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Abstract 

Two-dimensional (2D) sheets of antimonene have attracted increasing attention due to 

their unique physical and chemical properties prompting potential for diverse 

applications. We present a facile method to prepare high-quality antimonene nanosheets 

(ANSs) by micromechanical exfoliation on SiO2/Si substrate. The temperature- and laser 

power-dependent Raman studies of exfoliated ANSs are reported and analyzed. It was 

found that both the out-of-plane A1g and the in-plane Eg modes red-shift linearly with 

increase in temperature, pointing towards anharmonic vibrations of the lattice. The 

thermal response of the ANSs on a SiO2/Si surface is also described using numerical 

simulation of the heat transfer to study their laser-induced oxidation mechanisms. These 

results offer a deeper understanding of the phonon properties and oxidation susceptibility 

of 2D antimonene paving the way for the development of antimonene-based 

technologies, such as electronic devices or photothermal cancer therapy. 

 

1. Introduction 

The successful isolation of graphene in 2004 has triggered tremendous research interest 

in atomically thin two-dimensional (2D) crystals [1], including boron nitride (h-BN) [2] and 

transition metal dichalcogenides (TMDCs) [3], owing to their unique electronic, optical 

and mechanical properties compared with their bulk counterparts [4, 5]. Recently, 

monolayer semiconductors of group-15 (P, As, Sb, Bi), also known as 2D pnictogens are 

attracting increasing attention due to their extraordinary properties, like high carrier 

mobility [6], layer-dependent tunable bandgaps [7], and superior catalytic activity [8, 9], 

which makes them appealing materials for diverse applications in opto-electronic devices 

and beyond [10, 11]. Among them, antimonene is of particular interest and was proposed 

as a promising 2D semiconductor with a band gap of 2.28 eV [12] exhibiting a very high 

stability under ambient conditions and room temperature [13], as a clear advantage with 

respect to its homologue black phosphorus that suffers from oxidative degradation under 

similar conditions [14, 15]. In addition, it was observed that antimonene undergoes 

indirect–direct band-gap transition [16], semiconductor–metal transition [17], and even 

topological phase transition under tensile strain [18] and is therefore foreseen as an 
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excellent candidate for future quantum devices [19]. Bulk hexagonal antimony (β-phase) 

is the most stable antimony allotrope at ambient conditions. Similar to silicene, β-

antimony has a layered structure that consists of vertical stacking of a non-planar two 

atoms-thick individual layers held together by van der Waal interactions [20]. In a 

monolayer antimonene, each Sb atom is covalently bonded to other three Sb atoms 

forming a buckled washboard-like structure [15]. 

Ultrathin antimonene layers have been experimentally prepared by several techniques 

such as mechanical exfoliation [21], liquid-phase exfoliation [22–24], chemical vapor 

deposition (CVD), van der Waals epitaxial growth [25–27], and colloidal synthesis [28]. 

The synthesis of antimonene via mechanical exfoliation offers isolated samples with high 

quality and purity, which make it more feasible for researchers to investigate the 

fundamental properties of the material. However, up to now, there is only one work 

reporting the micromechanical isolation of antimonene [21], despite the simplicity of this 

method. Therefore, it is urgently needed to develop an effective exfoliation procedure to 

obtain high-quality antimonene for enabling fundamental research as well as for device 

fabrication. 

Furthermore, in the view of antimonene as a possible material for nanodevices, it is 

imperative to understand its phonon and thermal properties. Actually, it is of 

technological importance to know the dynamics of phonons induced by self-heating of 

the device, which will have influence on the final performance. In this sense, temperature 

and power-dependent Raman spectroscopy can be used for noncontact and reliable 

demonstration of the anharmonic properties at the nanoscale [29–31]. This method has 

been widely used for the investigation of the anharmonic phonon and thermal properties 

of a wide range of 2D materials such as, graphene [32], black phosphorus [33] and 

TMDCs [34]. However, such fundamental understanding of phonon and thermal 

properties in the case of 2D antimonene remains unexplored. 

Here, we introduce an adapted micromechanical method to easily isolate antimonene 

nanosheets (ANSs) down to the few-layer regime. The fabricated ANSs have been 

comprehensively characterized by optical microscopy, scanning electron microscopy 

(SEM), energy dispersive x-ray analysis (EDX), atomic force microscopy (AFM), and 

Raman spectroscopy. In order to gain a deeper insight into their thermal properties, 

temperature-dependent Raman spectroscopy was performed and corroborated with 

numerical simulations on the heat transfer. We found that increasing temperature the 

frequency of the Raman-active modes of antimonene red-shift linearly mediated by 

phonon-phonon interactions as explained on the basis of the anharmonic vibrations of 

the lattice. Furthermore, the thermal and photothermal oxidation of ANSs was 
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demonstrated and analyzed. Our work introduces a reliable method to produce high-

quality ANSs and shed light on their thermal properties and oxidation susceptibility. 

These findings pave the way for a deeper understanding of phonon properties and 

oxidation susceptibility of 2D antimonene, which will contribute to the future development 

of efficient antimonene-based technologies with applications in opto-electronics and 

beyond. 

 

2. Results and discussion 

β-antimony, which crystallizes in the rhombohedral system forming a buckled 

honeycomb lattice, is the most stable allotrope of antimony. It is characterized by a 

layered structure in which the in-plane bonds are stronger than the van der Waals 

interlayer interaction. This difference between the strength of the in- and out-of-plane 

bonding suggests the possibility of isolating thin layers starting from bulk β-antimony 

crystal following top-down approaches. As commonly done with other 2D materials, we 

employed the well-known mechanical exfoliation method to prepare thin antimonene 

flakes starting from a freshly cleaved crystal of β-antimony (Smart Elements, 99.9999% 

purity). It is worth noting that the comparatively short distance between the layers in bulk 

antimony and the higher strength of the interlayer interaction, makes thin antimony layers 

extremely difficult to strip-off using the conventional scotch-tape method that is known to 

work well for the exfoliation of most of 2D materials. We have instead used a commercial 

high-tack adhesive film to prepare ANSs. First, Sb microcrystals were delaminated by 

mildly pressing the freshly cleaved surface of the parent Sb crystals with the adhesive 

film. The latter is then pressed against a similar piece of adhesive film and after a session 

of repetitive press-release cycles, ANSs are successfully exfoliated. The exfoliated 

material is eventually dry-transferred to a SiO2/Si substrate by pressing the adhesive film 

containing the thin antimony crystallites against the substrate and then gently peeled off. 

