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■■ INTRODUCTION

The ultimate objective of the field of artificial 
intelligence (AI), the creation of a machine with 
a general intelligence like that of humans, is one 
of the most ambitious scientific goals ever set. The 
difficulty of this is comparable to other great scientific 
objectives such as explaining the origin of life or 
of the universe or understanding the structure of 
matter. Over the last few centuries, this desire to build 
intelligent machines led us to 
invent models or metaphors for 
the human brain. For instance, 
in the seventeenth century, 
Descartes wondered if a complex 
mechanical system consisting of 
gears, pulleys, and tubes could, 
in principle, emulate thinking. 
Two centuries later, this metaphor 
was applied to telephone systems 
because their connections 
seemed to be like a neural 
network. Currently, the dominant AI model is based 
on digital computers and computation, as we discuss 
in this article.

■■ WEAK	VERSUS	STRONG	ARTIFICIAL	INTELLIGENCE

Allen Newell and Herbert Simon formulated the 
hypothesis according to which every physical symbol 
system has the necessary and sufficient means for 

intelligent action (Newell & Simon, 1976). According 
to this hypothesis, while human beings show 
intelligent behaviour, we are also physical symbol 
systems. We should be clear on what Newell and 
Simon referred to. A physical symbol system consists 
of a set of entities known as symbols which, via their 
relationship to each other, can be combined to form 
larger structures – like atoms combining to form 
molecules – and can be transformed using several 

procedures. These procedures can 
create new symbols, create and 
modify the relationships between 
them, store them, compare two of 
them to see if they are the same 
or different, etc. These symbols 
are physical because they have 
a physical-electronic substrate 
(in the case of computers) or a 
physical-biological substrate 
(in the case of humans). Indeed, 
symbols in computers are created 

using digital electronic circuits; in humans, they use 
neural networks. In short, according to the hypothesis 
of the physical symbol system, the nature of the 
substrate (electronic circuits or neural networks) 
is not important if it allows the system to process 
symbols. Let us not forget that this is a hypothesis 
and thus, its verification or refutation must use the 
scientific method. Artificial intelligence is precisely 
the scientific discipline devoted to trying to verify this 
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hypothesis in the context of computers; that is, to verify 
whether a properly programmed computer can behave 
with general intelligence or not.

It is important for such an intelligence to be 
general, instead of specific, because that is the type 
of intelligence humans have. Displaying specific 
intelligence is very different. For example, master-
level chess programmes cannot play checkers. The 
same computer requires a different programme to 
play checkers; it cannot use the 
fact that it can play chess to adapt 
so that it can also play checkers, 
while human chess players can 
take advantage of their knowledge 
of chess to play checkers. 
Artificial intelligence that shows 
only very specific intelligence 
is related to what we know as «weak AI», in contrast 
with «strong AI», which, incidentally, is the one Newell, 
Simon, and other forefathers of AI referred to. 

The philosopher John Searle was the first to 
introduce the distinction between weak and strong AI 
in a paper published in 1980 that criticised artificial 
intelligence (Searle, 1980) that raised, and still raises, 
many doubts. Strong AI would imply a properly 
programmed computer that does not 
emulate a mind, but rather «is a mind», 
so it should be able to think as a human 
does. In his paper, Searle tries to prove 
that strong AI is impossible. 

At this point, we should be clear that 
general AI and strong AI are not the 
same thing. There is a connection, of 
course, but only in one direction: that 
is, any strong AI must necessarily be 
general, but general AIs that are not 
strong can exist, meaning that they 
simulate the ability to show general 
intelligence without being real minds.

On the other hand, and according 
to Searle, weak AI would consist of 
programmes which perform specific 
tasks. In certain fields it has been 
amply demonstrated that the ability of 
computers to perform specific tasks 
like searching for the solutions to 
logical formulas with many variables 
and other decision-making tasks is 
superior to that of humans. Weak AI is also connected 
with the formulation and proof of hypotheses on 
aspects related to the mind (for example, the ability 
to reason deductively, to learn inductively, etc.) via 
the construction of programmes that carry out these 

functions, even if the processes they use are different 
from those of our brains. It is clear that all the advances 
made so far in the field of AI are manifestations of 
specific and weak AI.

