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ACTIVITY RECOGNITION IN MENTAL HEALTH
MONITORING USING MULTI-CHANNEL DATA

COLLECTION AND NEURAL NETWORK

ABSTRACT

Ecological momentary assessment (EMA) methods can be used to

extract context related information by studying a subject’s behaviour

in an environment in real-time. In mental health EMA can be used to

assess patients with mental disorders by deriving contextual informa-

tion from data and provide psychological interventions based on the

behaviour of the person. With the advancements in technology smart

devices such as mobile phone and smartwatch can be used to collect

EMA data. Such a contextual information system is used in SyMptOMS,

which uses accelerometer data from smartphone for activity recognition

of the patient. Monitoring patients with mental disorders can be useful

and psychological interventions can be provided in real time to control

their behavior. In this research study, we aim to investigate the effect

of multi-channel data on the accuracy of human activity recognition

using neural network model by predicting activities based on data from

smartphone and smartwatch accelerometer sensors. In addition to this

the study investigates model performance for similar activities such as

SITTING and LYING DOWN. Tri-axial accelerometer data is collected

at the same time from smartphone and smartwatch using a data col-

lection application. Features are extracted from the raw data and then

used as input to a neural network. The model is trained for single data

input from smartphone and smartwatch as well the data from sensor

fusion. The performance of the model is evaluated by using test sam-

ples from collected data. Results show that model with multi-channel

data achieves a higher accuracy of activity recognition than the model

with only single-channel data source.
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1
IN T R O D U C T I O N

1.1 Background

Conventional psychological treatments involve face-to-face and tradi-

tional paper-pen style surveys and questionnaires. The clinical meth-

ods have disadvantages in the sense that data is not collected in real

time and the data from questionnaires produces recall bias. Mobile

phones have changed the ways of research in mental health as smart-

phones are carried by everyone and are helpful in providing Ecological

momentary assessment (EMA) data. Mobile phones are not devices

made for conducting psychological research but they can be used to

acquire large amount of ecologically valid data in real time to study

and assess behaviors in psychology [1]. It is found from research that

mobile based data is better in quality than paper-based questionnaires

[2].

EMA methods provide context-based insights in studying a phe-

nomenon that happens in natural environment instead of a controlled

environment and are based on real-time data collection [3]. In mental

health, mobile devices can be used to collect EMA data as they provide

a physical link to a patient’s environment, thus giving the ability to

understand behavior patterns in their ecological contexts [4].

Complex phenomenons need to be looked at from different perspec-

tives to accurately understand them without biases. In the context of

mental health, EMA methods are used to identify and extract behaviour

1



CHAPTER 1 . INTRODUCTION

patterns by collecting context related information from smartphone

sensors. Use of smartphone sensors such as GPS with EMA data have

been found to evaluate depression compared to clinical methods [5].

Human activity recognition is a domain which has been used to detect

and monitor different activities performed by a person in daily life [6].

These human activities have been recognized by using body worn sen-

sors such as accelerometer and gyroscope to detect and monitor human

falls [7]. Smartphone sensors such as accelerometer has been used to

classify and differentiate between several physical activities such as

walking, running, driving and cycling [8]. In mental health, activity

recognition is used to monitor and detect activities and can in turn be

a part of providing psychological interventions in real time.

1.2 Symptoms Project

SyMptOMS1 is a research project by GeoSpatial Technologies Research

Lab (GEOTEC) and Laboratory of Psychology and Technology (LABP-

SITEC) which aims to develop effective solutions for therapists to help

patients with mental health problems. The project studies and ana-

lyzes the use of smartphones and wearables such as smartwatch for

application in Psychology.

SyMptOMS is a system of different components based on mobile and

Web-based application. Mobile application is used for data collection

and to provide psychological interventions. The web-based application

is composed of different components to configure, collect and visualize

patient’s data based on the type and nature of mental health disorder.

In previous years location-based services have been used to define

places of interest for patients. Dynamic alerts based on location of user

through psychological interventions are sent to patient’s mobile phone

application to improve behavior [9][10][11].

Recently, a context-based activity recognition system has been de-

signed to monitor patients in their day-to-day activities. This system

utilizes smartphone accelerometer sensor data to perform activity recog-

nition [12]. The system also enables to provide context-related activity

recognition in the context of Agoraphobia patient.

