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Abstract: In Western tonal music, tension in chord progressions plays an important role in defining
the path that a musical composition should follow. The creation of chord progressions that reflects
such tension profiles can be challenging for novice composers, as it depends on many subjective
factors, and also is regulated by multiple theoretical principles. This work presents ChordAIS-Gen,
a tool to assist the users to generate chord progressions that comply with a concrete tension profile.
We propose an objective measure capable of capturing the tension profile of a chord progression
according to different tonal music parameters, namely, consonance, hierarchical tension, voice leading
and perceptual distance. This measure is optimized into a Genetic Program algorithm mixed with
an Artificial Immune System called Opt-aiNet. Opt-aiNet is capable of finding multiple optima in
parallel, resulting in multiple candidate solutions for the next chord in a sequence. To validate
the objective function, we performed a listening test to evaluate the perceptual quality of the
candidate solutions proposed by our system. Most listeners rated the chord progressions proposed
by ChordAIS-Gen as better candidates than the progressions discarded. Thus, we propose to use
the objective values as a proxy for the perceptual evaluation of chord progressions and compare the
performance of ChordAIS-Gen with chord progressions generators.

Keywords: chord progression; tonal tension; tonal interval space; artificial immune systems;
genetic programming

1. Introduction

In Western tonal music, tension is the anticipation a musical composition creates in a listener’s
mind for relaxation or release. The tonal tension is a perceptive phenomenon that can be produced by
the combination of different musical properties, such as dynamics, reiteration or rhythm. The balance
between tension and relaxation in a composition is usually denominated tonal tension profile,
which can be represented with a curve. The movement between tense music and relaxed music
keeps the music moving forward. Therefore it is an essential element for the composers to capture the
receptor’s attention while they are listening.
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The tonal tension profile usually depends on the different musical elements that are part
of the musical fragment. One of the most important elements are chord progressions [1,2].
Chord progressions consist of sequences of chords (a set of notes that can be played together) that
are played throughout the music. Over the past decades, there are some theoretical proposals that
aimed to regulate tension of chord progressions through their particular elements, such as consonance,
musical tension and voice leading. Riemann [3], Schoenberg [4], and Schenker [5], among others,
have discussed these principles extensively and proposed rules to create chord progressions.

In music composition, creating chord progressions which reflects a tonal tension profile commonly
requires years of musical training. To make this process easier, technological solutions have been
proposed to automatically model and analyze chord progressions, following different paradigms
including statistical learning [6–9], rules [10–13], grammars [14,15], and biological principles [16–19].

In particular, genetic programming, genetic algorithms and artificial immune systems have
been applied successfully to this field to create tools that can assist users into generating chord
progressions [20]. One of the first works to apply evolutionary computation [16] proposed Vox Populi
which uses genetic algorithms to evolve a population of chords by maximizing multiple musical
criteria and following some users’ preferences. Mcdermott et al. [21] propose a genetic algorithm that
creates music represented by graphs. Sciera et al. [22] present a meta-composer, capable of creating
chord progressions based on a hybrid genetic algorithm.Fukumoto et al. [17] apply genetic algorithms
to automatically create chord progressions according to the user’s feelings. Herremans et al. [23]
propose an expert system to compose counterpoint based on different optimization functions. More
recently, we [24] proposed ChordAIS, a system that makes use a standard Artificial Immune System
(AIS) called opt-ainet to iteratively generate the next chord in a given sequence by optimizing an
objective function. Although all of them obtained positive results, the mentioned proposals do not
follow or capture tonal tension profiles or curves. For such purposes, the proposals would require a
hierarchical analysis of the whole chord progression.

To address this limitation, several authors propose new works in which the tonal properties
of a chord are measured by considering not only on the previous chords but also their hierarchical
relationships, typically represented as a tree structure [25]. Granroth et al. [26] propose a system that
generates chord progressions by learning the most common structures from an annotated corpus.
It works in a jazz context, thus it does not follow western tonal principles and they did not apply
bioinspired algorithms. Herremans et al. [27] present a chord generator to create progressions according
to a tension profile. The authors use hybrid optimization with a function based on the spiral array
representation. However, the work does not analyze how the properties of chords can influence the
selection of a chord progression or another, and, although they applied a bio-inspired algorithm with
successful results, it is not focused to help a novice composer or a user.

In this work, we propose a new system called ChordAIS-Gen, that assists the user to generate
chord progressions by applying genetic programming (GP). To improve the performance of GP,
we incorporate some properties derived from the Artificial Immune System [28]. At last, the system
is capable of offering chord progressions with different musical properties but adapted to a tonal
tension profile given as an input. To evaluate the musical features of chord progressions, we depart
from the conceptual basis of Lerdahl’s model and computationally generate an objective function that
captures this tonal tension profile. In this work, tonal pitch indicators inspired by Lerdahl’s model are
computed using the Tonal Interval Space (TIS) by Bernardes et al. [13], a multidimensional space based
on the discrete Fourier transform, where hierarchical tonal pitch relations are expressed as distances.

It is important to note that the application of the GP joined to an AIS has not been deeply
explored. We aim to exploit the GP properties to create hierarchical structures that govern the chord
progressions. Likewise, we also aim to take advantage of the immune properties of the AIS to generate
multiple solutions different from one another. Therefore, while most state-of-the-art approaches
propose a unique solution to the generation of chord progressions, the system proposed in this work
is capable of proposing multiple different and good quality candidate chords. Furthermore, the lack
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of hierarchical structure has been a long identified problem in the field of generative music [29].
ChordAIS-Gen addresses both linear and hierarchical dependencies of chord progressions and also
aims to improve the accuracy of tonal indicators by adopting the perceptually-inspired TIS.

We carried out different experiments to evaluate the chords progressions created by performing a
usability test with users. We also evaluated if the algorithm developed can get good solutions for our
particular problem. In this case, we used a listening test to validate the candidates proposed by our
system. We compared our model with two previous models: Lerdahl’s proposal [30] and ChordAIS,
a previous work [24]. Lerdahl’s proposal captures similar musical properties as in this present work,
but in a different topological space. With that comparison we aim to know if TIS is a good solution to
capture musical properties. ChordAIS uses TIS to compute musical properties. However, the features
captured differ from our work. ChordAIS measures the consonance and relatedness to the previous
chord, key and harmonic function to create a chord progression. With this comparison we aim for the
inclusion of new musical properties in the measure improves the results.

