy number of H14A7 and H14A7­etoh can be seen. III­cer

and VII­XVI­uva aneuploidies could have a relevant role in the adapted hybrid. VII­XVI­uva is

a chromosome with a translocation in BMV58 parental strain which confers sulfite resistance to

BMV58 strain, as it recombines FZF1t transcription factor (present in chromosome VII) with SSU1

gene involved in sulfite metabolism (present in chromosome XVI) (Macias et al ., submitted). The

presence of an extra copy of this chromosome in H14A7­etoh is the most reasonable explanation

of H14A7­etoh high resistance to sulfite. III­cer aneuploidies have been correlated with ethanol

tolerance in S. cerevisiae strains (Morard et al., 2019).

4.3.3 SNPs, duplications, and deletions in H14A7-etoh genome

To better understand genetic variation in the adapted strain, we retrieved single nucleotide

polymorphisms (SNPs) in H14A7­etoh strain. The total number of SNPs present in codifying

positions of H14A7­etoh strain which were not present in H14A7 were: 200 in non synonymous

positions and 256 in synonymous positions of genes. Of these SNPs, we manually retrieved

those in which the adapted hybrid has fixed a variant, that is, they were present in the hybrid as a

heterozygous nucleotidic base and now their frequency is 1 or they have changed the nucleotidic

base present in H14A7 genome. There are 4 positions in S. cerevisiae chromosome I with fixed

positions: they are in genes YAL016C­A (dubious open reading frame), YAL010C (a subunit of

both the ERMES and the SAM complex), YAR019C (a protein kinase of the mitotic exit network)

and YAR035W (an outer mitochondrial carnitine acetyltransferase) (Figure 4.3C). None of these

changes is generating loss of function genes. Moreover, we observed that the heterozygosity

present in S. cerevisiae chromosome I is lost all over this chromosome, as a loss of heterozygosity
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FIGURE 4.3 Genome­wide representation of H14A7­etoh strain. The chromosomes of H14A7 (A)
and H14A7­etoh adapted strain (B) were represented after the analysis with sppIDer and CNVnator
by using chromoMap R package. Chromosomes’ length is based on AJ4 S. cerevisiae and BMV58
S. uvarum reference genomes. SNPs present inS. cerevisiae (C) andS. uvarum (D) chromosomes
of H14A7­etoh strain are represented. The SNPs whose frequency is 1 and whose change affects
a non synonymous position of a gene are marked with a *, confirmed duplications are marked as
dup and confirmed deletions as Δ.
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(LOH) event took place during the adaptation.

The possible duplications and deletions of different chromosome regions that were obtained by

using CNVnator on H14A7­etoh were compared with H14A7 CNVnator coverage values and were

visualized by using the mapped reads of H14A7 and H14A7­etoh against AJ4­BMV58 parental

genomes. CNVnator normalizes the coverage values to 1, if the resulting number of coverage has

deviated from these values, there is a putative deletion or duplication in the region.

In an H14A7­etoh S. cerevisiae chromosome I there is a region which comprises 6.2 KB whose

coverage value is 0.2983 instead of 1. In this region, two genes are deleted in the adapted

hybrid: YAR028W and YAR027W, putative integral membrane proteins of unknown function;

members of DUP240 gene family. This region, has two flanking Ty1 elements in the original

hybrid genome, so a Ty1­Ty1 recombination event could have taken place and provoked a deletion

(Figure 4.3C). In H14A7­etoh S. uvarum subgenome the gene TDH1/YJL052W seems to be

duplicated (coverage ratio H14A7­etoh/H14A7 is 2.14). This is a glyceraldehyde­3­phosphate

dehydrogenase (GAPDH) involved in glycolysis and gluconeogenesis which is located next to

ARS1011 duplication origin. In H14A7­etoh AJ4 subgenome there are 4 genes that showed a

coverage ratio (cr) H14A7­etoh/H14A7 greater than 1.5 indicating 4 possible duplications: GAD1

/ YMR250W (cr = 1.65); GUT1 / YHL032C (cr = 1.58); STR3 / YGL184C (cr = 1.52 ) and

HPF1/YOL155C (cr = 1.68 ) (Figure 4.3D). GAD1/YMR250W is a glutamate decarboxylase which

converts glutamate into gamma­aminobutyric acid (GABA) during glutamate catabolism and that is

involved in response to oxidative stress (Coleman et al., 2001). It is located between the Ty2 LTR

and ARS1328. GUT1 / YHL032C is a glycerol kinase; it converts glycerol to glycerol­3­phosphate;

STR3 / YGL184C is a peroxisomal cystathionine beta­lyase which converts cystathionine into

homocysteine; and YOL155C/ HPF1 a haze­protective mannoprotein. None of the SNPs, nor

small duplications and deletions detected seem to have a special role in the adaptation to the

hybrid adapted yeast to the M­SM used. Instead, it is important to point out that detected CNVs

are near ARS and Ty elements.
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TABLE 4.2 Kinetic parameters of the fermentations performed at 25ºC and 15ºC in Verdejo
must. Parameters were obtained through an adjustment to Gompertz equation (Zwietering et al.,
1990). D represents maximum sugar consumption value reached (%), m the maximum sugar
consumption rate, (g L−1 h−1) and l the lag phase period(h). Values are given as mean± standard
deviation of three biological replicates. An ANOVA analysis was carried out and values followed
by different superindexes are significantly different according to the Tukey HSD test (α=0.05).

D % m (g L­1 h­1) l (h)
H14A7­25ºC 97.51±0.28a 1.761±0.0985a 9.84±0.080a

H14A7­etoh­25ºC 98.02±0.49a 1.79±0.028a 11.30±0.95a

D % m (g L­1 h­1) l (h)
H14A7­15ºC 96.96±0.78a 0.78±0.026a 23.96±2.20a

H14A7­etoh­15ºC 94.65±0.64b 0.77±0.069a 25.08±5.10a

4.3.4 H14A7-etoh performance during Verdejo fermentations.

H14A7 and H14A7­etoh were used as starters of fermentations in Verdejo that were carried

at 15ºC and 25ºC, conditions that mimic wine industrial conditions. The fermentation kinetics

were similar between H14A7 and H14A7­etoh strains and showed no statistical differences in the

calculated parameters except the maximum sugar consumption rate value, which was higher for

H14A7 at 15ºC (Table 4.2). Final wine composition varied between H14A7 and H14A7­etoh (Table

3). H14A7­etoh left fructose in the fermentations at both temperatures. The amounts of fructose

left behind were significantly higher than that of H14A7 (5.55 g/L at 25ºC and 5.44 g/L at 15ºC;

whereas H14A7 left 0.77 g/L and 1.44 g/L respectively) (Table 4.3). One of the three biological

replicas of H14A7­etoh fermentation at 15ºC was slightly delayed in comparison with the other two

biological replicas (data not shown).

Ethanol and glycerol percentages were similar for both strains if we compare the final must

concentrations for these compounds at the same temperature. Surprisingly, glycerol production

was higher at 25ºC that at 15ºC. Acetic acid production was higher for the H14A7­etoh strain at

both temperatures and the rest of the acids (tartaric, malic, citric, and L­lactic) showed no statistical

differences in their content between the two strains.
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4.3.5 Transcriptomic analysis of the adapted hybrid is correlated with its

phenotype.

To better understand the properties acquired in the adapted hybrid (H14A7­etoh) compared to

the initial strain (H14A7), we performed a comparative study of gene expression of the adapted

hybrid and H14A7 during Verdejo fermentations. We retrieved a total number of 24 samples

(2 strains x 2 times x 2 temperatures x three replicates) that were obtained during the Verdejo

fermentations and processed to obtain RNA and transcriptomic data. We first subdivided this

samples into 48 subfiles with gene counts for each species subgenome of the two strains (a file

with the expression of S. uvarum alleles and a file with the expression of S. cerevisiae alleles). We

observed that samples belonging to the third replicate of H14A7­etoh fermentation at 15ºC were

outliers, so we excluded them from the subsequent analyses. This replicate corresponds to the

one whose growth was delayed during the fermentation.

The first step of our analyses consisted of carrying a principal component analysis (PCA),

that clustered the remaining 44 subfiles depending on the variance among their gene expression.

We used the normalized gene count data of 5392 genes that were shared between S. cerevisiae

and S. uvarum parental annotations. In this first PCA analysis, the first component, which

represented 58% of the variance, is the stage of the fermentation, latency and exponential phase

and temperature; the second component PC2 depended on the species subgenome analyzed (S.

cerevisiae or S. uvarum part) (26%) (Figure 4.4A).

This plot showed that the most important condition that separates samples is the stage

of growth. As we wanted to use the total number of ORFs annotated in both H14A7 and

H14A7­etoh (S. cerevisiae and S. uvarum alleles expression), and the species subgenome

analyzed corresponded to PC2, we constructed another PCA based on 22 samples corresponding

to H14A7 and H14A7­etoh fermentations. They correspond to the samples that were retrieved

from fermentations excluding the two samples belonging to the third replicate of H14A7­etoh

fermentation at 15ºC. The RNA reads obtained of these 22 samples were mapped against a
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FIGURE 4.4 PCA of the transcriptome variation in H14A7­etoh and H14A7 strains. ORF
expression variation of S. cerevisiae and S. uvarum alleles per separate is represented in A; and
total ORF expression ( S. cerevisiae + S. uvarum alleles) is represented in B. H17A7­etoh and
H14A7 strains’ transcriptomic samples are splitted into two different temperatures and fermentation
stages.
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concatenated file which contains 6182 CDS that were annotated in AJ4 parental genome and 5714

CDS that were annotated in BMV58 genome; 11896 ORFs in total. Figure 4.4B shows that the first

PC (PC1), which accounts for the greater variance among samples depends on the stage phase

and temperature (82% of variation in the gene expression can be explained based on these two

parameters). It has to be noted that 15ºC samples and 25ºC samples are more separated in the

exponential phase than in the latency phase. PC2 accounts only for 9% of sample variability and

it clearly corresponds to variation between strains (H14A7 or H14A7­etoh), and again, exponential

samples are more separated regarding PC2.

We, therefore, performed one differential expression test for each one of the four conditions:

exponential 25ºC; latency 25ºC; exponential 15ºC and latency 15ºC, to compare H14A7­etoh

differential gene expression against H14A7. We first retrieved the ORFs with less than 0.5 counts

per million (CPM) in one of the conditions in order not to use low expression genes for the

differential expression analysis, or genes that are not expressed in one of the samples because

these genes are not present in the genome of the strains. H14A7­etoh strain has an aneuploidy

in S. uvarum chromosome I (the copy of this chromosome was lost during the adaptive process)

so we expected that the genes present in S. uvarum chromosome I would be excluded and no

transcription of H14A7­etoh Su chrI strain was expected to take place. Transcriptomic samples of

H14A7­etoh showed two exceptions, as there were reads that mapped with genes Su­YAL038W

and Su­YAR035W. This happened because these two AJ4 (S. cerevisiae reference) genes are

partially annotated and the equivalent S. uvarum genes are very similar to their S. cerevisiae

variant. After excluding the genes with low expression, a total number of 10589 ORFs were used

in the differential analysis, with 5411 S. cerevisiae ORFs and 5177 S. uvarum ORFs.

We performed the comparison between H14A7­etoh and H14A7 for the four conditions by using

edgeR R package and kept the differentially expressed (DE) genes whose Benjamini Hochberg

p­value were lower than 0.05.

As we knew that S. uvarum chromosome VII­XVI (VII­XVI­uva) and S. cerevisiae chromosome

III (III­cer) have two copies in H14A7­etoh and one copy in H14A7, we first plotted the logFC, which

185



CHAPTER 4.

represent if a gene is more expressed in H14A7 or in H14A7­etoh, for each one of the genes

(not only the differentially expressed) against its calculated gene ratio (H14A7­etoh vs H14A7)

(Figure 4.5).

The calculated gene ratios are based on the coverage files that were obtained for each of the

strains using the sliding windows approach. In Figure 4.5 it can be observed that gene expression

is significantly related to the number of copies of each gene. Genes belonging to III­cer and

VII­XVI­uva have mainly negative logFC for each one of the four conditions, that in our comparison

(H14A7 vs H14A7­etoh) indicated that these genes are more expressed in the adapted hybrid than

in the hybrid. This tendency can be particularly observed in the exponential stage at 25ºC.

We further analyzed and represented the LogFC (log2 FC) of the H14A7 vs H14A7­etoh

transcriptome comparison for all of the genes grouped by chromosome for the four conditions

(latency at 25ºC, exponential 25ºC, latency 15ºC, and exponential 15ºC) (Supplementary

Figure 4.1).

