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EXTRACTING SURFACE WATER BODIES FROM SENTINEL-2
IMAGERY USING CONVOLUTIONAL NEURAL NETWORKS

ABSTRACT

Water is an integral part of eco-system with significant role in human life.

It is immensely mobilized natural resource and hence it should be monitored

continuously. Water features extracted from satellite images can be utilized for

urban planning, disaster management, geospatial dataset update and similar

other applications. In this research, surface water features from Sentinel-2

(S2) images were extracted using state-of-the-art approaches of deep learn-

ing.Performance of three proposed networks from different research were as-

sessed along with baseline model. In addition, two existing but novel architects

of Convolutional Neural Network (CNN) namely; Densely Convolutional Net-

work (DenseNet) and Residual Attention Network (AttResNet) were also im-

plemented to make comparative study of all the networks. Then dense blocks,

transition blocks, attention block and residual block were integrated to propose

a novel network for water bodies extraction. Talking about existing networks,

our experiments suggested that DenseNet was the best network among them

with highest test accuracy and recall values for water and non water across all

the experimented patch sizes. DenseNet achieved the test accuracy of 89.73%

with recall values 85 and 92 for water and non water respectively at the patch

size of 16. Then our proposed network surpassed the performance of DenseNet

by reaching the test accuracy of 90.29% and recall values 86 and 93 for water

and non water respectively. Moreover, our experiments verified that neural

network were better than index-based approaches since the index-based ap-

proaches did not perform well to extract riverbanks, small water bodies and

dried rivers. Qualitative analysis seconded the findings of quantitative analysis.

It was found that the proposed network was successful in creating attention

aware features of water pixels and diminishing urban, barren and non water

pixels.

All in all, it was concluded that the objectives of the research were met

successfully with the successful proposition of a new network.
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1
Introduction

1.1 Contextual Background

Water is significant part of nature with substantial role in human life [1]. It

is one of the intensively exploited natural resources and hence its frequent

monitoring is necessary for sustainable management [2]. Extraction of wa-

ter bodies from satellite images is crucial for urban planning, disaster man-

agement, updating geospatial datasets, detection of droughts, monitoring of

floods, navigation and other applications [1, 3, 4]. Knowledge on water-bodies

can continuously monitor the conditions of available water resources and play

significant role in environment conservation along with sustainable develop-

ment [4]. [5] consider waterbodies as crucial factors for environmental testing,

heat-island effects and ecosystem. They found changes in water distribution

can have huge impact on human lives which can cause soil subsidence, inland

inundation and health hazards.

Water bodies are also the integral part of different thematic and topographic

maps used by human beings. They change from time to time unlike other

features like buildings and roads which are considered as relatively stable[6].

Hence, timely update of the water dataset is necessary. Unfortunately, it is

often found to be difficult because of the hectic and time consuming traditional

approaches [7].

Satellite images in this research context are the images of earth captured

by various satellites. Satellites are operated by countries and business organ-

isations throughout the world. In remote sensing, there are several satellites

1



CHAPTER 1. INTRODUCTION

which provide earth observation imageries. Some of them are discussed here:

• Landsat: It is the first satellite of its kind with longest history of observing

earth since the first launch in July 23 1972. Since then eight versions of

the satellites have been launched out of which only Landsat 7 and 8 are

currently operational [8, 9]. Landsat 7 contains one Enhanced Thematic

Mapper Plus (ETM+) sensor and Landsat 8 contains two sensors called

Operational Land Images (OLI) and Thematic Infrared Sensor (TIRS).

Landsat 8 provides first 7 bands and 9th band in 30m resolution, band 8

panchromatic in 15m. Band 10 and 11 are provided as thermal infrared

in 100m resolution [10].

• Sentinel: Sentinel is a mission of European Union’s earth observation

program called Copernicus. As of now, there are six missions of Sentinel

namely 1,2,3,4,5 &5P with different objectives. Sentinel 1 is supposed to

provide aids in continuous radar mapping of the earth [11]. Sentinel-2

provides data for different applications like land ecosystem monitoring,

land cover change, water quality monitoring, public security and disaster

mapping [12, 13]. Sentinel 3 was launched with the purpose of environ-

ment and climate monitoring, temperature measurement of sea surface

and developing ocean forecasting systems [14]. Sentinel 4 provides sup-

port to Copernicus Atmosphere Monitoring Service (CAMS) by assessing

the primary gases and aerosols influencing the air quality [15]. In addi-

tion to Sentinel 4, the satellites Sentinel 5 and 5 precursor also support

CAMS in the regards of air quality, composition-climate interaction and

atmosphere monitoring [16, 17].

• MODIS: Terra and Aqua satellites have same instrument on board called

Moderate Resolution Imaging Spectroradiometer (MODIS) which pro-

vide data in 36 spectral bands [18]. The data are related to the events

occurred on lower atmosphere, oceans and land thereby visualizing the

global dynamics. Bands 1-2 are provided in 250m resolution while 3-7 in

500m and 8-36 in 1000m resolution [19].

• Rapideye: Rapideye is a constellation of 5 commercial satellites owned

by BlackBridge. It provides data with 5 multispectral bands: Red, Green,

blue, red edge and near Infra-Red bands [20]. The imaging system called

as Rapideye Earth Imaging System (REIS) is a pushbroom instrument

2
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which has ground sampling distance of 6.5m at nadir and pixels size of

5m [21].

Similarly, there are numerous other open and commercial satellites like ZY-

3, EnviSat, Corona, RADARSAT etc. dealing with earth observation [22]. In this

research Sentinel-2 image products were used because of the free availability,

spectral resolution of 13 bands and higher spatial resolution of up to 10m.

1.2 Motivation and Problem Statement

Traditional approaches of water extraction have limitations in accurately dis-

tinguishing water from snow, mountains, buildings and shadows [1, 4, 5, 23].

Auxiliary data like Digital Elevation Model (DEM) and complex band equa-

tions are required to address these issues [24]. Another challenge with them is

to choose the most suitable threshold value to extract out smaller water bodies

accurately [25]. Also, the spatial dependency of the threshold value only exac-

erbate the issue. Moreover, traditional approaches are not suitable for global

scales because they do not integrate the shape and textual information of water

pixels which vary drastically on global water bodies [26, 27].

Due to larger depths, neural networks suffer vanishing gradient problem

because not all the layers play same role in contributing the learning process

while training [28]. Also larger depths and number of feature maps increase the

number of parameters degrading the computational efficiency of hardware [23,

29]. Densely Convolutional Network (DenseNet), proposed in 2016 and fully

developed in 2018, can address these problems in addition to strengthening

feature propagation and reuse [30]. In addition, Attention network can allow

the decoder to dynamically ‘pay attention’ to only the relevant layers of current

decoding step thereby increasing the quality of a network [31, 32]. Residual

layers help by providing better representation of features inside deeper layers

[23]. The limitation with these architects is that their individual efficacies

are well demonstrated within CIFAR-10, CIFAR-100, SVHN, and ImageNet

datasets [33] but not integrated to extensively use in water feature extraction

problems to the knowledge of the researcher.

1.3 Aim and Objectives

The main aim of the research was to extract surface water bodies from Sentinel-

2 imagery using convolutional neural networks. To achieve the main aim, work

3



CHAPTER 1. INTRODUCTION

breakdown structure was followed by dividing the research works in following

objectives:

• To explore the state-of-art approaches used for extraction of water bodies

from satellite images.

• To implement the state-of-art approaches in the study area data and com-

pare the performance achieved.

• To innovate and design a CNN architecture with highest qualitative and

quantitative performance using the available architectures.

1.4 Research Workflow

The overall workflow was divided into three phases: Preprocessing, Processing

and Post Processing. Preprocessing phase was begun with the downloading of

Sentinel-2 images from ESA Copernicus website. DEM and Ground Truth Data

were acquired from United Nations Office for the Coordination of Outer Affairs

(UN-OCHA). These data were pre-processed as described in the section 4.2

and made uniform in terms of spatial resolution, dimension and geo-location

to make image-label pairs. Then patches of images and labels were extracted

using the steps described in section 6.1.1. Thus prepared patches were fed

as input for the models in the processing phase. A total of six different ar-

chitects were used to train, test and assess their performance. Among them,

one architect with two orthodox convolutional layers was prepared as baseline

model. Three different architects proposed by [5, 34, 35] were selected to study

their performance in the study area. Similarly, Attention network in conjunc-

tion with Residual layers (AttResNet) and DenseNet were also implemented as

state-of-the-art approaches for water bodies extraction. Later, these two novel

architects were fused to propose a new architect for water bodies extraction.

The details on configuration and implementation of models for experiments

is described in the chapter 5. In the post-processing phase, qualitative and

quantitative assessment of the performance of all the networks and proposed

network were done. Besides, the output from our network was also compared

with four different index-based approaches. In addition, we also implemented

a traditional but novel approach called Enhanced Water Index (EWI) proposed

by [25]. The overall workflow from data downloading up to the evaluation of

the performance can be found in the figure 1.1.

4
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Figure 1.1: Overall Flow of Research Steps from data download to performance evaluation

1.5 Thesis Contribution

With consideration of the problems stated in the section 1.2, the thesis is ex-

pected to provide the following contributions to the study area and the scien-

tific community:

• It is the novel application of neural networks in the study area to extract

any features [36].

• It is the novel implementation of DenseNet, Residual and Attention net-

works to extract surface water bodies from Sentinel-2 images.

• A new network is proposed by integrating attention blocks from AttRes-

Net with DenseNet.

1.6 Thesis Structure

The thesis contains eight chapters. Chapter 1 talks about the contextual back-

ground of the thesis. Then it introduces the motivation, problem statement,

aims and objectives of the research. It continues with describing the methodol-

ogy followed and contribution of the research to the study area and scientific

community. Chapter 2 reviews the literature on the traditional and modern

approaches for water bodies extraction from satellite imagery. It explains about

the index-based approaches like NDWI, MNDWI, NDVI, NWI, GWI, and EWI.

Then it introduces and describes the modern approaches like SAPCNN, CN-

NWQC, CNNCWC, DenseNet and AttResNet used in deep learning. Chapter
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CHAPTER 1. INTRODUCTION

3 introduces the theoretical framework of CNN where it briefly introduces AI,

ML, DL and DS. Then it details about CNN, its architecture and different

terminologies associated with it. Chapter 4 familiarizes about the study area

and the process of dataset preparation. Chapter 5 describes the methodology

of water bodies extraction using index-based methods and neural networks.

It talks about how the baseline model was developed along with the modifi-

cation of SAPCNN, CNNWQC, CNNCWC, denseNet and attResNet to make

them uniformly comparable. Chapter 6 presents all the outputs obtained from

index-based approaches and neural network methods. It explains the experi-

ments conducted and their numerical and visual results. Chapter 7 talks about

the limitations of the research and recommendations on how the similar works

should be conducted in future. Finally, Chapter 8 concludes with the overall

insights and achievements of this thesis.
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2
Literature Review

This chapter explains the literature on water feature extraction using tradi-

tional and deep learning approaches. Section 2.1 talks about traditional ap-

proaches like threshold and indexing methods used commonly. Specially, it

is focused on how water-index methods can extract water features using band

equations and their limitations. Section 2.2 describes deep learning approaches

for water feature extraction. It is focused on explaining the literature of five

architects that were used in this research for experimentation.

2.1 Traditional Approaches

Water features found in satellite images include the likes of rivers, streams, falls,

ponds, lakes etc. There are various approaches of water features extraction

using different remote sensing methods. Some common methods employed in

most of the researches can be categorized as [4]:

• Single-band threshold method

• Multi-band threshold method

• Water-index method

Single band threshold method distinguishes the single band spectral prop-

erties of water in contrast to other objects while the multiband sprectral thresh-

old method do the same for multiple number of bands. Water index method

employs the conjugative ratio of green and red bands to segregate water [37].

7



CHAPTER 2. LITERATURE REVIEW

This approach is found to be mistaking building noise as water but it can be

improved using mid-infra red band in place of red band [38, 39].

Researchers have used different water-index methods like NDWI, MNDWI,

NDVI, NWI, GWI, WRI etc. Normalized Difference Water Index (NDWI) is the

most commonly used one, calculated using green and NIR band as in equation

2.1.