1http://geotec.uji.es/projects/symptoms/
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1 .3 . A IMS AND OBJECTIVES

1.3 Aims and Objectives

The aim of this work is to add increased functionality to the existing

activity recognition system by using sensor data from another source to

improve activity detection for more number of activities. The objectives

of this study are the following:

• To integrate multi-channel data collection in SyMptOMS to im-

prove accuracy of the activity recognition

• To add the detection of new activities to the existing system

• To compare the activity detection accuracy using single-channel

and multi-channel data

1.4 Methodological Approach

The methodological approach to accomplish the research objectives is

following:

• Explorative and thorough literature review to understand the prob-

lem in context of activity recognition and mental health, and iden-

tify the techniques useful to carry out this research

• Identify technologies and develop software applications to simul-

taneously collect data multi-channel data to extend the already

existing activity detection system

• Implementation of software development methods for data collec-

tion and processing

• Experimental setup and selection of model parameters for machine

learning

• Model performance and evaluation of the results from neural net-

work

1.5 Thesis Structure

The structure of this thesis is the following:

3



CHAPTER 1 . INTRODUCTION

• Chapter one comprises of contextual background, overview of SyMp-

tOMS project, aims and objectives, brief methodology

• Chapter two focuses on the related work in EMA, applications

in mental health, the use of psychological intervention with the

advancement of technologies and activity recognition using mobile

phones and sensors.

• Chapter three gives a short description of the tools and technolo-

gies used in the project.

• Chapter four discusses data collection workflow, data processing.

• Chapter five consists of the experimental design and the neural

network architecture for training and prediction of activities

• Chapter six provides description about results and evaluation of

neural network model to detect activities

• Chapter seven includes discussion and conclusion of work, answer

to research objectives and way forward of the work

4
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L I T E R AT U R E RE V I E W

This chapter provides details about the related work. First section dis-

cusses the use of mobile phone in ubiquitous computing. The second

section of the chapter summarises literature about Ecological Momen-

tary Assessment (EMA) methods in behavioral and mental health and

the use of Ecological Momentary Interventions (EMI) using smart de-

vices. The last section is about human activity recognition and the use

of body worn sensors to mobile sensors and the different methods and

classification techniques applied in those studies.

2.1 Smartphones as tools for Ubiquitous

Computing

Smartphones are widely used globally and users with smartphones con-

tribute to more 70 percent of total mobile phone subscription globally

[13]. A study reports that by 2025 there will be 5 billion smartphone

users with state of the art technical capabilities far better than the cur-

rent smartphones [1]. Smartphones have robust technical capabilities

as they come with good computational powers. Mobiles are now less

costly and are more advanced technologically. Computational capabili-

ties of a mobile phone which is easy to carry makes it more advanced

than a regular desktop computer [14]. The presence of different sen-

sors in mobile phones such as GPS, accelerometer, gyroscope and other

5



CHAPTER 2 . L ITERATURE REVIEW

sensor make them a handy tool to be used for application in the field

of mHealth. This increasing trend of mobile phone users makes smart-

phones a potential tool for medical health care systems [15].

2.2 Ecological Momentary Assessment and

Psychological Interventions

In clinical psychology, therapist rely on retrospective self reports to

assess every day behavior of patients by asking questions about their

state e.g how depressed they were, how many anxiety and panic attacks

they experienced. These retrospective reports have their limitations

as they are not in real time and do not represent the phenomenon

occurring in real time. In behavioural research, EMA is a method to

monitor and study behavior of subject in real world and real time to

assess behavior patterns and to extract context-related information. In

EMA data is collected in real time and it increases the ecological validity

compared to clinical methods [3]. Smoking behavior of smokers after

quitting has been monitored using EMA by asking them to record their

cravings on the palm-top computers. [16]. EMA data collected with

cellphones for cocaine addicted patients by using automated phone

call interviews has usefulness in treatment of such patients [17]. To

examine and assess the effect COVID-19 pandemic on mental health

such as stress levels, depressive symptoms and loneliness using EMA

survey on 80 university students in a recent study have been carried out

[18]. Similar works with the use of smartphones to assist in treatment

of mental disorders, drug has been used in a variety of works [14][19]

[20].

Use of technology such as as mobile devices and palmtop computers

to convey EMI are proven to be advantageous for both therapists and

patients. Easy to carry and portable electronic devices makes it easy

to deliver EMI to patients at any time without the need of visiting the

clinic. EMI are provided to patients in real time and the patients have

the time to apply these interventions in actual experience and adjust

their behavior [21]. Applications of smartphone based systems such as

sending text messages to patients are used as psychological interven-

tions. Mobile phones are used to send text messages to patients with

6



2 .3 . HUMAN ACTIV ITY RECOGNIT ION

mental disorder treatment to improve their behavior. [14].

Participants provided with EMI to increase physical activity through

palmtop computers reported a higher physical activity as compared to

those participants with clinical instructions [22].

2.3 Human Activity Recognition

Human activity recognition has been in use for a long time now in dif-

ferent domains such fitness tracking, health monitoring, fall detection

and home/work automation [23]. In the early research studies, heavy

devices were used to collect data for human activity detection which

does not suit real world scenario and seems unrealistic for practical

use. Use of mobile devices makes it easier to collect data and can be

used in daily life for activity detection [24].