The objective of carrying out this analysis was to observe if any other chromosome had its

genes expressed differentially in the H14A7 or H14A7­etoh strains under any of the experimental

conditions. Those genes which are present in the chromosomes which have an extra copy are

more expressed in H14A7­etoh in all of the 4 conditions, with only one exception: chromosome

VII­XVI­uva at latency stage at 15ºC, which seems to have its genes more expressed than the other

chromosomes. In the case of the exponential stage at 25ºC, apart from VII­XVI­uva and III­cer, S.

uvarum chromosome III (III­uva) genes seem to be more expressed than the genes of the rest of

chromosomes.

The bar chart in Supplementary Figure 4.2 represents the number of statistically DE genes for

each condition and strain in comparison with the other, identifying which of the genes belong to the

S. uvarum and S. cerevisiae subgenome and which genes belong to III­cer or VII−XVI−uva.

In the four conditions, H14A7­etoh overexpressed more genes that belong to III­cer and

VII­XVI­uva than H14A7, and H14A7 shows virtually no overexpression of any gene that belong to

these two chromosomes. The number of up­regulated genes in H14A7­etoh compared to H14A7
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FIGURE 4.5 Representation of the logFC (log 2 FC) of the H14A7 vs H14A7­etoh transcriptomic
comparison against the H14A7­etoh vs H14A7 gene coverage for every gene present in
both strains. Negative values indicate that the genes are more expressed in H14A7­etoh and
positive values that these genes are more expressed in H14A7. Genes belonging to S. cerevisiae
chromosome III are colored in blue, genes belonging to S. uvarum chromosome VII­XVI are colored
in red, and genes belonging to the rest of chromosomes are colored in black.
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SUPPLEMENTARY FIGURE 4.1 logFC (log 2 FC) of the H14A7 vs H14A7­etoh transcriptome
comparison for all of the genes grouped by chromosome for the four conditions: latency
at 25ºC, exponential 25ºC, latency 15ºC and exponential 15ºC. Negative values indicate that
the genes are more expressed in H14A7­etoh. Significance symbols (Wilcoxon test, p < 0.0001)
are colored in purple if the chromosome is upregulated in H14A7­etoh and in green if it is
downregulated.
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SUPPLEMENTARY FIGURE 4.2 Number of differentially expressed genes when performing
differential expression analysis between H14A7 and H14A7­etoh strains. The light blue bar
represents the S. cerevisiae alleles except those present in chromosome III (represented in dark
blue) and the light red bar represents the S. uvarum alleles except those present in chromosome
VII­XVI (represented in dark red). The DE tests were performed at 4 conditions: latency phase at
25ºC (A), exponential phase at 25ºC (B). latency phase at 15ºC (C) and exponential phase at 15ºC
(D).
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is higher than the number of H14A7 compared to H14A7­etoh at 25ºC. At this temperature at

both time points (latency and exponential growth phase), the overexpressed genes in H14A7­etoh

belong to the S. uvarum sub­genome of the adapted hybrid, and especially to the chromosome

VII­XVI. Moreover, no GO terms could be retrieved from these lists of S. uvarum overexpressed

genes. In the latency stage at 25ºC H14A7­etoh S. cerevisiae subgenome overexpressed genes

related to protein folding and catabolic process, and in exponential stage at 25ºC H14A7­etoh S.

cerevisiae subgenome overexpressed genes related with the GO term alpha­amino acid metabolic

process (GO:1901605).

At 15ºC, for both time points the number of differentially expressed genes between the strains

is lower than at 25ºC, and the number of up­regulated genes in H14A7­etoh and the number of

up­regulated genes in H14A7 is very similar. One behavior that should be considered is that at

15ºC S. uvarum alleles show more up­regulation in H14A7 compared to H14A7­etoh than the S.

cerevisiae alleles. In the latency stage at 15ºC H14A7­etoh overexpressed more S. cerevisiae

than S. uvarum alleles. This behavior could be of interest as S. cerevisiae and S. uvarum

species show differential behavior at low temperatures. The 5 GO terms that were enriched in

this list of overexpressed S. cerevisiae alleles in H14A7­etoh are protein folding (GO:0006457),

protein refolding (GO:0042026), regulation of ATPase activity (GO:0043462), positive regulation

of ATPase activity (GO:0032781) and response to heat (GO:0009408).

No GO terms could be identified from the list of S. uvarum overexpressed alleles in H14A7­etoh

at the 15ºC latency stage. Nevertheless, many GO terms that were overrepresented in H14A7 in

comparison with H14A7­etoh at 15ºC latency stage could be identified. S. cerevisiae specific GO

terms are related to energy reserve metabolic processes: glycogen biosynthesis (GO:0005978),

glycogen metabolism (GO:0005977) and oxidation­reduction (GO:0055114). The S. uvarum GO

terms that are overexpressed in H14A7 in comparison with H14A7­etoh at latency stage at 15ºC are

secondary alcohol biosynthesis (GO:1902653), ergosterol metabolism (GO:0008204) and cellular

alcohol metabolism (GO:0044107).

Since we determined that H14A7­etoh was more sulfite resistant than H14A7, we examined
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the expression of genes YGL254W (transcription factor FZF1) and YPL092W (SSU1 sulfite pump)

in the four conditions and species alleles expression. The SSU1 S. uvarum allele is overexpressed

in H14A7­etoh for 3 out of 4 conditions: 25ºC exponential, 25ºC latency, and 15ºC exponential. S.

uvarum transcription factor FZF1t is overexpressed in 2 out of 4 conditions: 25ºC exponential and

25ºC latency. None of the S. cerevisiae FZF1t and SSU1 alleles showed differential expression.

We therefore identified a tendency for the overexpression of S. uvarum SSU1 and FZF1 alleles in

H14A7­etoh when compared with H14A7 strain at 25ºC latency and exponential stages.

4.3.6 Membrane lipid composition of the strains

Modulation of membrane lipid composition is a key mechanism by which yeast increase ethanol

tolerance (Alexandre et al., 1994; Beaven et al., 1982; Henderson and Block, 2014). However, the

homeoviscous response is complex (Ernst et al., 2016) and the effect of altered gene expression

on membrane composition may not be intuitive. Therefore, we compared the membrane properties

of the adapted strain with the initial strains. We used mass spectrometry MS and thin layer

chromatography TLC to characterize the membrane composition of AJ4, BMV58, H14A7, and

H14A7­etoh strains, and a Laurdan dye assay as an indication of the relative fluidity of the

membranes. As a surrogate for the general abundance of lipid classes, the number of species for

each class of lipid between the strains is shown in Figure 4.6A; there were significant differences

for phosphatidylcholine (GPCho), with more species observed for both AJ4 and H14A7­etoh

compared to BMV58 (P < 0.05 and P < 0.01 respectively, ANOVA and Tukey’s multiple comparison

test).

For phosphatidylserine species (GPSer), there were significantly more species identified in AJ4

compared to BMV58 and H14A7 (P < 0.001 and P < 0.05) and more in H14A7­etoh than BMV58

(P < 0.01). There were significantly more triacylgycerol (TG) species identified in AJ4 compared

to H14A7­etoh (P < 0.05).

Membrane fluidity is affected by the presence of short chain alcohols, and two key lipids

characteristics that influence membrane fluidity are acyl chain length and saturation. The average
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FIGURE 4.6 Number and percentage of different lipid species identified in AJ4, BMV58, H14A7
and H14A7­etoh strains. Number of species identified by lipid class. Lipids were extracted
in quintuplicate and analyzed by LC­MS in positive and negative ion mode (A). Percentage of
saturated, monounsaturated and polyunsaturated chains by lipid class showing significant changes
(B). Significant differences among are indicated as *, ** and ***, when the probabilities are P <0.05,
P <0.005 and P < 0.001 respectively, using ANOVA and Tukey’s multiple comparison test.
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SUPPLEMENTARY FIGURE 4.3 Number of species identified by lipid class for AJ4, BMV58, H14A7
and H14A7­etoh strains. Lipids were extracted and analyzed by LC­MS in positive and negative
ion mode.

number of carbons in the acyl chains was not significantly different between the different strains

(Supplementary Figure 4.3, Supplementary Figure 4.4). The two main genes related with

sphingolipids synthesis are LCB1 and ELO2. Since we have available the list of differentially

expressed (DE) genes among H14A7­etoh and H14A7, we inspected this table and found that

ELO2 (YCR034W) is more expressed in H14A7­etoh at two conditions: latency at 15ºC (the S.

cerevisiae allele of the adapted hybrid) and exponential at 25ºC (the S. uvarum allele of the adapted

hybrid). ELO2 is involved in biosynthesis of very long chain fatty acids but we saw no evidence for

an increase in average chain length, suggesting a complex phenotype.

Figure 4.6B illustrates the lipid species where significant changes to saturation between

the strains were observed; significant differences were found for GPCho, with a significantly

higher percentage of saturated species found in BMV58 compared to H14A7 (P < 0.05), a lower

percentage of monounsaturated species in AJ4 compared to BMV58 and H14A7 (P < 0.001

and P < 0.05), and a higher percentage of polyunsaturated lipids found in AJ4 compared to

H14A7 (P < 0.01). For phosphatidylethanolamine (GPEth), a lower percentage of saturated

species was observed for BMV58 than in H14A7 and H14A7­etoh (P > 0.01 and P < 0.05). For
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SUPPLEMENTARY FIGURE 4.4 Percentage of saturated, monounsaturated and polyunsaturated
chains by lipid class for AJ4, BMV58, H14A7 and H14A7­etoh strains.
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FIGURE 4.7 TLC and Laurdan assay of the analyzed strains. Thin layer chromatography
analysis of phosphatidylcholine (PC), Phosphatidylethanolamine (PE) and Phosphatidylserine (PS)
abundance for H14A7 and H14A7­etoh strains. Samples were loaded in triplicate and spot intensity
was analyzed using ImageJ. Spot intensity is plotted relative to phospholipid standards loaded onto
each plate (A). Laurdan assay to compare the state of the membranes of AJ4, BMV58, H14A7
and H14A7­etoh strains. The relative GP was determined after 24 h growth in GPY media (B).
Significant differences among are indicated as *, ** and ***, when the probabilities are P <0.05, P
<0.005 and P < 0.001 respectively, using ANOVA and Tukey’s multiple comparison test.

phosphatidylglycerol (GPGro), higher percentages of monounsaturated lipids were seen in AJ4 and

H14A7­etoh compared to BMV58 (P < 0.05). Significanlty greater percentages of monounsaturated

species were observed for GPSer in BMV58 compared to the AJ4, H14A7 and H14A7­etoh (P

< 0.5, P < 0.5 and P < 0.001) and less saturated species in BMV58 compared to H14A7 and

H14A7­etoh (P < 0.05 and P < 0.01). For TG, the percentage of saturated species was greater

for AJ4 compared to H14A7 (P < 0.05) and for BMV58 compared to H14A7­etoh (P < 0.01), while

a higher percentage of polyunsaturated species were observed for AJ4 compared to both H14A7

and H14A7­etoh (P < 0.05).

A further important contributor to membrane characteristics is the nature of the phospholipid

headgroup. Quantitative TLC analysis of the abundance of PC, PE and PS in the H14A7 and

H14A7­etoh samples (Figure 4.7A) shows that there is significantly less PE in the H14A7­etoh

strain, while the abundance of PC and PS was not significantly different.

Ethanol has been demonstrated to affect membrane fluidity, resulting in toxicity. Laurdan is
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sensitive to the polarity of the membrane environment and has been used to study membrane

fluidity (Learmonth and Gratton, 2011). We utilized this to compare the state of the membrane

for each of the strains (Figure 4.7B). The data shows that H14A7­etoh has a significantly lower

GP compared to H14A7 (P < 0.01) and AJ4 (P < 0.05). This indicates that the membrane is less

ordered and more fluid in H14A7­etoh, while H14A7 possessed the most ordered membrane.

4.4 Discussion

In a previous work, a S. cerevisiae x S. uvarum hybrid, H14A7, was obtained in our laboratory

(Lairón­Peris et al., 2020). The objective of that initial work was to improve the ethanol tolerance of

BMV58 (S. uvarum strain) by hybridization with a high ethanol tolerant S. cerevisiae strain (AJ4).

Indeed, we clearly improved the ethanol tolerance of the S. uvarum parental, as well as other

fermentative properties.