NDWI =
ρgreen − ρNIR
ρgreen + ρNIR

(2.1)

where ρgreen and ρNIR are reflectance in Green and NIR band respectively. The

index value ranges between -1 and 1, positive values indicating water bodies

[25, 40].But due to higher reflectance in Green and lower in NIR bands, builtup

areas may also have positive values for NDWI. So NDWI fails to distinguish

water bodies from builtup features properly [40]. [41] proposed remedy to this

limitation by replacing NIR by Mid-Infrared (MIR) in index thereby introduc-

ing Modified Normalized Difference Water Index (MNDWI) as:

MNDWI =
ρgreen − ρMIR
ρgreen + ρMIR

(2.2)

where symbols have their usual meanings. Even the built-ups become negative

and hence the index can uniquely extract the water features. Despite this fact,

MNDWI is suitable only for urban water bodies and mixes mountain shadows

and snow cover [42].

Similarly, another index termed as New Water Index (NWI) was proposed

by improvising equation 2.1. The green band was replaced by blue and the

NIR band was added up with both MIR bands of Landsat TM image as given

in the equation 2.3 [43].

NWI =
ρblue − (ρNIR + ρMIR1

+ ρMIR2
)

ρblue + (ρNIR + ρMIR1
+ ρMIR2

)
(2.3)

In contrast to these ratio indices, [44] proposed a non-ratio index, General

Water Index (GWI); using difference of visible and infra-red bands as:

GWI = (ρGreen + ρRed)− (ρNIR + ρMIR) (2.4)

where symbols have their usual meanings. Unlike other indices, this index is

not normalized and hence the threshold needs to be set manually to identify

the boundary between water and non-water features. This adds complexity

and makes the process time consuming.

There are other indices like Water Ratio Index (WRI) and NDVI also used

for extraction of water bodies. WRI employs the conjugative ratio of green
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and red bands to segregate water [37]. NDVI employs the difference between

NIR and Red bands to primarily extract vegetation but also performed well as

negative index for water extraction in case of [45].

To overcome the limitations of these index-based approach and to enhance

the efficient computation with reduced data size, use of Principal Component

Analysis (PCA)) was proposed by [25] and coined Enhanced Water Index (EWI).

They found that introducing new non-collinear Principal Components will

remove the effect of collinearity between bands of image, and make outputs

more accurate .A general practice in PCA is to take in account first few (usually

three) Principal Components that can integrate more than 95 percent of the

information from original imagery [46]. With EWI, they achieved reduced

processing cost with limited data volume to be handled and best extraction

result.

2.2 Deep Learning Approaches

There are numerous approaches proposed by different studies for water feature

extraction with higher accuracies using deep learning. [1] extracted urban wa-

ter from Landsat imageries by combining a ‘Multi-Scale Convolutional Neural

Network (MSCNN)’ with Google Earth Engine (GEE). The parameters were

computed offline by training MSCNN water extraction was done online on

GEE using an approach called ‘Offline Training Online Prediction (OTOP)’.

The OTOP method was concluded to be accurate and satisfactory automation

level and can be used to extract water on different temporal and spatial loca-

tion. Stacked Sparse Autoencoder (SSAE) method was used by [4] by creating a

unique feature matrix of water, vegetation and building indices for each pixel.

Then the feature matrices were expanded considering the effect of neighboring

pixels and fed to SSAE as input to extract water. This Feature Expansion Al-

gorithm (FEA) method was found to be better than other models like Support

Vector Machine (SVM) and older neural networks. [23] proposed a framework

called ‘Multi-Resolution Dense Encoder and Decoder (MRDED)’ which is in-

tended towards the extraction of water and shadows but is silent about the

form of water and impact of terrain on the result of extraction. A model called

DeepWaterMap, employed by [26] distinguishes surface water from land, ice,

clouds, snow and shadows.

In the sections 2.2.1 and 2.2.2, the theory behind the three chosen ap-

proaches from other researchers and two novel approaches for water feature

9
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extraction are explained.

2.2.1 Related Works

• Self Adaptive pooling Convolutional Neural Network (SAPCNN) for

Urban Water Bodies Extraction: It was proposed by [5] for urban water

extraction by using high resolution multispectral images of ZY-3 and

Gaofeng-2 satellites. This method used the concept of improvised Simple

Linear Iterative Clustering (SLIC) approach to do the segmentation of

images.

SLIC is an algorithm to create small cluster of pixels termed as super-

pixels that possess similar features [47]. It is superior than pixel-based

algorithm and widely used in the process of acquiring local information,

preserving boundary information and extraction of features [48]. SLIC

requires previously determined number of clusters and has small search

space. To address this limitation [5] improvised the SLIC by implement-

ing affinity propagation clustering and expanding the search space. The

improvised approach was termed as Adaptive Simple Linear Iterative

Clustering (A-SLIC). Then the superpixels were classified as water and

non water pixels with newly designed CNN to extract high-level water

features from urban background. In the last step, thus extracted water

superpixels were converted into a high resolution image.

SAPCNN was implemented using four images of the three downtown

districts of China; Beijing, Tianjin and Chhengdu which featured ponds,

lakes, small rivers, water parks etc. The researchers conducted four dif-

ferent experiments to assess the abilities of their proposed methodology.

They examined the impact of super-pixel segmentation on the perfor-

mance of water mapping and found an effective improvement in water

extraction accuracy. Similarly, the self adaptive pooling ability of this

model was also compared with max pooling and average pooling models.

The model outperformed the rest two in terms of Edge Overall Accuracy

(EOA), Edge Commission Error (ECE) and Edge Omission Error (EOE).

Additionally, ability of shadow distinction was compared with SVM and

NDWI to find the better results generated by SAPCNN. Finally, a com-

parison of water extracting efficiency was made among SVM, NDWI and

two other methods proposed by [26, 49]. It was found that SAPCNN ex-

tracted water with the highest overall accuracy and producer accuracy
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with lowest EOE and ECE.

All in all, SAPCNN was found to be efficient in improving the accuracy

of urban water detection from high resolution satellite images. The way

how it was implemented in this research is given in section 5.1.2.

• Convolutional Neural Netowrks for Water Quality Control (CNNWQC):

It was proposed by [34] to classify water quality of inland lakes from

Landsat8 images. A 4-layered CNN with hierarchical structure was de-

veloped to estimate the non-optically active parameters responsible to

determine water quality levels. The relationship between in-situ water

quality levels and the images were detected and the surface quality of

total water was also classified. To address the lack of data from in-situ

measurement, a Transfer Learning (TL) approach was implemented. For

this, the model was trained with the data of Erhai Lake, Yunnan Province

and the knowledge was transferred to Chaohu lake of Anhui Province,

China.

A total of 81 images (41 of Erhai lake and 40 of Chaohu lake) from Jan

2014 through October 2018 were utilized. In parallel, water quality data

of the same date range was also collected and integrated with the archi-

tect. Then water quality classification performance of the architect was

assessed by comparing with the traditional machine learning methods

SVM and RF. The CNN model was found to be the best one in learn-

ing all the shallow, discriminating and complex features from the image.

Also, the robustness of the model was tested by conducting transfer learn-

ing with the model trained on Erhai lake and implemented to the in situ

water quality measurement data of Chaohu lake. The CNN with TL out-

performed the one without TL by 9.52%.

All in all, this approach implemented CNN as a cost effective mode for

water quality classification and demonstrated the power of the same in

extracting the relationship between the satellite images and water quality

levels. The way how it was implemented in this research is given in

section 5.1.3.

• Convolutioanl Neural Network for Complex Wetland Classification

(CNNCWC): It was proposed by [35] for classification of complex wet-

land using satellite imagery. The research applied high-level spatial fea-

tures in classification schemes for land cover mapping by fine tuning the
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pre-existing CNN; AlexNet. It was implemented in Newfoundland and

Labrador, Canada featuring eco-regions with varying geo-morphology, hy-

drology and ecology. The study considered the wetlands like bog, swamp,

fen, marsh and surface water. For image data, two level-3A RapidEye

images from June 18 and October 22, 2015 were acquired. A total of 191

sample sites were visited in Summer of 2015 and fall of 2016. Spatial dis-

tribution and land cover types of each sample sites were recorded along

with their GPS location.

Upon observation of extracted features from some random patches, it was

found that initial layers tend to extract low-level features like edges. High

level features like pattern and textures were extracted by deep layers of

CNN. The classification results of CNN was compared with a machine

learning approach called RF. Even the results from only three features

as input to CNN outperformed that from eight features as input to RF.

Producer and user accuracy from CNN outputs were higher in each of

the classification outputs for bog, fen, swamp, marsh, upland, urban,

shallow water and deep water than from RF respectively. RF was found

to be performing better for non-wetland (deep water) classification than

wetlands.

All in all, the research demonstrated its efficiency to serve as a baseline

model for wetland mapping from remote sensing images. It also opened

the quest of fine tuning existing CNNs like AlexNet, DenseNet, ResNet

and so on for the purpose of complex wetland classification in future. The

way how it was implemented in this research is given in section 5.1.4.

2.2.2 Novel Architects

• Densely Convolutional Network (DenseNet):

The neural networks with deeper layers tend to suffer vanishing gradient

problem since all the layers do not have equal role in feature extraction

[28]. In addition the increment in the number of layers and feature maps

effectively increases the number of parameters which is computationally

costly for a hardware [23, 29]. DenseNet addresses these problems by

strengthening feature propagation and reuse [30]. The feature maps of

preceding layers become the input for each layer. If there are N number

of layers in the network, traditional networks would have N number
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of direct connections but denseNet do have N (N+1)
2 direct connections

making the feature maps of current layers as input of succeeding layers.

DenseNet was evaluated on four standard datasasets: CIFAR-10, CIFAR-

100, SVHN and Imagenet. The network was compared with the likes

of FractalNets, Network In Network (NIN), Deep Supervised Net (DSN),

Highway Network and variants of ResNet. On CIFAR and SVHN data,

it was found that DenseNet had the least error rates than the rest net-

works. Increase in number of layers and growth rate produced more

efficient results without suffering overfitting or optimization problems.

Even with lesser parameters also, DenseNet produced lower error rates

that its counterparts with higher parameters. Similar result was achieved

with ImageNet dataset as well.

All in all, DenseNet models are proved to be compact and robust mod-

els which can enforce deep layers to learn high level features. It also

reduces redundancy by making feature reuse and differentiating between

the gained and preserved information between layers. The way how it

was implemented in this research is given in section 5.1.5.

• Residual Attention Network (AttResNet):

Attention networks possess the capability to determine the focus areas

of features. It increases the quality of networks by paying attention to

the concerned layers only in order to extract relevant features [31, 32].

Residual layers provide better feature representation within deep layers

[23]. To take the benefit of both networks, [50] proposed ‘Attention Resid-

ual Learning (ARL)’ by stacking multiple attention modules to develop

AttResNet. The peculiarity of this network is bottom-up top-down struc-

ture is embedded in each attention modules to integrate feed forward and

attention feedback process into a single feed-forward process. The feed

forward operation collects the total information of the image quickly and

attention feedback integrates the information with the original feature

maps.

Attention and normalization modules are adaptable in accordance with

the main features. Channel attention normalizes within all channels to

remove spatial information from each position. Spatial attention nor-

malizes within feature maps from each channel and performs sigmoid

activation to retain spatial information only. The third attention called

as mixed attention simply performs sigmoid activation for each position
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and channel so that it keeps both information. It was found that mixed

attention achieved the least Top-1 error percentage among the three. The

network was further evaluated on three benchmark datasets called CI-

FAR-10, CIFAR-100 and ImageNet.

At first model effectiveness was assessed using ARL in comparison to

Naive Attention Learning (NAL) and ResNet-164. ARL was found to have

the lowest Top-1 error rate with significant reduction in noise without

loss of much information. Relative Mean Response was also found to be

suitable in contrast to NAL which vanished in the next stage. In addition,

the encoder and decoder structure of the network was compared with

local convolutions to again find the lesser Top-1 error rate than the later.