Additionally, we compared the performance of our algorithm against the classical version of GP
and AIS. Finally, we aim to validate if the function can capture the tonal tension profile of a progression.
Therefore, we created a listening test and asked the participants to select and rate the curve that fits
best with the tonal tension profile. The correlation between the association of the curve made by the
system and the subjective ratings will support our final conclusions.

This paper is organized as follows: Section 2 reviews the topological space used to represent
music in this work and the musical paradigm followed. Section 3 describes the overall system with
the integration of the fitness function and the bioinspired algorithm, along with the general workflow
of ChordAIS-Gen. Section 4 details the musical properties captured by the function, while Section 5
exposes the technical information of the algorithm proposed. In Section 6, we give information about
the experiments performed to evaluate our proposal, followed by the results and a discussion. Finally,
Section 7 presents the conclusions and discusses future work.

2. Theoretical Background About Chord Progressions

2.1. Tonal Interval Space

The representation used to encode the notes plays an important role in the automatic generation
of chord progressions. Representations where neighborhood relations among the notes reflect
perceptual or music theory properties can be particularly useful, such as space where chords that
are close together generate better transitions than chords that are farther apart. There have been
proposals to organize the musical notes in geometrical spaces according to musical intervals and
other musical properties. In these spaces, geometrical properties such as neighborhood reflect
musical properties such as perceptual relatedness. The Tonnetz [31] is an early example of such
a geometrical representation of the properties of the tonal system because small distances reflect close
harmonic relations. Later, Chew [32] proposed a three-dimensional helix model to represent tonal
pitch relationships. Harte et al. [33] mapped 12-bin chroma vectors to the interior of a six-dimensional
polytope where close harmonic relations appear as small distances. Bernardes et al. [13] extended the
latter space, toward better adapted perceptual pitch relations by computing all kind of intervals as the
weighted discrete Fourier transform (DFT) of chroma vectors. In the Tonal Interval Space (TIS) [13],
distances among multi-level pitch configurations capture perceptual relatedness and magnitudes
indicate consonance. In this work, we propose to use the TIS [13] to represent multi-level pitch
configurations such as pitch classes, intervals, chords, and keys because geometrical properties of the
space are related to perceptual and musical properties. Tonal interval space has been used in several
works with successful results [13,18,24]. Consequently, we decided to make use of this space to capture
musical properties.
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One of the most important properties of the TIS is that distances among different pitch
configurations represented by their TIV reflect musical attributes. The Euclidean distance between two
TIV of two different pitch configuration, T1 (k) and T2 (k) is given by

ρ (T1, T2) =

√√√√ M

∑
k=1
|T1 (k)− T2 (k)|2. (1)

Perceptually, similar vectors result in smaller distances than dissimilar ones.
Another mathematical measure that captures musical properties and is used in the present work

is the inner product between T1 (k) and T2 (k), given by:

T1 · T2 =
M

∑
k=1

T1 (k) T2 (k), (2)

where T2 (k) is the complex conjugate of T2 (k). Equation (2) yields higher values for perceptually
similar vectors than dissimilar ones. The angle θ between T1 and T2 can be calculated from
Equation (2) as

θ(T1, T2) = arccos
(

T1 · T2

‖T1‖‖T2‖

)
, (3)

where ‖T1‖ denotes the magnitude of T1 calculated as the distance ρ (T1, T0) between T1 and the center
of the space T0 using Equation (1). Equation (3) results in smaller angles to indicate a higher degree
of similarity.

Equations (1)–(3) can be used to compute distances between pitch configurations of the same
level (e.g., the distance between two chords) or across levels (e.g., the distance between a chord and
a key). For example, the distance between two chords captures their tonal relatedness, the distance
between a chord and a key measures the level of membership of the chord to the key, and the distance
of a given chord to the three categorical harmonic functions (represented in the space as the triads
of the tonic, subdominant and dominant degrees) measures how well the chord fits the categorical
harmonic functions. All these properties are used in the proposed measure (Section 4) to capture the
suitability of the chord in the context of a progression.

2.2. Lerdahl’S Theory to Model the Tonal Fitness of Chord Progressions

In the literature, some authors have suggested different models of structural dependencies of
chord progressions [25,34,35]. Lerdahl proposed an outstanding model [25] which consists of an
evaluation of the melodic attraction and the tonal tension of a chord in a progression. Lerdahl’s
proposal analyzes the purpose of a chord inside the architecture of a chord progression. Besides,
it considers four factors: tonal pitch distance, surface dissonance, voice leading and hierarchical
structure.

Tonal pitch distance grasps the closeness of chords via an algebraic representation. It presents a
space in order to evaluate chord distances through a reference table. We contemplate, in this table, the
non-common tones between key distance, chords, and the interval distance amidst the chords root [36].

Surface dissonance assesses the psychoacoustic dissonance of chords in a progression. It measures
the dissonance from the interaction within the vertical notes of the chords. Three elements constitute
surface dissonance: “inversion”, “nonharmonic tone” and “scale degree”. “Inversion” explains the
chord’s bass note and on its upcoming construction as root position or inversion; “nonharmonic tone”
explores the presence of tones outside the chord function; and “scale degree” examines the component
scale degrees in a specific chord.

Voice leading grasps the melodic attraction between successive chords per voice. It is a horizontal
assessment that evaluates the suitability of each note in a voice in accordance with the preceding note.
In theory, the balance of the notes, the number of semitones and the whole fitness between the chords
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are able to modify the assessment of the voices [36,37]. Lerdahl [36] points out that the balance of each
note is linked with the distance to the key or tonal center. The nearer to the key, the steadier the note
will be.

Hierarchical structure grasps the diverse levels of the musical building by picking tree-based
structures conducted from functional harmonic categories. It can be segmented into local tension
and inherent tension to find out the hierarchical relation of the chords. Local tension determines the
distance between the chord we choose to assess and the chord right above it in the tree, which is
named “parent chord”. Furthermore, all the distances between the parent chord and the chords above
are considered as inherent tension.

