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29 Abstract

30 E-noses can be routinely used to evaluate the volatile profile of tomato samples once the sensor drift 

31 and standardization issues are adequately solved. Short-term drift can be corrected using a strategy 

32 based on a multiplicative drift correction procedure coupled with a PLS adaptation of the Component 

33 Correction. It must be performed specifically for each sequence, using all sequence signals data. With 

34 this procedure, a drastic reduction of sensor signal %RSD can be obtained, ranging between 91.5% 

35 and 99.7%for long sequences and 75.7% and 98.8% for short sequences. On the other hand, long-

36 term drift can be fixed up using a synthetic reference standard mix (with a representation of main 

37 aroma volatiles of the species) to be included in each sequence that would enable sequence 

38 standardization. With this integral strategy, a high number of samples can be analyzed in different 

39 sequences, with a 94.4% success in the aggrupation of the same materials in  PLS-DA two-

40 dimensional graphical representations. Using this graphical interface e-noses can be used to 

41 developed expandable maps of volatile profile similitudes, which will be useful to select the materials 

42 that most resemble breeding objectives or to analyze which preharvest and postharvest procedures 

43 have a lower impact on the volatile profile, avoiding the costs and sample limitations of gas 

44 chromatography. 

45

46 Keywords: electronic nose, drift correction, chemometrics, sequence standardization, tomato.
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48 Introduction

49 The objective evaluation of flavor in crops such as tomato is expensive and time-consuming, 

50 consequently, this trait has been usually disregarded. Today it is known that one of the main factors 

51 under the loss of flavor relies on the loss of alleles related to the contents of aroma volatiles [1], 

52 and the use of delayed ripening genes that alter the aroma profile, an effect that depends on the 

53 genetic background [2]. Additionally, tomato flavor can also be altered by the preharvest and 

54 postharvest management of the crop that also alter the production of volatiles [3 – 6],  .

55 In order to satisfy the demands of high quality markets, it would necessary to include flavor 

56 evaluation, and especially the volatile profile, during the development of breeding programs [7], 

57 cultivation, and postharvest procedures. In this context, the use of trained panelists or the precise 

58 volatile quantifications by gas chromatography-mass spectrometry is discarded considering that 

59 these evaluations are too expensive and time-consuming and, consequently, not adequate to 

60 evaluate a high number of samples. 

61 As an alternative, electronic noses (e-noses) were designed to evaluate the volatile profiles of 

62 agricultural products [8]. For this purpose, they have been usually applied to classify materials 

63 considering their quality characteristics, their origin, the variety or the presence of diseases, 

64 additives, adulterations, and off-flavors in different fruits and vegetables (tomato, kiwifruits, peach, 

65 nectarine, apple, banana, persimmon, grape, watermelon, strawberry, blackberry, onion, potato, 

66 pumpkin, broccoli, etc.), grains (wheat, rice, maize, peanuts, etc.), aromatic and medicinal plants 

67 (tea, coffee, saffron, cocoa, oregano, ginseng, etc.), processed products (oils, juices), livestock and 

68 poultry meat, and fish [8–12]. Most of these applications were modeled and tested in a short-term 

69 scenario, using a limited number of samples. However, the application of this technology to the 

70 evaluation of materials in breeding programs and food industry makes it is necessary to assure the 

71 capability to process a high number of samples in the same day, as well as being able to compare 

72 them with data obtained in previous assays. By doing so, it would be possible to apply e-noses to 

73 selection and quality control programs, in which each new sample is compared with reference 
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74 values or fingerprints obtained in previous assays with elite materials grown and handled in ideal 

75 conditions. From this point of view, the objective would not be centered on classifying a new 

76 sample, but to have an idea of its distance to elite reference samples. Consequently, it would be 

77 possible to select the best individuals or those preharvest or postharvest procedures that minimize 

78 their impact on the volatile profile.

79 In order to take advantage of the capabilities of e-noses, it would be necessary to overcome the 

80 effects of sensor drift. This phenomenon is defined as temporary or gradual changes in one or some 

81 sensor properties which causes distorted response measures and reduces the validity of the 

82 electronic fingerprints. It is inevitable and caused by complex and dynamic processes, such as 

83 changes in room environmental conditions (temperature or humidity), changes in the composition 

84 of measured samples (component interactions), instrument operational disturbances (sensors 

85 thermal and memory effects, aging or poisoning) [13, 14]. These changes can be noticed both, in 

86 signals within a work sequence (short-term drift) and signals obtained in different work sequences 

87 (long-term drift). The improvement of sensor technology at the manufacturing stage to enhance its 

88 stability over time has contributed to reduce these problems. However, despite the advances 

89 obtained, a regular calibration is still required to limit the effects of sensor drift. It can be performed 

90 using external standards and statistical multivariate calibration models. Nonetheless, multivariate 

91 calibration requires a large number of samples and frequent re-calibrations of the sensor arrays and 

92 this would limit the number of new samples analyzed. Therefore, a new model calibration transfer 

93 or update and signal standardization using only a small number of reference samples would 

94 represent an interesting solution to keep the system operative for long periods [14]. 

95 In the last two decades, an enormous research effort has been made on different methodologies 

96 aimed to properly process signals and data from e-noses (reviewed by [13–15]). Nevertheless, it 

97 seems clear that, despite the high amount of research on drift correction and calibration update 

98 methods developed, these proposals were not routinely used, except for component correction and 

99 directed standardization methods. The best solutions proposed up to now rely on the analysis of a 
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100 high number of samples to develop robust models or use simple volatile mixes. These approaches 

101 are distant from the real context of tomato evaluation. This species has a complex volatile profile 

102 with more than 400 compounds, with nearly 30 of them playing an important role in tomato aroma 

103 perception [2]. On the other hand, the need to develop models with a high number of samples would 

104 not be realistic in high-throughput evaluations, as the models would have to be recalculated each 

105 time a sensor has to be changed.

106 In this context, although the use of commercial electronic noses for the evaluation of volatile 

107 profiles has a huge potential, it is necessary to develop an operating methodology enabling the 

108 routine evaluation of wide collections of real samples. This is, in fact, the aim of this paper, to 

109 propose a practical methodology to correct drift within and between sequences, using a minimum 

110 number of samples to calibrate the models and a tomato-like complex synthetic reference mix to 

111 standardize sequences. Finally, the development of long-term expandable partial least squares 

112 discriminant analysis (PLS-DA) graphical maps of e-nose volatile profiles is proposed as a valuable 

113 tool to enable the routine evaluation of the volatile profile of new samples, analyzing the relative 

114 distance to reference points.

