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Iron (Fe) deficiency chlorosis (IDC) is a serious condition affecting plants which are 

grown under calcareous or water logged soils. Under such conditions, Fe forms insoluble 

oxides and becomes unavailable for plant uptake, leading to stunted growth and severe 

yield reduction, causing aggravated agricultural losses. In the past years, efforts have been 

made to increase plant Fe content (so-called plant biofortification), in order to reduce the 

incidence of iron deficiency anaemia (IDA) prevalent around the world. To this end, 

legume grains and cereals, due to their rich nutritional profile and high worldwide intake 

by the population, have gained an important role in biofortification studies, which depend 

on the available molecular and physiological data for their successful implementation. The 

aim of this thesis was to contribute to the understanding of the molecular, physiological 

and biochemical mechanisms associated to Fe uptake and transport in Fe-stressed plants 

and to test a new class of Fe chelates as an efficient tool to prevent IDC. 

 With the purpose of understanding the transcriptomic response to Fe deficiency in a 

set of different legume species, a non-targeted analysis was performed using Illumina 

technology. Transcriptome analysis was performed in the roots of soybean (Glycine max), 

common bean (Phaseolus vulgaris) and barrel medic (Medicago truncatula) grown in Fe 

deficiency and Fe sufficiency, and 114,723 annotated genes were obtained for all samples. 

Four IDC-related gene families were up-regulated in common by the three species and can 

be considered key players involved in the IDC response, namely, metal ligands, 

transferases, zinc ion binding and metal ion binding genes. Also, amongst the most highly 

expressed genes were genes of the isoflavonoid pathway and, on the other hand, 

oxidoreductases were the most down-regulated genes. 

 Still on the search for IDC molecular players, two targeted genetic analyses were 

performed, one on G.max and M. truncatula and another on rice (Oryza sativa). Both 

studies involved the growth of plants under Fe sufficiency and Fe deficiency in order to 

compare the regulation of IDC related genes. Soybean and barrel medic are strategy I- 

crops, which means that, before uptake, they need to reduce Fe(III) to Fe(II) via an enzyme 

encoded by the FRO2 gene and, afterwards, Fe(II) is transported to the roots via a metal 

transporter encoded by the IRT1 gene. The expression of these two genes was analysed 

and both behaved similarly between species, appearing to be co-regulated. Moreover, the 

Fe transporters YSL1 and VIT1 and the main Fe storage protein-encoding gene – ferritin – 
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were up-regulated in the presence of Fe. The NRAMP3 gene, responsible for Fe 

remobilization from the vacuoles, was up-regulated under Fe deficiency, as was the GCN2 

gene, indicating a putative role of the latter in Fe metabolism and homeostasis. The 

targeted study performed in rice, a strategy II cereal that releases phytosiderophores in 

order to chelate and absorb Fe, involved the analysis of two rice cultivars with distinct 

susceptibilities to IDC – cv. Nipponbare and cv.Bico Branco. This different susceptibility 

was confirmed by their contrasting leaf chlorosis development and tissue nutrient 

accumulation patterns. The cv. Nipponbare, that showed lower IDC susceptibility, was 

able to induce higher levels of the key reduction enzyme activity (Fe reductase) and 

showed higher levels of expression of the strategy I-OsFRO2 gene in roots. In contrast, cv. 

Bico Branco induced more genes involved in strategy II, specially, the transcription factor 

OsIRO2 and the phytosiderophore precursor OsTOM1. 

 The screening for tolerant genotypes to IDC is an important tool in plant breeding 

programs. The most common IDC indicator is the degree of chlorosis development, which 

is quantified using a numerical scale. Therefore, after gathering the molecular data, the 

physiological mechanisms triggered by IDC were studied. The model crop G. max was 

selected, as it comprises lines well characterized according to their IDC-susceptibilities. To 

this end, two studies were performed. In the first study we aimed at understanding if the 

ability to partition Fe could be related to Fe-efficiency. We concluded that IDC susceptible 

lines, when compared to efficient lines, have lower ability to translocate Fe to the shoots, 

having about two fold higher Fe content at the root level, and they have lower capacity to 

induce the ferric reductase enzyme, having about three fold lower enzyme activity. In the 

second study the regulation of the antioxidant and tetrapyrrole systems under Fe deficiency 

was analysed for the first time and we inferred that higher levels of oxidative stress might 

induce the oxidation of the tetrapyrrole heme into hemin, which leads to the induction of 

the heme-containing catalase enzyme and the reduction of ferric reductase activity. Taken 

together, the previous results indicate that low ferric reductase activity and Fe 

accumulation in the root tissue could be added as new IDC-related physiological markers. 

 The application of fertilizers and Fe chelating agents is one of the most frequently 

used tools to manage IDC. However, most of them are ineffective, too expensive or 

recalcitrant in the environment. Hence, the search for new Fe chelates is of utmost 

importance. In the last step of this thesis, we investigated the potential of a tris(3-hydroxy-

4-pyridinonate) Fe(III) complex (Fe(mpp)3, which has never been utilized in agricultural 

context) as an Fe fertilizer. Soybean plants were grown hydroponically under Fe deficiency 
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and with Fe(mpp)3 or FeEDDHA supplementation. Results of both physiological and 

molecular markers showed that the new Fe complex led to healthier plants with increased 

growth by 24%, 42% higher SPAD units and lower Fe retention in the roots. 

 In general, the results presented in this thesis have contributed to a better 

understanding of the IDC-associated mechanisms and elucidated the key factors to be 

considered when analysing Fe deficient plants and their defence responses.  
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A clorose por deficiência de ferro (Fe) é uma condição grave que afeta plantas em solos 

calcários ou alagados. Sob estas condições, o Fe forma óxidos insolúveis e torna-se 

indisponível para absorção pelas plantas, o que conduz a um crescimento diminuído e a 

uma redução severa na produção, resultando em perdas agronómicas agravadas. Nos 

últimos anos, têm sido desenvolvidos estudos no sentido de aumentar o conteúdo de Fe nos 

tecidos vegetais (biofortificação), de forma a reduzir a incidência da anemia por 

deficiência de Fe prevalente no mundo. Com este objetivo, as leguminosas e os cereais, 

dado o seu perfil nutricional rico e o seu alto consumo pela população mundial, têm ganho 

particular enfoque nos estudos de biofortificação, cujos resultados dependem da 

informação molecular e fisiológica disponível. O objetivo do presente trabalho foi 

contribuir para a compreensão dos mecanismos moleculares, fisiológicos e bioquímicos 

associados à absorção e transporte de Fe, bem como o estudo do potencial de uma nova 

classe de quelantes de Fe como uma ferramenta eficaz na prevenção da clorose férrica. 

 Com o objetivo de compreender a resposta transcritómica à deficiência de Fe num 

conjunto de diferentes espécies de leguminosas, foi realizada uma análise não-direcionada 

com recurso à tecnologia Illumina. A análise transcritómica foi realizada nas raízes de soja 

(Glycine max), feijão (Phaseolus vulgaris) e luzerna-cortada (Medicago truncatula), 

crescidas em deficiência ou suficiência de Fe. Deste estudo, identificaram-se 114.723 

genes para todas as amostras. Quatro famílias de genes, nomeadamente ligandos de metais, 

transferases, proteína quinase e genes de ligação a metais e iões de zinco, foram sobre-

expressas pelas três espécies e podem ter um papel relevante na resposta à clorose férrica. 

Entre os genes específicos mais expressos em deficiência de Fe, identificaram-se também 

genes da via dos isoflavonóides. Por outro lado, entre os genes cuja expressão foi 

diminuída sob deficiência de Fe, identificaram-se genes codificantes de oxidoreductases. 

 Realizaram-se também dois estudos direcionados, um em G. max e M. truncatula e 

outro em arroz (Oryza sativa). Ambos os estudos implicaram o crescimento de plantas com 

e sem suplementação de Fe, por forma a comparar a regulação de genes relacionados com 

a clorose férrica. A soja e a luzerna-cortada são leguminosas que utilizam a estratégia I, o 

que significa que, antes da absorção pelas raízes, elas necessitam de reduzir o Fe(III) a 

Fe(II) utilizando uma enzima codificada pelo gene FRO2 e, depois deste passo, o Fe(II) é 

transportado por um transportador de metais codificado pelo gene IRT1. A expressão 
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destes dois genes foi estudada e verificou-se que ambos comportaram-se de forma 

semelhante entre espécies, sugerindo que a sua expressão é co-regulada. Estudaram-se 

também os transportadores de Fe YSL1 e VIT1, e o gene codificante da principal proteína 

de armazenamento de Fe – a ferritina – tendo sido todos sobre-expressos na presença de 

Fe. O gene NRAMP3, responsável pela remobilização do Fe dos vacúolos, foi sobre-

expresso na deficiência de Fe, tal como o gene GCN2, o que sugeriu um possível papel 

deste último no metabolismo e homeostasia do Fe. No estudo realizado com o arroz, um 

cereal que utiliza a estratégia II e que liberta fitosideróforos para quelatar e absorver o Fe, 

analisaram-se duas cultivares de arroz com suscetibilidades distintas à clorose férrica – cv. 

Nipponbare e cv. Bico Branco. A suscetibilidade diferencial foi confirmada pelo padrão 

oposto obtido nos resultados do desenvolvimento da clorose férrica e da acumulação de 

nutrientes nos tecidos. A cv. Nipponbare, que demonstrou menor suscetibilidade à clorose 

férrica, induziu níveis mais altos da enzima reductase férrica nas raízes, responsável pela 

redução de Fe(III), assim como do gene correspondente, OsFRO2, típico da estratégia I. 

Pelo contrário, a cv. Bico Branco induziu maiores níveis dos genes envolvidos na 

estratégia II, em particular, o fator de transcrição OsIRO3 e o precursor de fitosideróforos 

OsTOM1. 

 A seleção de cultivares tolerantes à deficiência de Fe é uma ferramenta importante 

para programas de melhoramento de plantas. O indicador de clorose férrica mais comum é 

o grau de desenvolvimento de clorose, que é quantificado com uma escala numérica. 

Assim, após reunir os dados moleculares, estudaram-se os mecanismos fisiológicos 

associados à clorose férrica. A soja foi selecionada como espécie-modelo pelo facto de 

incluir diversas linhas amplamente caracterizadas de acordo com a sua suscetibilidade à 

clorose férrica. Deste modo, este estudo foi dividido em duas análises principais. Na 

primeira análise, o objetivo foi compreender se a capacidade de partição de Fe podia ser 

relacionada com a eficiência de Fe. Concluiu-se que as linhas suscetíveis, em comparação 

com as linhas eficientes, tiveram uma capacidade menor de translocação do Fe para a parte 

aérea da planta, acumulando cerca do dobro do conteúdo de Fe nas raízes e, mais ainda, 

estas linhas tinham também níveis três vezes mais baixos de atividade da enzima reductase. 

Na segunda análise estudou-se, pela primeira vez, a regulação dos sistemas antioxidante e 

tetrapirrólico na deficiência de Fe e observou-se que níveis superiores de stress oxidativo 

podem induzir a oxidação da molécula heme em hemina, que resulta na indução da enzima 

catalase e na redução da atividade da enzima reductase, sendo que ambas possuem o grupo 

heme na sua estrutura. Em suma, os resultados anteriores indicam que uma atividade baixa 
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da enzima reductase férrica e acumulação de Fe nas raízes podem ser novos indicadores 

fisiológicos para a clorose férrica. 

 A aplicação de fertilizantes e de agentes quelantes de Fe é uma das estratégias mais 

utilizadas para tratar a clorose férrica. Porém, muitos destes produtos são ineficazes, 

dispendiosos ou recalcitrantes no ambiente. Como tal, o desenvolvimento de novos 

quelatos de Fe é de extrema importância. Na última parte desta tese investigou-se o 

potencial de um complexo do grupo tris(3-hydroxy-4-pyridinonate) Fe(III) (Fe(mpp)3, 

nunca utilizado em contexto agronómico) como um fertilizante novo de Fe. Plantas de soja 

foram crescidas em hidroponia sob deficiência de Fe ou suplementadas com Fe(mpp)3 ou 

FeEDDHA. Quer os resultados dos marcadores fisiológicos, quer dos moleculares 

demonstraram que, com o novo complexo de Fe, as plantas desenvolveram-se de forma 

mais saudável, obtendo um crescimento superior em 24%, 42% maior acumulação de 

clorofilas e menor retenção de Fe nas raízes. 

 Em geral, os resultados apresentados nesta tese contribuíram para uma melhor 

compreensão dos mecanismos associados à clorose férrica e esclareceram alguns dos 

fatores chave a considerar na análise das respostas de defesa de plantas sob stress de ferro. 
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In this chapter the importance of Fe in human and plant metabolism will be presented, with 

closer attention to the latter for which, more specifically, the mechanisms involved in Fe 

uptake, transport and homeostasis will be reviewed. Also, the importance of legume plants 

in modern agriculture will be analysed, as well as the damage caused by Iron Deficiency 

Chlorosis (IDC). Current alleviation strategies utilized for IDC prevention and/or 

correction will be discussed. Finally, the scope and outline of this thesis will be presented. 
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1.1. Introduction 

Iron (Fe) deficiency anaemia (IDA) is one of the most prevalent nutrient deficiencies in 

humans and has deleterious consequences that can range from fatigue to reduced work 

capacity or premature infant death. Over 30% of the world’s population is affected by 

IDA. Depicted in Fig. 1.1, is the world’s distribution of IDA-affected preschool aged 

children (World Health Organization, 2008) which, alongside with women of child bearing 

age, constitute the most affected groups by this disease. The occurrence of IDA reaches 

severe levels in most countries of Africa and in several countries in South America and 

South Asia. 

 

 
Fig. 1.1. World distribution of anaemia prevalence in preschool aged children (adapted 

from World Health Organization, 2008). 

 

 Plants provide the major part of human food intake, with the majority of energy 

being provided by cereals and other starchy staples (Mathers, 2006). In some cultures, 

either by choice or by economic constraints, plant-based nutrition comprises 100% of the 

diet (Auestad and Fulgoni, 2015). Amongst the most commonly consumed plant foods 

worldwide is rice, a crop that has shaped the cultures, the diets and societies of many 

countries around the world. Even though Asia is still the biggest rice consumer, rice is also 

highly consumed in European, North American and South American diets. Other 

traditional plant foods that have a high worldwide consumption are cassava, wheat, potato, 

soybean, pearl millet, sorghum, bean and maize. All these crops have been targets of 

conventional and modern technological processes that aim at increasing their nutritional 
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value. Amongst these processes, plant-based food biofortification programs have been 

developed, in order to increase minerals and vitamins in food staples through use of 

conventional plant breeding, transgenic techniques or the application of mineral fertilizers 

(Carvalho and Vasconcelos, 2013; Vasconcelos et al., 2017; de Steur et al., 2017). Plant 

breeding is one of the most used approaches to develop new varieties with specific 

agronomic traits and improved nutritional qualities (Farnham et al., 1999; Unnevehr et al., 

2007). However, classical breeding approaches have many limitations because the crossing 

can only be done between closely related specie or genus, and therefore it uses available 

genetic diversity and existing traits to obtain new varieties. Over the last decade, 

significant progress has been made in the development of new and efficient transformation 

methods in plants, which have allowed us to develop plants expressing desired traits 

unattainable by conventional breeding. In fact, plant genetic engineering has become one 

of the most important molecular tools in the modern molecular breeding of plant foods 

(Barampuram and Zhang, 2011). With these transgenic techniques, several crops have 

been biofortified with different metabolites. Recent successful examples include the case 

of the provision of Fe-biofortified pearl millet to Fe deficient school-aged Indian children, 

that led to a significant increase in ferritin concentrations and in total body Fe 

concentration (Finkelstein et al., 2015); and the inclusion of Fe-biofortified beans in the 

diet of women in Rwanda that significantly improved their Fe status, reducing IDA 

prevalence (Haas et al., 2016). Despite the promising findings on Fe biofortified crops 

contribution to IDA control (Finkelstein et al., 2017), it is important to refer that 

biofortification programs still have some limitations given that, depending on the 

nutritional status or the prevalence of the micronutrient deficiency, a biofortified crop may 

not be sufficient to meet the iron requirements (Bouis et al., 2011). Moreover, public 

opinion on transgenic organisms for consumption is yet to be completely favourable.  

 It is important to refer that, in order to perform biofortification studies there must 

be large genetic and phenotypic variation in the target germplasm, which is very much 

achievable through the existence of germplasm collections in various national genetic 

resource centres. For example, a total of 93706 soybean accessions with different 

genotypic traits are available at the Institute of Crop Sciences of the Chinese Academy of 

Agricultural Sciences, the National Plant Germplasm System from USA and the Asian 

Vegetable Research and Development Center (Foyer et al., 2016). At the present time, 

biofortification is one of the most sustainable methods to overcome human micronutrient 

deficiencies (Manwaring et al., 2016). However, it implies a successful manipulation of 
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the nutrient’s content in the edible parts of the biofortified crops. To build effective 

programs for Fe biofortification there must be a deep understanding on the processes 

underlying this mineral’s uptake mechanisms and metabolism in plants. 

 

1.2. Iron metabolism in plants 

Iron is one of the most important nutrients among transition metals, being the second most 

abundant in the earth’s crust (Broadley et al., 2012). However, it is mostly present in soils 

in the form of insoluble ferric oxides, which are not bioavailable for plants’ uptake. It has 

an essential role in plant metabolism, being fundamental in biochemical activities, namely, 

respiration, photosynthesis and chlorophyll biosynthesis (Nenova, 2006). This nutrient is 

part of several constituents of the electron transport chain in mitochondria and of the 

photosynthetic complexes found in chloroplasts (Zocchi et al., 2007) and, when it is not 

present in sufficient amounts, it inhibits the biosynthesis of essential cofactors, impairing 

the biogenesis of thylakoid complexes and inducing dysfunction of electron transport and 

enzyme reactions (Briat et al., 2015). Iron-sulfur (Fe-S) clusters, e.g. have a key role in 

photosynthesis, are the most abundant in photosynthetic organisms and include ferredoxins 

as the most well known Fe-S proteins (Johnson et al., 2005). Ferredoxins are involved in 

several redox reactions, mediating electron transfer from photosystem I (PSI) to enzymes 

involved in different pathways, like glutamate synthase, sulphate reductase, nitrite 

reductase and ferredoxin-thioredoxin oxidoreductase (Knaff and Hirasawa, 1991). 

Therefore, PSI  - due to its high Fe content – appears to be the main target of Fe deficiency 

and, consequently, both chloroplasts and mitochondria are the most affected organelles, 

since Fe is required for their structural and functional integrity (Scheumann et al., 1998) 

and its low availability leads to high energy requests to support the higher need for Fe 

uptake (Vigani et al., 2013). In fact, mutants lacking mitochondrial Fe-S clusters also show 

low aconitase activity, another Fe-S protein that belongs to a family of 

hydratases/dehydratases responsible for the isomeration of citrate (an Fe chelator) to 

isocitrate (Beinert et al., 1996).  

 Fe is also an essential cofactor for proteins belonging to the tricarboxylic acid 

(TCA) cycle and when Fe is deficient, citric and malic acids tend to increase, as well as the 

production of other organic acids (which are intermediate compounds of the TCA cycle). 

Although it is not still clear why, it was proposed that these alterations in organic acid 

metabolism may be necessary for the maintenance of Fe in soluble forms within the plant 

(Abadía et al., 2002; Vigani et al., 2013).  
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 Other Fe-containing constituents are heme proteins and chlorophyll, which belong 

to the tetrapyrrole group of compounds. The tetrapyrrole cycle (Fig. 1.2) occurs in the 

chloroplast and starts with the formation of 5-aminolevulinic acid (ALA) from glutamate 

that, after a series of reactions of linear polymerization, is transformed in the intermediate 

product protoporphyrin IX (Proto) (Tanaka et al., 2011). At this point, the tetrapyrrole 

cycle is divided in two different branches, the ‘Fe-branch’ and the ‘magnesium (Mg)-

branch’ (Brzezowski et al., 2015). The first leads to heme biosynthesis and involves the 

activity of a ferrochelatase (FC) that catalyses the insertion of Fe2+ into Proto. The 

resulting heme molecules can be inserted in hemoproteins or may be further degraded by 

heme oxygenase (HO) into the biliverdin IXα molecule for the phytochromobilin synthesis 

via the enzyme phytochromobilin synthase (HY2) (Tanaka et al., 2011). Cytochromes, 

peroxidases, catalases and Fe reductase are the best example of heme enzymes, which are 

highly involved in the antioxidant system and act as defence agents against ROS (Briat et 

al., 2007).  

 

 
Fig. 1.2. Schematic overview of the tetrapyrrole cycle (adapted from Chapter 3.2 - Santos 

et al., 2017). 
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 In the ‘Mg-branch’, Mg2+ is inserted into Proto that suffers a series of 

modifications to synthesize chlorophyllide a, which is esterified to form chlorophyll (Chl) 

a. As there are two species of Chl, a second cycle occurs, with the interconversion of Chl a 

in Chl b (Tanaka et al., 2011). 

 The protoporphyrin biosynthesis pathway is highly Fe-dependent and its regulation 

has a direct impact on plant’s metabolism (Briat et al., 2015) since, as mentioned above, 

electron transport, chloroplast development, acquisition of the photosynthetic capacity and 

various catalytic processes appear to be influenced by Fe status in the cells (Papenbrock et 

al., 2000; Hamza and Dailey, 2012). Despite all these facts, how Fe deficiency affects the 

photosynthetic process at these various levels is still not fully understood, although 

evidences showing that it may lead to complete destruction of the photosynthetic 

machinery (Msilini et al., 2013), not only at the thylakoid level but also at the stromal and 

lumenal levels (Terauchi et al., 2010). 

 

1.3. Iron uptake mechanisms 

In order to acquire Fe from the soil, for long it has been thought that higher plants have 

evolved Fe uptake strategies, depending on the ionic state of Fe, that historically were 

divided into: Strategy I to acquire Fe(II) and Strategy II to acquire Fe(III) (Brown, 1978). 

Recently, studies have suggested that there may be an overlap between these two 

strategies, depending on crop species and environmental conditions (Ricachenevsky and 

Sperotto, 2014). 

 Strategy I, also referred to as ‘Reduction Strategy’, is utilized by all dicotyledonous 

and non-graminaceous plants (Fig. 1.3a). The first engaged step consists on proton release 

via H+-ATPases in order to decrease rhizosphere’s pH and, consequently, increase Fe 

solubility (Colangelo and Guerinot, 2004). After the acidification step, Fe3+ is reduced to 

Fe2+ by a root ferric chelate reductase. In Arabidopsis, this enzyme is encoded by ferric 

reductase oxidase 2 (AtFRO2), which is composed of two intramembrane heme groups, 

and is induced in the root epidermis to transfer electrons across the plasma membrane 

(using NAD(P)H as an electron donor), performing the reduction step (Robinson et al., 

1999). Genes encoding the FRO enzyme include eight members that are differentially 

expressed at the tissue levels, being not only important for metal acquisition from soil, but 

also for intracellular distribution of Fe (Jain et al., 2014). More specifically, FRO1 was 

characterized in pea to have 74% of overall similarity to AtFRO2 (Waters et al., 2002); 

AtFRO5, AtFRO7 and AtFRO8 do not seem to be Fe-regulated and AtFRO3 is expressed 
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in Fe deficient leaves (Jeong and Connolly, 2009); AtFRO6 overexpression in tobacco 

plants enhanced ferric reductase activity in the leaves (Li et al., 2011). Alongside with 

FRO, other compounds have been proposed to have a key role in the reducing step, such as 

phenolics, organic acids, sugars and flavins (López-Millán et al., 2000; Rodríguez-Celma 

et al., 2011) and recent reports identified scopoletins, a class of phenolic-type compounds, 

to be secreted under Fe deficient conditions and have an important role in plant Fe 

nutrition (Fourcroy et al., 2014; Schmid et al., 2014). 

 After Fe3+ is reduced, Fe2+ is transported into the root by iron-regulated transporter 

1 (IRT1), which belongs to the zinc-regulated transporter/IRT-like protein (ZIP) family 

(Guerinot, 2000). IRT1 was described to be expressed only under Fe deficient conditions 

(Connolly et al., 2002), but it can also transport other divalent metals and it has been 

shown that the overexpression of AtIRT1 induces metal overload (Barberon et al., 2011). 

Other studies showed that when the peanut AhIRT1 gene was introduced in tobacco and 

rice, it had a dual function: besides being responsible for Fe absorption, it could also be 

responsible for Fe translocation, as the transgenic plants increased their tolerance to Fe-

deficiency and, even under Fe-sufficiency, Fe concentration was enhanced in roots and 

shoots (Xiong et al., 2014).  

 

 
Fig. 1.3. Schematic representation of mechanisms for iron (Fe) acquisition in plants: (a) 

Strategy I or the reduction strategy - proton pump (ATPase), Fe transporter (IRT1) and 

ferric reductase (FRO2); (b) Strategy II or the chelation strategy – transcription factors 

IDEF1 and IRO2, nicotianamine synthase (NAS), deoxymugineic acid synthase (DMAS), 

phytosiderophore (PS); PS effluxer (TOM) and PS influxer (YSL). 
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 Graminaceous plants, like barley, rice and maize utilize Strategy II (a ‘Chelation 

Strategy’) for Fe uptake (Fig. 1.3b). In order to increase uptake, plants release 

phytosiderophores (PSs) to the rhizosphere which act as chelators with high affinity for 

Fe3+. The primary member of the PSs family is deoxymugineic acid (DMA), and 

nicotianamine (NA) is the main precursor for its synthesis (Morrissey and Guerinot, 2009). 

Two transcription factors seem to have an essential role in DMA and NA synthesis, 

namely, IRO2 that regulates their synthesis by influencing DMA and NA synthases 

(DMAS and NAS) expression (Ogo et al., 2007); and an Fe Deficiency-responsive 

Element-binding Factor 1 (IDEF1) that intervenes in this synthesis by positively regulating 

the expression of IRO2 (Kobayashi et al., 2009). Phytosiderophores are effluxed to the 

rhizosphere via TOM1, a transporter whose expression levels augment under Fe-deficient 

conditions (Nozoye et al., 2011). Once in the rhizosphere, the complex Fe3+-PS is formed 

and is taken up into the root cells by transmembrane proteins of the yellow-stripe1 (YS1) 

family (Curie et al., 2001). YS1 transporters have been identified in several grass species, 

and, interestingly, non-graminaceous plants also have YS1-like (YSL) genes that encode 

proteins essential in metal-NA complexes transporting (Inoue et al., 2009).  

 Although this classic division is mostly true, there are few studies showing that 

some Strategy II plants could use Strategy I mechanisms, as is the example of rice (Bughio 

et al., 2002; Ricachenevsky and Sperotto, 2014). Evidences suggest the use of a ‘combined 

strategy’, where rice plants besides absorbing Fe(III) via the chelation strategy, also take 

up Fe(II) directly by the induction of the strategy I transmembrane transporters IRT1/IRT2 

(Sperotto et al., 2012). 

 

1.4. Iron transport and homeostasis 

After entering the root cells, Fe can be transported to the aboveground organs via the 

xylem (Conte and Walker, 2011). This transport has for long been associated to the 

formation of complexes between Fe and citrate, which seemed to be the preferential form 

for Fe loading in the xylem (Tiffin, 1966). In the meantime, studies confirmed this theory 

(Green and Rogers, 2004) and a ferric reductase defective 3 (FRD3) protein, belonging to 

the multidrug and toxin efflux (MATE) family has been described to be necessary for 

efficient Fe translocation (Durrett et al., 2007). Despite being predominantly transported 

through the xylem (Lopéz-Millán et al., 2000), Fe can also be transported through the 

phloem, complexed with NA, as this metabolite, although not secreted by non-

graminaceous plants, is synthetized and chelates Fe (Stephan and Scholz, 1993; Takahashi 
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et al., 2003). When Fe reaches the leaves it is putatively unloaded in the apoplastic space 

via the YSL transporters (Waters et al., 2006).  

 Free Fe is toxic, therefore, it must be incorporated in storage structures. Ferritins, 

for example, store Fe in excess for detoxification and maintain the mineral available for 

protein synthesis (Briat et al., 2010). Ferritins can be found in most of the cellular 

compartments, but the main storage organelle is the chloroplast (Briat et al., 2010). It is 

generally established that under Fe supply genes of the ferritin family are usually over-

expressed (Lescure et al., 1991; Wu et al., 2016). The majority of the Fe pool is mainly 

located in chloroplasts (Roschzttardtz et al., 2013) and, although the method for influx is 

still not well described (López-Millán et al., 2016), it is thought to require a reduction-

based mechanism, mediated by a member of the FRO family, probably FRO7, both in 

strategy I and strategy II plants (Solti et al., 2014). The other major reservoir for inactive 

Fe is the vacuole and Fe is imported via a vacuolar membrane transporter, VIT1 (Kim et 

al., 2006) and remobilized by the NRAMP3 and NRAMP4 transporters (Lanquar et al., 

2005), which also have a role in Mn trafficking in the vacuoles of the mesophyll cells 

(Lanquar et al., 2010). Moreover, these proteins have been shown to have a conserved role 

in Fe transportation and homeostasis in different crops, as is the case of VIT expression in 

rapeseed (Zhu et al., 2016) and of Arabidopsis VIT1 expression in cassava that showed 

promising results for biofortification programs development (Narayanan et al., 2015); 

other examples include AhNRAMP1 in peanut (Xiong et al., 2012) and MxNRAMP1 in 

apple (Pan et al., 2015). Figure 1.4 summarizes the main players in the Fe trafficking 

pathway described above. 
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Fig. 1.4. Main proteins involved in the Fe transport and homeostasis mechanisms. 

Transport movement is indicated by a blue arrow; all transport proteins and chelators are 

depicted in black. 

 

 Fe homeostasis is tightly regulated in plants and requires different signals and 

regulators, having an ultimate implication on photoassimilate partitioning, due to its 

source-sink control (Marschner et al., 1996; Lemoine et al., 2013). Shoots have always 

been pointed as the main responsible organ for signalling the need for increased Fe uptake 

at the root level (Brown et al., 1961; Schmidt, 2003). A negative feedback control for Fe 

uptake has been proposed, where Fe sufficiency represses the synthesis of the ferric chelate 

reduction system (Maas et al., 1988); however, a positive regulation has also been proven 

to exist, where a long-distance signal for Fe deficiency in the shoots induces Fe uptake in 

the roots (Enomoto et al., 2007). More recently, a combined network-system for the 

activation of physiological Fe-stress responses has been suggested (García-Mina et al., 

2013). In this model, together with a predominant shoot to root signal, which is dependent 

not on the Fe conditions at the root level, but on the development of Fe-stress symptoms in 

the leaves, a local Fe-sensing is also present in the roots, which corresponds to the 

triggering of FRO and IRT1 genes in response to Fe stress at the root level, independently 

of the Fe conditions presented by the leaves. 
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 Molecules with the potential to regulate Fe accumulation could also be an 

interesting target for biofortification strategies development, and some have been 

identified, namely, the aforementioned IDEF1 in graminaceous plants, that is a 

transcription factor which positively regulates IRO2 gene under Fe deficiency (Fig. 1.3b), 

but whose expression is not affected by this stress (Kobayashi and Nishizawa, 2014); 

Hemerythrin motif-containing Really Interesting New Gene (RING)- and Zinc-finger 

proteins (HRZs) / BRUTUS (BTS) ubiquitin ligases, which negatively regulate Fe 

deficiency responses in both graminaceous and non-graminaceous plants, controlling Fe 

uptake and translocation under Fe-sufficiency to prevent Fe excess caused damage 

(Kobayashi et al., 2013; Matthiadis and Long, 2016); or metal tolerance proteins (MTP), 

identified in wheat grains as good biofortification candidates (Vatansever et al., 2017) due 

to their role in divalent metals effluxing out of the cytoplasm and involvement in metal 

tolerance under Fe deficiency stress (Eroglu et al., 2016). 

 Although most of the abovementioned genomic studies are typically performed on 

model crops, such as Arabidopsis and maize, in the past decade, genomic studies in legume 

plants have become abundant, due to their great nutritive, economic and environmental 

value (reviewed by O’Rourke et al., 2014).  

 

1.5. The importance of grain legumes in modern agriculture 

Grain legumes can be divided into pulses and non-pulses. Food and Agriculture 

Organization of the United Nations (FAO) defines pulses as annual leguminous crops 

yielding from one to 12 grains or seeds of variable size, shape and colour within a pod, 

which include dry beans, peas, lentils and lupins (among others), but exclude soybean and 

peanut (non-pulses), because these are mainly considered as oil crops (Duranti, 2006). The 

year of 2016 was declared by the United Nations as the International Year of Pulses, in 

order to implement a plan of action to increase awareness of the importance of legumes in 

human health in the community and encourage the increase of pulse production by all 

possible stakeholders (FAO, 2016a). Hence, in the present times, major attention is being 

directed to grain legumes due to their role in global food security and environmental 

health.  

 In what concerns human nutrition, grain legumes have high protein levels as well 

as essential amino acids, carbohydrates, vitamins and minerals and are a predominant 

component of traditional diets of many regions throughout the word (Messina, 1999). The 

consumption of these crops contributes to a healthier diet and decreases nutrient diseases, 
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obesity risk, as well as cardiovascular disease or type II diabetes risk (Rochfort and 

Panozzo, 2007). Grain legumes also provide about one-third of processed vegetable oil for 

human consumption (Graham and Vance, 2003). 

 Moreover, the production of grain legumes contributes to food security since, in 

developing countries, it is one of the main sources of income for smallholder farmers. 

Additionally, given the increased concern with climate change and its future consequences, 

it is important to note that grain legumes also contribute to climate change adaptation and 

mitigation, either because they fix atmospheric nitrogen and provide it to the soil, reducing 

the need for synthetic nitrogen fertilizers (Herrige et al., 2008), or because they can be 

used in inter-cropping systems, increasing crop diversification and biodiversity and 

economic returns, as shown by the successful case studies with Trifolium L. and Medicago 

sativa (Reckling et al., 2016).  

 According to the latest FAO data, dry beans (common beans) have the highest 

percentage of production between pulses, holding a 32.7% share of global pulse output 

(FAO, 2016b). In Portugal, from the 4 kg/capita provision of legumes, 3.1 kg/capita 

corresponded to dry common bean (Phaseolus vulgaris) (INE, 2016). Also, heading the list 

of the most produced crops worldwide, there is soybean (Glycine max), which has a high 

market value for its rich content in vegetable oil, protein, fatty-acids, isoflavones and 

saponins (Carrera et al., 2014). In 2016, in the United States alone, a total of 83.7 million 

acres were dedicated to soybean production, corresponding to approximately 107 million 

tons of product, which was 34 % of the global production (314 million tons) (United States 

Department of Agriculture, 2017). Following the United States, Brazil is the second 

biggest soybean producer and the other countries with relevance to this market are 

Argentina, China, India, Paraguay and Canada (Foyer et al., 2016). 

 When compared to other grain legumes, such as bean, chickpea or lentil, soybean 

has higher levels of protein, fat, calcium and iron and, together with their high content of 

isoflavones, their consumption has been associated with decreased risk for the 

development of certain forms of cancer, osteoporosis and heart disease (Messina, 1999). 

Interestingly, since the introduction of genetically modified (GM) soybean crops in the 

market in 1996, crops either with increased herbicide tolerance or insect resistance have 

contributed to lowering production costs and increasing crop yield (Brookes and Barfoot, 

2016a), accounting for 75% of the soybean plantings worldwide in 2014 (Brookes and 

Barfoot, 2016b). Several studies attest the safety of GM soybeans, as recently reviewed 

(Domingo, 2016). Soybean value in the food industry is further increased due to its various 
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derived products, many of them associated with oriental soy foods, such as tofu, soy sauce, 

miso, tempeh and natto, but also other by-products already largely included in the west diet 

like soymilk, soy sprouts or flour. Besides its importance in human nutrition, soybean has 

also great impact in animal feed as it is largely incorporated in the rations for dairy cattle. 

 Similarly to common bean and soybean that are the most important grain legumes 

with high production and consumption rates, rice is one of the top commodities in the 

world and is grown in more than a hundred countries, with a total harvested area in 2014 of 

approximately 163 million hectares, producing more than 700 million tons annually (FAO, 

2016c). The main producer in the world is Asia, which accounts for over 90 % of the world 

production of rice, with China and India producing the most, accordingly with the latest 

data provided by FAO (2016c). Portugal is the fifth producer in Europe with 167,000 tons 

of rice produced in 2014 and about 61,000 tons exported in 2013 (FAO, 2016c). As it 

utilizes a different Fe uptake strategy (strategy II) as compared to legume crops like 

soybean and bean (that utilize strategy I), rice is also an important model crop for studying 

Fe uptake mechanisms and related molecular players in comparison to the strategy I 

utilizing crops. 

 Despite the general advantages of producing grain legumes, when these are grown 

under alkaline conditions, they develop a condition named Fe deficiency chlorosis (IDC) 

(Vasconcelos and Grusak, 2006) caused by Fe unavailability in the soils. This condition 

deeply affects legumes’ economic and social value and efforts must be made to overcome 

this problem.  

 

1.6. The IDC problem and alleviation strategies 

Again, despite the abundance of Fe in soils (it is the fourth most abundant element in the 

earth’s crust), Fe has low solubility and this is a hurdle that leads to Fe deficiency in plants, 

especially in aerated calcareous soils, which represent one third of cultivated lands of the 

whole world (Fig. 1.5).  
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Fig. 1.5. Soil world distribution, according to pH (Adapted from IGBP-DIS Global Soils 

Dataset, 1998). 

 

 In Portugal, calcareous soils correspond to small areas in the south half of the 

country (Fig. 1.6). In these regions, great areas are attributed for legume plants production, 

mainly common bean (3193 ha) and chickpea (1630 ha) (INE, 2016), which are highly 

susceptible crops to calcareous conditions. 

 

 
Fig. 1.6. Soil pH distribution in Portugal (Adapted from Ferreira, 2000). 

 

 Under such adverse conditions, Fe reduction is hindered (Briat et al., 2015) and the 

mechanisms for Fe uptake described in Section 1.3 are especially affected, due to the 

inability of plants to absorb Fe from the rhizosphere (Robinson et al., 1999). IDC is one of 

  Soil pH 
Acid 
Alkaline 
Neutral 
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the main consequences of Fe deprivation in plants, and leads to a reduction in 

photosynthesis and an accumulation of reactive oxygen species, resulting in a visible 

interveinal leaf chlorosis. One of the most classically implemented tools for IDC screening 

in the field has been a visual chlorosis score, which ranges from 1, if the plant is 

completely healthy, to 5, when it is necrotic or dead as a result of Fe stress (Prohaska and 

Fehr, 1981). If left untreated, IDC leads to stunted growth with reduced total biomass, 

which together with chlorosis, leads to severe yield losses due to reduced number of seeds 

per plant and economic problems of great impact amongst farmers (Briat et al., 2015). 

 IDC is also aggravated by soil water content: when the soils are over-irrigated, 

bicarbonate concentration increases in the rhizosphere, leading to an augment of soil pH 

and interfering with the plants defence mechanisms against low Fe (Fleming et al., 1984; 

Chaney et al., 1992; Zhang et al., 2016). To prevent or treat IDC, farmers have to employ 

different strategies that are usually expensive and are not always effective. 

 

1.6.1. Genetic manipulation 

At the turn of the 21st century, genetic engineering has known a rapid development 

resulting from the progress made in molecular biology and the better understanding of the 

DNA and its functions in living organisms. Genetic engineering aims to makeup the 

genome of a living organism in a laboratory using “recombinant DNA technology” by 

inserting, altering, removing or switching off specific piece(s) of DNA containing the 

gene(s) of interest. As results, crops developed through genetic engineering are commonly 

known as transgenic or GM crops (Datta, 2013; Desmond and Nicholl, 1994). GE allows 

transferring specific and targeted genes from close or distant related plant species to the 

targeted species, and therefore obtaining a “new” plant with desired agronomic traits. The 

two most interesting benefits of GE are (i) the possibility to obtain a plant with specific 

agronomic traits difficult to obtain in the case the trait is not present in the germplasm of 

the crop, and (ii) the long time needed to introduce that trait in the targeted crop using 

conventional breeding (Desmond and Nicholl, 1994; Giddings et al., 2000).  

 In order to increase Fe in plant tissues through genetic manipulation, the levels of 

siderophores, chelating agents, reducing agents, enzymes and transporter proteins could be 

increased with positive outcomes (Zimmermann and Hurrell, 2002). Amongst the DNA 

delivery methods, the two most frequently applied are biolistics, where the gene of interest 

is bombarded through the plant cell wall, so that the genetic information is delivered into 

the plants genome (Taylor and Fauquet, 2002) and Agrobacterium-mediated 
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transformation, which is based on the presence of a tumor inducing (A. tumefaciens) or 

root inducing (A. rhizogenes) species, that allow the utilization of the plasmids as vectors 

for genes of interest (Klee et al., 1987). Using biolistic transformation, efforts have been 

made towards the increase of ferritin in crops with low available Fe, successfully achieving 

increased total Fe pool (Vasconcelos et al., 2003). The same result has been obtained, 

more recently, using interbreeding techniques between a ferritin-overexpressing transgenic 

soybean and another high-yielding soybean cultivar (Paul et al., 2014). On the other hand, 

through Agrobacterium-mediated transformation, the expression of Fe(III) reductase-

encoding genes was increased in Strategy I species with low activity of this enzyme 

(Connolly et al., 2003), as was the synthesis and exsudation of phytosiderophores in 

Strategy II plants (Masuda et al., 2012), consequently increasing Fe accumulation in both 

cases. Furthermore, with this approach, not only the content of Fe can be increased, but 

also the IDC-sensitivity in general can be attenuated, as shown in a study where barley NA 

synthase 1 was overexpressed in soybean plants (Nozoye et al., 2014). However, the major 

obstacle associated to these techniques of genetic modification is still overcoming Fe 

loading and unloading in/from the seed, which is the edible part of these plants (Briat et 

al., 2015). A comprehensive review on the topic can be obtained in Vasconcelos et al. 