This model has been applied in different works to measure the tonal tension of a musical
composition [25,38,39]. Due to the successful results obtained in the literature, we selected this
model and adapt it to our proposal.

2.3. Rohrmeier’S Hierarchical Tree Structure

Rohrmeier implements concepts from theories concentrated in the hierarchical dimension of
music through a binary grammar that follows tonal rules in order to create chord progressions and
explicitly designed. It allows it to be computationally verifiable and achievable [35]. This hierarchical
model of tonal music leans on four items. The functional level is the most important here. Therefore,
this grammar is utilized for this work to evaluate the hierarchical structure.

The behavior of a grammar is identified by the rules in Equations (4a)–(4g) according to Rohrmeier.
This behavior constitutes the functional regions in a chord progression. Besides, the rules include
two kinds of symbols: terminal symbols portrayed by lower-case letters and non-terminal symbols
portrayed by capital letters. The non-terminal symbols describe functional sections, for example,
the dominant region DR, the subdominant region SR, the tonic region TR and any of the preceding
regions XR. Non-terminal symbols enable the spread into different harmonic regions sticking to
the rules in Equations (4a)–(4d) or into terminal symbols following Equations (4e)–(4g). Dominant,
subdominant or tonic chords are portrayed by the terminal symbols t, d, s in the sequence respectively.
However they cannot be expanded further.

TR −→ TR DR (4a)

TR −→ DR t (4b)

DR −→ SR d (4c)

XR −→ XR; XR ∀ non-terminal (4d)

TR −→ t (4e)

DR −→ d (4f)

SR −→ s (4g)

3. System Overview

According to musical standards, a chord is a set of three or more notes that are played together.
When you play several chords, you generate a chord progression. The structure of a chord progression
is a hierarchy that can be represented with a tree. The idea of chord progression and how to encode
the tree structure is illustrated in Figure 1.

Firstly, the tree is constructed following some instructions that, in this work, are proposed by
Rohrmeier’s theory. The first node in Figure 1 is a tonic region TR and it determines the key of
the chord progression. Secondly, Rule (4b) is applied to get the nodes in level 2. Next, TR derives
into t (Rule (4e)) and the second child employs Rule (4b). The last levels are obtained by applying
Rules (4c), (4f) and (4g). Finally, each leaf node is replaced by a chord that complies with the same
harmonic function (tonic, subdominant or dominant). Initially, in the algorithm, this replacement is
made randomly.
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Figure 1. Illustration of a chord progression.

In this work, we must construct chord progressions that follow a concrete tonal tension profile
given by the user. The tonal tension profile can be represented with a curve and usually depends
on the musical features of the chords and the tree structure associated with the chord progression.
The difficulty lies in capturing such subjective properties through a mathematical model. To address
this issue, the chords will be encoded as points in topological spaces such as TIS, capable of capturing
musical properties [13], and we apply some mathematical measures to capture all these musical
properties. The four musical properties captured are: perceptual distance δ, dissonance ξ, hierarchical
tension λ and voice leading φ. All of them are linearly combined in an objective function M. This
function will give a score to each chord according to their musical properties. If you join the set
of scores given by M to the chords that are part of the progression, you can generate a curve that
represents the tonal tension profile of a chord progression. To know if the tonal tension profile of a
chord progression adapts to a curve given by the user, we calculate the regression R2 between both
curves. Higher values of R2 will be translated into chord progressions that adapt to the tonal tension
profile that the user is looking for. Therefore, we are looking for an optimization of R2. Due to the
wide amount of chord progressions that can be created manually, we need a heuristic algorithm to
look for different optima according to the regression function, in this case, we used GP with some
immune properties that improve its performance to create chord progressions.

Consequently, in our work the selection of the chord progressions can be considered as a
search problem in a geometrical space (in this case TIS [13]) and subjected to musical constraints.
The regression R2 between the points M and the initial curve drawn by the user will constitute the
fitness function of our bioinspired algorithm.

The regression function R2 is the fitness of our bioinspired algorithm which, along with the
constructed interface, constitutes a system that presents multiple options so that the user can choose
among these chord progressions according to his/her preferences. Figure 2 shows an overview
of ChordAIS.

ChordAIS-Gen workflow is illustrated in Figure 2. In a first step, the user sets some initial
parameters, such as the key, the number of chords and the tonal tension profile of the chord progression.
The tonal tension profile is a function that should be drawn by the user, and can have any shape.
This information will be stored in ChordAIS-Gen for the subsequent iterations. The bioinspired
algorithm generates a population of chord progressions. Each chord progression is represented as a
tree, which captures its specific hierarchical structure, which has been created following the grammar
proposed by [35]. The leaf nodes will be the chords that are part of the chord progression. According
to musical standards, a chord is a set of three or more notes that are played together. In this particular
case, the chord is represented as a vector with n elements, and each element is a number between 0
and 128, according to the MIDI standards. We use MIDI because the synthesizers used can understand
this codification very easily. However, to measure the tonal tension of each MIDI chord, we encode
them into the TIS and to get the tonal tension we apply our function M. The result is a curve or profile
whose points are the numbers that each chord has obtained according to M. This curve is compared
with the tonal tension profile that the user drew in the previous stage. The population of the chord
progressions evolve to obtain individuals whose profile adapts best to the curve proposed by the user.
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Finally, ChordAIS-Gen presents the best three minima (chord progressions) it could find to the
user, who finally selects which chord progressions should be used according to his/her preferences
and can play it through a simple synthesizer.

Figure 2. Overview of the approach proposed in this work. We did not draw the trees associated to
each chord progression for more clarity.

4. Creating the Tonal Tension Profile of a Chord Progression

The foremost indicator utilized to evaluate the tonal tension of a chord are the properties of the TIS resulting
from mathematical assessments like the angle between TIVs or the Euclidean distance [13]. In this work, we
attempt to generate a measure that grasps the tonal fitness of a chord via its musical features. We generate a
measure in Equation (5) that captures the properties described in Lerdahl’s proposal: voice leading (m), tonal
pitch distance (δ), hierarchical structure (h) and surface dissonance (c):

M(Ti, P) = k1δ(Ti, P) + k2c(Ti) + k3m(Ti, P) + k4h(Ti, P), (5)

where k j are constants that correspond to the weights of each parameter and Ti is the i-th chord of the
progression M. The codification of an element proposed in Section 2 is related to Lerdahl’s proposal
but encoded in the TIS. The following subsections will detail how the four items are encoded in the
TIS in order to be able to assess them mathematically.