115

116 Materials and Methods

117

118 Plant material and tomato-like synthetic standards

119 Tomato-like synthetic standards were developed to obtain a synthetic mixture of main volatile 

120 compounds of an average real tomato sample, but with higher stability and reproducibility. For this 

121 purpose, a high concentration standard mixture was prepared (TomSSt_4), containing 30 individual 

122 volatile compounds at concentrations (Table 1) corresponding to the mean values of representative 

123 tomato cultivars with different aromatic profiles [16]. Three alternative standards were obtained 

124 diluting TomSSt_4 to 70% (TomSSt_3), 50% (TomSSt_2) and 30% (TomSSt_1). The dilutions 

125 were obtained to cover a wide range of volatile sample concentrations. TomSSt_2 was employed 
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126 as a reference sample for inter-sequence standardization in long-term drift correction. These 

127 working solutions where prepared by volume dilution from more concentrated stock solutions 

128 which were stored in the freezer at -30ºC in sealed vials. They have an established stability of one 

129 year for the main stock solutions (around 500 ppm or higher) and of 1 month for the ppb to sub 

130 ppm solutions. As preparation of synthetic standards is carried out by dilution in volume of stock 

131 standards, this process can be reliably and reproducibly performed producing adequate standard 

132 solutions in the routine laboratory. For sequences run in different months, the specific standard 

133 mixtures were prepared de novo to provide restrictive conditions.

134 Table 1

135 Composition of the tomato-like synthetic standard TomSSt_4.

Volatile compound ng mL-1 Volatile compound ng mL-1

E-2-hexen-1-ol acetate 0.70 eugenol 13.92
3-methyl thiopropanal 1.12 nonanal 11.12
terpineol (alpha+beta+gamma) 0.56 2-isobutylthiazole 26.40
E-2-hexen-1-ol 1.10 E-2-heptenal 24.96
1-hexanol 2.02 methyl salicylate 892.00
3-carene 2.11 guaiacol 480.00
3-methylbutyl acetate 2.04 E-2-hexenal 702.00
alpha-pinene 1.98 6-methyl-5-hepten-2-one 590.00
gamma-terpinene 2.08 hexanal 800.00
2-carene 7.20 Z-3-hexenal 824.00
linalool 6.60 E-2-octenal 102.00
phenylacetaldehyde 9.20 citral (Z+E) 170.40
2-phenylethanol 12.04 R-limonene 98.00
6-methyl-5-hepten-2-ol 13.64 Z-3-hexen-1-ol 216.80
beta-ionone 13.16 geranyl acetone 114.80

136

137 Tomato varieties evaluated in this work represented a wide diversity of fruit shapes, colors, 

138 genotypic structures (commercial hybrids and landraces), and origins (Table 2). The plant material 

139 included four commercial hybrids, “Zayno RZ”, “Divyne RZ”, “Vinchy RZ” (Rijk Zwaan Iberica, 

140 Almería, Spain), and “Caramba” (De Ruiter Seeds, Almería, Spain). Four experimental tomato 

141 breeding lines (UJI008, UJI011, UJI014, and UJI028) with different fruit sizes. One cherry tomato 

142 type accession (BGV004587). Five accessions of local landraces, UJI023 of “de penjar” landrace, 

143 BGV005477 accession of a “Morado” landrace, BGV005651 an accession of “Muchamiel” 

144 landrace, BGV005718 an accession of “Amarillo” landrace, and BGV005655 an accession 
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145 belonging to the “Valenciano”. The “de penjar” landrace carries with alcobaça, alç, long-life 

146 mutation allelic to the nor gene [17] and it results in a very specific aroma volatile evolution [18], 

147 “Morado” landrace has external pink color due to the transparent peel typical of the yellow, y, 

148 mutation which alters the synthesis of polyphenols and “Amarillo” has yellow flesh color typical 

149 of the impairment of carotenoid synthesis resulting from the presence of the yellow-flesh, r, 

150 mutation (reviewed by [19]) and it, therefore, affects the synthesis of apocarotenoid volatiles.

151 UJI accessions were obtained from Universitat Jaume I and BGV accessions from the genebank of 

152 the Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV).

153

154 Table 2

155 Description of the tomato accessions tested in the different assays performed.

Number of sequences
Code Type of material Accession

1st assay 2nd assay 3rd assay
Fruit characteristics

1 Commercial hybrid “Zayno RZ”a,z 3 1 3 Large, rounded, green-red
2 “Amarillo” landrace BGV005718b,x 3 1 3 Large, slightly flattened, yellow
3 Commercial hybrid “Caramba”a,y 1 1 1 Large, flattened, green-red
4 Breeding line UJI011c,u 1 1 1 Large, rounded, red
5 Commercial hybrid “Divyne RZ”a,z 1 1 Medium-large, rounded, red
6 Commercial hybrid “Vinchy RZ”a,z 1 1 Large, rounded, red, long life
7 “De penjar” landrace UJI023b,u 1 1 1 Small, rounded, red, long life
8 “Morado” landrace BGV005477b,x 1 1 1 Large, slightly flattened, pink
9 “Muchamiel” landrace BGV005651b,x 1 1 1 Large, flattened, red-orange, 
10 “Valenciano” landrace BGV005655b,x 1 1 Medium-large, heart-shaped, red-orange
11 Cherry tomato BGV004587b,x 1 1 Small, rounded, orange-brownish
12 Breeding line UJI008c,u 1 1 Small, rounded, red
13 Breeding line UJI014c,u 1 1 Medium-large, slightly flattened, red
14 Breeding line UJI028c,u 1 1 Small, rounded, red
TomSSt1 Tomato like standard (30%) 3 3
TomSSt2 Tomato like standard (50%) 3 1 3
TomSSt3 Tomato like standard (70%) 3 3

TomSSt4 Tomato like standard 
(100%) 3 3

Tomato types: acommercial hybrid, blocal landraces, cbreeding lines
Origin: zRijk Zwaan Iberica S.A., yDe Ruiter Seeds S.A., xInstituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV) 
seed bank, uUnivesitat Jaume I seed collection.

156
157 Experimental design
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158 Three different assays were performed. In the first assay, 18 samples with different compositions 

159 were used. These samples included real tomato samples from 14 varieties obtained homogenizing 

160 whole fruits (Table 2) and the four tomato-like synthetic standards (TomSSt) with variable volatile 

161 composition. Three sequences were run on different days. Each sequence included four specific 

162 varieties (that were included only in one sequence) and two varieties that were included as controls 

163 in the three sequences. The 4 tomato-like synthetic standards were also included in all the sequences. 

164 Tomato samples were replicated 7 times and tomato-like synthetic standards 4 times in each 

165 sequence. All the samples were randomly distributed in each working sequence.

