
IEEE-RITA Vol. X, Num. Y, Month. 20XX 1

Introduction to Programming Using Mobile Phones
and MIT App Inventor

Sergio Barrachina Mir and Germán Fabregat Llueca

Abstract—At the beginning of each year, we ask our new
undergraduate students in Computer Engineering if they have
ever developed a computer program. Surprisingly, the most
frequent answer is no. The few students who have attended
a Computer Science training module usually have some basic
programming notions; however, most of our students coming
straight from high school have never programmed. This lack
of basic programming skills represents a major drawback when
taking programming-related courses. This is especially true for
the course on Computer Organization, taught during the first
semester of the first year, as one of its main objectives is to
explain the processor architecture, and therefore a great part of
it revolves around programming in assembly language.

To tackle this lack of basic programming skills, a workshop
on mobile application programming using MIT App Inventor
is offered to freshmen. This workshop is highly welcomed and
positively received by the students, and we believe that it has
contributed to improving their performance on courses related to
programming, and in particular, on the Computer Organization
course.

Index Terms—Programming basic concepts, mobile program-
ming, MIT App Inventor

I. INTRODUCTION

THE Computer organization course is taught at Jaume
I University in the first semester of the first year of

the Computer Engineering and Computational Mathematics
degrees. Prior programming skills are not a prerequisite for
the course. In fact, in view of this, the course was redesigned
in the last years and two teaching resources [1][2] were
developed to support and motivate students in learning its
material. Even though these changes have improved success
rates and performance on the course, students without basic
programming skills still struggle; this is because the course
details the low-level functioning of computers, i.e., it is shown
how a computer executes programs in machine code. Thus a
student without a basic knowledge of programming concepts—
such as data types and structures, control structures, data
encoding, etc.—will not be able to build on this base to
understand the hardware mechanisms that make programming
possible.

On the other hand, despite the statements made since the
AENUI-CODDII [3] declaration in favor of including specific
science and information technology classes in basic schooling
at the secondary level and in the Spanish Baccalaureate,
computer science classes continue to be elective at these levels;
furthermore, only part of these classes teach programming.

S. B. and G. F. Authors are with the Department of Computer Science and
Engineering, Jaume I University, 12071–Castellón de la Plana, Spain (e-mail:
barrachi@uji.es and fabregat@uji.es).

This implies that, in practice, many of the students enrolling
in Computer Engineering degrees do not possess basic pro-
gramming skills, despite having chosen this specialization.

To remedy this situation, we have been offering an intensive
workshop to first year students at the beginning of their first
semester, aiming to help them develop a set of basic program-
ming skills in a practical and intuitive way, oriented especially
towards improving the learning and teaching process on the
Computer organization course.

We discussed this workshop and its results in the presenta-
tion “Can I program my phone? But I just got here!” published
in the proceedings of the conference XXV Jornadas sobre
Enseñanza Universitaria de la Informática (JENUI 2019) [4].
The presentation was selected as one of the top two at JENUI
2019 and suggested to be published in IEEE-RITA. This article
elaborates on that presentation by detailing the experimental
design, describing the suggested student projects in more
detail, and indicating in which way each project contributes
to achieving the learning objectives of the workshop.

II. LEARNING OBJECTIVES

The learning objective of the proposed workshop is that
first-year students master a set of basic programming skills
allowing them to improve their outcomes in related subjects,
especially on the Computer organization course. As discussed
above, this first-semester course introduces the Computer
organization concepts needed to understand how the processor
executes programs; consequently, the better a student under-
stands programming concepts, the easier it should be to meet
many of the learning objectives of this course.

III. EXPERIMENTAL DESIGN

To be able to reliably confirm that the students’ academic re-
sults after having taken the workshop are correlated with their
participation rather than being determined by other factors, the
participants should have been selected in a randomized way
from among all first-year students.

However, since we assumed that the workshop would help
students improve their learning in the courses most related
to programming and that it would be especially beneficial to
those with little or no knowledge of programming, we opted
for offering the workshop to all students, stating its learning
objectives and that it would be especially interesting for those
with little or no programming knowledge. In so doing, we
offered all students an opportunity to participate. For the same
reason, the workshop was offered free of charge and on a



2 IEEE-RITA Vol. X, Num. Y, Month. 20XX

Fig. 1: Graphical interface editor of MIT App Inventor

schedule on which all students could attend, regardless of the
group in which they were enrolled.

Due to the fact that the admission process was not ran-
domized, in comparing the results of students having taken
the workshop with those of students who did not, it should
be taken into account that any differences might in truth be
caused by other factors not considered in this study.

On the other hand, the students were informed that their
academic results would be used in aggregate form for this
study. However, to prevent this knowledge from affecting their
results, they were informed of this only after the assessment
stage of the various courses had been completed.