This procedure is further described in detail in the experimental section and 

schematically illustrated in figure S1 (available online 

at stacks.iop.org/2DM/8/015018/mmedia). With this strategy we were able to 

successfully exfoliate ANSs with large areas as displayed in the optical microscopy 

image in figure 1(a). It is worth noting that our exfoliation technique yielded a very high 

density of ANSs having well-defined polygonal shapes with smooth surfaces and sharp 

edges (figure S1). Such crystalline nanosheets would constitute an excellent scenario to 

explore fundamental aspects of antimonene, as for example its predicted topological 

feature [18]. Figure 1(b) shows a topographic image acquired over the same area shown 

in figure 1(a) using AFM revealing thicknesses of several tens of nanometers with 
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different terraces as highlighted by the incremental color coding. Figure S2 shows ANSs 

having well-defined terraces with measured heights of ~1 nm, which fits with monolayer 

antimonene. Taking into account that traces of the adhesive film under and on top of the 

flakes are commonplace when using the mechanical exfoliation approach, as well as 

contributions from effects such as capillary and adhesion forces [35, 36], the apparent 

heights measured by AFM might be overestimated. Nevertheless, figure 1(c) shows an 

AFM image of a representative, isolated thinnest flake, whose height profile indicates an 

apparent thickness of approximately 14 nm, thus, confirming the successful exfoliation 

of 2D-antimonene crystals in the few-layer regime. Further AFM topographic images are 

displayed in figure S3. It is interesting to notice that all the obtained ANSs exhibit different 

types of polygonal shapes, including, trapezoids, rhombus and triangles. The well-

defined shapes of those polygons constitute a first hint of the superior crystallinity within 

the exfoliated ANSs. 

 

 

Figure 1. Optical micrograph of typical ANSs isolated on SiO2/Si substrate using 

micromechanical exfoliation. (b) False-colored AFM image of the same ANSs with incremental 

color code to highlight the terraces. Each color indicates a 10 nm step (c) AFM image of a few-

layer ANS and height profile along the dashed yellow line. (d) Comparative Raman spectra of the 

pristine bulk (100 nm) and few-layer (14 nm) ANSs depicting a pronounced blue-shift in the peak 

positions of A1g and Eg modes for the few-layer ANS. (e) Scanning Raman microscopy (SRM) 

map of the intensity of A1g mode of the ANSs in (a). (f) Scanning electron microscope (SEM) 

image of the same ANSs. 
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In order to investigate the structure of the exfoliated ANSs, we used Raman 

spectroscopy to probe the crystallinity in a straightforward manner. Figure 1(d) shows 

typical Raman spectra of two ANSs with different thicknesses (100 and 14 nm) obtained 

using an excitation laser with a wavelength of 532 nm. The spectra of the bulk flake (100 

nm) shows two prominent peaks at 112.6 cm−1 and 151.1 cm−1, corresponding to the 

vibrations of the crystalline lattice of metallic antimony and are ascribed to the Eg and 

A1g phonon modes, respectively. The Eg mode is attributed to the vibrational mode where 

the atoms are oscillating in-plane, whereas the A1g phonon is caused by the out-of-plane 

vibrations of the sublayers. In case of few-layer ANS (14 nm), the Raman spectra 

displays a pronounced blue-shift of the Eg and A1g phonon modes compared to the bulk 

counterpart, which suggests a strong influence of the thickness on the lattice parameter 

of ANSs. Indeed, recent theoretical calculations have predicted a noticeable phonon shift 

because of the lattice constant contraction in antimony when the flake thickness is 

decreased from bulk to mono and few-layer regimes [22]. In our case, the Eg mode is 

blue-shifted by 5.5 cm−1, while the A1g mode is shifted to a lesser extent by 3.1 cm−1 due 

to the lower sensitivity of the out-of-plane mode (i.e. A1g) to the in-plane lattice constant, 

in perfect agreement with the theoretical predictions and experimental findings [13]. This 

effect is believed to be related to the strong electron–lattice interaction and the change 

in the interlayer interactions as a result of diminished stacking in antimony [37]. We have 

also conducted a spatially resolved mapping of the A1g mode intensity using scanning 

Raman microscopy (SRM) over the same area previously observed by optical 

microscopy and scanned by AFM (figures 1(a)–(b)), and the resulting map is shown in 

figure 1(e). Raman maps of the Eg mode and A1g/Eg ratio are also shown in figure S4. In 

correlation with the AFM image in figure 1(b), the Raman map clearly confirms the overall 

crystal quality within the exfoliated ANSs. SEM was performed to further characterize the 

morphology of exfoliated ANSs. The SEM micrograph in figure 1(f) corroborates the 

results of AFM and Raman measurements and reveals 2D nanosheets having a 

consistent polygonal morphology with smooth outer surfaces and distinguishable sharp 

edges, confirming one more time, the high quality of the prepared ANSs. Interestingly, 

we found that all the isolated ANSs depict exclusively facets of 60° and 120° angles, 

perfectly consistent with the unit cell angle expected from a rhombohedral-lattice system, 

i.e. β-antimony (figure S5). Moreover, this particular faceting does indicate that antimony 

not only undergoes basal cleavage along the c-axis during the mechanical exfoliation 

process, but also suffers rhombohedral cleavage along preferential/weak 

crystallographic directions. In fact, it is well known that the greater the difference in bond 

strength within planes and between planes of a layered material, the easier the cleavage 

[38]. However, compared to similar 2D materials such as graphene and black 
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phosphorus, antimony does not form prototypical van der Waals bonded layered material 

because of the shorter interlayer distance and the interaction of atomic orbitals between 

individual double layers which leads to a stronger interlayer adhesion force [39]. 