Research studies on activity recognition have used external sensors

and smartphone at different parts of the body for data collection and

compared the results. Li and Stankovic used accelerometer and gy-

roscope to derive posture-information and proposed fast fall detection

system [25]. For example previous studies used sensors at thigh, arm

and chest position and some other used hip, ankle to see the results in

terms of accuracy for activity recognition [26] [27]. Nisham and Nikhal

used a tri-axial accelerometer by placing it near the pelvic region to de-

tect different activities [28]. Five bi-axial accelerometers are used and

placed at different parts of the body i.e hip, wrist, upper arm, ankle

and thigh to monitor 20 different human activities. The accelerometer

at thigh position indicated better accuracy of activity detection [29]. A

number of other studies have also shown to use the mobile phone in

the pocket for activity detection and achieved good activity recognition

results [24] [30].

The techniques for feature extraction are time domain, frequency do-

main and discrete representation domain. In most of the studies, activ-

ity recognition is considered as a supervised machine learning problem

and generally it consist of four stages which includes pre-processing,

feature extraction, model training and classification. Activity classifi-

cation is performed on extracted features from raw accelerometer data

[31] [32]. Window overlapping technique has been used for features

extraction [33].

7



CHAPTER 2 . L ITERATURE REVIEW

In a comparative review of features extraction techniques, Figo has

compared the computational cost and storage capacity of these tech-

niques [34]. The frequency domain techniques has overall a higher

cost than the remaining two techniques. Time domain techniques has

the lowest computational cost and storage requirement. Time domain

techniques have also proved to yield high activity recognition accuracy

[35].

There are a number of classification techniques used in activity

recognition depending upon the context in which it is used. Simple

heuristic classifiers have been investigated for activity classification [36].

Khan and Lee have used augmented auto-regressive model co-efficient

and artificial neural nets for activity recognition using accelerometer

data [37]. Ermes and PÄrkkÄ used four different classifiers automat-

ically generated decision tree, custom decision tree, artificial neural

network (ANN) and hybrid model for detection of sports and daily ac-

tivities using wearable sensors [38]. Similarly, Multi-layer Perceptron

(MLP) Neural Networks (NNs) has been used classify walking patterns

using time-frequency features from tri-axial accelerometer data [39].

Multi-layer Perceptron (MLP) provides best results compared to DT and

SVM classifiers [40].
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TO O L S A N D TE C H N O L O G I E S

This chapter provides details about the tools and technologies used

to develop this research project. The first section of the chapter sum-

marises the Android-based development, the access to sensors and the

main classes and API methods of Android Studio which are relevant

to the development of this thesis. The last part demonstrates the use

of Python language and respective libraries for data processing and

machine learning.

3.1 Android Development

Smartphones are mainly divided into two major operating systems (OS)

i.e. Android, iOS. Android development is the process of developing

mobile applications for Android operating system [41]. The applications

developed in this project are android based hence android development

environment has been used. Android applications are written in Java,

Kotlin and C++ programming languages mainly. Android Studio, an

Integrated Development Environment (IDE) has been used for applica-

tion development. The development code of applications for this project

is written in Java which is an object-oriented language based on class

implementation.

9



CHAPTER 3 . TOOLS AND TECHNOLOGIES

3.1.1 Wear OS Application

WearOS is an android operating system used in wearable such as smart-

watches. Wear OS by Google allows developers to develop applications

that can be used on smartwatches. Wear OS applications can be de-

veloped to access smartwatch resources like sensors to get valuable

information [42]. A WearOS app can be standalone i.e. it can be devel-

oped and used independently of a handheld device or it can be used

with a mobile phone. In this study project, the WearOS application for

collecting data is not a standalone application rather it is used with a

mobile phone application.

3.1.2 Smartphone and Smartwatch Sensors

Smartphones are now equipped with built-in sensors that can be used

to collect information about the mobile device or the surroundings [43].

Android operating system devices have categorically three type of sen-

sors which are as follows:

• Motion Sensors: These can be used to detect the motion of mo-

bile device and changes in motion. Accelerometer, gyroscope and

gravity are categorized as motion sensors.

• Environmental Sensors: These sensors give information about the

surrounding environmental variables. Examples includes temper-

ature, humidity sensors.

• Position Sensors: These sensors are used to compute the device

position. Magnetometers and orientation sensor are examples of

such sensors.

3.1.3 Message Client

Message Client is an abstract class of the Google APIs for android which

is used to send message to connected nodes in a network. Nodes in a

network are the devices connected to each other. The Message Client

API can be used send message to a node to start a certain activity.