IV. CHOOSING A PROGRAMMING ENVIRONMENT

Since the goal of the workshop is for students to acquire
basic programming skills at the beginning of the academic year
in a practical and intuitive way, and in only a few sessions,
it is very important to choose the programming environment
most suited to accomplish this.

In order to introduce the basic programming concepts in
a fast-paced and visual way, the first decision we made was
to resort to a visual programming environment. Among the
available environments, we considered using either Scratch or
MIT App Inventor.

Scratch [5] is a rather well-known programming environ-
ment which allows users to create applications by dragging
and dropping blocks instead of writing code. It was developed
to help young people, especially those between 8 and 16
years of age, learn to program. Furthermore, it has been

successfully used both at earlier educational stages and in
introductory programming courses at the university level [6],
[7], [8]. Another feature making Scratch interesting is that its
programming environment can be easily extended. There are,
among others, extensions enabling the user to use Scratch to
program various hardware devices: Lego Mindstorms NXT [9]
robots or the ad-hoc hardware of the educational project
SUCRE4Kids [10].

MIT App Inventor1, on the other hand, is a visual pro-
gramming environment featuring an interface very similar to
that of Scratch, but which is oriented towards the intuitive
development of fully functional applications for mobile phones
and tablets. MIT App Inventor allows the user to visually
define both the elements of the application’s graphical user
interface (see Fig. 1) and its code (see Fig. 2). Thus it
allows the user to develop programs with the same facility
as does Scratch, but in addition the students obtain a tangible
product: a mobile application2 which they can demonstrate
and install on their friends’ and family members’ phones, or
even publish in the Google Play online shop. This orientation
towards mobile app programming and the development of a
real, demonstrable product provides an important motivation
and has typically tipped the scales in favour of MIT App
Inventor rather than Scratch as an introductory programming
environment for undergraduate students [11][12][13].

1http://appinventor.mit.edu/explore/about-us.html
2Even though MIT App Inventor currently only supports the development

of applications for Android, a version for iOS is in development. In any case,
there are environments based on MIT App Inventor that support publishing
applications for iOS, e.g., Thunkable (https://thunkable.com/).



IEEE-RITA Vol. X, Num. Y, Month. 20XX 3

Fig. 2: Code editor of MIT App Inventor

With respect to our goal of developing basic programming
skills useful for the Computer organization course, MIT App
Inventor possesses an additional advantage: it allows its apps
to interact with the mobile phone’s sensors (camera, timer,
GPS. . . ), so that it can be used for introducing the concepts
of input/output in an easy and practical way; these concepts
are subsequently elaborated in the coursework.

For all the above reasons, we decided to use the MIT App
Inventor platform in teaching this workshop.

V. MOBILE APP DEVELOPMENT WITH MIT APP
INVENTOR

The workshop “Mobile app development with MIT App
Inventor” is available at the following URL to any teacher who
wishes to teach it or to recommend it to students as a self-study
tool: <http://lorca.act.uji.es/curso/mit-app-inventor/>.

It is directed at students recently enrolled in a Computer
Engineering degree, especially those with no prior education
in programming. Upon completion, the student should be able
to do the following:
LO1 Distinguish values from variables.
LO2 Recognize various conditional structures and know some

of their uses.
LO3 Recognize various iterative structures and know some of

their uses.
LO4 Recognize some of the objects provided by MIT App

Inventor.
LO5 Distinguish between object properties and functions.
LO6 Encapsulate blocks of code using functions.

LO7 Interact with the input/output devices of a mobile phone
(timer and camera).

LO8 Design simple user interfaces.
LO9 Recognize various types of events (button click, alarm,

screen initialization and camera response) and link them
to parts of the code.

LO10 Develop simple mobile apps using MIT App Inventor.
Given that the workshop must be short in duration in order

to be taught as a whole at the beginning of the academic year
without overloading the students, one has to bear in mind that
the above objectives will be met at a very basic level. Based
on this consideration, we recommend a workshop duration of
10 hours, split for example into 4 sessions of 2.5 hours each,
paced at one session per week.

Following MIT App Inventor recommendations for intro-
ductory courses3, in the first session the programming envi-
ronment is presented, the application is accessed, the students’
mobile phones are set up correctly, and the four basic tutorials
provided by MIT App Inventor are completed in a guided way.
The latter show how to develop the following apps step-by-
step: i) an application playing speech sounds, ii) an extension
of the former, an application playing speech sounds when the
user shakes the phone, iii) an application allowing the user to
drag a ball across the screen with a finger, and iv) a drawing
application that allows the user to take photos.