Therefore, a relatively difficult exfoliation using top-down approaches is expected. 

Moreover, the brittleness of antimony adds up an extra level of difficulty which makes 

exfoliating ultrathin, and at the same time large, antimonene flakes extremely 

challenging. It partly explains why, to the best of our knowledge, only one example of 

antimonene nanolayers prepared by mechanical exfoliation can be found in the literature 

[21]. This observation can be simply exemplified by the multiple fractures observed in 

the 14 nm antimonene flake depicted in figure 1(c). This suggests the existence of a 

critical thickness enabling the cleavage along weak crystallographic directions, and in 

the case of thinner antimonene flakes, in competition with the exfoliation along the c-

axis, leading to flakes with smaller lateral dimensions. We believe that this hypothesis 

warrants further investigation, which falls beyond the scope of this work. 

The chemical composition of our exfoliated ANSs was examined using energy dispersive 

x-ray (EDX) analysis. Figure S6(a) shows SEM image of an isolated antimony thin flake 

and the corresponding Sb, O, C and Si EDX mappings. Figure S6(b) shows a uniform 

distribution of antimony across the whole flake area, while from the color contrast it can 

be seen that there are negligible traces of oxygen in the flake. Interestingly, we have 

detected a significant amount of carbon on top of the flake, proving that a residual layer 

of the polymer from the adhesive film used for the exfoliation is present on the surface 

[35]. 

To examine the environmental stability of the as-exfoliated ANSs, we carried out AFM 

and SRM scans over the exact same flakes shown in figures 1(a), (b) and (e) after 12 

months aging under ambient conditions. Figure S7 confirms the very high stability of 

antimonene with no structural or topological changes compared to the freshly exfoliated 

ANSs as confirmed by the Raman mean spectra and AFM height profiles, respectively. 

It is worth mentioning that, without any prior protection, oxygen species are always 

detected on the surface of ANSs, although this surface oxidation affects only the top 

layers yielding a passivating oxide layer that prevents further oxidation [23, 40]. 

However, when encapsulated by ionic liquids, ANSs showed no sign of oxidation unless 

this encapsulation is removed and the surface is exposed to air, according to the reported 

XPS analysis [8, 24]. In our case, the above-mentioned residual organic layer on top of 

the exfoliated ANSs may act as a shield minimizing the extent of surface oxidation to the 

point where it becomes beyond the detectability limit of our Raman and EDX analysis. 
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Temperature-dependent Raman spectroscopy is a powerful measurement method for 

probing the thermal stability of 2D layered materials as well as understanding their 

phonon behavior [32]. We conducted an in situ temperature-dependent Raman study in 

a Linkam heating chamber (THMS 600) where the temperature was controlled between 

298 K and 633 K. Figure 2(a) illustrates the evolution of mean Raman spectra extracted 

from spatial mappings of the selected crystal at each temperature set. The laser power 

on the sample was carefully adjusted and fixed at 0.88 mW to rule out any possibility of 

laser-induced damage (figure S8). 

 

 

Figure 2. (a) Raman spectra of ANS measured at selected temperatures from 298 to 633 K. 

Spectra offset vertically for clarity. (b) Schematic diagrams of the two Raman active modes: 

A1g and Eg. The green and blue arrows indicate the direction of the atomic vibrations. (c) 

Temperature dependence of the Raman peak positions for the A1g (green squares) and Eg (blue 

circles) modes. Temperature coefficients extracted from the slope of the fit lines (solid lines) to 

equation (1) for each Raman mode are also shown. 

 

Two noticeable changes can be observed in the Raman spectra evolution. (i) First, we 

observed the appearance of two new peaks at 250.8 cm−1 and 188.9 cm−1 ascribed, 

respectively, to 1Ag and 2F2g vibrational modes of the α-phase of antimony oxide (α-

Sb2O3), when the temperature is increased to 593 K. This observation falls in line with 
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the reported low lattice thermal conductivity of antimonene and suggesting a high figure 

of merit for application in thermoelectric devices [41, 42]. Further increase of temperature 

to 623 K resulted in a drastic reduction in the intensity of both antimony and antimony 

oxide peaks followed by the complete disappearance of every Raman signature at 633 

K. This implies that the antimony flake initially undergoes gradual oxidation before 

eventual sublimation as a result of the heat treatment. The observed oxidation 

temperature of 593 K is comparatively lower to the temperature previously reported for 

the oxidation of CVD-grown antimony flakes [26]. The underlying reason of such 

difference might be the presence of residual viscoelastic polymer under and/or on top of 

the flake, as we mentioned earlier, and the heating procedure by which our temperature-

dependent Raman measurement has been carried out (i.e. lower heating rate of 10 

K.min−1, followed by 5 min waiting to allow for thermal stabilization of the sample and 

optics). (ii) Second, an evident downshifting (red-shift) and broadening of both A1g and 

Eg peaks can be easily noticed as the temperature increases. Using a Lorentzian peak 

fitting, we extracted the positions of the A1g and Eg peaks and plotted them against 

temperature in figure 2(c). A clear linear dependence of the phonon shift on the 

temperature is observed for both A1g and Eg modes. Generally, the linear variation in 

Raman modes position with temperature can be assigned to the anharmonic vibrations 

of the lattice, which involves contributions from the lattice thermal expansion to the 

interatomic potential energy, mediated by phonon-phonon interactions [43]. As the lattice 

expands or contracts because of temperature change, the equilibrium positions of atoms 

and consequently the interatomic forces change accordingly, which induces shifts in the 

phonon energies [32, 44]. 