(2017). 

 Nowadays, newer technologies have evolved such as oligo-directed mutagenesis, 

reverse breeding, RNA-directed DNA methylation and sequence-specific nuclease 

technology or ‘genome editing’ (Schaart et al., 2015). Particularly, zinc finger nucleases 

(ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered 

regularly interspersed short palindromic repeats (CRISPR)-associated protein 9 nuclease 

(Cas9) system, are powerful tools for developing new traits in plants (Gupta and Shukla, 

2016). ZFNs and TALENs are artificially designed restriction enzymes for genome 

editing: the first are composed by the DNA-binding domain zinc finger protein derived 

from eukaryotic transcription factors, which makes them highly sequence-specific, and the 

Fok I cleavage domain from Flavobacterium okeanokoites, that has high cleavage activity 

(Miller et al., 2011); the second, is a highly specific tool, with high targeting efficiency and 

has been successfully applied to genome editing in rice for herbicide resistance (Li et al., 

2016c). CRISPR-Cas9 is the most recent and revolutionary technique, which allows 

multiplexed gene editing without compromising the targeting efficiency (Gupta and 

Shukla, 2016). This tool origin is the defense system of bacteria that helps to detect and 

destroy a pathogen invasion in the cells (Mojica et al., 2009) and has been applied, for 
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example, to targeted mutagenesis in soybean (Sun et al., 2015) and to yield traits 

manipulation in rice, such as grain number and size and panicles formation (Li et al., 

2016a), holding great potential for improved crops for their commercial and nutritional 

value. 

 Since these new gene editing methods target specific regions of the genome, it is 

very precise and regulations like the ones associated to GM organisms are yet to be 

applied, putatively making them generally more well accepted (Abdallah et al., 2015). 

However, the unpredictable resulting phenotypes, as well as the lack of sufficient diversity 

in cultivars used in the breeding programs, consumer resistance and the safety of 

genetically modified crops are still obstacles delaying the market and public acceptance of 

GM organisms (White and Broadley, 2005). 

 

1.6.2. Screening for tolerant genotypes 

The susceptibility to IDC may be influence by genetic and environmental factors. In 

general, there are species that are more susceptible to IDC than others and, differences 

between cultivars have also been reported, which is an important characteristic for 

breeding for tolerant cultivars in order to reduce IDC’s incidence (Boodi et al., 2016). 

Soybean, in particular, comprises cultivars that, when grown on calcareous soils, exhibit 

little foliar chlorosis (Fe-efficient or tolerant) and other cultivars that express severe leaf 

yellowing or even plant death (Fe-inefficient or susceptible) (Vasconcelos and Grusak, 

2014), making this crop an exceptional model for Fe-related studies. 

 Although Fe-efficiency mechanisms are still far from being totally understood, Fe-

efficient plants usually have the ability to induce biochemical reactions that make Fe 

available in a useful form, while Fe-inefficient plants do not (Brown and Jolley, 1989). 

Furthermore, Fe-efficient plants should also have higher ability to grow under Fe stress 

conditions, which implies a better metabolic use of the Fe pools inside the plant (García-

Mina et al., 2013). This is not always true and, due to this fact, when under Fe sufficient 

conditions, soybean growers may prefer to grow an IDC susceptible line because they 

frequently have higher yields than IDC tolerant lines (Atwood et al., 2014). 

 Two soybean lines, equal in phenotype but with different Fe efficiencies, were 

compared in terms of ferric reductase induction and gene expression profiling. Studies 

showed that the Fe-inefficiency trait was correlated with low levels of ferric reductase 

enzyme activity under Fe deficient conditions and with the up-regulation of genes of 

signalling and regulatory pathways in order to maintain cellular homeostasis (O’Rourke et 
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al., 2007); Fe-efficiency could be linked to the ability of the plants to induce energy 

controlling pathways to promote nutrient recycling and stress responses to Fe deficiency 

(Atwood et al., 2014) and due to a greater capacity of Fe translocation to the aboveground 

organs (Roriz et al., 2014). 

 Other species have also been studied for their Fe-efficiency. For example, sugar 

beet plants that accumulate flavin in roots appear to have higher efficiency levels (López-

Millán et al., 2000). In tomato, the accumulation of citrate and malate seem to modulate 

their level of efficiency (López-Millán et al., 2009), as well as the induction of IRT, FRO, 

SOD, APX and CAT gene expression (Muneer and Jeong, 2015). Quince and pear fruits 

have also been compared in terms of efficiency and the degree of metabolic responses 

activation varied between genotypes (Donnini et al., 2008). In Prunus genotypes, Fe-

inefficiency was associated with increased oxidative stress and reduced antioxidant 

defence (Cellini et al., 2011) and, in two rice genotypes, the one proven to be more Fe-

efficient was able to acidify the rhizosphere, as well as exudate higher rates of 

phytosiderophores and induce the expression levels of the genes OsIRO2, OsIRT1, 

OsNAS1 and OsNAS2, and OsYSL2 and OsYSL15 (Li et al., 2016b). 

 Given the diverse type of responses obtained in different crops and genotypes, it is 

important to establish specific tools that allow the clear distinction between 

tolerant/efficient and susceptible/inefficient cultivars. This is important not only to select 

cultivars for field production, but also to better understand and identify the most important 

traits in the efficiency trait and use them in biofortification programs. 

 

1.6.3. Fertilizers and chelating agents 

Since the main causal agent of IDC is the bio-unavailability of Fe in soils, one attractive 

option to prevent and/or treat this physiological disease could be managing the 

bioavailability of Fe in the soil. Lowering the soil pH is a possible strategy but, besides 

being very expensive, it cannot be performed effectively since the calcareous soils are 

severely buffered (Morgan, 2012). Hence, fertilization is a more widespread agronomic 

approach for IDC management. Iron fertilizers are mainly grouped in three distinct 

categories, specifically: 1) natural Fe-complexes; 2) inorganic Fe compounds; and 3) 

synthetic Fe-chelates (Table 1.1).  

 Natural Fe-complexes consist of organic materials that naturally contain sufficient 

amounts of Fe to act as an Fe source for plants (Shenker and Chen, 2005). These comprise 

peat, coal, lignite, manure, humic substances and by-products of wood processing wastes, 
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like polyflavonoids and lignosulfonates. These types of ligands have a special role on Fe 

bioavailability in coastal and oceanic waters (Kuma et al., 1999), while in field conditions, 

to be effective, these organic compounds must be applied in high amounts, which are not 

practical and have more economic costs associated (Shenker and Chen, 2005). There are, 

however, studies showing that, when applied to Fe-deficient plants, some humic 

substances can lead to a more effective and quicker restoration of the Fe content in the 

leaves than a synthetic chelate (Kovács et al., 2013) or when compared to other organic 

substances like phytosiderophores (Zanin et al., 2015). Natural complexes may also be 

applied to the leaf in order to overcome their low soil stability (Carrasco et al., 2012) and 

new organic compounds have been tested, such as, a natural hetero-ligand Fe chelate, 

which application, although depended on the presence of a synthetic Fe-starter fraction, 

was as effective as that of 100% synthetic chelate in total leaf Fe accumulation (Fuentes et 

al., 2012).  

 Among inorganic Fe compounds are Fe salts and Fe oxide-hydroxides. If, on one 

hand, these compounds have low cost and are easily applicable to the soil, they react with 

CaCO3 to form Fe oxides, and their high insolubility hinders the value of this type of 

ligand as plant Fe source via the soil, being usually applied via foliar fertilization with 

more successful results (Wei et al., 2012). However, foliar application could have poor 

results, due to the low penetration rates of Fe in the leaves, which have thick cuticles’ and 

to the limited translocation of this form of Fe within the plant (Shenker and Chen, 2005). 

In order to overcome these constraints, a recent study utilized Fe oxide nanoparticles to 

deliver Fe to peanut plants, comparing this to the supplementation with a synthetic chelate, 

and showed that both had similar outcomes in terms of Fe accumulation and chlorosis 

development, but with the Fe oxide nanoparticles better adhering to soil particles, reducing 

nutrient loss (Rui et al., 2016). Nevertheless, synthetic Fe-chelates are considered the most 

effective soil fertilizers, even in calcareous conditions (Lucena, 2006; Abadía et al., 2011; 

Briat et al., 2015). 
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Table 1.1. Main types of Fe chelates, principal characteristics and examples 

 FE CHELATES 

 Natural Complexes Inorganic Salts Synthetic 

C
ha

ra
ct

er
is

tic
s 

! Require high dosage 

! Low soil stability 

! Environmental friendly 

! Insoluble 

! Low cost 

! Foliar application 

! Soluble in soil 

! Recalcitrant 

! High cost 

Ex
am

pl
es

 peat, coal, lignite, manure, 

humic substances, 

lignosulfonates 

Ferrous sulfate, iron 

oxide, iron oxide 

nanoparticles 

EDTA, EDDHA, 

EDDS, HBED 

 

 Synthetic Fe-chelates are generally composed of two or more functional groups that 

have an unshared electron pair. By electron sharing, they form a coordination link with a 

centrally located Fe, resulting in metal-chelate molecules with different stability constants, 

depending on structural configuration and other parameters (Shenker and Chen, 2005). 

Differently of the other types of Fe fertilizers, Fe-chelates contain the Fe, but also the 

chelating agent. A mechanism has been proposed where, once Fe is delivered to the plant, 

the ‘free’ chelating agent could take more native Fe from the soil, dissolving Fe from 

oxides that would otherwise be unavailable for plants’ uptake, creating a “shuttle effect” 

(Lucena, 2003). On the other hand, it has been shown that metal-EDTA complexes might 

be absorbed by the plant roots via the apoplastic pathway, as these complexes have been 

found intact in the xylem of barley plants (Collins et al., 2001). 

 The majority of the studied synthetic Fe-chelates are derivatives of the 

ethylenediamine-carboxylic acids family (Briat et al., 2015). Non-phenolic compounds, 

such as ethylene diamine tetraacetic acid (EDTA) have low stability in calcareous soils and 

are unable to maintain Fe in solution (Rodríguez-Lucena et al., 2010). A naturally 

occurring derivative of EDTA, [S,S]-ethylenediaminedisuccinate, [S,S]-EDDS, has also 

been studied for its ability to maintain Fe in water-soluble form and, although it was more 

biodegradable than EDTA holding potential for lower environmental impact Fe solubility 

was lower than that of EDTA (Ylivainio, 2010). The most effective chelating agents to 

deliver Fe under calcareous conditions are diamino-diphenolic-dicarboxylic acids, such as 

ethylene diamine-N,N’-bis(2-hydroxy phenyl) acetic acid (EDDHA) (Lucena, 2006). 

Studies have also shown that the isomeric form of EDDHA is important and influences its 
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capability to provide Fe to plants, being the ortho-ortho (o,o) isomer the most effective 

(Rojas et al., 2008). 

 Lately, the search for new, more efficient, less expensive and environmentally 

friendly synthetic chelates has stimulated the introduction of different products that seem 

promising for agricultural purposes. However, the formulation of new fertilizing 

compounds must have into account a set of characteristics that determine their 

effectiveness (Fig. 1.7). An iron chelate must be able to maintain Fe in soil solution, in 

order to permit the reduction of Fe(III) by the roots (Rojas et al., 2008), which implies that 

it must be stable enough in calcareous conditions so that Fe is not exchanged by a 

competing cation and that it doesn’t get adsorbed to the soil solid phase. On the other hand, 

the stability of the complex should not be too high, so that the ligand is able to release Fe 

in the rhizosphere for plant uptake (Hasegawa et al., 2012). Chlorosis assessment is the 

most informative tool to assess the effectiveness of a certain chelate (Fig. 1.7) and, 

between field or controlled conditions, either type of experiment is valid to do the 

assessment, only depending on the question and the means to address it (El-Jendoubi et al., 

2011). 

 

 
Fig. 1.7. Main characteristics of an iron-chelate to be considered as effective in supplying 

Fe to the plant. 

 

 Several structurally analogous molecules to FeEDDHA have been tested for their 

potential as effective Fe-chelates, namely, ethylenediamine di(2-hydroxy-4-

methylphenylacetic) acid (EDDHMA), ethylenediamine di(2-hydroxy-5-sylfophenylacetic) 

acid (EDDHSA) or ethylenediamine di(5-carboxy-2-hydroxyphenylacetic) acid 

(EDDCHA), but despite having similar efficacy to FeEDDHA for chlorosis treatment, the 
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latter continues to be preferred (Cantera et al., 2002; Álvarez-Fernández et al., 2005; 

Lucena and Chaney, 2006). Another Fe(III) chelating agent with a similar structure to 

EDDHA is N,N’-bis(2-hydroxybenzyl)ethylenediamine-N,N’-diacetic acid (HBED), that 

has higher stability in soil that EDDHA (López-Rayo et al., 2009) and induces chlorophyll 

production over time (Bin et al., 2016), but requires higher concentrations to obtain the 

same Fe absorption by the plant as FeEDDHA (Nadal et al., 2012). New generation 

biodegradable complexing agents, such as hydroxyiminodisuccinate (HIDS), have also 

been proposed as good alternatives to EDTA and EDDHA (Hasegawa et al., 2012; 

Rodríguez-Lucena et al., 2010). 

 

1.7. Scope and outline of the thesis 

This study aimed at understanding IDC in plants and contributes to avoid the processes 

involved in its development. Firstly, using different crops in order to understand the 

common responses to Fe deficiency at a molecular level and, secondly, looking at soybean 

lines with different efficiencies to the unavailability of Fe, we aimed at unveiling the 

physiological and biochemical parameters related with higher tolerance to this 

phenomenon. The three main goals of this research programme were: 1) studying the 

molecular mechanisms triggered by IDC; 2) understanding the physiological mechanisms 

behind IDC; and 3) finding a possible solution to prevent IDC development in legume 

plants. To achieve these goals, more specific objectives comprised: i) identifying IDC-

relevant genes using transcriptomic analysis; ii) gaining insight into the transcriptome 

dynamics that are associated with IDC response in different grain crops; iii) studying the 

regulation of IDC-related genes in soybean cultivars with different Fe-efficiencies; iv) 

evaluating physiological and plant growth aspects associated to IDC-tolerance, to develop 

reliable tools for IDC-cultivars selection; v) correlating IDC-responses with the 

tetrapyrrole and antioxidant systems; and vi) evaluating the potential of a novel iron 

chelate (3,4-HPO) as a chlorosis corrector. 

 In this thesis, an option was made to present the results in the form of printed 

articles as they were published or submitted in international, peer-reviewed journals. 

 Even with the most recent technologies and studies that combine them, to 

understand Fe-deficiency responses in legume plants, there is still the need to identify new 

genes capable to confer better adaptation to this abiotic stress (Amaral et al., 2016) and 

that can be used as targets in biofortification programs (Manwaring et al., 2016). In 

Chapter 2 a molecular approach was undertaken to compare the transcriptome of three 
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different species, in order to understand which common genes are triggered in response to 

Fe deficiency (section 2.1). In Chapter 2 we also investigated the regulation of a set of 

IDC-related genes in two model legume species – soybean and barrel medic -, with a 

special emphasis on a new Fe metabolism-associated gene (section 2.2) and in a cereal 

crop - rice (section 2.3). 

 As previously described in the Introduction section, several physiological responses 

have been associated to IDC. Also, the selection of IDC-tolerant cultivars is one of the 

most commonly used tools to prevent agricultural losses due to the unavailability of Fe in 

the soils. Therefore, it is of the upmost importance the association of specific traits of Fe 

metabolism regulation to IDC-tolerance. To that end, a first study was performed where, 

among other physiological mechanisms, the Fe-translocation ability was studied in two 

soybean cultivars with different Fe-efficiency (Chapter 3, section 3.1). Furthermore, as 

new metabolic players are being identified as key factors in Fe reduction and uptake (e.g. 

coumarins), we focused on the influence of Fe deficiency on tetrapyrrole metabolism and 

antioxidant system (Chapter 3, section 3.2), which is an unprecedented point of view in 

this research area. After gathering molecular and physiological information on IDC 

responses, we aimed at finding a new fertilizing compound that could be an efficient 

alternative to the commercially used products (Chapter 4). The results and main 

conclusions of each previous chapter are discussed in Chapter 5, as well as the 

identification of knowledge gaps and future perspectives in Fe research. Finally, a critical 

reflection concerning the nutritional value of legume plants in face of the challenges ahead 

in the future of agriculture is presented (Chapter 5, section 5.2). A graphic representation 

of the outline of this thesis is represented in Fig. 1.8. 
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Fig. 1.8. Schematic representation of the thesis outline. Question marks represent the main 

goals achieved in each chapter. 
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In this chapter the molecular mechanisms associated with IDC will be studied. Firstly, in 

section 2.1, a non-targeted approach will be presented, where an Illumina study was 

conducted in order to obtain the common molecular responses to three cultivars with 

agronomic or research interest, namely Phaseolus vulgaris, Glycine max and Medicago 

truncatula. 

A second, targeted, approach was undertaken. While in section 2.2 the regulation of 

specific genes, including a new gene that could have preponderance in Fe metabolism 

(GCN2), was studied in both Glycine max and Medicago truncatula cultivars, in section 

2.3 genes preponderant in Fe uptake from both strategy I and II were analysed in two rice 

cultivars. 
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Among the mineral elements required by humans, iron (Fe) is the most common cause of nutritional deficiencies,
particularly anaemia. Legume plants are extremely important in the world's diet and they are major sources of
mineral nutrients. However, when these plant foods are grown in calcareous soil, their production is severely
affected by Fe deficiency chlorosis (IDC), andwhen less Fe is available for absorption, less amount of this element
will be available for accumulation in the edible plant parts. As Fe plays critical roles in photosynthesis and respira-
tion,when lacking this element, plants develop chlorosis and their growth is drastically reduced. IDCmorphological
symptomsweremonitored in soybean (Glycinemax), common bean (Phaseolus vulgaris) and themodel crop barrel
medic (Medicago truncatula).When compared to the other two legumes,G.max presented lower Fe-reduction rates
and severe chlorosis, associatedwith lower SPADvalues. Transcriptomeanalysiswas performed in roots of the three
specieswhen grown in Fe deficiency and Fe sufficiency, and 114,723 annotated geneswere obtained for all samples.
Four IDC-related genes were up-regulated in common by the three species and can be considered key players
involved in the IDC response, namely, metal ligands, transferases, zinc ion binding and metal ion binding genes.
With regards to the genes most highly expressed under iron deficiency individually by each species, we found
that the most highly expressed genes were a defensin in P. vulgaris, a phosphatase in M. truncatula and a zinc
ion binding gene in G. max.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Out of the world's 6 billion people, one third of them suffer from
mineral deficiencies. Since most of the world's population does not
ingest enough Fe to meet daily dietary requirements, Fe deficiency
is one of the most common nutritional deficiencies and the leading
cause of anaemia (Zimmermann & Hurrell, 2002). Among the main
risk groups are pregnant women and women of childbearing age
(Krafft, Murray-Kolb, & Milman, 2012), as well as children, both infants
and teenagers (Toutain, Le Gall, & Gandemer, 2012). This constitutes
a serious problem, since anaemia can cause poor pregnancy outcome
and childrenmorbidity, aswell as diminishedwork productivity in adults
(WHO, 2001).

Grain legumes are cultivated primarily for their seeds which are
rich in starch and dietary protein. Legumes have an important socio-
economical role in the Mediterranean diet. Their benefits on human
health are diverse, ranging from their high protein content, to high
concentration in micronutrients, such as Fe and zinc (Vasconcelos
& Grusak, 2006). However, the low bioavailability of Fe in alkaline
soils, where this nutrient is often insoluble, together with the cultivation
of susceptible genotypes causes drastic economic damage due to the

reduced crop viability (Zamboni et al., 2012). When Fe lacks in plant
metabolism, several processes are affected, like photosynthesis, respira-
tion, nitrogen fixation, DNA synthesis, hormone production, chlorophyll
formation (Vasconcelos & Grusak, 2006), among others. This generally
leads to the development of Fe deficiency chlorosis (IDC), characterized
by the yellowing of the upper leaves, interveinal chlorosis and stunted
growth, with the plant's yield severely affected (Prasad, 2003). To cope
with this, non-grass plants use a two-step mechanism for Fe uptake:
firstly, Fe(III) is reduced to Fe(II) by a plasma membrane-bound ferric
reductase, and the latter is subsequently released from the chelate and
then transported into the cytoplasm via a transport protein (Jeong &
Connolly, 2009). Since increasing the Fe uptake in the roots can augment
Fe concentrations in the leaves, it is possible that some of this additional
Femay be re-mobilized to the grains,whichwould help in biofortification
efforts that aim at enhancing Fe seed levels. However, the increased Fe
translocation from shoots to seeds still remains one of the major bottle-
necks in most biofortification programs (White & Broadley, 2005).

Common bean (Phaseolus vulgaris) and soybean (Glycine max) are
rich in protein, which makes them valuable crops for worldwide
consumption, and they are both susceptible to IDC. Specifically,
P. vulgaris total production exceeds 23 million metric tonnes (MT)
and consists a major staple of eastern and southern Africa, as well as
of Latin America (Broughton et al., 2003). Moreover, G. max is a good
crop to study IDC molecular mechanisms since, in 2010, its genome
was sequenced, assembled and published (Schmutz et al., 2010).
This species had a production yield of 2567 kg/ha in 2002 in Brazil
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and, besides contributing for vegetable oil production, they are also rich
sources of dietary protein for chicken and pork industries (Graham
& Vance, 2003). On the other hand, barrel medic (M. truncatula)
represents a good model for Strategy I plants, since when this plant
is challenged with Fe shortage, the most important root physiological
responses induced by Fe deficiency are developed, including the
yellowing of root tips (Andaluz, Rodríguez-Celma, Abadía, Abadía,
& López-Millán, 2009).

Different sequencing technologies have given us some insight
regarding the legume plants response to Fe deficiency. A few examples
include: 1) genome-wide transcriptional analysis in tomato roots, that
identified genes potentially involved in Fe starvation and root response
to nutrient deficiency (Zamboni et al., 2012); 2) microRNA (miRNA)
survey of genes related to Fe deficiency in Arabidopsis, where 24 miRNA
genes were found to contain Fe deficiency responsive cis-Element 1 and
2 in their promoter regions (Kong & Yang, 2010); 3) Solexa sequencing,
a high throughput sequencing technology that allowed to isolate
1,563,959 distinct M. truncatula sequences and to predict target
genes for novel miRNAs (Szittya et al., 2008); 4) high-throughput
sequencing analysis of miRNA associated with stress response in G. max,
fromwhich 133 expressed conservedmiRNAswere identified, putatively
inducible in response to certain stresses like alkalinity (Li et al., 2011).

In this study, specific genes associatedwith plantmineralmetabolism
were identified by high throughput sequencing (Illumina Hiseq 2000).
Root samples of Glycine max, Phaseolus vulgaris and Medicago truncatula
grown hydroponically under Fe-sufficiency and Fe-deficiency were
analyzed to further our knowledge on legumenutrition and abiotic stress.
Identification of these genes can help us understand the common and
individual regulatory mechanisms of iron uptake in the legumes and
assist in plant biofortification programs.

2. Materials and methods

2.1. Plant growth conditions

All plants (Medicago truncatula cultivar Luzerna revilheira, Glycine
max cultivar Williams 82 and Phaseolus vulgaris ecotype PMB-0121
[Rodiño, Monteagudo, Santalla, & De Ron, 2001]) were grown in an
Aralab Fitoclima 10000EHF with 16 h day/8 h night photoperiod.
The temperature was kept at 20 °C during the light period, with 70%
of relative humidity and 350 μmol s−1 m−2 of photon flux density,
and at 18 °C during the dark period, with 80% of relative humidity.

Scarified seeds ofM. truncatulawere germinated in 1.2% Agar inside
the chamber, and seeds of G. max and P. vulgaris were rolled in filter
paper and placed vertically in a solution of 250 mM CaCl2, for 7 days
in the dark. The 7 day old seedlings were transferred to hydroponic
solution with different Fe treatments.

The standard solution for hydroponical growth of M. truncatula
contained: 3 mM KNO3; 1 mM Ca(NO3)2; 0.5 mM MgSO4⋅7H2O;
0.5 mM NH4H2PO4; 0.75 mM K2SO4; 25 μM CaCl2; 25 μM H3BO3;
2 μM MnSO4; 2 μM ZnSO4⋅H2O; 0.5 μM CuSO4.H2O; 0.5 μM MoO3;
0.5 μM NiSO4. The conditions used for G. max and P. vulgaris included:
1.2 mM KNO3; 0.8 mM Ca(NO3)2; 0.3 mM MgSO4⋅7H2O; 0.2 mM
NH4H2PO4; 25 μM CaCl2; 25 μM H3BO3; 0.5 μM MnSO4; 2 μM ZnSO4⋅

H2O; 0.5 μM CuSO4.H2O; 0.5 μM MoO3; 0.1 μM NiSO4. All hydroponic
solutions were buffered with the addition of 1 mM MES, pH 5.5.

Five plants of each speciesweremaintained for 14 days in Fe sufficient
(10 μM Fe(III)-EDDHA [ethylenediamine-N,N′bis(o-hydroxyphenyl)
acetic acid]) and Fe deficient (0 μM Fe(III)-EDDHA) conditions. During
the time of the experiment, pH and conductivity were measured daily
and solutions were changed every 2 days.

Soil and Plant Analyzer Development (SPAD) readings were taken on
the last day of the assay with a chlorophyll meter (Konica Minolta
SPAD-502Plus;Minolta, Osaka, Japan) from at least four random trifoliate
leaves.

2.2. Fe reductase localization in roots

As previously performed by Vasconcelos et al. (2006) a gel com-
posed by nutrient solution (6 mM KNO3; 4 mM Ca(NO3)2; 1.5 mM
NH4H2PO4; 1 mM MgSO4; 25 μM CaCl2; 25 μM H3BO3; 0.5 μM
MnSO4; 2 μM ZnSO4.H2O; 0.5 μM CuSO4.H2O; 0.5 μM MoO3; 0.1 μM
NiSO4), 100 mM agarose (SeaPlaque, Duchefa Biochemie, The
Netherlands), 100 mM MES Buffer, 100 μM Fe(III)-EDTA and 100 μM
BPDS (bathophenanthroline disulfonic acid) was prepared. Intact roots
were carefully laid in the mixture and left for 45 min in the dark, before
visualization of a pink coloration around the roots was observed, indicat-
ing Fe(II)-BPDS3 formation. These assays were performed using 2-week-
old plants grown hydroponically as described above.

2.3. Root Fe reductase measurements

Reduction was measured in intact roots via the spectrophotometric
measurement of Fe2+ chelated to BPDS. To measure Fe reduction, roots
were submerged in assay solution containing: 1.5 mM KNO3, 1 mM
Ca(NO3)2, 3.75 mM NH4H2PO4, 0.25 mM MgSO4, 25 μM CaCl2, 25 μM
H3BO3, 2 μM MnSO4, 2 μM ZnSO4, 0.5 μM CuSO4, 0.5 μM H2MoO4,
0.1 μM NiSO4, 100 μM Fe(III)-EDTA and 100 μM BPDS. All nutrients
were buffered 1 mM MES, pH 5.5. The assays were conducted under
low light conditions at 20–22 °C and were terminated after 45 min
by removal of the roots. Absorbance values were obtained spectro-
photometrically at 535 nm, and an aliquot of free-roots solution
was used as blank. Rates of reduction were determined using the
molar extinction coefficient of 22.14 mM−1 cm−1.

2.4. Statistical analysis

Student's T-test corrected for multiple comparisons using the
Holm–Sidak method was used to analyse statistical significant differ-
ences between samples (Prism 6 — GraphPad Software, Inc).

2.5. RNA extraction

The roots of the five plants of each treatment were polled
together and grounded with liquid nitrogen, until a fine powder
was obtained. To extract the RNA, Qiagen RNeasy Plant Mini Kit
(USA, #74904) was used. Possible DNA contamination was removed
using the Turbo DNA-free kit (Ambion, Austin, TX, USA), according to
manufacturer's instructions. RNA quality and quantity were checked
with UV-spectrophotometry, using a nanophotometer (Implen, Isaza,
Portugal).

The RNA was sent for transcriptome analysis with high throughput
sequencing (Illumina Hiseq 2000, Fasteris, Switzerland).

2.6. Bioinformatic analysis

After Illumina sequencing, high-quality small RNA reads were
extracted from raw reads through filtering out the low quality tags
and eliminating contamination of adaptor sequences. Each sample

Table 1
Forward and reverse primer sequences used in quantitative real time PCR analyses.

Gene 5′-3′ Forward primer 5′-3′ Reverse primer

18S-rRNA TTAGGCCATGGAGGTTTGAG GAGTTGATGACACGCGCTTA
Metal ion binding ACTAACGGTGACGGGAGAGA GACATCTGGTGGCTTCGTTT
Glucan 1,
3-β-glucosidase

TACGCCGCTCTTGAAAAAGT CAATTGCTCCGGGTCTCTTA

Phosphotransferase GCAAGCACGTTCACAGAAAA TCTGCTGCAACGACCTAATG
UGT CAACACCACCAGATCATTGC TTCCCAAACTCCAGGTCTTG

1163C.S. Santos et al. / Food Research International 54 (2013) 1162–1171

!
!
! !



Chapter 2 – section 2.1  Molecular mechanisms 
 

! 47 

data were merged, normalized and mapped using Burrows–Wheeler
Aligner (BWA) mapping on references.

BWA is a program that aligns relatively short nucleotide sequences
against a long reference sequence. It implements two algorithms,
bwa-short and BWA-SW. The algorithm bwa-short is used for query
sequences shorter than 200 bp and the BWA-SW for longer sequences
up to around 100 kbp. BWA is used to map the reads with a maximum
set at two mismatches in the first 32 bases of the sequences, and a
maximum of n mismatches in total (Li & Durbin, 2010).

The GeneConv statistical tests for detecting gene software were
utilized to calculate gene abundance for each species separately and
by finding the most likely candidates for aligned gene conversion
between pairs of sequences in the alignment. The program can also
look for gene conversion events from outside of the alignment

and candidate events are ranked by multiple-comparison corrected
P-values and listed in an output file (http://www.genconv.org).

In order to analyze the quality of the high throughput sequence
data, all sequences were submitted to FastaQC software (www.
bioinformatics.babraham.ac.uk). This created a comprehensive report
about the composition and quality of a high throughput sequence
library and information was gathered about number of reads and
GC content. Per base sequence quality information of each sample is
presented in supplementary data.

2.7. Functional annotation

Genes with abundance lower than 1000 were eliminated from
the analysis. For the remaining genes, the abundance of those with
the same function was summed and a ratio of expression between
Fe-sufficient and Fe-deficient root samples was calculated. Only
those with a ratio higher than one were considered as up-regulated
genes in the analysis, resulting in a final subset of 223 genes.

The selected sequences were converted from fastaq to fasta format
file using Galaxy platform (https://main.g2.bx.psu.edu/). Sequences
were then aligned by BLASTx to NCBI non-redundant protein (nr)
database (E-value b 0.001). With nr annotation, Blast2GO program
was used to retrieve Gene Ontology annotation, InterPro identification
and sequence description.

2.8. Confirmation of differential expression

Candidate genes were selected according to the bioinformatics
analysis described above, and according to their established role on
Fe metabolism.

The same plant material that was used for the Illumina sequencing
technique was used for the quantitative real-time PCR (qPCR) to assess
and quantify the relative expression of the candidate genes.

Fig. 1. IDC symptom development in: M. truncatula grown at (A1) 0 μM Fe(III)-EDDHA and (A2) 10 μM Fe(III)-EDDHA; and in G. max grown at (B1) 0 μM Fe(III)-EDDHA and
(B2) 10 μM Fe(III)-EDDHA, in hydroponic solution.

Fig. 2. SPAD readings, at the end of 14 days of assay, inG.max, P. vulgaris andM. truncatula
grown in Fe-deficient (0 μM Fe(III)-EDDHA — darker shade) and Fe-sufficient (10 μM
Fe(III)-EDDHA — lighter shade) hydroponic conditions. SPAD values were taken from at
least four random leaves. Results show amean and a ± SE of 5 plants. Significant differences
between iron treatments for each species are indicated by an asterisk (P-value b 0.001).
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Primers targeting iron stress related genes were designed using
Primer3 (Frodo.wi.mit.edu), specifying an expected PCR product of
100–200 bp and primer annealing temperatures between 56 °C
and 58 °C. The sequences are presented in Table 1. qPCR reactions
were performed on a Chromo4 thermocycler (Bio-Rad, CA, USA).
Amplifications were carried out using 1.25 μM of the specific
primers and mixed to 12.5 μM of 2xPCR iQ SYBR Green Supermix
(Bio-Rad) and 100 ng of cDNA in a final volume of 25 μl. Three
replicates were performed for each gene tested in q PCR reactions,
as well as for controls. Melt curves profiles were analyzed for each gene
tested. The 18S rRNA gene was used as the housekeeping gene and for
normalization of expression of the genes of interest. The comparative
CTmethod (∆∆CT) (Livak & Schmittgen, 2001) for the relative quantifi-
cation of gene expression value of iron stress related genes using the
18S rRNA gene as the control transcript (Opticon Monitor 3 Software,
Bio-Rad). Data were transferred to Excel files and plotted as histograms
of normalized fold expression of target genes.

2.9. Data deposition

The Illumina sequencing reads ofG.max, P. vulgaris andM. truncatula
were submitted to NCBI Sequence Read Archive under the accession
numbers of SRS393260, SRS393259 and SRS393261, respectively, in
the project number PRJNA189320.

3. Results and discussion

3.1. Morphological responses

M. truncatula and G. max plants grown in hydroponics without
Fe(III)-EDDHA developed visible symptoms of IDC, namely yellowing
of leaves, whereas plants grown with 10 μM Fe(III)-EDDHAwere green
throughout the experiment (Fig. 1). P. vulgaris remained green until the
end of the assay, in both treatments.

Roots of plants grown in Fe-deficient conditions developed more
secondary structures and showed clear differences of root development
when compared to the Fe-supplied plants, which presented longer
roots, mainly primary. As previously observed by others (Schmidt,
1999), the plants under Fe-deficient conditions developed swelling of
root tips, lateral roots and root hairs, in order to increase root surface
and, consequently, Fe uptake.

It is known that young leaves become chlorotic during iron limitation
due to inhibition of chloroplast biogenesis and chlorophyll biosynthesis
(Henriques et al., 2002). As Fe chlorosis decreases the level of chlorophyll
in plant species, Fe deficiency leads to decreased photosynthesis (Prasad,
2003). Soybeanwas themost susceptible plant to IDC since it showed the
lower SPAD values when compared with the other species, even when
in Fe-sufficiency (Fig. 2). This could be explained by the fact that the
G. max cultivar utilized in this study (Williams 82) is very susceptible
to Fe shortage. This was the chosen cultivar due to the fact that it was
the one used for sequencing the soybean reference genome (Schmutz
et al., 2010), and this was the reference genome used in our bioinformat-
ics analysis.

The model crop barrel medic was the only species that showed
statistically significant differences between SPAD values, as Fe-deficient

Fig. 3. Root iron reductase activity localization in roots of G. max and P. vulgaris grown at (A1) and (B1) 0 μM Fe(III)-EDDHA and at (A2) and (B2) 10 μM Fe(III)-EDDHA: formation of
the reddish colored Fe(II)-BPDS3 product indicates the location of Fe reduction.

Fig. 4. Roots Fe reduction activity in G. max, P. vulgaris and M. truncatula, when grown
in Fe-sufficient (10 μM Fe(III)-EDDHA) and Fe-deficient (0 μM Fe(III)-EDDHA) hydroponic
conditions. Plants were assayed for 45 min, absorbance values were obtained at 535 nm
and these were applied to calculate reduction rates. Results show the mean and ± SE of 5
plants. Significant differences between iron treatments for each species are indicated by an
asterisk (P-value b 0.05).
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to Fe-sufficient samples had an increase of 41%. G. max and P. vulgaris
had an increase of 4% and 13%, respectively, but this was not statistically
significant (Fig. 2). M. truncatula is considered a model crop since, when
in Fe-deficiency, it allows the observation of IDC symptoms development
and remains healthy when in Fe-sufficiency.

3.2. Visualization of Fe reductase activity

To localize Fe reductase activity in the roots, an agarose assay with
BPDS was performed. After 45 min in the dark, the reddish colored
Fe(II)-BPDS3 product was detected along Fe supplied and Fe deficient
roots (Fig. 3). The color intensity was higher in the plants grown in
the presence of Fe, but the plants grown in Fe deficient conditions,
the lateral roots showed higher reductase activity in contrast to the
main roots. Once again, this indicates how important the develop-
ment of these secondary root structures is to increase Fe uptake and
how their growth is related to IDC symptoms (Rodríguez-Celma,
Vásquez-Reina, et al., 2011).

3.3. Root Fe reductase activity

As shown in Fig. 4, the reductase activity in all species, when
grown in the presence of Fe is always higher than when grown in
the absence of this element; however this was only statistically
true for G. max. Cohen, Norvell, and Kochian (1997) argue that the
induction of plasmamembrane ferric reductase is a response specific
to Fe-deficiency, since this condition plays an exclusive role in
eliciting elevated activity of this enzyme in intact root systems of
various legume species. But in the present work, as in Vasconcelos
et al. (2006) experiments, plants grown in the absence of Fe, exhibited
poor Fe reduction rates.

G. max had the lowest levels of reduction, in opposition to P. vulgaris,
which had 93% and 50% higher rates of reduced Fe at 0 μMFe(III)-EDDHA
and 10 μM Fe(III)-EDDHA, respectively.

3.4. Sequence analysis

A total of 114,723 annotated genes were obtained for all samples
(Table 2). More specifically, we obtained 23,052,072 and 29,447,921
quality reads expressed by G. max; 22,146,154 and 26,617,669 quality
reads expressed by P. vulgaris; and, finally, 35,617,680 and 29,728,214
quality reads expressed byM. truncatula, grown in Fe-sufficient and in
Fe-deficient conditions, respectively.

All samples had an average of 40% of GC content and, considering
the default Illumina criteria, G. max sequences had 85.7% of quality,
P. vulgaris 86.6% and M. truncatula 90.4%. These values represent the
high quality of the samples and allow a better and more accurate
analysis of gene expression levels.

3.5. Functional annotation and classification

For validation and annotation of assembled genes, a sequence
similarity search was conducted against nr database using BLASTX
algorithm with an E-value threshold of 10−3.

The data from the six samples in study were compiled and the amino
acid sequences were grouped into different functional sub-categories
within the Cellular Component, Molecular Function and Biological
Process GO organizing principles.

Within the Biological Process category, “cellular process” and
“metabolic process” were prominently represented (Fig. 5). In
Cellular Component the majority of the sequences corresponded
to “cell”, “organelle” and “membrane” terms (Fig. 5). Furthermore, the
matches for Molecular Function were most prevalent within “binding”,
“catalytic activity” and “transporter activity” (Fig. 5).

3.6. Gene expression in response to Fe stress

Abiotic stress such as nutrient deficiency in the soil is one of the
primary causes of crop losses worldwide. Also, the amount of nutrients
which are accumulated by plant foods will be influenced by their
availability in the soil. Therefore, unravelling the molecular response
underlying stress resistance of economically important plants has
profound implications. Fe is a crucial participant in biological redox pro-
cesses like photosynthesis and respiration (Rodríguez-Celma, Lattanzio,
et al., 2011) and, when lacking this nutrient, it is expected that plants
suffer from its absence. To cope with this problem, as referred in
Introduction, legumes and other plants have developed a strategy that
allows them to increase their Fe uptake capacity.

The transcriptomic sequences of G. max and P. vulgaris were
compared to the sequences of the model plant M. truncatula and
between each other in order to find the common features displayed
by these species to antagonize Fe deficiency. Of the total sequences,
only those with an abundance higher than 1000 (both in Fe-deficiency
and Fe-sufficiency) were analyzed. Four sequences were commonly
up-regulated in Fe-deficiency (when compared with the control
treatment) to all three species and about 10% of the sequences
were common between M. truncatula and G. max, between G.max
and P. vulgaris and between M. truncatula and P. vulgaris.

Fig. 6A and Table 3 show the four common gene families that were
up-regulated by the three legume species. It can be seen that the four
genes commonly up-regulated by the three species were a protein
kinase (GO:0030295), a heavy metal ion binding (GO:0046872), a
transferase (GO:0080089) and a zinc ion binding (GO:0008270). Fig. 6B
shows the five common gene families that were down-regulated by
the three legume species. These were an oxidoreductase (GO:0016629),
a nucleoside-triphosphatase (GO:0017111), a copper ion binding
(GO:0005507), a thioredoxin (GO:0009055), and a carboxylic ester
hydrolase (GO:0052689).

In order to control mineral homeostasis, plants have evolved
a complex network of events directed by numerous genes. This

Table 2
Summary of sequence information (with abundance ≥ 1000) in root samples of P. vulgaris, G. max and M. truncatula grown in the presence (+) or absence (−) of Fe.