In the following sessions, rather than drawing on the
MIT App Inventor’s library of tutorials4, we have opted for

3http://appinventor.mit.edu/explore/teach.html
4http://explore.appinventor.mit.edu/ai2/tutorials



4 IEEE-RITA Vol. X, Num. Y, Month. 20XX

TABLE I
RELATIONSHIP BETWEEN THE PROJECTS AND THE

LEARNING OBJECTIVES OF THE WORKSHOP

1 2 3 4 5 6 7 8 9 10

ALU simulator
Registers bank

RGB photo
Memory game

Weather app

developing our own projects which promote the workshop’s
learning objectives by introducing computer architecture con-
cepts in addition to basic programming notions.

Each of the projects proposes the incremental, step-wise
development of a specific application. The projects have been
organized in such a way that the student obtains a functional
version as soon as possible, even if it represents a very basic
and incomplete version of the final application. With each
subsequent step the student enhances the project further, but
here again the idea is to arrive at a new functional version as
soon as possible, so that the student can test the extensions just
implemented. In this way, the various components and blocks
of code needed to develop the application can be introduced
incrementally.

Furthermore, two kinds of measures have been taken to
accommodate diversity. On the one hand, at the end of each
step we provide a link allowing the student to download a
correct version of the project after completion of the given
step. In this way, if a student does not manage to complete
a given step on his/her own, he/she can always continue with
the next one while building on a correct version. On the
other hand, at the end of many of the steps, possible further
extensions related to the one just realized are suggested. In
this way, if a student is far ahead of the others, he/she can
always explore the suggested extensions on his/her own.

The projects were designed to tackle the learning objectives
of the workshop relevant to the Computer organization course
(LO1, LO2, LO3, LO6, LO7 and LO9) in an incremental
manner and to introduce course-related concepts: computer
components and information access (Simulator of an ALU and
of a registers bank), encoding and input/output (RGB photo),
complex data structures (Memory game) and interruptions
(Weather app). The relationship between the various projects
and the learning objectives is shown in Table I.

A. ALU Simulator

The first project proposed develops a mobile app which
simulates an arithmetic logic unit (ALU) (see Fig. 3) which
carries out an arithmetic operation—the user has a choice
between addition, subtraction, multiplication and division—on
two numeric operands, and displays the result. The develop-
ment of this project encompasses the following stages: i) an
adder, which given two inputs updates its output on button
press; ii) an ALU which allows the user to select the desired
operation and updates the result on button press; and finally,
iii) an ALU which periodically updates its result as a function
of its input values and the operation selected.

Fig. 3: ALU simulator

Fig. 4: Registers bank simulator

This project first demonstrates the use of the graphic layout
elements, tags, drop-down lists and the mobile phone timer.

Concerning programming, the project demonstrates how to
modify object properties, read the selected element of a drop-
down list, the use of conditional control structures and how to
respond to a timer event.

B. Registers Bank Simulator

The second project proposes developing a graphic simulator
of a bank of 8 registers (see Fig. 4) which can simultaneously
read out two of its registers and write a numerical value into
one of them. The extension suggested at the end of this project
is to integrate the above-mentioned ALU simulator with the
registers bank so the former operates on the register contents.

The first step of this project consists in creating the graphical
interface showing the register contents, whose values are given
as list elements. In the second step the student uses code to
initialize this list. The third step implements the read function
and the fourth the write function. The final step consists in
carrying out a read or write operation depending on whether
a corresponding box is checked.

Regarding the graphical interface, this project introduces the
use of boxes and a more complex use of the graphic layout
elements, including the personalization of background colors.

In terms of programming skills, we introduce the list as a
data structure with its basic operations: declaration, initializa-



IEEE-RITA Vol. X, Num. Y, Month. 20XX 5

Fig. 5: RGB photo

tion, adding elements, and reading and writing them; global
variables; iterative control structures and procedures.

C. RGB Photo

The third project consists in the development of a mobile
application that allows the user to select a color using RGBA
components, then take a photo and shift its hue along the color
axis previously defined (see Fig. 5). The value of each RGBA
color component can be modified using a sliding control and
is shown as a hexadecimal number. The selected color is
displayed in three ways: as a hexadecimal number; by varying
the hue of a box without taking transparency into account; and
by varying the hue of a box in which a selected level of trans-
parency is applied, which allows an underlying chessboard
pattern to become visible to a corresponding degree.

This project comprises four steps: i) define the graphical
interface; ii) select the values of color components using slid-
ing controls; iii) construct the color based on its components;
and iv) take a photo and modify its hue based on the selected
color.

In this project we introduce the use of sliding controls and
access to the mobile phone’s camera for taking photos.