From android documentation [44] Message client methods can attach

the following to them:

• An arbitrary payload not more than 100Kb (optional)

10



3 .2 . DATA PROCESSING AND MACHINE LEARNING TOOLS

• A message path to the target node which can be used to identi-

fy/perform an action

3.1.4 Data Client

Data Client is a public abstract class of the Google API for android,

similar to Message Client class. It allows to sync and send data items

across devices in the network. A data item can be defined as a link

to sync items between a smartphones and wearable devices such as

smartwatch. A data item can also be used to send large files such as

media which can be attached to a data item as an Asset and it can be

received at the target node. The use of sending Asset is important to

the application development in this research as it will be used to send

smartwatch data files to smartphone as described in Section 4.1.

3.2 Data Processing and Machine Learning

Tools

3.2.1 Python

Python is a high-level, object oriented programming language which

is used in data science, tasks automation, web development and in

applications of artificial neural networks. Python is an easy to learn

language due to its easy syntax, readability and scale-ability. Python

provides many complete built-in packages and modules which makes

it easier for its users to reuse the code for different projects [45].

3.2.2 Libraries

• Pandas is a fast and reliable python library which is used for data

science and data analytics. Pandas has simple built-in functions

which can be used for a range of task from data cleaning to data

analytics [46].

• Sci-kit learn is a machine learning library in python built on

NumPy, matplotlib and Scipy which is an efficient tool used in

predictive analysis [47].

11
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• Keras API is a machine learning API used with tensorflow which

provides high level neural networks which are used in machine

learning and deep learning [48].

12
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ME T H O D O L O G Y

This chapter provides a detailed description of the implementation of

software development methods. First section describes how multi-

channel data collection works. The second section of the chapter il-

lustrates various stages of data processing starting from data cleaning

to features extraction.

4.1 Data Collection

This part explains the workflow of data collection of accelerometer data

from smartphone and smartwatch. There are two android applications

to collect data

• A mobile application to collect data from mobile phone accelerom-

eter sensor for certain activities based on the selection of user.

• An OS Wear android application for smartwatch which is able to

collect data from smartwatch’s sensor.

Smartphone and smartwatch are connected to each other via Bluetooth.

The two separate applications for smartphone and smartwatch com-

municate through the MessageClient API. This API is used to deliver

message to connected network nodes and it is important in context

of this study to carry out simultaneous data application. The sam-

pling rate for data collection is 50Hz which means that for every 20

13



CHAPTER 4 . METHODOLOGY

milliseconds, there is an acceleremoter sensor record. It is important

to mention that there is a slight difference between timestamps at the

start and end of recorded data between smartphone and smartwatch

as the communication between the devices depends on the Bluetooth

signal strength to communicate. The time to receive a message by the

target node (smartwatch) is the time lag which occurs when collecting

data simultaneously. To solve this problem, data cleaning is necessary

to process data which is described in the Section 4.2.1.2

The data collection workflow is given in the Figure 4.1. For the data

Figure 4.1: Data Collection Workflow

collection there are eight different activities: WALKING (W), RUNNING

(R), STILL (ST), SIT NORMAL (SN), SIT FEAR (SF), SIT-STAND (SS),

LIE-STAND (LS) and LYING DOWN (LD). The application provides the

START and STOP buttons to start and stop data collection respectively.

The user selects the activity type and presses START button to start

collecting data. Once this button is pressed, a message is sent to the

smartphone and smartwatch which triggers the Android sensor service

and starts a foreground service to start collecting data. Similarly, STOP
button sends a message to Android sensor services to stop collecting

data for both smartwatch and smartphone. Once the STOP button is

14



4 .1 . DATA COLLECTION

pressed, sensor data records are saved locally as CSV file on mobile

smartphone internal storage.

Data collection application is easy to use and only requires smart-

phone device to start sensor services of both devices. Fig 4.2 shows the

user interface when the user opens the application. The application is

allowed to run in background so to make sure that data is continuously

collected.

Figure 4.2: Data Collection Application User Interface

The accelerometer data obtained from the the sensor is tri-axial

which means it has in 3-dimensional coordinate system. The coordinate

values are calculated relative to the device screen as shown in the

Figure 4.3. The structure of data acquired from raw data across the

three axis is given in 4.1

15



CHAPTER 4 . METHODOLOGY

Figure 4.3: Smartphone Coordinate Axis [43]



timestamp x y z

1609868220587 7.044 5.639 4.185

. . . .

. . . .

. . . .

1609868220644 6.927 5.802 4.307


4.2 Data Processing

This section describes the data processing techniques after successfully

collecting tri-axial accelerometer data. Once the data has been collected

and stored the next step is to process the data using suitable techniques

to get it ready for feature extraction. This sections demonstrates data

16



4 .2 . DATA PROCESSING

cleaning, feature extraction and the selection of features based on their

contribution to the accuracy of data. Fig 4.4 show the data processing

workflow.