In this work, we wanted to study if this interspecific hybrid, H14A7, shows genomic instability

after its growth in stressful wine media conditions, and if the possible genomic changes affect

its phenotype. We carried an adaptation strategy in a media that mimics the conditions during

industrial wine fermentations at late stages. This media contained a high sulfite concentration, and

increasing ethanol concentrations while decreasing sugars concentrations. The obtained strain

was named H14A7­etoh and both a physiological and a genomics characterization on this strain

was performed.

Using this adaptation strategy, ethanol tolerance is only slightly improved. However, we

clearly improved H14A7­etoh sulfite tolerance with respect to H14A7. The added compound,

metabisulfite, is not stable in aqueous solutions and quickly converts to sulfite, so the adaptation

of H14A7 was directed to sulfite resistance (Weil and Sandler, 1983). The adapted hybrid proved

to be more sulfite tolerant than both BMV58 and H14A7. This phenotype improvement can be

correlated with the genomic composition of H14A7­etoh. H14A7­etoh has duplicated S. uvarum

chromosome VII­XVI. S. uvarum chromosome VII­XVI, carries the FZF1­SSU1 recombination
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whose gene expression confers sulfite resistance (Macias et al ., submitted).

SSU1 is a gene involved in the sulfite efflux from the cell by the membrane pump, which is

one of the strategies that use yeasts to cope with sulfite toxicity (Casalone et al., 1992; Nadai

et al., 2016; Park and Bakalinsky, 2000). It has been reported that SSU1 gene expression is

generally constitutive, and that its expression level is strain­dependent and is not regulated by

sulfite presence (Divol et al., 2012; Nadai et al., 2016; Park and Hwang, 2008). In the fermentation

media from which we retrieved the transcriptomic samples, no metabisulfite was added, and in 3

out of 4 conditions, H14A7­etoh expressed more S. uvarum­SSU1 gene than H14A7 did, indicating

the constitutive expression of this allele.

Wineries widely use sulfite (SO2) as a preservative to avoid contamination by spoil

microorganisms (Ripper, 1892), but it also can result in toxicity to Saccharomyces yeasts (Divol

et al., 2012; Ingram, 1948). Thus, sulfite tolerance improvement of H14A7 strain is interesting for

the wine industry.

However, the adapted hybrid showed a trade­off on its behavior, as it clearly left more fructose

in Verdejo must fermentation than the original strain. The modified synthetic must had lower

sugar concentration than a natural must in the moment of inoculation in the winery because it

was designed to simulate more advanced stages of fermentation. Thus, the hybrid could have

lost fermenting capacity, as it was not obliged to ferment the regular amount of sugars during that

adaptation process, but rather to cope with the ethanol and sulfites present in the media. Despite

this, the obtained end point sugars concentration was still within the limits that wineries consider

acceptable in the final product.

In other works which used experimental evolution on Saccharomyces strains, fitness trade­offs

also occurred (Aguilera et al., 2010; Kutyna et al., 2012; Wenger et al., 2011), demonstrating that

when applying adaptive evolution strategies to generate new microbial strains with desirable traits,

side effects may also appear.

Adaptation during evolution experiments generates structural variants, as deletions,

amplifications, and translocations in different yeast populations (Dunham et al., 2002; Fisher
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et al., 2018; Gresham et al., 2008). It is interesting to note that when we first obtained the

hybrid (Lairón­Peris et al., 2020) its genome seemed to be stable, and no significant deletions,

duplications, or rearrangements were reported, except some SNPs in S. cerevisiae chromosome

III. Here, we have concluded that under adaptation to an stressful environment, as well as SNP

fixation; deletions and duplications occurred in the H14A7­etoh genome due to the selective media

employed during the experiment.

Sub­genomes of the yeast interspecies hybrid H14A7 adapted differently during the process.

A small region of the S. cerevisiae genome was deleted, which contains two genes encoding for

putative integral membrane proteins of the DUP240 family. This region could be eliminated from

the genome as it is surrounded by Ty1­Ty1 retrotransposon sites, and it has been described that

a recombination event under environmental stress can take place between these two elements

(Libuda and Winston, 2010). Moreover, some fixation of SNPs and small duplications in concrete

genes may have taken place in this S. cerevisiae part, as well as a LOH event in S. cerevisiae

chromosome I. LOH events are usual during adaptive selection processes in S. cerevisiae yeasts

(James et al., 2019) and these events also drive adaptation in hybrid yeasts (Smukowski Heil et al.,

2017).

Nevertheless, one large aneuploidy occurred in theS. cerevisiae subgenome: the duplication of

chromosome III. As H14A7 was an aneuploid allotriploid with one S. uvarum genome copy, and two

heterozygous copies of each S. cerevisiae chromosome except for a single copy of chromosome

III, S. cerevisiae chromosome III duplication could be the result to a restoration of diploidy in all S.

cerevisiae chromosomes, or because chromosome III affects ethanol tolerance.

Previously, it had been reported that yeast cells favour restoration of euploidy for chromosomes

(Waghmare and Bruschi, 2005) . Moreover, it has been hypothesized that tolerance to aneuploidy

occurs at the chromosome level,  perhaps through the action of DNA cis­acting elements, or

selection for the restoration of euploidy of the previously aneuploid chromosome.

It has also been reported that chromosome III is one of the chromosomes which undergoes

gains in strains under stress conditions, such as ethanol present in the media (Adamczyk et al.,
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2016). Morard et al. (2019) also observed that S. cerevisiae chromosome III aneuploidy appears

frequently in the most ethanol tolerant strains. S. cerevisiae chromosome III duplication could

be a result of an adaptation of H14A7 strain to the ethanol media present during the adaptation,

as this chromosome III duplication could confer an advantage when growing in high ethanol

concentrations.

S. uvarum H14A7­etoh sub­genome only seems to have one gene duplicated, YJL052W, but

this subgenome was modified in the form of chromosomal losses (chromosome I) and gains

(chromosome VII­XVI). S. uvarum chromosome I is the smallest chromosome, and it has been

reported that chromosome losses often affect the smaller chromosomes (Deregowska et al., 2015).

The most interesting changes in H14A7­etoh compared with H14A7 are these whole

chromosome duplications an losses. Yeasts have this ability to increase and maintain individual

chromosomal copy number, as these aneuploidies are well tolerated and stable (Waghmare and

Bruschi, 2005). Previous studies growing S. cerevisiae yeasts under stress conditions have

demonstrated that hyperploidy of concrete chromosomes can spontaneously occur. In Whittaker

et al. (1988) , a S. cerevisiae culture was grown in a copper­rich environment. These yeasts

increased the copy number of chromosome VIII, which carries CUP1­1 and CUP1­2 genes, related

to resistance to high copper concentrations. The duplication of S. uvarum chromosome VII­XVI in

H14A7­etoh may be related with strain adaptation to a medium with an elevated concentration of

sulfites.

The change in the copy number of chromosomes is one accessible way to change expression

levels of specific key genes (Voordeckers et al., 2015a). In the case of H14A7­etoh, this appeared

to occur, as transcriptomic analysis revealed that, in general terms, III­cer, VII­XVI­uva genes are

up­regulated in H14A7­etoh in comparison with H14A7 strain under the same condition.

The transcriptomic analysis of both H14A7 and H14A7­etoh strains also revealed that H14A7

could be more efficient fermenting wine must at low temperatures than H14A7­etoh adapted strain.

Enrichment in GO terms related to secondary alcohol biosynthetic process (GO:1902653) and

ergosterol metabolic process (GO:0008204) were found for H14A7 in latency stage at 15ºC. An
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increase in ergosterol metabolism has been previously associated with low temperature tolerance

in Saccharomyces (Hemmi et al., 1995; Abe and Minegishi, 2008) and the production of higher

alcohol production is correlated with the usage of S. uvarum strains and low temperatures at

fermentations (Gamero et al., 2013; Masneuf­Pomarède et al., 2010; Stribny et al., 2015).

These same GO terms were obtained in our previous work ((Lairón­Peris et al., 2020)) when

comparing H14A7 hybrid with its parental strains. Thus, the capability of growth and fermentation

under low temperature conditions could be related to these processes, and the lack of expression

of the genes related to them could be caused by the absence of that selective pressure during

H14A7­etoh development. That would also explain why the strain has more difficulties for complete

sugar consumption.

Improvements to ethanol tolerance were observed for H14A7­etoh, and we investigated

changes to the membrane which may have occurred as a mechanism of ethanol tolerance. The

differences in the lipidome of the yeast strains, such as number of species identified for each class

and the unsaturation status of the acyl chains, appears to be complex, and the overall effect upon

the membrane is difficult to predict. Several studies have found a correlation between chain length,

membrane fluidity and ethanol tolerance, with the incorporation of longer chains at the expense of

short chains to counteract the fluidising effect of ethanol upon the membrane (Chi and Arneborg,

1999a; You et al., 2003). The ability of cells to change the unsaturation index has been suggested

as an ethanol adaptation response. Furthermore, cholesterol acts to modulate membrane fluidity

and it is possible that the transcriptomic changes seen within the ergosterol metabolic process

genes is responsible for the increased fluidity of H147a­etoh membranes.

S. cerevisiae has been demonstrated to increase unsaturated lipids in response to ethanol

(Alexandre et al., 1994; Beaven et al., 1982; Chi and Arneborg, 1999a), and this has been

associated with more tolerant strains (Alexandre et al., 1994). However, another study found that

unsaturation had no correlation with membrane fluidity and ethanol tolerance (Huffer et al., 2011).

It has been suggested that membrane fluidity alone cannot not fully account for ethanol

tolerance in some microorganisms, and that mechanisms of adaptation varies between strains and
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between organisms (Alexandre et al., 1994; Huffer et al., 2011). Our analyses suggest that, whilst

changes in saturation may occur within the hybrid strains, this alone is unlikely to fully account for

the observed increase in ethanol tolerance.

In our study, we observed a significantly lower abundance of PE in the H14A7­etoh strain

compared to H14A7; this could be an adaptive response to ethanol stress. PE is known to play

a role in the regulation of membrane fluidity (Dawaliby et al., 2016), and membranes containing

PE have been demonstrated to be less fluid than those containing PC alone, possibly because PE

increases lipid packing (Ballweg et al., 2020).

The Laurdan experiments suggested that the membranes of H14A7­etoh were more fluid

compared to those of the H14A7 strain; this is consistent with the TLC data and a decrease of

PE, which could be expected to result in an increase in membrane fluidity. A study by Chi and

Arneborg (1999a) compared two yeast strains with different abilities to tolerate ethanol, and found

that the more tolerant strain contained a greater proportion of PC and a lower proportion of PE.

Another study demonstrated increasedmass fractions of PC and less PE in recycled yeast exposed

to fermentation stress compared to non stressed started yeast cultures (Jurešić et al., 2009).

Recently, a S. cerevisiae strain was adapted under osmotic stress, and different complex

sphingolipids changed their abundance (Zhu et al., 2020). Moreover, it has been stated that

sphingolipids are abundant in highly ordered membrane regions with sterol, and that ergosterol

seem to interact preferentially with PCs (de Almeida and Joly, 2014; Khmelinskaia et al., 2020).

These results are consistent with our findings, suggesting one possible conserved mechanism

of increasing membrane tolerance to ethanol. Reported membrane changes upon ethanol

production / exposure remain conflicting (Henderson and Block, 2014). This is likely due

to differences in the experimental conditions. Yeast are known to incorporate exogenous

polyunsaturated fatty acids (Lou et al., 2018; Tyurina et al., 2017), and this can be influenced by the

composition of the growth media. In addition, there may be multiple alternative cellular strategies

for mitigating ethanol tolerance. Due to the sampling in our experiments we are likely looking at

the “basal” membrane condition before significant ethanol challenge and further remodelling may
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occur with increased ethanol concentrations.

Overall, our results show that when a S. uvarum x S. cerevisiae strain is adapted under a media

which mimics wine pressures during fermentation ­ethanol and sulfites­, its genome is unstable and

show different genomic changes with have an effect on its phenotype. Both subgenomes adapt

differently to this media, and the characteristic that was clearly improved was the sulfite tolerance.

The way to improve it was with the duplication of S. uvarum chromosome VII­XVI, which has an

impact on gene expression of this entire chromosome. Ethanol tolerance seem to be improved

too, and S. cerevisiae chromosome III duplication, could have been the cause of this improvement.

Membrane fluidity of the adapted hybrid is increased and, could be a potential mechanism by which

the ethanol tolerance is higher for H14A7­etoh. A trade­off is present in this adapted hybrid, as its

speed to ferment sugars is reduced.
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5.1 Introduction

Adaptive evolution is a natural process by which the beneficial alleles present in a population

increase and the deleterious alleles decrease due to selective pressures. In nature, the

environment is constantly changing and the individuals showing the best phenotypes for a

determined condition are selected and the corresponding genotypes are fixed in a population

(Taddei et al., 1997).