Similarly, noisy label robustness was assessed by increasing the noise

level percentage. Compared to ResNet-164, test error rate of attResNet

declined more gradually. The network was than compared with the vari-

ants of two state-of-the-art approaches; ResNet and Wide ResNet (WRN).

AttResNet obtained the least error rate in both CIFAR-10 and CIFAR-100

datasets compared to the rest networks. Further, experiments done on

ImageNet data on mask influence and different basic units depicted the

least Top-1 and Top-5 error rated for attResNet. It also outperformed the

likes of ResNet, ResNext and Inception modules as well.

All in all, the AttResNet proved its worthiness in capturing the different

types of attention aware features and its extensible ability to compose a

larger network. The way how it was implemented in this research is given

in section 5.1.6.
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3
Theoretical Framework of CNN

This chapter talks about the theoretical framework of deep learning and tech-

nical aspects of CNN in particular. Section 3.1 briefs about the relationship

among Artificial Intelligence, Machine Learning, Deep Learning and Data Sci-

ence. Section 3.2 focuses on the depth of CNN architecture and the common

layers present in a network.

3.1 Overview of the Context

Artificial Intelligence (AI) refers to ‘intelligent-machines’ that have the abil-

ity to copy human traits from a large set of data observations [51]. It can be

sub-categorized into Machine Learning (ML) where the computers learn from

previous experience to solve real world problems [52]. ML implements a lot of

techniques like SVMs, neural networks, regression, clustering, bayesian learn-

ing, decision trees etc. Deep Learning (DL) is a subset of the neural networks

which has a series of interconnected networks to improvise the computational

efficiency of computer[53]. It has the capacity to do multi-layered data process-

ing with data abstraction to enhance the capabilities of machine learning[54].

For image classification, deep learning techniques such as Deep Neural Net-

works (DNN), CNN, Recurrent Neural Network (RNN) etc are currently in

practice [53]. DNNs are the preliminary neural networks which has more than

two layers for computation and can modulate complex functions. As they are

fully connected between all the layers, they need large number of parameters

and consume more memory [55] .
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CNNs are the neural networks which can learn efficiently from huge set

of data because they possess ‘adaptive filters’ to compute the weights from

raw input for automatic feature extraction [3, 56]. RNNs are the networks

which can process sequential data by repetitively using same functions and

parameters [57]

On the other hand, Data Science (DS) is an extension of statistics and tra-

ditional data management evolved for handling huge amount of data [58]. It

integrates the discipline of computer science with statistics and deals with mas-

sive amount of data. Generally it is an intersection of three aspects; knowledge

on math and statistics, concrete expertise and hacking skills [[59] adapted from

[60]].

The relationship among these state-of-the-art approaches can be summed

up as in fig 3.1

Figure 3.1: Relationship among AI, ML, DL and DS

3.2 CNN and its architecture

CNN is the state-of-the-art-technology for image processing tasks [61]. A typi-

cal CNN consists of a convolutional layer, activation function, pooling or sub-

sampling layer, fully connected layer and output layer. It may also contain

Dropout and Batch Normalization (BN) layers as optional components. Figure

3.2 shows the structure of a CNN architecture.

Figure 3.2: Architecture of a typical CNN
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3.2.1 Convolutional layer

Convolutional layer is the basic component of a CNN architecture. It contains

a set of learning filters called kernels [62]which use convolution operation to

extract features from image and map them into feature maps. Convolution is a

mathematical operation of two functions f and g derived by integration of the

two according to the equation 3.1 [63]

(f ∗ g)(n) =
∑
m

f (m)g(n−m) (3.1)

As shown in table 3.1, kernels slide over all the pixels of an input image and

perform dot product with the local pixels to which a bias term and activation

function are applied to form a feature map.

Table 3.1: Convolution Operation by a kernel of 3*3

0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 2 2 2 3 4 2

0 0 1 0 1 1 1 1 0 1 0 1 1 3 2 3 3

1 0 0 0 0 1 0 1 ⊗ 1 0 1 = 2 2 1 2 2 4

0 1 1 1 0 1 1 0 0 1 0 2 2 2 2 2 2

0 1 0 1 0 0 1 0 2 4 1 2 3 1

0 1 1 0 1 1 0 1 Kernel 3 1 4 2 1 3

1 1 0 1 1 0 0 0

Input Image Feature Map

All the channels of input image share the same kernel to increase the feature

detection ability irrespective of the location, reduce the number of parameters

and enhance computational efficiency [64]. The activation function introduces

the non-linearity in the model and it is briefly explained in the section 3.2.2

3.2.2 Activation Function

Activation function takes the output from each convolutional layer, increases

the non-linearity of the network and convert them into activation maps [65]

It transforms the activation level of a neuron into output signal in a defined

range; typically -1 to 1 or 0 to 1 [63]. Some common activation functions are:

• Tanh Activation function: The hyperbolic tangent activation function

outputs the signal in the range [-1,1].

17



CHAPTER 3. THEORETICAL FRAMEWORK OF CNN

Figure 3.3: Common activation functions used in a CNN: a)tanh, b)sigmoid, c)softmax and d)ReLU

• Sigmoid Activation function: Sigmoid activation function is S-shaped

curve used for binary classification. It similar to tanh but outputs the

signal in the range [0,1]. Mathematically, it is represented as in equation

3.2

σ (x) =
1

1 + e−x
(3.2)

• Softmax Activation function: Softmax is a generalized sigmoid activa-

tion function used normally in multi-class problems but can be used in

binary classification as well. Mathematically, it is represented as in equa-

tion 3.3

σ (xj) =
exj∑n
k=1 e

xk
(3.3)

• Rectified Linear Unit (ReLU) Activation function: ReLU is commonly

used activation function which prompts the same value if the input is

positive but converts into zero if it is negative. Mathematically, it is rep-

resented as in equation 3.4

f (x) =max(0,x) (3.4)

Among these activation functions, ReLU is the preferable one in most cases

because it has better performance with lowest vanishing gradient problem than

the rest [66, 67]. The graphs of all the above activation functions is given in fig

3.3
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3.2.3 Pooling or Sub-sampling Layers

Pooling layer is the sequential layer after convolutional and activation function

layers. The prime objective of pooling layer is to reduce the spatial size of

image and thereby reduce the complexity and number of parameters for further

processing. It applies non-linear down-sampling to input image. Commonly

there are three types of pooling layers: max-pooling, average-pooling and sum-

pooling. A Max-pooling kernel returns the maximum value, average-pooling

returns the average value and sum-pooling returns the sum of all the values in

the input region.

Table 3.2: An instance of Max-Pooling

0 1 2 1 3 5 2 6

1 1 1 2 4 4 3 4

1 3 5 7 1 2 3 5 Max-Pooling 1 2 5 6

2 4 4 1 1 1 4 4 kernel 2*2, = 4 7 2 5

4 3 0 8 2 0 1 2 stride 2 4 8 6 4

2 3 1 1 6 1 4 3 9 4 5 4

1 4 1 3 5 1 2 3

9 1 0 4 4 0 1 4 Pooled Map

Input Feature Map

As shown in table 3.2 pooling kernel slides over all the pixels of feature

maps and return the respective values from the input region.

3.2.4 Fully connected layer

The stack of convolutional, activation function and pooling layers comprise

the feature detection and extraction phase of a CNN network. The next phase

is feature classification which consists of fully connected and output layers.

The fully connected layer takes the output of previous layers and flattens them

into a single vector. Each nodes of fully connected layers are connected with

previous neurons and their values contribute in predicting the probability of a

class [63]. Figure 3.4 shows two fully connected layers in conjunction with an

output layer in a CNN.
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Figure 3.4: A schematic representation of fully connected layers in connection with output layer in a
CNN

3.2.5 Output layer

Output layer is the last layer of a CNN which shows the probabilities of each

predicted class called as class scores. In multi-class classification problems,

softmax is used to compute the probabilities of each class. In binary classifi-

cation problems typically sigmoid is used to determine whether the feature

matches the class or not.

In addition to above layers, a typical CNN can contain optional layers like

Dropout and Batch Normalization layers as well. Dropout layer is used to

temporarily disable certain proportion of nodes of a hidden layer so that the

network learns limited amount of information. This is done to prevent the

overfitting and improve the generalization of the network [63]. Batch Normal-

ization layers are introduced to reduce overfitting and model divergence since

it also plays some role in the speeding up the model convergence with faster

learning rates [68, 69]. Batch Normalization is done by normalizing each inputs

of the layers such that their mean will be zero and variance be one [70].

3.3 Related Terms in CNN

Some other terms associated with a CNN are introduced as below:

• Overfitting and Underfitting:

If the model is performing better on seen data (training data) but worse on

unseen data (validation data), then the model is said to be overfitting [71].

It is because the training data is too simple such that it is just memorizing
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the data instead of learning [72]. If the model is performing poorly on

the training data without being able to learn the relationship between

input and target values, then it is said to be underfitting. It is because the

input data is too simple to describe the target data. The overfitting and

underfitting model can be shown graphically as in figure 3.5.

Figure 3.5: A schematic representation of a model performance in terms of error rate and complexity of
the CNN layers

Overfitting is characterized by lower bias and higher variance while un-

derfitting is by higher bias and lower variance [73]. The reasons for over-

fitting and underfitting of a model are due to the presence of noise, size

of training data and types of classifiers [74]. The overfitting and underfit-

ting problems can be addressed by three strategies:

– Early Stopping: An important question in model training is the du-

ration i.e number of epochs to train the model. If it is very short then

the model will suffer underfitting and will suffer overfitting if the

duration is very long. So a compromise has to be reached by training

the model up to the point (best fitting line in yellow color in fig 3.5)

beyond which the model starts to overfit. This is monitored by an

early stopping callback function with loss or accuracy and patience

as parameters [73, 74].

– Reduction of noise and outliers: The noise and outliers are those

variables which have little predictive power and only negate the

quality along with the accuracy of the model [75]. As the models

can only be as good as the quality of data used for training, the data
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thus, should be provided such that it can be easily optimized by the

model for learning and generalization. This optimization process is

termed as feature transformation which tend to reduce the noise and

outliers in the data [72].

– Regularization: Regularization is the process of adding information

to find an optimal solution to a problem. It is used to prevent the

overfitting of models and reduce their generalization errors [76, 77].

Particularly there are various regularization techniques like l1, l2,

dropout and early stopping. L1 regularization tries to address the

problem of overfitting by making the model sparse. L2 regulariza-

tion is commonly used technique aims to minimize the sum of the

square of differences between the label and predicted values [78]. It

is also called weight decay and is given by the equation 3.5 [79].

S =
N∑
i=1

N∑
j=1

(
yi,j − f

(
xi,j

))2
(3.5)

• Loss Function:

Error of a model is the difference between the predicted values and their

corresponding label values [80]. The function to compute such error is

called loss function. In neural networks mean squared loss and cross-

entropy loss are two commonly used loss functions.

– Mean squared loss: It is the mean of the sum of the square of all

the differences between target and predicted values given by the

equation 3.6 [63, 81]

MSE =
1
p

p∑
i=1

(target(i)− predicted(i))2 (3.6)

where i represents the ith neuron.

– Cross-entropy loss: Cross entropy loss is a loss function used in

networks whose outputs are probability distribution. It is com-

monly used with classifiers like softmax and sigmoid [82]. The cross-

entropy loss is given by equation 3.7 [63]

F(x) = −
∑
i

x
′
ilog(xi) (3.7)

where x
′
i is the target value and xi is the predicted value by the clas-

sifier.

22



3.3. RELATED TERMS IN CNN

Cross-entropy loss is of two types: binary and categorical. Binary

cross-entropy is used for classification problems with two classes

[83] and categorical cross-entropy is used for that with multi-classes.

• Callbacks: Sometimes the ongoing training process have to be influenced

with certain tasks in different stages like start or end of an epoch, be-

fore or after of a mini-batch. In those case callback functions are used

in the network. Early Stopping to find the right time to end training,

model checkpoints to save the best models, reduction of learning rates on

plateaus are some examples of callbacks in a CNN. Other tasks like view-

ing log files after every batch, observing the internal states, computing

the statistics of models are also done with callback functions [84].

• Sample, Batch and Epochs: A sample is a single row of input dataset.

