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ABSTRACT Big Data applications are present in many areas such as financial markets, search engines,
stream services, health care, social networks, and so on. Data analysis provides value to information for orga-
nizations. Classical Cloud Computing represents a robust architecture to perform complex and large-scale
computing for these areas. The main challenges are the user’s unknowledge about Cloud infrastructure, the
requirement needed for improving performance, and the resource management to maintain stable processing.
In these difficulties, an inadequate solution can lead to users overestimate or underestimate the number of
computational resources, which drives to the budget increases. One way to work around this problem is to
make use of Volunteer Computing since it provides distributed computational resources at free monetary cost.
However, a volatile machine behavior is a problem to address in Big Data data distributions. Thus, this work
proposes a data distribution model composed of Cloud Computing and Volunteer Computing environments
in a hybrid fashion for Big Data analytics. The contributions of this work are: i) the required evaluation
to enable efficient deployment of Big Data in hybrid infrastructures; ii) the development of an HR_Alloc
Algorithm for establishing the data placement to Big Data applications; iii) a model to resource allocation
in hybrid infrastructures. The obtained results indicate the feasibility of using a hybrid infrastructure with
up to 35% of unstable machines in the worst-case scenario, without losing performance and a monetary cost
lower than 20% in comparison to Classical Cloud Computing. Also, communication costs decrease up to
57.14% in the best-case scenario due to load balancing.

INDEX TERMS Big data analytics, cloud computing, hybrid infrastructures, MapReduce, volunteer

computing.

I. INTRODUCTION

The increasing use of electronic devices such as smartphones,
tablets, and sensors on the Internet has led to the generation
of massive volumes of data. The International Data Corpo-
ration (IDC) estimates an exponential growth in data produc-
tion, and it is moving ahead from 33 Zettabytes in 2018 to 135
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Zettabytes in 2025 [1]. In such context, the rise of real-time
Big Data analysis has promoted the creation and adoption of
many applications and solutions in the most varied domains
such as social networks, stock market, education, astronomy,
meteorology, bioinformatics, exact sciences, social sciences,
and others.

In fact, the possibility of handling massive amounts of
data in real-time has attracted the attention of many organi-
zations that are seeking efficient, low-cost strategies for data
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processing and analysis in order to provide valuable solutions
and services [2]. Along these lines, frameworks and libraries
have been made to handle Big Data analysis in different
contexts. It can cite, for instance, the adoption of Hadoop
MapReduce (HM) [3] for batch processing, Spark [4], Flink
[5] and Storm [6] for batch and real-time processing, the last
processing most utilized in Internet of Things (IoT) scenarios.

Further, these frameworks need environments capable of
supporting data-intensive processing, enable on-demand ser-
vices, and varied workloads. This is where Classical Cloud
Computing (CCC) fits with on-demand self-service, broad
network access, resource pooling, and rapid elasticity on a
pay-as-you-go model [7]. These characteristics revolution-
ized how data analysis has led in the last past decade, as well
as, motivated both academic and industrial organizations to
investigate and develop technologies and solutions for sup-
porting a world in transformation [8].

CCC transformed the entire computing industry and busi-
ness models [8] and currently has been shifting from local
storage and processing to online processing at the network
Edge. It does not change the fact that CCC represents a
robust architecture with efficient management to perform
large-scale and complex computing in a distributed and
decentralized fashion [9]. Nevertheless, data-intensive pro-
cessing at the cloud level presents a bulk of challenges such as
data movement, and communication, as well as, the difficulty
of service optimizing for supporting billions of end-devices
in real-time [10]-[12].

Volunteer Computing (VC) represents a kind of improve-
ment for the needs mentioned above and also is known as
a heterogeneous platform that allows underutilized users’
resources to allow perform a wide range of applications at
a fraction of the cost of classical High-Performance Comput-
ing (HPC) clusters, or CCC providers. For instance, an appli-
cation running on top of a VC infrastructure runs data task
closer to users at the Edge of the network. Thus, this approach
can be 56% more efficient than CCC environments as well as
IoT applications can reach up to 5.3 times faster due to low
levels of latency and lower data-movement [13].