In terms of programming skills, this project expands on
the use of procedures and control structures, and introduces
aspects of representation—the hexadecimal representation of
numbers—and information encoding—the conversion of real
numbers (position of the slider) into integers and the construc-
tion of a color value (4 bytes) based on its components (1 byte
each).

D. Memory Game

This project consists in the development of a memory game
in which 6 pairs of identical cards have to be matched while
only two cards can be turned at any one time (see Fig. 6).

This project is divided into the following steps. The first
step consists in creating the graphical interface of the game,
loading the images corresponding to the front and back of the
cards and adding the code for turning up to three cards—which
is actually implemented using buttons. In the second step we
show how sounds can be added to the game and how to make
the app play a sound whenever a card is turned. The third step

Fig. 6: Memory game

demonstrates how to use a procedure to turn a specific card
based on a parameter value—instead of repeating the same
code multiple times for turning each card. The fourth step
illustrates how a data structure—a list of lists—can capture the
information required for the logic of the game and simplify
the above procedure call. The fifth and final step specifies the
algorithm that has to be implemented to complete the game—
up to this point, cards could be turned, but the rules of the
game did not yet apply. The final step also includes playing
sounds when turning identical vs. different cards, and at the
end of the game—when all cards have been paired. At the
end the project includes an additional optional step in which
possible extensions are specified.

This project does not introduce any new interface elements,
although it demonstrates how buttons can be used to simulate
other types of elements, in this case cards, simply by changing
their background image.

The following programming concepts are introduced: i) a
more complex data structure (a list of lists) and how to access
its elements; ii) the use of local variables in a procedure;
and, finally, iii) how to implement an algorithm that is more
complex than the ones seen up to this point.

E. Weather App

This project proposes the development of an application
that downloads and visualizes meteorological data from the
Spanish State Meteorological Agency (Agencia Estatal de
Meteorología, AEMET) (see Fig. 7). This project is the most
complex one and demonstrates how to obtain information
from a web service and work with asynchronous responses.
Furthermore, unlike the previous projects, which used only a
single screen, this project allows the user to switch between
a set of screens, each of which requests or shows a specific
type of information.

The project is organized into the following steps. In the
first step, we describe the OpenData API used by AEMET,
the JSON format and the MIT App Inventor extension which
allows the developer to work with JSON data. In the second
step, we describe the web component and how to use it to send
web requests and react once the response to a particular request
is received. In the third step, we demonstrate how to use a



6 IEEE-RITA Vol. X, Num. Y, Month. 20XX

Fig. 7: Weather app

canvas to represent the received data graphically. In the fourth
step, we demonstrate how to transfer data between the different
screens of the application. In the final step we introduce
error management mechanisms which allow the application
to handle both expected and unexpected errors in the most
adequate manner possible.

Concerning the interface, in this project students see for the
first time how to create an application consisting of several
screens and how to use canvasses for plotting graphs.

In terms of programming skills, the students see how to
transfer information across several screens of an application,
how to use components to receive web information in an
asynchronous manner, and how to manage the possible errors
that may occur while the application is running.

VI. RESULTS

The workshop was offered to the 164 students enrolled in
the Computer organization course, while specifying that it
would be especially useful to those with no prior knowledge
of programming. Of these, 46 students enrolled and 41 (90%)
completed the workshop. However, one has to bear in mind
that the fact that the students themselves chose to participate
in the workshop could have influenced their motivation to
complete it, which would explain the high completion rate.

The students’ attitude during the workshop was markedly
positive; they participated actively and completed the proposed
exercises. Furthermore, even though additional hints were
included after each of the steps, the students did not fall back
on them, except for one group on one occasion. Even though
they knew this support was available, the students preferred to
find the solutions on their own. We should bear in mind that the
high motivation and willingness to learn demonstrated in the
workshop might also have influenced their academic results.

The students assessed the workshop using a standard student
satisfaction survey5 in which we asked them about the level
of effort required, the knowledge acquired, the expertise and
dedication of the teacher, the workshop content, which aspects
they considered useful and suggestions for improvement. The
first four aspects were evaluated using questions which the

5We used the “Class Evaluation” template in the Google Forms application
to evaluate student satisfaction.

students answered on a five-point Likert scale, while open
questions were used for the last two. We received mostly pos-
itive responses concerning the first four aspects. For example,
below we list the questions regarding the workshop content:

Q1: The goals of the workshop were clear.
Q2: The workshop content was organized and planned well.
Q3: The workload was adequate.
Q4: The students could actively participate in the workshop.

As can be seen in Fig. 8, the majority of the students agreed
or strongly agreed with each of these statements.

In response to the first open question (“Which aspects of the
workshop did you find most useful?”), the students mentioned
the following points: its focus on mobile app programming;
having learned to design and program applications; having
seen how to put concepts in relation while thinking about how
to build a program; and having acquired basic programming
skills.