To gain further understanding of the observed linear decrease in phonon energy, we 

adopted a well-established approach by fitting our experimental data with equation (1) 

[45], 

 

Where  is the phonon frequency at a temperature interpolated to 0 K and  is the first-

order temperature coefficient of the corresponding Raman mode defining the slope of 

the dependence [44, 46]. Our experimental values for each mode together with values 

for other 2D materials from literature are listed in table 1. The  values for A1g and 

Eg modes are 0.027 and 0.025 cm−1 K−1, respectively, implying the same temperature 

sensitivity of both modes as well as a similar electron-phonon coupling in ANSs [47]. 

These values are comparable to that of ultrathin Sb2O3 [48], higher than graphene [32], 

MoS2 [49] and BP [33], while it is smaller than that of SnSe [50]. Previous works have 

revealed that the first-order temperature coefficient of the Raman modes in layered 
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materials is associated to the van der Waals interaction between each layer [51, 52]. For 

instance, in graphene and MoS2 the weak van der Waals interlayer interaction leads to 

the small χ values, whereas in BP and SnSe, the van der Waals interaction is strong, 

leading to large χ value. In our case, the individual layers of antimony are held together 

by an adhesion force stronger than weak van der Waals interaction, hence the measured 

large χ values. 

 

Table 1. First-order temperature coefficients χ obtained from temperature-dependent Raman 

spectra in this work and for other 2D materials. 

materials λexc (nm) 
Raman 
modes χ (cm−1 K−1) References 

Sb nanosheets 532 A1g Eg −0.027 –0.025 This work 

Sb2O3 532 α-1Ag β-Ag −0.025 –0.023 [48] 

Monolayer 

graphene Bilayer 

graphene 488 G mode −0.016 –0.015 [47] 

MoS2 532 A1g E2g 1 −0.012 –0.013 [49] 

BP 532 A1g A2g B2g 

−0.010 –0.014 –

0.013 [33] 

SnSe 532 B3g Ag2 Ag3 

−0.033 –0.037 –

0.015 [50] 

It is known that lasers focused on a small area can significantly increase the local 

temperature of the sample, which enables the study of photothermal effects in 2D 

materials [53]. In order to achieve a comprehensive understanding of the intrinsic 

photothermal property of our exfoliated ANSs, we carried out a laser power-dependent 

Raman study of which the experimental setup is schematically represented in figure 3(a). 

The selected ANS was illuminated by a focused laser beam in gradually increasing 
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power spanning from 0.14 to 14 mW. The corresponding Raman spectra shown in 

figure 3 (b) were collected using a 532 nm excitation laser and a 100× objective (NA = 

0.8) in the Horiba LabRAM HR Evolution microscope. As the laser power increases, both 

Eg and A1g modes shift to lower wavenumber values indicating a similar anharmonic 

vibrations of the lattice as previously observed in the temperature-dependent Raman 

study, in this case due to laser heating. Remarkably, when the laser power is raised to 

14 mW, typical Raman modes of α-Sb2O3 (1Ag and 2F2g) start to emerge, indicating a 

laser-induced oxidation of the ANS as a result of the local heating. A further gradual 

decrease of the laser power demonstrates that the induced oxidation is permanent 

(figure S9). This finding reveals the outstanding photothermal conversion efficiency of 

antimonene, one of the highest among the 2D materials family according to recent report 

[54], thus highlighting its high potential for applications in photothermal cancer therapy 

[55]. Furthermore, the observed partial oxidation is of critical importance as it can 

promote the photothermal conversion efficiency even further and improve its efficacy in 

biomedical applications thanks to the high toxicity of the generated antimony oxide layer 

[56, 57]. Interestingly, the measured red-shifts in A1g and Eg modes follow a linear 

dependency with the laser power (figure 3(d)). In practice, by taking advantage of the 

sensitive response of phonon frequencies in atomically thick materials to local heating 

by laser excitation, it is possible to perform optothermal thermometry measurements 

based on Raman spectroscopy. For example, local temperature and thermal conductivity 

of several atomically thick materials have been successfully determined, in situ, both on 

supported and suspended 2D crystals [58, 59]. In our case, using the thermal and power 

coefficients extracted from the temperature and laser power-dependent Raman 

measurements, we have been able to estimate the temperature of the probed ANS 

(figure 3(e)). However, careful attention should be paid as the experimental 

measurements tend to be overestimated when this approach is performed on a surface 

[60]. Therefore, in order to better understand the heat transfer mechanism in our 

exfoliated ANSs, we have developed a reliable model using COMSOL Multiphysics that 

additionally offers the possibility to illustrate the different reasons of such a systematic 

overestimation. 
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Figure 3. (a) Schematic of the laser power-dependent Raman measurement showing supported 

ANS on SiO2/Si and the laser excitation wavelength. A Raman laser beam is simultaneously 

causing and probing the local temperature increase on the sample (b) Normalized Raman spectra 

of ANS measured at increasing excitation laser power from 0.14 to 14 mW (λexc = 532 nm) at RT 

in air. Spectra offset vertically for clarity. (c) Linear increase of the intensity of the A1g mode as a 

function of the incident laser power. (d) Power coefficients, χp, for both two modes (green squares 

and blue circles for A1g and Eg, respectively) are extracted from the slope of the linear fits (solid 

lines). (e) Temperature of the probed ANS as a function of laser power, estimated using both 

calculated power and temperature coefficients. 