166 For a deeper study of the short-term drift, a second assay was designed to include a higher number of 

167 repetitions (12) per sample. Two consecutive long work sequences (22 hours each) were planned to 

168 test seven tomato and one tomato-like synthetic standard (TomSSt_2). All the samples were also 

169 randomly distributed within the first replicate of each sequence, and the order was maintained in the 

170 rest of the replicates. This design provided data to compare the performance in a whole sequence (12 

171 repetitions/sample in 22 hours) or a short sequence (4 repetitions/sample in 8 hours approximately) 

172 to test the performance of the drift correction strategy proposed in different scenarios.

173 Finally, a third assay was performed to analyze the effect of long-term drift. To ensure the inclusion 

174 of long-term drift in the signal responses, the sequences of this trial were carried out in a 3 months 

175 period (one sequence per month) included in the normal routine usage of the equipment. During this 

176 period other samples from tomato and other vegetable crops were analyzed in the equipment. The 

177 short-term drift correction was applied before analyzing the results. 

178 In a first step, the effect of long-term drift was analyzed using the four tomato-like standard solutions 

179 in three sequences. Then the effect of long-term drift was also checked adding two tomato varieties 

180 analyzed in three sequences. Long-term drift correction via sequence standardization was then 

181 applied and its validity checked.

182 The independent study of each one of these three sequences was used to test and correct short-term 

183 drift within a work-day sequence. The joint data of all these sequences were used to test the 
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184 performance of the long-term drift correction between sequences and standardization strategies 

185 proposed in this work. 

186 Once the reliability of the long term-drift correction had been checked it was applied to analyze the 

187 data obtained from the analysis of the 14 tomato varieties distributed in three sequences, using the 

188 data from TomSST2 for sequence standardization.

189

190 Electronic nose and data acquisition

191 A FOX 4000 (Alpha MOS, Toulouse, France) e-nose system was used. The system included 18 

192 metal oxide semiconductor sensors (MOS) installed in three chambers, an autosampler system 

193 (CombiPAL HS100, CTC Analytics, Zwingen, Switzerland), and a software package (AlphaSoft 

194 v11) to control and process initial data. The sensor response in MOS sensors is a resistance variation 

195 due to a reaction caused by the chemical species on the surface of the active layer of the sensor. As 

196 usual for MOS sensors, the signal was expressed as normalized resistance variation of the signal 

197 highest point ((Ri – Rmax)/Ri), where Ri is resistance at time zero and Rmax is resistance in the signal 

198 highest point of the sensor [20]. 

199 The analysis parameters related to general aspects of equipment operation were fixed following 

200 manufacturer recommendations, while those that directly determine the response quality (influence 

201 headspace generation) were established from previous tests based on the methodology for the 

202 analysis of tomato aroma developed by the group [16]. For each sample, 2 g of homogenate (2 mL 

203 in the case of tomato synthetic standards) were introduced into a 10 mL vial and sealed. Each sample 

204 replicate corresponded to an independent vial. Samples were incubated in the autosampler at 45ºC 

205 for 10 minutes to generate the headspace and then 2 mL of it were injected into the sensors chambers 

206 for analysis. The sensors' response was recorded over two minutes with 18 minutes between each 

207 measurement to allow the baseline recovery. Between samples, dry clean synthetic air flowed over 

208 the sensor array for 2 minutes to remove residues of the previous sample, following manufacturer 

209 recommendations. The gas flow rate was 150 mL min-1. Instrument maintenance (daily auto test 
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210 and two-week diagnosis) were routinely performed following supplier protocols to ensure proper 

211 operation. 

212

213 Drift correction and inter-sequence standardization

214 A multivariate adaptation of the multiplicative drift correction procedure proposed by Salit and 

215 Turk [21], combined with a partial least squares (PLS) adaptation of the component correction 

216 strategy [22] to model time-dependent drift was used both to remove intra-sequence short-term drift 

217 and to perform inter-sequence standardization to counteract long-term drift. Salit and Turk method 

218 is based on an interpolative projection of sample signal onto a smooth function defined by fitting 

219 to signals from regularly interspersed standards. Component correction strategy is based on the 

220 assumption that there is a subspace direction that captures only the drift variance and can be 

221 modelled (they use Principal Component analysis) and substracted from the measurement matrix X 

222 to provide drift corrected signals. Two assumptions were considered: i) drift, regardless of its type, 

223 is a function of time, and ii) drift for our electronic nose instrument is multiplicative (i.e. the 

224 magnitude of the perturbations is dependent on the signal level). Additionally, it had to be 

225 considered that the nature of the samples being analyzed could not be contemplated by the model, 

226 as they were unpredictable.

227 A practical guide of our proposed intra-sequence drift correction methodology is included in Supp. 

228 Fig. 1. According to [21], when multiplicative drift appears, the signal measured in a sample i 

229 evaluated with j repetitions in each of the k sensors of the system ( ) could be 𝑆𝑖(𝑗), 𝑘 measured 

230 decomposed as: 

231    (1)𝑆𝑖(𝑗), 𝑘 measured =  𝑆𝑖,𝑘 truth(1 +  𝐸drift (𝑡) + 𝐸noise )

232 Being  the true signal for sample i, the drift estimation as a function of time and 𝑆𝑖 truth 𝐸drift (𝑡) 

233 the estimation of the background noise (independent of time).  can be estimated using 𝐸noise 𝑆𝑖 𝑡𝑟𝑢𝑡ℎ

234 the mean of all 𝑆𝑖,𝑘 measured
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235 Then the multiplicative deviation pretreatment for each measured signal (  allowed to 
𝑆𝑖(𝑗),𝑘 measured

𝑆𝑖,𝑘 measured
)

236 model the deviations from 1 as an estimate of  𝐸𝑖,𝑘 drift (𝑡) + 𝐸𝑖,𝑘 noise

237 To estimate time-dependent drift, a multivariate PLS regression between the pretreated signal 

238 measurements for all system sensors as independent variables (X matrix) and the time of analysis 

239 as a dependent variable (Y vector) was performed. As PLS drift model finds latent variables that 

240 explain the variability in the deviation of electronic signals due only to time evolution, this model 

241 function provides the estimate of  and the residuals of these model provide the estimation 𝐸𝑖,𝑘 drift (𝑡)

242 of .𝐸𝑖,𝑘 noise

243 Accordingly, as proposed by [22], after the drift model was fitted, the matrix product of resulting 

244 loadings and scores of the model was used to calculate the matrix of  components. Then 𝐸drift (𝑡)

245 the initial signal measured values were corrected for multiplicative drift using the following 

246 equation from [21]:

247   (2)𝑆𝑖(𝑗),𝑘 corrected = [𝑆𝑖,𝑘 measured(1 ―  𝐸𝑖(𝑗),𝑘 drift (𝑡))] +  𝑆𝑖(𝑗),𝑘 measured 

248 A similar strategy was used to perform inter-sequence standardization to correct long-term drift. A 

249 practical guide is included in Supp. Fig. 2. For different work sequences, a generalization of 

250 equation (1) was considered to decompose signal measured in a sample i evaluated with j repetitions 

251 in each of the k sensors of the system. This generalization assumes that in this case the truth signal 

252 can be estimated using two components, the mean of all repetitions and an inter-sequence 𝑆𝑖(𝑗)

253 standardization coefficient. To calculate this inter-sequence standardization coefficient, the 

254 difference of the signals of the same reference sample measured in two different sequences was 

255 used. The tomato-like standard TomSSt_2 was used as a reference sample in all work sequences. 