P. vulgaris Fe (+) P. vulgaris Fe (−) G. max Fe (+) G. max Fe (−) M. truncatula Fe (+) M. truncatula Fe (−)

Total number of genes 14,260 12,114 24,150 19,091 23,980 21,128
No. of reads 22,146,154 26,617,669 23,052,072 29,447,921 35,617,680 29,728,214
Mapped 15,277,115 21,544,299 16,494,316 21,368,881 17,324,296 14,033,557
% mapped 69.0 80.9 71.6 72.6 48.6 47.2
% GC 44 40 43 43 41 41
Quality (%PF) 86.72 86.49 85.66 85.83 90.26 90.59
% of N = Q30 Bases (PF) 90.20 90.84 90.13 90.11 92.65 92.78

PF stands for “passed filter” that indicates values for quality score cut-off.
Q30 is a score equivalent to the probability of incorrect base call 1 in 1000 times.
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Fig. 5. Gene ontology classification of the annotated amino acid sequences accordingly to three main categories: biological process, cellular component and molecular function.
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network includes metal ligands with different substrate specific-
ities, transferases and regulatory proteins such as protein kinases
(Ghandilyan, Vreugdenhil, & Aarts, 2006), all commonly expressed by
the legumes under our study.

Metal ion binding proteins such as the rice transcription factor
IDEF1 have shown to directly bind to iron and other divalent metals
for sensing cellular iron status (Kobayashi et al., 2012). Studies
in Dunaliella salina have also shown that iron deficiency induces
a large enhancement of iron binding capacity (Paz, Shimoni, Weiss,
& Pick, 2007). The authors suggest that the major parameter that is
modulated by iron deficiency is iron-binding capacity, and they propose

that excessive iron binding in iron-deficient cells serves as a temporary
reservoir for iron that is subsequently internalized. The metal ion bind-
ing gene family up-regulated in our study could have a parallel function
in the legumes and could be a key gene in iron deficiency responses.

Transferases are enzymes which catalyze the transfer of functional
groups from donor to receptor molecules. As post-transcriptional
regulation, including phosphorylation and methylation, have been
hypothesized as key events in modulating Fe deficiency responses
(Lan, Li, Wen, & Schmidt, 2012), the common up-regulation of this
gene family by the three legumes under study further cements this
hypothesis.

Fig. 6. A Venn diagram showing the comparisons of the (A) up-regulated and (B) down-regulated sequences that are in common between Glycine max, Phaseolus vulgaris and Medicago
truncatula grown at 0 μMFe(III)-EDDHA. All sequences with abundance higher than 1000were compared and sequences with the same identification in databases were considered common.

Table 3
Gene ontology identity of up-regulated genes to G. max, P. vulgaris and M. truncatula (Gm x Pv x Mt), to P. vulgaris and G. max (Pv x Gm), to P. vulgaris and M. truncatula (Pv x Mt)
and to G. max and M. truncatula (Gm x Mt) and of only P. vulgaris, only G. max and only M. truncatula presented in Fig. 6.

Common genes G. max P. vulgaris M. truncatula

Gene ontology ID GO:0046872 GO:0016567 GO:0030414 GO:0016791
GO:0080089 GO:0009505 GO:0046872 GO:0043295

Gm x Pv x Mt GO:0030295 GO:0019953 GO:0015103 GO:0004372
GO:0008270 GO:0009001 GO:0004221 GO:0003674
GO:0017017 GO:0009269 GO:0047889 GO:0007128

Pv x Gm GO:0003723 GO:0004872 GO:0004579 GO:0015238
GO:0008889 GO:0009651 GO:0008536 GO:0009409

Pv x Mt GO:0055085 GO:0004657 GO:0016161 GO:0018580
GO:0003676 GO:0006559 GO:0047513 GO:0004674
GO:0071805 GO:0019825 GO:0000398 GO:0008272

Gm x Mt GO:0016773 GO:0009703 GO:0005524 GO:0030976
GO:0030410 GO:0045548 GO:0008756
GO:0004497 GO:0004462 GO:0016740
GO:0008237 GO:0042389 GO:0047134
GO:0017153 GO:0030244 GO:0005765
GO:0004332 GO:0042349 GO:0016301
GO:0016165 GO:0031386 GO:0080025
GO:0009737 GO:0005787 GO:0005509
GO:0004091 GO:0042493 GO:0048443
GO:0010279 GO:0009055 GO:0009867
GO:0005215 GO:0004866 GO:0006352
GO:0045298 GO:0010181 GO:0004298
GO:0006417 GO:0003756 GO:0004553
GO:0003677 GO:0017111 GO:0004713
GO:0000166 GO:0006508 GO:0004333
GO:0009611 GO:0006486
GO:0034969 GO:0015693
GO:0046872 GO:0004656
GO:0008289 GO:0004806
GO:0031225 GO:0045735

GO:0003993
GO:0008447
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Zinc ion binding proteins, which were also found in our study to be
commonly up-regulated by the three legumes, have been previously
linked to Fe deficiency responses. It is the case, for example of members

of the ZIP family of transporters, which are known to bind and transport
Fe and Zn (Eng, Guerinot, Eide, & Saier, 1998). It is also the gene family
most highly expressed by G. max under iron deficiency (Fig. 7).

Finally, the last gene which was commonly up-regulated by the
three legumes was a protein kinase. Similar to transferases, protein
kinases are involved in post-translational modifications, and, as
suggested before, phosphorylation processes can be very important
in modulating Fe deficiency responses. Our data seem to indicate that
in fact post-translational modifications are key processes in regulating
IDC mechanisms.

Fig. 7 represents the five most up- and down-regulated genes in
G. max (Fig. 7A), P. vulgaris (Fig. 7B) and M. truncatula (Fig. 7C), when in
Fe shortage. With regards to species specific regulation, the most highly
expressed gene in M. truncatula plants grown under iron deficiency
was a phosphatase (GO:0016298). It has been shown before that phos-
phorylation patterns of several enzymes are altered by Fe starvation in
the model plant Arabidopsis thaliana (Lan et al., 2012), indicating that
this event may also be especially important in M. truncatula.

In P. vulgaris, a defensin was the gene with highest expression
levels under Fe shortage (Fig. 7). Defensins are small cysteine-rich
proteins that have a known role in biotic stress defence (De Coninck
et al., 2010) and cell-to-cell communication (Takeuchi & Higashiyama,
2012). This species-specific gene may have an important role in Fe
deficiency responses in P. vulgaris.

In calcareous soil, Fe is abundant in its ferric form, which is not
soluble. In order to solubilize Fe, plants had to develop a strategy to
transform thismicronutrient to its ferrous form (Prasad, 2003). Strategy
I plants acidify the soil by proton release to enhance Fe uptake (Grotz &
Guerinot, 2006). ATPases are responsible for proton extrusion to the
rhizosphere and these proton pumps were detected in all samples.
Also, ATPases intervene in redox reactions as several other oxidative
stress related genes that were found in all samples, like previously
referred. Oxidoreductases (GO:0016629) were highly down-regulated
by all species (Figs. 6B, 7, Table S2) and, like in other studies with tomato,
redox regulation proteins have particular importance in Fe-deficiency
stress adaptation (Brumbarova, Matros, Mock, & Bauer, 2008). Ferric re-
ductases are NADPH-dependent and NAD-related genes (GO:0035798;
GO:0009703; GO: 0043295; GO:0004022; GO:0050661) expression was
found in all samples too (Tables S1 and S2).

Isoflavonoid pathway appeared to have a significant role in
IDC stress response. UDP-glucuronosyltransferase (UGT, GO:0016157)
was found to be highly up-regulated by Fe-deficient G. max plants
(Fig. 7A, Table S1) and enzymes belonging to UGT family seem to be
key in the production of isoflavones that participate in stress response
induction (Noguchi et al., 2007). With a similar function to UGT, an
isoflavonoid malonyl transferase (GO:0016740) was up-regulated by
M. truncatula (Fig. 7C, Table S1). On the other hand, M. truncatula also
repressed one gene encoding a β-glucosidase (GO:0042973), an en-
zyme of the isoflavonoid pathway (Fig. 7C, Table S2). As confirmed by
qPCR, UGT was up-regulated by G. max and, when in Fe-sufficiency,
M. truncatula the abundance the enzyme β-glucosidase appears to aug-
ment (Fig. 8). Using qPCRwe also confirmed the common expression of
metal ion binding gene (Fig. 8) and all species presented a higher fold of
expression when in Fe-sufficiency, which is coherent since the more Fe
quantity is available, more metal ion binding genes will be needed.
The glucan 1,3-β-glucosidase gene was also confirmed by qPCR and
its transcript levels matched the results obtained by RNAseq. It was
undetected in G. max and P. vulgaris and was repressed in iron deficiency
conditions. Lastly, the gene phosphotransferase (GO:0016773) was also
monitored by qPCR and results indicate an induction of this gene in
G. max under iron deficiency. The expression of this phosphotransferase
was down-regulated by Fe-deficient P. vulgaris sample (Fig. 7B,
Table S2) and this was also observed in qPCR results (Fig. 8).

Several genes related to lipid, RNA and DNA binding were detected,
whichmay show that the stress induced by the lack of Fe could result in
the modification of such molecules. Interestingly, among the five most

Fig. 7. The five most up and down-regulated genes by (A) G. max, (B) P. vulgaris and
(C) M. truncatula, grown in Fe-deficiency (0 μM Fe(III)-EDDHA) compared to Fe sufficiency
(10 μM Fe(III)-EDDHA) hydroponic conditions.
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up-regulated genes in P. vulgaris (Fig. 7B, Table S1) an ubiquitin
thiolesterase encoding gene (GO:0004221) was detected. Although
the exact function of this gene is not fully understood, it appears to
be important in removing and recycling ubiquitin molecules from
degraded proteins and linking together ubiquitin molecules for
use in tagging proteins for disposal (Garbarino, Oosumi, & Belknap,
1995). The direct link between these functions and Fe deficiency
response can be explored.

4. Conclusion

IDC is a complex phenomenon in which several factors are involved.
In general, plants behaved differently in terms of chlorophyll levels, IDC
symptoms and reduction of Fe when grown in the presence or absence
of Fe, suggesting that legume grains do not all respond to Fe stress
equally.

G. max showed acute IDC symptoms and Fe reduction rate had
a higher increase than the other species when the samples were
supplementedwith 10 μMFe solution in comparison to the Fe deficient
samples.

SPAD measurements confirmed that our growth conditions in-
duced iron sufficiency and deficiency, since when in presence of the
essential micronutrient the chlorophyll concentration was enhanced
and chlorosis was alleviated.

In general, all samples up-regulated several Fe-metabolism related
genes and,more interestingly, most of themwere related to Fe deficiency
control. This work has allowed us to identify key genes necessary in the
response to Fe deficiency in the studied legumes: we found genes with
functions related to metal ion binding, to protein kinase, to transferase
activity and to zinc ion binding activity. These four gene families must
have a critical role in Fe-deficiency responses as they were commonly

up-regulated by the three legumes. Metal ion binding genes that interact
selectively and non-covalently with any metal ion, therefore are likely
candidates for this role. The same is true for the zinc ion binding proteins,
as Zn and Fe share common transporters and regulatorymechanisms. The
role of protein kinases and transferases should be explored, as these
genes are not commonly relatedwith IDC, but they indicate an important
role of posttranslational modifications of proteins involved in the Fe
deficiency response. Also, novel sequences were identified in our studies
but not commonly up-regulated by the three legumes, such as lipid,
RNA and DNA binding genes — denoting modifications at the molecular
level — and several isoflavonoid pathway-related genes were identified,
which could indicate that this is an important pathway in antagoniz-
ing IDC. In what concerns species-specific responses to Fe-deficiency,
the most highly expressed genes for each species were a zinc ion
binding gene in G. max, a defensin in P. vulgaris, and a phosphatase
in M. truncatula. It is also noteworthy that a member of NRAMP
family, directly linked to Femetabolism, was only detected in P. vulgaris
samples and an ubiquitin thiolesterase was also very up-regulated; and
that UGT was found in the list of the most up-regulated genes of G. max,
but not in the other species.

Since Fe deficiency is the leading human nutritional disorder in
the world today, there is great interest in enhancing the knowledge
on Fe metabolism, not only to combat IDC crop devastation and
consequent economic damage, but also to increase Fe content in the
edible parts of legume plants in order to improve human nutrition and
health (Sperotto, Ricachenevsky, Waldow, & Fett, 2012).
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A B S T R A C T

Legume grains have an important socio-economical role, being highly utilized in human and animal nutrition. Although 
iron (Fe) is abundant in the earth’s crust, its limited solubility makes it poorly bioavailable for plants, contributing to 
iron deficiency chlorosis (IDC). In this work the physiological and molecular mechanisms associated with IDC were 
studied, namely, the mechanisms involved on Fe deficiency response, as well as a new Fe metabolism related gene in 
two important legume crops, Glycine max and Medicago truncatula. Fe deficient plants developed: decreased root and 
shoot length, increased number of secondary roots and lower chlorophyll levels. Fe shoot content decreased six- and 
11-fold for G. max and M truncatula in Fe-deficiency. Whilst in G. max roots no significant differences were detected, 
in M. truncatula roots Fe decreased nine-fold in Fe-deficiency. Genes involved in Fe uptake (FRO2-like and IRT1-like), 
were over-expressed in roots of Fe-sufficient G. max and in Fe-deficient M. truncatula. VIT1-like, YSL1-like and ferritin 
presented higher expression levels in Fe-sufficient shoots and roots, whereas NRAMP3-like and GCN2-like showed 
higher expression values in Fe-deficiency. 

Key Words: Ferric reductase, Glycine max, Medicago truncatula, morphological analysis, RT-PCR.

R E S U M O

As leguminosas têm um importante papel socio-económico, pela sua utilização na nutrição humana e animal. Apesar 
do ferro (Fe) ser um elemento abundante na crosta terrestre, a sua solubilidade limitada diminui a disponibilidade para 
as plantas, contribuindo para o desenvolvimento da Clorose por Insuficiência de Ferro (CIF). No presente trabalho, 
mecanismos fisiológicos e moleculares associados à CIF foram estudados, nomeadamente, os mecanismos de resposta 
à insuficiência de Fe e um novo gene associado ao metabolismo do Fe, em duas espécies cultivadas com relevância 
económica, Glycine max e Medicago truncatula. Plantas deficientes em Fe apresentaram: tamanho diminuído, maior 
número de raízes secundárias e baixos níveis de clorofila. Em insuficiência de Fe, o conteúdo de Fe na parte aérea 
diminuiu seis e onze vezes para G. max e M. truncatula, respetivamente; nas raízes de G. max não houve diferenças 
significativas e nas de M. truncatula o conteúdo de Fe diminuiu nove vezes. Genes envolvidos na absorção de Fe (FRO2-
like e IRT1-like) foram sobre-expressos nas raízes de G. max em suficiência de Fe e, nas raízes de M. truncatula, quando 
em insuficiência. VIT1-like, YSL1-like e ferritina apresentaram níveis de expressão mais elevados em suficiência de Fe, ao 
contrário dos genes NRAMP3-like e GCN2-like, cuja expressão foi aumentada em insuficiência de Fe.

Palavras-chave: Análise morfológica, luzerna-cortada, reductase férrica, RT-PCR, soja.
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INTRODUCTION

Legumes represent one of the most important 
foods, for both humans and animals (Vasconcelos 
and Grusak, 2006), providing an important source 
of protein and oil (Libault et al., 2010). One of the 
world’s top commodity production is soybean 
(Glycine max L.). In fact, much of the world’s 
protein and oil comes from soybean and this 
legume contains more protein (40%) and oil (20%) 
than any other ordinary food source, including 
meat, cheese and fish (Krishnan, 2005; Bolon et al., 
2010). The appropriate addition of soy to different 
products, results in lower calorie alternative food 
products, with high content of protein, dietary 
fiber and minerals, preserving the physical and 
sensory characteristics of the product (Dhingra 
and Jood, 2001). The genome of soybean was 
sequenced, assembled and published (Schmutz et 
al., 2010), making it a good model crop to study 
genetic and molecular mechanisms. Barrel medic 
(Medicago truncatula) has been chosen as a model 
species for molecular studies in view of its growth 
and genomic characteristics (Trieu et al., 2000). To 
be convenient as a model for legume genomics, it 
is also essential that M. truncatula exhibit genome 
conservation with other crop legumes. Detailed 
comparisons between M. truncatula and M. 
sativa – a high feeding value crop used in animal 
nutrition – have reported that marker relationships 
were uniformly syntonic and that genes from M. 
truncatula share very high sequence identity to 
their counterparts from M. sativa, so it serves as 
an excellent model organism for soybean and other 
economically important legumes (Bell et al., 2001; 
Choi et al., 2004).

Besides protein and oil, legumes are also an 
important source of micronutrients, such as iron 
(Fe) (Vasconcelos and Grusak, 2006). This mineral 
is involved in the production of chlorophyll, and 
is also a component of many enzymes associated 
with the antioxidant system, energy transfer and 
nitrogen reduction and fixation. Legumes are 
very susceptible to Fe deficiency, when grown in 
adverse conditions, like calcareous soils, due to 
the low solubility of the oxidized form of Fe (Fe3+) 
at near neutral and alkaline soil pH (Waters et al., 
2002; Andaluz et al., 2009). Insufficient Fe uptake 
leads to Fe-deficiency chlorosis (IDC) symptoms, 
such as yellowing of the younger leaves, interveinal 

chlorosis and stunted growth, as well as reduction 
of crop yields (Prasad, 2003; Kim and Guerinot, 2007). 
IDC lowers the concentrations of Fe in the seeds and 
other harvested tissues (Grusak, 1999), affecting 
both farmer profit and the nutritional value of plant 
products (Vasconcelos and Grusak, 2013). 

In order to uptake Fe from the soil, dicotyledonous 
plants such as soybean and barrel medic, utilize 
Strategy I, where Fe3+ is reduced to Fe2+ through 
the action of a membrane-bound Fe3+-chelate 
reductase, like the ferric reduction oxidase (FRO). 
Fe2+ is then transported into the plant by specific 
membrane transporters (Grotz and Guerinot, 
2006), such as the Iron-Regulated Transporter 1 
(IRT1) (Waters et al., 2002). A broad spectrum of 
transporters have been characterized, such as 
the Natural Resistance Associated Macrophage 
(NRAMP) proteins, involved in Fe import into the 
cytoplasm, the Vacuolar Iron Transporter (VIT), 
involved in the uptake of Fe2+ into the vacuole for 
storage (Brear et al., 2013), and the Yellow Stripe 
1-Like (YSL), involved in the transport of Fe2+-
NA complexes (Kim et al., 2006). Free Fe is toxic 
since it facilitates the generation of highly reactive 
oxygen species (ROS). ROS can damage cellular 
constituents and, therefore, Fe homeostasis needs 
to be strictly controlled to avoid iron deficiency 
and toxicity (Liao et al., 2012). Therefore, storage 
proteins, such as Ferritin, play an important role 
in iron homeostasis, since they assure that ferric 
Fe is bio-available in case of cellular needs but yet 
nonreactive with oxygen (Briat et al., 2010). 

Even though much has been learned about the 
physiology of Fe uptake in Arabidopsis, there is 
still a limited understanding of the physiology 
of tolerance to Fe deficiency in soybean and 
barrel medic, and this has hampered breeding 
programs (Vasconcelos and Grusak, 2013). There 
have been few works focusing in the comparative 
study between these two species (Yan et al., 2004), 
however more information is needed to understand 
the mechanisms at a molecular level, such as 
which genes have been selectively conserved or 
lost between both species. Since increasing the Fe 
uptake in the roots can augment Fe concentrations 
in the leaves, it is possible that some of this 
additional Fe may be remobilized to the grains, 
which would help in biofortification efforts that 
aim at enhancing Fe seed levels (Santos et al., 2013, 
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2015). However, the increased Fe translocation 
from shoots to seeds still remains one of the major 
bottlenecks in most biofortification programs 
(White and Broadley, 2005), and the answer to 
this may be in the identification of new candidate 
genes. GCN2 is a protein kinase present in several 
organisms such as mammals and yeasts (Lageix et 
al., 2008) and is activated in plants by amino acid 
deprivation conditions (Zhang et al., 2008), as well 
other stress stimuli, such as purine deprivation, 
UV light, cold shock and wounding (Lageix et al., 
2008). To this date, there are no published studies 
on the role of GCN2 on Fe uptake in plants growing 
in Fe deficiency, which makes the study of this gene 
an important innovation in Fe nutrition in plants. 
However, its regulation is still not well known (Liu 
et al., 2015), which makes it relevant to study this 
gene, in order to understand how its expression if 
affected by Fe deficiency and which mechanisms it 
may be associated with.

The present study describes the common 
mechanisms underlying the response to Fe 
deficiency at a physiological and molecular level, 
in G. max and M. truncatula grown hydroponically 
under Fe deficiency and Fe sufficiency. It also 
describes further analysis on the role of a novel 
candidate gene, GCN2, on Fe metabolism.

MATERIALS AND METHODS

Plant material and growth conditions
Medicago truncatula cultivar “Luzerna revilheira” and 
Glycine max cultivar “Williams 82” were grown in a 
growth chamber (Aralab Fitoclima 10000EHF) with 16 
h day / 8 h night photoperiod. The temperature was kept 
at 20 ºC during the light period, with 350 µmol s-1 m-2 of 
photon flux density, and at 18 ºC during the dark period, 
with 75 % of relative humidity. Seeds of M. truncatula 
and of G. max were germinated for seven days in the 
dark and then transferred to hydroponic solutions with 
20 µM FeEDDHA (Fe+) or with no FeEDDHA (Fe-) 
supply. The standard solution for hydroponic growth 
of M. truncatula contained as macronutrients: 3 mM 
KNO3, 1 mM Ca(NO3)2, 0.5 mM MgSO4.7H2O, 0.5 
mM NH4H2PO4, 0.75 mM K2SO4, 25 µM CaCl2; and 
as micronutrients: 25 µM H3BO3, 2 µM MnSO4, 2 µM 
ZnSO4.H2O, 0.5 µM CuSO4.H2O, 0.5 µM MoO3, 0.5 
µM NiSO4. The conditions used for G. max included as 

macronutrients: 1.2 mM KNO3, 0.8 mM Ca(NO3)2, 0.3 
mM MgSO4.7H2O, 0.2 mM NH4H2PO4, 25 µM CaCl2;  
and as micronutrients: 25 µM H3BO3, 0.5 µM MnSO4, 2 
µM ZnSO4.H2O, 0.5 µM CuSO4.H2O, 0.5 µM MoO3, 0.1 
µM NiSO4. Both hydroponic solutions were buffered by 
the addition of 1mM MES, pH 5.5. The assay ended at 
the 14th day of hydroponic growth.  

Morphological and biochemical evaluations
At the end of the experimental time period, five 
plants of each species and treatment were harvested 
and the length and fresh weight of shoots and roots 
was measured. Also, the number of secondary roots 
was counted and the chlorophyll concentration 
was quantified accordingly to Abadía et al. (1984).

Fe reduction was measured in the roots of five intact 
plants via the spectrophotometric measurement of 
Fe2+ chelated to BPDS, as described in Vasconcelos 
and Grusak (2006). Rates of reduction were 
determined using the molar extinction coefficient 
of 22.14 mM−1 cm−1. Roots and shoots were dried at 
70 ºC and 200 mg of each sample was analyzed for 
the determination of Fe content using the ICP-OES 
Optima 7000 DV (PerkinElmer, Massachusetss, 
USA) with radial configuration, according to Roriz 
et al. (2014).

Gene expression analysis
Additional five replicates of each species and 
treatments were pooled and the RNA from leaves 
and roots was extracted following manufacturer’s 
instructions, using the Qiagen RNeasy Plant Mini 
Kit (USA, #74904). cDNA was synthesized using 
First Strand cDNA Synthesis Kit (Fermentas).

Candidate genes were selected according to their 
established (FRO2-like, IRT1-like, NRAMP3-like, 
VIT1-like, YSL1-like, ferritin) or possible (GCN2-
like) role on Fe metabolism. In order to identify 
orthologs for these genes, known sequences from 
Arabidopsis were blasted, and the most homologous 
sequence (Evalue < 10-20) was selected (Table 1). 
Quantitative Real-Time PCR (qPCR) reactions 
were performed on a Chromo4 thermocycler (Bio-
Rad). Amplifications were carried out using 1.25 
μM of the specific primers and mixed to 12.5 μL 
of 2xPCR iQ SYBR Green Supermix (Bio-Rad) and 
100 ng of cDNA in a final volume of 25 μl. Three 
technical replicates were performed for each gene 
tested in qPCR reactions, as well as for controls. 
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The amplification of all genes was performed 
accordingly to Han et al. (2013). The comparative 
CT method (ΔΔCT) (Livak and Schmittgen, 2001) 
was utilized for the relative quantification of gene 
expression value of Fe stress related genes using 
the 18S rRNA gene as the housekeeping gene 
(Opticon Monitor 3 Software, Bio-Rad).

RESULTS AND DISCUSSION

For several organisms, Fe represents a cofactor 
in vital metabolic pathways such as the electron 
transport chain of respiration. Plants have an 
additional need for Fe because photosynthesis 
and chlorophyll biosynthesis both require this 
micronutrient (Jeong and Guerinot, 2009). Thus, 
how plants maintain Fe homeostasis and the 
anatomical modifications concerning Fe absence 
is a biologically relevant question. In the current 

work, when Fe was absent, both G. max and 
M. truncatula behaved similarly, developing 
characteristic IDC symptoms, such as impaired 
growth, observed by the reduction in plant weight 
and length (Table 2). More specifically, G. max had 
2.2- and 2.1-fold lower fresh weight in shoots and 
roots, respectively, under Fe deficiency, which was 
more pronounced than M. truncatula, that had a 
reduction of 1.5- and 1.8-fold (Table 2). 

Another important characteristic associated 
with the absence of Fe is the development of 
secondary structures. Here, plants submitted 
to -Fe conditions showed swelling of root tips 
and increased number of secondary structures, 
namely, an average of 60 % more for G. max and 69 
% more for M. truncatula (Table 2). The increased 
number of secondary structures helps the plant in 
augmenting the absorbable area for Fe uptake, and 
the scavenging of Fe in the rhizosphere (Schmidt, 

Table 1 - Gene accession numbers and forward and reverse primer sequences used in quantitative Real-Time PCR analysis
Table 1 – Gene accession numbers and forward and reverse primer sequences used in 
quantitative Real-Time PCR analysis 

 
 
 
  

Gene Species Accession 
numbers 

Primer sequences 

18S rRNA - X75080.1 F 5’- TTAGGCCATGGAGGTTTGAG -3’ 
R 5’- GAGTTGATGACACGCGCTTA -3’ 

FRO2-like
G. max XM_003548612.1 F 5’- TGCTTGGACTCACACCAGAG -3’ 

R 5’- AGAGGTAGAAACCGGGGAGA -3’ 

M. truncatula XM_003622457.1 F 5’- CACTTGTGATGGTGAGTGGA -3’ 
R 5’- GATGGTGTGCCAGAAATAGG -3’ 

IRT1-like
G. max XM_003520096.2 F 5’- GATTGCACCTGTGACACAAA -3’ 

R 5’- CAGCAAAGGCCTTAACCATA -3’ 

M. truncatula XM_003630873.1 F 5’- GACAAAGGAACCGGAACAAA -3’ 
R 5’- TTGATGGAAGCAAAGTGCAG -3’ 

YSL1-like
G. max XM_003536126.2 F 5’- GCTTTTGGAGCAGGTCTCAC -3’ 

R 5’- AGACCACAACCCACAAGTCC -3’ 

M. truncatula XM_003602267.1 F 5’- GATCTTGGCCCACAACAAGT -3’ 
R 5’- ACTGCAGGAACCATCAAACC -3’ 

VIT1-like
G. max XM_003525172.2 F 5’- TTGTTAGCTTGGCGTGACAG -3’ 

R 5’- TGCAACCAAGGTAACCACAA -3’ 

M. truncatula XM_003630932.1 F 5’- GGGTGGAATTGTTCCTCTCA -3’ 
R 5’- AGCACTCCTGATTGGCTTGT -3’ 

ferritin 
G. max U31648.1 F 5’- CCCCTTATGCCTCTTTCCTC -3’ 

R 5’- GCTTTTCAGCGTGCTCTCTT -3’ 

M. truncatula XM_00362331.1 F 5’- GTAAGAAATGGGGTGGTGGA -3’ 
R 5’- CGAGCCAAAGAAACTTGAGG -3’ 

NRAMP3-like
G. max XM_003524624.2 F 5’- TGTTCAGTCAAGGCAGGTTG -3’ 

R 5’- CCAGCATTTACAAGGCCAAT -3’ 

M. truncatula XM_003611600.1 F 5’- TTTGGATCCTGGAAACTTGG -3’ 
R 5’- GCTGAATCAAAAGCCCCATA -3’ 

GCN2-like
G. max XM_006592086.1 F 5’- ATCCTTGCCTCATCACCAAC -3’ 

R 5’- ATGGGGAACTGTGTTTGAGC -3’ 

M. truncatula XM_003636896.1 F 5’- GTAACCGAGGTCCGAGATGA -3’ 
R 5’- CTCCACCATGGGTCAGAAGT -3’ 
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1999). Since the surface of root hairs can represent 
up to 70% of the total root surface area (López-
Bucio et al., 2003), the relevance of root hairs in 
nutrient uptake is crucial. 

At the shoot level, the absence of Fe is known to 
inhibit chloroplast biogenesis and chlorophyll 
biosynthesis, leading to the development of 
chlorosis, especially in younger leaves (Henriques 
et al., 2002). Also, Fe starved plants may be more 
prone to oxidative damage (Kumar et al., 2010), 

leading to the accumulation of ROS, to oxidative 
stress, and to lower chlorophyll levels and 
increased chlorosis symptoms (as seen in Figure 1). 

In this work, chlorosis symptoms appear to be 
more severe in G. max plants when compared to 
M. truncatula plants (Figure 1A), but the absolute 
values of chlorophyll concentration in Figure 1B 
seem to be contradictory. However, this is due to the 
fact that G. max plants, even under Fe sufficiency, 
weren’t as green as M. truncatula plants under the 

Table 2 - Fresh weight (FW) (g), length (cm) and number (#) of secondary roots of G. max and M. truncatula grown hydroponically 
in Fe-sufficient (Fe+) and Fe-deficient (Fe-) conditions. Data are means ± SE of five independent replicates. For each 
parameter analyzed, different letters represent significant differences between samples (p < 0.05)

b e  – Fres  wei t F   len t  cm  and number  of secondary roots of G. max and 

M. truncatula rown ydroponically in Fe-sufficient Fe  and Fe-deficient Fe-  conditions. 

ata are means  S  of five independent replicates. For eac  parameter analy ed  different 

letters represent si nificant differences between samples p  0.05  

G. max M. truncatula 
e  e  e  e  

S oo  F  6.44  0.53 a 2.92  0.32 b 0.82  0.09 c 0.55  0.07 d 
en t  30.5  0.70 a 16.92  0.65 b 10.75  0.49 c 7.33  0.50 d 

oo  
F  5.38  0.46 a 2.61  0.24 b 1.03  0.11 c 0.57  0.09 d 
en t  49.75  1.16 a 27.08  0.78 b 35.42  1.51 c 28.75  1.84 d

 Secon r  oo s  34.2  3.09 a 57.00  5.14 b 17.4  1.62 c 25.2  2.95 d 
 

   

Figure 1 - Visible chlorosis symptoms (A) and chlorophyll concentration (B) of G. max and M. truncatula plants grown 
hydroponically in Fe-sufficient (Fe+) and Fe-deficient (Fe-) conditions. Data are means +SE of five independent 
replicates. Different letters represent significant differences between samples (P < 0.05).

 

Fi ure 1 – isible c lorosis symptoms A  and c lorop yll concentration  of G. max 

and M. truncatula plants rown ydroponically in Fe-sufficient Fe  and Fe-deficient 

Fe-  conditions. ata are means S  of five independent replicates. ifferent letters 

represent si nificant differences between samples P  0.05 . 
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Figure 2 - Root Fe reductase activity of G. max and M. 

truncatula plants grown hydroponically in Fe-

sufficient (Fe+) and Fe-deficient (Fe-) conditions. 
Data are means +SE of five independent replicates. 
Different letters represent significant differences 
between samples (P < 0.05).

 

Fi ure 2 – Root Fe reductase activity of G. max and M. truncatula plants rown 

ydroponically in Fe-sufficient Fe  and Fe-deficient Fe-  conditions. ata are means 

S  of five independent replicates. ifferent letters represent si nificant differences 

between samples P  0.05 . 

   

Table 3 - Fe deficiency-related genes relative expression 
values of G. max plants grown under Fe-sufficient 
(Fe+) and Fe-deficient (Fe-) hydroponic conditions. 
Total RNA was extracted from a pool of five 
independent replicates

Table 3 – Fe deficiency-related enes relative e pression values of G. max plants rown 
under Fe-sufficient Fe  and Fe-deficient Fe-  ydroponic conditions. Total RNA was 
e tracted from a pool of five independent replicates 

 oo  S oo  

 e  e  e  e  

FRO2-like 2.98 1 0.37 0.41 

IRT1-like 1.87 1 0.81 1.60 

NRAMP3-like 0.84 1 2.98 6.19 

VIT1-like 0.28 1 0.98 0.55 

YSL1-like 1.28 1 1.32 0.68 

ferritin 1.81 1 4.95 1.62 

GCN2-like 0.23 1 0.64 1.57 

 

 

   

Figure 4 - HeatMap of the expression patterns of FRO2-, IRT1-

, NRAMP3-, VIT1- and YSL1-like genes and ferritin 

and GCN2-like genes in root and shoot tissues 

of G. max plants grown hydroponically in Fe-

sufficient (Fe+) and Fe-deficient (Fe-) conditions. 
“Fe- Root” was the reference sample; expression 

was normalized with 18S rRNA housekeeping gene. 

In black: increased gene expression; in light grey: 

lower gene expression. Total RNA was extracted 

from a pool of five independent replicates. 
Corresponding values are presented in Table 3.

 

Fi ure 4 – eatMap of t e e pression patterns of FR 2-  RT1-  NRAMP3-  T1- and 

S 1-like enes and ferritin and GCN2-like enes in root and s oot tissues of G. max 

plants rown ydroponically in Fe-sufficient Fe  and Fe-deficient Fe-  conditions. 

Fe- Root  was t e reference sample  e pression was normali ed wit  18S rRNA 

ousekeepin  ene. n black  increased ene e pression  in li t rey  lower ene 

e pression. Total RNA was e tracted from a pool of five independent replicates. 

Correspondin  values are presented in Table 3. 

 

   

Figure 3 - Fe content of shoots and roots of G. max and M. 

truncatula grown hydroponically in Fe-sufficient 
(Fe+) and Fe-deficient (Fe-) conditions. Data are 
means +SE of five independent replicates. Different 
letters represent significant differences between 
samples (P < 0.05).

 

Fi ure 3 – Fe content of s oots and roots of G. max and M. truncatula rown 

ydroponically in Fe-sufficient Fe  and Fe-deficient Fe-  conditions. ata are means 

S  of five independent replicates. ifferent letters represent si nificant differences 

between samples P  0.05 . 
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same treatment, leading to an acuter decrease in 

chlorophyll concentration. 

Root Fe uptake capacity is linked with the 
solubilisation of Fe in the rhizosphere by the plant’s 
root Fe reductase activity, which is necessary to 
convert the less soluble Fe3+ to the more soluble 

Fe2+ (García et al., 2013). Here, for both species, the 
enzyme was more active in Fe+ conditions and 
was higher in M. truncatula plants (Figure 2). It has 

been hypothesized that, for some genotypes, Fe 
is necessary for the functioning of the reductase 
enzyme itself (Blair et al., 2010). Although most 

studies imply that Fe reduction is induced under 
Fe deficiency (Wang et al., 2013; Zha et al., 2014), it 

has already been described that this is not always 
this way (Vasconcelos and Grusak., 2006; Santos  
et al., 2015). 

In order to understand how Fe deficiency affects 
the mineral composition of Fe in G. max and M. 
truncatula, root and shoot tissues were analyzed by 
ICP-OES. When G. max was faced with the lack of 
Fe, it appeared to accumulate its internal Fe storage 

in the roots and the shoot Fe content decreased 

six-fold (Figure 3). It has been seen before that in 

response to shortage in mineral nutrition plants 

usually allocate more resources to the roots 
(Hermans et al., 2006; Santos et al., 2015). On the 
other hand, M. truncatula plants had a general 

reduction in Fe content in both tissues under Fe 

deficiency.

To further understand the mechanisms triggered 
by Fe shortage, it is crucial to comprehend the 
key conserved molecular players involved in 
nutrient uptake (e.g. FRO2 and IRT1), transport 

(e.g. NRAMP3, VIT1 and YSL1) and storage (e.g. 

ferritin), as well as identify novel candidate genes, 
that could have important roles in Fe metabolism 

(GCN2). When plants are faced with stress 
situations, the rate of nutrient uptake needs to 
increase, in order to compensate the lack of Fe. 
Thus, root Fe uptake related genes FRO2 and IRT1 

are extremely important since they participate in 
this critical step concerning the plant response to 

Fe deficiency, and which control the efficiency of 
Fe uptake. 

The results obtained for G. max plants show that 
in Fe- the expression of FRO2-like was decreased 

by three-fold (Figure 4), accordingly to the Fe 
reductase activity previously described (Figure 
2). On the contrary, M. truncatula roots over-

expressed FRO2-like gene under Fe deficiency 
(Figure 5), as previously obtained in A. thaliana 

(Robinson et al., 1999), tomato (Li et al., 2004) and 

soybean (Santos et al., 2016). When Fe was present 
in sufficient amounts, M. truncatula had almost 

null FRO2-like expression (Figure 5); since from 
the beginning of the trial, plants were in optimal 
conditions, they captured sufficient Fe to meet 
their daily requirements, thus inhibiting FRO2-like 
expression in order to avoid Fe toxicity. However, 
the Fe reductase activity was higher under Fe+ 
conditions (like in G. max). The Fe reduction is 
thought to be the rate-limiting step for Fe transport 

since Fe transporters, such as IRT1, do not reach 

saturation at normally achieved concentrations 
of Fe2+ (Grusak et al., 1990). If there is no Fe being 

reduced, IRT1-like should consequently present 
lower activity, which was clearly observed in 
G. max Fe- roots (Figure 4). In both species, the 

levels of IRT1-like expression were very similar 
to those obtained for FRO2-like (Figures 4 and 
5), suggesting that IRT1-like is co-regulated with 
this gene, as previously seen in Arabidopsis thaliana 

(Vert, 2002; Kim and Guerinot, 2007).

After Fe is transported into the roots by IRT1, 
the transport of this nutrient across the plant is 

another crucial step that needs to be well known 
to efficiently develop an IDC mitigation or a 
biofortification strategy. Fe transporter families, 
such as VIT, NRAMP and YSL, are extremely 
important in Fe metabolism, as they assure that Fe 
is efficiently delivered to shoots, and other plant 
edible parts and storage organs. NRAMP3 and 

VIT1 have contrasting functions: while the first is 
responsible for the remobilization from the vacuole 

(Lanquar et al., 2005), the second is responsible for 
the Fe loading in the vacuole (Kim et al., 2006). 
Studies in A. thaliana demonstrate that NRAMP3 

is an H+ metal symporter responsible for Fe and 
Mn remobilization from the vacuole, a crucial step 

during early seedling development (Lanquar et al., 
2010). Accordingly, under Fe deficiency, as plants 
need more remobilization of Fe to respond to their 

needs, NRAMP3-like was more expressed (Figures 
4 and 5) and VIT1-like was repressed, because 
plants activate VIT1-like in Fe sufficient conditions 
to increase Fe2+ uptake into the vacuole for storage 
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purposes (Brear et al., 2013). Studies in A. thaliana 
(Kim and Guerinot, 2007) demonstrated that 
AtNRAMP3 and AtVIT1 mutants present arrested 
seedling growth when grown on Fe deficient soils. 
Moreover, Zhang et al. (2012) reported that the 
disruption of the rice VIT orthologues (OsVIT1 and 
OsVIT2) increased Fe and Zn accumulation in rice 
seeds and decreased Fe and Zn in the leaves. 

As well as NRAMP3-like and VIT1-like, the YSL1-
like transporter may also play a crucial role in the 
control of the amount of Fe translocated to the 
seeds of G. max and M. truncatula. Both species 
had similar expression patterns (Figures 4 and 5), 
where both tissues presented higher levels in Fe+ 
conditions, suggesting a role in Fe translocation 
at diverse plant organs, as seen before (Kim et al., 
2006). This gene is involved in the transport of 

the Fe2+-NA complexes (Kim et al., 2006) that are 
hypothesized as the main transportable Fe form 
in the phloem (Jean et al., 2005; Waters et al., 2006; 
Chu et al., 2010). Jean et al. (2005) used A. thaliana 
lines with a knock out mutation in AtYSL1, and the 
levels of NA and Fe in leaves and seeds decreased, 
as well as germination rates, even when plants 
were grown in Fe excess, showing that Fe and NA 
levels in seeds rely in part on YSL1 function. 

Storage proteins such as ferritin play an important 
role in Fe homeostasis, assuring that Fe in excess 
is in a bio-available way in case of cellular needs 
but yet nonreactive with oxygen (Briat et al., 2010). 
Thus, the higher expression levels of this gene in 
Fe sufficient soybean and barrel medic plants are 
understandable (Figures 4 and 5) and are coherent 
with previous studies (Santos et al., 2016). This 
protein manages the insolubility and potential 
toxicity of Fe in the presence of oxygen, being 
involved in oxidative protection by sequestering 
free Fe (Lobreaux et al., 1995). 

Even though several gene families are known to be 
involved in the Fe uptake mechanism, transport and 
storage, there are still many undiscovered genes 
that may have important roles in these processes. 
Therefore, it is worthwhile to find candidate genes 
that could have an important role in Fe metabolism. 
To this end, a novel gene was studied in the current 

Figure 5 - HeatMap of the expression patterns of FRO2-, IRT1-

, NRAMP3-, VIT1- and YSL1-like genes and ferritin 

and GCN2-like genes in root and shoot tissues of 

M. truncatula plants grown hydroponically in Fe-

sufficient (Fe+) and Fe-deficient (Fe-) conditions. 
“Fe- Root” was the reference sample; expression 

was normalized with 18S rRNA housekeeping 

gene. In light grey: lower gene expression; in 

black: increased gene expression. Total RNA 

was extracted from a pool of five independent 
replicates. Corresponding values are presented in 

Table 4.