Yeast cells are unicellular fungi that are widely distributed in the natural environment.

Therefore, they use several mechanisms to respond to environmental challenges thus adapting

and evolving (Conrad et al., 2011; Dragosits and Mattanovich, 2013). One of the main ecological

conditions under which yeast cells have to grow and reproduce in nature is in the presence of high

levels of ethanol (Bisson, 1999). Although ethanol is produced by yeasts, this compound is toxic

for them and compromises their ability to survive and proliferate (Bisson, 1999).

Yeast strains showing a better ethanol­tolerance phenotype have a fitness advantage over less

ethanol­tolerant strains (Arroyo­López et al., 2010b; Voordeckers et al., 2015a). It is not surprising

that in industrial environments with high ethanol concentrations, as in wine, beer, and bioethanol

producing companies, the predominant yeasts are those exhibiting these phenotypes (Voordeckers

et al., 2015a).

Wine fermentation represents, together with beer fermentation, the main industrial process

in which yeasts have been unconsciously selected and utilized for centuries, thus allowing the

evolution of these organisms towards a more favorable ethanol­tolerant phenotype (Conant and

Wolfe, 2007; Dashko et al., 2014; Cubillos, 2016; Legras et al., 2007; Sicard and Legras, 2011).

Nowadays, wineries select and use pure ethanol­tolerant Saccharomyces yeast strains and add

them to the grape must to carry out the wine fermentation. The use of these starters is essential

to have a reproducible process and to maintain a high final product quality (Querol et al., 2018).

S. cerevisiae is the preferred yeast species to initiate the fermentation process as it is the most

ethanol tolerant species in the Saccharomyces genus and its use reduces the risk of sluggish
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or stuck fermentations due to ethanol presence (Alexandre and Charpentier, 1998; Arroyo­López

et al., 2010b; Jolly et al., 2014). Nevertheless, non­conventional Saccharomyces species, such as

S. uvarum and S. kudriavzevii, are good candidates to be used in the wine industry as they exhibit

good fermentation properties at low temperatures and produce wines with lower alcohol and higher

glycerol content than S. cerevisiae (Bertolini et al., 1996; Demuyter et al., 2004; Giudici et al.,

1995; González et al., 2007; Pérez­Torrado et al., 2018; Peris et al., 2016; Salvadó et al., 2011a;

Tronchoni et al., 2012). Despite their potential, these species cannot compete on an industrial level

with S. cerevisiae industrial strains, which in general terms have greater resistance to ethanol and

the ability to ferment at higher temperatures (Belloch et al., 2008).

One scientific approach towards the improvement of yeast strains with interesting properties

but with low ethanol tolerance is the use of adaptive laboratory evolution (also known as directed

evolution or ALE) on these yeasts. ALE is based on the principle that cell populations adapt to their

environment over time by means of natural selection. Therefore, under changing environmental

conditions, the fittest phenotypes are selected and their corresponding genotypes fixed in the

population, thus allowing for the perpetuation of those organisms in the new environment (Çakar

et al., 2005; Chambers et al., 2009; Zeyl, 2005). Phenotypic changes obtained in the evolved

strains can be associated with the growth environment used during the ALE strategy. If the evolved

and the original strains genomes are obtained via whole genome sequencing (WGS), phenotype

and genotype can also be correlated (Dragosits and Mattanovich, 2013; Fay, 2013; Solieri et al.,

2013).

The strains obtained by using ALE are not considered GMO, which is essential for the utilization

of the obtained strains at the industrial level due to the complex legislation and poor consumer

acceptance (Wunderlich and Gatto, 2015). Moreover, since ethanol tolerance is a quantitative

phenotype that depends on a large number of genes (QTLs), performing ALE seems a good

approach to improve S. uvarum and S. kudriavzevii strains (Sanchez et al., 2017).

In a previous work we obtained the H14A7 hybrid (Lairón­Peris et al. (2020), Chapter 3) and

we performed an adaptation of this strain in a media mimicking wine fermentation conditions until
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a 9% of ethanol was reached (Lairón­Peris et al., under revision, Chapter 4). The obtained strain

was named H14A7­etoh and its ethanol tolerance was slightly improved by using this adaptation

strategy on a hybrid that already showed a good ethanol tolerance.

The aim of the present work was to use a similar strategy to adapt and evolve four low

ethanol tolerant strains: BMV58 and CECT 12600 (S. uvarum strains) and CR85 and CA111 (S.

kudriavzevii strains). To achieve this, we first adapted BMV58, CECT 12600, CR85 and CA111 to

a media with 8­9% of ethanol. Then, we started a second evolution strategy with these 4 strains

and applied colony selection by using a bottleneck strategy in ethanol media. The genomes of the

evolved strains were sequenced to correlate the changes present in the strains with their adaptation

to the used ethanol media and the lipid composition of the strains was also analyzed.

5.2 Materials and Methods

5.2.1 Yeast strains

For this study, two S. uvarum strains BMV58 (Velluto BMV58TM from Lallemand) and CECT

12600 (isolated from mistela in Alicante, Spain) and two S. kudriavzevii strains: CR85 (isolated

from oak tree bark in Ciudad Real, Spain) and CA111 (isolated from oak tree bark in Castellón,

Spain) were selected (Lopes et al., 2010).

5.2.2 Adaptive laboratory evolution. Part I

Directed evolution of the strains was performed using batch cultures in triplicate, in bottles of

100 mL with 60 mL of modified synthetic must M­SM, (Rossignol et al., 2003) , decreasing the

amount of sugars and increasing the percentage of exogenous added ethanol as in the previous

chapter (Section 4.2.1, Table 4.1). Some of the strains were evolved until an ethanol percentage of

8% was reached and others until an ethanol percentage of 9%, according to the ethanol tolerance.
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CECT-12600
BMV58
CR85
CA111

CECT-12600-EVO9
BMV58-EVO8
CR85-EVO8
CA111-EVO9

CECT-12600
BMV58
CR85
CA111

CECT-12600-EVO11
BMV58-EVO11
CR85-EVO11
CA111-EVO11

M-SM I M-SM II M-SM III M-SM IV M-SM V M-SM VI

A

B

M-SM VII SM

GPY+Eth C

MiSeq System LC-MSMS System

FIGURE 5.1 Scheme of the evolution of the 4 Saccharomyces strains. First, the Saccharomyces
strains were evolved using M­SMmedia with increasing ethanol concentrations (A). Thereafter, the
obtained evolved strains were evolved by following adaptation rounds in M­SM, in GPY+ethanol
and in SM (B). The evolved strains were sequenced using an Illumina MiSeq System and its lipid
composition was analyzed using LC­MSMS (C).

In all conditions 100 mg/L of metabisulfite, K2S2O5 were added to SM.

5.2.3 Adaptive laboratory evolution. Part II

When fermentations reached a concentration of 8% or 9% of ethanol in the media, the ALE

strategy was modified. First, a round with modified SM, which contained 60 g/L of sugars (20 g/L

glucose and 40 g/L of fructose) and a percentage of ethanol that varied between 9 and 10 percent

was carried. After this step, colonies were recovered in GPY plates at 25ºC containing 16% of

ethanol OD=1E­4 and the 5 bigger ones were selected. Then, colonies were recovered in GPY

media, and fermentations were performed using a standard SM media with 200 g/L of sugars (100

g/L glucose and 100 g/L of fructose) to continue again with the step 1 (Figure 5.1).
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5.2.4 Mitochondrial DNA (mtDNA) restriction analysis

To detect the possible contamination problems during the evolution experiment, a mitochondrial

DNA (mtDNA) restriction analysis of each one of the colonies obtained after their selection in

GPY+ethanol plates was performed as in López et al. (2001) . Yeast DNA was digested with

HinfI restriction enzyme (Roche, Mannheim, Germany) and the fragments were separated in 1%

agarose gels in 1X TAE (tris­acetic acid­EDTA) buffer at 90 V. Gels were stained with RedSafe™

Nucleic Acid Staining Solution (iNtRION Biotech) and fragments were visualized under UV light.

The restriction fragment sizes were compared with lambda Pst I restriction enzyme (Roche,

Mannheim, Germany).

5.2.5 Estimation of the ethanol tolerance by drop tests

Tolerance to ethanol stress was evaluated by drop tests. Ethanol plates were prepared by

autoclaving GPY (%w/v: yeast extract 0.5, peptone, 0.5, glucose 2, agar 2) and when this media

was about to solidify, ethanol was added in the media in the following percentages: 0, 6, 8, 10,

12, 14 and 16 (%). Yeast precultures were grown overnight in GPY (peptone 0.5%, yeast extract

0.5%, glucose 2%) medium. Cell cultures were diluted to OD600 = 0.1. Then, 4 serial dilutions of

cells were transferred to the plates and incubated at 25ºC for a week.

5.2.6 Genome sequencing of the Saccharomyces strains

The DNA from of the evolved strains was extracted and strains were sequenced on the Illumina

Miseq sequencing platform using 2 × 300 bp paired­end chemistry.
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TABLE 5.1 Genomic sequences used in this work.

Strain Species Reference
Percentage of
ethanol reached
in ALE process

CR85 S. kudriavzevii Macías et al. (2019) ­
CR85­EVO8 S. kudriavzevii This study 8.00 %
CR85­EVO11 S. kudriavzevii This study 11.00 %

CA111 S. kudriavzevii Macías et al. (2019) ­
CA111­EVO9 S. kudriavzevii This study 9.00 %
CA111­EVO11 S. kudriavzevii This study 11.00 %
CECT­12600 S. uvarum Macías et al., in preparation ­

CECT­12600­EVO9 S. uvarum This study 9.00 %
CECT­12600­EVO11 S. uvarum This study 11.00 %

BMV58 S. uvarum Macías et al., in preparation ­
BMV58­EVO8 S. uvarum This study 8.00 %
BMV58­EVO11 S. uvarum This study 11.00 %

5.2.7 Flow cytometry analysis

A FACSVerse™ flow cytometer (BD Biosciences) instrument was used to measure the ploidy

of the original and evolved yeast strains. Briefly, cells were grown in GPY and 1 OD600 of each

culture was harvested and cells were stained using SYTOX dye Green as previously described

(Haase and Reed (2002), Section 4.2.4.). The fluorescence intensity of each strain was compared

with a haploid strain (S288c) and with a diploid strain (FY1679).

5.2.8 CCNV and SNPs analysis of the evolved strains

The sequenced reads of the evolved strains were aligned to the parental strains’ assemblies.

Briefly, Bowtie2 v2.3.0 (Langmead and Salzberg, 2012) was used with default parameters to map

the paired­end reads to the reference genomes. This generated files with a SAM format for each

strain which were converted to BAM files. Thereafter, Bedtools v2.17.0 (Quinlan and Hall, 2010)

was used to obtain the coverage of the reads “per base” in the genome. The obtained files were

processed to obtain the consensus coverage for each 1000 positions.
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A median coverage value per chromosome was obtained for every strain and the chromosome

coverage per 1000 positions were visualized by using ggplot2 R package to detect CCNV.

CNVnator was used for the discovery of copy number variation (CNV) (Abyzov et al., 2011) and to

confirm CCNV. Visualization of the CNV was done using Artemis (Rutherford et al., 2000).

 For SNP calling, the gdtools command installed as part of breseq (version 0.27.1) was used

(Deatherage et al., 2015). We used the read files of the evolved strains and the annotation files

of the original strains as a reference, with option ­p –polymorphism ­frequency­cutoff of 0.20.

The Genome Diff files obtained were manipulated by using the following commands: gdtools

SUBTRACT (to compare 1st evolution point to original strain; 2nd evolution point to 1st evolution

point; and 2nd evolution point to original) and gdtools ANNOTATE with the reference gene bank

annotations. Finally, the SNPs present in codifying regions were curated and we annotated their

positions in IGV alignments (sorted­bam) against the reference (Robinson et al., 2011).