At the same direction, our recent studies [16], [17] and
[18] reinforce the fact that classical VC can be used to bal-
ance expenditures costs and processing between volunteers
and CCC instances. In summary, the provided solutions to
schedule tasks using a data locality algorithm that follows
computers’ capacities, i.e., the machines with more compu-
tational power will receive more data to process than others.
Also, the machines join in groups and receive data replicas to
reduce network traffic, data movement, and latency. In such
context, it is possible that VC or Volunteer Cloud Comput-
ing (VCC) devices (as described in Darrous et al. [13]) are
capable of supporting data-intensive processing at the Fog
Computing (Fog) and Edge layers. It is because Fog resources
have been representing a CCC extension for real-time data
analytics, due to Cloud has high bandwidth, reliability, and
locality-aware [19].
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Besides, it is important to mention that the behavior of
volatility in a VC environment - is quite similar to what is
found in Fog scenarios. In such context, the Fog nodes are
aware of their geographical distribution and logical location
within the cluster context, operating in a distributed manner
over varied network conditions [20]. Thus, if it is possible
to abstract problems such as resource discovery, intermit-
tent availability, and security, then Volunteer Desktop Cloud
(VDC) can be used as well in Fog environments. VDC is
a cloud environment composed of volunteer desktops with
trusted relationships. VDC is not limited by battery charge
time or low processing capacity like Edge devices. Then these
environments can be eligible to run Big Data applications
flowing determined requirements more efficiently.

The main motivation of this work is to investigate if it
is possibility to adopt adjacent technologies such as CCC
and VDC environments to work together to provide a hybrid
infrastructure called Hybrid Cloud for Big Data Processing
(HCBDP) for performing Big Data analytics. Thus, answer-
ing the following questions: i) How effective strategies for
data splitting and distribution are for HCBDP? ii) What are
the required resources?

Moreover, this work extends classical VC that does not
support Directed Acyclic Graphs (DAG) based processing
[15] by introducing a model to support this characteristic.
Thus, the core of our solution is defined based on an algorithm
called HR_Alloc which dispatches data over well-selected
machines between Cloud Computing for Hybrid Environ-
ment (CCHE) and VDC with available resources to create a
single HCBDP infrastructure.

The contributions of this work are summarized as follows:

o The paper proposes a model that extends CCC to
HCBDP for performing Big Data analytics on top of
CCC and VDC environments;

o The proposed model is evaluated in terms of the per-
formance of real-world workloads on top of CCC and
VDC environments. Further, although the design of our
experiments does not cover Fog or Edge Computing,
explicitly, it is important to mention our model takes into
account their characteristics. Thus, this approach can be
easily adapted for these environments too;

o The HR_Alloc Algorithm minimizes network latency
and data movement because it takes decisions using
a data-driven mechanism to provide resource alloca-
tion between hybrid infrastructures. As an outcome, the
model helps to decrease hardware and computing expen-
ditures due to the advantages of the use of VDC in the
hybrid processing paradigm.

The paper is structured as follows. Section II presents
the state-of-the-art of big data analytics in hybrid infrastruc-
tures. Section III shows the architecture of our solutions and
describes the proposed model and the algorithm created to
provide resource allocation. Section I'V describes the method-
ology, experiments, and obtained results. The conclusions
and future works are outlined in Section V.
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Il. RELATED WORK

This section presents the shortcomings in Big Data analytics
in homogeneous, heterogeneous and hybrid environments
such as Multi-Cloud, Hybrid Cloud (HC) and VC environ-
ments. HC is a Cloud composed of CCC added of one or
more Cloud infrastructures such as Private or Public Cloud
ora VCC.

A. BIG DATA IN HETEROGENEOUS ENVIRONMENTS
MapReduce (MR) was the first simplified data processing
model for high-distributed clusters applied to batch work-
loads at Google, in 2004 [21]. MR has been motivating tons
of solutions in the most varied fields. Our previous work [16],
for instance, proposed MRA++ strategy to distribute data
according to the heterogeneity of the machines to prevent the
application’s slow down.

The MOON project (MapReduce On Opportunistic
eNvironments) [22], constituted both homogeneous cluster
and VC. This approach was driven by the need to avoid
data movement costs to clouds and across them by wide-area
networks (WAN). The authors mentioned that one machine
with an unavailability rate of 40% needs up to eleven replicas.
Thus, the solution applying a LATE algorithm [23]. Besides,
data loss due to volatility in machines is addressed by data
replication in reliable machines. Also, the approach does
not adapt the scheduling to the machines’ heterogeneous
nature.

BitDew-MapReduce (BitDew-MR) represents other MR
implementation for volatile machines [24]. BitDew-MR
reduces costs through the bag-of-tasks application with a
synchronization schema of barrier-free computation to miti-
gate the host churn. However, BitDew-MR does not consider
geographically distributed environments.

Muhammad et al. [25] propose a solution to handle vast
volumes of data with high input rates that require low
latency. The goal is to solve the unbalanced loads caused
by skewed streams on heterogeneous clusters. Similarly,
Aten [11] manages data aggregation and data streams within
message queues, assuming different algorithms as strategies
to partition data flow. It optimizes data communication in
geo-distributed and heterogeneous environments. Neverthe-
less, these implementations do not note data transference
between different platforms, such as CCC providers.

The work of Ji and Li [26] evaluates the adoption of algo-
rithms for geo-distributed data analytics. It uses a centralized
approach that considers significant bandwidth and leads to
poor performance as well as to the privacy problem. The
distributed execution is used to move computation between
data centers by aggregating intermediate results for further
processing.