 

Fi ure 5 – eatMap of t e e pression patterns of FR 2-  RT1-  NRAMP3-  T1- and 

S 1-like enes and ferritin and GCN2-like enes in root and s oot tissues of M.

truncatula plants rown ydroponically in Fe-sufficient Fe  and Fe-deficient Fe-  

conditions. Fe- Root  was t e reference sample  e pression was normali ed wit  18S 

rRNA ousekeepin  ene. n li t rey  lower ene e pression  in black  increased ene 

e pression. Total RNA was e tracted from a pool of five independent replicates. 

Correspondin  values are presented in Table 4. 

   

Table 4 - Fe deficiency-related genes relative expression 
values of M. truncatula plants grown under Fe-

sufficient (Fe+) and Fe-deficient (Fe-) hydroponic 
conditions. Total RNA was extracted from a pool of 

five independent replicates

Table 4 – Fe deficiency-related enes relative e pression values of M. truncatula plants rown 
under Fe-sufficient Fe  and Fe-deficient Fe-  ydroponic conditions. Total RNA was 
e tracted from a pool of five independent replicates 

 oo  S oo  

 e  e  e  e  

FRO2-like 0.01 1 1.45 1.05 

IRT1-like 0.25 1 2.75 7.65 

NRAMP3-like 1.15 1 2.10 2.46 

VIT1-like 0.94 1 3.28 2.10 

YSL1-like 2.17 1 3.77 2.91 

ferritin 2.73 1 5.25 3.37 

GCN2-like 0.05 1 2.19 2.31 
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work: GCN2-like. Both G. max and M. truncatula 
plants over-expressed GCN2-like under Fe 
deficient conditions (Figures 4 and 5), particularly 
at the root level, and it seems to indicate a role for 
GCN2-like in alleviating Fe stress, for both legume 
species. Lageix et al. (2008) showed that AtGCN2 
was strongly activated following wounding and 
exposure to key hormones, and suggested that this 
enzyme plays a role in plant defense responses 
to insect pathogens, representing a key player 
linking biotic and abiotic stresses. Moreover, no 
studies have looked at the possible role of GCN2 
and Fe nutrition, which highlights the importance 
of the current work. Further studies to link its role 
on Fe metabolism are under way.

The current work compared the responses of two 
legume species, soybean and barrel medic, to Fe 
deficiency. Taken together, the results described 
above suggest a conservation of anatomical and 
biochemical responses in the two legume species. 

Also, it is apparent that for genes such as FRO2-like 
and IRT1-like the regulation differs between these 
two legumes and is not conserved with other plants 
such as A. thaliana. It shows that generalizations in 
Fe uptake processes should not be lightly done. 
Finally, a novel sequence showing up-regulation 
under Fe deficiency was identified, opening doors 
to future studies looking at the role of this gene 
under Fe deficiency. 
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a b s t r a c t

Rice (Oryza sativa L.) is the most important staple food in the world. It is rich in genetic diversity and can
grow in a wide range of environments. Iron (Fe) deficiency is a major abiotic stress in crop production
and in aerobic soils, where Fe forms insoluble complexes, and is not readily available for uptake. To cope
with Fe deficiency, plants developed mechanisms for Fe uptake, and although rice was described as a
Strategy II plant, recent evidence suggests that it is capable of utilizing mechanisms from both Strategies.
The main objective of this work was to compare two cultivars, Bico Branco (japonica) and Nipponbare
(tropical japonica), to understand if the regulation of Fe uptake mechanisms could be cultivar (cv.)
dependent. Plants of both cultivars were grown under Fe-deficient and -sufficient conditions and
physiological and molecular responses to Fe deficiency were evaluated. Bico Branco cv. developed more
leaf chlorosis and was more susceptible to Fe deficiency, retaining more nutrients in roots, than Nip-
ponbare cv., which translocated more nutrients to shoots. Nipponbare cv. presented higher levels of Fe
reductase activity, which was significantly up-regulated by Fe deficiency, and had higher expression
levels of the Strategy I-OsFRO2 gene in roots, while Bico Branco cv. induced more genes involved in
Strategy II.

These new findings show that rice cultivars have different responses to Fe deficiency and that the
induction of Strategy I or II may be rice cultivar-dependent, although the utilization of the reduction
mechanisms seems to be an ubiquitous advantage.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Rice feeds more than half of the world's population, most of
whom in developing countries (FAO, 2004) where it is, at least
during certain seasons, their sole source of nutrients (Sautter et al.,
2007). Rice, as a very diverse crop, can grow in a wide range of
environments, from irrigated soils to upland soils, and where other
crops would fail. However, when grown in alkaline soils, which
cover approximately 30% of world land, Fe uptake is limited
because under these conditions, it forms insoluble complexes and
is not readily bioavailable for uptake (Jeong and Guerinot, 2009).
Plants require Fe for photosynthesis, mitochondrial respiration,
nitrogen assimilation, hormone biosynthesis, pathogen defense,
among others. Thus, Fe deficiency results in chlorosis, poor growth
and reduced yields (Hansch and Mendel, 2009). Among the grass
species, rice is one of the crops most susceptible to Fe deficiency,
especially during the early stages of plant development (Mori et al.,
1991).

To cope with Fe deficiency, plants developed tightly regulated
mechanisms to mobilize Fe from the rhizosphere (Puig et al., 2007).
These acquisition strategies are based on two distinct mechanisms,
namely, Strategy I and II (for recent reviews please see Hindt and
Guerinot, 2012; Ivanov et al., 2012; Kobayashi and Nishizawa,
2012).

The Strategy I response is used by all dicotyledonous species
such as Arabidopsis, and by non-graminaceous monocotyledonous
species (Mukherjee et al., 2006). It involves the release of protons
into the rhizosphere to acidify the soil and increase ferric iron
(Fe3þ) solubility (Fox and Guerinot, 1998). Iron is subsequently
reduced to ferrous form (Fe2þ) by a ferric reductase-oxidase (FRO)
(Robinson et al., 1999) and it is moved across the plasmamembrane
into root cells by IRT, an Fe-regulated transporter member of the
large ZIP family (Vert et al., 2002). The Fe3þ-chelate reductases
genes, FROs (Wu et al., 2005; Mukherjee et al., 2006), and the Fe2þ

transporters, IRT1 and IRT2 (Vert et al., 2002), were first isolated and
characterized in Arabidopsis. The FRO2 gene is expressed primarily
in the outer layers of roots in response to Fe-deficiency (Grusak
et al., 1990). IRT1 is the main Fe-regulated transporter that is
induced in response to Fe-deficient conditions and is also capable of
transporting Zn, Mn, Co and Cd (Vert et al., 2002).
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The Strategy II Fe-uptake system is used by all the mono-
cotyledonous species (grasses, graminaceous), in which phytosi-
derophores (PS) are released into the rhizosphere by OsTOM1/
OsZIFL4 (Nozoye et al., 2011). The complex Fe3þ-PS is taken up into
root cells by transmembrane proteins of the yellow-stripe like (YSL)
family, such as OsYSL15 (Ishimaru et al., 2006; Inoue et al., 2009). PS
are synthesized from methionine and belong to the mugineic acid
family (MAs) (Nozoye et al., 2011). Nicotianamine (NA) and 20-
deoxymugineic acid (DMA, product resultant from NA conversion)
are biosynthesis precursors of PS and chelate with metals, such as
Fe, to transport them through the plant (Mori et al., 1991; Inoue
et al., 2003).

Other genes play important roles in this mechanism. For
example, a basic helix-loop-helix (bHLH) transcription factor,
OsIRO2, was demonstrated to be strongly expressed in roots and
shoots under Fe-deficiency. It is involved in the regulation of several
genes responsible forDMAbiosynthesis, includingOsNAS1, OsNAS2,
OsDMAS1 and OsNAAT1, as well as OsYSL15 (Ogo et al., 2007).
OsIRO2 is positively regulated by IDEF1, a transcription factor that
also plays a crucial role in regulating other Fe-deficiency-induced
genes involved in Fe homeostasis, such as OsTOM1, OsYSL15,
OsYSL2, OsIRT1, OsNAS1 and OsNAS2 (Kobayashi et al., 2009).
However, although responses to Fe deficiency in graminaceous
plants have been described, the mechanisms of gene regulation
related to these responses are largely unknown (Ogo et al., 2007).

There has been some controversy about the mechanisms used
by rice for Fe uptake from the rhizosphere (Ricachenevsky and
Sperotto, 2014). Until recently, Strategy II plants were thought to
only use the above-described response to obtain Fe from the soil
(Ishimaru et al., 2006). These studies suggested that rice does not
have the ability to reduce Fe3þ, a limiting-step of Strategy I plants
(Grusak et al., 1990). Moreover, rice expressing the AtFRO2 gene did
not have enhanced reductase activity (Vasconcelos et al., 2004).
However, the evidences of Fe2þ uptake in rice, suggests that it could
benefit from an increased activity of the ferric chelate reductase to
generate more available Fe when the plants are grown in upland
conditions (aerobic soils), where Fe is often less available and
insufficient to sustain proper development of the plant
(Vasconcelos et al., 2004). However, an ortholog of the major root
Fe transporter in Arabidopsis, IRT1, was identified in rice, and unlike
other grasses, rice seems to have an efficient Fe2þ uptake mecha-
nism (Ishimaru et al., 2006; Cheng et al., 2007), supporting the
hypothesis that rice has combined features of both strategies.

Most studies on Fe responses in rice have been conducted in
Nipponbare and Taipei 309 (Lucca et al., 2002; Nozoye et al., 2011;
Kakei et al., 2012; Masuda et al., 2013; Nozoye et al., 2014) and
studies have often been conducted in one or another cultivar, and
seldom in two cultivars in parallel. Moreover, few studies have
looked at the variability in these responses between different rice
cultivars. Here, we analyzed the expression of well-described genes
involved in Strategy I and II of Fe uptake, in roots and shoots of two
different rice cultivars, to understand if the capacity of rice plants to
up-regulate Strategy I or II mechanisms for Fe uptake is cultivar-
dependent. We also analyzed the effect of Fe deficiency on the
accumulation of Fe and othermicronutrients in roots and shoots, on
photosynthetic pigment accumulation in rice shoots and on the
induction of the Fe reductase enzyme in roots (a typical mechanism
of Strategy I plants).

2. Materials and methods

2.1. Plant growth

A screening with 21 cultivars of seven different ecotypes (pro-
vided by the International Rice Research Institute e IRRI) was

performed in order to select the final two cultivars for this study.
Two major parameters were considered for cultivar selection:
germination rate and seed Fe concentration. As Bico Branco (trop-
ical japonica) and Nipponbare (japonica) were the cultivars with
higher germination rate and higher seed Fe concentration, these
were chosen for the following treatments.

Rice (Oryza sativa L.) seeds were germinated on filter paper
moistened with deionized water, wrapped in silver paper and
incubated in a greenhouse at 25 "C in the dark. They were watered
with 250 mM CaCl2 every three days.

After three weeks of germination, a total of ten seeds of each
variety were transferred to a nutrient solution. The composition of
the nutrient solution was 3 mM KNO3, 1 mM Ca(NO3)2, 0.5 mM
KH2PO4, 0.75 mM K2SO4, 0.5 mM MgSO4, 25 mM CaCl2, 25 mM
H3BO3, 2 mM MnSO4, 2 mM ZnSO4, 0.5 mM CuSO4, 0.5 mM
H2MoO4, 0.1 mM NiSO4 and 0.1 mM K2SiO3. All nutrients were
buffered with 1 mM MES, pH 5.5.

Of the ten germinated seedlings, five were transferred to an Fe
deficient nutrient solution (no Fe provided) and another five
seedlings were transferred to a nutrient solution containing 20 mM
Fe(III)-EDDHA (Fe sufficiency) as control, for three additional
weeks. The hydroponic experiments were carried out in an envi-
ronmental growth chamber (Aralab Fitoclima 10000EHF), with
relative humidity of 75% and with a photoperiod of 16 h day (with
photosynthetic active radiation of 490 mmol m#2 s#1 and temper-
ature of 24e26 "C) and 8 h night (with temperatures of 19e20 "C).
Growth solutions were changed weekly.

2.2. Photosynthetic pigment extraction

Anthocyanin, chlorophyll and carotenoid concentrations were
measured in plants grown in Fe deficient (n¼ 5) and Fe sufficient
conditions (n¼ 5), as described previously. The referred com-
pounds were extracted and quantified according to a modified
protocol of Sims and Gamon (2002). The absorbances were
measured at 470, 537, 647 and 663 nm with a NanoPhotometer™
(Implen, Isaza, Portugal). The amount of anthocyanins, chlorophyll
a and b and carotenoids were determined through the equations
referred by Sims and Gamon (2002).

2.3. Elemental analysis

Bico Branco and Nipponbare cultivars grown under Fe deficient
(n¼ 5) and Fe sufficient conditions (n¼ 5) for three weeks. Roots
and shoots were separately harvested, washed to exclude the
contamination of Fe from the hydroponic solution and then dried at
65 "C to determine mineral concentrations.

Two hundred milligram of each variety were digested with five
mL of 65% HNO3 in five steps: 1e130 "C/10 min; 2e160 "C/15 min;
3e170 "C/12 min; 4e100 "C/7 min; and 5e100 "C/3 min in Teflon
reaction vessels and heated in a Speedwave™ MWS-3þ (Berghof,
Germany) microwave system. After digestion, the resulting clear
solutions were diluted to 20 mL with ultrapure water. Mineral
concentration determination for molybdenum (Mo), boron (B),
zinc (Zn), phosphorus (P), cobalt (Co), nickel (Ni), manganese
(Mn), iron (Fe), magnesium (Mg), copper (Cu) and sodium (Na)
was performed using the Inductively Coupled Plasma e Optical
Emission Spectrometer (ICP-OES) Optima 7000 DV (PerkinElmer,
USA). The elements were quantified using the axial alternate
method.

2.4. Root Fe-reductase activity assay

Ten plants were grown under the same conditions as before
(five under Fe-deficiency and five under Fe-sufficiency) and were
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used for root Fe reductase activity measurements as described by
Vasconcelos et al. (2006).

The contribution of root-released soluble reductants to overall
root Fe reduction was determined by conducting additional assays
with plants grown in the same conditions described before. Roots
were placed for 45 min in buffered nutrient solution with no Fe
source or BPDS. An aliquot of the solution from each root system
was added to a solution containing 100 mM Fe(III)-EDTA and
100 mM BPDS and left for 30 min; absorbance was then read at
535 nm as described above.

2.5. Quantitative RT-PCR

Additional plants were grown in the same conditions and shoots
and roots of Bico Branco and Nipponbare cultivars were collected
after three weeks growing under Fe sufficient and Fe deficient
conditions and immediately frozen in liquid nitrogen. A pool of
three plants from each treatment were grinded thoroughly with a
mortar and pestle until a fine powder was obtained and total RNA
was extracted using a Qiagen RNeasy Plant Mini Kit (USA, Nr.
#74904), according to the manufacturer's instructions, and treated
with RNase-free DNase I to remove contaminating genomic DNA.
RNA quality and quantity were checked by UV-spectrophotometry,
using a nanophotometer (Implen, Isaza, Portugal). Samples were
stored at !80 "C for further analyses.

Single-stranded cDNA was then synthesized using the First
Strand cDNA Synthesis Kit (Fermentas UAB, Cat. Nr. #K1612) in a
Thermal cycler (VWR, Doppio, Belgium), according to manufac-
turer's instructions.

Accession numbers of genes identified in Fe nutrition in rice
plants were chosen using NCBI databases. Accession orthologs to
AtTOM1 were identified using the TBLASTN tool against the Gen-
Bank databases with search specifications for O. sativa [Organism].
The sequences were named O. sativa TOM1 (OsTOM1). Only se-
quences that showed an e-value < 6e!14 were considered significant
(Table A.1).

Primer sequences were designed for 9 genes, using Primer-
BLAST software (Ye et al., 2012) with the following criteria:
primer size between 18 and 20 base pairs and primer annealing
temperatures between 57 "C and 60 "C. Accession numbers and the
respective sequences are presented in Table A.2.

Quantitative Real-Time PCR amplifications were carried out in a
Chromo4 Thermocycler (Bio-Rad, CA, USA) using 100 ng of cDNA,
1.25 mL of each primer, 1.5 mL of molecular biology grade water and
mixed to 12.5 mL of 2# PCR iQ SYBR Green Supermix (Bio-Rad) in a
final volume of 25 ml. Three technical replicates were performed for
each gene tested in qPCR reactions, as well as for controls. Thermal
cycling conditions were: initial 2 min denaturation at 50 "C and
then 10 min at 95 "C, followed by 39 cycles of 15 s at 95 "C and
1 min at 57 "C, and a final dissociation step of 1 min at 72 "C.

Melting curve from 50.0 "C to 95 "C was read every 0.1 "C
holding 1 s. Then, melt curves profiles were analyzed for each gene
tested. The comparative CT method (DDCT) (Livak and Schmittgen,
2001) for the relative quantification of gene expression was used
for assessing the normalized expression value using the 18S rRNA
as the housekeeping gene and for normalization of expression of
each gene (Opticon Monitor 3 Software, Bio-Rad). Data were
transferred to Excel files and plotted as histograms of normalized
fold expression of target genes.

2.6. Statistical analysis

Data processing and statistical analysis of anthocyanins, chlo-
rophyll a and b, total chlorophylls and carotenoids data, root Fe
reductase activity assay and ICP-OES data were performed using

Microsoft Excel and GraphPad Software (GraphPad Software, La
Jolla California USA, www.graphpad.com). Differences between
treatments were tested with an unpaired t-test, using the Holm-
Sidak method.

3. Results and discussion

3.1. Photosynthetic pigments accumulation

One of the major abiotic challenges for plants is to thrive in Fe
deficient conditions, and plants have developed a range of mech-
anisms to cope with Fe deficiency, such as storage and remobili-
zation of mineral nutrients and changes in morphology and
physiology (Marschner, 1995).

The earliest symptom observed in the leaves of plants growing
in soils with low Fe availability is chlorosis, usually called “Fe
deficiency chlorosis” (IDC) (Curie and Briat, 2003). Shoots of Fe
deficient plants showed more chlorosis symptoms than Fe suffi-
cient ones, that remained green throughout the assay (data not
shown), and Bico Branco shoots were more chlorotic than the
Nipponbare ones (Fig. 1). Anthocyanin, chlorophyll and carotenoid
concentrations were measured in Bico Branco and Nipponbare
shoots (Fig. 2). After threeweeks under Fe deficient conditions, Bico
Branco cultivar (cv.) had significantly lower anthocyanin, chloro-
phyll b and carotenoid values when compared to Nipponbare cv.
Since Fe plays a role in the biosynthesis of photosynthetic pig-
ments, IDC has been associated with decreased photosynthetic rate
and inhibition of chlorophyll biosynthesis (Pushnika et al., 1984;
Belkhodja et al., 1998). If severe, it can lead to a reduction of
plant growth and yield or even complete crop failure (Guerinot and
Yi, 1994). Thus, under Fe deficiency, the loss of chlorophylls and
carotenoids are the primary responses associated with the un-
availability of this element (Hendry and Price, 1993; Belkhodja
et al., 1998). In rice, Sperotto et al. (2007) also visualized the first
symptoms of chlorosis after 11e13 days of Fe deficiency treatment,
with consequent significant decreases in chlorophyll concentration.
A difference in the size of shoots between treatments was also
visually observed in the current experiment (data not shown), as
plants were smaller under Fe deficiency, as described by Abbott
(1967).

In rice, the effects of Fe deficiency on chlorophyll concentration
have been previously reported. Wu et al. (2001) evaluated leaf
chlorophyll concentration in Nipponbare cv. during 14 days of Fe
deprivation, and found that after five days a significant decline of
chlorophyll concentration was already detected and chlorotic
symptoms were induced in newly developed leaves. Zheng et al.
(2009) also studied the chlorophyll concentration of Nipponbare
cv. under Fe and P deficiency, and showed that chlorophyll con-
centration decreased in Fe deficient plants.

Anthocyanins can accumulate in leaves of plants that grow
under diverse environmental and anthropogenic stresses (Neill,
2002; Hodges and Nozzolillo, 1995). Under Fe deficiency, antho-
cyanin synthase, one of the main enzymes in the biosynthetic
pathway, is prone to lose its activity, since it requires Fe for proper
functioning (Le Jean et al., 2005). This process leads to a decrease of
anthocyanin levels, which could explain the reduction in antho-
cyanin levels observed in Bico Branco cv. under Fe deficiency
(Fig. 2). Carotenoid concentrations were also significantly lower in
Bico Branco cv. under Fe deficiency but were not affected in Nip-
ponbare cv. It has been suggested that b-carotene and chlorophyll
concentration in Beta vulgaris L. leaves also decreases under limited
Fe supply (Morales et al., 1990).

In summary, photosynthetic pigment accumulation, in general,
seems to be less affected in Nipponbare than in Bico Branco
cultivars.
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3.2. Mineral accumulation in shoots and roots

To test if the impact on plant mineral accumulation caused by Fe
deficiency is cultivar dependent, mineral concentrations in shoots
and roots of Fe-deficient and Fe-sufficient Nipponbare and Bico
Branco cultivars were determined by ICP-OES.

Results showed that Bico Branco shoots had 68 mg/g DW of Fe
under Fe deficiency and 79 mg/g DW under Fe sufficiency (Fig. 3).
Also, roots accumulatedmore Fe than shoots, as previously reported
(Sperotto et al., 2012), namely 1078 mg/g DW under Fe deficiency
and 2711 mg/g DW under Fe sufficiency (Fig. 3). Nipponbare cv. also
had lower Fe concentrations in Fe-deficient tissues when compared
to Fe-sufficient ones: 18 mg/g DW under Fe deficiency and 36 mg/g
DW under Fe sufficiency in shoots and 718 mg/g DW under Fe defi-
ciency and 1828 mg/g DW under Fe sufficiency in roots (Fig. 3).

Rice has been shown to accumulate lower Fe concentrations in
both shoots and roots of plants grown under Fe deficient conditions
(Sperotto et al., 2012), but to accumulate more in roots than in
shoots (Silveira et al., 2007), and our results were in accordance to
these observations. Sperotto et al. (2012) characterized mineral
accumulation in rice (Kitaake cv.) tissues under different Fe sup-
plies, namely 5, 20 and 200 mM. Under intermediate Fe supply, Fe
concentration ranged from 50 to 70 mg/g DW in shoots, and from
1000 to 2000 mg/g DW in roots, which is consistent with the results
obtained here.

Amongst the other minerals, Cu was the only mineral that
showed a tendency for higher accumulation under low Fe supply

when compared to Fe-sufficient conditions in Nipponbare roots
(Fig. 3). Furthermore, a significantly lower accumulation of Zn, Co
and Ni in roots was detected under Fe deficiency compared with
the plants grown under Fe sufficiency (Fig. 3). Onemay hypothesize
that this was due to the lower induction of Fe transporter genes in
roots of this cultivar under Fe deficiency (as will be seen later in
Section 3.4), because it has been shown that IRT1 can also transport
other nutrients. In the Nipponbare shoots, higher levels of Mn and
Cu and lower amounts of Na, Mo, B, Co and Ni were detected
(Fig. 3), probably because, besides Fe, other micronutrients are
affected by Fe deficiency in rice, especially in the early stages of rice
development (Silveira et al., 2007; Sperotto et al., 2012).

The Bico Branco cv., under Fe deficiency, had an augment
(although not statistically significant) of Zn, Cu and Mn values in
roots, but not in shoots. Zn, Cu, and Ni were reported to accumulate
more in roots and Mn, Ca, Mg and K in leaves, when under low Fe
concentrations, and that Fe, Mn and Ca were at lower concentra-
tions in roots and Zn and Ni in leaves (Sperotto et al., 2012).
Furthermore, under low Fe concentrations, there was a higher
accumulation of Ni and Mo in Bico Branco roots (Fig. 3), which was
also obtained by Sperotto et al. (2012).

3.3. Root Fe-reductase activity

In the present study, membrane-bound reductase activity and
the contribution from root soluble reductants release were
measured in roots of plants grown in Fe-deficient and Fe-sufficient

Fig. 1. Visual chlorosis symptoms of Bico Branco cv. and Nipponbare cv. grown in Fe-deficient hydroponic conditions for three weeks.

Fig. 2. Anthocyanin (Anth), chlorophyll a (Cha) and b (Chb), total chlorophyll (ChT) and carotenoid (Cart) concentrations in shoots of Bico Branco and Nipponbare cultivars. Plants
were grown in Fe-deficient (!Fe) and Fe-sufficient (þFe) hydroponic conditions for three weeks. Results show the mean þ SEM of five independent biological replicates. Significant
differences between Fe treatments are indicated by asterisk (p < 0.05).
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conditions (Fig. 4). Rice plants have been described to not reduce
Fe3þ actively to Fe2þ because their Fe3þ chelate reductase activity is
very low (Ishimaru et al., 2006) or most attributable to soluble
reductant release (Vasconcelos et al., 2004). Here, root Fe-reductase
activity significantly increased under Fe starvation, especially in the
Nipponbare cv. (more than two-fold higher when compared to the
Bico Branco counterpart) (Fig. 4). Accordingly, the majority of
studies report that plants have higher reductase activity under Fe
deficiency than under Fe sufficiency (Kochian and Lucas, 1991;
Romera et al., 1992; Cinelli et al., 1995), but this is not always so
(Santos et al., 2013) as the reductase activity is dependent on many
factors. Most root reductase activity assays do not account for Fe
reduction due to soluble reductant release. In the study by
Vasconcelos et al. (2004), it was shown that most of the reductase
activity in rice cultivar IR68144 was in fact attributable to soluble
reductant release. In the current study, the contribution to Fe
reduction from soluble compounds had maximum values of

0.464 mmol Fe (II) g"1 FW h"1 for the Nipponbare cv. and
0.141 mmol Fe (II) g"1 FW h"1 for the Bico Branco cv. (Fig. 4),
whereas the majority of reductase activity was membrane
associated.

Ishimaru et al. (2006) reported lower values of reductase ac-
tivity in Nipponbare cv., and it changed over time, ranging from
0.035 to 0.020 mmol Fe (II) g"1 FW h"1 for plants between zero to
five days after the transfer to Fe deficiency. However, these plants
were grown for three weeks under optimal conditions and only
then were transferred to Fe deficiency, while in our study plants
weremaintained exclusively under Fe-deficiency, probably eliciting
the root reductase system in a more acute way, as the plants could
be more stressed. Also they did not report the contribution from
root soluble reductants, which could have lowered their values of
reductase activity even further. Another report on rice showing that
plants possess the strategy I mechanisms of Fe reduction is that of
Ishimaru et al. (2007), however these authors also do not refer

Fig. 3. Micronutrient concentrations (mg/g dry weight) of shoots and roots of Bico Branco and Nipponbare cultivars, using ICP-OES. Plants were grown in Fe-deficient ("Fe) and Fe-
sufficient (þFe) hydroponic conditions for three weeks. Results show the mean þ SEM of three independent biological replicates. Significant differences between Fe treatments are
indicated by an asterisk (p < 0.05).
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soluble reductant reductase capacity. As seen in Fig. 3, the rice
cultivars analyzed in the current study presented values of reduc-
tion comparable to the ones described by dicotyledonous plants,
which supports the hypothesis that rice can reduce Fe3þ. Certain Fe
deficient bean populations were reported to have reduction values
around 0.2 mmol Fe (II) g"1 FW h"1 and,Mallus xiaojinensis reached
a maximum of 0.480 mmol Fe (II) g"1 FW h"1 of reductase activity
(Wu et al., 2012). Our values reached similar levels, which may
support the latter hypothesis that rice can adopt a combined
mechanism of Strategy I and II (Walker and Connolly, 2008;
Ishimaru et al., 2006), mainly in anaerobic soils, where Fe2þ is
present in higher amounts. On the other hand, in aerobic soils,
where Fe3þ is abundant, its reduction to Fe2þ on the root surface is
an obligatory process for Fe acquisition in Strategy I plants (Yi and
Guerinot, 1996). Rice, despite absorbing Fe3þ-PS through OsYSL15
(Inoue et al., 2009; Lee et al., 2009a), secretes PS at lower amounts
compared to other grasses (Mori et al., 1991), and for this reason, it
suffers from severe problems of Fe deficiency. Thus, our data con-
firms that rice may benefit from the capacity to reduce Fe, to
compensate the lack of Fe in upland soils.

3.4. Molecular responses to Fe deficiency

The response of genes involved in Strategy I for Fe uptake,
OsFRO2 and OsIRT1, was studied in both cultivars, grown under Fe-
deficient and -sufficient conditions. Under Fe deficiency, the
expression of OsFRO2 was low in roots and shoots of Bico Branco
plants, whereas in Nipponbare plants, roots up-regulated OsFRO2
under Fe starvation and shoots supplied with Fe had a strong in-
duction of expression (Fig. 5).

OsFRO2 is thought to be exclusively expressed in rice shoots
(Ishimaru et al., 2006) but in Arabidopsis, under limiting Fe avail-
ability, the expression of AtFRO2 in roots is increased (Mukherjee
et al., 2006). FRO genes encode the Fe3þ-chelate reductase en-
zymes, and our expression results appear to be in accordance with
the ones obtained for root Fe-reductase activity, where Bico Branco
cv. presented lower root Fe-reductase activity than Nipponbare cv.
(Fig. 4) and a concomitant higher expression of OsFRO2. Although
this general relationship between FRO2 expression and reductase

activity can be observed, a direct proportion can not be inferred
from gene expression to protein levels, since protein abundances
are a reflection of a dynamic balance between RNA transcription,
localization and modification (Vogel and Marcotte, 2013).

After Fe reduction by FRO, Strategy I plants transport Fe across
the plasma membrane of the root epidermal cells by IRT1 (Grotz
and Guerinot, 2006). The expression of OsIRT1 was higher in roots
of Fe sufficient plants in both cultivars (Fig. 5). IRT1 is usually up-
regulated in Fe-deficient conditions, but there are studies
showing that its regulation is dependent both on the root Fe pool
and on the shoot Fe demand (Vert et al., 2003), so the high levels we
detected here can't be exclusively interpreted as IDC stress
dependent. Also, in the Fe deficiency treatment, shoots of both
cultivars up-regulated this gene, as was also previously described
(Ishimaru et al., 2006), where the expression of the OsIRT1 pro-
motereGUS fusion showed higher activity levels in the phloem
under Fe deficiency, supporting the hypothesis of a possible func-
tion in the long-distance Fe transport in rice plants. On the other
hand, it has been shown that some members of the ZIP family (as it
is IRT1 gene) could be associated not only with Fe uptake, but also
with detoxification and storage of excessive Fe (Yang et al., 2009; Li
et al., 2013) thus putatively explaining the higher levels of
expression obtained under Fe sufficiency.

There are several genes known to be related to Fe uptake in
Strategy II in which PSs are released into the rhizosphere (R€omheld
and Marschner, 1990). Here, the expression of OsTOM1, a gene
known to be related to PS secretion, was studied. In Bico Branco cv.
its expression was lower under Fe deficiency when compared to Fe
sufficiency, in both shoots and roots. In the Nipponbare cv. this
transporter was 3.5 fold more expressed in shoots than in roots,
under Fe deficient conditions (Fig. 6). These results suggest that,
although OsTOM1 seems to not be particularly involved in Fe
acquisition, it is implicated in Fe transport, as described by others
(Nozoye et al., 2011). However, in the aforementioned work, rice
plants were transferred to Fe deficiency medium four weeks after
germination, staying in this condition for only 5e7 days, whereas
our plants were maintained under Fe deficiency for three weeks
after germination. It is possible that OsTOM1 could be mostly
implicated in an early response to Fe deficiency.

OsYSL15 gene had higher expression in roots (and null in shoots)
(Fig. 6). Moreover, Bico Branco roots had almost two-fold higher
expression in Fe sufficiency than in Fe deficiency, whilst Nippon-
bare plants presented an inverse pattern (Fig. 6). OsYSL15 was the
first characterized YS1 ortholog from rice (Inoue et al., 2009) and
functions as a transporter of Fe(III)-NA or Fe(II)-NA complexes (Lee
et al., 2009a). Therefore, the higher expression levels of OsYSL15
under Fe deficiency in Bico Branco cv. corroborates that this cultivar
appears to be more susceptible to Fe deficiency than Nipponbare
cv., as it is signaling a higher demand for Fe.

The nicotianamine synthase (NAS) enzyme catalyzes the
biosynthesis of NA, and the genes encoding NAS are known to be
differentially regulated by Fe status in a variety of Strategy I and
Strategy II plant species (Higuchi et al., 1999; Inoue et al., 2003;
Mizuno et al., 2003; Klatte et al., 2009). In rice, NAS1, NAS2 and
DMAS1 genes are biosynthetic precursors of PSs and their over-
expression causes an increase in transport of Fe from roots to
shoots. Here, Bico Branco cv. roots had a seven- and four-fold
overexpression of OsNAS1 and OsNAS2, respectively, in response
to Fe deficiency, when compared to the Fe sufficient plants (Fig. 6).
Under Fe sufficiency, OsNAS1 expression was increased in the
shoots of this cultivar. NAS1 is thought to be involved in Fe long-
distance transport, and NA synthesis is required for xylem
loading and also for loading and unloading to the phloem
(Schmidke et al., 1999). Regarding OsDMAS1, its pattern of expres-
sion was also higher in Bico Branco roots and shoots under Fe

Fig. 4. Root Fe reductase activity of Bico Branco and Nipponbare cultivars. Plants were
grown in Fe-deficient ("Fe) and Fe-sufficient (þFe) hydroponic conditions for three
weeks. Results show the mean þ SEM of five independent biological replicates. For
‘Root Membrane Reductase’ results, significant differences between Fe treatments are
indicated by asterisk (p < 0.05).
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starvation, and this gene has been previously reported as being up-
regulated by Fe starved plants (Inoue et al., 2003; Bashir and
Nishizawa, 2006).

Although all plants can synthesize NA, only grasses convert NA
to PSs (Lee et al., 2009b; Conte and Walker, 2011). The augmented
expression of these genes (Fig. 6) could have been triggered to in-
crease NA/DMA synthesis and consequently produce and secrete
increased amounts of MAs, to help in Fe uptake (Inoue et al., 2003).
Additionally, it is also known that these genes participate in Fe
long-distance transport, being overexpressed in rice shoots under
Fe starvation (Mori et al., 1991; Bashir and Nishizawa, 2006; Bashir
et al., 2006). In the Nipponbare cv., under Fe deficiency, these genes
were slightly up-regulated in shoots and no drastic changes in root
expression were observed, independently of the Fe treatment. As
the tolerance of rice plants to low Fe availability is thought to

increase with the production and secretion of MAs, the Nipponbare
cv. showed less stress signals when compared with Bico Branco, as
previously seen with the photosynthetic pigments accumulation
(Fig. 6). This corroborates that the Bico Branco cv. is more suscep-
tible to low Fe conditions than the Nipponbare cv., increasing the
need to synthesize PS synthesis related genes.

The expression of the transcription factor OsIRO2 in Bico Branco
cv., was two- and five-fold higher in roots and shoots, in Fe-
deficient compared to Fe-sufficient conditions respectively
(Fig. 6). It showed similar expression levels to the genes that it
regulates, namely OsNAS2 and OsDMAS1. Indeed, OsNAS1, OsNAS2,
OsNAAT1, OsDMAS1 and OsYSL15, have been found to be under the
regulation of OsIRO2 (Ogo et al., 2006) and this transcription factor
was described to regulate the PS-mediated Fe uptake system of rice,
but not the Fe2þ uptake mechanism (Ogo et al., 2007). The

Fig. 5. Quantitative RT-PCR analysis of Strategy I-related genes, OsFRO2 and OsIRT1, in Bico Branco and Nipponbare cultivars. Total RNA was extracted from a pool of three in-
dependent biological replicates from shoots and roots of plants grown in Fe-deficient ("Fe) and Fe-sufficient (þFe) hydroponic conditions for three weeks. The results were
normalized using the housekeeping gene 18S rRNA.

Fig. 6. Quantitative RT-PCR analysis of Strategy II-related genes, OsTOM1, OsYSL15, OsNAS1, OsNAS2, OsDMAS1, OsIRO2 and OsIDEF1, in Bico Branco and Nipponbare cultivars. Total
RNA was extracted from a pool of three independent biological replicates from shoots and roots of plants grown in Fe-deficient ("Fe) and Fe-sufficient (þFe) hydroponic conditions
for three weeks. The results were normalized using the housekeeping gene 18S rRNA.
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Nipponbare cv. had also a strong induction of OsIRO2 in Fe-deficient
shoots, but not in associated roots (Fig. 6).

Results reported here show that three weeks after exposure to
Fe deficiency, OsIDEF1 was down-regulated in roots and shoots of
Bico Branco cv. (Fig. 6) whereas its expression did not seem to be
affected by Fe treatments in the Nipponbare cv. Usually described
to be expressed in roots and shoots under Fe deficient conditions,
OsIDEF1 positively regulates the induction of several known Fe
related genes in rice, such as OsYSL2, OsYSL15, OsIRT1, OsIRO2,
OsNAS1, OsNAS2, OsNAS3 and OsDMAS1 (Kobayashi et al., 2007,
2009). OsIDEF1 was described as a sensor of the cellular Fe status
in the first days of exposure to Fe deficiency, but to lose its activity
after a few days (Kobayashi et al., 2009). This could explain the
lower expression of this gene by our Fe deficient plants.

4. Conclusions

Rice is a very diverse species accounting for about 120,000 rice
cultivars existing in the world and most studies on Fe deficiency

mechanisms in rice usually focus on a single rice cultivar (with
Nipponbare, Taipei 309 and, more recently, Kitaake). Here, we
compared Nipponbare cv. with an unstudied rice cultivar, Bico
Branco, and given the reported high degree of variability in mo-
lecular and physiological responses between cultivars, it seems that
generalizations of Fe responses cannot be taken lightly.

Bico Branco and Nipponbare cultivars showed contrasting re-
sponses to Fe deficiency, where the former was more susceptible to
Fe deficiency, as it showed lower concentrations of photosynthetic
pigments, had more chlorosis symptoms, and retained more nu-
trients in roots than the latter cultivar, which translocated more
minerals to shoots even under Fe starvation.

Differences in gene expression of Strategy I and Strategy II genes
were detected, with a variable pattern of expression of OsFRO2 and
OsIRT1 in both rice cultivars (Fig. 7). Genes of Strategy I and Strategy
II were typically up-regulated by the roots of the more Fe-
susceptible cultivar Bico Branco, and were not differentially
expressed in the roots of Nipponbare cv. (Fig. 7). Importantly, both
cultivars showed membrane-bound Fe reductase activity, a typical

Fig. 7. Schematic representation of the regulation of Fe uptake mechanisms in Bico Branco cv. and Nipponbare cv. grown under Fe-deficient conditions for three weeks. Expression
of Strategy I and Strategy II related genes, as well as Fe reductase activity is represented. Bigger arrows represent higher fold changes.
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response of Strategy I-type plants, which was significantly
enhanced under Fe deficiency (Fig. 7).

These data provide novel insights into Fe regulation by rice
plants, showing that these can activate Fe uptake mechanisms used
by dicotyledonous and that this capacity seems to be cultivar-
dependent, possibly emerging from a need to adapt to different
growing conditions.
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In this chapter the physiological mechanisms associated with IDC will be studied, using 

Glycine max lines with contrasting Fe-efficiencies. Firstly, in section 3.1, partitioning 

study will be presented, where the unifoliate leaves (the first leaves to develop after 

seedling germination) were cut in the early stages of plants’ growth. Several parameters 

will be used to analyse the impact of this removal and important conclusions on potential 

markers for IDC-tolerance will be identified.  

In section 3.2 section, an innovative approach was undertaken and the correlation results of 

a Principal Component Analysis comprising the effect of Fe deficiency and the antioxidant 

and tetrapyrrole systems will be presented. Besides confirming the physiological traits 

associated with IDC-tolerance in section 3.1, in 3.2 section the role of a tetrapyrrole 

molecule – heme - will be highlighted, particularly when in its oxidized form (hemin).  
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Iron (Fe) deficiency chlorosis (IDC) leads to leaf yellowing, stunted growth and drastic
yield losses. Plants have been differentiated into ‘Fe-efficient’ (EF) if they resist to IDC
and ‘Fe-inefficient’ (IN) if they do not, but the reasons for this contrasting efficiency
remain elusive. We grew EF and IN soybean plants under Fe deficient and Fe sufficient
conditions and evaluated if gene expression and the ability to partition Fe could be
related to IDC efficiency. At an early growth stage, Fe-efficiency was associated with
higher chlorophyll content, but Fe reductase activity was low under Fe-deficiency for EF
and IN plants. The removal of the unifoliate leaves alleviated IDC symptoms, increased
shoot:root ratio, and trifoliate leaf area. EF plants were able to translocate Fe to the
aboveground plant organs, whereas the IN plants accumulated more Fe in the roots.
FRO2-like gene expression was low in the roots; IRT1-like expression was higher in the
shoots; and ferritin was highly expressed in the roots of the IN plants. The efficiency
trait is linked to Fe partitioning and the up-regulation of Fe-storage related genes could
interfere with this key process. This work provides new insights into the importance of
mineral partitioning among different plant organs at an early growth stage.