5.2.9 Laurdan assay

Fluorescence emission of cells stained with Laurdan is an indirect method to know the

fluidity of lipidic membranes. The same methodology as in Chapter 1 was used to measure the

membrane fluidity of the original and evolved yeast strains. Briefly, yeast cultures were incubated

in GPY media overnight, and the next day 25 mL of GPY media containing 0% ethanol and 10%

ethanol was inoculated to an OD595 of 0.5. Samples were taken 24 hours after the fermentation,

and live yeast were diluted to an OD595 of 0.4 in GPY and incubated with 5 μM Laurdan

(6­dodecanoyl­2­dimethylaminonaphthalene) for 1 h. Fluorescence emission of these cells stained

with Laurdan was taken using a microplate reader (Mithras, Berthold) with the following filters;

λex=350 λem=460 and 535. Generalized Polarization (GP), derived from fluorescence intensities

at critical wavelengths was calculated.
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5.2.10 Mass spectrometry of the lipids present in the strains

Lipid composition for each one of the strains was analyzed by mass spectrometry. The

same methodology as in 1.2.6 was used to extract the lipids present in each strains. Briefly,

cells were propagated in GPY media at 25ºC for 24h, and total lipids were extracted using a

modified Bligh and Dyer protocol (Spickett et al., 2011). Then, the lipids were quantified by using

an ammonium ferrothiocyanate assay. The quantity of lipids was then adjusted to contain 5

μg/μL lipid in 100 µL of chloroform. These samples were treated as in 1.2.7. Briefly, LC was

performed on a U3000 UPLC system (Thermo scientific, Hemel Hempstead) using a Kinetex

C18 reversed phase column and MS analysis was carried out in positive and negative ionization

mode on a Sciex 5600 Triple TOF. ProgenesisQI® was used for quantification and LipidBlast

(https://fiehnlab.ucdavis.edu/projects/LipidBlast) for identification. All data were manually verified

and curated.

5.2.11 Statistical analysis

One­way analysis of variance (ANOVA) and Tukey’s significant differences were performed by

using the R package rstatix. Non parametric Wilcoxon test was performed using the R package

stats.

5.3 Results

5.3.1 Ethanol screening of the Saccharomyces strains

The adaptive laboratory evolution process was performed with the strains for approximately

200 generations using the methodology of Section 5.2.2. The obtained strains were named

CR85­EVO8, CA111­EVO9, CECT­12600­EVO9, and BMV58­EVO8. Ethanol is a volatile

compound, and we used growth in solid plates with ethanol to infer the growth of the strains in
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BMV58
BMV58-EVO8
12600
12600-EVO9
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0% 10%

12%10%

14% 16%

FIGURE 5.2 Drop test of the evolved and original Saccharomyces strains after using ALE Part
I. CR85, CA111, CECT 12600, and BMV58 strains were grown in GPY plates with different ethanol
percentages (0­16% depending on the strain) in quadruplicate. One replicate of the plates and
strains is shown.

this media. The growth of the strains at this evolution point was evaluated, but none of them

showed improvement in comparison with the original strains (Supplementary Figure 5.2).

Then, the methodology specified in Section 5.2.3 was applied until a percentage of 11% of

ethanol in the media was reached and strains CR85­EVO11, CA111­EVO11, CECT­12600­EVO11,

and BMV58­EVO11 were obtained (Table 5.1). In Figure 5.3 can be seen the growth of the original

and the final evolved strains. It is important to remark that the same number of culture (OD600=0.1

to 1E­4) was used for each strain.

All of the evolved strains, except for BMV58, have increased their ethanol tolerance after

the ALE process using the bottleneck strategy and higher ethanol percentages. The strain

CA111­EVO11 was the one which showed the major differences in comparison with CA111 original

strain in its growth in the GPY + ethanol plates.

5.3.2 CCNV analysis in the evolved strains

To quantify the cellular DNA content and infer the overall ploidy of each one of the evolved and

original strains, we used flow cytometry (Table 5.2). At the same time, the coverage values (cv)
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FIGURE 5.3 Drop test of the evolved Saccharomyces strains after using ALE Part II. CR85,
CA111, CECT 12600, and BMV58 strains were grown in GPY plates with different ethanol
percentages (0­16% depending on the strain) in quadruplicate. One replicate of the plates and
strains is shown.

obtained after the mapping of the sequenced reads of each evolved strain to the genome sequence

of the original strains (cvEvsO) were processed and represented. The mean cvEvsO for each 1000

pb positions were normalized using a log2 transformation against the mean cvEvsO in all the regions

of that strain and represented for each chromosome (Figure 5.4).

Two of the strains have duplicated some of the chromosomes all over the evolution process:

CA111 and CR85 (Wilcoxon test p­value < 0.05, using the mean chromosome coverage values).

The CCNVs acquired during the evolution of CA111 and CR85 S. kudriavzevii strains were studied

in depth.

The genes present in duplicated chromosomes of CA111 and CR85 were retrieved and their

function obtained by using SGD. Chromosome VIII of CA111 encomprises a total number of 251

genes. Some of these genes are very related with ethanol tolerance. This is the case of ETP1

(YHL010C) gene, which encodes a protein required for growth on ethanol (Snowdon et al., 2009)

and of EPT1 (YHR123W) which is related with phospholipid biosynthesis (Hjelmstad and Bell,

1988).
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FIGURE 5.4 Coverage per chromosome of the Saccharomyces strains. S. kudriavzevii strains
(A) and S. uvarum strains (B) at both evolution points. The plots were created using ggplot
package in R (Wickham, 2009) with the coverage values per sliding windows of 1000 pb. Red
asterisks indicate a deviation in the medium CCNV of that chromosome in relation with the other
chromosomes present in the genome and in relation with the same chromosome in a previous
evolution stage (Wilcoxon test); orange asterisks indicate that that chromosome presents a partial
CCNV in the evolved population.

The gene function of those genes present in the chromosomes II, IX and XVI of CR85 strain

were also subtracted. The chromosome II of CR85 encomprises a total number of 411 genes.

Among them the following genes are present: LDH1 (YBR204C) which has a proposed role in

lipid homeostasis (Debelyy et al., 2011); HSP26 (YBR072W), a stress­responsive heat shock

gene which encode proteins related to protein folding; and SSE2 (YBR169C) an stress­responsive

heat shock gene, which encodes proteins related to protein folding. The chromosome IX of CR85

encomprises a total number of 201 genes. Gene SOA1, related with sulfite transport; gene SDP1

related with oxidative stress resistance, and gene CCT2 related with protein folding are present

in this chromosome. The chromosome XVI of CR85, which includes 454 genes, contains the

genes SSU1, related with sulfite tolerance, HSP82 (YPL240C), a heat shock protein, and SSE1,

an ATPase component of the heat shock protein Hsp90.
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TABLE 5.2 Ploidy values obtained after flow cytometry and CCNV inferred from sequenced
reads of each strain.

Ploidy value CCNV
CR85 2.19± 0.02 Original euploid strain

CR85­EVO8 2.58 ± 0.02 + chr II, IX, XVI
CR85­EVO11 2.35 ± 0.07 ­ (some colonies lost chr II & XVI)
CECT­12600 1.9 ± 0.0 Original euploid strain

CECT­12600­EVO9 2.14 ± 0.01 ­
CECT­12600­EVO11 1.93 ± 0.01 ­

BMV58 2.28 ± 0.01 Original euploid strain
BMV58­EVO8 2.09 ± 0.01 ­
BMV58­EVO11 1.74 ± 0.01 ­

CA111 2.21 ± 0.01 Original euploid strain
CA111­EVO9 2.29 ± 0.03 + chr VIII
CA111­EVO11 2.23 ± 0.05 ­ chr VIII

5.3.3 SNPs, deletion and duplications acquired during the evolution process

CNVnator usage confirmed the CCNVmentioned in the above section. Moreover, this software

pinpointed at some specific genes with differences on their copy number during the evolution

process in the strains. We used Artemis to put together the annotated chromosomes of the original

strains with the reads alignment of the original and the two evolved strains to check if the coverage

values changes were sequencing artifacts (a gain or a loss of coverage is found in all of the strains)

or if the coverage values could indicate the presence of a duplication or deletion. In Table 5.3 can

be observed the duplications and deletions found in the evolved strains.

Regarding the SNPs present in the evolved strains, their number varied depending on the strain

(Figure 5.5). CECT 12600 was the strain with more SNPs changes on its genomes with a total

number of SNPs present in codifying regions of 417. Strains CR85, CA111 and BMV58 acquired a

total number of 22, 24, and 21 SNPs respectively. The type of SNPs also varied among strains. The

main class of change in 12600 was the acquisition of a new variant, that is, homozygous positions

became heterozygous. Instead, in BMV58, CA111 and CR85 changes were from heterozygous

positions to homozygous positions.

215



CHAPTER 5.

TA
BL

E
5.
3
D
up

lic
at
ed

an
d
de

le
te
d
ge

ne
co

pi
es

in
th
e
ev
ol
ve
d
st
ra
in
s.

Th
es
e
ge
ne
s
w
er
e
se
le
ct
ed

af
te
r
th
e
us
ag
e
of

C
N
Vn

at
or

an
d
th
ei
r

vi
su
al
iz
at
io
n
in
Ar
te
m
is
.

St
ra
in

C
hr

Po
s.

C
la
ss

G
en

e
M
ol
ec
ul
ar

Fu
nc

tio
n

R
ef
er
en

ce

BM
V5

8
VI
I

G
en
e
du
pl
ic
at
io
n

BM
V5

8­
EV

O
11

PI
B2

Ph
os
ph
oi
no
si
tid
e
3­
ki
na
se
,

re
gu
la
to
ro
fr
ec
ep
to
rs
ig
na
lin
g
ca
sc
ad
e

Bu
rd
an
d
Em

r(
19
98
)

BM
V5

8
VI
II

G
en
e
du
pl
ic
at
io
n
BM

V5
8­
EV

O
8

an
d
BM

V5
8­
EV

O
11

H
ST

3
In
vo
lv
ed

in
sh
or
t­c
ha
in

fa
tty

ac
id
m
et
ab
ol
is
m

St
ar
ai
et
al
.(
20
03
)

BM
V5

8
VI
II

G
en
e
du
pl
ic
at
io
n
BM

V5
8­
EV

O
8

an
d
BM

V5
8­
EV

O
11

PU
T4

Pr
ol
in
e
pe
rm
ea
se

C
ou
rc
he
sn
e
an
d
M
ag
as
an
ik
(1
98
3)

BM
V5

8
VI
II

G
en
e
du
pl
ic
at
io
n
BM

V5
8­
EV

O
8

an
d
BM

V5
8­
EV

O
11

C
IN
1

In
vo
lv
ed

in
pr
ot
ei
n
fo
ld
in
g

Ti
an

et
al
.(
19
96
)

BM
V5

8
IX

G
en
e
du
pl
ic
at
io
n
BM

V5
8­
EV

O
8

an
d
BM

V5
8­
EV

O
11

IM
P2

En
ab
le
s
tra
ns
cr
ip
tio
n
co
ac
tiv
at
or
ac
tiv
ity

M
as
so
n
an
d
R
am

ot
ar

(1
99
8)

BM
V5

8
XV

I
G
en
e
lo
ss

of
a
co
py

H
SP

82
En

ab
le
s
un
fo
ld
ed

pr
ot
ei
n
bi
nd
in
g

Pi
ca
rd
(2
00
2)

12
60
0

VI
II

G
en
e
du
pl
ic
at
io
n
12
60
0­
EV

O
9

an
d
12
60
0­
EV

O
12

YO
R
18
6W

Ex
pr
es
si
on

du
rin
g
he
at
st
re
ss
;

sp
hi
ng
ol
ip
id
­d
ep
en
de
nt

C
ow

ar
te
ta
l.
(2
00
3)

216



CHAPTER 5.

500
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0

A

FIGURE 5.5 SNPs acquired during the evolution of the Saccharomyces strains. In Panel A, the
total number of SNPs is represented for each strain, whereas in Panel B a pie chart showing the
percentage of changes from each class is represented.

The functions of the genes in which the presence of a SNP led to an amino acid change

were retrieved. A selection of the SNPs present in codifying positions whose change lead to a

non­synonymous amino acid of a protein which could be of relevance for the conditions of the

evolution can be seen in Table 5.4.

5.3.4 Laurdan assay

Laurdan assays were carried with cells retrieved after the growth of the strains in GPY media

with 0% and 10% of ethanol after 24 h growth. The most relevant changes were observed in the

media containing a 10% of ethanol, as 3 out of 5 evolved strains showed a lower GP value than

the original strains: BMV58, CA111 and CR85. This fact indicated that the membrane of these

evolved strains had become more fluid in the presence of ethanol (Figure 5.6).
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FIGURE 5.6 Laurdan assay to compare the state of the membranes of 12600, BMV58, CA111
and CR85 original and evolved strains. Cells were grown on GPY+0% ethanol (A) GPY+10%
ethanol media for 24h and then, membranes were extracted and Laurdan assays performed.
Anova (Analysis of variance) and Tukey HSD (Tukey Honest Significant Differences) tests were
performed * (P < 0.05), ** (P < 0.01), *** (P < 0.001) and **** (P < 0.0001).