Batch refers to the total number of samples fed to the network to up-

date the network once. Batch size can be equal to a single sample or all

the samples or a suitably chosen number of samples within the dataset.

Number of Epochs is the number of times the learning mechanism works

throughout the whole training dataset.

For example, consider a dataset with 100 samples with the batch size of

20. Then the network is updated 5 times (5 batches) in a complete epoch.

So if the epoch is 50, then it will pass through 50 times or 250 batches

throughout the dataset during whole training process [85].

• Optimizer: Optimizer is an algorithm which changes the weights and

learning rates of a network to minimize the loss after each batch of train-

ing [86]. Adaptive Moment Estimation (ADAM), Stochastic Gradient

Descent (SGD) and RMSprop are among commonly used optimizers in

CNN. ADAM is based on first and second order moments [87], SGD on

gradient descent with momentum [88] and RMSprop on plain momentum

[89]. Optimizers are used in conjunction with loss functions to compile a

model.

• Learning Rate: Learning rate is the value used by optimizers to update

the weights of attributes in a network. Learning rate is updated by a

learning rate scheduler callback which takes the index of each epochs

and current learning rate as inputs to return an updated learning rate as

output [90]. Learning rate is also monitored by another callback called
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reduce learning rate on plateaus. This callback updates the learning rate

if the model does not improve after certain patience of epochs [91].

• Metrics: Metric is a function which numerically assesses the performance

of a network [92]. Loss functions can also act as a metric of a model. Other

metrics are Mean Squared Error, Mean Absolute Error, mean IoU error,

classification metrics based on True/False positives negatives etc. Mean

Squared Error is used to compute the mean of squared error [93], Mean

Absolute Error to compute the mean of absolute error [94] and mean IoU

to compute the mean of Intersection over Union [95] between the label

and predicted data. Classification metrics based on true/false positives

and negatives evaluate the performance in terms of precision, recall and

accuracy [96]. [97] have defined these terms as in equation 3.8, 3.9 and

3.10

– Precision: Precision refers to the ratio of correctly classified pixel to

all the pixels classified into that category. Mathematically,

P recision =
T P

T P +FP
(3.8)

where TP represents the true positive and FP represents the false

positive.

– Recall: Recall refers to the ratio of correctly classified pixels out of

the total pixels of that category. Mathematically,

Recall =
T P

T P +FN
(3.9)

where TP represents the true positive and FN represents the false

negative.

– Accuracy: Accuracy refers to the ratio of total correctly classified

pixels to the total number of pixels in the sample. Mathematically,

Accuracy =
T P + TN

T P + TN +FP +FN
(3.10)

where TP represents true positive, TN represents true negative, FP

represents false positive and FN represents false negative.
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4
Study Area and Dataset

Preparation

This chapter talks about the study area of the research and the approach fol-

lowed for dataset preparation. Section 4.1 talks about the geographical location

and spatial extent of the study area. It also talks about geography of the terrain

and biodiversity present in that part of the world. Section 4.2 gives a thor-

ough overview of Image, DEM and Ground truth data preparation to make

image-label pairs.

4.1 Study Area

The study area consists of 18 Terai districts of Southern plains of Nepal. It

occupies about 28402.98 sq. km of territory in Everest Adjustment 1937 pro-

jection system of D Everest Bandladesh datum. The geographical extent is

within 26.420 to 29.070 North latitude and 80.470 to 87.010 East longitude in

WGS 1984 coordinate system of D WGS 1984 datum. The Terai is considered

as the greenbelt covered with grasslands, tropical monsoon forests, savannah,

clay and loam soil. With the 55.7% of total agricultural land within the range of

60m to 300m altitude, the region is the ‘rice bowl’ or ‘agricultural production-

house’ of the country [98, 99]. Nearly 47% of total population inhabit in Terai

region alone at an average population density of around 350 per sq. km [100].

It contains many seasonal and annual rivers mostly originated from the Siwalik

hills on the northern side of the region. In terms of bio-diversity, the region
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Figure 4.1: Study Area: Southern part of Nepal

is home to 35 species of mammals, 111 of birds, 46 of herpetos and 106 of

fishes [99]. The region also feature 163 wetlands, 4 Ramsar sites and 2 World

heritage sites [101]. Figure 4.1 shows the study area of the research and the

tiles covering the area.

4.2 Dataset Preparation

Table 4.1: Bands information of a Sentinel-2 image

Bands Spectrum Resolution(m)

1 Coastal Aerosol 60
2 Blue 10
3 Green 10
4 Red 10
5 Vegetation Red Edge 20
6 Vegetation Red Edge 20
7 Vegetation Red Edge 20
8 NIR 10

8A Vegetation Red Edge 20
9 Water Vapour 60

10 SWIR - Cirrus 60
11 SWIR 20
12 SWIR 20

Sentinel-2 images have 13 spectral bands in three spatial resolutions 10m,

20m and 60m. Blue, Green, Red and NIR bands are provided in 10m while four

bands of Vegetation Red Edge and two bands of Short Wave Infrared (SWIR) are
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Figure 4.2: Preprocessing using SNAP Command Line Interface and ArcGIS Pro

provided in 20m resolution. Remaining bands Coastal Aerosol, Water Vapor

and SWIR (Cirrus) are provided in 60m resolution [102].

4.2.1 Satellite Image Preprocessing and Preparation

Level 2 A Sentinel-2 image dataset was downloaded from ESA Copernicus web-

site. A total of 11 cloud-free tiles (all from 2020) were downloaded which fully

covered the study area. Preliminary inspection regarding the amount of cloud,

cirrus, number of bands, spatial coverage etc were done for all the tiles. Few

tiles (T45RUK, T45RUL) were missing some portion of image. Alternative tiles

of other dates were downloaded and merged in order to compensate the miss-

ing areas. Some other tiles (T45RTL, T45RVK) were found to be having some

incomplete bands (mainly band 6, 11 and 12). Such tiles were replaced with

alternative scenes of other dates. It was difficult to find cloud- and cirrus-free

scenes for some tiles at Level 2A products. Level 1c products of such tiles were

downloaded from USGS earthexplorer website and converted into Level 2A

product by applying DOS1 atmospheric correction at Semi-automatic Classifi-

cation plugin in QGIS Desktop 3.14.15. After all the tiles were ensured to have
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been converted from radiance values to surface reflectance values, following

steps as shown in the figure 4.2 were continued using SNAP Command Line

Interface. This could have been done in SNAP using Batch Processing Tools as

well.

Graph Builder tool of SNAP was used to construct a sequential chain upto

band subsetting for batch processing of all the tiles. The tiles were resampled to

10m and then subsetted reducing the spatial size of tiles and number of bands.

Band 1 (Coastal/Aerosol band) and 10 (Cirrus band) were not required for our

case so they were excluded for further analysis. After subsetting the tiles, band

composition was done using ArcGIS Pro 2.6 to concatenate all the bands and

DEM (from section 4.2.2) under same raster and exported into Tagged Image

File Format (TIFF).

4.2.2 DEM Data Preparation

The 90m resolution DEM dataset based on Shuttle Radar Topographic Mission

imagery (last updated on Nov 10, 2019) was acquired from United Nations

Office of the Centre for Humanitarian Affairs Services. As satellite images had

the UTM Projection system with Zones 44N and 45N, the DEM dataset was

also projected accordingly and then resampled to 10m resolution. The DEM

raster corresponding to the image tiles were extracted using Extract by Mask

tools and pixel depth was used as 16 bit unsigned. Finally, the preprocessed

DEM data was integrated as 12th band with the image tiles prepared in the

section 4.2.1.

4.2.3 Ground Truth Data Preparation

For ground truth data, River dataset (last updated on Nov 24, 2015) was ac-

quired from UN-OCHA. As satellite images had the UTM Projection system

with Zones 44N and 45N, the river dataset was also projected accordingly

and converted into raster. River raster corresponding to the image tiles were

extracted using Extract by Mask tools. Finally, thus preprocessed data were

arranged in two folders for training and testing.
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5
Methodological Framework

This chapter deals with the flow of research works using traditional and neu-

ral network approaches. Section 5.1 first details about the implementation of

neural networks. It starts with describing the determination of baseline model.

Further, it delineates how the chosen five networks: SAPCNN, CNNWQC,

CNNCWC, denseNet and attResNet were configured and implemented. Theo-

retically, the working environment and methodology of these models were not

the same. But for experiment purpose, the core aspect of these models were

extracted and uniformly used for comparison. Section 5.2 finally, explains the

approaches how water features were extracted using four chosen traditional

methods: NDWI, NDVI, NDVI_NDWI and EWI. It thoroughly details on the

derivation process of the equation for EWI.

5.1 Implementation of Neural Networks

The implementation of neural networks for this research began with the de-

termination of baseline model. Then remaining five models were thoroughly

implemented with the hyperparameters from table 5.1. Same hyperparame-

ters were used for training in order to make uniform comparison for all the

networks.

Table 5.1: Hyperparameters used in the experiments

Random
State

Validation
Size

Test
Size

Patch
Size

Step Batch
Size

Epochs Learning
Rate

Patience Momentum

1 0.2 0.4 8,12,16,20 8 128 100 0.001 15 0.9
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5.1.1 Determination of Baseline Model

With the hyper-parameters as presented in table 5.1, baseline model was de-

cided on hit and trial basis by adding and removing the convolutional layers.

Considering the accuracy achieved in lesser time, it was decided that two lay-

ers of convolution would be the efficient one. The architect of the baseline

model can be found in figure 5.1. It consisted of two sequences of convolution

and max-pooling layers with one fully connected layer and a final output layer.

The convolution layer was meant for feature extraction and max pooling for

reducing the size of feature maps to increase the computational efficiency.

Figure 5.1: Architecture of baseline model

5.1.2 Implementation of SAPCNN

SAPCNN consisted of two sequences of convolutional layer with 5*5 kernel

size and 2-D max pooling with 1*1 stride. Flattening and Dense layers formed

the final layers with a 10% dropout introduced between the two dense layers.

Instead of converting the pixels into superpixels and using self adaptive pool-

ing as proposed by [5], simply patch based extraction method and max pooling

were used. The implemented architecture of this network can be seen in the

fig 5.2.

Figure 5.2: Network Architecture of SAPCNN
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5.1.3 Implementation of CNNWQC

CNNWQC consisted of four stacks of convolutional layers followed by two

fully connected layers and a final output layer. Uniform kernel size of 3*3

was used in all the layers with 50% dropout on the fully connected layers. As

proposed by [34], poolings layers were not used to preserve information. Stride

of 1*1 was used with ReLU activation in all the layers except the final one where

softmax was used to compute the probability of each class. The architecture of

CNNWQC can be viewed in figure 5.3.

Figure 5.3: Network Architecture of CNNWQC

5.1.4 Implementation of CNNCWC

CNNCWC consisted of two sequences of convolutional and max-pooling layers

followed by three convolutional layer, a max-pooling layer, two fully connected

layer and a final output layer. The first convolutional layer had 11*11 kernel

size, the second one had 5*5 while the rest had the same size of 3*3. The max-

pooling layers had uniform kernel of 3*3 in all layers. All the convolutional

layers had ReLU activation while the fully connected ones had tanh and the

output layer had sigmoid activation. The architecture of CNNCWC can be

viewed in figure 5.4

Figure 5.4: Network Architecture of CNNCWC

5.1.5 Implementation of DenseNet

Figure 5.5 shows the DenseNet architect which consisted of an initial layer of

convolution and Batch Normalization followed by a sequence of three dense

31



CHAPTER 5. METHODOLOGICAL FRAMEWORK

blocks with two transition layers between the dense blocks. The dense blocks

were concatenated with dense connectivity of multiple inputs into a single ten-

sor. These inputs were fed into sequential operation of Batch Normalization,

Rectified Linear Unit and convolutional layers of 3 ∗3 kernel. A computation-

ally efficient convolutional layer of 1 ∗ 1 kernel was introduced as bottleneck

before the larger convolutional layer(3 ∗ 3) to reduce the number of feature

maps. The transition block continued with an average pooling layer with size

2 ∗2 to down sample the size of the feature maps. It then followed with a Batch

Normalization layer. The dense blocks and transition blocks were followed by

ReLU activation layer. A global average pooling was done to the results before

passing them to final output layer activated by softmax.