Figure 4.4: Data Preparation Workflow

4.2.1 Data Cleaning

4.2.1.1 Removal of Noise values

This step is to make sure that there are no noise values at the start

and end of data collection process. It is possible that during the act

of pressing the START button on mobile application and placing the

smartphone inside the pocket produce noise in the data. Similarly,

noise can occur when user wants to finish the activity and takes out

smartphone out of their pockets to press the STOP button. These noise

17



CHAPTER 4 . METHODOLOGY

values may misrepresent the actual activity, the following step has been

used using pandas library to discard noise values.

• Removal of first 500 values

• Removal of last 500 values

As there are 50 records per second which mean that data records for

first and last 10 seconds are removed from the data given by the pandas

command:

df_clean=df_data.iloc[500:-500]

4.2.1.2 Data Matching

The raw collected data from both sources needs to be matched together

for the following reasons:

• Collected raw data from both sources has different timestamp

values due to the fact that both devices are running separately on

different systems but collecting data simultaneously. This creates

a timestamp difference in milliseconds.

• The communication between mobile and smartwatch depends on

Bluetooth. As described in 4.1 the time to receive message by

the target node (smartwatch) creates a time lag which results in

delayed data collection on smartwatch.

• The sampling rate of 50 Hz is not always the same during data

collection. This is justified according to Android documentation

[49] which states that the sampling rate is just an indication to the

system to collect data at a certain frequency but it is possible that

the sensor events may be received at a faster or slower rate. In our

data the sampling rate ranges from 49 Hz to 51 Hz for smartphone

and 50 Hz to 54 Hz for smartwatch.

To solve the problems stated above, it is important to devise a solution

which ensures that data records from both devices are matched together

based on their timestamp in seconds and the sampling rate for both

devices is made equal. We applied the following techniques to achieve

this in the order of the problems stated above:
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• The timestamps values from unix timestamp format are first con-

verted to datetime format. Afterwards milliseconds part is dis-

carded from the timestamp which is helpful in the next steps.

4.2.1.2 shows the process for one second only.

timestamp x . z

1609869226004 1.619 . −9.77
1609869226022 1.622 . −9.77
1609869226041 1.624 . −9.782

. . . .

. . . .

1609868220644 1.607 . −9.804


⇒



timestamp x y z

5:53:46 1.619 . −9.77
5:53:46 1.622 . −9.77
5:53:46 1.624 . −9.782

. . . .

. . . .

5:53:46 1.607 . −9.804


• To remove the time lag between the data sources, the starting and

ending timestamps of both sources are compared. Those records

at the beginning and end of two datasets which do not match with

each other are discarded.

• The last step involves creating unique values against each second

ranging from 1-54 depending on the number of records received

by the system for each second. The next step is to compare the

two data sources based on two columns i.e ’newtime’ and ’uv’.
Only matching records based on timestamp and uniques values

are used. Here newtime and uv refers to the time in datetime

format and unique values respectively. This step is important for

later stages of data fusion. The process for sample data is shown

in Figure 4.5

4.2.2 Feature Extraction

Before the data can be used for activity detection it is important to

extract features from raw data. These extraction features techniques

can be categorized into three major domains: the time domain, the fre-

quency domain and discrete representation domain [34]. Each domain

is further is classified in different classes as show in Figure 4.6. In

the time domain different statistical and mathematical techniques are

used to extract features such as mean, median, mode, variance, std

deviation. Frequency domain features are related to periodicity and

repetitiveness of the sensor signal and include techniques like Fourier
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CHAPTER 4 . METHODOLOGY

Figure 4.5: Data Matching based on timestamp and unique values

transformations and wavelet transformations etc. Some features as

result of frequency domain are spectral energy, entropy, dominant fre-

quency. Discrete domain techniques involves reconstruction of data

signals into discrete symbols.

In this study we have used time domain techniques to extract fea-

tures from raw accelerometer data. The features from raw data are

extracted by using the window overlapping technique. Using this tech-

nique the data is divided into a subset of smaller data sets and features

are computed on an overlapping window to reduce data loss at the end

of the of window [30].

4.2.3 Selected features

In previous studies different kind of features have been extracted from

raw data depending on the type and the context of activity recognition.

For example in the study [50] Median, Mode and Correlation between x

and z are ranked among the top 5 features for activity recognition. In

[51] Median, Mode, Average, RMS and Standard deviation are identi-

fied as the top ranked discriminative features for activity recognition.

Difference between the maximum and minimum of signal have been
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4 .2 . DATA PROCESSING

Figure 4.6: Feature Extraction Techniques [34]

used to discriminate between walking and running [52]. The root mean

square (RMS) of accelereometer signal has been used to detect activity

patterns [53]. The features selected for this study based on literature

review are given in the Table 4.1

Table 4.1: Number of samples for each activity from collected data

Feature Description
Mean The mean of the signal over window
Median The median of the signal over window
Maximum The maximum across the signal over the window
Minimum The minimum across the signal over the window
Standard Deviation Dispersion of the signal from its mean
Root Mean Square quadratic mean of the values of signal
Range Difference between max and min of signal over window
Difference Mean difference between two continous signals
Zero crossing No. of times a signal cross a certain value
Pitch Rotation of device across y and z-axis
Roll Rotation of device across x and z-axis

The Feature Vector after extraction of features from raw data con-

sists of 29 extracted features. 9 out of 11 features are extracted for

all the three axis i.e x-axis, y-axis and z-axis. Pitch and roll are the

angular features which represent the rotation of device along two axis

and is computed as an angle. The equations for computing these are
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given by [35].