5.3.5 Lipid composition and membrane properties

We determined the total lipid composition of each of the evolved and original strains, together

with AJ4 (S. cerevisiae strain) by mass spectrometry. The number of species identified for major

lipid classes for each strains after their growth in GPY is shown in Figure 5.7. There are differences

mainly for AJ4 for the total numbers of species identified and also for CA111­EVO9 compared to

the rest of the strains. Concretely, strains AJ4 and CA111­EVO9 possess more lipid species for the

following lipid classes: GPA, GPEth, GPSer and PE. Moreover, 12600−EVO11 is the strain with a

higher number of sulfatide GPIns and DG. The differences in the number of average carbons in

the acyl chains are less variable among strains and can be observed in Figure 5.8.
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FIGURE 5.8 Average number of carbons in each Saccharomyces strain. Lipids were extracted

and analyzed by LC­MS in positive and negative ion mode (n = 1).
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5.4 Discussion

Non­cerevisiae strains are gaining attention in oenology because they positively modify wine

composition (Querol et al., 2018). S. uvarum and S. kudriavzevii strains produce wines with a high

quantity of aroma­active higher alcohols and glycerol, and a low ethanol concentration (Gamero

et al., 2013; González et al., 2007; Oliveira et al., 2014; Stribny et al., 2015; Pérez­Torrado et al.,

2016). Moreover, these species have the ability to carry out fermentations at low temperatures

(Salvadó et al., 2011a). These yeast traits are very appreciated by winemakers, but apart from

them, high ethanol tolerant strains are required, which is a characteristic that S. uvarum and S.

kudriavzevii strains do not possess. Among the approaches that are feasible to reunite these

characteristics together ­good aromatic profile and high ethanol tolerance­ adaptive laboratory

evolution can be performed on selected S. uvarum and S. kudriavzevii strains.

In this study, we used a media that mimicked wine fermentation conditions at different stages

to led to an evolutionary adaptation of S. kudriavzevii and S. uvarum strains to this media. We

wanted to study the results of using this strategy with different Saccharomyces species in both their

genomes and phenotypes. The adaptive laboratory evolution allowed the fixation of mutations by

genetic drift (Warringer et al., 2011; Zörgö et al., 2012). As far as we know, this is the first time

that S. kudriavzevii strains are exposed to ALE. In other works, Saccharomyces hybrids, including

S. cerevisiae x S. uvarum and S. cerevisiae x S. kudriavzevii, were evolved for different traits

(Lopandic et al., 2016; Sanchez et al., 2017).

In Sanchez et al. (2017) S. uvarum populations, together with other Saccharomyces species

were evolved in sulfate­limited conditions. The aim of that work was to investigate if the genetic

background of different Saccharomyces species influence the evolutionary outcomes when they

were under sulfate limitation. Their results showed that SUL1 locus was amplified in S. cerevisiae,

S. paradoxus, and S. mikatae populations, but in S. uvarum SUL2 locus amplification was identified

instead (Sanchez et al., 2017) .

In this work, by using ALE, one S. uvarum strain (CECT 12600) and two S. kudriavzevii strains
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(CR85 and CA111) improved their ethanol tolerance. However, after exploring the genome of the

evolved strains, we concluded that each strain showed different patterns of evolutionary dynamics,

even when they are exposed to the same conditions, as happened in Sanchez et al. (2017).

The two S. kudriavzevii strains CA111 and CR85 were the ones which showed CCNV in their

genomes during the two steps of the evolution. In the case of CA111 strain, chromosome VIII

was duplicated in the first stage of the evolution, but then, in the next evolution steps, this extra

copy of the chromosome was lost. CR85 strain at the first evolution step gained an extra copy

of chromosomes II, IX and XVI; but then, in the following evolution steps some colonies lost

chromosomes II and XVI. The two S. kudriavzevii strains have highly homozygosity levels and

a low ascospore viability, thus, asexual reproduction is predominant (González et al., 2008; Lopes

et al., 2010). Their genomic instability at the level of whole chromosome duplications and losses

and their selection during harsh conditions for these strains could be produced during the mitotic

phase.

It is interesting to remark two aspects: The two S. kudriavzevii strains gained chromosomes

during the ALE process. Chromosome copy number variation was also observed in the previous

chapter with the S. cerevisiae x S. uvarum hybrid (Lairón­Peris et al., under revision, Chapter 4).

However, CECT 12600 was the strain which presented a bigger number of SNPs on its genome

during the evolution. BMV58, the strain whose ethanol improvement was not observed after the

drop tests in ethanol media, only showed some SNPs during the evolution process and some

duplicated genes. Thus, during the growth cycles under the media conditions, the spontaneous

mutations that occurred randomly in the strains and were later selected varied depending on the

strain, being point mutations themajor change in CECT 12600 strain and chromosome duplications

in CR85 and CA111 strains.

Ethanol tolerance is a complex trait to evolve as there are numerous causative genes involved

in high ethanol tolerance in yeasts (Fujita et al., 2006; Swinnen et al., 2012; van Voorst et al.,

2006). In other works, its improvement has been addressed by using genetically engineered

strains (Chandler et al., 2004; van Voorst et al., 2006), implementing adaptive laboratory evolution
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strategies (Aguilera et al., 2010; Novo et al., 2014), or by obtaining artificial hybrids (Lairón­Peris

et al., 2020; Serra et al., 2005). Also previously, the presence of a more fluid lipidic membrane

has been correlated with more ethanol tolerant strains (Chi and Arneborg, 1999a; Jurešić et al.,

2009). Moreover, the presence of determined phospholipid species, as PE in membrane has been

associated with this higher ethanol tolerant strains (Murzyn et al., 2005).

In this work we have observed that in the two evolved S. kudriavzevii strains the fluidity

of its membranes in the presence of ethanol is higher than the fluidity of the original strains.

Moreover, CA111­EVO9 S. kudriavzevii strain is the one which possess major differences in

the lipid classes present in comparison with the other strains. The number of lipid species in

this evolved CA111­EVO9 strain is similar to the composition of a tolerant S. cerevisiae strain,

possessing more GPA, GPEth, GPSer and PE. This results support the fact that during ALE some

of the mutations fixed in the population ­because they confer an advantage under selection on

ethanol media­ are related with genomic characteristics that affect membrane composition.

One of our main findings in the present work is that it is possible to adapt and evolve

Saccharomyces non­cerevisiae strains in the laboratory and obtain strains with improved

phenotypes for the ethanol tolerance. The strain which showedmore relevant changes was CA111,

S. kudriavzevii strain, at both genomic and lipidomic level. This strain, CA111, was the less ethanol

tolerant strain of the Saccharomyces strains used in the adaptive evolution. Although the genomic

mechanisms leading to that improvement are not completely understood, we propose that the gain

and loss of the extra copy of chromosome VIII had provoked a global transcriptional variation in

this strain.
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General Discussion

Saccharomyces yeasts are of great importance in the winemaking industry as they conduct

the alcoholic fermentation process in an efficient way (Sicard and Legras, 2011). For millenia, they

have unconsciously been used and selected, which make of yeasts “domesticated” organisms

with genetic particularities (Steensels et al., 2019). Nowadays, it is possible to investigate and

characterize both the phenotype of a strain and its genome using NGS, allowing to determine

phenotype­genotype correlations (Dragosits and Mattanovich, 2013; Solieri et al., 2013). These

techniques permit the selection of the most suitable strain to be used in a determined industrial

process, and also to understand the underlying molecular mechanisms involved in its properties

of interest (Dequin and Casaregola, 2011; Marsit et al., 2017).

Different strategies have proved to be useful to obtain new Saccharomyces yeast strains

with the desired phenotype that fulfill both the industry demands and the preferences of wine

consumers. Among them, artificial hybridization and experimental adaptive evolution are two of

the most popular techniques (Çakar et al., 2005; Pérez­Través et al., 2015). The reason is that

the new strains generated with these approaches are not considered GMO (Wunderlich and Gatto,

2015).

In this doctoral thesis, we aimed to understand and improve the ethanol tolerance of different

Saccharomyces yeast strains, especially those of interest for its use the wine industry. In the

first moment, we used different methods to classify existing Saccharomyces strains regarding their

ethanol tolerance. We also used “omic” techniques to decipher which traits differentiate the ethanol
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tolerant strains from the non­tolerant ones. The knowledge generated was used to improve strains

with low ethanol tolerance with other interesting traits for its use in enology, such as S. uvarum

and S. kudriavzevii strains. We used different strategies to obtain a new strain: rare mating for

the obtaining of a S. cerevisiae x S. uvarum hybrid yeast and adaptive laboratory evolution with

different Saccharomyces strains.

Among the Saccharomyces yeast species, the most well studied and used in industrial

environments species is S. cerevisiae (Moyad, 2007). This species is present in a wide range of

habitats and niches, and as a consequence, each strain shows particularities regarding its ethanol

tolerance. In the first chapter, we focused on finding differences among different S. cerevisiae

yeasts concerning their ethanol tolerance and their lipid composition. We selected and studied the

ethanol tolerance of 61 S. cerevisiae strains that are present in different environmental sources and

some S. cerevisiae strains that are used in the wine industry. We proved that S. cerevisiae strains

can be evaluated and classified by analyzing their growth in both liquid media (containing different

ethanol concentrations), and in solid media with ethanol. After characterizing the 61 strains, we

concluded that the most ethanol tolerant strains belong to wine commercial S. cerevisiae strains;

but also that strains belonging to the same isolation source can show different behaviors.

5 strains were selected to study more in­depth their lipid composition: AJ4, the most tolerant

strain; MY29, a sherry wine strain, had an intermediate behavior in ethanol conditions; MY26, an

agave strain, that was one of the least tolerant strain; and MY3 and MY14, two commercial wine

strains tolerant to ethanol. Membranes, mainly formed by lipids, are the first barrier that yeast cells

possess against ethanol. The study of lipid membrane composition was used to correlate different

ethanol tolerances with different membrane compositions. The mass spectrometry analysis of the

lipids present in those strains revealed that the most relevant differences are found among the lipid

composition of MY29, the flor yeast, and the other strains. A significantly higher PE concentration

was observed in the least tolerant strain, MY26, at 0% and 6% ethanol compared to the other

strains. Besides, we observed that the most tolerant strain, AJ4 had a higher membrane fluidity,

which could confer an advantage to this strain in the presence of ethanol.
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Due to these results, we wanted to study more in­depth the transcriptomic response to ethanol

of the three strains with intermediate phenotypes for this trait. In the second chapter, we selected S.

cerevisiae strains MY3, MY26 and AJ4 and carried out the growth of these three strains under GPY

media with three ethanol concentrations: 0%, 6%, and 10%. At different time points, we retrieved

samples to conduct the transcriptomic analyses. The three strains showed differential changes that

affect the lipid yeast membrane composition. Ergosterol synthesis genes were more up­regulated

in AJ4 strain in the presence of ethanol than in MY3 and MY26 strains. Moreover, genes related to

the biosynthesis of membrane phospholipids, such as HMN1 and EKI1 were up­regulated in AJ4

strain under ethanol growth. As these genes’ transcription is activated by Ino2p, the sequence of

this protein was analyzed and AJ4 showed two mutations in comparison with the other two strains,

which could play a role in the differential activation of the genes. Some up­regulated genes in

AJ4, grown in high ethanol conditions, are regulated by GCN4, whose sequence is different in

AJ4 compared to MY3 and MY26. Together, these analyses suggested that these specific allele

changes could play a role in ethanol tolerance regulation, but more analyses need to be performed.

With the previous knowledge that S. cerevisiae AJ4 strain is an ethanol tolerant strain, we

decided to improve BMV58, an S. uvarum strain with interesting properties for its usage in

oenological conditions, but with a lower ethanol resistance. In the third chapter, we used ”rare

mating” for obtaining a hybrid: H14A7, among AJ4 and BMV58. We proved that this a good

technique to improve the characteristics of two strains, by merging the positive characteristics of

both parentals. It has to be mentioned, that after crossing two strains with the desired phenotypes,

it was necessary to characterize a set of the obtained hybrids to select the one that reunited the

desired properties. In the case of H14A7, it performed wine fermentations at 25ºC faster than both

parental strains, and at lower temperatures showed a better behavior than AJ4.