256 Consequently, the multiplicative deviation pretreatment used for each measured signal was:

257   (3)
𝑆𝑖(𝑗),𝑘 measured

𝑆𝑖,𝑘 measured + (𝑆TomSSt1,𝑘 ―  𝑆𝑇omSSt𝑛,𝑘) 

258 Where  and   are the signal means of all repetitions for the tomato-like synthetic   𝑆𝑇𝑜𝑚𝑆𝑆𝑡1,𝑘 𝑆𝑇𝑜𝑚𝑆𝑆𝑡𝑛,𝑘

259 standard reference sample in sequences 1 and n, respectively, for each k sensor.
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260 The generalization of equation (1) also assumes that, when considering several work sequences, the 

261 time-dependent drift can be decomposed in two components: 

262  (4)𝐸drift (𝑡) =  𝐸short (𝑡) + 𝐸long (𝑡)

263 Where Eshort(t) represents the short-term (between-sample within-run) signal drift and Elong(t) the 

264 long-term (between-run) drift. Inter-sequence standardization was applied to all sequences after 

265 short-drift correction. Doing that, time-dependent drift would be equivalent to the long-term drift 

266 that appears between sequences. Consequently, after applying pretreatment of equation (3) when 

267 drift was modeled by PLS regression as explained previously, it was possible to calculate the matrix 

268 of components and to use it to standardize sequence signals applying equation (4).𝐸long 

269 The PLS regressions were performed using venetian blinds (with as many groups as samples 

270 evaluated) as resampling procedure, in order to calculate error models and to select the number of 

271 latent variables used in the model. Outliers were detected and removed, using Hotelling T2 and Q 

272 Residuals [23].

273  

274 Graphical maps and data analysis tools

275 Drift-corrected sensor signals were graphically plotted in a 2D PLS-DA scatterplot map as with this 

276 dimensional reduction representation technique the distance between projected points preserves 

277 sample similarities [24]. Confidence ellipsoids (p=0.05) were calculated and plotted for samples 

278 with more than four replicates. In some cases, after removing outliers there were not enough points 

279 to calculate these intervals, and data points were just linked with lines to provide rapid identification 

280 of groups. The closer the points, the higher the similarity between signals. This procedure enables 

281 the comparison of sample volatile profile similarities, for example, for selection purposes. The 

282 objective was not to classify samples in predefined groups. This would be a typical objective in a 

283 quality assurance control, but in breeding programs, the objective is to select those materials closer 

284 to specific volatile profile targets. Nevertheless, to assess the performance of the proposed drift 

285 correction strategy, classification results were compared with those obtained using other reputed 
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286 drift correction methods: the original method proposed by Salit and Turk [21], independent 

287 component analysis (ICA) and parallel factor analysis 2 (PARAFAC2) [25]. ICA is a signal 

288 processing method that separates a multivariate signal into additive subcomponents assuming that 

289 the subcomponents are non-Gaussian signals and that they are statistically independent from each 

290 other. PARAFAC methods are generalizations of Principal Component Analysis (PCA) to higher 

291 order arrays. PARAFAC2 is an improvement of the original PARAFAC method in which the strict 

292 trilinearity is no longer required. Compared with PCA methods, PARAFAC methods have the 

293 advantages of no rotation problem, as in PCA, easier to interpret and higher statistical robustness.

294 Once the correction was obtained, three frequent classification techniques were applied. K nearest 

295 neighbors (KNN) classification, soft independent modeling of class analogy (SIMCA), and 

296 discriminant analysis based on partial least square regression (PLS-DA) [24] . KNN is a non-

297 parametric classification method in which a data point is assigned to the class most common among 

298 its k nearest neighbors. SIMCA classification is mainly based on principal component analysis and 

299 an object is assigned to a class if its residual distance is below the statistical limit for the class. In 

300 PLS-DA, the predictive modelling comprises two main procedures, a PLS component development 

301 (i.e. dimension reduction for selecting variables for classification) and a prediction model 

302 construction (i.e. discriminant analysis) to predict class assignment for the data.

303 KNN, SIMCA, PLS and PLS-DA, analysis and graphics were performed using PLS_Toolbox v 8.6 

304 (Eigenvector Research Inc, Wenatchee, WA, USA) for Matlab v 9 (Mathworks Inc, Natick, MA, 

305 USA). ICA models [26] were calculated with the FastICA toolbox for Matlab developed at the 

306 Helsinki University of Technology. PARAFAC2 models were performed using a graphical user 

307 interface, SENSABLE [20]. 

308 To justify the need for standardization procedures, tests for significant differences between the same 

309 sample signals in different sequence work using MANOVA analysis and Roy test were used [24]. 

310 These analyses were performed using IBM SPSS v.24 (IBM Corp., Armonk, NY, USA).

311
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312 Results and discussion

313 Short-term drift correction 

314 In the first assay, high levels of short-term drift were observed leading to a high variation in the 

315 position of each sample replicate in the two-dimensional representation of the PLS analysis 

316 obtained with raw signals (Fig. 1 a, b, and c). This variation could be related to a possible lack of 

317 homogeneity of real tomato samples, but a considerable variability was also detected in tomato-like 

318 standards which are highly homogeneous. As a consequence, despite having a different aroma 

319 volatile profile, the confidence ellipsoids of each variety overlapped. Thus, it was impossible to 

320 discriminate the materials. This effect of short-term drift was detected in the three independent 

321 sequences tested, but it affected each sequence differentially. As an example, the confidence 

322 ellipsoid of the tomato-like standard TomSSt_2 was small and data points plotted close in the first 

323 sequence (Fig. 1a), while the ellipsoid was considerably wider in the second (Fig.1b) and third 

324 sequences (Fig. 1c). The contrary was observed in the case of TomSSt1, with higher variability in 

325 the first sequence and lower in the second and third. As the samples were randomly distributed for 

326 each replicate in the sequence, the differences observed in confidence ellipsoids suggest that the 

327 effect of drift changes between sequences. This spurious trend confirmed the difficulty of 

328 extrapolating short-term drift effects on different analysis sessions. 