β =
180

π
· arctan(y/g, z/g) (4.1)

α =
180

π
· arctan(x/g, z/g) (4.2)

β and α represent pitch and roll respectively where as g is the gravi-

tation acceleration whose value is 9.81 m/s2.

4.2.4 Combining Sensor Data

There are three neural network based on the type of data used as input.

The two datasets from smartphone and smartwatch are used separately.

The input to third model is based on the fusion of this data. Similar

to [54] features from the two datasets are extracted independently and

then concatenated together to obtain a combined feature vector.
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EX P E R I M E N TA L DE S I G N

This chapter discusses details about the experimental setup, the amount

of data collected and machine learning model configuration.

5.1 Experimental Design

This section describes the implementation of the methods discussed in

above sections. Data is collected for eight activities specified in Section

4.1 for approximately 28-35 minutes. Features are extracted from data

after pre-processing. These features are calculated with a overlapping

window of 1 second with time shift of 0.5 seconds. Data samples after

feature extraction for each activity are given in the Table 5.1

Table 5.1: Number of samples for each activity from collected data

Activity Type No. of samples
LIE-STAND (LS) 3162
SIT-STAND (SS) 4491
LYING DOWN (LD) 4383
RUN (R) 2904
SIT NORMAL (SN) 4933
SIT FEAR (SF) 4173
STILL (ST) 4276
WALK (W) 3904

These extracted features are used an input data for to train the

neural network model. The data has been split into train, test and
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CHAPTER 5 . EXPERIMENTAL DESIGN

validation set using the sci-kit built-in function. Initially the samples

are divided into 75-25 percent training and testing data respectively.

The training data is further split into 80-20 percent for training and

validation. The validation data is important as it is used to evaluate

the model fit to fine-tune the parameters of the model to improve model

performance.

Figure 5.1: Training, Test and Validation Data Split

5.2 Machine Learning and Model

Architecture

The model architecture used in this work is similar to one proposed in

previous similar study by [12] for single data input. A short summary

of the model architecture is given below:

Table 5.2: Model Architecture

Input Units 29 (Single) and 58 (Fusion)
Hidden Layer 1
Rectified Linear Units (ReLU) 512
Output Units 8

The parameters chosen for training data are given in the Table 5.3.

• Learning rate: It is a tuning parameter which indicates the step

size over each iteration

• Decay: It determines the rate at which the learning rate is reduced

• Momentum: The rate at which the learning rate is increased in a

neural network.
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5 .2 . MACHINE LEARNING AND MODEL ARCHITECTURE

• Batch size: It refers to number of training samples used in one

cycle of the learning phase

• Epoch: The number of cycles data samples have to complete for

training.

Table 5.3: Model Configuration

Learning Rate 0.001
Decay 1e-6
Momentum 0.09
Loss Function Categorical Cross Entropy
Batch size 50
Epoch 20
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6
RE S U L T S A N D EVA L U AT I O N

This chapter discusses detailed analysis of the results and performance

of models described in Chapter 4. It follows a section-wise discussion

of the smartphone, smartwatch and fused data model. The last part of

the chapter provides a summary of the results.

Using the training data described in Section 5.1 the neural network

has been trained with 19334 training samples of eight activities. To

evaluate the performance of model 8056 samples from testing data are

used. The the details for number of samples in both training and test

dataset are given in the Table 6.1:

Table 6.1: Number of samples in Train and Test dataset

Activity Type No. of training
samples

No. of test samples

LIE-STAND (LS) 1886 790
SIT-STAND (SS) 2706 1123
LYING DOWN (LD) 2614 1096
RUN (R) 1753 726
SIT NORMAL (SN) 2914 1233
SIT FEAR (SF) 2508 1043
STILL (ST) 2622 1069
WALK (W) 2331 976

Model performance is evaluated by the overall accuracy metrics

namely precision, recall and F1-score. A high precision value show

a lower number of false positives (FP) while a high recall values shows
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lower number of false negatives (FN). Using precision only or recall only

is not a true indication of the performance of the neural network and

produces a biased understanding of accuracy of the model. For this

purpose, F1-scores is a good measure of the performance of model and

it is the harmonic mean between precision and recall values. A higher

F1-scores values indicate good performance.