4.1. Tonal Pitch Distances

The tonal pitch distance between two sequential chords is encoded by the measure δ . In line with
Section 4.1, δ assesses three musical features: distance to the key, distance to the tonal function and
distance to the previous chord in the sequence. In Equation (6), δ is divided as:

δ(T, P) = ρ(Ti, Ti−1) + θ(Ti, Tkey) + θ(Ti − Tkey, Tf ), (6)
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where θ uses Equation (3) and ρ(Ti, Ti−1) utilizes Equation (1). The degree of membership of Ti to the
main key of the full chord progression is evaluated by θ(Ti, Tkey); and the measures of the resemblance
to the tonal function designated by the tree created previously is assessed by θ(Ti − Tkey, Tf ) .

Chords musically close to the key have low distances between the key and chord configurations in
the TIS. Tkey represents the key. It is the result of the TIV of the chroma vector Ckey (n) which includes
all the notes of the scale of the key. Besides, the angle between the center of the key Tkey and the chord
Ti is estimated by Equation (3)

In order to assess the closeness of one chord to a tonal function in the TIS, we inspect if the chord
Ti is lined up with the dominant V, tonic I or subdominant IV, or by employing the angle measure
that is explained in Equation (3). Tf is a vector that corresponds to one of the harmonic functions I, IV,
and V referenced by Tkey and Ti − Tkey is the chord also using Tkey as reference. We want to minimize
θ(Ti, Tkey, Tf ) through Tf , sticking to the harmonic sequence created by the tree built in the preceding
step, to secure Ti in line with one of them.

4.2. Consonance

The rule ‖Ti‖ evaluates the consonance c of the chord that is portrayed by Ti, in the TIS [13] .
The chord is quite consonant, if c leads to a large value for ‖Ti‖. Hence, we attempt to maximize c (Ti).

4.3. Voice Leading

The melodic attraction of two successive chords is represented by m. Three factors shaping the
melodic attraction are proposed by Lerdahl. These are the number of semitones between the notes,
the stability of the notes (to what extent the rest of the notes are attracted) and the perceived distance
between the chords. According to these factors, the voice leading measure between Ti and Ti−1 is
codified as

m(Ti, P) =
∑3

l=1 v(nli−1
, nli )

ρ(Ti, Ti−1)
, (7)

where ρ is the Euclidean distance from Equation (1) that captures the perceived distance between the
chords and v is a measure of voice-leading for each voice l that is generated between the note nli−1

of
the preceding chord and the note nli of the current chord. We calculate the distance of its correlative
pitch class to the key in the TIS in order to measure the stability of the notes of a chord in a progression.
We calculate the distance to the key and the number of semitones as

v(nli , nli−1
) = ρ(Tnli

, Tkey)e0.05s (8)

where the number of semitones between nli and nli−1
is s.

4.4. Hierarchical Tension

According to Lerdahl’s theory, the measure of h refers to the tonal tension concept. It calculates
distances between chords for a progression considering a tree structure. We calculate the tension linked
to the hierarchical structure of the progression as

h(Ti, P) = ρ(Ti, Tj) +
∑N

k=j ρ (Ti, Tk)

N
, (9)

where Tj is the parent chord of Ti , N is the number of chords in the tree and Tk is the parent chord
of Tk−1 based on the tree structure of the chord progression M. Besides, ρ is the Euclidean distance
between two chords’ encoding which is measured with Equation (1).

Following Rohrmeier’s proposal, the hierarchical tree is generated. Nevertheless, it is still
important to know the relevance of a chord in the hierarchical structure and, therefore, their intrinsic
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tension and local tension. We must recognize which chords dominate (possess more tension) the other
chords in order to measure their tension.

The substitution of each node of the tree generated beforehand with the tensest chord, picked from
its children, portrays the hierarchy of “dominated” chords. In the current work, a method was
implemented to get a tree with the “dominant” chords of each level, and consequently, in order to
enable the calculations of the intrinsic and local tensions. At first, the concrete chords substitute
the leaf nodes. Automatically, the leaf chord is represented by the parent nodes with just one child.
Additionally, the child with the same harmonic function as the parent also automatically portrays the
parents with children symbolizing diverse tonal regions. Finally, the most stable chord in conformity,
measured as described in Section 4.1, substitutes the parent with children of the same tonal regions.

5. Genetic Programming and Immune Systems

Genetic programming (GP) is a heuristic algorithm that makes use of the chromosome evolution
process to solve a problem [40]. GP is specifically designed to evolve individuals which are traditionally
represented as tree structures [41]. The algorithm applies different operations to evolve the population
and retrieve an optimal solution. Those operations are commonly crossover, mutation and selection.
The crossover operation involves exchanging random branches of two trees to produce a new and
different individual that is incorporated into the population in a future generation. Mutation involves
modification of some properties in an individual. The selection consists of deciding which trees
(individuals) will be preserved for the next generation.

GP has been applied to many applications such as robotics engineering, circuit design, art,
financial engineering and so on. The nature of this algorithm makes it ideal to generate hierarchical
structures that govern the chord progressions. Consequently, we decided to apply GP to optimize M
and generate music. Although the traditional GP can only obtain a quasi-optimal solution, for this
particular purpose the subjective criterion of the user plays an important role and cannot be predicted
by our system. Therefore, it was strongly desired that ChordAIS-Gen searches for multiple solutions
simultaneously, to give the user the opportunity to choose among different options.