329 The effect of sequence duration on short-term drift was analyzed in-depth comparing the 

330 performance of long (22-hour) and short (8-hour) sequences using 8 samples, including 7 tomato 

331 varieties and one tomato-like standard (Table 2). This time, samples were randomized in the first 

332 replicate, but the order was maintained in the rest of the replicates to enable comparisons between 

333 varieties. The long sequence (22 hours), typical of situations where a high number of samples is to 

334 be analyzed, was obtained increasing the number of repetitions per sample up to 12. Raw sensor 

335 data from these analyses revealed, for all the samples and in all the sequences, the presence of an 

336 important drift effect that affected all the sensors. The drift affected differentially each variety, with 

337 the highest effects detected in the samples of the variety “Caramba” (Fig. 2). 
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338 These drift effects were more evident and important at the end of the sequence (Fig. 2a), showing 

339 a complex non-linear time-dependent variation, with positive and negative signals tending to 

340 converge to 0. In the case of “Caramba” samples, raw signals (12 repetitions distributed in a 

341 sequence of 60 analysis) showed a very high relative standard deviation (%RSD) for the complete 

342 sequence for all the sensors (Fig. 2b. first data in parenthesis). 

343 In order to provide a reference, these values obtained with “Caramba”, were compared to those 

344 obtained by Xu et al. [27] corresponding to 6 analyses with the same apparatus equipped with the 

345 same sensors (Fig. 2b in square brackets). %RSD values obtained in the present work were 

346 considerably higher. Thus, the use of long sequences such as these would be unacceptable. It should 

347 be considered though, that the material used by [27] was Semen arecae, a dried seed preparation 

348 from Areca catechu L. Therefore, differences in %RSD would be explained both by changes in the 

349 sample matrix and in the number of hours of work of the sensors per sequence.

350 When shorter sequences were considered (8 working hours, i.e. 4 “Caramba” samples distributed 

351 in a sequence of 18 injections) the drift levels were lower, but they continued to be excessive (Fig. 

352 2d. first data in parenthesis). 

353 The main factors contributing to e-nose drift effects in sensor performance are usually due to 

354 differences in temperature, humidity, changes in samples analyzed due to components interactions, 

355 or other uncontrolled effects. In the long term, the stability of MOS sensors could progressively be 

356 affected by sensor aging or poisoning affecting their performance. This includes changes in the 

357 morphology of the sensing layer and irreversibly bind of some sample compounds to metal oxides 

358 which diminish the catalytic oxidation of sample volatiles and affecting the sensors’ resistance 

359 response [14]. In practice, the data distortion caused by sensor drift in short time scenarios (one or 

360 few work-sequences) has many times been avoided when the use of the data collected was strictly 

361 for classification purposes. In these cases, the use of advanced multivariate statistical classification 

362 methodologies makes it possible to obtain subjacent information from the raw signal characteristic 

363 of each sample group, discarding the rest of the signal information and thus diminishing the drift 
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364 distortions problems (see examples in [28–30]). Unconsciously, when using a multivariate 

365 classifying technique, the analysis identifies and, to preserve sample group characteristic 

366 information, it discards the “non-characteristic” part of raw sensor signal which is normally related 

367 to noise, drift, and other non-relevant information. Nevertheless, this “signal cleaning” is a 

368 collateral effect (unwanted effect) and, consequently, the success of this strategy is variable since 

369 the characteristic subjacent information of the group is highly dependent on the samples and the 

370 number of latent variables used to build up the classification model. When a reduced number of 

371 samples with important differences between them are evaluated or when the volatile composition 

372 of the samples is not complex the “signal cleaning” effect would work well, making it possible to 

373 classify the samples in a quite satisfactory way [31]. But, with this approach, it is not always 

374 possible to completely avoid drift distortion effects. It would be the case of complex samples 

375 (complex matrix and/or very complex mixtures of volatiles) or collections of samples with similar 

376 volatile profiles. Consequently, a drift correction strategy would be more convenient in those cases.

377 In order to correct short-term drift effects, sensor drift of the second assay was modeled and 

378 subtracted from the raw signals. To do that, a multivariate adaptation of the multiplicative drift 

379 correction procedure proposed by Salit and Turk [21] combined with a PLS adaptation of the highly 

380 used component correction strategy [22] to specifically model each drift present in each sequence 

381 was performed. The following assumptions were considered: i) sensors of the array have similar 

382 drift behavior, ii) this drift has a specific direction in the data hyperspace which allows its 

383 modelization by regression, and iii) this drift is time-dependent. After modeling short-term drift for 

384 each sequence, drift components for each signal in the data matrix were calculated. Later, matrix 

385 subtraction was performed in a Matlab environment to remove drift from the raw sensor signal data, 

386 thus providing a corrected sensor data matrix, which was used to plot the data (Fig. 2e). Compared 

387 with the raw sensor signals (Fig. 2a), the corrected signals were much more stable during the whole 

388 sequence for all sensors, even those with higher %RSD. Accordingly, an impressive %RSD 

389 decrease was observed for all the sensors (Fig. 2b), ranging from between 91.5% and 99.7% for 
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390 long sequences and 75.7% and 98.8% for short sequences. Maximum %RSD values were 0.65% 

391 for long sequences and 0.72% for short sequences. Those values are were between one (T40/2 

392 sensor) and 27 (LY2/LG sensor) times lower than those reported by Xu et al. [27] with a lower 

393 number of injections. As expected, the use of shorter work-sequences (18 injections in 8 hours 

394 sequence) resulted in better performance after drift correction (Fig. 2d and 2f), as it avoided the 

395 higher levels of drift detected at the end of long sequences.

396 It should be considered though, that the increase in stability entailed a small decrease in the absolute 

397 value of signals after correction. This side effect mainly affects long sequences (Fig. 2a vs. Fig. 2e), 

398 while this decrease is imperceptible in shorter sequences (Fig. 2c vs. Fig. 2f). Consequently, despite 

399 the powerful short-term drift correction capabilities obtained, it would be preferable to use short (8 

400 hours) work sequences.  

401 When this drift correction strategy was applied to the signals of the first assay, an impressive 

402 reduction of the sample signal variability was attained, enabling a clear comparison of similitudes 

403 between samples in the new PLS-DA similarity map obtained (corrected: Fig. 1d, 1e, and 1f vs. 

404 raw: Fig. 1a, 1b, and 1c). Indeed, after this correction, it was easy to ascertain similarities in the 

405 volatile signal profile between samples, and the confidence intervals did not overlap as it had 

406 happened with the raw data.