Keywords: soybean, partitioning, iron deficiency chlorosis (IDC), IRT1, FRO2, ferritin

Introduction

Soybean (Glycine max L.) is the highest produced legume crop, reaching production levels of about
230millionmetric tons per year, across the world (Vasconcelos andGrusak, 2014). Inmany agricul-
tural areas, where calcareous soils are predominant, iron (Fe) availability becomes a yield-limiting
factor with major economic implications for field crop production (Rodríguez-Lucena et al., 2010).
Since Fe is an essential element that has a key role in fundamental biological processes, such as
photosynthesis and chlorophyll biosynthesis, when this micronutrient is unavailable to the plants,
they frequently exhibit yellowing of the upper leaves, interveinal chlorosis, and stunted growth
(Jeong and Connolly, 2009). This problem underpins the urgency to develop cultivars that can be
more efficient in Fe uptake and further mineral translocation from the roots to the shoots, thus
increasing plant nutritional value (Carvalho and Vasconcelos, 2013).

Abbreviations: DW, dry weight; EF, Fe-efficient; ICP-OES, inductively coupled plasma optical emission spectrometer; IDC,
iron deficiency chlorosis; IN, Fe-inefficient; PQ, partition quotient; SEM, standard error of mean.
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For a long time, soybean plants have been differentiated
between EF, if they respond to Fe-deficiency stress by inducing
biochemical reactions that make Fe available in a useful form,
and IN if they do not (Brown, 1978; García-Mina et al., 2013).
However, there is scarce information about the physiological and
molecular mechanisms behind tolerance to iron deficiency and
about the mechanisms that govern the partitioning of captured
mineral nutrients between different plant organs (Vasconcelos
et al., 2006; Lemoine et al., 2013; Roriz et al., 2014).

Plants have been divided between Strategy I and Strategy II,
depending on their mechanism for Fe uptake. Dicoteledonous
and non-grass monocoteledonous plants depend on an Fe reduc-
tion mechanism that allows them to reduce Fe (III) to Fe (II) in
the rhizosphere (Abadía et al., 2011). Whilst the first Fe form
is the most abundant in soils, it is poorly soluble at neutral or
basic pH and, therefore, unavailable for uptake, causing IDC.
A plasma-membrane Fe(III)-reductase, encoded by the FRO
gene family, favors inorganic Fe solubilisation and consequent
uptake by an Fe(II)-transporter, IRT1, of the ZIP family (Moog
and Brüggemann, 1994). On the other hand, when in need for
Fe accumulation and storage, plants augment the expression
of ferritin, which plays a role in buffering excess Fe in plants
(Roschzttardtz et al., 2013). However, excess accumulation in the
form of ferritin can impair Fe remobilization from one plant
organ to another (Vasconcelos and Grusak, 2014).

The regulation of sink-source relations is a complex process
(Fester et al., 2013). It is well-known that mineral nutrient
deficiencies may substantially influence dry matter partition-
ing between plant organs (Marschner et al., 1996), as nutrient-
deprived plants generally tend to invest in their root system
(Lemoine et al., 2013). Moreover, the shoot to root communica-
tion may act as an important feedback control signal for nutrient
uptake and partitioning. For instance, sufficient Fe content in the
leaves can modulate the synthesis of the ferric chelate reduction
system and the capacity of the phloem to carry Fe from the roots,
regulating the ‘EF reaction,’ acting as a negative feedback control
(Maas et al., 1988).

Source leaves export photoassimilates to sink tissues when the
demand exceeds the production via photosynthesis (Ludewig and
Flügge, 2013) and nutrient movement to sink tissues could be
controlled by the dynamics of source-sink carbohydrate parti-
tioning (Grusak, 2002). Besides, the sink–sink competition also
influences these regulatory processes, usually with one plant
organ having a negative effect upon another by consuming or
controlling access to a resource that is limited in its avail-
ability (Sadras and Denison, 2009). Hence, nutrient deficiency
may not only affect the provision of photosynthates by decreas-
ing source capacity, but also by altering partitioning between
the source organs and various sinks (Marschner et al., 1996).
Therefore, studies on Fe deficiency have utilized leaf excision
to better understand the mechanisms of long-distance signal-
ing. For example, the removal of leaves gave positive insights
about the regulation of the NtIRT1 and NtFRO1 expression in
roots of Fe-deficient tobacco plants (Enomoto et al., 2007). In
another study, the shoot-tip was removed from apple plants,
to understand the role of hormones in the regulation of Fe
deficiency responses (Wu et al., 2012). Both studies found that

shoots play a critical role in regulating Fe uptake in roots. To
the best of our knowledge, few studies have focused on the
role of nutrient competition between sink organs in the Fe
deficiency responses of contrasting cultivars. So far, studies on
efficiency have focused on identifying genetic markers for use
in breeding programs, solely explaining the efficiency mecha-
nism using genetic models (Lin et al., 1997; O’Rourke et al.,
2007; Peiffer et al., 2012) and recent findings show that effi-
cient genotypes induce energy controlling pathways to promote
IDC resistance responses (Atwood et al., 2014). However, these
studies only correlate the molecular results with the activity
of the ferric chelate reductase or with chlorosis development.
Therefore, there is a need for a study that integrates several possi-
ble traits that contribute for the efficiency mechanism in soybean
plants.

The aim of this work was to understand if the ability to
partition Fe could be related to IDC efficiency and to investi-
gate the role of the expression of Fe uptake and storage related
genes in this process. Given the fundamental importance of
source/sink relations for plant growth and development, and that
sink organs compete with each other for the carbohydrates and
nutrients provided by source organs, we hypothesize that the abil-
ity to manage nutrient partitioning among different organs is an
important trait contributing to an EF response. To verify this
hypothesis, we removed the unifoliate leaves – strong sink organs
in the early stages of plant development that have previously
been shown to be correlated with IDC tolerance (Vasconcelos and
Grusak, 2014) – and analyzed morphological, physiological, and
molecular indicators in two G. max accessions with contrasting
efficiencies for Fe-deficiency.

Materials and Methods

Plant Material, Growth Conditions, and
Treatments
An efficient (EF – PI437929/VIR 316) and an inefficient (IN –
PI378676A/Primorskaja 500) G. max accession for Fe defi-
ciency (Vasconcelos and Grusak, 2014), with identical phenol-
ogy, were selected from the USDA (United States Department
of Agriculture) germplasm collection via GRIN (Germplasm
Resources Information Network)1. Seeds were rolled in filter
paper and placed vertically in a solution of 250 mM CaCl2, for
7 days in the dark, at 25◦C. In the current work, plants were
grown hydroponically mimicking Fe deficient soil. Studies have
shown that similar QTLs associated with IDC are identified in
nutrient solution and field tests and, therefore, both systems iden-
tify similar genetic mechanisms of iron uptake and/or utilization
(Lin et al., 1998).

In Experiment 1 germinated seedlings were transferred to 20 L
vessels containing hydroponic solution with different Fe treat-
ments. Each vessel contained five plants of one accession grown
in Fe sufficient (+Fe, 20 µM Fe(III)-EDDHA [ethylenediamine-
N,N′bis(o-hydroxyphenyl)acetic acid]) or in Fe deficient [−Fe,
0 µM Fe(III)-EDDHA] conditions.

1http://www.ars-grin.gov/
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The vessels were placed in a climate chamber (Aralab
Fitoclima 10000EHF) with 16 h day photoperiod providing
325 µmol s−1 m−2 of photosynthetic photon flux density at
plant level supplied by a mixture of incandescent bulbs and fluo-
rescent lights. Temperatures were set to 25◦C during the light
period and to 20◦C during the dark period, whereas relative
humidity was maintained at 75% throughout day and night. The
standard solution for hydroponic growth of G. max included:
1.2 mM KNO3, 0.8 mM Ca(NO3)2, 0.3 mM MgSO4.7H2O,
0.2 mM NH4H2PO4, 25 µM CaCl2, 25 µM H3BO3, 0.5 µM
MnSO4, 2 µM ZnSO4.H2O, 0.5 µM CuSO4.H2O, 0.5 µM
MoO3, 0.1 µM NiSO4. Hydroponic solution was buffered with
the addition of 1 mM MES [2-(N-morpholino)ethanesulfonic
acid], pH 5.5 and, during the experimental time, pH was
measured and solutions were changed weekly. The experiment
ended 10 days after transferring the plants to the climate
chamber.

To infer if the removal of the unifoliate leaves could allevi-
ate IDC stress symptoms, a separate experiment was conducted
(Experiment 2). In this experiment, plants were grown under the
same conditions as described above, but unifoliate leaves were
removed 3 days after the transfer to the hydroponic solutions
(corresponding to about 10 mm length) and in the control plants
the unifoliate leaves were kept on the plant. Please see Figure 1
for the G. max anatomy visualization.

When the first unfolded trifoliate leaves of the inefficient
accession showed signs of chlorosis, the experiments were termi-
nated and plants were sampled for further analysis, which corre-
sponded to 10 days after transferring the plants to the climate
chamber.

Morphological Parameters
Chlorosis scoring was conducted using a visual scale accord-
ing to Wang et al. (2008): (1) no chlorosis, plants normal and
green; (2) slight yellowing of the upper leaves, no differentiation
in color between the leaf veins and interveinal areas; (3) inter-
veinal chlorosis (green veins and chlorotic interveinal areas) in

FIGURE 1 | Efficient accession soybean plant 437929 at V1 stage of
development (as described by Fehr and Caviness, 1977) showing fully
expanded unifoliate leaves and one unfolded trifoliate.

the upper leaves, but no obvious stunting of growth or death of
leaf tissue (necrosis); (4) interveinal chlorosis of the upper leaves
with some apparent stunting of growth or necrosis of plant tissue;
and (5) severe chlorosis with stunted growth and necrosis in
the youngest leaves. Also, Soil and Plant Analyzer Development
(SPAD) readings were conducted with a portable chlorophyll
meter (Konica Minolta SPAD-502Plus; Minolta, Osaka, Japan) at
the end of 10 days, using the first expanded trifoliate leaf from the
top of the plant.

Sampled roots, stems and leaves were separated, weighed, and
measured for length. The material was then dried at 70◦C until
constant weight and stored for ICP-OES analysis. Foliar area of
the trifoliate leaves was measured using a leaf area meter AM300
(ADC BioScientific Ltd., UK).

Root Iron Reductase Activity Measurements
Root iron reductase was quantified as described by Vasconcelos
et al. (2006). The measurements were carried out in roots of
intact plants via the spectrophotometric determination of Fe2+
chelated to BPDS (bathophenanthroline disulfonic acid). Roots of
each plant were submerged in assay solution containing: 1.5 mM
KNO3, 1mMCa(NO3)2, 3.75mMNH4H2PO4, 0.25mMMgSO4,
25 µM CaCl2, 25 µM H3BO3, 2 µM MnSO4, 2 µM ZnSO4,
0.5 µM CuSO4, 0.5 µM H2MoO4, 0.1 µM NiSO4, 100 µM
Fe(III)-EDTA (ethylenediaminetetraacetic acid) and 100 µM
BPDS. All nutrients were buffered with 1 mM MES, pH 5.5. The
assays were conducted under dim light conditions at 20◦C and
were terminated after 45 min by removal of the roots from the
assay solution. Absorbance values were obtained spectrophoto-
metrically at 535 nm, and an aliquot of the solution that had
no roots during the assay was used as blank. Rates of reduc-
tion were determined using the molar extinction coefficient of
22.14 mM−1cm−1.

Total Fe Determination by ICP-OES
One hundred mg of the dried plant tissues (root, stem, cotyle-
don, unifoliate, and trifoliate leaves) of the twoG. max accessions
grown as described above were mixed with 5 mL of 65% HNO3
in a Teflon reaction vessel and heated in a SpeedwaveTMMWS-
3+ (Berghof, Germany) microwave system. Each plant organ
from all the treatments (n = 5) was ground and five independent
digestions were carried out.

Digestion procedure was conducted in five steps, consist-
ing of different temperature and time sets: 130◦C/10 min,
160◦C/15 min, 170◦C/12 min, 100◦C/7 min, and 100◦C/3 min.
The resulting clear solutions of the digestion procedure were
then brought to 20 mL with ultrapure water for further analy-
sis. Mineral concentration determination was performed using
the ICP-OES Optima 7000 DV (PerkinElmer, USA) with radial
configuration.

Gene Expression Analysis
Additional plants were grown under the conditions described
above, collected at the end of the assay and immediately frozen
in liquid nitrogen. A pool of five biological replicates from
each treatment were grinded thoroughly with a mortar and
pestle until a fine powder was obtained and total RNA was
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extracted using a Qiagen RNeasy Plant Mini Kit (USA, Nr.
#74904), according to the manufacturer’s instructions. RNA qual-
ity and quantity were checked by UV-spectrophotometry, using
a nanophotometer (Implen, Isaza, Portugal). Single-stranded
cDNA was then synthesized using the First Strand cDNA
Synthesis Kit (Fermentas UAB, Cat. Nr. #K1612) in a Thermal
cycler (VWR, Doppio, Belgium), according to manufacturer’s
instructions.

Sequence homologs to AtFRO2 and AtIRT1 in G. max were
queried in NCBI database and the sequences with highest
homology were selected (Supplementary Table S1). Primers for
FRO2-like, IRT1-like, and ferritin were designed using Primer32,
specifying an expected PCR product of 100–200 bp and primer
annealing temperatures between 56 and 58◦C (Supplementary
Table S2). qPCR reactions were performed on a Chromo4
thermocycler (Bio-Rad, Hercules, CA, USA) with the following
reaction conditions: 10 min at 95◦C and 40 cycles with 15 s
at 95◦C, 15 s at 58◦C, and 15 s at 68◦C. Amplifications were
carried out using 1.25 µM of the specific primers and mixed
to 12.5 µM of 2xPCR iQ SYBR Green Supermix (Bio-Rad) and
100 ng of cDNA in a final volume of 25 µl. Three technical repli-
cates were performed for each gene tested in qPCR reactions, as
well as for controls. Melt curve profiles were analyzed for each
tested gene. The comparative CT method (!!CT; Livak and
Schmittgen, 2001) was used for the relative quantification of gene
expression values of Fe related genes using the 18S rRNA gene
as the control transcript (Opticon Monitor 3 Software, Bio-Rad)
and the EF plants, grown under Fe sufficiency, with unifoliate
leaves as the reference sample. Data were transferred to Excel files
and plotted as histograms of normalized fold expression of target
genes.

A heatmap with folds of expression was designed using R
software (R Development Core Team, 2013).

Statistical Analysis
Data were analyzed with GraphPad Prism version 6.00 for Mac
OS X (GraphPad Software, La Jolla, CA, USA3). Differences
between treatments were tested with unpaired Student’s t-test
corrected for multiple comparisons using Holm-Sidak method.
Statistical significance was considered at P < 0.05.

Results

IDC Symptom Evaluation and Reductase
Activity Quantification
The clearest symptom of IDC in plants is the interveinal yellow-
ing of the younger leaves that can be assessed by using a visual
chlorosis score in which 5 represents full chlorosis and 1, no
chlorosis. EF plants grown in Fe sufficiency remained green
throughout the experiment, while the IN ones presented some
signs of chlorosis. The IDC visual scores of plants grown under
Fe shortage were 4.8 ± 0.2 for the IN accession and 2.5 ± 0.5
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for the EF one (Figure 2A). IDC was also evaluated measur-
ing the chlorophyll content in the younger trifoliate leaves using
a SPAD meter (Figure 2B). Average SPAD values corroborated
that, when in −Fe conditions, the IN accession presented lower
SPAD values (6.1 ± 0.9) than the EF one (9.3 ± 2.9), and even
under Fe sufficiency the IN plants showed signs of chlorosis,
with no significant differences to the −Fe plants (10.3 ± 3.0).
The EF plants under Fe sufficiency had the highest SPAD values
(24.9 ± 1.9).

Reductase activity was measured in roots of both IN and EF
G. max accessions, grown under Fe shortage and Fe sufficiency.
The Fe3+ chelate reductase activity was largely enhanced under
Fe sufficiency for both accessions (Figure 3), and the activity of
this enzyme was threefold higher in the EF accession.

Effects of Unifoliate Leaf Removal on IDC
Symptoms and Fe Partitioning
The effect of Fe partitioning on IDC responses was assessed by
growing the two accessions and removing the unifoliate leaves
at an early growth stage, and comparing these to intact plants.
Under Fe sufficiency, unifoliate removal did not significantly
impact IDC score, SPAD values, plant DW and trifoliate leaf area
(data not shown). Under Fe deficiency, intact plants presented
accentuated visual symptoms of chlorosis, particularly in the IN
accession (Figure 4).

The removal of the unifoliate leaves (−UNIF) led to signif-
icant improvements in the IDC symptoms, in both accessions
(Figures 4 and 5). For instance, the IN accession presented a
reduction of IDC visual score from 4.8 to 2.5 (Figure 4B) and

FIGURE 2 | Iron deficiency chlorosis (IDC) visual score (A) and Soil and
Plant Analyzer Development (SPAD) values (B) in two Glycine max
accessions [378676A (inefficient) and 437929 (efficient)] grown in
Fe-sufficient (+Fe) and Fe-deficient (−Fe) hydroponic conditions. Data
are the mean ± SE of five biological replicates. Different letters indicate
significant differences (P < 0.05).
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the SPAD values were increased by 53% (Figure 4C). In the EF
plants, the IDC visual score was significantly reduced from 2.5 to
1 and the SPAD values increased 62%. Moreover, the removal of
the unifoliate leaves led to an increase in the shoot DW in both
accessions but this was only significantly higher in the EF plants
(Figure 5A). On the other hand, root DWwas significantly lower
in plants without unifoliate leaves, representing a decrease of 27%
for the IN plants and 44% for the EF plants (Figure 5B). Finally,
IN plants grown without unifoliate leaves presented 53% larger
trifoliate leaf area and the EF plants had a 40% increase although
in the last case this difference was not significant (Figure 5C).

In order to study the impact of unifoliate removal on Fe parti-
tioning in each plant organ, IN and EF plants, intact or without

FIGURE 3 | Root reductase activity of two G. max accessions [378676A
(inefficient) and 437929 (efficient)] grown in Fe-sufficient (+Fe) and
Fe-deficient (−Fe) hydroponic conditions. Data are mean ± SE of five
biological replicates. Different letters indicate significant differences (P < 0.05).

unifoliates, were grown under Fe-sufficiency, and Fe-deficiency
for 10 days (Figure 6, Table 1). In Fe sufficient conditions, total
Fe content was significantly higher in intact plants (Figure 6A).
Under Fe deficiency, the removal of the unifoliates had no effect
on total Fe content in both accessions, but the EF plants were
able to accumulate approximately two times more Fe than the IN
plants (Figure 6A).

The percentage of Fe content of each organ relative to the
total Fe content of the whole plant (Fe content partitioning)
was calculated to compare the Fe partitioning between plant
organs under Fe sufficiency and deficiency (Figure 6B). In this
case, content was chosen rather than concentration to have a
better idea on the total amount of Fe accumulated in one organ
in relation to the whole plant accumulation. Looking firstly at
intact plants (+UNIF), for both accessions, the organ that had
higher Fe concentrations was the root (Table 1) and this was
also the organ with higher content partitioning (Figure 6B).
Under Fe sufficiency, the IN plants accumulated higher amounts
of Fe in this organ, having about twofold higher Fe content
than the EF plants, but under Fe deficiency no significant differ-
ences were detected between accessions (Figure 6B). The stem
was the organ showing lower Fe concentrations amongst all
plant organs (Table 1), being highest in Fe supplied EF plants.
In Figure 6B it is also visible that under Fe sufficiency, the
EF plants remobilized more Fe to all above-ground organs
(stems, cotyledons, and trifoliates) than the IN ones, whilst
under Fe deficiency no significant differences were detected
between accessions, except in the cotyledons, where the IN
plants had higher Fe content partitioning percentages than

FIGURE 4 | Iron deficiency chlorosis visual symptoms (A), visual IDC
score (B) and SPAD values (C) in two G. max accessions [378676A
(inefficient) and 437929 (efficient)] grown in Fe-deficient (−Fe)

hydroponic conditions, with (+UNIF) and without (−UNIF) unifoliate
leaves (Experiment 2). Data are mean ± SE of five biological replicates.
Different letters indicate significant differences (P < 0.05).
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FIGURE 5 | Shoot DW (accounting the unifoliate leaves weight; (A),
root DW (B) and trifoliate leaf area (C) of two G. max accessions
[378676A (inefficient) and 437929 (efficient)] grown under Fe-deficient
(−Fe) hydroponic conditions, with (+UNIF) and without (−UNIF)
unifoliate leaves (Experiment 2). Data are mean ± SE of five biological
replicates. Different letters indicate significant differences (P < 0.05).

the EF ones. The trifoliates were the above-ground organ that
presented higher Fe concentrations. Under +Fe conditions, the
EF plants had a fourfold increase in Fe concentration compared
to the IN plants (Table 1). As expected, under +Fe condi-
tions, Fe content partitioning was higher in the EF accession
(Figure 6B).

When looking at the effect of the removal of the unifo-
liate leaves (−UNIF) it was found that in general unifoli-
ate removal enhanced Fe concentrations in other plant organs
(Table 1). Under Fe sufficiency, the Fe content partitioning was
also enhanced in several instances (Figure 6B). Under Fe defi-
ciency, roots of the IN plants accumulated 526 ± 31 ppm Fe
and the EF plants 655 ± 57 ppm Fe – whereas by remov-
ing the unifoliate leaves, plants accumulated significantly higher
amounts of Fe – 816 ± 132 ppm in the IN plants, and
1264 ± 69 ppm for the EF ones (Table 1). Also, as plants with-
out unifoliates displayed reduced chlorosis in the trifoliate leaves
(Figures 4A–C), Fe concentration increased in the trifoliates of
IN plants grown under Fe deficiency to similar values of the
Fe sufficient intact plants. In the EF plants Fe concentration

was two times higher in the trifoliates when unifoliates were
removed. Accordingly, the Fe content percentage doubled in the
EF trifoliates (Figure 6B).

Fe-Deficiency Related Gene Expression
Patterns
Three known genes associated with the Fe-deficiency responses –
FRO2-like, IRT1-like, and ferritin – were studied using qPCR.
These genes were analyzed separately for each plant organ
(Figure 7, Supplementary Tables S3–S5) and the impact of unifo-
liate leaf removal was accessed for both accessions. In general, it
was found that regardless of Fe supply, the IN plants presented
higher gene expression levels than the EF ones, and that when
looking at the expression of these genes in the unifoliate leaves,
the expression levels were always higher in the EF plants under
Fe-deficiency (Figure 7).

Firstly, when looking at the expression of FRO2-like
(Figure 7A), the organ with the lowest expression levels was the
root, with variable expression patterns in the remaining plant
organs and treatments. Intact EF plants presented low basal levels
of FRO2-like gene expression in all plant organs. The removal of
the unifoliates did not augment the expression of FRO2-like gene
in the roots of both accessions. In fact, the FRO2-like gene here
studied appeared to have higher expression levels in the shoots
than in the roots.

The expression of IRT1-like gene (Figure 7B) was higher in
the IN plants roots than in the EF ones. After removing the
unifoliates, the expression levels in the IN roots was even higher,
especially noticeable in plants under Fe deficiency. Although
levels of IRT1-like gene expression were very low in the EF plants,
it had higher levels in the shoots than in the roots, and the expres-
sion levels were further increased when unifoliate leaves were
removed (Figure 7B).

With regards to the ferritin gene (Figure 7C), the EF plants
presented low expression in most plant organs, and the removal
of the unifoliates had low impact on the levels of ferritin expres-
sion. Also, ferritin expression levels were similar between Fe
sufficient and Fe deficient plants. Contrastingly, in the IN plants,
the expression was highest in the stems and in the trifoliate
leaves of Fe-sufficient plants, and the removal of the unifoliate
leaves decreased the expression levels in these organs (Figure 7C).
Interestingly, ferritin expression was higher in the roots of the
plants without unifoliate leaves than in the intact plants, and these
plants were the ones that accumulated more Fe (Figure 6).

Discussion

In the current work the efficiency trait was associated with lower
chlorosis development under Fe deficiency (Figure 2) accord-
ing to what has been previously described (Brown, 1978). Fe
is essential in redox reactions, often used in electron transport
chains, as well as in metabolic processes. Chlorophyll biosyn-
thesis requires Fe, and plants need concentrations of 10−9 to
10−4 M to achieve optimal growth (Kim and Guerinot, 2007).
Also, root Fe reductase is known to be the rate-limiting enzyme
for Fe uptake (Wu et al., 2012; García et al., 2013). The ferric
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FIGURE 6 | Iron accumulation profile in two G. max accessions [378676A
(inefficient) and 437929 (efficient)] grown under Fe-sufficient (+Fe) and
Fe-deficient (−Fe) hydroponic conditions, with (+UNIF) and without
(−UNIF) unifoliate leaves (Experiment 2): (A) Total Fe content, within

each Fe treatment different letters indicate significant differences
(P < 0.05); (B1) Fe content percentage (%) in +Fe and (B2) Fe content
percentage (%) in −Fe, within each plant organ different letters indicate
significant differences (P < 0.05).
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TABLE 1 | Fe concentration (µg/g) in root, stem, cotyledon, unifoliate leaves, and trifoliate leaves of inefficient (IN) and efficient (EF) G. max accessions
grown with (+UNIF) and without (−UNIF) unifoliate leaves, under Fe-deficient (−Fe) and Fe-sufficient (+Fe) hydroponic conditions (Experiment 2).

Acc. 378676A (IN) Acc. 437929 (EF)

+ Fe − Fe + Fe − Fe

+ UNIF − UNIF + UNIF − UNIF + UNIF − UNIF + UNIF − UNIF

Root 882 ± 79b 1252 ± 46a 526 ± 31c 816 ± 132b 575 ± 37b 562 ± 27b 655 ± 57b 1264 ± 69a

Stem 44 ± 1b 66 ± 9a 48 ± 11b 45 ± 1b 98 ± 5a 76 ± 11a 44 ± 9b 47 ± 4b

Cotyledon 87 ± 13a 90 ± 4a 90 ± 4a 62 ± 9b 216 ± 2a 108 ± 16b 48 ± 12c 63 ± 16bc

Unifoliate 55 ± 6a − 41 ± 3a − 265 ± 33a − 53 ± 15b −
Trifoliate 96 ± 6ab 106 ± 10a 61 ± 5c 83 ± 1b 403 ± 22a 243 ± 7b 66 ± 4d 129 ± 7c

Data are the mean of five replicates ± SE. Within each accession and each row different letters indicate significant differences (P ≤ 0.05).

reductase activity was analyzed in roots of the IN and EF plants, to
confirm if under Fe deficiency the EF plants had higher reductase
activity as the efficiency trait has been associated with a reduc-
tase activity inducible by Fe deficiency (Moog and Brüggemann,
1994). However, here, for both IN and EF plants, the enzyme
was more active in Fe-sufficient conditions than in Fe defi-
ciency (Figure 3). It is well-known that Fe reductase activity
is usually induced under Fe deficiency (Vert et al., 2003; Kong
et al., 2013; Wang et al., 2013; Zha et al., 2014). However, in
the current work, we observed that under Fe restriction plants
had lower reductase activity than under Fe sufficiency. In fact,
this is an observation that was already made before in Williams
82 soybean lines (Santos et al., 2013), and was also registered
in common bean (Blair et al., 2010). In fact, it seems that
reductase induction is not only species dependent (Santos et al.,
2013), but also cultivar dependent (Blair et al., 2010; Pereira
et al., 2014). These findings could be related to the fact that
the Fe reductase enzyme itself has a heme containing Fe group.
Thus, having grown the plants in total absence of Fe may have
impaired the synthesis or functioning of the enzyme, which
could explain the low reduction values in plants grown under Fe
deficiency.

Moreover, although the EF plants had higher values of reduc-
tase activity under Fe-sufficiency than the IN ones, this alone
cannot explain the difference in the efficiency, since under stress
conditions none of them were able to activate the enzyme.

Unifoliate Leaf Removal Reduced Chlorosis
and Increased Shoot to Root Ratio
As young leaves are one of the major sinks during the early devel-
opmental stages of plant growth and the access to photoassim-
ilates and nutrients must be balanced between sinks (Wardlaw,
1990), we hypothesized that the removal of the unifoliate leaves
could alleviate chlorosis and other IDC symptoms, since the
competition between sinks would decrease. To this end, the
unifoliate leaves were removed at a very young stage (in Figure 1
the morphology of a soybean plant at an early growth stage
is depicted) to understand if Fe would be directed to other
sinks, diminishing the stress from Fe deprivation. This hypoth-
esis seems to be supported by the observation that soybean plants
with bigger unifoliates are more IDC susceptible (Vasconcelos
and Grusak, 2014). In fact, under Fe-deficiency, unifoliate

removal led to a visual reduction of chlorosis (Figure 4A) and
a concomitant increase in SPAD values (Figure 4C), particularly
in the EF plants. The fact that the IN plants when grown without
unifoliate leaves (a strong sink for Fe) still showed a certain degree
of chlorosis reveals that other processes are limiting Fe availability
at leaf level (e.g., the level of remobilization, the storage form of
Fe in source tissues, the amount of chelators, the type and amount
of organic acid release or the expression of specific transporters).

Our results show that under Fe-deficiency the EF plants had
higher root DW than the IN ones (Figure 5B), while the shoot
DW did not vary among accessions (Figure 5A). This increased
root to shoot DW ratio reflects the ability of the EF plants to
allocate more resources to the organs involved in mineral acquisi-
tion when under shortage of mineral nutrients (Marschner et al.,
1996; Hermans et al., 2006; Lemoine et al., 2013). Additionally,
in plants without unifoliate leaves, root DW decreased whereas
shoot DW increased, and they did not differ between accessions.
This investment in the aerial organs rather than on the roots is
possibly due to a lower sink demand and therefore a diminished
Fe-deprivation stress.

Efficient Plants were able to Better
Translocate Fe to the Trifoliate Leaves
The EF and IN plants responded differently in terms of Fe accu-
mulation and distribution. When under Fe-deficiency (with or
without unifoliate leaves), the EF plants had higher total Fe
content (Figure 6A). Roots were the organs that accumulated
more Fe (Figure 6B, Table 1). Moreover, under Fe-deficiency,
roots of plants without unifoliates accumulated more Fe than
roots of the intact plants and no differences were detected in Fe
content percentage between accessions. Under optimal, Fe suffi-
cient conditions, the EF plants had lower Fe content in the roots
than the IN plants, indicating that less Fe was retained in this
organ and was possibly distributed along the plant aerial organs.
Unifoliate leaf removal led to an increase in the Fe concentra-
tion in the roots of the IN plants, but not in the EF plants
(Table 1), suggesting that the IN plants have an impairment of
Fe re-distribution.

The trifoliate leaves of plants without unifoliates, which were
the ones with higher SPAD values and lower IDC visual scores
(Figure 4), had higher Fe concentrations and Fe content percent-
ages, especially in the EF plants. Studies show that higher Fe
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FIGURE 7 | Continued

FIGURE 7 | Continued

HeatMap of the expression patterns of FRO2-like (A), IRT1-like (B) and
ferritin (C) genes in roots, stem, cotyledon, unifoliate, and trifoliate
leaves of two G. max accessions [378676A (IN) and 437929 (EF)] grown
under Fe-sufficient (+Fe) and Fe-deficient (−Fe) hydroponic
conditions, with (+UNIF) and without (−UNIF) unifoliate leaves
(Experiment 2). “EF +Fe +UNIF” was the reference sample. In dark blue:
increased gene expression; in light blue: lower gene expression; in white:
unifoliate leaf removed. Total RNA was extracted from a pool of five
independent replicates. Corresponding values are presented in
Supplementary Tables S3–S5.

concentrations can be found in young chlorotic leaves, when
compared to green leaves, the so called “chlorosis paradox” that
can result from an Fe inactivation in the plant under alkaline
conditions (Römheld, 2000). However, in more recent works
plants under Fe deficiency have lower Fe concentration in the
leaves, showing that this is not an ubiquitous phenomenon, both
in hydroponic (Ramírez et al., 2013; Kong et al., 2014), and soil
conditions (Chakraborty et al., 2013; El-Jendoubi et al., 2014).
Additionally, studies on Fe partitioning show that under Fe-
deficiency and sufficiency the senescence of older leaves with a
reduction of their sink capacity results in Fe retranslocation to
younger leaves (Shi et al., 2012). Here, the removal of the unifoli-
ate leaves also led to an Fe translocation toward the young trifoli-
ate leaves of both IN and EF plants, specially under Fe-deficiency
(Table 1, Figure 6B).

The EF plants grown under Fe-sufficiency, regardless of having
unifoliates or not, were the ones with lower Fe concentration in
the roots and had a more balanced distribution of the Fe pools
throughout all organs, resulting in higher concentrations accu-
mulating in the trifoliate leaves (Table 1, Figure 6B). There are
several theories behind Fe deficiency sensing, but no consen-
sus was yet achieved (for a recent review please see García-Mina
et al., 2013). Roots were firstly proposed as the main organ for Fe-
deficiency sensing (Bienfait et al., 1987) but more recent research
shows that shoots have an important role in the regulation of
the Fe-stress signaling (Enomoto et al., 2007; Wu et al., 2012).
Our data suggests that the ability to translocate mineral resources
from root to shoot contributes directly to the plants’ efficiency
trait.

The IN Accession Presented Enhanced Gene
Expression Levels
In the current work, the IN plants had higher values of gene
expression. These results were also obtained in other studies,
where soybean inefficient lines responded to Fe stress by increas-
ing the transcripts of genes involved in, for example, signaling
and hormonal regulation (O’Rourke et al., 2007). The EF acces-
sion, not having suffered as severely as the IN one to the Fe
shortage, it did not have the necessity to trigger Fe-uptake related
genes. Besides the generally higher levels of gene expression by
the IN accession, differences in the expression of individual genes
were also apparent.

As previously discussed, the activity of the root reductase was
very low under Fe-deficient conditions (Figure 3). At a molecu-
lar level, the expression of FRO2-like gene was also very low in
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the roots, independent of the growth conditions. A time-course
study in tomato showed that the activation of Fe deficiency stress
response occurs in a progressive way, reaching a peak 5 days after
Fe depletion and decreasing afterward; also, it showed that the
variation in FRO1 transcript level is directly proportional to the
root ferric chelate reductase activity (Paolacci et al., 2014).

Additionally, a strong induction of this gene was detected in
the shoots, and the removal of the unifoliate leaves led to an
increase of the expression under Fe-deficiency. As aforemen-
tioned, Fe must be reduced from Fe(III) to Fe(II) at the root
surface for the uptake process. However, after entering across the
rhizodermal plasma membrane barrier, it is again oxidized and
transported through the xylem as an Fe(III) citrate complex, and
for assimilation in leaves Fe must be again reduced (Wu et al.,
2005). It is possible that the expression of FRO2-like in the shoot
was increased to free the unavailable Fe (III) and make it more
accessible for distribution within the plant. On the other hand,
FRO2 is a member of a gene family that comprises eight members
in Arabidopsis, each one with tissue specificity (Wu et al., 2005);
probably the FRO gene here analyzed is not the principal root
reductase in soybean, but is functionally more similar to AtFRO7,
which is known to be more active in the shoots of Arabidopsis
thaliana (Jeong et al., 2008) than in the roots.

After the reduction step, IRT1 is necessary for Fe trans-
port, and a strong induction of IRT1-like gene expression was
detected in the IN plants’ roots after the removal of the unifo-
liates (Figure 7B). IRT1 is usually up-regulated in Fe-deficient
conditions, but studies show that its regulation is dependent both
on the root Fe pool and on the shoot Fe demand (Vert et al.,
2003). Our results also show a strong induction of IRT1-like gene
in the EF plants shoots (Figure 7B). IRT1 belongs to a family of
genes – ZIPs – detected in different tissues (roots, leaves, nodules,
and flowers) and it may also be involved in the transport path-
ways to other plant organs (Grotz et al., 1998). It has been shown
that some members of the ZIP family could be associated not
only with Fe uptake, but also with detoxification and storage
of excessive Fe (Yang et al., 2009; Li et al., 2013). This could
be the case in the EF plants, since as the unifoliate leaves were
removed, more Fe was accumulated in the aboveground organs
(Table 1, Figure 6), and IRT1-like gene expression was increased,
corroborating its role in Fe homeostasis maintenance.

Ferritins are encoded by nuclear genes regulated by Fe and
store Fe in its oxidized form (Harrison and Arosio, 1996). The
IN accession had higher induction levels of the ferritin gene than
the EF one. It has been suggested that Fe, when stored in the
form of ferritin, may not be readily available for retranslocation
(Vasconcelos and Grusak, 2014). It is possible that the higher
accumulation of Fe with ferritin by the IN plants could be respon-
sible for its lower partitioning capacity (Table 1, Figure 6B).
Alternatively, the induction of ferritin synthesis is correlated with
the degree of PSI degradation during Fe deficiency (Briat et al.,
2010), which is in accordance to the results presented here: IN
plants, that had acuter chlorosis symptoms and, therefore, higher
degradation of PSI, had a strong induction of the expression in
the trifoliate leaves (Figure 7C). With the removal of the unifo-
liate leaves, the levels of ferritin gene expression were lowered in
the trifoliates, and so did the symptoms of chlorosis (Figure 4),

again confirming that Fe bound to ferritin in the roots could have
been hampering its partitioning to the aerial parts.

Conclusion

Although it is known that Fe deficiency induces both morpho-
logical and physiological responses in plants (Wu et al., 2012),
how these responses are triggered is still unclear. Moreover, the
partitioning of Fe between different plant organs could be a key
mechanism for plant adaptation to this type of stress and could
be related to the expression of specific genes.

Our results corroborated our initial hypothesis that the abil-
ity to remobilize Fe could be related to IDC susceptibility. The
removal of the unifoliate leaves increased total Fe content in Fe-
deficient conditions but Fe was mainly accumulated in the roots.
Nonetheless, in the EF accession without unifoliate leaves, Fe
concentration also significantly augmented in the trifoliate leaves
and IDC symptoms were alleviated almost to full correction.
Moreover, the EF plants under optimal conditions were able to
distribute Fe in a more balanced way throughout all organs, fact
that was not verified in the IN plants, suggesting that the ability
to translocate Fe from the roots to the aboveground organs could
explain the different IDC susceptibility between accessions.

Moreover, the IN plants induced higher expression levels of
Fe uptake related genes, which may be an indicator of the higher
susceptibility of this accession to Fe deficiency and shows that
low gene expression levels cannot be responsible for the plant’s
low efficiency, as previously suggested (O’Rourke et al., 2007).
The high level of ferritin expression by the roots of the IN plants
could be responsible for the accumulation of Fe with ferritin in
this plant organ and, consequently, making Fe partitioning to the
shoots more difficult.

The enhanced overall growth of the plant and the reduced
chlorosis and Fe accumulation in the trifoliate leaves here
obtained by the removal of the unifoliate leaves appears to be
due to a reduction in source–sink imbalance that reduced IDC
symptoms. These findings suggest a key role of shoots in Fe-
stress response signaling and identified possible factors that could
influence plant IDC susceptibility. This comprehensive analy-
sis helped to better understand some of the mechanisms behind
mineral partitioning and resource allocation in soybean, and
our conclusions can possibly be extrapolated to other agricul-
tural crops suffering from IDC. Still, nutrient solutions cannot
fully mimic agricultural, alkaline soil conditions, and as such
further studies are necessary to extrapolate our findings to natural
settings.
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Electronic Supplementary Material 

 

Table S1. Sequence orthologs of Arabidopsis thaliana FRO2 and IRT1 genes in Glycine 

max  

Gene G. max 
Accession nr. 