To address this problem, we looked for similar algorithms that can be fused with GP to improve
its behavior. We found that de Castro and Timmis [42] developed an artificial immune system for
multi-objective optimization called opt-aiNet. In opt-aiNet, each candidate solution (called antibody) is
encoded as a vector whose quality is measured with an objective function. A population of antibodies,
which represents a pool of candidate solutions, evolves following the immunological principles of
clonal expansion, mutation and suppression. The evolution of the antibodies results in the optimization
of the objective function because the objective value (or quality) of the solutions encoded by the
antibodies increases. Initially, the antibodies are randomly initialized to explore the search space. Next,
some antibodies are selected and cloned based on their quality. Each clone undergoes a mutation
inversely proportional to its objective value. These mutated clones are subsequently re-evaluated
with the objective function to determine if mutation increased their quality. Those mutated clones
with higher quality values than before are introduced in the current population, while the ones whose
quality decreased are discarded. In order to maintain diversity in the pool of candidate solutions,
the algorithm eliminates those antibodies that are close together in the search space. The affinity
between two antibodies is measured with the Euclidean distance between them, such that smaller
distances mean greater affinity. Those antibodies whose affinity is higher than a given threshold
are removed from the population while keeping the ones with the highest objective value. Finally,
a number of newly generated antibodies are incorporated into the network. The algorithm converges
when the quality of the current solutions cannot be further improved and no new solutions are found.

We developed a GP incorporating some of the operations proposed in opt-aiNet. The pseudo-code
of the algorithm is shown in Figure 3 and can be explained as follows:

1. Randomly initialize a population of tree structures and chords.
2. While the stopping criterion is not met do.
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(a) Determine the fitness of each antibody (chord progression) according to M and normalize
the matrix of profiles for the population.

(b) Generate a number Nc of clones for each antibody (chord progression).
(c) Mutate each chord progression according to a probability Qm. The mutation can follow

two different procedures:

• Mutate a leaf node (a chord) proportionally to the fitness of its parent.
• Mutate a parent node (a part of the tree) proportionally to the fitness of its parent.

(d) Determine the fitness of all the clones.
(e) Select the clone with the highest fitness.
(f) Exchange two branches of different trees according to a probability Qe.

(cross-over operation). The node in which the new branch is inserted will depend on the
fitness of the parent.

(g) Calculate the average fitness of the selected population.
(h) If the average error of the population is not significantly different from the previous

iteration, then continue. Else, return to Step (a)
(i) Determine the affinity among all antibodies. Suppress all but the highest fitness of those

antibodies whose affinities are less than the suppression threshold st and determine the
number of antibodies, named memory cells, after suppression.

(j) Introduce a percentage d of randomly generated antibodies and return to Step 2.

3. End While

The algorithm works as follows. One antibody represents a chord progression. Each progression
consists of a tree, which is its representation of the hierarchical structure. Note that the leaf nodes
will be the set of chords that will be played in the final step. This tree has been created following
Rohrmeier’s grammar [35]. The chord progressions are randomly initialized to explore the search
space (Step 1) and evaluated to discover their fitness. The fitness is calculated as follows:

• First, for each chord, we measure the tonal tension with M.
• With the number obtained, we join the points to get the tonal tension profile.
• The fitness will be the regression value R2 between the tonal tension profile and the curve that

the user has drawn.

Figure 3. Workflow of the genetic programming (GP) with the artificial immune properties.



Appl. Sci. 2020, 10, 6039 11 of 21

Afterwards, some of them are selected and cloned according to the probability Qm (Step 2.b),
which is empirically set. Each clone (chord progression) undergoes a mutation inversely proportional
to their fitness (Step 2.c). As the chord progression is represented by a tree, we can mutate a leaf
node or a parent node. If we mutate a leaf node (a chord), we have to mutate their individual
notes. Note that a chord is represented as a vector, and each note is a number between 0 and 128
(according to the MIDI standards). To mutate a chord, we have to change one or several of these
notes, which are simple numbers. To select the number of notes to be mutated, we framed the value of
the chord according to M between 0 and n, where n is the number of notes of the chord. The i-note
or i-notes to be changed are randomly selected. The mutation value of each i-note of the clone is
calculated according to the value of ci, represented in Equation (10), where N(0, 12) is a random value
between 0 and 12, M is the evaluation function and β is a correction factor empirically set.

ci = (1/β)exp(−P) · N(0, 12) (10)

In this work, the trees have to be feasible, meaning that all have to follow the rules defined by the
grammar. That means when we mutate a parent node, we have to re-structure all the leaf nodes of the
branch. Therefore, the higher the position of the parent node, the higher the mutation will be. To select
the node of the tree to be mutated, we sum the values of the chords according to M and we framed
it between 0 and n2, where n2 is the number of the parent nodes of the tree, decreasingly ordered
according to their depth. From this node, we randomly apply new rules and generate new chords until
we get the same number of nodes as before.

These mutated clones are subsequently re-evaluated with the objective function to determine if
mutation increased their quality (Step 2.d). Those mutated clones with higher quality values than
before are introduced in the current population, while the ones whose quality decreased are discarded
(Step 2.e).

In the following step, some of the chord progressions exchange branches according to the
probability Qe (Step 2.b), which is empirically set. When a tree t1 is selected, we randomly select a tree
t2. To avoid unfeasible trees (which violated rules of the grammar), t2 must have a branch with the
same parent node than the tree t1. To select the node of the tree to be exchanged, we sum the values of
the chords according to M and we framed it between 0 and n3, where n3 is the number of the parent
nodes of the tree t2 which are the same, decreasingly ordered according to their depth. From this node,
we exchange the branches of both trees.

In order to maintain diversity in the pool of candidate solutions, the algorithm eliminates
those antibodies that are close together in the search space. The affinity between two antibodies
is measured with the Euclidean distance between them, such that smaller distances mean greater
affinity. Those antibodies whose affinity is higher than a given threshold are removed from the
population while keeping the ones with the highest objective value (Step 2.g). Finally, a number of
newly generated antibodies are incorporated into the network (Step 2.h). The algorithm converges
when the quality of the current solutions cannot be further improved and no new solutions are found.

6. Evaluation

The aim of the evaluation is threefold. Firstly, we aim to validate the objective function M we
designed as a good measure that captures the tonal tension profile. Secondly, we aim to validate the
use of GP with immune properties in the overall system as a good solution, comparing it with other
proposals. Finally, we aim to determine the usability of ChordAIS-Gen through the users’ experience.

Firstly, we developed a prototype of our algorithm by using MATLAB tool. MATLAB was selected
because it can be successfully utilized for bioinspired and evolutionary computation and also because
it can be run on multiple platforms. We created a basic interface where the user can draw a curve for
the tonal tension. Our specific proposal of GP was implemented in MATLAB version 2019a using
standard libraries for common operations such as creating random numbers, plotting curves and
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calculating the fitness with the correlation values. Due to the specific features of the algorithm (which
include AIS and GP properties), it was programmed entirely without any external library specifically
designed for genetic programming.