■■ 	THE	MAIN	MODELS	IN	ARTIFICIAL	INTELLIGENCE

Until very recently, the leading AI model was the 
symbolic one. This model is rooted in the physical 

symbol system hypothesis. It 
is still very important and is 
currently considered the «classic» 
AI model. It is a top-down model 
based on logical reasoning and 
heuristics as pillars for problem 
solving, without the need for the 
intelligent system to be part of a 

body or be in a real environment. That is to say, the 
symbolic AI operates with abstract representations 
of the real world, modelled using representation 
languages based mainly in mathematical logic and its 
extensions. For this reason, the first intelligent systems 
mainly solved problems that did not require direct 
interaction with the environment, like proving simple 
mathematical theorems or playing chess. This does not 

In	the	1970s,	Allen	Newell	and	Herbert	Simon	suggested	that	any	
physical	symbol	system	–	whether	they	were	physical-electronic	
in	the	case	of	computers	or	physical-biological	in	the	case	of	
humans	–	has	the	necessary	means	to	carry	out	intelligent	actions.	
The	picture	shows	professors	Simon	(left)	and	Newell	(right)	working	
on	chess	software	at	the	end	of	the	1950s,	at	Carnegie	Mellon	
University	in	Pittsburgh	(USA).
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mean that symbolic AI cannot be 
used to programme the reasoning 
module of a physical robot 
situated in a real environment, 
but in the first years of AI there 
was no knowledge representation 
or programming language that 
could do it efficiently. Currently, 
symbolic AI is still used to prove 
theorems or play chess but it is 
also now used for applications that 
require environmental awareness and action, such as 
autonomous robots that learn and make decisions.

At the same time symbolic AI was being created, 
researchers also started to develop a bioinspired AI 
called connectionist AI. Contrary to symbolic AI, this 
is a bottom-up model based on the hypothesis that 
intelligence emerges from the distributed activity of 
many interconnected units processing information 
at the same time. In connectionist AI, these units 
are very approximate models of the electric activity 
of biological neurons. McCulloch and Pitts (1943) 
proposed a simplified neuron model in accordance 

with the idea that a neuron is essentially a 
logical unit. This model is a mathematical 
abstraction with inputs and outputs 
corresponding respectively to dendrites 
and axons. The value of the output is 
calculated depending on the result of 
the weighted sum of the inputs, so that 
if the sum exceeds a pre-established 
threshold, then the output is 1; otherwise, 
the output is 0. Connecting the output 
of each neuron with the input of others 
forms an artificial neural network. 
Based on what was already known 
about reinforcing the synapses between 
biological neurons, it was discovered 
that these artificial neural networks 
could be trained with functions that 
connected inputs and outputs by adjusting 
the weights of the connections between 
neurons. Therefore, experts thought that 
the connectionist approach would be 
more appropriate than the symbolic one 
to model learning, cognition, and memory. 
However, intelligent systems based on 

connectionism do not need to be part of a body or 
be situated in a real environment either; from this 
perspective, they have the same limitations as symbolic 
systems. 

On the other hand, 90% of brain cells are not 
neurons but rather, are glial 
cells which do not only regulate 
the functioning of neurons but 
also have an electric potential. 
They generate calcium waves 
which allow intercommunication 
between each other, which 
indicates that they also play a 
very important role in cognitive 
processes. Nevertheless, no 
connectionist model includes these 
cells; therefore, in the best case, 

they are incomplete. This suggests that the prediction 
that the so-called singularity, the moment when 
artificial superintelligences replicate a brain which far 
surpasses human intelligence, will be reached within 
twenty years’ time has little foundation.

Another bioinspired model, also unembodied and 
compatible with the physical symbol system hypothesis, 
is evolutionary computation. The biological success 
of having evolved complex organisms led some 
researchers in the early sixties to consider the possibility 
of imitating evolution so that, using an evolutionary 
process, computer software would automatically 

Human	intelligence	is	of	the	general	type,	while	the	intelligence	
of	grandmaster-level	chess	software,	like	the	Deep	Blue	computer	
that	won	against	Kasparov	in	1997,	is	of	the	specific	type.	This	means	
that	chess-playing	computers	are	unable	to	use	their	knowledge	to	
play	checkers,	for	example.	The	picture	shows	the	IBM	team	that	
developed	Deep	Blue	in	a	photograph	from	1996.
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improve the solutions to the problems for which it 
had been created. The idea is that these programmes 
produce, thanks to the mutation and crossbreeding 
operators of the «chromosomes» modelling them, new 
generations of modified programmes that offer better 
solutions than the ones from previous generations. 
Given that the goal of AI consists in the development 
of programmes that can produce intelligent behaviour, 
experts supposed that evolutionary programming 
could be used to find such programs from among the 
spectrum of possible programmes. However, the reality 
is much more complex, and this approach has many 
limitations, although it did produce excellent results, 
particularly in the resolution of optimisation problems.

One of the strongest criticisms of these unembodied 
models is that an intelligent agent would need a body 
to directly experience its environment instead of being 
provided with abstract descriptions of that environment 
codified in a knowledge-representation language. 
Without a body, these abstract representations have no 
semantic content. However, through direct interaction 
with the environment, an embodied agent can connect 
the signals received through its sensors with symbolic 
representations generated from what it has sensed. 