A. thaliana 
Accession nr. 

Maxim 
score 

Total 
score 

Query 
cover 

E 
value Identity 

FRO2-like XM_003548612.1 NM_100040.2 399 399 91 % 5e-109 65 % 

IRT1-like XM_003520096.2 NM_118089.3 105 105 19 % 9e-21 69 % 

 

 

Table S2. Primer sequences and correspondent accession numbers (Acc. No) 

Primer Forward (5’-3’) Reverse (5’-3’) Acc. No 

18S TTAGGCCATGGAGGTTTGAG GAGTTGATGACACGCGCTTA X75080.1 

FRO2-

like 

TGCTTGGACTCACACCAGAG AGAGGTAGAAACCGGGGAGA XM_003548612.1 

IRT1-

like 

GATTGCACCTGTGACACAAA CAGCAAAGGCCTTAACCATA XM_003520096.2 

Ferritin CCCCTTATGCCTCTTTCCTC GCTTTTCAGCGTGCTCTCTT U31648.1 

 

 

Table S3. FRO2 gene RNA relative expression values of inefficient (IN) and efficient (EF) 

G. max plants grown under Fe-sufficient (+Fe) and Fe-deficient (-Fe) hydroponic 

conditions, with (+UNIF) and without (-UNIF) unifoliate leaves  

Treatment Roots Stem Cotyledon Unifoliate Trifoliate 
IN +Fe +UNIF 0.140 3054 0.849 3.41 24.3 
IN +Fe -UNIF 1.75 4.40 3.71 -- 6.50 
IN -Fe +UNIF 0.226 0.977 1.75 2.80 6.45 
IN -Fe -UNIF 0.250 3.35 2.93 -- 4.39 

EF +Fe +UNIF 1.00 1.00 1.00 1.00 1.00 
EF +Fe -UNIF 0.258 1.33 2.24 -- 3.05 
EF -Fe +UNIF 0.863 1.17 2.36 2.83 3.87 
EF -Fe -UNIF 0.627 3.38 1.76 -- 3.02 
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Table S4. IRT1 gene RNA relative expression values of inefficient (IN) and efficient (EF) 

G. max plants grown under Fe-sufficient (+Fe) and Fe-deficient (-Fe) hydroponic 

conditions, with (+UNIF) and without (-UNIF) unifoliate leaves  

Treatment Roots Stem Cotyledon Unifoliate Trifoliate 
IN +Fe +UNIF 0.998 835 0.953 3.51 12.0 
IN +Fe -UNIF 5.76 2.86 3.07 -- 2.95 
IN -Fe +UNIF 1.16 2.72 1.95 3.66 2.51 
IN -Fe -UNIF 186 1.40 2.30 -- 2.68 

EF +Fe +UNIF 1.00 1.00 1.00 1.00 1.00 
EF +Fe -UNIF 0.538 2.35 1.23 -- 1.59 
EF -Fe +UNIF 1.03 1.53 2.30 2.53 1.62 
EF -Fe -UNIF 0.538 3.60 1.38 -- 1.45 

 

Table S5. Ferritin gene RNA relative expression values of inefficient (IN) and efficient 

(EF) G. max plants grown under Fe-sufficient (+Fe) and Fe-deficient (-Fe) hydroponic 

conditions, with (+UNIF) and without (-UNIF) unifoliate leaves  

Treatment Roots Stem Cotyledon Unifoliate Trifoliate 
IN +Fe +UNIF 0.705 663 0.849 1.18 6.23 
IN +Fe -UNIF 5.55 0.883 3.71 -- 1.49 
IN -Fe +UNIF 0.964 0.777 1.75 1.27 1.64 
IN -Fe -UNIF 188 1.24 2.93 -- 1.82 

EF +Fe +UNIF 1.00 1.00 1.00 1.00 1.00 
EF +Fe -UNIF 0.582 1.84 2.24 -- 1.27 
EF -Fe +UNIF 1.35 2.08 2.36 2.189 1.79 
EF -Fe -UNIF 0.520 1.97 1.76 -- 1.08 
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Abstract 

 

The role of oxidative stress and the tetrapyrrole cycle on iron (Fe) deficiency chlorosis 

(IDC), a serious condition affecting plant growth and crop productivity, is poorly 

understood. The study of cultivars with contrasting efficiencies to IDC could provide a 

useful tool to address this important knowledge gap. In this study, two soybean lines with 

contrasting Fe efficiencies were grown under hydroponic conditions with 20 µM or no 

additional Fe supply. Under Fe deficiency, the tetrapyrrole precursor ∂-aminolevulinic acid 

(ALA) concentration was 40% lower in the leaves of ‘Fe-inefficient’ (INF) plants when 

compared to ‘Fe-efficient’ (EF) plants, and the first displayed 45% lower dry weight, 46% 

lower chlorophyll levels and six (roots) and three-fold (leaves) higher hemin 

concentrations. INF plants also accumulated 53% more malondialdehyde (MDA) in the 

roots and had four-fold higher gluthatione reductase activity in the leaves, indicating 

higher oxidative stress. The activity of the heme-containing enzyme ferric reductase was 

three times lower in the INF plants, and of catalase was nine-fold higher in the roots and 
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three-fold higher in the shoots. This study sheds light into novel mechanisms behind IDC 

susceptibility and proposes how these may be related to the regulation of antioxidant 

defenses and the tetrapyrrole cycle. 

 

Keywords: ∂-aminolevulenic acid, ascorbate peroxidase, catalase, ferric reductase, 

glutathione reductase, hemin, oxidative stress 

 

 

1 Introduction 

 

Iron (Fe) is an essential micronutrient required for proper plant growth, being involved in 

several metabolic processes, including photosynthesis, respiration, nitrogen fixation, DNA 

synthesis, hormone production and chlorophyll biosynthesis (Guerinot and Yi, 1994). 

Although Fe is present in sufficient amount in the soil, under alkaline conditions its 

bioavailability is limited, resulting in the appearance of a disease called iron deficiency 

chlorosis (IDC). IDC symptoms are characterized by yellowing of the upper leaves, 

interveinal chlorosis and reduced growth and yield (Prasad, 2003). When there is a 

depletion of Fe, it is predictable that chlorophyll and other photosynthetic pigment’s 

content, like anthocyanins and carotenoids, decreases as Fe is essential for their 

biosynthesis (Prasad, 2003). 

 Soybean (Glycine max L.) is the highest produced legume crop with an estimated 

world production of more than 300 million tons in 2014 

(http://faostat3.fao.org/browse/Q/QC/E). This crop is particularly affected by IDC. 

Soybean cultivars have been differentiated regarding their IDC susceptibility, where Fe-

efficient (EF) plants activate biochemical reactions to make Fe more bioavailable, and Fe-
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inefficient (INF) do not (Brown and Jolley, 1989), reinforcing the interest of this crop as a 

model system for studies regarding Fe uptake (Vasconcelos and Grusak, 2014). The main 

biochemical reaction induced by dicotyledonous plants to cope with Fe deficiency is a 

reduction-based strategy for iron absorption, the so-called Strategy I. This strategy is 

characterized by the acidification of the soil, leading to the reduction of Fe3+ to Fe2+ by a 

ferric chelate reductase (like Ferric Reductase Oxidase, FRO), and transport to the 

cytoplasm via an iron regulated transporters (Jeong and Connolly, 2009; Robinson et al., 

1999). 

 One important characteristic of the FRO enzymes, in the context of Fe nutrition, is 

that it has a heme group as a constituent, which is essential for its functioning (Jeong and 

Connolly, 2009). In turn, heme is part of the tetrapyrrole cycle and Fe is essential for its 

biosynthesis (Mauzerall and Granick, 1956). Briefly, this cycle occurs mainly in the 

plastids, and after the conversion of glycine and succinyl-CoA into 5-aminolevulinic acid 

(ALA) by ALA synthase, several common and conserved steps occur, and this molecule is 

converted to protoporphyrin IX (Tanaka et al., 2011; Larkin, 2016). The cycle is then 

divided in two branches, the “magnesium-branch” that ends with the synthesis of 

chlorophyll, and the “iron-branch” that leads to the formation of heme. In the first branch, 

Mg2+ is inserted into the backbone of proto forming Mg-protoporphyrin IX, which, after a 

series of modifications, forms chlorophyllide a that is esterified to synthesize chlorophyll 

a. Chlorophyllide a can also be converted into chlorophyllide b, forming chlorophyll b 

which can be converted again into chlorophyll a, forming the chlorophyll cycle. In the 

second branch, a ferrochelatase is responsible to insert Fe2+ into proto to form heme b 

(protoheme) (Tanaka et al., 2011; Brzezowski et al., 2015). It is known that heme suffers 

degradation when exposed to oxidative stress, being oxidized into its ferric form hemin 

(Müllebner et al., 2015), that is also pro-oxidant (Lu et al., 2012). 
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 On the other hand, Fe stress can also result in the accumulation of reactive oxygen 

species (ROS) leading to the appearance of oxidative stress which, in turn, results in DNA 

damage, enzyme inactivation and lipid peroxidation (Mittler et al., 2004). The mechanisms 

behind ROS formation under Fe deficiency are poorly understood, however it has already 

been shown that Fe deficient plants are ROS producers (Sun et al., 2007). To cope with 

oxidative stress and regulate ROS levels, plants have evolved the antioxidant system 

comprised by two levels of regulation, mediated by: (i) enzymes, such as superoxide 

dismutase, catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR); 

and (ii) metabolites, like ascorbate (ASC), glutathione (GSH), phenolics and carotenoids 

(Spirt et al. 2010) among others (Shi et al., 2007; Lee et al., 2001; Mittler et al., 2004). 

CAT catalyzes the conversion of hydrogen peroxide (H2O2) to H2O (Mai and Bauer, 2016), 

being an important part of the plant antioxidant system, and, like FRO, it is also a heme-

dependent enzyme (Broadley et al., 2012). APX catalyzes the reduction of H2O2 to H2O 

through the oxidation of ASC and it is highly substrate specific, requiring high energy 

levels for its functioning, being particularly associated with enhanced tolerance against 

abiotic stress (Asada, 2006). GR is involved in defense against oxidative stress and 

regenerates GSH from its oxidized form, allowing the ASC-GSH cycle to proceed 

(Ramírez et al., 2013). Reports show that GR activity varies depending on the mineral 

stress to which the plants are subjected (Gill and Tuteja, 2010), but it has already been 

suggested that under Fe deficiency the activity of this enzyme may be increased (Bashir et 

al., 2007). 

 There are few studies that have evaluated the relationship between the tolerance to 

Fe deficiency and the triggering of the antioxidant defense mechanism in plants. In the 

present study, the responses of two soybean lines with different susceptibilities to Fe stress 

were evaluated by analyzing morphological, physiological and biochemical parameters. 
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The constituents of the tetrapyrrole cycle were evaluated (ALA, chlorophyll and heme in 

its oxidized form), as well as the photosynthetic pigments anthocyanins and carotenoids. In 

order to evaluate the oxidative stress of the plant tissues, lipid peroxidation was measured 

as the amount of malondialdehyde (MDA); also, the activity of several heme and non-

heme containing enzymes related to Fe nutrition, such as ferric reductase, CAT, APX and 

GR, was accessed. A PCA analysis was performed to integrate the obtained data set in 

order to extract the most important information. At the end of this work, we propose a 

model that putatively explains how INF plants regulate the antioxidant metabolism and its 

role on IDC development. 

 

2 Materials and methods 

 

2.1 Plant material and growth conditions 

An efficient (EF - PI437929 / VIR 316) and an inefficient (INF - PI378676A / Primorskaja 

500) G. max accession for Fe deficiency (Vasconcelos and Grusak, 2014), with identical 

phenology, were selected from the USDA (United States Department of Agriculture) 

germplasm collection via GRIN (Germplasm Resources Information Network) 

(http://www.ars-grin.gov/). Seeds were germinated for seven days in the dark, at 25 ºC. 

Germinated seedlings were transferred to 5 L vessels containing hydroponic solution with 

different Fe treatments. Each vessel contained five plants of one accession grown under Fe 

sufficiency (+Fe, 20 µM Fe(III)-EDDHA [ethylenediamine-N,N’bis(o-

hydroxyphenyl)acetic acid]) or Fe deficiency (-Fe, no additional Fe). 

 The vessels were placed in a climate chamber (Aralab Fitoclima 10000EHF) with 

16 h day photoperiod providing 325 µmol s-1 m-2 of photosynthetic photon flux density at 

plant level, supplied by a mixture of incandescent bulbs and fluorescent lights. 
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Temperatures were set to 25 ºC during the light period and to 20 ºC during the dark period, 

whereas relative humidity was maintained at 75% throughout day and night. The standard 

solution for hydroponic growth of G. max included: 1.2 mM KNO3; 0.8 mM Ca(NO3)2; 0.3 

mM MgSO4.7H2O; 0.2 mM NH4H2PO4; 25 µM CaCl2; 25 µM H3BO3; 0.5 µM MnSO4; 2 

µM ZnSO4.H2O; 0.5 µM CuSO4.H2O; 0.5 µM MoO3; 0.1 µM NiSO4. Hydroponic solution 

was buffered with the addition of 1mM MES [2-(N-morpholino)ethanesulfonic acid], pH 

5.5 and, during the experimental time, pH was measured and solutions were changed every 

three days. The experiment ended 14 days after transferring the plants to the climate 

chamber.  

 

2.2 Fe determination by ICP-OES 

One hundred mg of dried plant tissue (root and trifoliate leaves) was mixed with 5 mL of 

65% HNO3 in a Teflon reaction vessel and heated in a SpeedwaveTM MWS-3+ (Berghof, 

Germany) microwave system. Each plant organ from all the treatments (n=5) was ground 

and five independent digestions were carried out. 

 The digestion procedure was conducted in five steps, consisting of different 

temperature and time sets: 130°C/10min, 160°C/15min, 170°C/12min, 100°C/7min, and 

100°C/3min. The resulting solutions of the digestion procedure were then brought to 20 

mL with ultrapure water and filtered for further analysis. Mineral concentration 

determination was performed using inductively coupled plasma optical emission 

spectrometer (ICP-OES) Optima 7000 DV (PerkinElmer, USA) with radial configuration. 

 

2.3 ALA and hemin quantification 

Protocols for ALA quantification in the leaves were optimized based on (Mauzerall and 

Granick, 1956). In short, 200 mg of ground sample were suspended in 1.5 mL of 20 mM 
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potassium phosphate buffer (pH 6.8). After centrifuging for 10 min at 16000 g, 400 µL of 

the supernatant were mixed with 100 µL of acetylacetone. The mixture was incubated for 

10 mins at 100 ºC and then transferred to RT, until cool. At this point, 500 µL of modified 

Ehrlich’s reagent were added to each sample, the mixture was let to stand for 5 min, and 

then centrifuged for another 5 min at 16000 g. Absorbance was read at 553 nm and ALA 

concentration was calculated according to a standard (Sigma-Aldrich, #A3785) calibration 

curve. 

 Heme protein content quantification in leaves and roots was performed by 

measuring the oxidized version of this protein, hemin, using an enzymatic assay kit 

(Hemin Assay Kit; Sigma-Aldrich) following the manufacturer instructions. 

 

2.4 Photosynthetic pigments quantification 

Chlorophyll, anthocyanin and carotenoid concentrations were measured on the last fully 

expanded trifoliate leaf of plants grown in the previously described conditions (n=5). The 

referred compounds were extracted and quantified according to a modified protocol of 

(Sims and Gamon, 2002). Absorbance was measured at 470, 537, 647 and 663 nm. The 

amount of anthocyanins, chlorophyll a and b and carotenoids were determined through the 

equations referred by (Sims and Gamon, 2002). 

 

2.5 Lipid peroxidation assay 

MDA was measured using a colorimetric method adapted from (Li, 2000). In short, 0.1 g 

of roots or trifoliate leaf samples (n=5) were homogenized in 10 mL of 0.5% thiobarbituric 

acid in 20% trichloroacetic acid (w/v) and incubated at 100 ºC for 30 mins. The reaction 

was stopped on ice and samples were centrifuged at 5000 rpm for 10 mins. The supernatant 
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was filtered, absorption was read at 450, 532 and 600 nm and MDA concentration (µmol g-

1) was calculated from: 6.45 x (A532 – A600) – 0.56A450. 

 

2.6 Enzymatic analysis 

Root iron reductase activity was quantified as described by (Vasconcelos et al., 2006). The 

measurements were carried out in roots of intact plants via the spectrophotometric 

determination of Fe2+ chelated to BPDS (bathophenanthroline disulfonic acid). Roots of 

each plant were submerged in assay solution containing: 1.5 mM KNO3, 1 mM Ca(NO3)2, 

3,75 mM NH4H2PO4, 0.25 mM MgSO4, 25 µM CaCl2, 25 µM H3BO3, 2 µM MnSO4, 2 µM 

ZnSO4, 0.5 µM CuSO4, 0.5 µM H2MoO4, 0.1 µM NiSO4, 100 µM Fe(III)-EDTA 

(ethylenediaminetetraacetic acid) and 300 µM BPDS. All nutrients were buffered with 1 

mM MES, pH 5.5. The assays were conducted under dim light conditions at 20 ºC and 

were terminated after 45 min by removal of the roots from the assay solution. Absorbance 

values were obtained spectrophotometrically at 535 nm, and an aliquot of the solution that 

had no roots during the assay was used as blank. Rates of reduction were determined using 

the molar extinction coefficient of 22.14 mM-1cm-1. 

 For the evaluation of CAT and APX activity, an enzymatic extraction was 

performed according to (Ruley et al., 2004). Roots and trifoliate leaf samples were 

analyzed separately (n=5) and 100 mg of ground tissue were homogenized with 1.5 mL of 

extraction buffer composed of 0.1 M potassium phosphate buffer (pH 7.0), 0.1 mM EDTA 

and 1% polyvinylpyrrolidone. Samples were vortexed for 2 min and then centrifuged for 

10 min at 5000 rpm at 4 ºC. The supernatant was collected and diluted 3-fold. CAT was 

measured using 666 µL of the diluted supernatant, to which 334 µL of 73 mM H2O2 in 0.5 

M Tris-HCl buffer (pH 7.0) was added. Absorbance was read for 3 min at 240 nm and 

calculated according to (Aebi 1983). APX was measured using 100 µL of the initial 
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supernatant, to which 450 µL of 25 mM ascorbic acid and 450 µL of 17 mM H2O2 in 0.5 

M Tris-HCl buffer (pH 7.0) were added. Absorbance was measured for 3 min at 290 nm 

and calculated according to (United States Environmental Protection Agency, 1994). 

For GR, 100 mg of ground roots and trifoliate leaf tissue (n=5) was homogenized with 1.5 

mL of extraction buffer containing 50 mM Tris-HCl (pH 7.5) and 1 mM EDTA. The 

mixture was vortexed for 2 min and centrifuged for 10 min at 5000 rpm at 4 ºC. To 100 µL 

of the previous mixture, 1 mL of a solution containing 1 mM EDTA, 0.5 mM GSSSG, 0.15 

mM NADPH, 50 mM Tris-HCl buffer (pH 7.5) and 3 mM MgCl2 was added to each 

sample. Absorbances was read for 1 min at 340 nm and calculated according to (Groppa et 

al., 2001). 

 

2.7 Statistical analysis 

Data were analyzed with GraphPad Prism version 6.00 for Mac OS X (GraphPad Software, 

La Jolla California USA, www.graphpad.com). Differences between treatments were 

tested with ANOVA corrected for multiple comparisons using Tukey method. Statistical 

significance was considered at P < 0.05. 

 Principal component analysis (PCA) was performed to establish the relationships 

among the different variables. The data set included 16 continuous variables, namely, the 

concentration of anthocyanins, total chlorophylls, carotenoids, leaf ∂-aminolevulinic acid, 

root ∂-aminolevulinic acid, leaf hemin, root hemin, leaf MDA and root MDA; and the 

activity of leaf APX, root APX, leaf GR, root GR, root reductase, leaf CAT and root CAT. 

This analysis was performed using Tanagra data mining software, version 1.4.5 (Lyon, 

France) (Rakotomalala, 2005). 
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3 Results 

 

3.1 Growth and chlorosis evaluation 

The main symptoms of IDC consist on stunted growth, interveinal chlorosis on the 

youngest leaves and reduced Fe concentration in plant organs (Prasad, 2003), and these 

factors were evaluated in both EF and INF lines (Figure 1). INF plants under Fe deficiency 

had the lowest total plant DW (0.90 ± 0.08 g), which corresponded to about half of the DW 

observed in INF plants under Fe sufficiency and in EF plants under Fe deficiency (Figure 

1A). Visible interveinal chlorosis with remaining green veins was apparent in both lines 

under Fe deficiency, but was more acute in INF plants, confirming their initial 

classification (Figure 1B). 

 

 

Figure 1: Morpho-physiological effects of Fe deficiency in efficient (EF) and inefficient 

(INF) soybean lines. (A) Total dry weight (DW); (B) Chlorosis symptoms; (C) Fe 

concentration in roots and trifoliate leaves. Plants were grown under Fe sufficiency (+Fe, 

20 µM) or Fe deficiency (-Fe, no additional Fe) for 14 days under hydroponic conditions. 

Data are means ± SE; different letters indicate significant differences (P < 0.05) by 

ANOVA with Tukey correction test.  

 

 As expected, Fe concentration was about two times lower in Fe deficient roots of 

both EF and INF plants, when compared to the Fe-sufficient plants (Figure 1C). In INF 
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plants, Fe was mostly accumulated in the root tissues, with very low levels of leaf Fe 

concentration. In contrast, the EF plants had higher concentrations of Fe in the trifoliate 

leaves and no significant differences were found between this organ and the roots. 

 

3.2 ALA as the precursor for chlorophyll and heme 

The compound ALA is the precursor of the tetrapyrrole cycle, which ends with the 

biosynthesis of chlorophyll and heme and has a role in antioxidant metabolism and 

metabolite accumulation (Hotta et al., 1997).  

 Although Fe stress did not cause a significant effect on ALA concentrations, under 

Fe deficiency, the INF plants accumulated 40% less ALA than the EF ones in the trifoliate 

leaves (Figure 2A). This decreased leaf ALA concentration was reflected in about 50% 

lower chlorophyll a and b levels in the INF plants under Fe deficiency (Figure 2B). On the 

other hand, the concentration of the oxidized form of heme – hemin – was always higher in 

INF tissues when compared to the EF counterparts (Figure 2C).  

 

 

Figure 2: ∂-aminolevulenic acid (ALA), leaf chlorophyll and hemin concentrations in 

roots or trifoliate leaves of efficient (EF) and inefficient (INF) soybean lines. (A) ALA, (B) 

leaf chlorophyll a (Chl a) and b (Chl b), and (C) hemin concentrations. Plants were grown 

under Fe sufficiency (+Fe, 20 µM) or Fe deficiency (-Fe, no additional Fe) for 14 days 

under hydroponic conditions. Data are means ± SE; different letters indicate significant 

differences (P < 0.05) by ANOVA with Tukey correction test. 
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 Anthocyanins and carotenoids are associated to chlorophyll as photosynthetic 

pigments, and have activity as antioxidant molecules. Their concentrations were evaluated 

(Table 1). The accumulation of these pigments in INF plants was not significantly affected 

by Fe availability, but it was always lower when compared to the EF plants. More 

specifically, under Fe deficiency, INF plants accumulated 32% less anthocyanins and 50% 

less carotenoids than EF plants (Table 1). 

 

Table 1. Photosynthetic pigment concentrations (mmol/g) in the trifoliate leaves of 

efficient (EF) and inefficient (INF) soybean lines grown under Fe sufficiency (+Fe, 20 

µM) or Fe deficiency (-Fe, no additional Fe) for 14 days under hydroponic conditions  

 EF INF 

Photosynthetic 

pigments 
+ Fe - Fe + Fe - Fe 

Total chlorophyll 0.298 ± 0.024a 0.209 ± 0.018b 0.166 ± 0.011bc 0.112 ± 0.002c 

Anthocyanins 0.089 ± 0.008a 0.056 ± 0.001b 0.040 ± 0.004b 0.038 ± 2.0e-4 b 

Carotenoids 0.128 ± 0.009a 0.090 ± 0.006b 0.058 ± 0.007c 0.045 ± 1.9e-4 c 

* Data are means ± SE. In each row different letters indicate significant differences (P < 

0.05) by ANOVA with Tukey correction test. 

 

3.3 Enzymatic activity 

As a first approach to the analysis of the oxidative stress in the tissues, lipid peroxidation, 

measured as the amount of MDA, was evaluated (Table 2). A significant effect of the 

soybean line on the lipid peroxidation levels in the roots was found, where the average of 

the MDA values of both Fe treatments of INF plants was 55% higher than the average of 

the Fe treatments of the EF plants. In contrast, in the trifoliate the opposite trend was 
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found, with a higher MDA concentration (20% increase) in the EF line. Moreover, there 

was no significant effect of the Fe availability on MDA accumulation. 

 

Table 2. Malondialdehyde (MDA) concentration (nmol/g) in the roots and trifoliate leaves 

of efficient (EF) and inefficient (INF) soybean lines grown under Fe sufficiency (+Fe, 20 

µM) or Fe deficiency (-Fe, no additional Fe) for 14 days under hydroponic conditions  

 EF INF 

MDA + Fe - Fe + Fe - Fe 

Roots 28 ± 1.1b 32 ± 2.7b 44 ± 1.4a 49 ± 1.5a 

Trifoliate 28 ± 1.2a 23 ± 1.0ab 19 ± 1.6b 21 ± 3.0ab 

* Data are means ± SE. In each row different letters indicate significant differences (P < 

0.05) by ANOVA with Tukey correction test. 

 

 Ferric reductase is a heme-containing enzyme (Jeong and Connolly, 2009) and its 

activity is often described as a limiting factor for Fe uptake in dicotyledonous plants, 

especially under stress conditions (Jain et al., 2014). INF plants presented significantly 

lower levels of reductase induction when compared to the EF plants (Table 3). Under Fe 

stress, root reductase activity of INF plants was of 0.007 ± 0.001 µmol Fe / g FW h, which 

was three times lower than that of the EF plants (0.021 ± 0.005 µmol Fe / g FW h). 
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Table 3. Root ferric reductase activity (µmol Fe/g FW h) of efficient (EF) and inefficient 

(INF) soybean lines grown under Fe sufficiency (+Fe, 20 µM) or Fe deficiency (-Fe, no 

additional Fe) for 14 days under hydroponic conditions 

 EF INF 

 + Fe - Fe + Fe - Fe 

Root reductase 

activity 
0.0384 ± 0.052a 0.0210 ± 0.006b 0.0142 ± 0.0029bc 0.007 ± 0.001c 

* Data are means ± SE. Different letters indicate significant differences (P < 0.05) by 

ANOVA with Tukey correction test. 

 

 CAT levels were highly increased in the INF plants when compared to the EF ones 

(Figure 3A). In general, Fe availability did not have an effect on CAT activity, with the 

exception of the roots of Fe sufficient INF plants, that showed significantly 30% lower 

activity than the Fe deficient roots. 

 APX presented an opposite activity pattern to CAT, where it was lower in the INF 

plants when compared to the EF ones, with no significant changes registered between Fe 

treatments and tissues (Figure 3B). 

 Finally, in the INF plants GR activity was lowest in the roots, but was highly 

induced in the trifoliate leaves, with Fe deficiency leading to a 30% increase when 

compared to Fe sufficiency (Figure 3C). Concerning the activity of this enzyme in the EF 

plants no significant changes were registered between Fe treatments both in roots and 

shoots. 
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Figure 3: Enzyme activity in the roots and trifoliate leaves of efficient (EF) and inefficient 

(INF) soybean lines. (A) catalase activity (CAT); (B) ascorbate peroxidase activity (APX); 

(C) glutathione reductase activity (GR). Plants were grown under Fe sufficiency (+Fe, 20 

µM) or Fe deficiency (-Fe, no additional Fe) for 14 days under hydroponic conditions. 

Data are means ± SE; different letters indicate significant differences (P < 0.05) by 

ANOVA with Tukey correction test. 

 

3.4 Principal component analysis 

A PCA model was performed to extract the most important information from the current 

data set. The resulting components explained 75% of the variance (Figure 4).  

When analyzing the score plot of PC1 vs PC2 (Figure 4) it was found that samples were 

grouped in four clusters: two of them, corresponding to EF or INF plants, were separated 

along the PC1 (60% of total variance) and the other two, corresponding to Fe deficient and 

Fe supplied plants, were separated along the PC2 (15% of total variance).  

 Moreover, a high correlation between the photosynthetic pigments, leaf ALA 

concentration, APX activity (leaves and roots), leaf MDA concentration, GR activity in the 

roots and root reductase activity was observed. These factors were also highly correlated to 

the EF plants. On the other hand, root ALA concentration, hemin concentration (leaves and 

roots), CAT activity (leaves and roots), leaf GR activity and root MDA concentration were 

grouped, being correlated to the INF plants.  
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 Additionally, it was possible to further correlate: photosynthetic pigments, leaf 

MDA concentration, leaf ALA concentration and leaf activity of APX with Fe sufficient 

EF plants; root APX activity, root GR activity and root reductase activity with Fe deficient 

EF plants; root ALA concentration, hemin concentration and CAT activity with Fe 

sufficient INF plants; and leaf GR activity and root MDA concentration with Fe deficient 

INF. 

 

 

Figure 4: Biplot of score and loading factors of the Principal Component Analysis (PCA). 

Efficient (circles) and inefficient (squares) soybean lines, grown under Fe sufficiency (+Fe, 

20 µM; solid symbols) or Fe deficiency (-Fe, no additional Fe; open symbols) for 14 days 

under hydroponic conditions and associated factors: 1-anthocyanin concentration; 2- total 

chlorophyll concentration; 3-carotenoid concentration; 4-leaf ∂-aminolevulinic acid 

concentration; 5-leaf MDA concentration; 6-leaf ascorbate peroxidase activity; 7-root 

ascorbate peroxidase activity; 8-root gluthatione reductase; 9- root reductase activity; 10- 

root ∂-aminolevulinic acid concentration; 11-leaf hemin concentration; 12-root hemin 

concentration; 13-leaf activity of catalase; 14-root activity of catalase; 15- leaf activity of 

gluthatione reductase; 16- root MDA concentration. 
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4 Discussion 

In calcareous soils, Fe uptake is impaired causing severe yield losses in different crops 

worldwide. One of the possible strategies to reduce this problem is to select tolerant or 

efficient cultivars that are able to sustain Fe deprivation stress (Carvalho and Vasconcelos, 

2013). As aforementioned, the definition for this Fe efficiency comprises the ability to 

induce biochemical reactions that make Fe available in a useful form (Brown and Jolley, 

1989). However, this definition still lacks information on other factors that could 

contribute to this trait and recent studies have shown the importance of physiological 

(Vasconcelos and Grusak, 2014; Roriz et al., 2014) and molecular (Santos et al., 2015) 

mechanisms in the Fe efficiency trait of soybean plants. Meanwhile, recent studies reported 

an induction of oxidative stress related reactions when Fe is unavailable for plant uptake 

and mobilization, since this nutrient is essential for a vast number of biological processes 

(Li et al., 2015; Mbonankira et al., 2015). 

 Taking into account that the ability to induce the antioxidant machinery could have 

an important role in the Fe efficiency trait and that, to the best of our knowledge, no 

studies have focused on the tetrapyrrole cycle regulation in plants under Fe deficiency, in 

this study, an integrative overview was adopted to understand the differences between two 

soybean lines with contrasting susceptibilities to Fe limitation. Firstly, the difference in 

susceptibility to Fe stress was evaluated looking at the main symptoms associated to IDC, 

namely, stunted growth and interveinal chlorosis. As seen in Figure 2, INF plants were 

smaller (Figure 1A) and displayed more noticeable visual IDC symptoms than the EF 

plants (Figure 1B), which confirmed previous studies using these accessions (Santos et al., 

2015). Previous works have also shown that INF soybean lines have less Fe translocation 

ability and tend to accumulate most of the absorbed Fe in the root tissue (Roriz et al., 2014; 
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Santos et al., 2015). This was also true in the present study (Figure 1C), showing that this 

factor could be one of the major contributors for Fe stress tolerance. 

 In higher plants, the tetrapyrrole cycle begins with glutamate being converted on 

the universal tetrapyrrole precursor – ALA – forming its final products, the porphyrins 

chlorophyll and heme (Tanaka et al., 2011). Lately, this cycle has gained especial attention 

in the Fe metabolism research area, not only because Fe is essential for chlorophyll and 

heme biosynthesis (Jeong et al., 2008), but also due to the fact that the heme prosthetic 

group could work as a ‘sensor’ in plants, in particular, for Fe deficiency (Kobayashi and 

Nishizawa, 2014). Here, Fe deficiency did not have a significant effect on ALA 

accumulation, but the INF plants had lower leaf ALA concentrations when compared to the 

EF plants (Figure 2A). It is known that the exogenous application of ALA has plant growth 

promoting properties and induces higher chlorophyll accumulation, therefore, the positive 

correlation between these two products is well described (Hotta et al., 1997; Yang et al., 

2014). As expected, the chlorophyll concentrations shared similar patterns of accumulation 

as the leaf levels of ALA, as depicted in Figure 2B, and mirrored the visual symptoms 

presented in Figure 2b. Under oxidative stress conditions, heme is released from 

hemoproteins and forms hemin, its oxidized form (Chiabrando et al., 2014). Here, hemin 

accumulation did not show a pattern similar to ALA in either root or leaf tissue, but had a 

significant increase in the leaves, particularly in the INF plants (Figure 2C). This fact is 

important since the tetrapyrrole cycle is mainly located in photosynthetic tissues (Tanaka et 

al., 2011), which is in agreement with the higher leaf accumulation levels here obtained. 

Also, chlorophyll and hemin results did not share similar patterns and although a putative 

negative correlation has been proposed for the two branches, the interplay between them is 

still largely unknown (Zhang et al., 2015). Furthermore, hemin is a form of protoporphyrin 

IX containing ferric Fe (Müllebner et al., 2015) and, when present, it also acts as a strong 
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pro-oxidant in cells due to its participation in H2O2-dependent redox reactions and to the 

release of ferric Fe upon its degradation (Müllebner et al., 2015; Lu et al., 2012). These 

reactions cause the reduction of molecular oxygen and form reactive oxygen species 

(Pospíšil, 2014) thus, intracellular accumulation of hemin is highly toxic for cells.  

 Given the fact that Fe is an essential constituent of chlorophyll, under Fe limitation, 

these other photosynthetic pigments are expected to decrease under Fe stress (Prasad, 

2003). Anthocyanin and carotenoid levels were lower in INF plants, but the Fe treatment 

did not affect their accumulation in the leaf tissue (Table 1). As seen in Figure 2C, INF 

plants had higher levels of hemin, very likely inducing higher levels of photooxidative 

damage. When chloroplasts of the mesophyll cells cease to function or are damaged, both 

anthocyanins and carotenoids have an important photoprotective role, acting as powerful 

antioxidants (Landi et al., 2014; Spirt et al., 2010). Thus, since INF plants showed lower 

levels of these molecules, their capability to manage photooxidation could be hampered. 

Furthermore, in Table 2 is shown that MDA levels were higher in the roots of INF plants 

than in EF plants, corroborating that the former plants were under higher oxidative 

damage, since this is an often used oxidative stress indicator (Gill and Tuteja, 2010; Santos 

et al., 2016). 

 The membrane-bound ferric chelate reductase enzyme contains the heme-group as 

a constituent, and it is responsible for the reduction of extracellular Fe with its activity 

being necessary for Fe uptake (Robinson et al., 1999). In this study, Fe deficiency did not 

induce higher levels of reductase activity (Table 3), although this would be the expected 

phenotype (Robinson et al., 1999). It is not the first time that plants of this soybean line 

express this behavior, however, the INF plants consistently show lower levels of this 

enzymes’ activity (Santos et al., 2015; Vasconcelos and Grusak, 2014), which is in 

agreement with the classical definition that states that INF plants are not able to induce the 
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biochemical reactions necessary for Fe uptake (Brown and Jolley, 1989). Interestingly, INF 

plants, that showed lower capability to reduce Fe, had higher levels of hemin (Table 3 and 

Figure 2C). 

 Alike ferric reductase, there are other heme enzymes that are susceptible to low Fe 

supply, namely catalases and peroxidases (Broadley et al., 2012). Again, as increased 

levels of hemin promotes oxidative damage (Lu et al., 2012), this could elicit the activity 

of these enzymes. This was true for CAT enzyme (Figure 3A), which showed enhanced 

activity in both roots and leaves of INF plants. In fact, the accumulation pattern for both 

catalase and hemin was very similar (Figs 3A and 2C, respectively). On the other hand, 

APX activity was lower in the INF plants and higher in the EF ones (Figure 3B). Besides 

being known that APX activity is drastically reduced in Fe deficient conditions (Jelali et 

al., 2014), the inverse regulation between this enzyme and CAT is also well documented 

both in response to Fe stress (Mbonankira et al., 2015) and to other metals (Kayıhan et al., 

2016). Both enzymes are responsible for the conversion of H2O2 into water, however, 

while CAT is able to directly reduce H2O2 into water with no energy consumption, APX 

requires ascorbate as a reducing equivalent (Gill and Tuteja, 2010). Since the latter is a 

more energy demanding reaction, inefficient genotypes have been reported to decrease 

APX activity under stress conditions (Broadley et al., 2012) as registered in the present 

study. 

 Also involved in the ROS detoxification is GR, which is responsible for the 

reduction of the oxidized form of glutathione (glutathione disulfide, GSSG) to glutathione, 

that is able to scavenge H2O2 through the ascorbate-glutathione cycle (Gill et al., 2013). 

Here, INF roots, which had the lowest GR activity, had the highest MDA accumulation; 

INF trifoliate leaves, that showed an abrupt increase in GR activity, had the lowest MDA 

accumulation (although not significant when compared to EF trifoliate leaves); and EF 
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roots and trifoliate leaves, did not present any significant change in GR activity, as also 

seen in MDA results (Figure 3C and Table 2). As described by others, the up-regulation of 

the antioxidant systems has a direct effect on peroxidative conditions, particularly GR that, 

as shown here, contributes directly for MDA accumulation decrease (Agarwal and 

Shaheen, 2007).  

 The correlation analysis performed here (Figure 4) shows that the efficient and 

inefficient lines have distinct behaviors and are clearly separated in what concerns 

oxidative stress response. Moreover, while in the INF plants group there was almost no 

separation between +Fe and –Fe treatments, the EF plants group is divided in two sub-

groups correspondent to the Fe treatment. It is evident that hemin levels are highly 

correlated to the INF plants, which could be key to explain the trait of inefficiency: as 

these plants are unable to reduce the oxidative stress caused by Fe deficiency, heme 

molecules are oxidized and, consequently, unavailable to integrate in the Fe metabolism 

related enzymes. This could explain the lower levels of ferric reductase enzyme induction 

by INF plants, observed here (Table 3) and in other studies (Santos et al., 2015). The 

presence of enhanced hemin levels could have caused more oxidative stress, particularly 

on the root tissue (Table 2), and INF plants only seem to trigger the low substrate affinity 

enzyme CAT. Also, INF plants were correlated to GR activity at the leaf level, possibly 

due to the high chlorosis developed by these plants (Figure 1). Additionally, Figure 4 

displays a high correlation of EF plants with the antioxidant pigments, leaf MDA 

accumulation and APX accumulation. 
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Figure 5: Proposed scheme for antioxidant system regulation of inefficient (INF) plants 

under Fe deficiency (- Fe) stress. Full lines connect the main components of the 

tetrapyrrole cycle; dashed lines represent the influence of one product on another; red 

arrows represent increased (up) or decreased (down) concentration of a certain product. 

 

 

5 Conclusions 

We propose a possible schematic model to explain the antioxidant responses that 

characterize a plant as INF when exposed to Fe-stress (Figure 5). In this model, we suggest 

that, as a consequence of Fe deficiency stress, oxidative stress levels increase and ALA 

levels decrease in the trifoliate leaves, inducing decreased chlorophyll content and heme 

oxidation into hemin. Since hemin is a strong pro-oxidant, it contributes to greater 
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accumulation of oxidative stress. This is reflected in higher MDA accumulation in the 

roots and higher GR activity in the leaf tissue, where Fe concentration is severely 

decreased. Given this heme/hemin pool imbalance, heme does not seem to be available for 

enzyme integration, and the activity of heme-containing enzymes, such as root ferric 

reductase and APX, is decreased. On the other hand, the available heme seems to be 

channeled into the antioxidant enzyme CAT, which is the less energy-requiring enzyme to 

trigger.  
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2 and 3, a new Fe chelating agent will be tested for its efficacy in IDC prevention in 
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Ant!onio O.S.S. Rangel a, Maria Rangel d, **, Marta W. Vasconcelos a, *

a Universidade Cat!olica Portuguesa, CBQF e Centro de Biotecnologia e Química Fina e Laborat!orio Associado, Escola Superior de Biotecnologia, Rua
Arquiteto Lob~ao Vital, Apartado 2511, 4202-401 Porto, Portugal
b GreenUP/CITAB-UP & DGAOT, Faculty of Sciences, University of Porto, Campus Agr!ario de Vair~ao, Rua Padre Armando Quintas, 7, 4485-661 Vair~ao,
Portugal
c REQUIMTE-UCIBIO, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4069-007 Porto, Portugal
d REQUIMTE-UCIBIO, Instituto de Ciências Biom!edicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal

a r t i c l e i n f o

Article history:
Received 25 February 2016
Received in revised form
28 April 2016
Accepted 28 April 2016
Available online 29 April 2016

Keywords:
Chlorosis
Fe-chelates
Ferritin
FRO2
Glycine max
IRT1
3-Hydroxy-4-pyridinones

a b s t r a c t

Iron deficiency chlorosis (IDC) is a serious environmental problem affecting the growth of several crops
in the world. The application of synthetic Fe(III) chelates is still one of the most common measures to
correct IDC and the search for more effective Fe chelates remains an important issue. Herein, we propose
a tris(3-hydroxy-4-pyridinonate) iron(III) complex, Fe(mpp)3, as an IDC corrector. Different morpholog-
ical, biochemical and molecular parameters were assessed as a first step towards understanding its mode
of action, compared with that of the commercial fertilizer FeEDDHA. Plants treated with the pyridinone
iron(III) complexes were significantly greener and had increased biomass. The total Fe content was
measured using ICP-OES and plants treated with pyridinone complexes accumulated about 50% more Fe
than those treated with the commercial chelate. In particular, plants supplied with compound Fe(mpp)3
were able to translocate iron from the roots to the shoots and did not elicit the expression of the Fe-stress
related genes FRO2 and IRT1. These results suggest that 3,4-HPO iron(III) chelates could be a potential
new class of plant fertilizing agents.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Soybean (Glycine max L.) production reaches levels of about 230
million metric tons per year across the world (Vasconcelos and
Grusak, 2014). This legume is a highly nutritious crop, containing
more protein (40%) and oil (20%) than any other ordinary food
source, including meat, cheese and fish (Krishnan, 2005; Bolon
et al., 2010).

Iron (Fe) deficiency chlorosis (IDC) is a severe problem affecting
crops mainly in areas of alkaline soils (Chaney, 1985), which

correspond to approximately 30% of the world’s arable land. Under
such conditions, and despite its abundance in the earth’s crust, Fe
becomes insoluble and poorly bioavailable for uptake (Chaney,
1985; Marschner et al., 1996). Iron is necessary for various physi-
ological processes such as chlorophyll synthesis, respiration, ni-
trogen fixation, enzyme activation and electron transfer (Taylor
et al., 1982; Engels et al., 2012). Fe-deficient plants develop yel-
lowing of the younger leaves, exhibit reduced leaf areas and shoot
and root dry weight (Roriz et al., 2014), leading to reduced crop
yield and serious economic losses. In order to overcome this min-
eral deficiency, plants induce tightly regulated mechanisms to
maximize iron uptake from the soil (Hindt and Guerinot, 2012;
Sperotto et al., 2012). Dicotyledonous plants, like soybean, utilize
strategy I type-mechanisms for Fe uptake. Root Hþ-ATPases acidify
the rhizosphere so that Fe(III) solubility is increased, allowing Fe(III)
reduction by membrane-bound ferric reductases, like Ferric
Reductase Oxidase 2 (FRO2). The reduction step has been shown to
be a crucial step in Fe acquisition, since plants suffering from Fe
deficiency often increase this genes’ activity (Grusak et al., 1990).