 

We consider a disk-like heat source embedded into a 40 nm thick ANS laying on the 

substrate, i.e. a low aspect ratio disk of 285 nm height in contact to the silicon wafer. The 

silicon is introduced as a semi-spherical bulk to avoid border effects. We calculate the 



stationary temperature distribution solving the Fourier equation for this geometry in 

conditions of thermal isolation. In these conditions, we observe three important findings: 

i) the silicon behaves as a heat sink, ii) the silica limits the thermal energy transfer 

towards the substrate, and as a result iii), the heat is concentrated around the excitation 

spot. A study on the influence of the different experimental parameters on the 

temperature contrast is provided as Supporting Information (figures S10–13). Our model 

allows to connect our experiment with previous results in literature, which are essential 

to understand the high temperature increase in our samples under laser excitation as 

well as for discussing the oxidation mechanisms of the upper layer [53, 60]. 

In figure 4(a) we present a zenith view of a mapping corresponding to a rectangular flake 

(2 × 4 µm2) embedding a 1 µm diameter heat source of 1 mW. The borders of the flake 

are kept at or close to RT, as the heat is strongly concentrated around the source, as 

predicted by our model. This is also shown in the transversal cross sections [figures 4 (b) 

and (c)] where we can observe the temperature increase in SiO2 and the efficiency of 

silicon as a heat sink. The low thermal conductivity of silica together with the silicon heat 

sink leads to a linear dependence of the temperature on the excitation power, shown in 

figure 4(d). The slope of this curve would be inversely proportional to the thermal 

conductivity of the flake. The scatters in this plot correspond to the experimental 

measurement in figure 3(e) for a flake with dimensions similar to those of our simulations. 

As in previous reports, the values of the thermal conductivity on a surface are 

overestimated with respect to theoretical calculations as most of the experimental points 

lie on the curve of KSb = 90 W.m−1 K−1 [41, 61]. 
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Figure 4. (a) Zenith view of the temperature mapping for a rectangular flake (white lines) 

considering a disk-like heat source in to the black circle. Figures (b) and (c) represent cross 

sections of the temperature mapping. The silica–silicon interface is delimited by a dot line. (d) 

Average temperature into the excitation spot as a function of the heat source rate for different 

thermal conductivities of the flake. The experimental data (open dots) are included by considering 

an absorption efficiency of 25% of the excitation laser light at the flake. (e) Impact of the 

experimental determination of the thermal conductivity KSb as a function of the absorption rate. 

 

Based on our model we can weigh the possible reasons of the systematic overestimation 

of the thermal conductivity values in flakes deposited on a surface. Firstly, we are 

neglecting convection loss which in the field of 2D materials are always assumed to be 

low [58], however, it is worth mentioning that convection can introduce a factor-two 

deviation in methods employed for bulk materials. Secondly, a more accurate description 

of the laser spot as thermal source is required. For example, we have estimated an 

excitation spot of 1 µm with an effective absorbance of around 30% for a 40 nm thick-

flake using the refractive index data provided by Ares et al [62]. Slight deviations with 

respect to these values would affect dramatically the slope of our experimental data in 

figure 4 (d). This is shown in figure 4(e) where we plot the value KSb extracted from the 

experimental data in figure 4(d) for different absorption rates. Thirdly, experimental 

parameters such as the thermal conductivity of silica and silicon should not be as 

important as optical considerations, see Supporting Information. Finally, we want to point 
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out that the values obtained by means of photothermal methods will correspond to high 

temperature values, necessarily higher than room temperature values. This detail might 

seem naïve, but it can cause serious confusion for a non-specialized reader as it is not 

emphasized in most papers on this topic. 

As aforementioned, the accurate estimation of the thermal conductivity and heat capacity 

would require a better description of the laser excitation in terms of a heat source, thus 

falling beyond the scope of the present work [63]. Instead, we conducted similar high-

power irradiation experiments using different excitation wavelengths (457, 473, 633 and 

785 nm). Based on the intensity of Sb2O3's 1Ag peak (figure S14), we found that surface 

oxidation is more efficient using shorter wavelength lasers (457 and 473 nm), while 

longer wavelengths lasers induced mild (633 nm) or no oxidation (785 nm). In connection 

to our heat transfer model, this could be explained either by a variation of the absorption 

efficiency or by an increase of the excitation spot with the excitation wavelength. 

However, an estimation of the absorption efficiency using the Transfer Matrix Method 

indicates that there is a local minimum in absorption around 450–500 nm (see figure 

S15), which underscores the importance of the proper determination of the material's 

refractive index for a quantitative discussion. 

The laser-induced oxidation so far observed warrants additional characterization to 

understand the changes produced in the studied ANSs from the structural and 

topological points of view. For that purpose, we analyzed the structure and topology of 

an ANS before and after high power laser irradiation (14 mW, for 10 s) using both SRM 

and AFM. In these conditions not only does the laser beam induced oxidation but also 

triggered some serious damage on the irradiated ANS (figures 5 (a)–(d)). A hole of 

approximately 40 nm (figure S16), which is also visible in the SEM image of 4(e), was 

created accompanied by the onset of the 1Ag and 2F2g Raman modes of α-Sb2O3 (see 

also figure S16 (e)–(f) and (h)). EDX elemental mapping of a similarly irradiated ANS 

with high-power laser beam depicts a local decrease in the intensity of antimony and a 

decrease in the silicon intensity from the underlying substrate (figure S17). 
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Figure 5. (a) SRM map of A1g peak intensity and (b) 3D topographic AFM picture of isolated ANS 

(40 nm) before and after (c) and (d) high-power laser irradiation (λexc = 532 nm at 14 mW for 10 

s), respectively. (e) SEM image of the same irradiated ANS showing the laser-damaged area. 

 

Given the thermoelectric capabilities of the Sb and α-Sb2O3, it is of interest to exploit this 

process in order to improve the control on the photo-oxidation of antimonene for 

developing local oxidation photolithography applications. As an example of the potential 

of this approach we have carried out preliminary experiments where we performed a 

spatially resolved Raman mapping of an isolated ANS using a lower dose of laser power 

(3.9 mW for 10 s), just enough to intentionally induce controlled oxidation on the surface 

of the flake without damaging its structural integrity (figure S19). 