Figure 5.5: A schematic representation of DenseNet as implemented

5.1.6 Implementation of AttResNet

Figure 5.6 depicts AttResNet architect which consisted of convolutional, batch

normalization and max-pooling layers as initial layers followed by three se-

quences of residual and attention blocks. Further, it consisted of three residual

blocks followed by average pooling layer. The results from these blocks were

flattened before putting them through the final layer for classification of water

patches.

The residual blocks were composed of three blocks of batch normalization,

ReLU activation and convolutional layers with 3*3 kernel size. The attention
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Figure 5.6: A schematic representation of AttResNet as implemented

network was integrated with residual blocks but segregated as trunk branch

and soft mask branch with encoder-decoder mechanism. Down sampling in

encoder branch was done by 2D max-pooling which was up-sampled by 2D

up-sampling layer in decoder branch. The final layers contained two 1*1 con-

volutional layers with sigmoid activation.

5.1.7 A novel CNN approach for water bodies identification

Taking into account the problem and challenges described in section 1.2 and

this work, a novel CNN architecture is also proposed. In order to exploit the

benefits of both DenseNet and AttResNet, a new approach was developed by

integrating both. The novelty of the proposed network lied in its composition.

The proposed architecture consists of dense blocks and transition blocks from

DenseNet along with attention block and residual block from AttResNet. All

these blocks possessed own peculiarities to strengthen the proposed network.

The dense block was supposed to address the problems of vanishing gradients

and information loss from deep layers. The transition layer was expected to

enhance the computational efficiency before the input is fed to computation-

ally costlier dense blocks. Similarly the attention layer was aimed at paying

attention to water features by suppressing non water bodies and residual layer

for representing water bodies in a better way inside the deep layers. With these

objectives in mind, a design for a novel network was proposed by integrating
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attention block before feeding the inputs to dense blocks in DenseNet. The

input data was fed through first layer of convolution and Batch Normalization

before passing it to the attention block. The attention block consisted of trunk

branch and soft-mask branch. The trunk branch possessed a residual block for

feature representation and the soft-mask branch contained encoder-decoder

algorithm to extract features. In summary, the attention block determined

the areas of focus and passed the information to the regular DenseNet. The

schematic diagram of the proposed network can be viewed in figure 5.7

Figure 5.7: A schematic representation of the proposed network by integrating an attention block (grey
background and black border) in DenseNet

5.2 Implementation of Index-based Methods

Four different water-index methods; NDWI, NDVI, NDVI_NDWI and EWI

were implemented for this research. Water extraction was based on the equa-

tions of respective indices as discussed in section 2.1. To make fair comparison,

similar approach of patch extraction and classification as in section 5.1 was

used. Prediction was also made on the same tile T44RQR for both approaches.

Performance of the indices for patch sizes 8, 12, 16 and 20 were computed.

NDWI, NDVI and NDVI_NDWI already had predetermined band equations
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and hence were pretty intuitive. To develop the EWI, the approach as proposed

by [25] was followed thoroughly as discussed in section 5.2.1.

5.2.1 Development of EWI

The EWI was developed according to the procedure recommended by [25]

taking the conjugative ratio of NDWI with Principal Components. At first,

NDWI for tile T44RQR was computed from the equation 2.3. Then it was

dimensionally reduced to 11 principal components. A total of 400 sample

points 100 for each of water, forest, barren and urban were extracted to find

the average spectral reflectance values for each features. The average spectral

values of these sample features were plotted accordingly. The spectral graphs

were assessed to derive and validate the EWI equation proposed by the [25].

Finally with this equation water features from T44RQR tiles were extracted.

The overall EWI derivation process can be seen in the figure 5.8

Figure 5.8: Steps for derivation of Enhance Water Index

The Spectral Graph shown in figure 5.9a shows the gradual reduction of

reflectance values of the four features on bands 2, 7 and 8. Among all the

features, the minimum reflectance was of water at band 8 and the maximum

one was of Forest at band 8. Urban and Barren features nearly shared similar

reflectance values at bands 7 and 8. However, Barren had lesser reflectance

than urban at band 2. Unlike other features water was found to be following

the decreasing trend of reflectance values with increasing serial number of

bands. Water features reflected the most on band 2 and the leas on band 8.

Since NDWI was calculated as conjugative ratio of the difference between band

2 and band 7, only water features received positive values for NDWI. Other

features received negative values with forest having the least value.
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a on bands 2,7 & 8 b on PC1, PC2 & PC3

Figure 5.9: Spectral properties of water, forest, barren and urban features

The figure 5.9b, presents the spectral properties of the features on the first

three principal components. It depicted that the reflectance values of all fea-

tures had growing trend from PC1 through PC3. The minimum reflectance was

of water on PC1 and the highest was of Forest and Barren on PC3. Water and

urban shared similar reflectance properties throughout PC2 and PC3. Forest

had the highest reflectance in PC2 and urban in PC1.

PC EigenValue Percent Cumulative

1 1.30E+06 60.9533 60.9533
2 6.53E+05 30.6462 91.5994
3 9.07E+04 4.2551 95.8546
4 3.70E+04 1.7379 97.5925
5 2.08E+04 0.9774 98.5699
... ... ... ...
... ... ... ...
11 1.26E+03 0.0592 100

(a) Percentage and Cumulative Eigen Values (b) Spectral properties of water, forest, barren and urban features on
PC1, PC2 and NDWI

Figure 5.10a presents the percentages and cumulative values of original

information accumulated by each pcs. It was found that PC1 and PC2 accu-

mulated more than 90% of the information. PC3 shared only about 4.25%

of original information, so it was safely replaced with NDWI as third band as

presented in figure 5.10b. It shows that NDWI for water was the highest in com-

parison to rest of the features. Hence the sum of PC1 and PC2 differentiated

from NDWI gave positive values for water features only.

Hence as proposed by [25], the same equation 5.1 was found to be working

for our research.

EWI =
ρNDWI − (ρP C1 + ρP C2)
ρNDWI + (ρP C1 + ρP C2)

(5.1)

Using the equation 5.1, water features from T44RQR tile were extracted and

visually compared with its RGB tile.
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6
Results and Discussion

This chapter describes a thorough analysis of the extraction of water bodies

using neural networks and index-based approaches. Section 6.1 details about

the experimental setup regarding the hardware and software. It also delin-

eates about the patch extraction process, balancing labels and determination

of hyperparameters for training neural networks. Section 6.2 explains all the

experiments conducted using neural networks. It presents the four variants

of experiments which were conducted using varying channels of Sentinel-2

images. It also details on how the chosen networks were integrated to propose

a new architect. Section 6.3 describes the experiments using index-based ap-

proaches conducted to compare with neural networks. It presents quantitative

assessments of three indices (except EWI). It also discusses about the com-

parative effectiveness of neural networks over the index-based ones. Section

6.4 discusses the visual quality of outputs delivered by both neural networks

and index-based approaches. It also compares the visual performance on two

selected regions of the tile T44RQR. Later it analyses the performance by the

proposed network on those regions. It also explore the areas where proposed

network performed better than others.

6.1 Experimental Setup

The experiments for this research were performed on a server having Intel(R)

Core (TM) i7-6850K processor with 110GB Random Access Memory (RAM) and

two Graphics Processing Unit (GPU)s; GeForce RTX 1080 Ti 11GB and GeForce
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2080 Ti 11GB. Keras-gpu 2.3.1 and tensorflow-gpu 2.1.0 were installed on

Anaconda Framework with Python 3.6. Rasterio 1.1.7 was used to read and

write image tiles and labels data for patch extraction and to save the predicted

output into Geotagged Image File Format (GeoTiff).

The figure 6.1 shows the general steps followed to extract patches and labels

to be fed into the networks.

Figure 6.1: Steps of Patches and Labels extraction process

6.1.1 Patch Extraction

The input data for the network consisted of n number of p*p sized patches

extracted from image tiles. Different patch sizes ranging from 8 to 48 were

tested to determine the ideal sizes from conducting experiments. According

to [103], larger patch size increases the accuracy of the network. It was also

verified from the figures 6.2 and A.1a, but larger size was found to have higher

computation cost of the hardware. Moreover, they were found to be vulnerable

to overfitting due to greater volume of information. Small water-bodies were

also not represented very well with higher patch sizes. So it was determined

that patch sizes of less than 24 particularly 20, 16, 12 and 8 to be used in the
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experiment of comparing the networks. A total of 11 image-label pairs were

prepared out of which two tiles were taken out for testing and prediction. Out

of remaining nine pairs, total extracted patches were distributed such that 60%

was assigned for training and 40% for testing. Out of 60% of training patches

20% were assigned for validation. Validation set was used for improving the

hyperparameters and test set for computing the confusion matrix. The per-

formance of the network was monitored with validation loss and accuracy in

comparison with training loss and accuracy.

6.1.2 Balancing labels

The ratio of non water to water pixels of total study area was around 30:1 due

to which non water pixels would dominate the prediction of water pixels. To

address this issue, labels balancing was done before feeding the patches to the

network. One thing to note from figure A.1b was, the accuracy became higher

when non water to water ratio was high but the recall value of water became

lower. So an optimum values for accuracy and water recall was negotiated by

keeping the non water to water ratio as 2:1. This was done by separately extract-

ing and indexing the positions of non water and water from label data. Then

the indices of non water was randomly shuffled and twice the number of water

pixels were stacked in the final label. Patches of defined sizes corresponding to

the positions of extracted labels were stacked.

6.1.3 Determination of hyperparameters

Table 6.1: Hyperparameters on which series of initial experiments were conducted

Hyperparameters Patch Size Step Learning Rate Patience Batch Size Epochs

Experiments 8,12,16,20,
24,32,40,48

4,8,12,16 0.01,0.001,
0.0001,0.00001

7,10,15, 20,25 32,64,128,
256,384,512

40,75,100,
150,200

Table 6.1 shows the instances of hyperparamters on which series of initial

experiments were conducted. Patch size was determined according to the rea-

sons explained in section 6.1.1. The accuracy was found to be increasing with

the reduction in step size due to increment in the number of samples extracted

(see figure A.1c). But this also effectively increased the computational cost. So

an optimum value of 8 was chosen. Learning rate of 0.01 was found to be the

fastest one to converge and 0.00001 to be the slowest one such that accuracy

was also compromised. Also AttResNet was found to be performing better

with slower learning rates in contrast to the rest. While 0.001 was found to be
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the best among the tested ones (see figure A.2) in Appendix A, so the learning

rate was safely fixed to 0.001 with the provision of reduction on error plateaus.

Patience of size 7 was found too quicker to terminate the model as it was found

that models improved even beyond that. So it was fixed to 15 considering that

there was provision to alter the learning rate if error plateaus occur. Higher

batch sizes smoothened the learning curves by reducing the local noise but it

compromised the accuracy achieved. Hence 128 was chosen and finally num-

ber of epochs was chosen based on the maximum possible accuracy it could

reach. It was decided that 100 would be the suitable one considering the time

it may consume. Other parameters like momentum, growth rate, weight decay

specific to a model were used as prescribed by the respective models.

6.2 Experiments conducted on neural networks

Four experiments were conducted to assess the performance of the neural net-

works. The channels were fed as inputs to the networks in four ways; RGB, RGB

with DEM, selected S2 channels and S2 channels with DEM. The networks were

implemented using patch sizes of 8, 12, 16 and 20. The performance was moni-

tored with test accuracy and recall values on test set for quantitative assessment

during the experiments. Other metrics like precision and f1-score also are ap-

pended in appendix B for the reference of readers. For qualitative assessment,

comparative visual interpretation of the predicted maps were done.

6.2.1 Use of RGB Channels

The performance of the networks while using RGB channels only can be found

in the table 6.2.