Abbreviations: FeEDDHA, iron (III) complex of ethylenediamine-N,N0-bis(o-
hydroxyphenyl)acetic acid; Fe(mpp)3, tris(2-methyl-3-hydroxy-4-pyridinonate)
iron(III); FRO, ferric reductase oxidase; IDC, iron deficiency chlorosis; IRT, iron-
regulated transporter.
* Corresponding author.
** Corresponding author.

E-mail addresses: mcrangel@fc.up.pt (M. Rangel), mvasconcelos@porto.ucp.pt
(M.W. Vasconcelos).
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After ferric Fe reduction, Fe(II) is then absorbed into the root
epidermal cells by Fe transporters, such as Iron-Regulated Trans-
porter 1 (IRT1) (Fox and Guerinot, 1998). Once inside the plant, to
cope with Fe toxicity, most of the Fe fraction can be stored in
plastids by ferritins, key proteins in Fe homeostasis and response to
environmental stresses (Roschzttardtz et al., 2013). Moreover, Fe
storage can also occur in vacuoles, in a process mediated by a
vacular iron transporter (Briat et al., 2007). Besides these mecha-
nisms, it is known that phenolic compounds, which are released by
the roots, have a role in the reduction of Fe (III) to Fe (II) (Cesco et al.,
2010; Mimmo et al., 2014). More recently, it has been shown that
flavins and scopoletins are also involved in the solubilisation of
apoplasmic Fe (Jin et al., 2007; Fourcroy et al., 2014; Schmid et al.,
2014).

Soybean is very susceptible to IDC and it has been used to study
physiological and molecular mechanisms related to Fe uptake,
transport and accumulation (Vasconcelos et al., 2006; Roriz et al.,
2014). Also, cultivars with contrasting susceptibilities to IDC are
available, which makes soybean a good crop to study these mech-
anisms (Vasconcelos and Grusak, 2014). Conventional plant
breeding is one of the most well accepted measures to select
tolerant lines to IDC, however with only limited success (Carvalho
and Vasconcelos, 2013). The application of Fe-fertilizers is still
vastly used in an agricultural context to correct Fe chlorosis (Abadia
et al., 2011), and the parameters for evaluating the efficacy of Fe
chelates have been described: the ligands should be able to main-
tain large amounts of Fe in solution, to enable plants to use the Fe
and, when free, should be able to take more Fe and supply it again
to the plant (Lucena, 2003). This implies that the ligand should have
affinity for Fe, high solubility in water and bioavailability to the
plant.

Three main categories of Fe-fertilizers are known: (i) inorganic
Fe compounds, such as Fe salts and insoluble oxides, that have low
efficiency in the soil as they rapidly transform into insoluble
compounds, being usually applied as foliar fertilizers (Shenker and
Chen, 2005); (ii) natural Fe complexes, such as humates, amino acid
and citrate complexes, also applied as foliar fertilizations due to
their low stability in the soil, and (iii) synthetic Fe-chelates with
ligands such as ethylenediamine tetraacetic acid (EDTA), ethyl-
enediamine-N,N0-bis(o-hydroxyphenylacetic) acid (EDDHA), N,N0-
bis(2-hydroxybenzyl)ethylenediamine-N,N0-diacetic acid (HBED)
and N,N0-bis(2-hydroxy-5-methylbenzyl)ethylenediamine-N,N0-
diacetic acid (HJB), mainly for soil application (Lopez-Rayo et al.,
2009), and ethylenediaminedisuccinic acid (EDDS), for foliar
application (Rodríguez-Lucena et al., 2010).

EDTA and EDDHA are the most commonly used Fe chelators in
an agricultural context (Abadia et al., 2011). However, when plants
are grown in hydroponic conditions, EDTA is not able to maintain
the given amount of Fe in the solution, resulting in less available Fe
to the plant when compared to FeEDDHA (Lucena, 2003). The
compounds HBED and HJB are hexadentate ligands and have been
tested for their ability to maintain Fe in soil solution (Lopez-Rayo
et al., 2009) and in calcareous soil conditions (Nadal et al., 2012,
2013), having shown effective results in agronomical conditions.

From the chemical point of view, the previously mentioned
chelating agents are hexadentate ligands of the poly-
aminocarboxylate family (!Alvarez-Fern!andez et al., 2005; Gomez-
Gallego et al., 2005; Lopez-Rayo et al., 2009).

Although it is recognized that the polyaminocarboxylate
chelating agents are efficient in the treatment of IDC, the ligands
are under investigation due to their persistence on the environ-
ment (Nowack, 2002, 2008). The limited amount of alternative Fe
complexes calls for the identification of novel chelators which can
be highly soluble, cost effective, highly bioavailable to the plant and
environmentally friendly.

The chemistry of 3-hydroxy-4-pyridinone ligands (3,4-HPO)
and their complexes (Burgess and Rangel, 2008) as well as their
biological (Rangel et al., 2009; Nunes et al., 2010; Moniz et al., 2011,
2013a) and analytical applications (Mesquita et al., 2013; Su!arez
et al., 2015) have been thoroughly studied. 3-Hydroxy-4-
pyridinones are synthetically versatile bidentate oxygen ligands,
which allow the synthesis of a variety of chelators of variable
denticity and physico-chemical properties (Silva et al., 2010; Leite
et al., 2011; Moniz et al., 2013b; Queir!os et al., 2014). The ligands
have interesting structural and solvation properties and in partic-
ular have a strong affinity towards M(III) and M(II) metal ions
forming a large variety of complexes (Burgess and Rangel, 2008).
Most ligands of the 3,4-HPO family are non-toxic and have been
utilized in biomedical applications, namely in the treatment of iron
overloaded patients suffering from b-thalassemia (Galanello,
2007). They are hard ligands that bear two oxygen coordinating
atoms and consequently show a very high capacity to trap Fe(III)
providing an O6 coordination sphere for Fe(III) through the binding
of three ligands originating a complex of the [FeL3] type. The
observed values of stability constants and pFe are of the same
magnitude of those observed for the chelates of the hexadentate
polyaminocarboxylate ligands (Lopez-Rayo et al., 2009, 2010).
Complexation of 3,4-HPO bidentate ligands with Fe in aqueous
solution involves formation of three Fe(III) complex species,
[Fe(OH2)4L]2þ, [Fe(OH2)2L2]þ and [FeL3] whose relative amount is
dependent on the amount of ligand and the pH of the solution (Liu
and Hider, 2002; Nurchi et al., 2008; Santos et al., 2012). The
different stability constants of the corresponding poly-
aminocarboxylate and 3,4-HPO Fe(II) complexes is indicative of
lower values of redox potentials for the pyridinone complexes
(Burgess and Rangel, 2008).

In this work we investigated the potential of an Fe(III) complex
of the ligand 2-methyl-3-hydroxy-4-pyridinone (Hmpp) (Fig.1) as a
potential Fe chlorosis corrector. To the best of our knowledge, 3,4-
HPO chelates have never been used as Fe chelates for plants, and
this work is a first report on their application as a new class of plant
fertilizers. Due to its high solubility in water (Burgess and Rangel,
2008), low cost and simplicity, we analysed the potential of
Fe(mpp)3 as a chlorosis correcting agent and looked at several pa-
rameters in plants at a morphological, physiological, biochemical
and molecular level in order to compare its ability to deliver Fe to
the plant with that of the commercial fertilizer FeEDDHA.

2. Materials and methods

2.1. Iron(III) chelates

The commonly used ethylenediamine-N,N0bis (o-hydrox-
yphenyl)acetic acid (EDDHA) was used as a comparison term to the
new chelate. FeEDDHA was purchased from PhytoTechnology Lab-
oratories (#16455-61-1). The 3-hydroxy-4-pyridinone ligand,
Hmpp, and the corresponding Fe(III) complex, Fe(mpp)3, were
synthesized in-house.

2.1.1. Synthesis and characterization of the tris(3-hydroxy-4-
pyridinonate)iron(III) complex

Reagents and solvents were purchased from Sigma-Aldrich as
reagent-grade and used without further purification unless other-
wise stated. The ligand Hmpp was synthesized according to the
methods described in the literature (Queiros et al., 2011). Fe(III)
complex of general formula, FeL3$x H2O (L ¼ 3-hydroxy-4-
pyridinone) was prepared as described before (Schlindwein et al.,
2006) by dissolving stoichiometric amounts of the iron salt
Fe(NO3)3$9H2O and the corresponding ligand in aqueous or etha-
nolic solutions and adjusting the pH to 8 with a diluted solution of
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NaOH. The reaction mixture was kept with stirring, for one day at
room temperature. The red precipitate that formed was collected
by filtration and washed with water.

The characterization of the compounds was done according to
the results obtained in Elemental Analysis (C, H, N), 1H and 13C NMR
and UVevis spectroscopy. NMR spectra were recorded with a
Bruker Avance III 400 spectrometer (400.15 MHz for 1H and
100.63 MHz for 13C) at Laborat!orio de An!alise Estrutural, Centro de
Materiais da Universidade do Porto (CEMUP) (Portugal). Elemental
analyses were performed at the analytical services of University of
Santiago (Spain). The elemental analyses results obtained for the
Fe(III) chelate are given below:

Tris (3-hydroxy-1-(H)-2-methyl-4-pyridinonate)iron(III),
Fe(mpp)3$4H2O.

Elemental analysis for C18H18N3O6Fe$4H2O% calculated (%
Found): C 43.22 (43.60) H 5.24 (5.23) N 8.40 (8.25).

2.1.2. Characterization of the Fe(III) chelates in the hydroponic
solution

Electronic spectra were acquired for the aqueous solution of the
Fe(III) chelate and for solutions with variable metal:ligand ratios. In
order to characterize the Fe(III) chelate species in the conditions of
the hydroponic solution, UVevisible spectra were obtained and the
results compared with those obtained in aqueous solution and
described in the literature (Nurchi et al., 2008).

2.2. Plant material, growth conditions and treatments

Seeds of G. max cultivar “Williams 82”were rolled in filter paper
and placed vertically in a solution of 250 mM CaCl2, for seven days
in the dark, at 25 !C. Germinated seedlings were transferred to 5 L
vessels (five seedlings per vessel). The vessels were placed in a
climate chamber (Aralab Fitoclima 10000EHF) with 16 h day
photoperiod providing 325 mmol s"1 m"2 of photosynthetic photon

flux density at plant level supplied by a mixture of incandescent
bulbs and fluorescent lights. Temperatures were set to 25 !C during
the light period and to 20 !C during the dark period, whereas
relative humidity was maintained at 75% throughout day and night.
The standard solution for hydroponic growth of G. max included:
1.2 mM KNO3; 0.8 mM Ca(NO3)2; 0.3 mM MgSO4$7H2O; 0.2 mM
NH4H2PO4; 25 mM CaCl2; 25 mM H3BO3; 0.5 mM MnSO4; 2 mM
ZnSO4$H2O; 0.5 mM CuSO4$H2O; 0.5 mM MoO3; 0.1 mM NiSO4. Hy-
droponic solution was buffered with the addition of 1 mMMES, pH
5.5 as this is the optimum pH for nutrients absorption and to un-
derstand plants’ physiological and molecular responses (Li and Lan,
2015; Carrasco-Gil et al., 2016; Ziegler et al., 2016). Solutions were
changed every three days.

Two different experiments were set. ‘Experiment 1’ consisted in
growing plants with five different compounds at a final concen-
tration of 20 mM. The treatments were: Fe(III) sulfate; Hmpp ligand;
FeEDDHA; Fe (III) sulfate and Hmpp, in a 1:3 ratio (FeþHmpp); and
Fe(mpp)3 chelate. In order to further elucidate the Fe(mpp)3 mode
of action, a second experiment was set. ‘Experiment 2’ consisted in
growing plants in three vessels with three different treatments: no
added Fe (-Fe); 20 mM of FeEDDHA; and 20 mM of Fe(mpp)3. Both
sets of experiments ended 14 days after transferring the plants to
the climate chamber.

2.3. Physiological parameters

Leaf chlorosis was assessed with Soil and Plant Analyzer
Development (SPAD) readings, measured with a portable chloro-
phyll meter (Konica Minolta SPAD-502Plus; Minolta, Osaka, Japan),
using the youngest trifoliate leaf of five independent biological
replicates. Sampled roots, stems and leaves of the five independent
biological replicates were separated and weighed. Foliar area of all
leaves was measured using a leaf area meter AM300 (ADC BioSci-
entific Ltd., U.K.).

Fig. 1. Formulae and abbreviations of ligands (Hmpp, EDDHA) and Fe(III) chelates used in this work.
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2.4. Root iron reductase activity measurements

Root iron reductase was quantified as described before
(Vasconcelos et al., 2006). The measurements were carried out in
intact roots of five plants from ‘Experiment 2’ via the spectropho-
tometric determination of Fe2þ chelated to BPDS (bath-
ophenanthroline disulfonic acid). Roots of each intact plant were
submerged in assay solution containing: 1.5 mM KNO3, 1 mM
Ca(NO3)2, 3.75 mM NH4H2PO4, 0.25 mM MgSO4, 25 mM CaCl2,
25 mM H3BO3, 2 mM MnSO4, 2 mM ZnSO4, 0.5 mM CuSO4, 0.5 mM
H2MoO4, 0.1 mM NiSO4, 100 mM Fe(III)-EDTA (ethyl-
enediaminotetraacetic acid) and 100 mM BPDS. All nutrients were
buffered with 1 mMMES, pH 5.5. The assays were conducted under
dim light conditions at 20 "C and were terminated after 45 min by
removal of the roots from the assay solution. Absorbance values
were obtained at 535 nm, and an aliquot of the solution that had no
roots during the assay was used as blank. Rates of reduction were
determined using the molar extinction coefficient of
22.14 mM#1 cm#1.

2.5. Total Fe determination and ionome study

The plant material from ‘Experiment 2’ was dried at 70 "C until
constant weight and 100 mg of dried plant tissue (root, stem,
cotyledon, unifoliate and trifoliate leaves) were mixed with 5 mL of
65% HNO3 in a Teflon reaction vessel and heated in a SpeedwaveTM
MWS-3þ (Berghof, Germany) microwave system. Each plant organ
from all treatments (n ¼ 5) was pulverized and five independent
digestions were carried out. The digestion procedure was con-
ducted in five steps, consisting of different temperature and time
sets: 130 "C/10min,160 "C/15min,170 "C/12min,100 "C/7min, and
100 "C/3 min. The resulting clear solutions of the digestion proce-
dure were then brought to 20 mL with ultrapure water for further
analysis. Mineral concentration determination was performed us-
ing the inductively coupled plasma optical emission spectrometer
(ICP-OES) Optima 7000 DV (PerkinElmer, USA) with radial
configuration.

2.6. Lipid peroxidation assay

Malondialdehyde (MDA) was measured using a colorimetric
method adapted from Li (2000). In short, 0.1 g of trifoliate leaf or
root samples (n ¼ 5) were homogenized in 10 mL of 0.5% thio-
barbituric acid in 20% trichloroacetic acid (w/v) and incubated at
100 "C for 30 min. The reaction was stopped in ice and samples
were centrifuged at 5000 rpm for 10 min. Supernatant was filtered,
absorption was read at 450, 532 and 600 nm and MDA concen-
tration (mmol g#1) was calculated from:
6.45 % (A532 # A600) # 0.56A450.

2.7. Gene expression analysis

Additional plants were grown under the same conditions
described for ‘Experiment 2’, collected at the end of the assay and
immediately frozen in liquid nitrogen. Three biological replicates
from each treatment were individually pulverized thoroughly with
a mortar and pestle, until a fine powder was obtained, and total
RNA was extracted using Qiagen RNeasy Mini Kit (USA, #74904),
according to the manufacturer’s instructions. RNA quality and
quantity were checked by UV-spectrophotometry, using a nano-
photometer (Implen, Isaza, Portugal). Single-stranded cDNA was
then synthesized using First Strand cDNA Synthesis Kit (Thermo
Scientific, #K1612) in a Thermal cycler (VWR, Doppio, Belgium),
according to the manufacturer’s instructions. Sequence homologs
to AtFRO2 and AtIRT1 in G. max were queried in NCBI database and

the sequences with highest homology were selected. Primers for
FRO2-like, IRT1-like and ferritin were designed using Primer3
(Frodo.wi.mit.edu), specifying an expected PCR product of
100e200 bp and primer annealing temperatures between 56 and
58 "C (Table 1). qPCR reactions were performed on a StepOne™
Real-Time PCR Systems (Applied Biosystems, USA) with the
following reaction conditions: 2 min at 50 "C, 2 min at 95 "C and 40
cycles with 15 s at 95 "C,15 s at 58 "C and 1 s at 72 "C. Amplifications
were carried out using 200 mM of the specific primers and mixed to
10 mL of 2xSYBR® Select Master Mix and 100 ng of cDNA in a final
volume of 20 ml. Melt curve profiles were analysed for each tested
gene. The comparative CT method (DDCT) (Livak and Schmittgen,
2001) was used for the relative quantification of gene expression
values of Fe related genes using the 18S rRNA gene as the control
transcript and the plants grown with FeEDDHA as the reference
sample. Two technical replicates were analysed and data were
transferred to Excel files and plotted as histograms of normalized
fold expression of target genes.

2.8. Statistical analysis

Data were analysed with GraphPad Prism version 6.00 for Mac
OS X (GraphPad Software, La Jolla California USA, www.graphpad.
com). Differences between treatments were tested with ANOVA
corrected for multiple comparisons using Holm-Sidak method.
Statistical significance was considered at P < 0.05.

3. Results

3.1. Chemistry of the new chelate

Fe-chelates of 3-hydroxy-4-pyridinone ligands, [FeL3], were
obtained as stable hydrated crystalline powders with a high purity
and the study of the interaction of 3,4-HPO ligands with Fe(III) in
aqueous solution showed that the relative amount of the three
possible Fe(III) complex species, [Fe(OH2)4L]2þ, [Fe(OH2)2L2]þ and
[FeL3] was dependent on the amount of ligand and the pH of the
solution as described in the literature (Liu and Hider, 2002; Nurchi
et al., 2008; Santos et al., 2012). In order to characterize the Fe
species present in the hydroponic medium at pH 5.5 we analysed
the electronic spectra of the Fe3þ/ligand in aqueous solution with
metal:ligand molar ratios of 1:1, 1:2 and 1:3 as well as the elec-
tronic spectra of the Fe-chelates upon dissolution in the hydroponic
medium. The results obtained for Fe(mpp)3 are shown in Fig. 2. The
comparison of the spectra clearly shows that the predominant
species in the hydroponic mediumwere the tris Fe-chelates, [FeL3].

3.2. Initial screening of Fe(mpp)3 on plant growth (‘Experiment 1’)

In a first experiment, we tested the effect of plant supplemen-
tationwith different compounds, including the Hmpp ligand alone,
Fe(III) sulfate, a combination of Hmpp þ Fe(III) sulfate, FeEDDHA
and the chelated form of the complex [Fe(mpp)3] As expected,
supplementation with Fe(III) sulfate or Hmpp alone had the lowest
effect (P < 0.05) on all analysed parameters (Table 2). No significant
differences were registered between these two treatments, with
the exception of total leaf area, which was higher in Fe(III) sulfate
treated plants. Regarding the plants supplied with Fe(III)
sulfate þ Hmpp, a significant improvement was registered in SPAD
units (25%) and root DW (62%), when compared to the commercial
fertilizer FeEDDHA (Table 2). Lastly, plants supplied with Fe(mpp)3
showed the best performance in all studied growth parameters as
compared to plants treated with FeEDDHA, resulting in 62% higher
SPAD units, whereas the shoot DW, root DW and total leaf area
more than doubled, increasing by factor 2.26, 2.48 and 2.35,
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respectively (P < 0.05) (Table 2). Even when compared to
Fe þ Hmpp, Fe(mpp)3 treated plants had significantly improved
values.

3.3. IDC symptoms evaluation (‘Experiment 2’)

In a second experiment, a mode detailed evaluation was per-
formed in plants grown with no Fe (-Fe), FeEDDHA or with
Fe(mpp)3. Plants supplied with FeEDDHA or with Fe(mpp)3 were
greener than the Fe deficient ones, as shown in Fig. 3. The relative
chlorophyll content was assessed using a SPAD meter. Comparing
the effect of the 3,4-HPO type complex with FeEDDHA, plants
grown with Fe(mpp)3 had 42% higher SPAD units (P < 0.01).

Shoot DW was significantly increased in plants treated with the
Fe chelates, however the highest increase, was observed with
Fe(mpp)3 which more than tripled when compared to Fe deficiency
(increasing by a factor of 3.16), (Table 3). Root DW was lowest in Fe
deficient plants (0.13 ± 0.02 g) and, again, Fe(mpp)3 supplied plants
had the highest root DW increase (0.42 ± 0.02 g) of more than triple
(by a factor of 3.23) (Table 3). Regarding total leaf area, Fe sufficient
plants had significantly increased values, with Fe(mpp)3 plants
showing a 41% higher leaf area than FeEDDHA (Table 3).

3.4. Root Fe(III) chelate reductase activity

Reductase activity was measured in roots of Fe deficient,
FeEDDHA and Fe(mpp)3 treated plants (Table 3). No significant
differences were detected amongst treatments, however, there was
a trend for an increased activity of this enzyme under Fe deficiency.

3.5. Mineral accumulation analysis

Total Fe content (Fig. 4A) and trifoliate leaf (Fig. 4B) and root
(Fig. 4C) Fe concentration were evaluated. In general, Fe sufficient
plants had significantly higher Fe accumulation levels than Fe
deficient ones (P < 0.001). Plants grown under Fe deficiency pre-
sented a total Fe content of 44 ± 0.5 mg whereas plants grown with
FeEDDHA had values of 272 ± 17 mg. The tested Fe chelate induced
the highest Fe accumulation (608 ± 28 mg), with an increase ofmore
than double of FeEDDHA values (P < 0.001). Trifoliate leaf and root
Fe concentrations showed a similar pattern to total Fe content, as
shown in Fig. 4B and C, where Fe(mpp)3 treated plants had in-
creases of 8.7 and 1.8 fold respectively, as compared to Fe deficiency

(P < 0.001).
Also, the impact of Fe(mpp)3 on the roots’ and trifoliate leaves’

ionome was studied (Table 4). In the root tissue, all nutrients had

Table 1
Primer sequences and correspondent accession numbers (Acc. No).

Primer Forward (50e30) Reverse (50e30) Acc. No

18S TTAGGCCATGGAGGTTTGAG GAGTTGATGACACGCGCTTA X75080.1
FRO2-like CAGAACATGGAAGGGTCAAC AGCAAGAACTCCCACACTTG XM_003528793.2
IRT1-like CTGAGGTTGTTCCTGGTGAG TGCCAAGTCCTATCACCACT KF542819.1
Ferritin CAATGCTTCCTATGCGTACC CTGAGGGGACATTCTTGATG NP_001236534

Fig. 2. Electronic spectra of the Fe3þ/Hmpp system obtained in aqueous solution with
metal:ligand molar ratios of 1:1, 1:2, 1:3 and 1:3 at the pH value of hydroponic solution
(from right to left) (A); Electronic spectrum of Fe(mpp)3 complex upon dissolution in
the hydroponic solution (B).

Table 2
Chlorophyll (SPAD units), shoot and root dry weight (DW) and total leaf area of G. max plants supplied with Fe(III) sulfate, Hmpp, FeEDDHA, Fe(III) sulfate þ Hmpp and
Fe(mpp)3 for 14 days, under hydroponic conditions (‘Experiment 1’).

Fe(III) sulfate Hmpp FeEDDHA Fe þ Hmpp Fe(mpp)3

Chlorophyll (SPAD units) 4.86 ± 2.09d 6.60 ± 0.90d 23.0 ± 2.0 c 28.8 ± 1.4b 37.2 ± 0.7a

Shoot DW (g) 0.18 ± 0.03c 0.24 ± 0.01c 0.38 ± 0.03b 0.56 ± 0.08b 0.86 ± 0.04a

Root DW (g) 0.064 ± 0.011d 0.078 ± 0.009d 0.140 ± 0.002c 0.227 ± 0.038b 0.347 ± 0.026a

Total Leaf Area (cm2) 22.1 ± 3.7c 8.54 ± 0.83d 60.4 ± 2.4b 69.6 ± 8.3b 142.2 ± 7.3a

Data are means ± SE of five biological replicates.
Different letters indicate significant differences (P < 0.05) by ANOVA with Holm-Sidak correction test.
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similar concentrations, with the exception of K and Cu, where
plants under Fe deficiency presented higher values (P < 0.05). No
significant differences were found between the Fe chelates treat-
ments in the trifoliate leaves, with the exception for the concen-
tration of K, which was lower in Fe(mpp)3 treated plants (Table 4).

3.6. Lipid peroxidation

Low levels of lipid peroxidation, measured by the MDA con-
centrations in trifoliate leaves and roots of Fe deficient and suffi-
cient plants showed no significant differences between treatments
for each plant organ (Fig. 5).

3.7. Gene expression analysis

The expression levels of FRO2-like, IRT1-like and ferritin genes in
plants grown without Fe and with the Fe complexes are repre-
sented in Fig. 6. The expression of FRO2-like in the roots was
highest under Fe deficiency. FRO2-like expression pattern was
similar in plants grownwith FeEDDHA and Fe(mpp)3, being 27 fold
less expressed (P < 0.001) when compared to Fe deficient plants
(Fig. 6). The root expression of IRT1-like gene was similar in Fe
deficiency and FeEDDHA-treated plants, but in plants supple-
mented with Fe(mpp)3 expression of IRT1-like was almost null
(P < 0.001) (Fig. 6). Finally, the leaf expression of ferritin was very
low in Fe deficient plants and also low for FeEDDHA treated plants.
In contrast, plants grownwith the 3,4-HPO Fe complex had a strong
induction of ferritin expression in the trifoliate leaves (Fig. 6).

4. Discussion

To the best of our knowledge, this is the first report on the
application of the bidentate ligands 3-hydroxy-4-pyridinone, as
vehicles to supply plant iron. Although most of the commercially
available Fe chelators used are hexadentate ligands, it is known that
the reduction of the Fe(III) polyaminocarboxylate chelates by the
ferric chelate reductase requires detaching of a coordinating atom

of the N2O4 coordination sphere creating a vacant position that is
occupied by awater molecule and providing lower redox potentials
(Gomez-Gallego et al., 2005; Lopez-Rayo et al., 2009). The results
obtained by the group ofMar Gomez-Gallego (Escudero et al., 2012)
regarding the activity of aquo complexes of polyaminocarboxylate
ligands towards activating ferric chelate reductase brought a new
concept of Fe(III) complexes for Fe-chlorosis correction. Consid-
ering the chemical properties of 3-hydroxy-4-pyridinone chelators
and their complexes, and the fact that these ligands are non-toxic
and seem to prefer Fe(III) to other metal ions (Burgess and
Rangel, 2008; Santos et al., 2012) offers great possibilities for
their use in an agricultural context. Studying tris(3-hydroxy-4-
pyridinonate) Fe(III) chelates in terms of plant availability, phyto-
toxicity and IDC symptoms development is a step forward to un-
derstand their potential as novel fertilizers. The study of novel
chelators is usually performed in hydroponic conditions at high pH
in order to mimic the in-field alkaline conditions (L!opez-Rayo et al.,
2016). However, given the fact that this is the first study on the use
of 3,4-HPO in an agricultural context, this work was conducted
under optimal pH (5.5) to understand if this type of ligands could
have a positive impact at a physiological level.

4.1. The 3,4-HPO complex reduces chlorosis and improves growth

A first experiment (‘Experiment 1’) was conducted in order to
test the possible toxicity of the Hmpp ligand itself or the Fe(mpp)3
complex, as well as to test their effect on plant growth, when
compared to FeEDDHA (Table 1). The selected indicators were SPAD
units, since yellowing of the upper leaves and stunted growth are
the main symptoms of Fe deficiency in plants (Prasad, 2003); shoot
and root dry weight and total leaf area. Firstly, the application of
Fe(III) sulfate and the ligand by themselves had no impact on plant
development. On the contrary, the application of the Fe complexes
led to significant improvement on plant growth. We also aimed at
understanding if it would be necessary to synthesize the Fe(mpp)3
complex or if amixture of Fe(III) sulfate and the Hmpp ligandwould
have the same effect, hence decreasing the production costs. The

Fig. 3. Visual symptoms of G. max plants supplied with no Fe (-Fe), FeEDDHA and Fe(mpp)3 for 14 days, under hydroponic conditions (‘Experiment 2’).

Table 3
Chlorophyll (SPAD units), shoot and root dry weight (DW), total leaf area and root reductase activity of G. max plants grown without Fe (-Fe) or supplied with FeEDDHA or
Fe(mpp)3 for 14 days, under hydroponic conditions (‘Experiment 2’).

-Fe FeEDDHA Fe(mpp)3

Chlorophyll (SPAD units) 2.41 ± 1.68c 20.0 ± 2.0 b 28.4 ± 0.9a

Shoot DW (g) 0.35 ± 0.05c 0.85 ± 0.07b 1.10 ± 0.04a

Root DW (g) 0.13 ± 0.02c 0.31 ± 0.03b 0.42 ± 0.02a

Total Leaf Area (cm2) 41.9 ± 10.7c 167.2 ± 7.0b 235.1 ± 2.4a

Root reductase activity (mmol Fe g!1 FW h!1) 0.038 ± 0.02a 0.007 ± 0.003a 0.017 ± 0.002a

Data are means ± SE of five biological replicates.
Different letters indicate significant differences (P < 0.05) by ANOVA with Holm-Sidak correction test.
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mixture had less impacting effects when compared to the complex.
Therefore, with these results, the application of 20 mM of Fe(mpp)3
was shown to be non-toxic to the plants and more beneficial than
the commercial product FeEDDHA, allowing us to proceed with
more detailed tests.

With ‘Experiment 2’, plants grown with the Fe(mpp)3 complex
were compared to plants grown with FeEDDHA and with no added
Fe, as it is usually performed when testing the physiological re-
sponses to IDC in plants (El-Jendoubi et al., 2014; Paolacci et al.,
2014; Santos et al., 2015).

Since the chlorophyll content of the leaves is often utilized to
evaluate the success of the fertilization procedure, mainly when a
foliar fertilizer is applied (El-Jendoubi et al., 2014), Fe(mpp)3
seemed to be better suited for fertilization than FeEDDHA (Fig. 3,
Table 3). In what concerns plant growth, it is known that an in-
crease in root biomass promotes higher soil volume exploration

(Marschner et al., 1996; Nenova, 2006), thus allowing a better Fe
scavenging from the solution. Moreover, higher leaf area allows an
increase in the photosynthetic area (Engels et al., 2012), which
explains the higher total dry weight observed in the Fe(mpp)3
treatment (Table 3).

Fig. 4. Total Fe content (A), and trifoliate (B) and root Fe concentration (C) of G. max
plants supplied with no Fe (-Fe), FeEDDHA and Fe(mpp)3 for 14 days, under hydroponic
conditions (‘Experiment 2’). Total Fe was determined by ICP-OES analysis. Data are
means ± SE of five biological replicates. Different letters indicate significant differences
(P < 0.05) by ANOVA with Holm-Sidak correction test.

Table 4
The ionome of roots and trifoliate leaves of G. max plants grown without Fe (-Fe) or supplied with FeEDDHA or Fe(mpp)3 for 14 days under hydroponic conditions.

Mineral
(mg g!1)

Roots Trifoliate leaves

-Fe FeEDDHA Fe(mpp)3 -Fe FeEDDHA Fe(mpp)3

Mn 54 ± 1.8a 26 ± 3a 26 ± 1a 95 ± 8a 57 ± 4a 38 ± 4a

Zn 505 ± 51a 258 ± 29a 202 ± 26a 215 ± 32a 166 ± 10a 110 ± 16a

Mo 114 ± 19a 70 ± 2a 72 ± 31a 27 ± 2a 23 ± 3a 27 ± 4a

B 31 ± 1a 27 ± 1a 31 ± 1a 43 ± 1a 33 ± 1a 31 ± 1a

Na 3577 ± 1115a 3767 ± 83a 3475 ± 389a 3217 ± 1387a 4516 ± 772a 3956 ± 220a

Mg 3691 ± 849a 3622 ± 101a 5401 ± 1404a 5677 ± 699a 3849 ± 144a 3825 ± 56a

K 56,461 ± 12986a 39,635 ± 1263b 39,430 ± 17950b 44,732 ± 5373ab 48,806 ± 532a 41,379 ± 1234b

Ca 3618 ± 832a 4273 ± 485a 4714 ± 277a 12,922 ± 5424b 18,987 ± 2389a 18,418 ± 1554a

P 9516 ± 390a 9414 ± 166a 10,015 ± 4985a 11,924 ± 590a 11,357 ± 870a 9949 ± 399a

Cu 132 ± 30a 17 ± 1b 60 ± 1b 26 ± 0.4a 9 ± 1a 38 ± 25a

Ni 17 ± 5a 13 ± 1a 17 ± 1a 8 ± 1a 6 ± 1a 7 ± 0.3a

Data are means ± SE of five biological replicates.
Different letters indicate significant differences (P < 0.05) within tissue types by ANOVA with Holm-Sidak correction test.

Fig. 5. MDA concentration in trifoliate leaves and roots of G. max plants supplied with
no Fe (-Fe), FeEDDHA and Fe(mpp)3 for 14 days, under hydroponic conditions. Data are
means ± SE of five biological replicates. Different letters indicate significant differences
(P < 0.05) by ANOVA with Holm-Sidak correction test.
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The membrane-bound ferric chelate reductase enzyme is
responsible, in plants, for the acquisition of soluble Fe from the soil.
In fact, the reduction step has been proposed as the rate limiting
step for Fe absorption (Grusak et al., 1990), but the elicitation of this
enzyme is not the only process involved in the reduction of IDC
(Klein et al., 2012). Plants grownwith FeEDDHA had only half of the
reductase activity registered in plants grown with Fe(mpp)3
(Table 3) (P > 0.05). Although the general accepted concept is that
plants enhance the activity of this enzyme under low Fe conditions,
as it is observed in Arabidopsis (Robinson et al., 1999; Vert et al.,
2003), several studies report on its variability. A study with beans
showed that reductase activity can vary with the cultivar under
study, the type of Fe chelator utilized and the pH of the hydroponic
solutions (Blair et al., 2010). Also, a recent study in rice plants
particularly shows the variability in Fe reductase activity and its
dependence on the cultivar and ecotype (Pereira et al., 2014).
Moreover, studies in soybean show that when no Fe is given to the
plants, the enzyme may not be triggered since it needs Fe for its
functioning (Krishnan, 2005; Santos et al., 2013).

The lack of differences in reductase activity amongst Fe treat-
ments could be due to the fact that in this study the FCR activity
was measured at the end of the assay, which corresponded to 14

days of hydroponic growth. Although this is commonly performed
(Zocchi et al., 2007; L!opez-Rayo et al., 2015; Klein et al., 2012), it has
been shown that reductase activity varies in time (Andaluz et al.,
2009), therefore it would be interesting to conduct a future time
course analysis to test this hypothesis.

4.2. Plants grown with Fe(mpp)3 had higher total Fe content

The results of the Fe accumulation analysis (Fig. 4) are in
agreement with the ones obtained for the chlorophyll content and
plant growth: plants with higher Fe content were greener and had
higher biomass production (Table 3).

Plants treated with Fe(mpp)3 accumulated more Fe in the roots
than the ones treated with FeEDDHA (P < 0.001) (Fig. 4C). As both
symplasmic and apoplasmic Fe weremeasured in this study, part of
the root accumulation can represent a ferric Fe pool precipitated in
the free space of roots (Zhang et al., 1991; Becker et al., 1992).
Nevertheless, when looking at the Fe concentration in trifoliate
leaves (Fig. 4B), a significant difference was detected in Fe(mpp)3
treated plants, where these accumulated almost the triple amount
of Fe (P < 0.001). Such difference may perhaps be explained by the
fact that Fe(mpp)3 has higher water solubility than FeEDDHA thus
promoting Fe uptake and transport within the plant.

These high Fe accumulation levels could potentially lead to
higher oxidative stress (Küpper and Andresen, 2016). Lipid perox-
idation, measured as the amount of MDA, is the most often used
indicator of oxidative stress, as it is produced when poly-
unsaturated fatty acids in the membrane undergo oxidation by the
accumulation of free oxygen radicals (as reviewed in Gill and
Tuteja, 2010). Our data show that, despite a tendency for an
increased MDA accumulation shown by Fe(mpp)3, there was no
significant differences between treatments (Fig. 5). This is in
agreement with other studies where no variation of MDA concen-
trationwas found from the control to the Fe deficient conditions on
wheat leaves (Iturbe-Ormaetxe et al., 1995; Tewari et al., 2005).

Moreover, with the exception for K concentration in the trifo-
liate leaves, no significant difference was detected in the mineral
accumulation pattern between FeEDDHA and Fe(mpp)3 treated
plants (Table 4), which shows the specificity of Fe(mpp)3 to Fe.

4.3. Expression of Fe uptake-related genes was lower in plants
grown with Fe(mpp)3

In this study, the expression of three genes involved in major
steps of Fe uptake and accumulation (FRO2-like, IRT1-like and
ferritin) were analysed, and the results are presented in Fig. 6. FRO2
and IRT1 genes are responsible for the two main steps of Fe ab-
sorption and mobilization and are under a coordinate control
(Connolly et al., 2003). These two genes are the most frequently
studied in what concerns Fe deficiency mechanisms not only in
Arabidopsis but also in different crops, such as soybean (O’Rourke
et al., 2007), potato (Legay et al., 2012), tomato (Paolacci et al.,
2014) or cucumber (De Nisi et al., 2012).

Regarding FRO2-like gene expression, in the roots of plants
without Fe and with the two Fe complexes, while the expression
was very low in FeEDDHA and Fe(mpp)3-treated plants, Fe deficient
plants had high levels of this transcript. As aforementioned, soy-
bean uses an Fe-reduction based mechanism to absorb Fe in
response to Fe deficiency, which is coherent with the results ob-
tained foreFe plants (Table 3). Once Fe(II) is available to the plant, it
is transported by the IRT1 protein, and as such the root expression
of the IRT1 gene was also studied (Fig. 6). IRT1 is usually up-
regulated in Fe-deficient conditions, but studies show that its
regulation is dependent both on the root Fe pool and on the shoot
Fe demand (Vert et al., 2003). Here, all treatments except Fe(mpp)3

Fig. 6. Gene expression analysis of FRO2-like and IRT1-like in the roots and of ferritin in
the shoots of G. max plants supplied with no Fe (-Fe), FeEDDHA and Fe(mpp)3 for 14
days, under hydroponic conditions (‘Experiment 2’). Data are means of three biological
replicates ± SE relative to the housekeeping gene 18S rRNA. Different letters indicate
significant differences (P < 0.05) by ANOVA with Holm-Sidak correction test.
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induced IRT1-like expression. Numerous theories aim to explain the
mechanisms behind Fe deficiency sensing and, lately, shoots have
been presented as the main responsible organ (Enomoto et al.,
2007; Wu et al., 2012). Additionally, the expression of the ferritin
gene was evaluated in the shoots (Fig. 6) and it was found that
plants treated with 3,4-HPO Fe chelate induced high levels of
expression of this gene. This increase in ferritin expression was
expected, since it may be a response of the plant to the high Fe
concentrations in the shoot tissues (Fig. 4B) allowing the plant to
regulate Fe and maintain homeostasis, storing or releasing the
required Fe by the plant as needed, thus avoiding toxic effects
(Ting-Bo et al., 2006). Higher rates of ferritin expression, particu-
larly in the shoots, have been detected before in plants grown under
high Fe concentrations (Vasconcelos et al., 2014).

5. Conclusions

In this work, a tris 3-hydroxy-4-pyridinone iron(III) chelate was
tested as a possible Fe chelator to combat Fe deficiency chlorosis, in
plants grown in hydroponic conditions. To assess the extent of its
beneficial effect, FeEDDHA, a standard chelate routinely utilized in
chlorosis treatments, was included as control. Fe(mpp)3 proved to
be more efficient than FeEDDHA, and plant growth was signifi-
cantly improved (increased shoot and root dry weight and
increased total leaf area). Plants presented no signs of chlorosis, and
the analysis of the expression of IDC -related genes, FRO2-like and
IRT1-like, showed that plants with Fe(mpp)3 had low expression
levels.

Due to its high solubility, non-toxicity and high affinity for
Fe(III), 3-hydroxy-4-pyridinone ligands seem to be a good alter-
native to produce more efficient iron chelates compared to the
current commercial products. In order to fully understand the
mode of action of the tris(3-hydroxy-4-pyridinonate) Fe(III) che-
lates and establish structure activity relationships further work is
needed, namely looking at extrusion of organic acids, labelled Fe,
among others. Furthermore, studies at alkaline pH should be con-
ducted in order to understand the new chelates’ behaviour at
conditions of low Fe solubility in the soil.
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In this chapter, a general overview of the results obtained in the previous chapters will be 

presented. In the Discussion section (5.1) the achievement of each goal will be commented, 

as well as the common theory behind all research works. The main conclusions will be 

highlighted, as well as future perspectives for the Fe research field and several outstanding 

questions that have to be address in the near future. Finally, a Critical Reflection on the up-

coming difficulties associated to Fe nutrition in plants and its contextualization in the 

future of agriculture will be presented in the form of an opinion article (section 5.2). 
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In agricultural context, Iron Deficiency Chlorosis (IDC) is the cause of severe decline in 

legume crops’ production and growers' profits. This is due to the fact that 30% of the 

world’s arable land is calcareous, Fe forms insoluble oxides and becomes unavailable for 

plants’ uptake (Prasad, 2003). Despite being an agricultural problem for a long time, there 

is still no effective solution to correct IDC and strategies to overcome it include the 

selection of tolerant cultivars, conventional breeding and the application of Fe fertilizers 

(Abadía et al., 2011; Blair, 2013; Boodi et al., 2016).  