407 The use of similitude maps to compare volatile profiles is a novel alternative. Therefore, in order 

408 to compare this strategy with previous works it was necessary to assess its performance using 

409 classification methodologies, which are rather popular in e-nose preceding literature. Consequently, 

410 using the data of the second assay, the new drift correction strategy was compared with alternative 

411 drift correction methods including the original approach by Salit and Turk, [21], ICA [32], using 

412 KNN, SIMCA, and PLS-DA as classifying methods. In general, SIMCA outstood in the 

413 classifications. KNN and PLS-DA had a similar performance, which varied depending on the 

414 variety considered (Table 3). Considering different alternatives, the new correction proposed in this 

415 work offered the best results (classification effectiveness) compared to the alternatives evaluated 
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416 independently of the classification method. In fact, SIMCA and KNN classification with the 

417 proposed short-term drift correction allowed to classify correctly a 100% of the samples, assigning 

418 them to the variety to which they belonged.
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419 Table 3
420 Percentage of samples correctly classified using KNN (K=8), SIMCA and PLS-DA classification methods for seven tomato cultivars and the tomato-
421 like synthetic standard 2, before (raw data) and after intra-sequence drift correction using the proposed correction based on an adaptation of [21] and 
422 PLS component correction method, the Salit and Turk [21], ICA [32] and PARAFAC2 [20] methods. Average data of three work-sequences is provided 
423 (variation range in brackets).

424

Raw data Proposed correction Salit & Turk correction ICA correction PARAFAC2 correction
Sample KNN SIMCA PLS-DA KNN SIMCA PLS-DA KNN SIMCA PLS-DA KNN SIMCA PLS-DA KNN SIMCA PLS-DA

TomSSt_2a 98.9
(97.9-100)

100 100 100 100 100 97.6
(93.8-100)

56.3
(51.1-60.6)

100 94.8
(86.5-100)

100 93.8
(81.3-100)

99.0
(97.9-100)

100 93.7
(88.3-99.0)

Zayno 85.4
(78.6-92.9)

82.0
(49-99)

90.4
(84.7-100)

100 100 99.3
(98.0-100)

92.2
(83.6-100)

60.1
(52-67.7)

93.5
(88.7-100)

83.6
(76.5-91.8)

96.6
(89.8-100)

80.9
(74.5-85.7)

80.3
(77.5-85.7)

81.6
(72.4-89.6)

72.7
(66.3-80.6)

“Amarillo”
(BGV005718)

91.5
(87.8-99.0)

98.3
(94.8-100)

88.4
(83.5-91.8)

100 100 94.6
(90.8-100)

99.7
(99.0-100)

57.9
(52.1-59.4)

89.7
(85.6-91.8)

79.9
(64.3-98.0)

98.3
(94.8-100)

83.3
(76.5-87.8)

86.4
(74.4-93.9)

88.4
(85.7-90.6)

68.5
(55.1-80.6)

Caramba 60.5
(47.9-84.7)

76.5
(69-89.8)

76.8
(68.0-83.7)

100 100 94.5
(92.9-98.0)

89.0
(82.6-92.9)

52.4
(51-54.1)

80.8
(78.3-85.6)

54.8
(47-62.2)

76.5
(70.8-89.8)

81.3
(61.2-91.7)

66.8
(62.7-69.3)

64.9
(56.3-71.4)

60.5
(48.4-71.0)

Breeding line
(UJI011)

78.2
(71.4-82.6)

79.8
(68-90.8)

77.7
(70.8-83.7)

100 100 92.4
(82.2-100)

94.2
(90.8-99.0)

53.8
(53.1-55.2)

78.3
(69.9-86.7)

63.6
(55.1-76.5)

83.2
(68-90.8)

65.2
(61.2-67.3)

61.2
(52-71.4)

67.5
(53.1-79.6)

67.9
(61.2-73.5)

De penjar 
(UJI023)

96.3
(91.8-99.0)

100 99.7
(99.0-100)

100 100 100 96.5
(90.6-100)

60.7
(56.1-65.6)

97.2
(91.7-100)

75.8
(56.1-86.6)

100 88.1
(71.4-100)

93.8
(90.6-98.0)

94.9
(89.8-98)

84.3
(81.6-89.8)

Morado
(BGV005477)

88.8
(76.5-99.0)

100 92.8
(89.6-94.9)

100 100 98.0
(93.9-100)

97.3
(92.9-100)

72.4
(66.7-82.3)

94.5
(92.7-96.9)

79.2
(45.9-98.0)

100 90.1
(79.6-96.9)

95.2
(90.8-98.0)

91.5
(79.6-97.9)

85.3
(81.3-88.8)

Muchamiel
(BGV005651)

82.8
(82.3-83.7)

96.9
(90.8-100)

77.9
(74.3-79.7)

100 100 95.9
(93.9-98.0)

91.4
(82.3-100)

57.8
(55.1-63.3)

84.3
(77.4-93.9)

79.7
(54.3-94.0)

96.9
(90.6-100)

83.7
(75.3-91.0)

85.8
(82.3-91.8)

93.2
(90.8-96)

77.9
(75.3-81.6)
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425
426 Long-term drift and sequence standardization.

427 Once the problem of short-term drift was solved, the focus was set on the effects of the variability 

428 detected among sequences. This variability, as stated above, can be generated by different causes 

429 originating a long-term drift effect. A solution to this effect is critical when a high number of 

430 samples are to be analyzed, as samples have to be distributed in different sequences that would be 

431 run on several days. 

432 Regardless of the cause of inter-sequence variability, the effects can be considerable and 

433 unpredictable, as was pointed out in the comparison of the three sequences of the first assay. 

434 Consequently, it seemed clear that some reference samples should be included in each sequence to 

435 assess how long-term drift affected the signal. At this point, it would not be advisable to use real 

436 tomato samples as references. The storage capability of these samples would be limited, and long-

437 term evolution in a freezer would introduce an undesirable noise in the system, thus increasing 

438 long-term drift. Accordingly, it was decided to include tomato-like synthetic standard volatile 

439 solutions, which were designed and created for this purpose. As tomato volatile profile is highly 

440 complex, with more than 400 volatiles being involved, it was decided to focus on a group of 

441 compounds (Table 1) that had been suggested to hold a prominent role in the aroma perception [33, 

442 34]. Standards were created from stock solutions for each session. Nonetheless, in the future and 

443 for practical reasons, standards can be created and stored in sealed vials at -30°C during one month 

444 with a high stability. In this case, over a 3-month span, the standards were created specifically for 

445 each session, thus providing more restrictive conditions.

446 In a first step, three different sequences with the tomato-like standards at different concentrations 

447 were run. After applying the proposed short-term drift correction, a PLS-2D map was obtained (Fig. 

448 3a). Samples from the same tomato-like standard tended to group together, but still, a considerable 

449 level of variation was detected. In some cases, the confidence intervals of the same samples run in 

450 different sequences did not overlap and intervals of different standards did overlap in one case. 
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451 Considering the homogeneous nature of these standards, this variability would not be mainly related 

452 with the nature of the sample. To check this point, the analysis was repeated including samples 

453 from two tomato varieties “Rayno RZ” and “Amarillo”. Again, wide variability was detected, which 

454 was not specifically higher in the real tomato samples than in the standard solutions, despite their 

455 more complex nature (Fig. 3b).