Table 6.2: Performance of neural networks on RGB channels

Channels Models Patch Size

8 12 16 20

Test Recall Test Recall Test Recall Test Recall

Accuracy Water No Water Accuracy Water No Water Accuracy Water No Water Accuracy Water No Water

RGB baseline 80.83 64 89 83.45 68 91 83.98 71 91 84.80 73 90
CNNWQC 81.98 68 90 84.58 74 90 84.90 74 90 84.93 74 90
CNNCWC No convergence 81.90 66 90 82.91 68 90 83.20 71 89
SAPCNN 81.86 68 89 84.08 74 89 84.92 75 90 85.63 77 90
denseNet 82.72 71 87 84.77 75 89 85.41 75 89 85.95 78 91
attResNet 79.84 66 87 NA 82.29 71 88 NA

The performance of the neural networks while using only RGB channels

as input was found to be the least among all experiments on neural networks.

The baseline model produced test accuracy of 80.83% with 64 and 89 as recall
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values for water and non water respectively while DenseNet achieved the best

results for all models in all patch sizes. The general trend was increment in

performance with the increase in patch sizes. So the best performance was

achieved by DenseNet on patch size 20. The test accuracy was 85.95% with 78

and 91 as recall values for water and non water respectively. AttResNet did not

fit with patch size 12 and 20 while CNNCWC did not converge at patch size 8

due to lesser information on the smallest patch size. CNNWQC was found to

be performing better than SAPCNN on smaller patch sizes 8 and 12 while the

later outperformed the former on pathc sizes 16 and 20.

6.2.2 Use of selected S2 Channels

The performance of the networks while using selected S2 channels (channels

2,3,4,5,6,7,8,8A,9,11 & 12) as input can be found in the table 6.3.

Table 6.3: Performance of neural networks on selected S2 channels

Channels Models Patch Size

8 12 16 20

Test Recall Test Recall Test Recall Test Recall

Accuracy Water No Water Accuracy Water No Water Accuracy Water No Water Accuracy Water No Water

RGB baseline 87.14 78 92 87.84 79 92 88.47 81 92 89.52 84 92
CNNWQC 87.81 81 92 88.70 82 92 89.30 84 92 89.35 84 92
CNNCWC 85.73 72 93 86.88 78 91 87.71 79 92 87.72 81 91
SAPCNN 87.48 80 91 88.19 81 92 89.44 84 92 89.09 83 92
denseNet 88.16 81 91 89.03 83 92 89.53 84 92 89.60 84 92

attResNet 86.23 77 91 NA 87.14 81 90 NA

With the use of 11 channels of Sentinel-2 imagery, the performance of the

networks increased by around 5% respectively in all the patches as can be

observed from tables 6.2 and 6.3. The baseline model achieved the test accuracy

up to 87.14% with recall of water and non water as 78 and 92 respectively at

patch size 8. It reached to 89.52%, 84 and 92 respectively for patch size 20.

Similar to the finding from table 6.2, DenseNet again was the best performer

in all patch sizes among the networks in this experiment as well. The general

trend was the increment in accuracy and recall values with the increase in

patch size but this time SAPCNN and DenseNet obtained best outputs in patch

size 16. After patch size 16, the best performance was at patch size 20. Again

CNNCWC was found to have the least accuracy followed by AttResNet and

SAPCNN respectively. DenseNet outperformed the rest networks this time as

well followed by CNNWQC.
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6.2.3 Impact of DEM Integration

To find out whether the introduction of DEM improves the water feature ex-

traction or not, an experiment was conducted with baseline model by feeding

DEM integrated with RGB channels. The result is tabulated in the table 6.4.

Table 6.4: Performance of baseline network on RGB channels integrated with DEM

Channels Models Patch Size

8 12 16 20

Test Recall Test Recall Test Recall Test Recall

Accuracy Water No Water Accuracy Water No Water Accuracy Water No Water Accuracy Water No Water

RGB baseline 83.09 65 92 84.45 71 91 85.44 75 91 85.87 76 91

Upon the head to head comparison of tables 6.2 and 6.4, the performance of

baseline model was found to increase by 2.26% at patch size 8. This gradually

reduced in magnitude when it reached to patch size 20 at which the increment

was only 1.07%. It depicted that though not drastically, the DEM still was

contributing to some extent for the improvement of water bodies extraction.

Hence, it was decided to consider DEM as 12th channel for further experiments.

Besides, the baseline model had the best performance in patch size 20 reaching

the test accuracy of 85.87% with recall values for water and non water to 76

and 91 respectively.

6.2.4 Use of selected S2 channels integrated with DEM

The performance of the networks while using selected S2 channels integrated

with DEM can be found in the table 6.5.

Table 6.5: Performance of neural networks on selected S2 channels integrated with DEM

Channels Models Patch Size

8 12 16 20

Test Recall Test Recall Test Recall Test Recall

Accuracy Water No Water Accuracy Water No Water Accuracy Water No Water Accuracy Water No Water

RGB baseline 87.61 79 92 88.40 80 92 88.65 82 92 89.37 83 92
CNNWQC 88.42 82 92 89.26 83 92 89.34 84 93 90.23 85 93
CNNCWC 86.52 77 91 87.75 80 92 88.01 81 92 88.51 82 92
SAPCNN 88.23 81 92 89.05 83 92 89.19 83 93 89.83 85 92
denseNet 88.88 82 92 89.58 84 92 89.73 85 92 90.41 86 92

attResNet 86.90 80 91 NA 87.67 81 92 NA

With the integration of DEM as 12th band in the input image, the accuracy

was found to be improved slightly by around 1%. In case of baseline model

at patch size 20 and SAPCNN at 16, the integration of DEM did not prove to

be beneficial. This showed that DEM had lesser contribution to the extraction

process than the spectral properties obtained by addition of channels. Over-

all, DenseNet was again the best performer with metrics ranging from 88.88%
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through 90.41% of test accuracy and 82 through 86 values of recall for water

when the patch size was increased from 8 through 20. CNNCWC, as always per-

formed the least with the AttResNet following it. The performance of DenseNet

was followed by CNNWQC and SAPCNN respectively. Unlike previous exper-

iments, this time the performance was the best for patch size 20 for all the

models. Due to the compatibility issues, unfortunately the performance of

AttResNet could not be assessed at 8 and 20 sized patches.

6.2.5 Selection of Networks

Figure 6.2: Relationship of patch size with performance metrics; a. on test accuracy, b. on recall of water
& c. recall of non water using four different channels

Figure 6.2 depicts the effect of patch size on the performance metrics; test

accuracy and recall values for water and non water. The values depicted by

line graph was obtained by averaging the individual test accuracy of the six

networks. It can be observed that the patch size 8 for RGB possessed the least

value for test accuracy. Upon the increment in channels for the same patch size,

the accuracy also increased, thereby RGB_DEM reaching the highest accuracy.

Similarly, on increasing the patch size up to 20, the test accuracy was found

to be directly proportional to it. Hence, the RGB_DEM channel reached the

highest accuracy at patch size 20. Talking about the recall values, RGB_DEM at

patch size 8 was found to be having the least value of recall for water but nearly

the highest ( 92) recall for non water. For the recall of water of rest channels,

it followed the trend of increasing in values on the increment of the number

of input channels. Interestingly the recall values of non water for S2 channels

was found to be similar for all patch sizes.

Figure 6.3 shows the performance of different models on increasing the size

of patch. The line plots were obtained by averaging the values of four channels

on the respective patch sizes. It was obtained that baseline had the least average

test accuracy among all the networks followed by AttResNet. Unlike others, the
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Figure 6.3: Ranking of of models on different patch sizes in terms of; a. test accuracy, b. recall of water &
c. recall of non water

performance of CNNWQC was zig-zag shaped while for the rest the trend was

that test accuracy increased with increase in patch size. DenseNet was found to

be having the highest test accuracy across all patch sizes while CNNWQC and

SAPCNN following it. Observing the recall for water, the same trend was found

with DenseNet with highest value and baseline being the lowest. Interestingly,

the recall values for DenseNet and SAPCNN at patch size 20 was the same. But

the figure 6.3c shows that the recall for non water of DenseNet was greater

that that of SAPCNN due to which in overall test accuracy, DenseNet won the

contest. In case of attResNet, it was pity that it could not run with patch size

12 and 20 but with what was obtained it can be inferred that the test accuracy

and both recall values increased with increase in patch size.

Overall it was observed that DenseNet performed the best in comparison

to the rest networks in all the experimental conditions. Though AttResNet

was not performing satisfactorily, the reason was inferred due to the common

configuration used to run all the models. Necessity was felt that it needed

different configuration to make it converge better than the baseline model.

But AttResNet was experienced to be the slowest network consuming a lot of

computational power. Considering the time constraints and limited hardware

efficiency, it was decided to simply integrate an attention component from At-

tResNet with DenseNet to develop a new model for the study area. Hence,

an attention block was integrated just after the Batch Normalization layer of

DenseNet to create ‘attention aware features’. It was also decided to choose

patch size 16 for the reason that the test accuracy was found to be increasing

with increasing patch size but 20 was not compatible for executing the AttRes-

Net. Later the network was adjusted to make it work for other patch sizes as

well.
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6.2.6 Development and Performance of Proposed Network

A series of experiments were conducted to choose the number of dense blocks,

depth of attention blocks and hyperparameters for the proposed network etc.

The experiment was done with patch size 16, step 8 with non water to water

ratio as 2:1. Other hyperparameters except the ones stated in the table 6.6 were

kept constant.

Table 6.6 depicts the different instances of model execution by integrating

the attention block with the DenseNet to propose a new network with highest

quantitative performance. It was found that the network with 5 dense blocks

provided the best test accuracy of 89.63% with recall of water 84. But consid-

ering the recall value of water being 85 and computational cost necessary to

achieve a slight advantage of only 0.07%, 3 dense blocks architecture was cho-

sen. Hence, the 3 dense blocks integrated with attention depth 1 executed at

batch size of 64 and learning rate 0.01 was expected to provide the best perfor-

mance. The performance of the proposed network reached to 90.29% with 86

and 93 as recall values of water and no water respectively. This is 0.56% more

than the test accuracy obtained by DenseNet with patch size 16 in table 6.5.

In comparison to the AttResNet on the same patch size, the proposed network

yielded 2.62% more test accuracy than the former.

Thus, the numerical performance of the proposed network was found to be

the largest among all the experimented models. The novelty of this network

vis-a-vis its composition could be highlighted as:

• Dense Blocks: It checked the information loss and vanishing gradient

problems within the deep layers.

• Transition Blocks: It made the training process computationally efficient

by down sampling and reducing the size of feature maps before going for

computationally huge dense block layers.

• Attention Block: It aided the network to ‘pay attention’ only to the con-

cerned layer to create ‘attention aware’ water features.

• Residual Block: The residual blocks within the attention block supported

the network by representing the features in deeper layers efficiently.

This proved that with the integration of strengths of two novel architects;

DenseNet and AttResNet, a new architect can be developed with better numer-

ical performance. To the knowledge of researchers, this is the first implementa-

tion of two novel architects DenseNet and AttResNet integrated together and
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Table 6.6: Experiments to determine the hyperparameters for the proposed network

Parameters test accuracy Recall

Water No Water Remarks

Dense Blocks 2 88.73 83 91 Learning Rate 0.001
3 89.56 85 92
4 89.54 84 92
5 89.63 84 92

Attention Depth 1 88.89 82 92 Learning Rate 0.001
2 88.49 82 92
3 88.01 81 91

Batch Size 32 89.85 85 92 Learning Rate 0.01
64 90.29 86 93

128 90.05 85 93

that too for water bodies extraction.

6.3 Comparison with Index-based approaches

Four different indices; NDWI, NDVI, NDVI_NDWI & EWI were used to extract

the water features from the imagery. The performance was expressed quanti-

tatively in case of NDWI, NDVI and NDVI_NDWI. Due to the memory issues

with the hardware to compute the principal components necessary for EWI, it

was assessed qualitatively only.