In 1965, the philosopher Hubert Dreyfus published 
a paper titled «Alchemy and artificial intelligence» 
(Dreyfus, 1965), in which he claimed that the ultimate 
goal of AI – meaning strong, general AI – was as 
unattainable as the goal of the seventeenth-century 
alchemists who wanted to transform lead into gold. 
Dreyfus argued that our brain processes information 
globally and continuously, while a computer uses a finite 
and discrete set of deterministic operations; that is, it 
applies rules to a finite set of data. In some sense, this 
argument is like Searle’s, but in subsequent papers and 
books, Dreyfus used a different argument based on the 
essential role that the body plays in intelligence (Dreyfus, 
1992). Therefore, he was one of the first to advocate the 
need for intelligence to be implemented as part of a body 
that could interact with the world. The main idea is that 
the intelligence of human beings is derived from the fact 
that they are situated in an environment with which they 
can interact. In fact, this need for embodiment is based 

One	of	the	criticisms	of	non-corporeal	artificial	intelligences	is	
that	an	intelligent	agent	needs	a	body	to	be	able	to	experience	
the	world	directly.	The	picture	shows	the	Romeo	humanoid	robot	
developed	by	SoftBank	Robotics.
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on Heidegger’s phenomenology, 
which emphasises the importance 
of the body in his needs, desires, 
pleasures, sorrows, the way the 
body moves, acts, etc. According to 
Dreyfus, AI would have to model 
all these aspects to achieve the 
ultimate objective of creating a 
strong AI. In other words, Dreyfus 
does not completely deny the 
possibility of strong AI, but he 
claims that it is not possible to achieve by means of 
classical unembodied AI methods. 

■■ DO	THE	ADVANCES	IN	SPECIFIC	ARTIFICIAL	
INTELLIGENCE	BRING	US	CLOSER	TO	GENERAL	
ARTIFICIAL	INTELLIGENCE?

Virtually all AI efforts have focused on building 
specialised artificial intelligences, and the successes 
of the last sixty years, and particularly the last decade, 
are very impressive, mainly thanks to the combination 
of two elements: the availability of enormous amounts 
of data and access to high-performance computing to 
analyse them. Indeed, the success of systems such as 
AlphaGo (Silver et al., 2016), Watson (Ferrucci, Levas, 
Bagchi, Gondek, & Mueller, 2013) and advances in 
autonomous vehicles have been possible thanks to this 
ability to analyse large amounts of data. However, we 
have not progressed towards achieving a general AI. 
In fact, possibly the most important lesson we have 
learned over the course of sixty years of AI is that 
what seemed hardest in the past (diagnosing diseases 

or playing chess at the highest level) has turned out to 
be feasible and what seemed easiest (understanding 
the deep meaning of language or interpreting a visual 
scene) remains out of reach. 

We must look for the explanation of this apparent 
contradiction in the difficulty of providing machines 
with common-sense knowledge. Common sense is the 
fundamental requirement for an AI to be like human 
intelligence in terms of generality and depth. Common-
sense knowledge is the fruit of experiences obtained 
through interactions with our environment. Without 
this knowledge, it is impossible to deeply understand 
language or profoundly interpret the perceptions of 
a visual system, among other limitations. The most 
complicated skills to achieve are those that require 
interacting with unrestricted and not previously 
prepared environments. Designing systems with these 
capabilities requires integrating developments from 
many subfields of AI. In particular, we need knowledge-

representation languages to 
codify information about, among 
others, many different types of 
objects, situations, actions, and the 
properties and interconnections 
between them. 

We also need new algorithms 
that use these representations to 
respond robustly and efficiently to 
questions on virtually any topic. 
Finally, because these systems 
will need to know a virtually 

unlimited number of things, they must be able to 
learn new knowledge continuously throughout their 
existence. In short, designing systems that integrate 
perception, representation, reasoning, action, and 
learning is essential. Only by combining these elements 
within integrated cognitive systems we will be able to 
start building general AI.

■■ THE	RECENT-PAST	AND	SHORT-TERM	FUTURE	
OF	ARTIFICIAL	INTELLIGENCE

Among future activities, I believe that the most 
important research topics will continue to depend 
on massive data-driven AI, that is, they will take 
advantage of large amounts of data and process 
them with increasingly-powerful hardware in order 
to discover how they relate to each other, to detect 
patterns and learn using statistical approaches such as 
deep-learning systems (Bengio, 2009). However, in the 
future, systems based on analysing enormous amounts 
of data will have to include modules to explain how 
the results and conclusions they propose were reached, 

The	availability	of	enormous	amounts	of	data	and	access	to	
high-performance	computing	to	analyse	them	has	enabled	the	
development	of	new	artificial	intelligence	systems	such	as	Watson,	
which	can	answer	natural	language	questions.	According	to	its	
creator,	IBM,	Watson	can	learn	from	every	experience.
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because any intelligent system must 
necessarily be able to explain itself. The 
explicability will allow to understand how 
the system works and evaluate its reliability. 
On the other hand, explicability is also 
needed to be able to correct potential 
programming errors and detect whether the 
training data was biased. 