According to the theoretical description presented above, in our algorithm, the following
parameters must be set:

• st: suppression threshold
• N: initial population size
• Nc: number of clones per antibody
• β: range of the affinity proportional mutation
• Qm: Probability of mutation
• Qe: Probability of cross-over
• d: percentage of random population.

Empirically, the parameters used were set as follows: st = 0.001; N = 200; Nc = 5; β = 2.6; Qm = 0.6;
Qe = 0.4; d = 10%.

Note that the evaluation aims to demonstrate that M reflects the tonal tension of the chord
progression. Therefore, we need to evaluate M in optimal conditions. That means we need to find
the best values for weights k j in Equation (5) by applying cross-validation. A previous work, [43] has
demonstrated the independence of the hierarchical properties of the chord progressions, independently
of the key. Additionally, we used cross-validation to calculate the weights ki that best fit the scores
resulting from a listening test with a total of 20 chord progressions. The final weights obtained were
k1 = 4.22, k2 = 2.13, k3 = 2.06, k4 = 3.76.

The evaluation remains a challenge in music generation with expert systems because of the
inherent subjectivity of the final product [44]. Most works in the literature use a human expert [12,23,45]
or a group of human listeners [11,46,47] to evaluate the results. They usually design a listening test
and a comparative study between the present system and previous works, with successful results.
Therefore, in this work, we will also perform a listening test, followed by statistical analysis and a
comparative study between other proposals.

6.1. Evaluating the Objective Function

Firstly, we address the validation of the objective function M as a proxy for the perceptual
evaluation of tonal tension profile in chord progressions. We expect the objective function to reflect the
perceptual quality of the chord progressions independently of the tree structure associated.

We designed a listening test that presents several chord progressions generated automatically.
We created a total of 12 chord progressions with a total between 5 and 8 chords each one. Each chord
progression had a different tree structure. All of them were in major or minor keys. We used a total of
four different keys. The rhythm in which the chords are played was always regular to put the focus on
the harmonic properties instead of in rhythmic features. The chord progressions were generated by
our system and all of them follow some of the curves presented as options in Figure 4. Each chord
progression was presented with a reproduction bar, and they were synthesized with a standard piano.
The presentation of each chord progression in the listening test is shown Figure 4.

Figure 4. Question of the listening test.
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The listeners were presented the chord progressions in a random order. The progressions could
be played as many times as they need. The listeners are given the options in Figure 4, and they have to
select which curve adapts best to the tonal tension profile of the chord progression. In total, 38 people
took the test, among which 11 declared no musical training, 10 considered themselves amateurs,
and 17 professional musicians.

We grouped the results according to the curves that the chord progressions represented. To analyze
the results we calculated the hit rate of the subjective ratings versus the fitness values for the chord
progressions included in the listening test. Note that the fitness value is the correlation between the
curve expected by the system and the curve obtained evaluating M for all the chords. In general,
chord progressions with higher fitness values have a higher hit rate for all curves tested.

We also aim to demonstrate that M captures the tonal tension profile of any given chord
progressions. Thus, we compared the fitness values of the chord progressions with all the curves given
in the options. We calculated the correlation between the fitness of each curve and the hit rate that the
users gave. As they were two datasets, we can apply the Pearson correlation. We present the Pearson
correlation value ρ and the p-value in Table 1. The p-value has been calculated by transforming the
correlation to create a t-statistic measure to proof the null hypothesis. The null hypothesis states
that there is no relation between the objective measure and the subjective values obtained from the
participants of the listening test. Therefore, if one of the p-values is lower than 0.05 the Pearson
correlation is considered significant.

Table 1. Comparison of the statistics resulting from organizing the subjective ratings as a function of
measures from other tonal tension models.

M Lerdahl’s Model ChordAIS

Curve A
p-value 2.5× 10−4 3.8× 10−3 2.7× 10−3

ρ 0.8128 0.7345 −0.6177

Curve B
p-value 4.9× 10−6 6.1× 10−6 3.2× 10−5

ρ 0.8999 0.8547 −0.7490

Curve C
p-value 9.2× 10−6 1.7× 10−5 8.7× 10−4

ρ 0.9346 −0.9190 −0.7812

Curve D
p-value 3.1× 10−5 2.2× 10−5 9.2× 10−4

ρ 0.8727 0.8326 −0.6906

Curve E
p-value 1.2× 10−4 3.9× 10−3 1.8× 10−2

ρ 0.8727 0.8156 −0.6357

The first column gives the statistical measures corresponding to the tonal tension profile calculated
by the measure M. The results suggest that the objective function captures the perceptual quality of the
chords. The p-values are all much lower than 1% for the null hypothesis and the Pearson correlation
coefficients ρ are above 0.8. This indicates that the subjective ratings of the users correlate strongly
with the tonal tension profile that our model predicts.

To validate M against other proposals, we use two works proposed previously: the Tonal
Tension Model proposed by Lerdahl, which is one of the most prominent models in the community,
was described in Section 2 and captures hierarchical and linear properties following a different
topological space, and ChordAIS, a previous work proposed in [24], which captures only linear
properties of chord progressions. ChordAIS captures the following properties: consonance, perceptual
relatedness to the previous chord, perceptual relatedness to the key and the harmonic function it
represents. In our present work, apart from these properties, we also included hierarchical properties,
like the hierarchical tension, and also the voice leading. Table 1 shows a comparison of the statistics
resulting from organizing the subjective ratings obtained in the listening test as a function of distance
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measures from other chord representations. To clarify the statistical analysis, we only calculated
the statistical analysis with the curve that correlates best with the subjective values, ignoring the
other possibilities, that resulted in lower correlation values in all the cases, independently of the
model applied.

M is the objective measure from Equation (5). For the other columns, L stands for the distance
according to the Lerdahl’s model of tonal tension, and C stands for the ChordAIS model, in which
only linear properties of the music are considered.