Table 6.7: Performance of index-based approach to extract water

Indices Patch Size

8 12 16 20

Test Recall Test Recall Test Recall Test Recall

Accuracy Water No Water Accuracy Water No Water Accuracy Water No Water Accuracy Water No Water

NDWI 74 51 97 74 51 97 75 52 97 74 51 97
NDVI 74 52 97 75 52 97 75 52 97 75 52 97

NDVI_NDWI 73 49 98 73 49 98 74 50 98 73 49 98

Table 6.7 presents the accuracy assessment of water extraction using NDWI,

NDVI and NDVI_NDWI. The maximum accuracy reached for test was 75 with

recall values of water at 52 and no water at 98. In comparison to the least

accuracy obtained from the baseline model in table 6.2, it was still 5.83% less

than the output of neural networks. Figure 6.4 depicts the graphical vision of

their performance. It was found that the performance of all the indices were

more or less similar to each other across all patch sizes. Specifically, NDVI

slightly edged the rest indices in terms of all the metrics. NDWI was found to

be have exactly the same performance as of NDVI at patch size 16. The recall

values of NDVI_NDWI was the highest i.e 98 and other two had 97 throughout

all the patch sizes.
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Figure 6.4: Performance of the three indices on different patch sizes in terms of; a. test accuracy, b. recall
of water c. recall of non water

6.4 Qualitative Assessment of the performance

Figure 6.5: RGB and Ground Truth images at selected regions (by ellipse in magenta)

From the quantitative analysis of the performance of neural networks, it was

found that DenseNet produced the best results. Thereby taking an attention

block component from AttResNet and integrating with DenseNet, a new net-

work was also proposed. The quantitative analysis of the three indices; NDWI,

NDVI and NDVI_NDWI depicted their similar performance. In the section be-

low, the qualitative assessment of all the experiments performed in the research

is delineated. For uniformity in comparison all the outputs that were generated
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on T44RQR only are depicted here. The outputs were visually compared with

the respective RGB and ground truth maps of T44RQR tile in figure 6.5. Two

different sites of the tile were chosen, one for the comparison of quality of wa-

ter bodies extraction and another for the comparison of suppression of urban

pixels during the extraction. One general observation found in the predicted

maps was the broken pixels of water bodies. This was due to a considerably low

spatial resolution (10m) and the reduction factor 8 that was necessarily applied

while predicting. They effectively degraded the quality of visualization.

6.4.1 Performance of Neural Network Approach

Figure 6.6: Performance of neural networks on extraction of water in selected regions (by ellipse in
magenta)
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Figure 6.7: Quality of extracted water by the six networks in a selected region (by ellipse in magenta)

Figure 6.6 presents the outputs generated by the neural networks on the sample

tile T44RQR. As case study two different regions; one inside the larger ellipse

on the left-bottom and another inside the smaller ellipse on the top-right were

considered. The ground truth data shown in figure 6.5a did not contain the

entire region inside the larger ellipse (lower left). It shows that the models

including the baseline, were efficient enough to predict water in places other

than given by ground truth data also. On comparison to 6.8, the amount

of water pixels extracted was more in figure 6.6. It extracted not only the

pure water from water bodies, but also the river-banks, dried streams and

small water bodies as well. It was found that DenseNet and CNNWQC better

extracted true water pixels than the likes of CNNCWC and AttResNet. As

seen on the smaller ellipse, SAPCNN also performed well in the sense that it
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contained lesser false positives than AttResNet and CNNCWC. We can see a

lot of non water pixels extracted as water in case of AttResNet and CNNCWC.

Figure 6.7 shows another case study of output tile T44RQR about the quality

of extracted pixels by the six networks. The portion inside the left part of the

ellipse were the pixels of urban features while that on the right were that of

water bodies. It was found that unlike outputs from index-based approaches

on fig 6.9, the networks better oppressed the urban pixels. Baseline model

extracted a small linear streak of water pixels while SAPCNN even extracted

better than the former. Just similar to the numerical performance of AttResNet

at 87.67% being lower than that of CNNCWC at 88.01% in table 6.5, the visual

performance also seconded the numerical performance. It was found that more

non water pixels was extracted by the AttResNet than CNNCWC. In addition,

CNNWQC was also found to be under-performing than SAPCNN here. The

streak of water pixels on the right part of ellipse extracted by the later was more

vivid than the former. This result was in contrast to the metrics in table 6.5

where the overall accuracy of CNNWQC being 89.34% was greater than that of

SAPCNN being 89.19%. Indisputably, DenseNet was found to be performing

the best among the rest in terms of oppressing the urban pixels. Moreover, it

extracted the two tributaries of the river better than other networks inside the

right part of the ellipse.

6.4.2 Performance of Traditional Approach

Figure 6.8 shows the visual extraction of water features by four traditional

indices; NDWI, NDVI, NDVI_NDWI and EWI. It was found that all the four in-

dices extracted water features from the pixels not in the ground truth map also.

EWI was found to be extracting pure water pixels only. Though the numerical

performance of NDWI, NDVI and NDVI_NDWI were similar, the visual perfor-

mance depicted that NDVI_NDWI slightly edged the other indices in extracting

small water bodies. Better extraction of water bodies can be seen in the smaller

ellipse of NDVI_NDWI. EWI under-performed in that region because it was

found to be extracting only pure water pixels. It left out the riverbanks and

dried rivers. Its only positive was that it prominently suppressed the extraction

of urban pixels. NDVI, NDWI and NDVI_NDWI all three indices extracted bar-

ren pixels also as seen in the larger ellipse. EWI extracted lesser water pixels

than the rest in this regard. It can be inferred that to extract pure water pixels

only, EWI can be used but at the cost of riverbanks and dried rivers.

50



6.4. QUALITATIVE ASSESSMENT OF THE PERFORMANCE

Figure 6.8: Performance of Water indices in a selected region (by ellipse in magenta)

Figure 6.9: Quality of extracted water by four indices in a selected region (by ellipse in magenta)

Figure 6.9 presents the quality of water bodies extracted by the four indices.

The indices were supposed to suppress the urban pixels on the left part of the
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ellipse and extract the two tributaries of a small river on the right. It was found

that all the indices were confused with the urban pixels and extracted a linear

of road pixels as water features. Compared to NDVI and NDWI, the contrast

between the water and urban was higher in NDVI_NDWI. The urban pixels

could be eliminated by updating the threshold values but this would affect

the extraction of the two tributaries of water on the right part of the ellipse.

The tributaries were extracted best by NDVI_NDWI in comparison to the other

indices. EWI did not perform well in the sense that there was less contrast

between the water and urban pixels. It also eliminated the two tributaries

on the right which made it worse than the rest indices. Hence in overall the

performance of the indices could be ranked as NDVI_NDWI, NDVI, NDWI and

EWI on the descending order.

All in all, it was found that the neural networks performed better than

the traditional index-based approaches. The test accuracy of extraction using

NDVI, for instance at 16 patch size increased from 75% to 89.73% on using

DenseNet. Visually also, index-based approaches extracted only pure water

pixels while excluding the riverbanks, small water bodies and dried streams.

This issue was addressed by the neural networks in the figures between 6.8 and

6.6. It was also found from the figures 6.9 and 6.7 that the neural networks

oppressed the urban pixels better than the index-based approaches.

6.4.3 Performance of the proposed network

The proposed network reached the test accuracy of 90.29% with recall values

of water and non water as 86 and 93 respectively (see table 6.6). The visual per-

formance of the proposed network was found to be improvised than DenseNet.

Theoretically, the attention component of the network was supposed to focuse

more on water features and suppressed non water features. Compared to the

performance of DenseNet in figure 6.6, the figure 6.10a produced more vivid

water pixels (see the left ellipse). It was also able to extract the smaller streams

(see right ellipse) and oppress the non water features elsewhere in the study

area. The non water pixels that were prevalent in the output from AttRes-

Net was completely excluded by the proposed network. For further validation

of these facts, the performance of the network was assessed in another tile

T44RNS also. Our network was found to be correcting the mistakes in ground

truth map also. The flow path within the region of the ellipse in ground truth

map in figure 6.10b might be the path of river previously. But the actual flow

of the river could be observed in the RGB image of corresponding figure. The
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proposed network seconded the path of river in RGB image irrespective of the

ground truth map.

Figure 6.10: Performance of the proposed network in a. T44RQR and b. T44RNS tiles as highlighted in
selected regions (by ellipses in magenta).

Hence the proposed network was found to be performing better than all

the six experimented networks since its numerical performance was the best

among all. In addition, its visual performance was assessed both in T44RQR

and T44RNS tiles. There also it was found to be performing better than the

rest and even the ground truth data as well.
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7
Limitations and Recommendations

This chapter explains about the limitations and recommendations of the re-

search. Section 7.1 talks about the limiting factors that created obstacle in

producing better outputs for water features extraction. Section 7.2 talks about

suggestions on how the research works would have been improved to get better

results. It also talks about the direction on how the research can be extended

for future works.

7.1 Limitations of the research

The major limiting factor for the research was the hardware components and

resources. The hardware comprised of 111GB of RAM and 11GB of GPU which

proved to be insufficient for a detailed execution of models. Preliminary ex-

periments were done on step 16 and 12 which ran smoothly. But as soon as

step was reduced in quest for higher accuracy, the computational cost increased

so much that it was not possible to go lesser than 8 to execute all the models.

The ideal case would have been 1 but that was proved to be humongous ask

considering the capacity of the server.

Similarly during EWI computation, the hardware was not able to compute

the covariance of matrices to extract principal components from the large num-

ber of stacked patches due to memory issues. This made us shift to the regular

approach of computing the components of the whole tile using ArcGIS Pro

2.7. This limited the assessment of the performance from EWI to qualitative

approach only.
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The spatial resolution of the tiles used was 10m. So with patch size of 8, it

effectively covered 80m on the ground which could not properly represent the

water bodies smaller than 80m. This prompted for the broken pixels of water

in the predicted maps.

Finally the last limitation was the reduction of the image size before ap-

plying it to the trained model for prediction. As the resolution of the largest

tile was 10980*10980, it meant that this number of pixels had to be predicted

which was something impossible considering the computational cost. Hence

the tiles were reduced by a factor of 8 before making prediction.

7.2 Recommendations for future tasks

The major suggestion for future works from the researchers would be to deal

with AttResNet individually than with other networks. AttResNet was found

to be the slowest network requiring high computational cost. It needed its own

preferable set of hyperparameters. The learning rate should be kept smaller

than 0.001, the batch size less than 64 and number of epochs less than 100

would be preferable. If the ground truth data does not support complex net-

works, then the number of attention and residual blocks can be reduced as

needed.

Similarly it was not much beneficial to run different models with same con-

figuration unless the objective is just an on-the-fly comparison. The SAPCNN

theoretically opted for converting the original image pixels into superpixels

and only then CNN can be used on them. It was experienced that even without

this conversion, SAPCNN third rank among the six. Had it been used with

the suggested approach of converting to superpixels and using self-adapting

pooling as proposed by [5], the results would have been even better. Same

applies for the remaining models.

Another recommendation would be regarding the quality of ground truth

data. The images were from 2020 and the label data were from 2015 which

impacted to the final result. Hence it is suggested to take the updated data

which is properly geo-referenced and complete.

Besides, it was found that index-based approaches could extract pure water

pixels only. Since the ground truth data also contained the pixels for riverbanks,

dried streams and small water bodies as well, comparing the output with this

ground truth is not logical. Hence ground truth containing pure water pixels

only can be used for the quantitative assessment purpose.

56



C
h
a
p
t
e
r

8
Conclusion

This thesis depicts the extraction of water features from Sentinel-2 imagery

using convolutional neural networks. The tasks were oriented towards the ex-

ploration of state-of-art approaches for water feature extraction, to implement

those approaches and finally integrate them to design a new approach with

better performance than the existing ones. The research was conducted on the

18 Terai districts on the Southern plain of Nepal covered with 11 Sentinel-2

tile scenes. The results demonstrated that novel architects like DenseNet and

AttResNet can be integrated to extract water features from satellite images.

The detailed conclusion of this thesis are presented in conjunction with the

objectives set before starting the research works as enumerated below:

1. To explore the state-or-art approaches used for extraction of water fea-

tures from satellite images

Chapter 2 presented the literature on five different neural networks and

four different index-based methods that were implemented in this re-

search. The neural networks under consideration were SAPCNN, CN-

NWQC, CNNCWC, DenseNet and AttResNet. It talked about their brief

introduction, evolution, study area, datasets, methodology used for imple-

mentation and results obtained from those networks. In addition, it also

depicted the way they were implemented originally and the study area

where they had reached their best performance. Besides, it also discussed

briefly about other architects like MRDED, SSAE, OTOP and DeepWa-

terMap with their purpose. In the index-based methods, it talked about
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NDWI, NDVI, MNDWI, NWI, GWI and development and EWI. It talked

about their pros, cons and how principal components can be integrated

with indices to propose a new algorithm like EWI. In order to make

the readers acquainted with the high-tech terms used in CNN, chapter

3 gave a holistic approach on the relationship of artificial intelligence,

machine learning, deep learning and data science. The chapter then dis-

cussed thoroughly about the CNN, its architecture and other terms used

in CNN.