The following answers to the second open question (“How
would you improve this workshop?”) stand out: more hours
to be able to complete more exercises and touch on more
subjects; and developing more games.

On the other hand, before the workshop we asked the
students to answer a quiz featuring 15 very easy questions
about basic programming concepts. The students took the quiz
again after completing the workshop. As can be seen in Fig. 9,
the grades obtained after the workshop (median: 8.0) were
better than those obtained initially (median: 6.67).

In order to verify whether the positive variation between
the mean results obtained before and after the workshop can
be considered significant, we carried out Student’s repeated-
measures t-test6 on the grades obtained, obtaining a t value
of 9.26 and a p-value of 0.84 · 10−11; from this we conclude
that the observed improvement in grades is significant with a
high probability.

We also checked whether the academic results obtained by
the students on the five courses taught in the first semester
of the first year differed depending on whether the students
had benefited from the workshop or not. To this end, we drew
on listings of grades the students had earned on these courses
and an additional listing combining the results of all courses
except English. This last listing included only students who
had attended all four courses and assigned to each student the
average grade earned on them.

For this study we divided the students into two groups:
those who had benefited from the workshop and all others
(who had either not benefited or not participated). A student
was considered to have benefited from the workshop if he/she
scored at or above the median grade (an 8) on the basic
programming concepts quiz. Out of the 41 students who
completed the workshop, 30 (73%) met this condition.

Table II shows the following information for each course,
distinguishing between students who benefited from the work-
shop and all others: the number of students, the median grade,

6We carried out Student’s repeated-measures t-test using the ttest_rel
function from the stats module in the SciPy Python library.



IEEE-RITA Vol. X, Num. Y, Month. 20XX 7

-20 -10 0 10 20 30 40 50 60 70 80 90 100

Answers (%)

Q1

Q2

Q3

Q4Q
u

e
s
ti

o
n Strongly disagree

Disagree
Neutral
Agree
Strongly agree

Answers

Fig. 8: Percentage of students who selected each of the five possible answers, with neutral responses (in gray) centered at 0,
for each of the four questions asked about the workshop content

4.0 6.0 8.0 10.0

Grade (pooled)

0

5

10

15

20

N
u

m
b

e
r 

o
f 

s
tu

d
e
n

ts

Quiz1
Quiz2

Quiz

Fig. 9: Results obtained on the basic programming concepts
quiz, before and after completing the workshop

the pass rate and the result of the Shapiro-Wilk test for
normality7.

As is evident, the number of students varies slightly across
courses depending on how many students attended. It is
interesting to note that although around 120 students attended
each course, only 83 attended all courses except English.

Table II also confirms that the median grades earned by
students who benefited from the workshop are higher than
those of students who did not. We should point out that we
observe a smaller difference between the median grades of the
two student groups precisely in the English course, on which
performance is not expected to be influenced by benefiting
from the workshop.

On the other hand, the pass rate among students who have
benefited from the workshop is also higher in all subjects
except Computer organization, where it is slightly lower
(86.67% vs. 87.85%). Nevertheless, the pass rate in this course
is higher this year than it was last year (76%) and higher
than the pass rates on all other courses this year, except for
English, on which results resemble those of past years. We
still regard the workshop as having had a positive impact on
the Computer organization course, despite the slightly lower
pass rate, given the following considerations: i) the pass rate
in both groups is above 85%; ii) the median grade of students
who have benefited from the workshop is higher than that of
students who did not, and iii) in the grade distribution of the
two groups, presented below, it can be seen that students who
have benefited from the workshop show better results.

7We carried out the Shapiro-Wilk test for normality using the shapiro
function from the stats module in the SciPy Python library.

Finally, it is interesting to observe that the combined pass
rate in the mathematics and computing courses is 21% higher
for the group of students who benefited from the workshop.

To evaluate the grade distributions of each course in more
detail, we plotted them as boxes representing the middle two
quartiles and bars representing the lowest and highest quartiles
(see Fig. 10). It can be seen that for all courses except English,
the grades of students who benefited from the workshop both
start out higher and in their majority remain higher than
those of their classmates who did not. This difference in
grade distribution is especially significant in the Computer
organization and Basic computing courses, where more than
half of the students who benefited from the workshop earned
higher grades than three quarters of those who did not.