6.1 Evaluation of Smartphone sensor data

ML Model

Training data samples from mobile accelerometer sensor are used as

input to the model described in 5.2. The confusion matrix for the

prediction of model for test data set is shown in Table 6.2. It can be

seen in the confusion matrix that the model performance is good for

activities such as RUN (R), WALK (W), STILL (ST), SIT FEAR (SF) and

SIT NORMAL (SN).

Table 6.2: Confusion Matrix: Smartphone Data Model Performance

Predicted Labels
LS SS LD R SN SF ST W

T
ru

e
L
ab

el
s

LS 103 205 5 2 43 289 50 93
SS 11 486 4 0 141 172 230 79
LD 0 0 0 0 1096 0 0 0
R 0 0 0 723 0 0 0 3
SN 0 0 0 0 1233 0 0 0
SF 0 0 0 0 0 1043 0 0
ST 0 0 0 0 0 0 1069 0
W 1 12 0 0 0 0 0 963

The model is not performing very well for LYING DOWN (LD) activity

as it completely mis-classifies all of the samples into SIT NORMAL (SN)

class which is understandable because of the fact these two activities

are identical to each other i.e both the activities represent a stationary

state. Another thing that may contribute to this confusion is that the

position of mobile in pocket (thigh) there are no significant changes in

dimensional components of the accelerometer i.e. the x,y,z components

remain the same during these activities.

Similarly, for activity LIE-STAND (LS) and SIT-STAND (SS) model

performance is not good enough as it is not able to completely predict
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this activity and confuses it for W, ST, SF and SN. It may due to the

reason that this activity records the act of sitting, lying and getting up

and then getting back to sitting, lying position.

In the Table 6.3 the model metrics for activities are given which

indicates the performance of the model. Higher F1-score for W, ST,

and SF suggests that the model has high recognition accuracy on these

activities. Although, it can be noticed that for the activity LS precision

is higher but the recall values is lower, in this case F1-score of 0.23

correctly represents the accuracy of the model. For activity SN the

precision is low because it includes a higher number of false positives

from other classes. The average recognition accuracy of the achieved

by using smartphone sensor data is 70%.

Table 6.3: Accuracy Metrics: Smartphone Data Model

Activity Precision Recall F1-score
LS 0.9 0.13 0.23
SS 0.69 0.43 0.53
LD 0 0 0
R 1 1 1
SN 0.49 1 0.66
SF 0.69 1 0.82
ST 0.79 1 0.88
W 0.85 0.99 0.91

6.2 Evaluation of Smartwatch sensor data

ML Model

The confusion matrix for the prediction of model for test data set is

shown in Table 6.4. From the quantitative evaluation of the confusion

matrix it is evident that the model has performed well for all activities

except for SS and LS. It can be observed that from the misclassified

samples, majority of the samples are confused as walking. This may

be caused due to movement of hands between sitting and standing up,

hence it has similarities with walking activity.

The important difference to notice here is that the activity LD is

correctly classified by the model using smartwatch data compared to

smartphone data. The reason for this is that the position of smartwatch
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Table 6.4: Confusion Matrix: Smartwatch Data Model Performance

Predicted Labels
LS SS LD R SN SF ST W

T
ru

e
L
ab

el
s

LS 452 44 35 10 13 24 1 211
SS 20 585 0 0 13 0 9 496
LD 14 0 1077 0 0 5 0 0
R 0 0 0 724 0 2 0 0
SN 2 5 0 0 1226 0 0 0
SF 1 1 0 0 0 1041 0 0
ST 0 0 0 0 0 0 1065 4
W 4 0 0 0 0 0 0 972

on the wrist is different during SN than LD. This means that a different

position to thigh in case of mobile phone has significant impact on the

activity detection by model.

Table 6.5 shows the model metrics for activity recognition using

smartwatch data. F1-score for W, ST, SF, SN, R and LD are very good

which shows the ability of the model to correctly predict and recognize

these activities. F1-score of 0.57, 0.52 for LS and SS respectively illus-

trates a lower recognition accuracy. The average recognition accuracy

of the achieved by using smartwatch sensor data is 89%.

Table 6.5: Accuracy Metrics: Smartwatch Data Model

Activity Precision Recall F1-score
LS 0.92 0.57 0.7
SS 0.92 0.52 0.67
LD 0.97 0.98 0.98
R 0.99 1 0.99
SN 0.98 0.99 0.99
SF 0.97 1 0.98
ST 0.99 1 0.99
W 0.58 1 0.73

6.3 Evaluation of Data Fusion ML Model

Table 6.6 represents the confusion matrix for predicted samples in test

data. The input for this model is the fused extracted features from

smartphone and smartwatch data.
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The model shows good accuracy to predict all the activities except

LS. The prediction results for LS are comparatively better than single-

channel data but it still mis-classifies a significant number of LS sam-

ples into other classes. Although, the model has confused few values of

the SS class, main highlight of this model is that it has given a high ac-

curacy to predict samples in test for SS compared to the models using

one single source of data as show in Section 6.1 and 6.2.