2. To implement the state-of-art approaches in the study area data and

compare the performance achieved

All the six neural networks and 4 index-based methods were implemented

as discussed in chapter 5, the results of which are delineated in chapter

6. The NDWI, NDVI and NDVI_NDWI were implemented according to

their definition in section 2.1 and EWI was implemented according to the

method proposed by [25]. To implement the neural networks, the dataset

was splitted into training and test set and training set was again split-

ted into training and validation set. Initial experiments were conducted

several times to determine the common hyperparameters for all models.

Finally, the parameters were set to patch sizes of 8,12,16 and 20 with step

size 8 on batch size 128 for 100 epochs using the learning rate of 0.001.

All the architects were improvised with uniform configuration.

Four different experiments with different number of input channels were

conducted to make a comparison chart of the six networks. The best per-

formance when feeding only RGB channels at patch size 16 was given by

DenseNet with test accuracy of 85.41% and recall values of 75 for water

and 89 for non water (see table 6.2). On using 11 selected channels as

input the test accuracy for patch size 16 increased to 89.53% and recall

values to 84 for water and 92 for non water (see table 6.3). Another exper-

iment to assess the contribution of DEM was conducted by feeding RGB

and DEM as fourth channel on baseline model. The test accuracy was

found to be increased by 2.26% on patch size 8 for baseline model though

the rate decreased on increase with patch size (see table 6.4). Anyways it

was decided to consider DEM as another channel for input since it was

contributing to the water feature extraction to some extent though not sig-

nificantly. The final experiment was conducted with 11 selected channels

from Sentinel-2 integrated with DEM as 12th channel. This experiment
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produced the best accuracy of 90.41% on patch size 20 (see table 6.5)

but considering the training time and compatibility for AttResNet it was

decided to use patch size 16 for further research. Later the structure of

proposed model was adjusted to make it compatible for all patch sizes.

Additionally, the four indices were also employed for extracting water

features to compare with the performance of neural networks. It was

found that numerical performance of NDWI, NDVI and NDVI_NDWI for

all patches were similar around 75% of test accuracy and 52 of recall for

water and 97 for that of non water. EWI was assessed only visually due to

memory issues for computing principal components in terms of stacked

patches.

Qualitative assessment of the outputs also proved that DenseNet was

performing the best with more vivid outputs than the rest. The models

could be ranked in the order of decreasing performance as DenseNet,

CNNWQC, SAPCNN, CNNCWC, baseline and AttResNet. The perfor-

mance of the models were also found better than that from index-based

method in terms of extracting water features and suppressing the non

water pixels.

3. To innovate and design a CNN architecture with highest qualitative

and quantitative performance using the available architectures

An attention block was added after the batch normalization layer of

DenseNet and again experiments were performed to determine the hyper-

parameters for the integrated network. It was found that the proposed

network gave the best result of 90.29% of test accuracy, 86 of recall for

water and 93 of recall for non water. The final configuration to achieve

this result was 3 dense blocks, 1 attention depth, 64 batch size and 0.01

learning rate with other parameters unchanged (see table 6.6).

Finally, from the visual comparison also the proposed network was found

to be performing better than the DenseNet with focused attention to

water features only (see figure 6.10). It was worth noting that it also

removed the non water pixels from the boundary of the study area which

was present in the six networks. The urban and barren pixels found

in the output of AttResNet of figure 6.6 were also not carried by the

integrated network though AttResNet was not performing up to the mark

in the experiments. Moreover, the proposed network was found to be

successful in extracting smaller water bodies like streams, ponds and
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lakes as well throughout the scene. The novelty of this network lied

in its composition. It integrated different blocks like dense, transition,

attention and residual in one architect to perform better than the other

state-of-the-art approaches.

In summary, we became successful in achieving the main aim of extracting

surface water features from Sentinel-2 imagery using CNN. We implemented

state-of-art technologies for water feature extraction and importantly designed

a new network integrating DenseNet and AttResNet. We also validated our

works vis-a-vis the traditional index-based approaches as well. We envisage

that CNN techniques will improvise more and more to efficiently extract fea-

tures from satellite imageries in future.

The self-assessment of Thesis Reproducibility in accordance with OSF Home

Guidelines for Input Data, Preprocessing, Processing, Computational Environ-

ments and Results is: 2, 2, 1, 1 and 2 respectively.
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A
Analysis of Initial Experiments

(a) Patch size Vs i. Validation accuracy, ii. Recall Value of Water

(b) Non Water to Water Ratio Factor Vs i. Validation accuracy, ii. Recall Value of Water

(c) Step size Vs i. Validation accuracy, ii. Recall Value of Water

Figure A.1: Initial Experiments to determine the hyperparameters I
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APPENDIX A. ANALYSIS OF INITIAL EXPERIMENTS

Figure A.2: Learning Rates Vs i. Validation Accuracy, ii. Recall Value of Water during initial experiments
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B
Precision and F1-Scores of

Experiments

Table B.1: Precision and F1-Scores of each models obtained from four experiments

Channels Models Patch Size

8 12 16 20

F1-Score Precision F1-Score Precision F1-Score Precision F1-Score Precision

Water No Water Water No Water Water No Water Water No Water Water No Water Water No Water Water No Water Water No Water
RGB baseline 69 86 75 83 73 88 79 85 75 88 79 86 76 89 79 87

CNNWQC 72 87 74 85 76 89 79 87 77 89 78 88 77 89 79 87
CNNCWC No convergence 71 87 77 84 73 88 78 85 74 88 77 86
SAPCNN 72 87 75 85 76 88 77 87 77 89 79 88 78 89 79 89
denseNet 73 87 77 86 77 89 78 88 78 89 80 89 78 90 81 88
attResNet 69 85 71 84 NA 73 87 75 86 NA

RGB_DEM baseline 72 88 80 84 75 89 80 86 78 89 80 88 78 90 81 88

S2 baseline 80 90 82 89 81 91 83 90 82 91 84 91 82 91 84 91
CNNWQC 82 91 82 91 83 92 83 91 84 92 84 92 84 92 84 92
CNNCWC 77 90 81 87 77 90 82 87 81 91 83 90 81 91 82 91
SAPCNN 81 91 82 90 82 91 83 91 84 92 85 92 84 92 84 92
denseNet 82 91 83 90 83 92 84 91 85 92 85 92 85 91 86 91
attResNet 79 90 81 89 NA 81 90 81 90 NA

S2_DEM baseline 81 91 83 90 82 91 84 90 83 92 84 91 84 92 85 92
CNNWQC 83 92 83 91 84 92 84 92 84 92 84 92 85 93 85 93
CNNCWC 79 90 82 89 81 91 83 90 82 91 84 90 83 91 83 91
SAPCNN 82 91 83 91 83 92 84 91 84 92 85 91 85 92 85 93
denseNet 83 91 84 91 84 92 84 92 85 92 85 92 86 93 86 93
attResNet 81 90 82 90 NA 81 91 83 90 NA
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e
x

I
Performance of Models

(a) Accuracy of baseline (b) Loss of baseline (c) Confusion Matrix of baseline

(d) Accuracy of SAPCNN (e) Loss of SAPCNN (f) Confusion Matrix of SAPCNN

(g) Accuracy of DenseNet (h) Loss of DenseNet (i) Confusion Matrix of DenseNet

(j) Accuracy of AttResNet (k) Loss of AttResNet (l) Confusion Matrix of AttResNet

Figure I.1: A schematic performance of the models on patch size 16 during initial experiments
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ANNEX I. PERFORMANCE OF MODELS

(a) Accuracy of baseline (b) Loss of baseline (c) Confusion Matrix of baseline

(d) Accuracy of CNNWQC (e) Loss of CNNWQC (f) Confusion Matrix of CNNWQC

(g) Accuracy of CNNCWC (h) Loss of CNNCWC (i) Confusion Matrix of CNNCWC

(j) Accuracy of SAPCNN (k) Loss of SAPCNN (l) Confusion Matrix of SAPCNN

(m) Accuracy of DenseNet (n) Loss of DenseNet (o) Confusion Matrix of DenseNet

(p) Accuracy of AttResNet (q) Loss of AttResNet (r) Confusion Matrix of AttResNet

Figure I.2: A schematic performance of the models on patch size 16 during final experiments
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(a) Accuracy at 8 (b) Loss at 8 (c) Confusion Matrix at 8

(d) Accuracy at 12 (e) Loss at 12 (f) Confusion Matrix at 12

(g) Accuracy at 16 (h) Loss at 16 (i) Confusion Matrix at 16

(j) Accuracy at 20 (k) Loss at 20 (l) Confusion Matrix at 20

Figure I.3: A schematic performance of the proposed model on varying patch sizes during final experi-
ments
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ANNEX I. PERFORMANCE OF MODELS

(a) Model (b) ROC- and PR- Curves of CNNWQC

(c) CNNCWC (d) ROC- and PR- Curves of SAPCNN

(e) DenseNet (f) AttResNet

(g) AttDenseNet (h) ROC and PR Values of models

Figure I.4: ROC and PR Curves of Models

80





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EXTRACTING SURFACE WATER BODIES FROM SENTINEL-2 

IMAGERY USING CONVOLUTIONAL NEURAL NETWORKS 
 
 

 

Janak Parajuli 



                    

E
X

T
R

A
C

T
IN

G
 S

U
R

F
A

C
E

 W
A

T
E

R
 B

O
D

IE
S

 F
R

O
M

 S
E

N
T

IN
E

L
-2

 I
M

A
G

E
R

Y
 

U
S

IN
G

 C
O

N
V

O
L

U
T

IO
N

A
L

 N
E

U
R

A
L

 N
E

T
W

O
R

K
S

 

2021 

J
a
n
a
k
 P

a
ra

ju
li 



Guia para a formatação de teses Versão 4.0 Janeiro 2006 

 

 

 


	ACKNOWLEDGMENTS
	ABSTRACT
	KEYWORDS
	INDEX OF FIGURES
	INDEX OF TABLES
	Acronyms
	Introduction
	Contextual Background
	Motivation and Problem Statement
	Aim and Objectives
	Research Workflow
	Thesis Contribution
	Thesis Structure

	Literature Review
	Traditional Approaches
	Deep Learning Approaches
	Related Works
	Novel Architects


	Theoretical Framework of CNN
	Overview of the Context
	CNN and its architecture
	Convolutional layer
	Activation Function
	Pooling or Sub-sampling Layers
	Fully connected layer
	Output layer 

	Related Terms in CNN

	Study Area and Dataset Preparation
	Study Area
	Dataset Preparation
	Satellite Image Preprocessing and Preparation
	dem Data Preparation
	Ground Truth Data Preparation


	Methodological Framework
	Implementation of Neural Networks
	Determination of Baseline Model
	Implementation of SAPCNN
	Implementation of cnnwqc
	Implementation of cnncwc
	Implementation of DenseNet
	Implementation of AttResNet
	A novel CNN approach for water bodies identification

	Implementation of Index-based Methods
	Development of ewi


	Results and Discussion
	Experimental Setup
	Patch Extraction
	Balancing labels
	Determination of hyperparameters

	Experiments conducted on neural networks
	Use of rgb Channels
	Use of selected s2 Channels
	Impact of dem Integration
	Use of selected s2 channels integrated with dem
	Selection of Networks
	Development and Performance of Proposed Network

	Comparison with Index-based approaches
	 Qualitative Assessment of the performance
	Performance of Neural Network Approach
	Performance of Traditional Approach
	Performance of the proposed network


	Limitations and Recommendations
	Limitations of the research
	Recommendations for future tasks

	Conclusion
	Bibliography
	Appendices
	Analysis of Initial Experiments
	Precision and F1-Scores of Experiments
	Annexes
	Performance of Models