On the other hand, in order to visualize the percentage of
students who earned a specific grade in each course, Fig. 11
shows normalized histograms of the grades earned by students
who have benefited from the workshop and those who did not
for each course taught in the first semester of the first year,
and for the combination of all courses except English. On
the Computer organization and Basic computing courses, the
greatest percentage difference is found for the high grades:
between 8 and 10 for the former; and between 7 and 8,
but especially between 9 and 10, for the latter. For English,
the histograms are very similar for both groups of students.
For Mathematics and Programming, even though percentage
differences can be seen in the high grades, there are also
spikes in the low grades, although they are more pronounced in
Mathematics than in Programming. Finally, when combining
the grades in all courses except English, we can see how
the histogram representing the students who have benefited
from the workshop looks similar to that representing the other
students but is shifted towards the right, and further shows
high percentage differences for grades between 6 and 8, and
between 9 and 10.

To gauge whether the differences between the means of the
various groups of grades shown in Fig. 11 are statistically
significant, either Student’s or Welch’s t-test can be used. To
make the choice we must first ascertain whether the samples
to be compared come from normally distributed populations.

As can be seen in Table II, the only grades passing the
Shapiro-Wilk test for normality (i.e., yield a p-value ≥ 0.05)
are those for English (with p-values of 0.157 and 0.085 for
students who benefited from the workshop and those who did
not, respectively) and those for all courses except English
combined (with p-values of 0.423 and 0.746, respectively).
In all other cases, p-values lower than 0.05 are found for at
least one of the two student groups; thus the null hypothesis—



8 IEEE-RITA Vol. X, Num. Y, Month. 20XX

Course

0

2

4

6

8

10

G
ra
d
e

All -English Basic Comp. Comp. Org. English Mathematics Programming

N
o

Ye
s

MIT

N
o

Ye
s

MIT

N
o

Ye
s

MIT

N
o

Ye
s

MIT

N
o

Ye
s

MIT

N
o

Ye
s

MIT

No
Yes

MIT

Fig. 10: Grade distribution of students who benefited from the workshop (orange) and those who did not (blue), for each
individual course and for all courses combined except English

0.0 2.0 4.0 6.0 8.0 10.0

Grade

0

5

10

15

20

25

30

35

%
 s

tu
d

e
n

ts
 a

tt
e
n

d
in

g

No
Yes

MIT Workshop

(a) Computer organization

0.0 2.0 4.0 6.0 8.0 10.0

Grade

0

5

10

15

20

25

%
 s

tu
d

e
n

ts
 a

tt
e
n

d
in

g

No
Yes

MIT Workshop

(b) Basic computing

0.0 2.0 4.0 6.0 8.0 10.0

Grade

0

10

20

30

40

%
 s

tu
d

e
n

ts
 a

tt
e
n

d
in

g

No
Yes

MIT Workshop

(c) English

0.0 2.0 4.0 6.0 8.0 10.0

Grade

0

5

10

15

20

%
 s

tu
d

e
n

ts
 a

tt
e
n

d
in

g

No
Yes

MIT Workshop

(d) Mathematics

0.0 2.0 4.0 6.0 8.0 10.0

Grade

0

5

10

15

20

25

%
 s

tu
d

e
n

ts
 a

tt
e
n

d
in

g

No
Yes

MIT Workshop

(e) Programming

0.0 2.0 4.0 6.0 8.0 10.0

Grade

0

5

10

15

20

25

30

35

%
 s

tu
d

e
n

ts
 a

tt
e
n

d
in

g

No
Yes

MIT Workshop

(f) All except English

Fig. 11: Normalized histograms of the grades obtained by students who have benefited from the workshop (orange) and all
other students (blue) on various courses taught in the first semester of the first year



IEEE-RITA Vol. X, Num. Y, Month. 20XX 9

TABLE II
NUMBER OF STUDENTS, MEDIAN GRADE AND ITS 95% CONFIDENCE INTERVAL, PASS RATE AND SHAPIRO-WILK TEST

RESULTS FOR EACH GRADE LISTING

MIT Shapiro-Wilk
Course workshop N Median 95% CI Dif % Passed Dif W p-value

Computer organization Yes 30 7.87 [7.22, 8.52] 1.43 86.67 −1.18 0.98 0.053
No 107 6.44 [6.11, 6.77] 87.85 0.92 0.020

Basic computing Yes 26 6.90 [6.11, 7.69] 1.50 73.08 16.09 0.96 0.003
No 93 5.40 [5.00, 5.80] 56.99 0.94 0.120

English Yes 28 6.90 [6.48, 7.32] 0.18 92.86 8.34 0.98 0.157
No 84 6.72 [6.42, 7.03] 84.52 0.94 0.085

Mathematics Yes 27 5.80 [4.78, 6.81] 1.41 55.56 11.23 0.96 0.005
No 97 4.39 [3.86, 4.92] 44.33 0.93 0.056

Programming Yes 26 7.35 [6.34, 8.36] 0.85 76.92 12.92 0.93 0.000
No 100 6.50 [5.96, 7.04] 64.00 0.90 0.014

All computer science courses Yes 24 7.30 [6.51, 8.10] 0.83 79.17 12.99 0.95 0.012
No 68 6.47 [6.01, 6.93] 66.18 0.93 0.086

All except English Yes 23 7.04 [6.32, 7.76] 1.15 82.61 20.94 0.98 0.423
No 60 5.88 [5.43, 6.34] 61.67 0.97 0.746

which assumes that the samples fit a normal distribution—has
to be rejected (in other words, the samples are probably not
normally distributed).