Table 6.6: Confusion Matrix: Fused Data Model Performance

Predicted Labels
LS SS LD R SN SF ST W

T
ru

e
L
ab

el
s

LS 530 103 21 1 4 23 10 98
SS 20 1022 0 0 6 0 16 59
LD 0 0 1096 0 0 0 0 0
R 0 0 0 726 0 0 0 0
SN 0 2 0 0 1231 0 0 0
SF 2 0 0 0 0 1041 0 0
ST 0 2 0 0 0 0 1067 0
W 0 7 0 0 0 0 0 969

In the Table 6.7 the model metrics values represent higher values

for precision, recall and F1-score which depicts high recognition perfor-

mance by the model. The average recognition accuracy of the achieved

by using mobile sensor data is 95%.

Table 6.7: Accuracy Metrics: Fused Data Model

Activity Precision Recall F1-score
LS 0.96 0.67 0.79
SS 0.9 0.91 0.9
LD 0.98 1 0.99
R 1 1 1
SN 0.99 1 1
SF 0.98 1 0.99
ST 0.98 1 0.99
W 0.86 0.99 0.92
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CO N C L U S I O N

This chapter discusses the conclusion and summary of the work in

this research work. First section of the chapter presents a summary

of the results and findings of the work. The second section discusses

the solution of the objectives achieved by implementing the proposed

methods followed by limitations and future work.

7.1 Discussion

In this work, a multi-channel Ecological Momentary Assessment (EMA)

data collection system has been presented to improve the accuracy of

activity recognition to implement better solutions for mental health pa-

tients and to provide therapist with contextual information. The system

depends on tri-axial accelerometer data from smartphone and smart-

watch sensors. The results and finding from the study suggest that

smartphone and smartwatch data combined together show an increase

in accuracy of activity recognition. The accuracy metrics show that us-

ing fusion data yields result with very good accuracy. Model with using

only smartphone sensor as input data did perform well with activities

that are similar in nature. Data fed with smartwatch has relatively

better accuracy but it is unable to correctly predict the transition ac-

tivities. An overall and class-wise increase in accuracy is found when

using fusion data. In literature a work by [24] shows similar results

where smartphone and smartwatch sensor data are used together but
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the type of activities are walking, sitting, standing and driving. The

first there activities can be easily distinguished by our model using only

mobile data. Secondly, in the above literature extracted features from

raw data are arithmetic mean (AM) and standard deviation (STD) only

and different evaluation metrics are used to assess the performance of

the model. In our work we have suggested more similar activities like

LYING DOWN and SITTING which are very identical to each other due

to the stationary state, also we have added two transition-state activ-

ities i.e SIT-STAND and LIE-STAND to detection system. The results

from model for the newly included activities using fusion data are good

compared to using a single source of data.

7.2 Research Objectives and their solutions

Objective 1: Integrate multi-channel data collection to improve accu-

racy of the activity recognition

Solution 1: The first objective in this work in achieved by collecting

data by adding a new source of data i.e the smartwatch data by de-

veloping a Wear OS application and integrating it with the Android

application. This allows up to collect sensor data simultaneously.

Objective 2: To add the detection of new activities to the existing

system

Solution 2: Three new activities ’LYING DOWN’(LD), ’LIE-STAND’ (LS)

and ’SIT-STAND’ (SS) have been added to be detected by the system.

Smartphone data used separately is unable to detect between SIT NOR-

MAL (SN) and LYING DOWN (LD), therefore, the addition of smartwatch

collected data adds a solution to detect these two very similar activities.

Two transition activities ’LS’ and ’SS’ have also been added.

Objective 3: To compare the activity detection accuracy using single-

channel and multi-channel data

Solution 3: Comparison of single-channel and multi-channel data shows

that the results obtained by combining data from two sensors are very

good in terms of accuracy as compared to when only one source of data

is used to detect these activities.
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7.3 Limitations

Due to time limitations, the model performance is calculated only on

test data. A better idea is to use this neural network embedded in a

mobile application. This embedded model can then provide activity

recognition in real-time when the user is performing activities.

7.4 Future Work

In the above section, it has been discussed that in future we assess the

model performance by implementing this neural network in a mobile

application and perform our daily routine and then the model shall be

able to perform activity recognition. The number of extracted features

used in this study can be reduced to a low number of features by

keeping only significant features contributing to the performance of

the model. Dimensionality reduction techniques such as PCA can be

used further. This will save computational cost in training and testing.

Another way forward from this research is to develop a more robust

system for a higher number of activities using multi-channel data based

on psychological contexts. Additional data stream from smartphone or

smartwatch can be added to provide contextual information of the user

with better understanding of the scenario e.g. addition of heart beat

data can help us in extracting better and enriched information.
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