By analyzing the height profiles acquired along the studied ANS, before and after laser 

irradiation, we observe small spots of laser-deposited material that show certain increase 

in height at the edges compared to the center area (see figure S120 (c) and (d)). This 

provides strong evidence that the oxidation of antimonene starts preferentially from the 

edges, and revealing that a spatially controlled laser-induced oxidation of antimonene on 

the sub-µm scale is challenging but reliable. In principal, arbitrary heterostructures of 

Sb2O3/antimonene could be realized, as theoretically predicted and experimentally 

suggested in our recent reports [40, 64]. Such exotic structures based on antimonene 

are in fact of great importance both from the fundamental and technological points of 

view, as they can induce radical changes in the physical and chemical properties of the 

original flake. For instance, surface oxidation of antimonene nanostructures was 

reported to open an optical bandgap [40], promote the cytotoxicity to cancer cells [56] 

and even improve the catalytic activity towards different reactions [23, 65]. Therefore, 

developing a reliable method to both produce and control surface oxidized antimonene-
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based structures is highly sought-after. Our results confirm that it can be experimentally 

realized, although a more sophisticated photolithography technique and thinner 

antimonene flakes would be required. 

 

3. Conclusion 

In conclusion, we introduced a deterministic method to isolate ANSs through 

micromechanical exfoliation. We reported the first experimental investigation of the 

temperature dependence of the frequencies of both A1g and Eg modes in the Raman 

spectra of ANSs on SiO2/Si substrates. A linear temperature-dependence of the position 

of the Raman modes was observed and explained by the phenomenon of anharmonic 

lattice vibrations mediated by phonon-phonon interactions. First-order temperature 

coefficients were extracted and are χ= −0.027 and χ = −0.025 cm–1 K−1 for A1g and 

Eg modes, respectively. Laser-induced oxidation of the exfoliated ANS was 

demonstrated and described by a combination of laser power- and wavelength-

dependent studies with a numerical heat transfer model. Despite the difficulty of 

quantifying the thermal properties of our system, relevant information about the oxidation 

process in antimonene flakes could be obtained. Our results provide fundamental 

information about the heat transfer at the nanoscale and the oxidation susceptibility of 

2D antimonene, which is crucial for understanding its thermophysical properties as well 

as for developing advanced applications in fields such as photothermal cancer therapy 

and catalysis. 

 

Acknowledgments 

The authors thank the European Research Council (ERC Starting Grant 804110 2D-

PnictoChem to G.A.) for financial support. G.A. thanks the financial support from the 

Generalitat Valenciana (CIDEGENT/2018/001 grant and iDiFEDER/2018/061 co-

financed by FEDER), the Spanish MICINN (PID2019-111742GA-I00 and Excellence Unit 

Maria de Maeztu (CEX2019-000919-M)), and the Deutsche Forschungsgemeinschaft 

(DFG, FLAG-ERA AB694/2-1). J.C.-F. thanks the financial support from Generalitat 

Valenciana (CIDEGENT/2018/005). Authors thank Dr. C. Gibaja and I. Torres for their 

assistance with the micromechanical exfoliation procedure and E. Weinreich for the 

technical support with laser-induced oxidation Raman measurements. 

 

 



Conflict of interest 

The authors declare no conflict of interest. 

 

References 

1. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, 
Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon 
films Science 306 666–9 
 

2. Kubota Y, Watanabe K, Tsuda O and Taniguchi T 2007 Deep ultraviolet light-
emitting hexagonal boron nitride synthesized at atmospheric 
pressure Science 317 932–4 
 

3. Chhowalla M, Shin H S, Eda G, Li L-J, Loh K P and Zhang H 2013 The 
chemistry of two-dimensional layered transition metal dichalcogenide 
nanosheets Nat. Chem. 5 263–75 
 

4. Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 
Electronics and optoelectronics of two-dimensional transition metal 
dichalcogenides Nat. Nanotechnol. 7 699–712 
 

5. Kashid R V, Late D J, Chou S S, Huang Y-K, De M, Joag D S, More M A and 
Dravid V P 2013 Enhanced field-emission behavior of layered MoS2 
sheets Small 9 2730–4 
 

6. Zhang S, Xie M, Li F, Yan Z, Li Y, Kan E, Liu W, Chen Z and Zeng H 2016 
Semiconducting group 15 monolayers: a broad range of band gaps and high 
carrier mobilities Angew. Chem., Int. Ed. 55 1666–9 
 

7. Castellanos-Gomez A et al 2014 Isolation and characterization of few-layer 
black phosphorus 2D Mater. 1 025001 
 

8. Lloret V et al 2019 Few layer 2D pnictogens catalyze the alkylation of soft 
nucleophiles with esters Nat. Commun. 10 509 
 

9. Tejeda-Serrano M, Lloret V, B G M, Simon F, Hauke F, Hirsch A, Doménech-
Carbó A, Abellán G and Leyva-Pérez A 2020 Few-layer black phosphorous 
catalyzes radical additions to alkenes faster than low-valence 
metals ChemCatChem 12 2226–32 
 

10. Niu X, Yi Y, Meng L, Shu H, Pu Y and Li X 2019 Two-dimensional 
phosphorene, arsenene, and antimonene quantum dots: anomalous size-
dependent behaviors of optical properties J. Phys. Chem. C 123 25775–80 
 

11. Huang Y, Zhu C, Zhang S, Hu X, Zhang K, Zhou W, Guo S, Xu F and Zeng H 
2019 Ultrathin bismuth nanosheets for stable Na-ion batteries: clarification of 
structure and phase transition by in situ observation Nano Lett. 19 1118–23 
 

12. Zhang S, Zhou W, Ma Y, Ji J, Cai B, Yang S A, Zhu Z, Chen Z and Zeng H 
2017 Antimonene oxides: emerging tunable direct bandgap semiconductor and 
novel topological insulator Nano Lett. 17 3434–40 
 