Once we have verified that the English grades as well as
the grade averages over all other courses represent normally
distributed populations, the next step is to check whether
the variances of the populations corresponding to students
benefited from the workshop and all other students are equal.
If the variances are equal, Student’s t-test should be used;
otherwise, Welch’s t-test is the appropriate one.

Applying the Levene test8 to the English results of students
who benefited from the workshop and those who did not yield
a W-statistic of 2.55 and a p-value of 0.12 (> 0.05); thus it can
be assumed that the population variances are similar. Applying
the same test to the grade averages over all courses except
English earned by students who benefited from the workshop
and those who did not yield a W-statistic of 0.56 and a p-value
of 0.46 (> 0.05); thus also in this case population variances
can be assumed to be similar.

Applying Student’s t-test9 to the relevant grades, i.e., those
earned in English and in the combination of all other courses,
yields the results shown in Table III. In applying the above
threshold of significance (α = 0.05) we can conclude the
following: i) for the English course (p-value = 0.187 > 0.05)
there is no statistically significant difference between work-
shop participants and other students, as expected; and ii) for
the combination of all other courses (p-value = 0.038 < 0.05
and t = 1.8 > 0) we can reject the null hypothesis and accept
the alternative hypothesis, which states that the grades earned
by students who benefited from the workshop are significantly
higher than those earned by the other students.

We should nevertheless remember that the students them-
selves chose to participate in the workshop. Thus we have to

8We carried out the Levene test using the levene function from the
stats module in the SciPy Python library.

9We carried out Student’s t-test for independent samples using the
ttest_ind function (from the stats module in the SciPy Python library)
indicating that the population variances are equal.

TABLE III
RESULTS OF STUDENT’S T-TEST FOR GRADES IN ENGLISH

AND THE COMBINED GRADES IN ALL COURSES EXCEPT
ENGLISH, AND THE 95% CONFIDENCE INTERVAL OF THE

DIFFERENCE BETWEEN THE MEDIAN GRADES OF
WORKSHOP PARTICIPANTS AND ALL OTHER STUDENTS

Student’s t-test
Course t p-value 95% CI

English 0.89 0.187 [−0.32, 0.84]
All except English 1.80 0.038 [−0.08, 1.67]

bear in mind that the higher grades earned by students who
benefited from the workshop as compared to their classmates
might in truth be owing to other factors not investigated in
this study.

VII. CONCLUSIONS AND FUTURE WORK

We have created a mobile application programming work-
shop using MIT App Inventor for first year undergraduate
students with the objective of helping students develop a set of
basic programming skills that improve their learning process,
especially on the Computer organization course. The work-
shop follows the general philosophy of the MIT App Inventor
tutorials, which is to allow students to see tangible results
of their work as soon as possible. To this end we propose
five projects in increasing order of difficulty, organized into
a sequence of steps, which allows the necessary skills to be
acquired and tested in a gradual way.

The workshop was favorably received by the students.
Almost all students who enrolled completed the workshop
and evaluations were very positive. In addition, the students
were presented with a quiz about basic programming concepts
before and after the workshop, and the results show significant
improvements in knowledge.

On the other hand, when comparing the grades earned in
our first-year courses by students who have benefited from



10 IEEE-RITA Vol. X, Num. Y, Month. 20XX

the workshop with those earned by all other students, we
observed a greater percentage of students from the former
group obtaining higher grades, especially in programming-
related courses.

In terms of future work, we intend to modify the workshop
by incorporating some of the changes recommended by the
students: better allocate the time dedicated to the various
projects; substitute one of the current projects with a game; and
succinctly explain the resources offered by MIT App Inventor
at the beginning of the workshop. We will also take advantage
of the new editions to gather more information about its effect
on the academic performance of its participants.

ACKNOWLEDGMENTS

First of all we would like to thank the developers of
MIT App Inventor and the creative community that has taken
shape around this tool. We consider it an excellent platform for
STEM dissemination, which we think will benefit our society.

We would also like to thank our colleagues who kindly
made available the grades of the courses for which they are
responsible: Juan Carlos Amengual Argudo, Fernando Javier
Hernando Carrillo, José Luis Llopis Borrás, Ana María Lluch
Peris, Marina Murillo Arcila, and María Luisa Renau Renau.