 Several knowledge gaps impair the full understanding of the Fe deficiency response 

and, in the last decades, studies converge in finding feasible solutions to increase Fe 

content in the edible part of legume plants (Sperotto et al., 2012). This general and 

common objective aims at decreasing human diseases associated to vitamin or mineral 

deficiencies, by which two billion people are affected in the world (von Grebmer et al., 

2014). Hence, the production of more nutritious food, without undervaluing food security 

protocols, should be key in helping to improve humans’ health and nutritional habits 

(Gupta and Prakash, 2014). As mentioned in Chapter 1, to achieve this goal, several 

biofortification programs are being developed and (some) successfully established, but a 

clear method to increase mineral content in the seeds is yet to be defined, since there is still 

incomplete understanding of the Fe translocation routes from the uptake steps to its 

unloading into the edible parts (Carvalho and Vasconcelos, 2013). 

 

Gathering molecular information on IDC-response 

The ascension of the omics era has contributed with vast information on Fe deficiency in 

different crops, however to develop plant genotype improvement programs more 

information is needed (Briat et al., 2015; Vasconcelos et al., 2017). The first objective of 

this thesis was to study the molecular mechanisms behind IDC-responses in legume crops. 

After selecting 223 up-regulated genes by Fe-deficiency from three legume crops – 

Phaseolus vulgaris, Glycine max and Medicago truncatula – a set of common gene 

families was identified (Chapter 2, section 2.1). It was shown that, in response to Fe 

stress, all three cultivars up-regulated genes of protein kinase, tranferase and metal and 

zinc ion binding families (Chapter 2, section 2.1, Fig. 6A). Other studies have also found 

that protein kinases may have an essential role in Fe deficiency responses, possibly by 

mediating protein phosphorylation at a post-translational level (Lan et al., 2013). 

Transferase type proteins have also been associated to the phosphorylation process, at a 

post-transcriptional level (Lan et al., 2012). Inserted in the metal ion binding protein group 
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we can find several of the proteins essential to iron homeostasis, as is example the Fe 

deficiency responsive element-binding factor 1 (IDEF1) (Kobayashi and Nishizawa, 2014), 

mentioned in Chapter 1 for its role in Fe accumulation, or the zinc finger genes that have 

lately been associated to increased tolerance to oxidative stress (Le et al., 2016). When 

looking at specific up-regulated genes, an interesting result was found, where both G. max 

and M. truncatula induced genes of the isoflavonoid pathway (Chapter 2, section 2.1, Fig. 

7A and 7C). As also described in Chapter 1, in the last few years, attention have been 

directed to the role of phenolics in Fe deficiency response, and several studies have 

confirmed their increased production under Fe-stress conditions in M. truncatula 

(Rodríguez-Celma et al., 2013), Arabidopsis (Fourcroy et al., 2014; Schmid et al., 2014) 

and Beta vulgaris (Sisó-Terraza et al., 2016). 

 In Chapter 2, section 2.1 (Fig. 6B) we also registered that the oxidoreductase family 

was amongst the most commonly down-regulated families under Fe-limited conditions. 

Ferric reductases belong to this family and, as seen in the ferric reductase activity results 

(Chapter 2, section 2.1, Fig. 4), plants were not able to induce this enzyme under Fe 

deficiency. Although specific oxidoreductase genes were also found among the five most 

down-regulated genes in all three species (Chapter 2, section 2.1, Fig. 7), these types of 

genes are usually up-regulated under Fe deficiency, as shown in Arabidopsis (Salazar-

Henao and Schmidt, 2016). 

 Having into consideration the up-regulated genes identified in Chapter 2, section 

2.1 and other literature information, a set of specific genes were chosen for a targeted 

comparison between the model crops G. max and M. truncatula, in Chapter 2, section 2.2 

(Fig. 4 and 5). Here, we selected genes that encoded proteins of the Fe uptake mechanism, 

FRO2 and IRT1 (Chapter 1, Fig. 1.3). Both genes appeared to be co-regulated, as they 

behaved similarly in response to Fe-deficiency, however, the pattern of expression was 

opposite between species. These results show that the activation of the uptake system 

might be species-dependent, and support other studies that show diversity in iron reductase 

activity at the genotype level (Blair et al., 2010). Again, in G. max roots, FRO2 gene 

expression was lower under Fe deficient conditions, corresponding to the enzymatic 

pattern obtained for ferric reductase activity (Chapter 2, section 2.2, Fig. 2). 

 We have also looked at transport genes, namely NRAMP3, VIT1 and YSL1. While 

NRAMP3, which is responsible for the remobilization of Fe from the vacuole, was up-

regulated under Fe deficiency, VIT1 and YSL1, that encode proteins responsible for Fe 

storage and translocation, were repressed. Our results showed that these genes behaved as 
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expected under Fe deficiency, accordingly to their functions (Chapter 1, Fig. 1.4), showing 

a conserved expression in both species. Just like in other studies (Vasconcelos et al., 2003; 

Masuda et al., 2013) we observed that the ferritin gene, encoding the main Fe storage 

protein, is induced in the presence of Fe, confirming that this is a good target for Fe 

biofortification as it might increase Fe content in plants. In fact, many reported strategies 

have used ferritin for this goal (Boonyaves et al., 2017). Finally, we have also looked at the 

expression of GCN2 gene that has not been previously associated with Fe nutrition in 

plants, and we observed that Fe deficiency modulated its expression. This gene encodes a 

protein kinase responsible for the phosphorylation of the α subunit of eukaryotic 

translation initiation factor 2 (eIF2α) (Faus et al., 2015) and has been characterized to 

sense and respond to nutrient deprivation by modulating amino acid metabolism in yeast 

and Arabidopsis (Liu et al., 2015; Uluisik et al., 2011).  

 In order to expand our knowledge on the role of some of the aforementioned genes 

in a broader set of plants and to compare the strategy I dicotyledoneous plants behaviour 

with that of strategy II grass species, in Chapter 2, section 2.3, genes relevant in both Fe 

uptake strategies (Chapter 1, Fig. 1.3) were evaluated in rice (Fig. 5 and 6). In this chapter 

we addressed the recently debated concept that rice could use a combined strategy to 

uptake Fe (Sperotto et al., 2012). Utilizing two rice cultivars with different Fe 

susceptibilities we observed that the more susceptible cultivar had higher rates of ferric 

reductase enzyme activity and induced the expression of FRO2 gene and that the gene 

encoding the Fe transporter IRT1 was up-regulated in the shoots of both cultivars. 

Succeeding reports also emphasize the up-regulation of these strategy I genes in other rice 

cultivars, alongside with NAS and YSL encoding genes (Wang et al., 2015; Paul et al., 

2016; Chen et al., 2017). The transcription factors IRO2 and IDEF1 are among the main 

regulators of Fe deficiency response in rice (Kobayashi et al., 2014) and have been utilized 

as mineral stress markers in different studies (Feng et al., 2016; Kobayashi et al., 2016). 

 A recent study on Fe deficiency transcriptional response in two cultivars of 

grapevine with different Fe-stress susceptibilities has shown that the abovementioned 

genes, selected for analysis in Chapter 2, are still the most preponderant for the 

characterization of the mechanisms associated to Fe deficiency (Vannozzi et al., 2017). In 

that study, and similarly to our findings, FRO2 and IRT1 genes were also co-regulated. 

Moreover, a transferase belonging to the flavonoid branch was up-regulated under Fe-

deficiency, as well as a NRAMP gene, that was highly induced. In the same study, VIT-like 

genes were down-regulated under Fe deficiency, and it has been suggested that this down-
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regulation can be correlated to the control of root-to-shoot Fe translocation at the 

transcriptional level, highly influencing chlorosis symptoms development (Yan et al., 

2016). Alike VIT-like gene regulation results, YSL was down-regulated under Fe-

deficiency. The major function attributed to YSL is the transport of metal-NA complexes 

through the phloem to the shoots (Conte et al., 2013) thus its expression is expected to 

increase when Fe is abundant, as shown by others (Feng et al., 2017) and observed here 

(Chapter 2, section 2.2, Figures 4 and 5; and Chapter 2, section 2.3, Figure 6). 

 Chapter 2 evidenced the intricacy of IDC genetic response. This chapter also 

contributed to describe molecular markers that can improve breeding programs in legume 

plants and that can provide information on molecular tools to study the mechanisms behind 

IDC.  

 

Fe-efficiency trait as a mean to understand IDC-related physiological mechanisms 

The second objective of this thesis was to examine the physiological mechanisms 

underlying IDC and, for that, we have selected soybean cultivars with distinct Fe-

efficiencies based on previous studies (Vasconcelos and Grusak, 2014). Foliar chlorosis, 

growth parameters, Fe tissue accumulation and genetic markers (FRO2, IRT1 and ferritin) 

were evaluated on plants grown under Fe-deficient conditions when compared to Fe-

sufficient plants (Chapter 3, section 3.1). An additional treatment was added to the 

analysis of Fe-efficient (EF) and Fe-inefficient (IN) plants, the removal of the unifoliate 

leaves that are the first leaves to expand after seed germination (Chapter 3, section 3.1, Fig. 

1), and are strong sink organs in the early stages of plant development. The unifoliates 

removal alleviated chlorosis symptoms in the trifoliate leaves, probably due to the 

decreased sink competition as a previous report showed that the bigger the unifoliate 

leaves, less Fe is left for remobilization to the trifoliates (Vasconcelos and Grusak, 2014). 

This excision also helped to understand that IN plants had, in general, lower ability for Fe 

remobilization to the shoots, mainly accumulating their Fe pool at the root level (Chapter 

3, section 3.1, Fig. 6).  

 We also looked at ferric reductase activity and, although it was not induced under 

Fe deficiency (as also seen at the molecular level in Chapter 2), EF plants had higher levels 

of this enzymes’ activity. The analysis of the genetic markers showed that FRO2 gene was 

more expressed in the trifoliate leaf tissues (Chapter 3, section 3.1, Fig. 7A), putatively 

revealing that the sequence here analysed could be more homologous to FRO7, responsible 

for Fe(III) reduction at the chloroplast level (Chapter 1, Fig. 1.4). In this case, the higher 
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induction registered in IN plants could be due to the increased necessity of these plants to 

avoid the degradation of the photosynthetic machinery due to the lack of Fe. Other studies 

reporting the difference in Fe-deficiency response between tolerant and susceptible 

cultivars have shown that FRO2 gene expression and the enzymes’ activity have common 

patterns of induction and are usually increased in the tolerant cultivars when compared to 

the susceptible ones (Vannozzi et al., 2017). Here, this was true mostly for the root 

reductase activity and also for FRO2 at the root level, where its expression was higher in 

the EF plants. 

 Besides being an Fe transporter, IRT1 is a marker gene for Fe metabolism 

regulation and it is deeply responsive under stress conditions (Guo et al., 2017). IRT1 

expression was generally higher in IN plants (Chapter 3, section 3.1, Fig. 7B). A recent 

study showed that Fe-deficiency susceptible apple plants might adapt to be more tolerant 

by altering the IRT1 promoter, in order to increase transcriptional activation of the gene 

(Zhang et al., 2017). This could explain the observed increased levels of IRT1, as INF 

plants could be modelling Fe-uptake associated mechanisms to avoid more damage. Lastly, 

ferritin gene expression was also increased in INF plants (Chapter 3, section 3.1, Fig. 7C), 

which could be related to the higher demand for Fe in the shoots, again, to avoid further 

damage at the photosynthetic level that could be impairing the Fe partitioning to this tissue. 

In fact, a novel ferritin gene was just identified in Triticum aestivum, and shown to be 

essential for protecting cells against ROS and oxidative stress (Zang et al., 2017). 

 In Chapter 3, section 3.2 we deepened the understanding of the physiological 

responses by analysing the role of Fe deficiency on activating the antioxidant and 

tetrapyrrole systems activation. Although it is known that Fe deficiency triggers oxidative 

stress in plants (Jelali et al., 2013; Le et al., 2016), to date, no correlation studies have been 

performed to understand the influence between these two systems’ regulation under Fe 

stress. The use of lines with contrasting Fe-efficiencies, allowed us to understand that 

higher levels of oxidative stress (indicated by higher MDA accumulation in the root tissue 

and by higher GR activity in the leaf tissue) might induce the oxidation of the tetrapyrrole 

heme into hemin, unbalancing the heme/hemin pool and leading to the triggering of 

catalase enzyme. Possibly due to this fact, heme prosthetic group is no longer integrated 

into the heme-containing enzyme ferric reductase, putatively explaining the lower levels of 

this enzymes’ activity in INF plants (Chapter 3, section 3.2, Table 3). Also, possibly to 

correct this heme/hemin imbalance, the tetrapyrrole cycle (Chapter 1, Fig. 1.2) seems to be 

more directed to the Fe-branch, neglecting the production of chlorophyll through the Mg-
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branch, thus contributing to chlorosis development (Chapter 3, section 3.2, Fig. 5). As 

recently seen in a study in groundnut cultivars with different Fe-susceptibilities (Boodi et 

al., 2016), increased chlorophyll levels and APX activity was highly associated to the EF 

line (Chapter 3, section 3.2, Fig. 4). 

 Taken together, the results of Chapter 3 indicate that, besides the well known 

indicator of chlorosis and reduced leaf chlorophyll content (Prasad, 2003), two parameters 

seem to be associated with Fe-deficiency susceptibility: (i) lower ferric reductase activity; 

and (ii) higher Fe accumulation in the root tissue. Further studies should be performed to 

associate the oxidized form of heme –hemin - to IDC susceptibility. These characteristics 

seem to be major contributors to the inability to respond to IDC and here we suggest their 

use as IDC physiological markers. 

 

Chelate from the 3,4-HPO family as an effective strategy for IDC prevention 

Using the above-mentioned molecular and physiological IDC-markers, the efficacy of a 

novel Fe-chelating agent as fertilizer was evaluated in soybean plants (Chapter 4). This 

novel ligand, 2-methyl-3-hydroxy-4-pyridinone (Hmpp), belongs to the tris(3-hydroxy-4-

pyridinonate) (3,4-HPO) family, only applied in biomedical context and never tested in 

plants. It was our hypothesis that, based on its high affinity for Fe and its high solubility 

(Burgess and Rangel, 2008), it could be a good Fe fertilizer. On the contrary to the other 

usually employed synthetic chelates that are hexadentate, these ligands are bidentate, 

which makes them smaller. Their reduced size could explain these molecules’ higher 

solubility and could help in Fe penetration through the root membrane. 

 Firstly, the efficacy of Fe(mpp)3 complex was compared, under hydroponic 

conditions, to: (i) an Fe salt; (ii) to the ligand itself; (iii) to the commercial chelate 

FeEDDHA; and (iv) to a mixture of Fe and the ligand. As expected, the Fe salt and the 

ligand had no positive results on plants chlorophyll accumulation, total dry weight and leaf 

area (Chapter 4, Table 2). From an economical point of view, the use of an Fe salt and 

ligand mixture, would be less expensive to synthetize, which could result in a more 

affordable solution for IDC. These results showed that although not as efficient as the 

complex itself, the mixture could be used as an alternative to FeEDDHA, as it led to higher 

SPAD values and plant growth.  

 After this initial assessment, the activity of Fe complex was further evaluated at a 

physiological level. One of the physiological IDC-indicators was the lower ability to 

induce ferric reductase enzyme activity under Fe-stress. Usually, under Fe-sufficiency, the 
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values of the reductase enzyme are repressed (Jeong and Connolly, 2009) and, here, both 

FeEDDHA and Fe(mpp)3 supplied plants showed a tendency for lower reductase induction 

than Fe deficient plants (Chapter 4, Table 3).  

 The plants’ capacity for Fe translocation through the root to the aboveground 

organs was another physiological marker pinpointed in Chapter 3. The analysis of Fe 

concentration confirmed the potential of the new chelate in plants’ nutrition, since 

Fe(mpp)3 treated plants not only accumulated more Fe in the roots, but also had triple the 

amount of Fe accumulated in the leaf tissue, when compared to plants grown with the 

commercial chelate, FeEDDHA (Chapter 4, Fig. 4). A recent study has also concluded that 

the fast and efficient allocation of Fe to the leaf tissue depends on the chelating agent 

(Zamboni et al., 2016). In that same study the authors have also found that Fe-stress 

transcriptional response is influenced by the nature of the chelating agent. Hence, based on 

the molecular targets selected in Chapters 2 and 3, the effect of Fe(mpp)3 on plants’ FRO2, 

IRT1 and ferritin gene expression was evaluated. This analysis showed that Fe(mpp)3 

treated plants did not elicit Fe-stress related genes, such as FRO2 and IRT1 (Chapter 4, Fig. 

6), contrarily to Fe-stressed plants that usually elicit these genes, as previously seen in 

Chapter 3, section 3.1. Additionally, with Fe(mpp)3 treatment, ferritin was highly induced 

at the leaf level when compared to the commercial chelate FeEDDHA, representing the 

higher need for Fe storage due to its higher accumulation in the shoots.  

 Current studies have used chlorophyll production, total Fe content and biomass 

yield for the evaluation of the effectiveness of certain products as good Fe fertilizers (Bin 

et al., 2016; Carrasco-Gil et al., 2016). Other studies have considered different parameters 

for this evaluation, namely, the stability and reactivity of the compounds, as well as their 

biodegradability (López-Rayo et al., 2015). Here, we concluded that Fe(mpp)3 is a 

promising alternative to the existing products and the upscaling of its application should be 

considered.   
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Highlights 

The proposed aim for this research was to find new tools for molecular and physiological 

determination of IDC response. The mechanisms behind IDC were analysed from different 

points of view and we have gathered a subset of IDC-specific indicators. These can be 

useful in the future, not only in the understanding of the effect of Fe deficiency on plant 

metabolism, but also in the identification of IDC-tolerant cultivars for breeding programs 

and cultivar selection. We also suggested a new Fe-chelating agent that showed high 

efficacy in delivering Fe to the plants and that, somehow, promoted Fe translocation to the 

shoots as a promising alternative to the commercially available synthetic fertilizers. Below 

we summarize the main highlights of this research: 

 

◊ G. max, P. vulgaris and M. truncatula shared common transcriptomic mechanisms 

in response to Fe deficiency, namely, the up-regulation of protein kinase, tranferase 

and metal and zinc ion binding families; 

◊ G. max and M. truncatula up-regulated genes of the isoflavonoid pathway and the 

three abovementioned species down-regulated oxidoreductase genes; 

◊ In G. max and M. truncatula FRO2 and IRT1 genes were co-regulated; and Fe 

deficiency caused the up-regulation of NRAMP3 gene and the down-regulation of 

VIT1, YSL and ferritin; GCN2 expression was responsive to Fe deficiency; 

◊ In rice, a strategy II grass species, genes utilized by strategy I plants were up-

regulated; 

◊ Regulation of Fe uptake mechanisms depended on Fe deficiency susceptibility in 

rice cultivars; 

◊ Fe-efficiency trait was related to better Fe translocation capability from root to 

shoot and to increased ferric reductase activity; 

◊ Fe-efficiency was highly associated to lower levels of oxidative stress and to higher 

activity of ascorbate peroxidase, gluthatione reductase and ferric reductase at the 

root level under Fe deficiency; 

◊ Plants treated with Fe(mpp)3 were bigger (24%) and greener (42%); 

◊ Fe(mpp)3 was a promising alternative to the existing fertilizing products. 
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Suggestions for future work 

In the present research study, molecular and physiological mechanisms associated to IDC 

were investigated. Selected guidelines and specific characteristics were established in order 

to achieve and select more tolerant crops to IDC and to prevent this problem. However, 

further studies are needed to fully understand the efficacy of the tools identified in the 

present work. 

 From the transcriptomic analysis in Chapter 2.1, a subset of genes was selected to 

continue the subsequent work. This selection included genes encoding FRO, IRT, ferritin, 

NRAMP, VIT, YSL, TOM, NAS, DMAS, IRO and IDEF, given their preponderance in IDC 

response and vast description in the literature. Besides being interesting to look at 

homologous of some important genes identified in recent publications, the data obtained 

through the Illumina analysis could be explored further, paying closer attention to 

transcripts related to phenolic and flavonoid synthesis, given their recently revealed key 

intervention in the Fe reduction and uptake processes. Also, when looking at the genome 

level, genotype-by-sequencing (GBS) is a great high-throughput tool to discover new traits 

associated to different phenotypes. Besides being utilized for new SNPs discovery, GBS 

has also been applied in linkage mapping construction and QTL identification for 

agronomical important traits, being suitable for the identification of important traits in Fe-

tolerance. 

 From a physiological point of view (Chapter 3), two main characteristics were 

suggested as potential selection parameters for IDC-tolerance. Although these parameters 

were confirmed to be consistent throughout the experiments, it would be recommended to 

test their efficacy in different plant growth conditions, such as, IDC induced by 

bicarbonate-calcareous conditions instead of no addition of Fe, at pH 5.5, as used 

throughout this thesis. Also at the physiological level, it would be interesting to better 

establish the correlation between the genetic information and the enzymatic regulation to 

IDC. Building a network with this data should be of great value to understand the IDC-

response mechanisms. 

 Furthermore, after showing in Chapter 4 that the new chelate, Fe(mpp)3, has 

potential as a new plant fertilizing agent, it would be interesting to test it in soil, preferably 

under calcareous conditions. Additionally, the chelate should be tested not only through 

soil fertilization, but also by spraying at the foliar level, in order to compare its 

effectiveness in IDC prevention and treatment. Finally, extra tests to infer about the 
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toxicological profile and potential soil prevalence should be performed, testing its 

environmentally safe potential. 

 Although scarce, there is some information on the metabolomic response to IDC 

and the obtained data showed potential in the identification of metabolites responsive to Fe 

deficiency. Mass spectrometry, nuclear magnetic resonance, and gas and liquid 

chromatography are all standard next generation analytical methods that decrease the 

amount of sample necessary for the analysis and that can provide large amounts of 

information, being suitable to understand the novel targets for plant breeding and 

biofortification. 
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Abstract 

Recent evidences show that legumes, when grown under elevated CO2 levels, have lower 

nutrient and protein levels in the seeds. Legumes provide a large share of the global 

population diet and, considering the increasing atmospheric CO2 concentration, a reduction 

in their nutrient levels is a major concern for humanity. Here we discuss the existing 

evidences of nutrient losses caused by elevated CO2 and the combination with other 

stressors, whose effects are yet to be clearly understood. We will pinpoint the constraints 

associated, particularly, with Fe stress, raising awareness to the fact that new information 

on these mechanisms can be of utmost importance for the development of breeding 

programs, which can decrease the vulnerability to the climate changes ahead.  

 

Climate Changes and Agriculture: the increasing CO2 levels 

One of the biggest hazards we’re facing nowadays in agriculture and its sustainability is 

climate change. These unpredictable changes might compromise not only yield, but also 

the quality of the resulting products, and new measures are being constantly developed in 

order to find an effective combat strategy. One of the main contributors for climate change 

is the rise in atmospheric CO2 levels. The current global CO2 concentration is about 400 

ppm [1], but the monthly mean atmospheric CO2 at Mauna Loa Observatory, Hawaii has 

already surpassed this value [2]. Just 150 years ago atmospheric CO2 levels were at 280 

ppm and, given the registered trend for increase in the past years, it is predicted to rise to 

550 ppm by 2050 [3]. 

 The development of Free Air Carbon dioxide Enrichment (FACE) technology in 

the 90’s allowed the study of responses to high CO2 (hCO2) without the need for chambers 
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or glasshouses, however, the understanding of how these hCO2 values will influence crop 

quality is still sparse. Early studies show that hCO2 could be related to increased plant 

growth and biomass, being associated with a putative positive effect in agriculture 

(referred to as the “CO2 fertilisation effect”), but recent studies found a significant negative 

effect of hCO2 levels in the concentration of zinc, iron and protein in certain grasses and 

legumes [4].  

 In this opinion article we review the influence of climate changes in the future of 

agriculture. To this end, we describe the evidence about the effect of hCO2 in different 

crops’ growth and mineral content and later discuss its real impact on crops nutritional 

value. Finally, we hypothesize that iron metabolism could play an important role in plants 

ability to cope with hCO2. 

 

Evidences of hCO2 impact on agriculture 

Photosynthesis captures large quantities of atmospheric CO2 and, when CO2 concentration 

increases, photosynthesis is stimulated. Plants are divided in two classes for their CO2 

assimilation mechanism (Box 1) and this differentiation has a strong influence on how CO2 

levels can affect the plant. C3 plants run a low efficiency photosynthetic system, and are 

more dependent on atmospheric CO2 levels than C4 plants. 

 Vegetable cultivation in greenhouses has for long relied on hCO2 as a “fertilizer”, 

in order to increase yield and improve production [5]. However, the occurrence of 

photosynthetic acclimation is frequent and causes a down-regulation of photosynthetic 

capacity, opposing the positive effects of hCO2 exposure [6,7]. Legume crops and cereals, 

on the other had, are grown in open-field conditions and are highly dependent on 

atmospheric conditions therefore, the discussion about the impact of the increasing CO2 

levels targets mainly staple crops. 

 Another variable to have in consideration when studying this phenomenon is the 

fact that besides the inter-specific variation in the response to hCO2, there is also 

variability within plant species [8] and the selection of cultivars well adapted to hCO2 

could be a smart tactic for agriculture in the future. Whilst the general opinion supports 

that hCO2 conditions increase biomass and yield [9, 10, 11], it is important to consider the 

potential effects and consequences caused by this drastic climate change. 
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Box 1. The two classes of CO2 assimilation 

Plants can assimilate CO2 in different ways and have been differentiated between C3 and 

C4. They both carry out the same photosynthetic functions but differ in where and when C 

fixation initially occurs [51]. 

While in both systems CO2 enters through the stomata, the steps that follow are very 

distinct (Figure 1). In C3 plants, CO2 diffuses to the mesophyll cells where the carboxylase 

ribulose-1,5-biphosphate carboxylase-oxygenase (RuBisCo) fixes both CO2 and O2, 

leading to photosynthesis but also to photorespiration. The first stable product of this 

process, through the carboxylation of ribulose-1,5-biphosphate, is 3-phosphoglycerate 

(PGA), which is a three carbon molecule (C3). PGA is then converted into sugars and 

transported to leaves, roots and reproductive structures. On the other hand, in C4 plants, 

CO2 binds to phosphoenolpyruvate (PEP) in the mesophyll cells, where this product is 

carboxylated to oxaloacetate, which is composed of four carbon atoms (C4). The 

oxaloacetate is converted to malate and diffused to the bundle sheath cells, where Rubisco 

exclusively operates in C4 plants. CO2 is then released and forms sucrose and starch. Due 

to the fact that C3 plants spend energy and lose CO2 in the photorespiration process while 

C4 plants do not, the process of photosynthesis is much more efficient in the latter [51]. 

 
Figure 1. Biochemical and anatomical main differences between C3 and C4 plants.  
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 An early study focused on the nutritional consequences of hCO2 in the fruit of 

tomato by testing the influence of a range of CO2 concentrations between 400 and 10000 

ppm in hydroponic conditions [12]. They registered an increase in transpiration and water 

uptake and, regarding the concentration of different elements (Ca, K, Mg and P), only Ca 

concentration increased. At the same time, another study showed that hCO2 delays tomato 

fruit ripening by impairing ethylene-dependent and independent associated genes [13]. 

This is to be expected, since CO2 is a competitive inhibitor of ethylene action. The same 

study also noticed a significant decrease in extractable protein content. 

 As the hCO2 conditions lead to higher plant growth, it has been noted that aerial 

plant parts might decrease its nitrogen (N) content, and C/N ratio tends to increase [14]. 

Chinese kale plants were maintained in growth chambers under controlled conditions, with 

ambient (350 ppm) and hCO2 conditions (800 ppm) and, under the latter, plant growth 

parameters were significantly increased, possibly due to the increase in C content [15]. 

 More recently, a study involving two rice cultivars with contrasting sensitivity to 

hCO2 revealed that the ability to maintain photosynthetic capacity is a determining factor 

in plants’ adaptation to hCO2 [16]. Whilst the japonica cultivar, which had lower yield 

(when compared to ambient CO2 concentration), showed reduced N and Rubisco content, 

the hybrid indica cultivar had increased grain weight and sink:source ratios, with continued 

stimulation of photosynthesis. Concordantly, another study using a japonica cultivar 

concluded that hCO2 had no positive effect on grain quality [17].  

 Besides affecting the photosynthetic activity and the C content, hCO2 also 

decreases stomatal conductance and transpiration [18]. Hence, although Rubisco does not 

saturate in C4 plants with hCO2, these are affected as well (Box 1). As stomatal 

conductance decreases, water use efficiency (WUE) increases, and early evidences show 

that C4 grass species have reduced water losses when compared to C3 species, having 

increased above-ground biomass under hCO2 [3,19]. Recent research papers on climate 

change have focused on plant-water dynamics and drought stress under hCO2 conditions 

[1,20,21], in order to understand the effects of hCO2 on water-limited lands. The main 

observations were that as WUE increases, although the biomass is also increased, no other 

beneficial consequence is obtained, as the amount of water use is also increased and it 

appears that seed filling and longevity may be impaired. While some studies found no 

acclimation of stomata in hCO2 [6], a posterior simulation study explains how a potential 

acclimation results in a significant reduction of the benefits of hCO2 in photosynthesis 

[22]. 
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 Lately, a wave of publications shows how the positive effects of the increasing CO2 

levels could be not so beneficial when considering the consequences from a nutritional 

point of view.  

 

Dilution effect or the loss of grain quality: why plants lose nutritional quality? 

It is important to understand that in cereals and legume crops there are two main growth 

stages that can be differently impacted by hCO2. During the vegetative stage the 

photoassimilates are directed to new shoots and leaves, which are the only sinks; during 

the reproductive phase the major sinks become the developing grains [8]. So, the biggest 

impact in growth and yield is during the vegetative stage which might explain why 

Wheeler et al. (1997) found no impact of hCO2 on proximate composition, total dietary 

fiber, nitrate and elemental composition of tomato fruit itself.  

 But, if on one hand the photoassimilates increase, increasing growth and yield, on 

the other hand, N content in the leaves decreases under hCO2, creating an imbalance in 

C/N ratio [23]. The activity of Rubisco is also decreased as it has a role in N storage and 

remobilization to the grains. Hence, as the photorespiration is repressed (Box 1) and the 

nitrate assimilation depends on this process, its translocation to the chloroplast is inhibited 

[18] and photosynthetic nitrogen use efficiency is increased [6]. As it is largely known, N 

is a key component of proteins, nucleic acids, chlorophyll, phytohormones and secondary 

metabolites [24]. Therefore, lower concentrations of N in the leaves could result in lower 

nutrient and protein levels in the grains. 

 Besides increasing total dry mass, hCO2 alters photoassimilates partitioning 

towards the roots [5,25]. As the plant gets bigger, so does its necessity for more nutrients, 

and it has been shown that nutrient partitioning is also altered by this climate change. For 

instance, in rice plants [25], P, N, K, Mg and Ca, generally decreased in all organs under 

hCO2 and these nutrients were mostly allocated in the roots, which caused a decrease of 

their levels in the shoots. This decreased nutrients content in the above-ground organs most 

likely leads to less available nutrients to be remobilized to the grains and a consequent loss 

of quality. 

 For long it was thought that the decreased nutritional value could be a dilution 

effect of the higher biomass consequent of hCO2 levels [26]. However, we believe this is 

not a likely possibility, and recent research proves otherwise. For example, Zhang et al. 

(2013) found that grain mass and grain nitrogen concentration were negatively correlated 

but, when looking at the effect of hCO2 on superior and inferior spikelets independently, 
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whilst in the first plant structure grain nitrogen concentration decreases and the mass is 

maintained, on the latter the grain mass increases but the nitrogen concentration does not 

reduce, hence suggesting that rather than a dilution effect, one should consider differential 

responses of C and N allocation to the grains [27]. Besides C and N (and protein) 

concentrations, several other nutrients have been shown to decrease under hCO2: Zn and 

Fe were found to decrease significantly in different C3 grasses and legumes [4,28]; and P, 

K, Cu, Zn, Mg and S decreased in leafy vegetables [29]. Considering the general mass 

increase caused by hCO2, it is easy to infer that the plants’ mineral requirements are also 

increased [30]. 

 Therefore, it is our opinion that a dilution effect cannot explain hCO2 effect on 

plants, since it would not account for the fact that some minerals, such as Fe and Zn, tend 

to be lower, whereas other minerals may actually increase. 

 

Iron as a case study 

Parallel to hCO2, it is also incontestable that restricted soil Fe supply will impact the 

nutrition of the foods, which we will consume in the future, as low Fe uptake restricts Fe 

content and plant fitness [31]. Scientists are starting to assess these issues independently, 

but studies linking these two important aspects are few, and more targeted analyses are 

required. 

 Despite the abundance of Fe in soils (it is the fourth most abundant element in the 

earth’s crust), Fe has low solubility and this is a hurdle that leads to Fe deficiency in plants, 

especially in aerated calcareous soils, which represent one third of cultivated lands of the 

whole world [32]. Iron Deficiency Chlorosis (IDC) is one of the main consequences of Fe 

deprivation in plants and, if left untreated, it leads to stunted growth with reduced total 

biomass, which together with chlorosis, leads to severe yield losses due to reduced number 

of seeds per plant and economic problems of great impact amongst farmers [33]. 

 One of the putative explanations behind Fe losses under hCO2 is its impact on 

nutrient transportation throughout the plant. It has been shown that Fe partitioning ability 

can vary within plant cultivars [34] and this may be aggravated by hCO2 stress. In the case 

of Fe, it is transported both through the xylem and the phloem [35]. This is an important 

aspect since, as explained above, one of the consequences of hCO2 is decreased stomatal 

conductance, leading to the supposition that the nutrient flux (thrived by transpiration) 

could decrease too. Hence, although hCO2 and Fe deficiency have opposite effect on plant 
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yield, both appear to negatively impact plants’ nutritional composition, aggravating 

nutritional losses and leading to poorer grain quality. 

 Furthermore, Fe is an interesting case study, as plants, in order to absorb this 

nutrient through the roots, trigger two distinct uptake strategies – Strategy I, used by 

dicotyledonous and non-grasses species, and Strategy II, used by graminaceous species 

(Box 2). A recent report [36] compared and projected the response of two crops, soybean 

(C3) and maize (C4), to isolated and combined climate change stresses (hCO2, heat and 

drought). They observed that the so-called ‘fertilization effect’ of hCO2 is dependent, for 

example, on plants’ water condition and that soybean is more likely to be negatively 

impacted by climate change stresses. But this study did not account for the fact that, 

besides differing on CO2 assimilation process, these species are also distinct in terms of Fe 

uptake strategy utilization: soybean utilizes strategy I, and maize, strategy II. In strategy II 

plants, phytosiderophores play an important role in the process of Fe uptake (Box 2) and, 

interestingly, as the majority of C4 plants are grasses, they are mostly strategy II utilizing 

plants. Thus, we suggest that future studies looking at the response to of different crops to 

hCO2, would also look at the influence of these processes on nutritional composition. We 

predict that strategy II utilizing plants would be less affected than the ones using strategy I, 

even when belonging to the C3 class. The engineering of C4 photosynthetic machinery into 

rice [37] could be a resourceful tool to clarify this proposition. Rice is a strategy II utilizing 

crop and this alteration could decrease its susceptibility to hCO2, particularly in terms of 

the impact on mineral composition, besides the added value in terms of photosynthetic 

machinery [38]. 

 As stated in Box 2, organic acids have the ability to chelate Fe and, as such, they 

have important role in Fe metabolism. Besides being released into the rhizosphere to aid in 

the uptake process, they are also present inside the plant, functioning as Fe-carrier 

molecules for root-to-shoot transport. Recent studies have shown that hCO2 reduces 

organic acids production [39,40], leading us to the conclusion that this would be another 

factor contributing for the decrease in Fe levels both in leaves and in seeds. 
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Box 2. Iron uptake strategies 

Plants developed strategies to acquire Fe from the rhizosphere, which are classically 

divided in two and that have been thoroughly reviewed [33,52,53,54]. Strategy I (Fig. 2a), 

which is utilized by all plants except those from Poaceae family, implies an acidification of 

the rhizosphere by H+ extrusion to allow the reduction of Fe(III) to Fe(II) by a plasma 

membrane-bound ferric chelate reductase, FRO2, and consequent absorption into root 

epidermal cells by transmembrane transporters, IRT-like proteins, that belong to the iron-

regulated proteins (ZIP) family (reduction strategy). Alongside with FRO, other 

compounds have been proposed to have a key role in the reducing step, such as phenolics, 

organic acids, sugars and flavins [55].  

Strategy II (Fig. 2b) is utilized by graminaceous species. In order to increase uptake, these 

plants synthetize phytosiderophores (PSs), of which nicotianamine (NA) is the biosynthetic 

precursor, that are released to the rhizosphere and act as chelators with high affinity for 

Fe(III) (chelation strategy). Phytosiderophores are effluxed to the rhizosphere via TOM1, a 

transporter whose expression levels augment under Fe-deficient conditions. Once in the 

rhizosphere, the complex Fe3+-PS is formed and is taken up into the root cells by 

transmembrane proteins of the yellow-stripe1 (YS1) family. YS1 transporters have been 

identified in several grass species, and, interestingly, non-graminaceous plants also have 

YS1-like (YSL) genes that encode proteins essential in metal-NA complexes transporting.  

Although this classic division is mostly true, there are few studies showing that some 

Strategy II plants could use Strategy I mechanisms, as is the example of rice [56,57]. 

Evidences suggest the use of a ‘combined strategy’, where rice plants besides absorbing 

Fe(III) via the chelation strategy, also take up Fe(II) directly by the induction of the 

strategy I transmembrane transporters IRT1/IRT2 [58]. 
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Box 2. Iron uptake strategies (continued) 

 
Figure 2. Schematic representation of the strategy I / reduction strategy (a) and strategy II / 

chelation strategy (b) for Fe uptake in plants. 

 

 In the previous section it was already mentioned that N remobilization to the grain 

is expected to decrease, especially in C3 plants where photorespiration occurs. Strategy II 

and the nitrate uptake process are closely related and 2’-deoxymugineic acid (DMA) 

phytosiderophores were shown to link both Fe and nitrate assimilations [41]. Under 

alkaline conditions the synthesis of phytosiderophores precursor nicotianamine (NA) is 

expected to increase, thus increasing phytosiderophores release and coping with decreasing 

Fe levels. This mechanism was hypothesized to be enough to counteract quality grain 

losses due to hCO2 [42], however as N becomes less and less available, protein synthesis 

decreases, and we predict that this will affect photosyderophore synthesis. It is important to 

stress that soil microbial community composition and structure is also altered under hCO2 

[43,44]. In this context, we predict that future studies might have to look at the effect of 

hCO2 on N fixing bacteria or bacteria that assist in mineral absorption. 

 Mineral losses could also be aggravated by the fact that NA is required to complex 

with metals like Fe, namely for their transport through the phloem, both in strategy I- and 

strategy II-utilizing plants [45]. Hence, as phloem transport is impaired by hCO2, alongside 

with decreased protein and organic acid synthesis, it seems probable that nutrient losses in 

the grains would be inevitable. Given the reported changes in soil properties it is also 

pertinent to reflect on the use of hydroponic growth versus soil to study the hCO2 effect by 

itself or conjugated with other stresses.   
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Concluding Remarks 

It is important to be mindful that the rising CO2 has been shown to affect the nutritional 

value of not only cereals and legume crops, but also fruits and leafy vegetables. Nowadays, 

we are facing a compromise between the necessity for higher yields and production rates 

and the loss of the quality of the food. Models for prediction of hCO2 and the 

environmental changes due to it have been developed [7,46]. However, other variables like 

photosynthetic acclimation [47], increasing temperatures [48], fertilization [49], or insect-

plant interactions [50] have been shown to influence the extent of hCO2 consequences in 

plants. Furthermore, knowing that nutrient deficiencies are one of the major causes of 

quality and production losses around the world, understanding the interaction of these 

stresses with hCO2 is imperative. The risk of under or overestimating the effect of hCO2 in 

real agronomic conditions will decrease as key questions are addressed by modern science 

and research (see Outstanding Questions).  

 

 

Outstanding Questions  

 

Could the reduced mineral concentrations be due only to a dilution effect (since under 

hCO2 conditions plants have increased biomass)? Or are we facing a possible decrease in 

nutritional content of our legume plants? 

How does the plant balance the increase in photosynthetic reactions caused by increased 

yield and nutritional value maintenance? 

Should we consider hCO2 “tolerant” cultivars in future agricultural practice? If so, should 

we select cultivars based on their yield increase under hCO2 or on their ability to maintain 

protein and mineral content? 

Do plants with different iron uptake strategies (e.g. rice versus tomato plants) equally 

respond to hCO2? How will nicotianamine synthesis be impacted by N decreasing levels? 

Shouldn’t this affect phytosiderophore synthesis and metal transport through phloem? 

Since evidence show a negative impact of hCO2 on iron and zinc concentrations in plants, 

could it also have an effect on the accumulation profile of heavy metals? 

Since mineral and N uptake is influenced by soil factors (including microbial diversity), 

could hCO2 trigger lower nutrient uptake via a modulation of soil characteristics? 
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