We also need to know if the results 
are correct for the right reasons or just 
because of coincidences in the training 
data. Therefore, one of the most important 
research topics in the field of deep learning 
is the design of interpretable approaches to 
these complex learning systems. A possible 
approach would consist of not only training 
the deep-learning system but also using 
the same data set to train another system, 
emulating the deep-learning one, using a 
simple and transparent representation.

Another current research topic is the 
verification and validation of the software 
that implements learning algorithms. 
This is especially important in high-
risk applications such as the autopilot in 
autonomous vehicles. In these cases, we 
need a methodology to verify and validate high levels 
of precision for these machine learning systems. 
An idea that is currently being explored is called 
adversarial learning, which requires training a second 
AI system to attempt to «break» the learning algorithm 
by attempting to find its weak points. For instance, in  
the case of visual recognition, the adversarial system 
generates images that try to fool the learning system 
into making the wrong decision. 

■■ OTHER	KEY	TOPICS	IN	ARTIFICIAL	INTELLIGENCE

Other areas of AI that will continue to be the focus 
of extensive research efforts are multiagent systems, 
action planning, experience-based reasoning, artificial 
vision, human machine multimodal communication, 
humanoid robotics, social robotics, and the new 
developmental robotics trends, which may be crucial 
to solve the problem of allowing machines to acquire 
common sense. We will also see significant advances 
thanks to biomimetic approaches which reproduce 
animal behaviour in machines. Some biologists are 
interested in creating an artificial brain that is as 
complex as possible because they think it is a good way 
to understand the organ better, while engineers, on the 
other hand, look for biological insights to create more 
effective designs. 

The	development	of	technologies	related	to	artificial	intelligence	
means	that	we	must	analyse	their	potential	risks.	For	instance,	in	the	
case	of	autonomous	vehicle	piloting,	we	need	a	methodology	for	
verifying	and	validating	high	levels	of	precision	in	their	machine-
learning	systems.
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Other important areas for AI, and 
especially for robotics, are materials science 
and nanotechnology; for example, for the 
development of artificial muscles, artificial 
cartilages, and sensory systems such as 
artificial skins. 

Regarding the applications, some of the most 
important ones are still those related to the 
Internet, video games, and autonomous robots 
(especially autonomous vehicles, social robots, 
planet exploration robots, etc.). Environmental 
and energy-saving applications will also be 
important, as well as economy and sociology 
applications.

Finally, the art applications of AI will 
significantly change the nature of the creative 
process. Computers are no longer just tools 
to help creators, they are starting to become 
creative agents. This has given rise to a 
new and very promising area in artificial 
intelligence called computational creativity, 
which has produced very interesting results 
(Colton, López de Mántaras, & Stock, 2009; 
Colton et al., 2015; López de Mántaras, 2016) 
in music and plastic and narrative arts, among 
other creative activities. 

■■ THE	RISKS	OF	ARTIFICIAL	INTELLIGENCE,	A	FINAL	
REFLECTION

No matter how intelligent future artificial 
intelligences will be, particularly general AIs, they 
will never be like human intelligence, because, as I 
have argued, the mental development required by any 
complex intelligence depends on the interactions with 
its environment, which, in turn, depend on the body, 
especially its perceptual and motor systems. The fact 
that the socialisation and education of machines, if 
any, will be different from ours further emphasises 
that, no matter how sophisticated they become, their 
intelligence will always be different from ours. The 
fact that these intelligences are alien to human 
intelligence and, therefore, alien to human values 
and needs, should make us reflect on the possible 
ethical limitations to the development of artificial 
intelligence. In particular, I agree with Weizenbaum 
(1976) when he says that no machine should make 
completely autonomous decisions or give advice that 
requires, among other things, the wisdom, which is 
the product of human experience and human values. 

AI is based in complex programming; therefore, 
it will necessarily contain errors. But even if it were 
possible to develop completely reliable software, 

programmers must be aware of ethical issues involved 
when designing it. These ethical aspects lead many 
AI experts to discuss the need to regulate their 
development. But, aside from such regulation, we 
must educate citizens on risks related to intelligent 
technologies, providing them with the skills 
required to control these technologies, rather than 
be controlled by them. This education process must 
start at school and continue in higher education. We 
especially need science and engineering students to 
receive ethics training so they can better comprehend 
the social implications of the technologies that 
they will very probably develop. Only if we invest 
in education will we achieve a society that can 
take advantage of intelligent technologies while 
minimising its risks.   
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