456 This time, even in the case of the control with lower variability (TomSSt_1), the fluctuations of 

457 signal values were rather high for some sensors, reaching RSD values above 20% (e.g. LY2/gCTl 

458 and LY2/GH sensors) or very close to this threshold (e.g. LY2/G sensor). In fact, a MANOVA 

459 analysis for TomSSt_1 using the data from the three sequences showed significant inter-sequence 

460 differences (Roy test α < 0.03). Higher levels of variation were found in the rest of the controls. 

461 Consequently, despite the use of the routine instrument calibration recommended by the equipment 

462 manufacturer, the unacceptable inter-sequence variance for each sample caused important bias in 

463 the graphs constructed joining the data from several sequences. Therefore, it makes necessary the 

464 use of a data standardization step before merging data from different sessions.

465 In order to tackle this long-term drift effect, the data from the tomato-like synthetic standard 

466 TomSSt_2 was selected to standardize sequence signals. The use of a real sample as reference had 

467 to be discarded, as its volatile profile would evolve during their conservation and it would also have 

468 a finite nature. On the opposite, a homogeneous synthetic standard including main tomato volatiles, 

469 representing the complex nature of its aroma, can be generated expressly for each sequence. 

470 Following this premise, in order to standardize sequences, sensor signals from each sample after 

471 short-term drift correction were transformed using the deviation observed between the corrected 

472 signals of the synthetic standard in the different sequences. Once the signals were transformed, they 

473 were related to a time vector using PLS regression. Time vector values were obtained adding the 

474 time of each analysis, including the different sequences consecutively. 

475 New PLS-DA 2D maps were then obtained, and the efficiency of correction was evident (Fig. 3a 
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476 vs 3b). For five of the six controls no significant inter-sequence differences were found, and the 

477 confidence ellipsoids overlapped. Only in the case of the samples of the tomato landrace “Amarillo” 

478 (coded 2_1 in Fig. 3) significant differences (Roy test α < 0.001) were found between the first 

479 sequence and the remaining two. Nonetheless, the three samples plotted at a short distance. The 

480 standardization procedure showed a grouping correction efficiency of 94.4%, as 17 of the 18 sample 

481 groups were correctly ascribed with their equals ran in different sequences and their confidence 

482 intervals overlapped. This result represents a similar efficiency compared to other strategies 

483 regarding long-term drift counteraction methods [15, 35–40] or better [41, 42]. It was confirmed, 

484 then, that data from different sequences could be pooled in order to work with a high number of 

485 samples. 

486 Considering the good performance obtained with these controls, the sequence standardization 

487 procedure was applied to the data obtained with three sequences, with 14 tomato varieties and 

488 TomSSt_2 as a reference. When both short-term drift correction and sequence standardization was 

489 applied (Fig. 4b), the variation observed per sample was highly reduced compared to the use of raw 

490 data (Fig. 4a). Again, the replicates analyzed in different sequences tended to overlap their 

491 confidence intervals, and only one of the replicates of the “Amarillo” landrace could not be grouped 

492 with the rest of the corresponding replicates (coded 2.1 in Fig 4b). Therefore, this procedure enables 

493 a realistic comparison of similitudes and differences in the volatile signal profile between samples 

494 run in different sequences.

495 Other works [15, 35, 41] deal with adaptations of the component correction strategy applied to a 

496 long-term drift counteraction. These works use a group of training samples to model the drift using 

497 different regression methodologies (PLS, OSC, or CPCA) and, then subtract the drift modeled from 

498 the signals of new samples. These strategies assume that with a good training set, the calibration 

499 model can be useful for a long time for practical purposes. However, it is obvious that to extend the 

500 period of use, large training sets are needed. Gutierrez-Osuna [43] used a training set of 5 to 10 
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501 samples for a drift correction period of 3 months in samples of 4 very different spices. Padilla et 

502 al., [35] used training sets higher than 100 samples for a drift correction period of 10 months in 

503 samples of individual chemical compounds at different concentrations. A similar application was 

504 tested by Ziyatdinov [41] with training sets higher than 1000 samples for a drift correction period 

505 of 7 months. Nevertheless, it seems also obvious that when sensor degradation increases, the 

506 usefulness of these calibration models will decrease and, at any moment, they would need an 

507 update. Additionally, training sets have been used with mixes of a few volatiles, and real tomato 

508 samples consist of more than 400 volatiles [34].

509 In the present study, specific training set samples were not used. Instead, the information of the 

510 samples evaluated in each sequence was used to calculate the specific drift correction model. Four 

511 injections per sample would be enough to model short-term drift and at the same time providing a 

512 reliable confidence interval. By doing so, each sequence would have its proper model and, 

513 consequently, it would always be up to date. The unpredictable nature of short-term drift in different 

514 sequences using tomato matrices would limit the efficiency of other alternatives.

515 On the other hand, the use of one reference synthetic standard has proven to be highly efficient to 

516 standardize sequences in order to reduce inter-sequence variability, enabling the comparison of 

517 samples analyzed in different sequences. This strategy would also be useful when a replacement of 

518 sensors is performed or when different instruments are used to enlarge the processing capabilities 

519 of the lab. Tomic et al., [37] tried a similar component correction strategy based on PCA and 

520 complemented with multiplicative drift correction to accomplish a successful calibration transfer 

521 between instruments. Other calibration transfer strategies which use sophisticated correction 

522 methods and algorithms have been also applied to the expansion of calibration update models [38, 

523 39, 44] but they need a higher number of training samples (10 to more than 400 depending on the 

524 methodology) and were tested only for the detection of individual chemical compounds, so the 

525 efficiency in more complex samples still needs to be tested [14].
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526 Combining short-term and sequence standardization and PLS-DA 2D similitude maps it is possible 

527 to easily identify differences in the volatile signal profiles of the samples. It is then possible to make 

528 rapid identification of those samples with a volatile profile more similar to high quality reference 

529 materials. This procedure would enable the use of e-noses for example in breeding programs. It 

530 would be possible to select which genetic backgrounds have a lower negative impact on the aroma 

531 profile. From an agronomic point of view, it would also enable a rapid identification of which 

532 preharvest and postharvest procedures have the lowest impact on the volatile profile. These maps 

533 would be expandable, offering the possibility of including new reference points. In fact, when Fig. 

534 3c and 4b are compared, the relative position of the real tomato samples of “Zayno RZ” (coded 1 

535 in the figures) and the “Amarillo” landrace (coded 2 in the figures) were not altered.