The statistical analysis shows that M captures the tonal tension profile of the chords better than
L and D. The high ρ values obtained indicate the linear regression of the subjective ratings as a
function of the objective values and the p-values are all below the 1% threshold for the null hypothesis,
which suggests that the listeners’ ratings correlate with the fitness measure well. Note that Lerdahl’s
measure L also correlates with the subjective ratings of the listening test, but obtaining slightly lower
values for ρ and p-value. Likewise, the ρ and p-value in D are correlated, but below the rates obtained
for M.

6.2. Evaluation of the Gp with Immune Properties

The proposed algorithm is capable of finding multiple local minima of the objective function
while preserving diversity. The progressions with the highest fitness values would be considered
most appropriate to be selected, as they comply with the specifications given by the users in the input.
However, there are other chord progressions that can also comply with the rules. All these potential
solutions can be local minima and can have different fitness values. We aim to evaluate if the chords
selected by the algorithm are all considered better candidates than the chords that were discarded.

For this purpose, we performed a listening test to evaluate the perceptual quality of the chords
proposed by the algorithm. We run the system 10 times with different curves and selected 2 candidate
chords selected by the algorithm and 2 additional chords that were rejected, sampling the objective
function regularly from lower to higher fitness values.

Finally, we designed a listening test that presents these 40 chord progressions ordered randomly
with a picture of a curve that represents their tonal tension profile. As mentioned above, we included
chords selected by the algorithm as well as chords rejected by it to validate the objective function.
Each chord progression can be played multiple times before assessing it. This listening test also
presents chord progressions with between 5 and 8 chords in each one. As in the previous listening test,
each chord progression may have a different tree structure, with different keys. The rhythm in which
the chords are played was always regular. Each chord progression was presented with a reproduction
bar, and they were synthesized with a standard piano. The presentation of each chord progression in
the listening test is shown Figure 5.
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Figure 5. Shows the results of the fitness value proposed by ChordAIS-Gen against the users’
subjective ratings. The red * symbol means this question is mandatory to finish the listening test.

The listeners were asked to rate how well the curve represents the tonal tension profile of the
chord progression from 1 (Very bad) to 5 (Very good). In total, 35 people took the test, among which
8 declared no musical training, 10 considered themselves amateurs, and 17 professional musicians.
We expect the chords selected by our algorithm to be rated positively by the listeners, while we expect
the discarded chords to be rated negatively.

Figure 6 shows the values of the subjective ratings (represented in the vertical axis) versus
the fitness values (in the horizontal axis) for the chord progressions included in the listening test.
To simplify the analysis, we calculated the mean of the fitness values of the chord progressions that
our algorithm ranked first, second, third, and successively until the eighth. We normalized these
values between 0 and 1, and these mean fitness values were represented in the horizontal line. We also
calculated the mean and standard deviation of the subjective ratings of the participants. The standard
deviation is represented with the vertical lines, and the points are the cut points between the objective
fitness of our model and the subjective ratings of the users for each chord progression. The first four
points are chord progressions discarded by the algorithm, while the rest are progressions that our
algorithm considers as good candidates. According to Figure 6 all the progressions selected lie above
the horizontal line that cuts through 3. This indicates that our algorithm selects chord progressions
that follow the tonal tension profile presented, according to the listening participants. Most chords
discarded lie below the fair rating. Therefore, according to our results, we can conclude that our
algorithm is able to select options that adapt to their tonal tension profile. tension.

Our goal is to show that globally, our system can capture the tonal tension profile of a
chord progression according to both musicians and non-musicians perceptions. As a future work,
we will perform a deeper analysis to show how the results differ between people with and without
musical training.

We aim to demonstrate that the proposed algorithm improves the performance of algorithms
like AIS and GP. Therefore, we replace our algorithm with a standard version of GP and a standard
version of AIS. We selected opt-aiNet, an optimization AIS proposed by [42] which is quite similar to
the present proposal and was used in previous work, and also selected a classical approach for GP. We
configured the parameters of the algorithms to its best performance empirically. Table 2 shows the
values for the three algorithms.

There were two main reasons to create a new algorithm. The first one is that the different mutation
patterns allowed to improve the performance of the algorithms. The second was to offer options with
different properties. Therefore, we run the algorithms 50 times and calculated the mean and standard
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deviation of the fitness value of the best individual. All of them made use of the M function. As we
can see in Table 2, the fitness value was better in our algorithm, although the GP and the AIS also
performed positively.

Figure 6. Shows the results of the fitness value proposed by ChordAIS-Gen against the users’
subjective ratings.

Additionally, we aim to validate that our algorithm obtains candidates with different properties.
For this purpose, we calculated the Euclidean distance between the three candidates proposed by our
algorithms against the AIS, as GP only finds a single option. We also run the algorithms 50 times
and calculated the mean and standard deviation of the normalized similarity measure of the three
candidates in each run. The results in Table 2 show that the similarity value is significantly better for
the algorithm proposed.

Table 2. Results of the objective function for three different configurations of the GA.

Parameters opt-aiNet GP AIS+GP

Mutation Rate According to the fitness 0.3 0.6 and the fitness

Cross-over Rate - 0.4 0.4 and the fitness

Selection Function - Tournament -

Number of clones 15 10 5

Initial Population 250 300 200

Suppression value 0.02 - 0.001

Random population 10% - 10%

Fitness value 0.8413± 0.2045 0.7964± 0.1546 0.8734± 0.2385

Similarity 0.38± 0.1845 - 0.67± 0.2705

According to the results, our algorithm proposes other candidate chord progressions that
are different from the best candidate and are still rated positively according to the fitness value.
Our algorithm keeps these candidate chords, which are less trivial to find with traditional methods,
because of the maintenance of diversity feature.

One of the limitations of our work is that, as with most of the bioinspired algorithms mentioned,
our algorithm is computationally intensive. We calculated a mean of the CPU consumed during the
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execution and the time it takes to output a complete chord progression. The CPU consumed was
approximately 12.07% and the mean time was 9.85 min. In a future work, we would analyze how to
improve the time of execution to get a more interactive tool capable of giving a response to the user in
a shorter time.

6.3. Evaluating the Usability of Chordais-Gen as an Assistive Tool

In this third experiment, we aimed to evaluate the usability of ChordAIS-Gen from a user
perspective. The system presented aims to help those users who might not have enough knowledge
about tonal music to generate a good chord progression. The algorithm facilitates generating different
but good options for candidate chords which can follow the progression, but we also want to validate
if these chords are suitable selections for the user.