Another interesting question in biology is the study of how an interspecies hybrid behaves

when it is put in a stressful environment. In the fourth chapter we aimed to study the adaptation

of the S. cerevisiae x S. uvarum hybrid strain H14A7 to a must media similar to that present in

wine fermentation at advanced stages. We used a modified synthetic must (M­SM) containing

high ethanol and low sugar concentrations, which also contained metabisulfite, a preservative that
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is used during wine fermentation as it converts to sulfite. After the adaptation process under these

selected environmental stressful conditions, the tolerance of the adapted strain (H14A7­etoh) to

sulfite and ethanol was investigated, revealing that the adapted hybrid is more resistant to sulfite if

we compare it with H14A7 strain, whereas ethanol improvement was slight. However, a trade­off

in the adapted hybrid was present, as it had lost the capacity to ferment sugars.

Different signals of adaptation in the H14A7­etoh genome were detected, confirming that the

hybrid genome is unstable under these stressful conditions and that each subgenome present

in the strain had adapted differently. Chromosome aneuploidies were present in S. cerevisiae

chromosome III and in S. uvarum chromosome VII­XVI, which had been duplicated. Moreover, S.

uvarum chromosome I was not present in H14A7­etoh and a loss of heterozygosity (LOH) event

arose on S. cerevisiae chromosome I. The RNA­seq analysis showed differential gene expression

between H14A7­etoh and H14A7, which can be easily correlated with the signals of adaptation that

were found in the H14A7­etoh genome. Finally, we reported alterations in the lipid composition of

the membrane, consistent with conserved tolerance mechanisms.

Although the adaptation of H14A7 to ethanol only showed a slight improvement in its ethanol

tolerance in comparison with H14A7 tolerance, we wondered if other Saccharomyces strains,

which are less ethanol tolerant, could be evolved by following a similar strategy. We were also

interested in which genomic changes occur during the process. In the fifth chapter, we performed

the strategy of an ”adaptive laboratory evolution” under ethanol conditions of S. kudriavzevii and S.

uvarum strains. One interesting result is that the genomic adaptation to ethanol varied among the

strains, even among strains belonging to the same species, thus revealing different evolutionary

dynamics across the genome. The two S. kudriavzevii strains, CR85 and CA111, duplicated some

of their chromosomes. CECT 12600 S. uvarum strain fixated new point mutations on its genome.

The membrane fluidity assays revealed that in the presence of ethanol BMV58, CA111 and CR85

evolved strains have a more fluid membrane than the original strains. CECT 12600 evolved strain

showed a more rigid membrane when no ethanol was present in the media, but when ethanol was

present, there were no differences in membrane fluidity among CECT 12600 evolved strains and

CECT 12600.
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Conclusions

These are the most relevant conclusions drawn from the results obtained in the thesis:

1) Different S. cerevisiae strains from different origins were analyzed and classified by their

ability to grow under ethanol stressful conditions. In general terms, the most ethanol tolerant

strains belong to wine commercial S. cerevisiae strains and strains from the same isolation

source showed different behaviors under ethanol stress.

2) Five strains were selected because they showed different ethanol behaviors: AJ4, a

commercial strain, that resulted to be the most ethanol tolerant strain; MY29, the most

tolerant sherry wine strain, that had an intermediate behavior in ethanol conditions; MY26,

an agave strain, that was one of the least tolerant strains and MY3 and MY14, that are

commercial wine strains tolerant to ethanol.

3) The mass spectrometry analysis of the lipid composition of each strain in the absence of

ethanol highlighted that the most relevant differences are found among MY29, the flor yeast,

and the other strains.

4) The most tolerant strain, AJ4, underwent the largest changes to fluidity. This strain resulted

to be better able to tolerate the fluidizing effects of ethanol by modulating its membrane

composition to lead to an increase in fluidity.

5) The membrane of one of the least tolerant strains, MY26, did not alter its fluidity in any of the

conditions and liposomes comprised of MY26 lipids were less leaky when challenged with

ethanol.
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6) The membranes of the most tolerant S. cerevisiae strains are more fluid and contain less

PE whereas the membrane of the least tolerant strains contain more PE.

7) Transcriptomic analysis carried out with AJ4, MY3 and MY26 strains under ethanol revealed

that each strain differentially expresses different genes under ethanol indicating a high

variable response among strains.

8) Genes related to ergosterol biosynthesis were repressed at every time point in the case of

MY26 and MY3, but not in AJ4 under 6% and 10% conditions.

9) The most ethanol tolerant strain, AJ4, has amino acid mutations of the transcription factor

Ino2p and GCN4 genes. These factors activate the expression of HMN1, EKI1, and

OLE1, genes related to phospholipid biosynthesis and oleic and palmitoleic acid production,

respectively.

10) It is possible to obtain an artificial S. cerevisiae × S. uvarum hybrid via rare mating which

combines both the interesting enological properties of a commercial wine S. uvarum strain:

BMV58, and the high ethanol tolerance of a S. cerevisiae strain, AJ4.

11) H14A7 the obtained hybrid, showed hybrid vigor, performing wine fermentations at 25ºC

faster than its parents, and at lower temperatures showed a better behavior than the S.

cerevisiae parental strain.

12) H14A7 strain is an almost perfect allotriploid, with one copy of the S. uvarum genome, and

two heterozygous copies of each S. cerevisiae chromosome, except chromosome III, which

is present in one copy.

13) The comparative expression analysis (RNA­seq analysis) between hybrid subgenomes,

reported that each parental fraction acted differentially during fermentation. In the

fermentation latency phase, whilst the S. cerevisiae hybrid subgenome focused on catalytic

activity and nutrient uptake, S. uvarum fraction of the hybrid showed a higher expression in

ribosome biogenesis and ergosterol metabolism.

14) When we compared H14A7 total genome expression against AJ4 during the exponential at

15ºC and 25ºC, GO terms related to ergosterol regulation and alcohol biosynthetic process

were over­represented. When we compared H14A7 total genome expression against
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BMV58 GO terms related to the amino acid metabolic processes were over­represented.

15) The adaptation of H14A7 hybrid to a media mimicking the stresses present in wine

fermentations at late stages, with great ethanol and sulfite, permitted the obtention of a

strain: H14A7­etoh with an increased sulfite tolerance and slightly better adapted to high

ethanol concentrations.

16) The characterization of H14A7­etoh fermentations in Verdejo must showed that this strain did

not ferment all the sugars present in the must, suggesting that this strain has lost fermenting

capacity compared to H14A7.

17) One large aneuploidy occurred in the S. cerevisiae subgenome of H14A7­etoh: the

duplication of chromosome III. This duplication could be the result of either a restoration

of diploidy in all S. cerevisiae chromosomes, or the result of an adaptation of H14A7 strain

to the ethanol media present during the adaptation, as this chromosome III duplication could

confer an advantage when growing in high ethanol concentration

18) TheS. uvarum subgenome of H14A7­etoh wasmodified in the form of one chromosomal loss

(chromosome I) and one chromosome gain (chromosome VII­XVI). S. uvarum chromosome

I is the smallest chromosome and the translocated chromosome VII­XVI, carries the

FZF1­SSU1 recombination whose gene expression confers sulfite resistance.

19) Transcriptomic analysis of H14A7­etoh revealed that, in general terms, III­cer and

VII­XVI­uva genes are up­regulated in H14A7­etoh in comparison with H14A7 strain under

the same condition, showing that one way to increase expression of a gene is to increase

its copy number in a strain.

20) SSU1 S. uvarum allele was differentially expressed in H14A7­etoh, even when no

metabisulfite was added, as its expression is constitutive.

21) A significantly lower abundance of PE in the H14A7­etoh strain when compared to H14A7

was observed. Laurdan experiments suggested that the membranes of H14A7­etoh cells

were more fluid compared to those of the H14A7 strain; which is consistent with a decrease

of PE.

22) Adaptive evolution of the five strains: CR85 and CA111 (S. kudriavzevii), 12600 and BMV58
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(S. uvarum) and H14A7 (S. cerevisiae x S. uvarum) improved the ethanol tolerance of all of

the strains except for BMV58 (S. uvarum).

23) Genomic changes occurred in all of the strains, being aneuploidies present in the two S.

kudriavzevii strains and in the hybrid; small deletions and duplications in BMV58 and SNPs

in 12600 strain.

24) The evolved BMV58, CA111 and CR85 strains showed a higher fluidity in their membranes

than the original strains when they were grown under ethanol media. The number of some

lipid species present in the evolved CA111­EVO9 and 12600−EVO11 strains was higher in

comparison with the original strains.
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ABSTRACT Saccharomyces cerevisiae is an important unicellular yeast species within
the biotechnological and the food and beverage industries. A significant application of
this species is the production of ethanol, where concentrations are limited by cellular
toxicity, often at the level of the cell membrane. Here, we characterize 61 S. cerevisiae
strains for ethanol tolerance and further analyze five representatives with various etha-
nol tolerances. The most tolerant strain, AJ4, was dominant in coculture at 0 and 10%
ethanol. Unexpectedly, although it does not have the highest noninhibitory concentra-
tion or MIC, MY29 was the dominant strain in coculture at 6%ethanol, which may be
linked to differences in its basal lipidome. Although relatively few lipidomic differences
were observed between strains,a significantly higher phosphatidylethanolamine concen-
tration was observed in the least tolerant strain, MY26, at 0 and 6%ethanol compared
to the other strains that became more similar at 10%, indicating potential involvement
of this lipid with ethanol sensitivity.Our findings reveal that AJ4 is best able to adapt its
membrane to become more fluid in the presence of ethanol and that lipid extracts
fromAJ4 also form themost permeablemembranes. Furthermore,MY26 is least able to
modulate fluidity in response to ethanol, and membranes formed from extracted lipids
are least leaky at physiological ethanol concentrations. Overall, these results reveal a
potential mechanismof ethanol tolerance and suggest a limited set of membrane com-
positions that diverse yeast species use to achieve this.

IMPORTANCE Many microbial processes are not implemented at the industrial level
because the product yield is poorer and more expensive than can be achieved by
chemical synthesis. It is well established that microbes show stress responses during
bioprocessing, and one reason for poor product output from cell factories is produc-
tion conditions that are ultimately toxic to the cells. During fermentative processes,
yeast cells encounter culture media with a high sugar content, which is later trans-
formed into high ethanol concentrations. Thus, ethanol toxicity is one of the major
stresses in traditional and more recent biotechnological processes. We have per-
formed a multilayer phenotypic and lipidomic characterization of a large number of
industrial and environmental strains of Saccharomyces to identify key resistant and
nonresistant isolates for future applications.

KEYWORDS membraneproperties,Saccharomycescerevisiae,ethanol

Saccharomyces cerevisiae is a unicellular eukaryotic microorganism that has beenemployed asamodel organismto studydiverse relevant phenomena in biologyat
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Parental Genomes to a S. cerevisiae
× S. uvarum Hybrid, Inferred by
Phenomic, Genomic, and
Transcriptomic Analyses, at Different
Industrial Stress Conditions
María Lairón-Peris1, Laura Pérez-Través1, Sara Muñiz-Calvo1, José Manuel Guillamón1,
José María Heras2, Eladio Barrio1,3 and Amparo Querol1*
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In European regions of cold climate, S. uvarum can replace S. cerevisiae in wine
fermentations performed at low temperatures. S. uvarum is a cryotolerant yeast that
produces more glycerol, less acetic acid and exhibits a better aroma profile. However,
this species exhibits a poor ethanol tolerance compared with S. cerevisiae. In the
present study, we obtained by rare mating (non-GMO strategy), and a subsequent
sporulation, an interspecific S. cerevisiae × S. uvarum spore-derivative hybrid that
improves or maintains a combination of parental traits of interest for the wine industry,
such as good fermentation performance, increased ethanol tolerance, and high glycerol
and aroma productions. Genomic sequencing analysis showed that the artificial spore-
derivative hybrid is an allotriploid, which is very common among natural hybrids. Its
genome contains one genome copy from the S. uvarum parental genome and two
heterozygous copies of the S. cerevisiae parental genome, with the exception of a
monosomic S. cerevisiae chromosome III, where the sex-determining MAT locus is
located. This genome constitution supports that the original hybrid from which the spore
was obtained likely originated by a rare-mating event between a mating-competent
S. cerevisiae diploid cell and either a diploid or a haploid S. uvarum cell of the opposite
mating type. Moreover, a comparative transcriptomic analysis reveals that each spore-
derivative hybrid subgenome is regulating different processes during the fermentation,
in which each parental species has demonstrated to be more efficient. Therefore,
interactions between the two subgenomes in the spore-derivative hybrid improve those
differential species-specific adaptations to the wine fermentation environments, already
present in the parental species.