Finally, we would also like to acknowledge the support
received from the Engineering and Computer Science Depart-
ment of Jaume I University.

REFERENCES

[1] S. Barrachina, G. Fabregat, C. Fernández, and G. León, “Utilizando
ARMSim y QtARMSim para la docencia de Arquitectura de Compu-
tadores,” ReVisión, vol. 8, no. 3, p. 2, 2015.

[2] S. Barrachina, G. Fabregat, and J. V. Martí, “Utilizando Arduino DUE
en la docencia de la entrada/salida,” in Actas de las XXI Jornadas de
la Enseñanza Universitaria de la Informática. Universitat Oberta La
Salle, 2015, pp. 58–65.

[3] X. Canaleta, F. Sánchez, I. Jacob, Á. Velázquez, and M. Marques, “De-
claración AENUI-CODDII por la inclusión de asignaturas específicas de
ciencia y tecnología informática en los estudios básicos de la enseñanza
secundaria y bachillerato,” in Actas de las XX Jornadas sobre Enseñanza
Universitaria de la Informática, july 2014, pp. 229–236.

[4] S. Barrachina Mir and G. Fabregat Llueca, “¿Puedo programar mi
móvil? Pero si acabo de llegar,” Actas de las Jornadas sobre Enseñanza
Universitaria de la Informática, vol. 4, 2019.

[5] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
Scratch programming language and environment,” ACM Transactions on
Computing Education (TOCE), vol. 10, no. 4, pp. 16:1–16:15, 2010.

[6] D. Topalli and N. E. Cagiltay, “Improving programming skills in engi-
neering education through problem-based game projects with Scratch,”
Computers & Education, vol. 120, pp. 64–74, 2018.

[10] S. Trilles and C. Granell, “SUCRE4Kids: El fomento del pensamiento
computacional a través de la interacción social y tangible,” Actas de las
XXIV Jornadas sobre Enseñanza Universitaria de la Informática, vol. 3,
no. 0, pp. 303–310, 2018.

[7] D. Ozoran, N. Cagiltay, and D. Topalli, “Using Scratch in introduction
to programming course for engineering students,” in 2nd International
Engineering Education Conference (IEEC2012), vol. 2, 2012, pp. 125–
132.

[8] S. P. Roche and N. M. Martínez, “Evaluación de entornos de programa-
ción para el aprendizaje,” in Actas de las XVII Jornadas sobre Enseñanza
Universitaria de la Informática, july 2011, pp. 83–90.

[9] R. Muñoz, T. S. Barcelos, R. Villarroel, M. Barría, C. Becerra, R. Noel,
and I. Frango Silveira, “Uso de Scratch y Lego Mindstorms como apoyo
a la docencia en fundamentos de programación,” in Actas de las XXI
Jornadas de la Enseñanza Universitaria de la Informática. Universitat
Oberta La Salle, 2015, pp. 248–254.

[11] S. Papadakis, M. Kalogiannakis, V. Orfanakis, and N. Zaranis, “Novice
programming environments. Scratch & App Inventor: a first compari-
son,” in Proceedings of the 2014 Workshop on Interaction Design in
Educational Environments. ACM, 2014, pp. 1–7.

[12] S. A. Nikou and A. A. Economides, “Transition in student motivation
during a Scratch and an App Inventor course,” in 2014 IEEE Global
Engineering Education Conference (EDUCON). IEEE, 2014, pp. 1042–
1045.

[13] D. Wolber, “App Inventor and real-world motivation,” in Proceedings of
the 42nd ACM Technical Symposium on Computer Science Education.
ACM, 2011, pp. 601–606.

Sergio Barrachina Mir graduated in Telecommuni-
cations Engineering (major in Electronics) from the
Technical University of Valencia in 1995 and earned
his PhD in Computer Engineering at Jaume I Uni-
versity in 2003, where he is Associate Professor in
Computer Architecture and Technology since 2012.

He has been teaching mainly first- and second-
year courses of the former Computing degree and the
current Computer Engineering and Computational
Mathematics degrees.

He is member of the High Performance Computing & Architectures
(HPC&A) research group, with which he has participated in numerous projects
related to high-performance computing and architectures.

Germán Fabregat Llueca graduated in Physics
(major in Electricity, Electronics and Computing)
from Valencia University in 1989 and earned his
PhD in the same discipline in 1996. He has been
teaching at Jaume I University since 1991 and is
Associate Professor in Computer Architecture and
Technology since 2001.

His work focuses on fault tolerance, embedded
systems and sensor networks, with a special interest
in industrial applications. His teaching work addi-

tionally features the continuous development of teaching support applications
as well as practice equipment, simulators, systems programming environ-
ments, etc.