13. Ji J et al 2016 Two-dimensional antimonene single crystals grown by van der 
Waals epitaxy Nat. Commun. 7 13352 
 

14. Abellán G, Wild S, Lloret V, Scheuschner N, Gillen R, Mundloch U, Maultzsch J, 
Varela M, Hauke F and Hirsch A 2017 Fundamental insights into the 
degradation and stabilization of thin layer black phosphorus J. Am. Chem. 
Soc. 139 10432–40 
 

15. Ares P, Palacios J J, Abellán G, Gómez-Herrero J and Zamora F 2018 Recent 
progress on antimonene: a new bidimensional material Adv. Mater. 30 1703771 
 

16. Zhang S, Yan Z, Li Y, Chen Z and Zeng H 2015 Atomically thin arsenene and 
antimonene: semimetal-semiconductor and indirect-direct band-gap 
transitions Angew. Chem., Int. Ed. 54 3112–5 
 

17. Kripalani D R, Kistanov A A, Cai Y, Xue M and Zhou K 2018 Strain engineering 
of antimonene by a first-principles study: mechanical and electronic 
properties Phys. Rev. B 98 085410 
 

18. Zhao M, Zhang X and Li L 2015 Strain-driven band inversion and topological 
aspects in Antimonene Sci. Rep. 5 16108 
 

19. Lee J, Tian W-C, Wang W-L and Yao D-X 2015 Two-dimensional pnictogen 
honeycomb lattice: structure, on-site spin-orbit coupling and spin 
polarization Sci. Rep. 5 11512 
 

20. Wang G, Pandey R and Karna S P 2015 Atomically thin group V elemental 
films: theoretical investigations of antimonene allotropes ACS Appl. Mater. 
Interfaces 7 11490–6 
 

21. Ares P, Aguilar-Galindo F, Rodríguez-San-Miguel D, Aldave D A, Díaz-Tendero 
S, Alcamí M, Martín F, Gómez-Herrero J and Zamora F 2016 Mechanical 
isolation of highly stable antimonene under ambient conditions Adv. 
Mater. 28 6332–6 
 

22. Gibaja C et al 2016 Few-layer antimonene by liquid-phase exfoliation Angew. 
Chem., Int. Ed. 55 14345–9 
 

23. Gibaja C et al 2019 Liquid phase exfoliation of antimonene: systematic 
optimization, characterization and electrocatalytic properties J. Mater. 
Chem. A 7 22475–86 
 

24. Abellán G et al 2017 Noncovalent Functionalization and Charge Transfer in 
Antimonene Angew. Chem., Int. Ed. 56 14389–94 
 

25. Sun X, Lu Z, Xiang Y, Wang Y, Shi J, Wang G-C, Washington M A and Lu T-M 
2018 van der waals epitaxy of antimony islands, sheets, and thin films on 
single-crystalline graphene ACS Nano 12 6100–8 
 

26. Wu Q and Y J S 2018 The environmental stability of large-size and single-
crystalline antimony flakes grown by chemical vapor deposition on SiO2 
substrates Chem. Commun. 54 9671–4 
 



27. Niu T, Zhou W, Zhou D, Hu X, Zhang S, Zhang K, Zhou M, Fuchs H and Zeng 
H 2019 modulating epitaxial atomic structure of antimonene through interface 
design Adv. Mater. 31 1902606 
 

28. Peng L, Ye S, Song J and Qu J 2019 Solution‐phase synthesis of few‐layer 
hexagonal antimonene nanosheets via anisotropic growth Angew. Chem., Int. 
Ed. 58 9891–6 
 

29. Balandin A A 2011 Thermal properties of graphene and nanostructured carbon 
materials Nat. Mater. 10 569–81 
 

30. Cai W, Moore A L, Zhu Y, Li X, Chen S, Shi L and Ruoff R S 2010 Thermal 
transport in suspended and supported monolayer graphene grown by chemical 
vapor deposition Nano Lett. 10 1645–51 
 

31. Sahoo S, Chitturi V R, Agarwal R, Jiang J-W and Katiyar R S 2014 Thermal 
conductivity of freestanding single wall carbon nanotube sheet by raman 
spectroscopy ACS Appl. Mater. Interfaces 6 19958–65 
 

32. Calizo I, Balandin A A, Bao W, Miao F and Lau C N 2007 Temperature 
dependence of the raman spectra of graphene and graphene multilayers Nano 
Lett. 7 2645–9 
 

33. Late D J 2015 Temperature dependent phonon shifts in few-layer black 
phosphorus ACS Appl. Mater. Interfaces 7 5857–62 
 

34. Xia J, Li X-Z, Huang X, Mao N, Zhu -D-D, Wang L, Xu H and Meng X-M 2016 
Physical vapor deposition synthesis of two-dimensional orthorhombic SnS 
flakes with strong angle/temperature-dependent Raman 
responses Nanoscale 8 2063–70 
 

35. Schweizer P, Dolle C, Dasler D, Abellán G, Hauke F, Hirsch A and Spiecker E 
2020 Mechanical cleaning of graphene using in situ electron microscopy Nat. 
Commun. 11 1743 
 

36. Nemes-Incze P, Osváth Z, Kamarás K and Biró L P 2008 Anomalies in 
thickness measurements of graphene and few layer graphite crystals by tapping 
mode atomic force microscopy Carbon 46 1435–42 
 

37. Wang X, Kunc K, Loa I, Schwarz U and Syassen K 2006 Effect of pressure on 
the Raman modes of antimony Phys. Rev. B 74 134305 
 

38. Brian M and Berry L G 1968 Elements of Mineralogy (San Francisco: W.H. 
Freeman) 115–7 
 

39. Pumera M and Sofer Z 2017 2D monoelemental arsenene, antimonene, and 
bismuthene: beyond black phosphorus Adv. Mater. 29 1605299 
 