536 In the present work, this strategy has been successfully applied to a combination of different tomato 

537 materials, selected to represent a wide variability of volatile profiles, especially in the case of tomato 

538 landraces. The landraces included in the study had already shown a clearly different volatile profile 

539 [45], and especially important as they are frequently commercialized in quality markets in which 

540 consumers are willing to pay a price premium for excellent flavor [46]. Interestingly, “Muchamiel”, 

541 which had previously shown a less intense volatile profile in gas chromatography analysis 

542 compared to “Valenciano” and “Morada”, plotted in the PLS-DA 2D map in an area corresponding 

543 to materials with lower volatile concentration (Fig.4b). The next step in future works will be 

544 centered on the comparison of the volatile profile obtained with the e-nose and GC-MS data in 

545 order to confirm this trend. 

546

547 Conclusions

548 Short- and long-term drift compromises the application of e-noses to the evaluation of volatile 

549 profiles. These effects are variable and unpredictable. Consequently, general models are not useful, 

550 and the performance registered in each sequence has to be used in order to model drift effects. The 
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551 distribution of 4 replicates per sample and sequence enables the development of an effective and 

552 sequence-specific short-term drift correction. On the other hand, the unpredictable nature of the 

553 variation between sessions makes it necessary to use reference materials to standardize sequences. 

554 By doing so it would be possible to analyze a high number of samples distributed in different 

555 sequences. The use of a tomato-like synthetic has proven to be for this purpose. The two-step 

556 correction methodology proposed here, combined with PLS-DA two-dimensional similitude maps, 

557 will enable rapid and reliable identification of samples with a volatile signal profile similar to 

558 references selected as ideal targets.

559
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Fig. 1 Similarity PLS-DA maps of volatile electronic profiles from raw signals (on the left) and 
short-term drift-corrected signals (on the right) data from samples tested in three different work 
sequences assayed in the first assay. Sample codes as indicated in Table 2. TomSSt = Tomato-
like synthetic standard. Ellipsoids represent confidence intervals (p=0.05) for samples with more 
than three replicates. For samples with a lower number of replicates confidence intervals cannot 
be calculated, and sample points are only connected with lines to easily identify them.

Fig. 2 Sensors response in the evaluation of tomato “Caramba” samples in (top) long work 
sequences (22h) and (bottom) short work sequences (8h). On the left: Raw sensor signals (a, c). 
On the right: intra-sequence drift corrected sensor signal (e, f). Legends (b, d) show the evolution 
of sensor signals %RSD before and after applying intra-sequence drift correction (first and 
second value in parenthesis). External reference %RSD values using the same equipment and 6 
injections is provided in square brackets [27].

Fig. 3 PLS-DA similitude maps from electronic nose fingerprints obtained in three different 
sequences and applying short term-drift correction using (a) the 4 synthetic tomato-like 
standards and two tomato samples, and (b) the standards and two real tomato samples applying 
sequence standardization. Confidence ellipsoids (P=0.05) are represented for samples with 
more than 4 repetitions. TomSSt: tomato-like synthetic standards. 1: “Zayno RZ”; 2: BGV005718 
(real tomato samples used as controls). _1, _2, _3: sequence number.

Fig. 4 PLS-DA similitude map obtained using 14 tomato varieties evaluated in three different 
work sequences. (a) using raw data, (b) using short-term intra-sequence drift correction + 
sequence standardization. Confidence ellipsoids (P=0.05). 1: “Zayno RZ”; 2: BGV005718; 3: 
“Caramba”; 4: UJI011; 5: “Divyne RZ”; 6: “Vinchy RZ”; 7: UJI023; 8: BGV005477; 9: BGV005651; 
10: BGV005655; 11: BGV004587; 12: UJI008; 13: UJI014; 14: UJI028. _1, _2, _3 samples analyzed 
in different sequences.

Supp. Fig. 1. Schematic representation of short-term drift within a sequence.

Supp. Fig. 2. Schematic representation of long-term drift with several sequences.
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1.- Getting raw data from e-nose 

Sensors response
Injection 
nº

Sample Injection 
time (h)

LY2/LG LY2/G LY2/AA LY2/Gh LY2/gCTI LY2/gCT T30/1 ...

1 TomSST
2

0,00 0,667 -2,17 -2,06 -2,03 -2,03 -0,905 0,817 …

2 3 0,35 0,146 -0,477 -0,554 -0,384 -0,295 -0,113 0,649 …

3 6 0,70 0,106 -0348 -0,428 -0,273 -0,203 -0,079 0,622 …

4 2_1 1,03 0,392 -0,528 -0,64 -0,403 -0,301 -0,104 0,645 …

… … … … … … … … … … …

2.- Appliying multiplicative pretreatment for each sample class 

   

3.- Performing PLS regression to model intra-sequence drift (in PLSToolbox for 
Matlab) 

Eg.:

Y = Injection time (h) (n x 1 vector)
X = Pretreated sensor response matrix (n samples  x 18 sensor matrix)

(Outliers removed from the model based on Q residuals and T2 Hotelling statistics if necessary)

4.- Obtaining intra-sequence drift (in Matlab) 

Obtaining scores and loadings matrices from de PLS 
model (extracting data from de model as raw data)

Intra-sequence drift matrix (Edrift)= scores * 
loadings‘

5.- Substracting intra-sequence drift from raw data signal (in Matlab or Excel) 
 

 

(matrix product in Matlab command window giving a n samples  x 18 sensors matrix) 

Scores (matrix of n samples x number of latent variables selected)

Loadings ( matrix of 18 sensors x number of latent variables selected )

Supp. Fig. 1.  Schematic representation of short-term drift within a sequence.

Eg.:
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1.- Getting raw data from e-nose for each sequence 

3.- Appliying multiplicative pretreatment for each sample class 

Seq matrix 
1

Seq matrix 
2

Seq matrix 
m…

4.- Performing PLS regression to model inter-sequence drift with all corrected 
matrices joined (in PLSToolbox for Matlab) 

5.- Obtaining inter-sequence drift (in Matlab) 

6.- Substracting intra-sequence drift from raw data signal (in Matlab or Excel) 

 

2.- Performing intra-sequence drift correction for each sequence data matrix 

Seq matrix 
1 intra-seq 
corrected

Seq matrix 
2 intra-seq 
corrected

Seq matrix 
m intra-seq 
corrected

…

 

Seq matrix 2 
intra-seq 
corrected + 
multiplicative 
pretreated

Seq matrix m 
intra-seq 
corrected + 
multiplicative 
pretreated

…
Seq matrix 
1 intra-seq 
corrected

Eg.:

X matrix
(sensor signals)

Y vector 
(injection time  in hous; continuous for 
the whole trial)

Similar as described for intra-sequence drift correction

Supp. Fig. 2. Schematic representation of long-term drift with several sequences.
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E-nose raw data Intra-day drift correction
+ 

inter-sequence standardization

Graphical abstract
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