In total, 8 users without musical training were selected and asked about their experience with
ChordAIS-Gen. Initially, they used the system to generate 5 chord progressions with any degree of
freedom, to become familiar with ChordAIS-Gen. Then, they had to generate a total of 10 progressions.
Each chord progression consists of a minimum of 5 chords and a maximum of 16 chords in a concrete
key signature and with different curves. Initially, the users select the key, the number of chords and
the tension profile. Then, ChordAIS-Gen proposes three-chord progressions. The user can play the
progressions whenever they need to and select which one is more desirable according to their criterion.
They can modify a concrete chord if they wish to. The interface constructed is shown in Figure 7.

Figure 7. Interface of ChordAIS-gen.

To also compare the ChordAIS-Gen system with our previous work, ChordAIS, we repeated the
experiment with the same users. They used the ChordAIS system to generate 10 chord progressions,
in the same conditions as in ChordAIS-Gen.

In every case, the chord progressions that both systems proposed are not ordered by their fitness,
in order not to bias the selection of one particular progression. All the participants have used the tool
for at least 10 min, and have generated a minimum of 8 progressions. With that experience, they had to
respond to a questionnaire that aims to capture their opinion about the system. In particular, the users
gave their opinion about three items:

• The system complies with their expectation. The system is capable of giving good solutions that
follow the initial parameters (tonal tension, key and number of chords).
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• The system can give nice chord progressions that the user could not otherwise have composed.
• The system presents solutions that are different among them.

All the questions could be rated from 1 (“Completely unsatisfied”) to 5 (“Completely satisfied”).
Table 3 shows the mean ratings and the standard deviation of the experiment.

Table 3. Shows the percentages of satisfaction when the users finished testing the
ChordAIS-Gen system.

Expectation Usability Different Solutions

ChordAIS-Gen 4.29± 0.50 4.15± 0.67 4.04± 0.75

ChordAIS Values 4.17± 0.75 4.03± 0.67 3.17± 0.75

The table shows that, in general, ChordAIS-Gen satisfies users’ requirements (4.29). The users are
satisfied with the system, as it is capable of retrieving good and different candidate progressions that
adapt to the tonal tension profile, with a mean of 4.45. Additionally, the users consider that amount
of options to select chord progressions to be quite adequate (4.34), meaning that ChordAIS-Gen can
retrieve solutions which are different one from another. The authors consider that this feature can be
improved in future work by adding a learning component to understand the users’ preferences and
incorporate this to the selection of chord progressions.

The previous version, ChordAIS also obtained good results. The satisfaction degree and the
usefulness of the ChordAIS also had high ratings, although slightly lower than in the new version.
However, ChordAIS cannot retrieve information about the tonal tension profile, only about the key
and number of chords. Additionally, the users gave a lower value when they were asked about the
diversity of solutions (3.17). Thus, the users think that both systems can assist them but ChordAIS
generates more expected chord progressions than ChordAIS-Gen.

It is important to note that we also gave space to make some qualitative comments about our
application and the experiments with the curves. Regarding the interface of our system, musicians
would prefer to show the progressions with a musical score instead of a MIDI list. As the results can
be exported to MIDI files, this shortcoming was partially addressed. In the experiments carried out,
we obtained some comments in which they stated that they felt sometimes that the curves are too
simple, and they would need a more complex curve to totally express the tonal tension profile of the
chord progression.

On the contrary, the most common comment for non-musicians was that the extra description of
the tonal tension was helpful to wholly understand the work. Additionally, as the curves represent
general profiles, matching them with the chord progressions was easier than expected. However, in the
usability test, the non-musicians needed deeper training to fully understand the tension profiles. Even
though, some of them needed some help at some point while we were running the system to interpret
the results and contrast them against the curve they depicted. In a future work, we will try to improve
the interface. We also planned to create a new experiment in which the musical expert can draw their
own curve instead of selecting among several standard curves.

7. Conclusions and Future Work

This present paper proposes a system that assists a user to generate tonal chord progressions,
following a tonal tension profile. The tonal tension profile is a curve that modulates the path of
the music played, and it depends on different musical properties. The system is able to search for
different chord progressions that comply with musical constraints such as consonance, voice leading,
hierarchical tension and perceptual distance. To capture all these musical properties, a function M,
encoded in the Tonal Interval Space (TIS), has been designed. A Genetic Programming with artificial
immune system properties has been developed and integrated into ChordAIS-Gen to find multiple
solutions in parallel, resulting in multiple chord progressions that follow the tonal tension profile.
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This new algorithm can be applied to problems in very different contexts, including Healthcare,
energy optimization or smart cities.

A listening test was carried out to demonstrate that the chord progressions proposed by
ChordAIS-Gen adapt to the tonal tension profile. Most listeners appreciated the same curve that our
model predicted with the function M. Additionally, most listeners also rated the chord progressions
proposed by ChordAIS-Gen more positively than the progressions discarded. Statistical analysis
showed that our algorithm is able to propose good candidates according to the subjective ratings.
Additionally, we made a comparison to evaluate if the incorporation of AIS properties to a GP algorithm
can improve the performance of those algorithms individually.

We would like to highlight the subjective nature of this task, the generation of music, is therefore
hard to evaluate through mathematical measures. We developed the listening tests, which are subjective
evaluations, and thus, whose results depend on factors such as culture, musical education or personal
preferences. Those factors are not encoded in the objective function. Consequently, even when the
participants involved were familiar with the Western tonal music, the results of the listening test can
vary between individuals. For example, people with musical training may be more receptive to capture
tonal tension due to wide exposure to Western tonal music, or can interpret dissonances as possibilities
within the tonal music paradigm.

In this work, we focused on the long-term and hierarchical aspects of the automatic generation
of chord progressions. Furthermore, we focused on the ability to provide multiple options that are
considered good candidate solutions with variety among themselves. However, the system does not
learn from previous experiences to understand the users’ preferences. Future work should investigate
how to automatically incorporate this knowledge and combine it with the function constructed.
Additionally, we will compare our results with other bioinspired algorithms and proposals based on
artificial neural networks, which have demonstrated positive results in other areas [48,49].
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