40. Assebban M et al 2020 Unveiling the oxidation behavior of liquid-phase 
exfoliated antimony nanosheets 2D Mater. 7 025039 
 

41. Sharma S, Kumar S and Schwingenschlögl U 2017 Arsenene and antimonene: 
two-dimensional materials with high thermoelectric figures of merit Phys. Rev. 
Appl. 8 044013 
 



42. Wang S, Wang W and Zhao G 2016 Thermal transport properties of 
antimonene: an ab initio study Phys. Chem. Chem. Phys. 18 31217–22 
 

43. Balkanski M, Wallis R F and Haro E 1983 Anharmonic effects in light scattering 
due to optical phonons in silicon Phys. Rev. B 28 1928–34 
 

44. Pawbake A S, Pawar M S, Jadkar S R and Late D J 2016 Large area chemical 
vapor deposition of monolayer transition metal dichalcogenides and their 
temperature dependent Raman spectroscopy studies Nanoscale 8 3008–18 
 

45. Zouboulis E S and Grimsditch M 1991 Raman scattering in diamond up to 1900 
K Phys. Rev. B 43 12490–3 
 

46. Lanzillo N A et al 2013 Temperature-dependent phonon shifts in monolayer 
MoS2 Appl. Phys. Lett. 103 093102 
 

47. Late D J, Maitra U, Panchakarla L S, Waghmare U V and Rao C N R 2011 
Temperature effects on the Raman spectra of graphenes: dependence on the 
number of layers and doping J. Phys.: Condens. Matter 23 055303 
 

48. Han W et al 2019 Two-dimensional inorganic molecular crystals Nat. 
Commun. 10 4728 
 

49. Sahoo S, Gaur A P S, Ahmadi M, Guinel M J-F and Katiyar R S 2013 
Temperature-dependent raman studies and thermal conductivity of few-layer 
MoS2 J. Phys. Chem. C 117 9042–7 
 

50. Luo S, Qi X, Yao H, Ren X, Chen Q and Zhong J 2017 Temperature-dependent 
raman responses of the vapor-deposited tin selenide ultrathin flakes J. Phys. 
Chem. C 121 4674–9 
 

51. Taube A, Łapińska A, Judek J and Zdrojek M 2015 Temperature dependence of 
Raman shifts in layered ReSe2 and SnSe2 semiconductor nanosheets Appl. 
Phys. Lett. 107 013105 
 

52. Late D J, Shirodkar S N, Waghmare U V, Dravid V P and Rao C N R 2014 
Thermal expansion, anharmonicity and temperature-dependent raman spectra 
of single- and few-layer MoSe2 and WSe2 ChemPhysChem 15 1592–8 
 

53. Yan R, Simpson J R, Bertolazzi S, Brivio J, Watson M, Wu X, Kis A, Luo T, 
Hight Walker A R and Xing H G 2014 Thermal conductivity of monolayer 
molybdenum disulfide obtained from temperature-dependent raman 
spectroscopy ACS Nano 8 986–93 
 

54. Yu J, Wang X-H, Feng J, Meng X, Bu X, Li Y, Zhang N and Wang P 2019 
Antimonene nanoflakes: extraordinary photoacoustic performance for high-
contrast imaging of small volume tumors Adv. Healthc. Mater. 8 1900378 
 

55. Tao W et al 2018 Two-dimensional antimonene-based photonic nanomedicine 
for cancer theranostics Adv. Mater. 30 1802061 
 

56. Duo Y, Huang Y, Liang W, Yuan R, Li Y, Chen T and Zhang H 2019 
Ultraeffective cancer therapy with an antimonene-based x-ray 
radiosensitizer Adv. Funct. Mater. 30 1906010 
 



57. Niu X, Li Y, Zhang Y, Zhou Z and Wang J 2019 Greatly enhanced 
photoabsorption and photothermal conversion of antimonene quantum dots 
through spontaneously partial oxidation ACS Appl. Mater. Interfaces 11 17987–
93 
 

58. Zhou H et al 2014 High thermal conductivity of suspended few-layer hexagonal 
boron nitride sheets Nano Res. 7 1232–40 
 

59. Peimyoo N, Shang J, Yang W, Wang Y, Cong C and Yu T 2015 Thermal 
conductivity determination of suspended mono- and bilayer WS2 by Raman 
spectroscopy Nano Res. 8 1210–21 
 

60. Judek J, Gertych A P, Świniarski M, Łapińska A, Dużyńska A and Zdrojek M 
2015 High accuracy determination of the thermal properties of supported 2D 
materials Sci. Rep. 5 12422 
 

61. Zhang T, Qi -Y-Y, Chen X-R and Cai L-C 2016 Predicted low thermal 
conductivities in antimony films and the role of chemical functionalization Phys. 
Chem. Chem. Phys. 18 30061–7 
 

62. Ares P, Zamora F and Gomez-Herrero J 2017 Optical identification of few-layer 
antimonene crystals ACS Photon. 4 600–5 
 

63. Li Q-Y, Xia K, Zhang J, Zhang Y, Li Q, Takahashi K and Zhang X 2017 
Measurement of specific heat and thermal conductivity of supported and 
suspended graphene by a comprehensive Raman optothermal 
method Nanoscale 9 10784–93 
 

64. Wolff S, Gillen R, Assebban M, Abellán G and Maultzsch J 2020 Two-
dimensional antimony oxide Phys. Rev. Lett. 124 126101 
 

65. Bat-Erdene M et al 2020 Surface oxidized two-dimensional antimonene 
nanosheets for electrochemical ammonia synthesis under ambient conditions J. 
Mater. Chem. A 8 4735–9 


	Abstract
	1. Introduction
	2. Results and discussion
	3. Conclusion
	Acknowledgments
	Conflict of interest