Keywords: Saccharomyces cerevisiae, S. uvarum, artificial hybrid, wine fermentation, ethanol tolerance, genome
sequencing, RNA-seq
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Saccharomyces cerevisiae is the main microorganism responsible for the fermentation

of wine. Nevertheless, in the last years wineries are facing new challenges due to

current market demands and climate change effects on the wine quality. New yeast

starters formed by non-conventional Saccharomyces species (such as S. uvarum or S.

kudriavzevii) or their hybrids (S. cerevisiae x S. uvarum and S. cerevisiae x S. kudriavzevii)

can contribute to solve some of these challenges. They exhibit good fermentative

capabilities at low temperatures, producing wines with lower alcohol and higher glycerol

amounts. However, S. cerevisiae can competitively displace other yeast species from

wine fermentations, therefore the use of these new starters requires an analysis of

their behavior during competition with S. cerevisiae during wine fermentation. In the

present study we analyzed the survival capacity of non-cerevisiae strains in competition

with S. cerevisiae during fermentation of synthetic wine must at different temperatures.

First, we developed a new method, based on QPCR, to quantify the proportion of

different Saccharomyces yeasts in mixed cultures. This method was used to assess the

effect of competition on the growth fitness. In addition, fermentation kinetics parameters

and final wine compositions were also analyzed. We observed that some cryotolerant

Saccharomyces yeasts, particularly S. uvarum, seriously compromised S. cerevisiae

fitness during competences at lower temperatures, which explains why S. uvarum

can replace S. cerevisiae during wine fermentations in European regions with oceanic

and continental climates. From an enological point of view, mixed co-cultures between

S. cerevisiae and S. paradoxus or S. eubayanus, deteriorated fermentation parameters

and the final product composition compared to single S. cerevisiae inoculation. However,

in co-inoculated synthetic must in which S. kudriavzevii or S. uvarum coexisted with
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Aneuploidy and Ethanol Tolerance in
Saccharomyces cerevisiae
Miguel Morard1,2, Laura G. Macías1,2, Ana C. Adam2, María Lairón-Peris2,
Roberto Pérez-Torrado2, Christina Toft1,2† and Eladio Barrio1,2*

1 Departament de Genètica, Universitat de València, Valencia, Spain, 2 Departamento de Biotecnología, Instituto de
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Response to environmental stresses is a key factor for microbial organism growth.
One of the major stresses for yeasts in fermentative environments is ethanol.
Saccharomyces cerevisiae is the most tolerant species in its genus, but intraspecific
ethanol-tolerance variation exists. Although, much effort has been done in the last years
to discover evolutionary paths to improve ethanol tolerance, this phenotype is still hardly
understood. Here, we selected five strains with different ethanol tolerances, and used
comparative genomics to determine the main factors that can explain these phenotypic
differences. Surprisingly, the main genomic feature, shared only by the highest ethanol-
tolerant strains, was a polysomic chromosome III. Transcriptomic data point out that
chromosome III is important for the ethanol stress response, and this aneuploidy can
be an advantage to respond rapidly to ethanol stress. We found that chromosome III
copy numbers also explain differences in other strains. We show that removing the
extra chromosome III copy in an ethanol-tolerant strain, returning to euploidy, strongly
compromises its tolerance. Chromosome III aneuploidy appears frequently in ethanol-
tolerance evolution experiments, and here, we show that aneuploidy is also used by
natural strains to enhance their ethanol tolerance.

Keywords: Saccharomyces cerevisiae, wine yeasts, chromosome III, aneuploidy, comparative genomics, ethanol
tolerance

INTRODUCTION

The yeast Saccharomyces cerevisiae is among the most beneficial microorganisms for humans,
especially industrial strains involved in the production of fermented products, such as bread, beer
or wine. S. cerevisiae, as well as other Saccharomyces species, are characterized by their ability to
ferment simple sugars into ethanol, even when oxygen is available for aerobic respiration (Crabtree
effect), due to an overflow in the glycolysis pathway (Hagman and Piškur, 2015). Although, alcohol
fermentation is energetically less efficient than respiration, it provides a selective advantage to these
yeasts to out-compete other microorganisms. This way, sugar resources are consumed faster and
the ethanol produced during fermentation, as well as high levels of heat and CO2, can be harmful
or less tolerated by their competitors. Once competitors are overcome, Saccharomyces yeasts can
use the accumulated ethanol as a substrate for aerobic respiration in the presence of oxygen.
This ecological strategy was named (ethanol) “make-accumulate-consume” (Thomson et al., 2005;
Piškur et al., 2006).

With the advent of the human hunter-gatherer societies, S. cerevisiae, due to its fermentative
capabilities, successfully occupied a new ecological niche in the crushed grape berries, collected by

Frontiers in Genetics | www.frontiersin.org 1 February 2019 | Volume 10 | Article 82



International Journal of Food Microbiology 342 (2021) 109077

Available online 28 January 2021
0168-1605/© 2021 Elsevier B.V. All rights reserved.

Thermo-adaptive evolution to generate improved Saccharomyces cerevisiae 
strains for cocoa pulp fermentations 
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A B S T R A C T   

Cocoa pulp fermentation is a consequence of the succession of indigenous yeasts, lactic acid bacteria and acetic 
acid bacteria that not only produce a diversity of metabolites, but also cause the production of flavour precursors. 
However, as such spontaneous fermentations are less reproducible and contribute to produce variability, interest 
in a microbial starter culture is growing that could be used to inoculate cocoa pulp fermentations. This study 
aimed to generate robust S. cerevisiae strains by thermo-adaptive evolution that could be used in cocoa 
fermentation. We evolved a cocoa strain in a sugary defined medium at high temperature to improve both 
fermentation and growth capacity. Moreover, adaptive evolution at high temperature (40 ◦C) also enabled us to 
unveil the molecular basis underlying the improved phenotype by analysing the whole genome sequence of the 
evolved strain. Adaptation to high-temperature conditions occurred at different genomic levels, and promoted 
aneuploidies, segmental duplication, and SNVs in the evolved strain. The lipid profile analysis of the evolved 
strain also evidenced changes in the membrane composition that contribute to maintain an appropriate cell 
membrane state at high temperature. Our work demonstrates that experimental evolution is an effective 
approach to generate better-adapted yeast strains at high temperature for industrial processes.   

1. Introduction 

Thermotolerant microorganisms may be useful for industrial appli
cations, such as a high-temperature growth yeast for bioethanol pro
duction (Mienda and Shamsir, 2013) or cocoa fermentation (Goddard, 
2016). During these processes, cells have to face with high stress levels 
such as the temperature, which influences both growth and fermenta
tion capacity (Morano et al., 2012). Industry spends a huge amount of 
energy cooling or heating fermentations to fine-tune temperature as 
closely as possible to the optimum growth temperature (Hamelinck 
et al., 2005; Stephen et al., 2012). In spite of this, this optimum tem
perature does not often very well match the final product’s cost- 
effectiveness or quality. These problems can be avoided by providing 
better-adapted yeasts to ferment at non-optimal temperatures. However, 
we are far from either understanding the molecular and physiological 
mechanisms of adaptation at high temperatures or knowing what makes 
them thermotolerant. 

Several genes have been related to thermotolerance in S. cerevisiae. 
Enzymes involved in membrane synthesis and composition have been 
linked to high thermotolerance, such as ERG3 (Caspeta et al., 2014), a C- 
5 sterol desaturase; ERG13 (Pinheiro et al., 2020), a protein involved in 
early ergosterol biosynthesis; chaperones like HSP104 and HSP12 
(Sanchez et al., 1992); trehalose and glycogen genes TPS1, TPS2, NTH1 
(De Virgilio et al., 1994) and GSY1 (Pinheiro et al., 2020); genes of RNA 
processing like PRP42 and SMD2 (Yang et al., 2013). Overexpression of 
RSP5, a ubiquitin ligase, also increases thermotolerance (Shahsavarani 
et al., 2012). Nevertheless, these genes have not yet been applied to 
genetically improve yeast strains for industrial processes. This could be 
because trade-offs occur with other properties that are important in 
industry, such as the fermentation, propagation, drying or storage of 
yeasts (Deparis et al., 2017; Matallana and Aranda, 2017; Walker et al., 
2019). 

Experimental evolution is an important tool for investigating adap
tive shifts, clonal dynamics, competition and fitness, and the genetic 
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Summary

Saccharomyces cerevisiae, a widespread yeast pre-
sent both in the wild and in fermentative processes,
like winemaking. During the colonization of these
human-associated fermentative environments, cer-
tain strains of S. cerevisiae acquired differential adap-
tive traits that enhanced their physiological
properties to cope with the challenges imposed by
these new ecological niches. The advent of omics
technologies allowed unveiling some details of the
molecular bases responsible for the peculiar traits of
S. cerevisiae wine strains. However, the metabolic
diversity within yeasts remained poorly explored, in
particular that existing between wine and wild strains
of S. cerevisiae. For this purpose, we performed a
dual transcriptomic and metabolomic comparative
analysis between a wild and a wine S. cerevisiae
strains during wine fermentations performed at high
and low temperatures. By using this approach, we
could correlate the differential expression of genes
involved in metabolic pathways, such as sulfur, argi-
nine and thiamine metabolisms, with differences in
the amounts of key metabolites that can explain
some important differences in the fermentation per-
formance between the wine and wild strains.

Introduction

Saccharomyces cerevisiae is a widespread yeast spe-
cies found both in the wild (Wang et al., 2012) and in

fermentative processes, including winemaking (Legras
et al., 2018). Natural isolates of S. cerevisiae have been
isolated from highly diverse living environments, such as
fruits, tree bark, rotten wood, cacti, soil and exudates of
oak trees. Over the last few decades, the increasing
availability of S. cerevisiae strains and their genomes
has continuously consolidated the position of this species
as a model organism in ecology and population genomics
(Almeida et al., 2015; Gallone et al., 2016; Legras
et al., 2018; Liti et al., 2009; Peter et al., 2018; Peter &
Schacherer, 2016; Schacherer et al., 2009).

Among the available strains, increased attention has
been paid to S. cerevisiae wine strains. Indeed, the
repeated exposure of wine S. cerevisiae strains to
the variety of stresses occurring during alcoholic fermen-
tation (e.g. osmotic stress, ethanol content, nitrogen star-
vation, addition of sulfites), has led to their passive
domestication and the emergence of differential adaptive
traits of biotechnological interest (Querol et al., 2003;
Barrio et al., 2006). In this aspect, different genomic
changes of adaptive value, often referred to as ‘foot-
prints’ of the domestication process have been reported
in wine strains (Marsit and Dequin, 2015; Gallone
et al., 2016, 2019; Gorter de Vries et al., 2017). Nucleo-
tide variation (Schacherer et al., 2009; Eldarov
et al., 2018), chromosomal rearrangements (Guijo
et al., 1997; Pérez-Ortín et al., 2002; García-Ríos
et al., 2019), gene copy number variation (Ib�añez
et al., 2014; Peter et al., 2018), introgressions (Almeida
et al., 2014), hybridization (Dunn et al., 2013; Morard
et al., 2020), aneuploidy (Hose et al., 2015; Mangado
et al., 2018; Morard et al., 2019) and horizontal gene
transfer (HGT) (Marsit et al., 2015, 2016) are the
highlighted genetic mechanisms described in the adapta-
tion of S. cerevisiae wine strains to winemaking. For
instance, the reciprocal translocation between chromo-
somes VII and XVI is a well-documented case of gross
chromosomal rearrangement with the adaptive advan-
tage of sulfite resistance, only present in wine strains of
S. cerevisiae (Pérez-Ortín et al., 2002; Yuasa
et al., 2004; García-Ríos et al., 2019). More recently, the
genes of region C (Novo et al., 2009), which results from
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Saccharomyces yeasts par�cipate in fermenta�ve processes of great value in the 
food industry, such as the produc�on of wine. At present, S. cerevisiae is the 
species within the Saccharomyces genus most used in the wine industry, becau-
se it is very resistant to ethanol. However, other species such as S. kudriavzevii 
and S. uvarum are gaining popularity because they produce more aroma�c 
wines, with lower ethanol content and higher glycerol, but they are less tolerant 
to ethanol. In this thesis, we aim to characterize and improve different yeast 
strains of the Saccharomyces genus. To be�er understand the phenotype of 
these Saccharomyces strains, omics technologies, such as genomics, transcrip-
tomics and lipidomics are used.
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