B. CLOUD AND MULTI-CLOUD BASED SYSTEMS

In CCC scenarios, the task of obtaining application and
infrastructure requirements is complicated and sometimes
incurs higher costs than expected for the Classical Cloud
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Server Providers (CCSP). It occurs because an application
can use more (overestimated) or less (underestimated)
resources. The infrastructure might be modified to support
the most varied requirements, such as workload variations,
multi-tenant requests, scalability, security, and others.

Jayalath et al. [27] introduced G-MR, a Hadoop implemen-
tation based on a geo-distributed dataset across multiple data
centers that can perform MR jobs across multiple paths (the
performance can vary considerably). Moreover, open-source
frameworks such as Hadoop MapReduce, do not support
multi-paths. The G-MR has an algorithm called Data Trans-
formation Graph (DTG), which determines an execution path
for performing a job sequence for MR.

Big Data processing uses data replication mechanisms
between different datacenters and CCSP. This type of com-
munication requires high demand, and the variability of per-
formance can lead to the network bottlenecks between CCC
operations [28]. In this scenario, deploy strategies to reduce
data transfers is much common. It is possible to cite, for
instance, the study of Tudoran ef al. [29] where there are two
methods for modeling complex infrastructures: i) the ana-
Iytical models use low-level details with workloads and are
characterized by their ability to predict performance, where
the details will determine the best modeling; ii) the sampling
method is an active approach that does not require any previ-
ous knowledge of the infrastructure and the information about
network topology.

HyMR [30] is a framework for enabling an autonomic
Cloud burst for clusters of virtual machines that executes MR
jobs over a Multi-Cloud. The authors implemented a hybrid
infrastructure as a Service (HylaaS) for Virtual Machine
(VM) instance (partitions management) in Multi-Cloud. Hyl-
aaS implements an OpenStack extension. This partitioning is
transparent to the users since it allows access to all VMs in
the same manner, regardless of their physical allocation.

Palanisamy er al. [31] argue that users tend to choose
resources based on trace files of past executions of MR jobs in
the CCC. In fact, CCC solutions can be improved by per-job
means and per-customer optimization, allocating small slices
of resources and leading to low usage in the CCC scenarios.
The work utilized a framework for cost-effective resource
management called Cura that is designed to create cluster
configurations for the MR job automation. The aim is to
optimize resource allocation to reduce the infrastructure costs
in the CCC datacenters.

Matteussi et al. [32] propose a technique to minimize disk
contention effects in shared virtualized systems (e.g. CCC
and container-based Clouds) in order to improve applica-
tions’ performance. The work provided a dynamic resource
management strategy to adjust disk I/O utilization rates for
MR Applications. Moreover, the authors mention the neces-
sity of fair resource management due to the heterogeneity of
machines and workloads.

Rathinaraja et al. [33] propose a dynamic ranking-based
MapReduce job scheduler called DRMJS. It schedules map
and reduces tasks based on the VM’s performance ranking.
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TABLE 1. Frameworks and techniques for big data analysis.
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= Jayalath et al. [27] X X X X X X
U.L Tudoran et al. [29] X X X X X X X
§ Loreti et al. [30] X X X X X
% Balaji et al. [31] X X X X X
S Matteussi et al. [32] X X X X
° Rathinaraja et al. [33] X X X X X X
o Chen et al. [34] X X X X X X X X X X
Z  Lin et al. [22] X X X X X X
§ Souza Jr. et al. [11] X X X X X X
% Anjos et al. [16] X X X X X
e Lu et al. [24] X X X X X X | X
€ Nasir ef al. [25] X X X X X
T Jieral 26 X X X X X X
Coyne et al. [35] X X X X
= Clement et al. [36] X X X X
'_E Alexandrov et al. [39] X X X X X X X X X
E Pham et al. [40] X X X X X X X
Rezgui et al. [37] X X X X X X
This proposal X X X X X X X X X X | X

The main goal of this work is minimizing job latency and
improve resource utilization. The DRMJS algorithm calcu-
lates each virtual machine’s performance score based on
hardware heterogeneity (CPU, disk I/O and Network I/O).
The big challenge of this proposal is to obtain hardware
information in real-time from CCSPs because they are hidden
to users.

Chen et al. [34] introduce a QoS-Aware data placement
to minimize communication costs and data transference
between geo-distributed data centers. The proposed heuristic
considers the traffic flows in the network topology of data
center and replica distribution. The data centers are joined
as a block-dependence tree (BDT), reducing the construction
to a graph partition problem. The proposal formulates a cost
function that optimizes the mapper costs through data repli-
cation strategies, and as a result, minimizes the data block
transfer cost.

C. HYBRID SYSTEMS

Usually, hybrid systems are represented as a mix of public
and private CCC [35]. HC represents a set of on-premises,
private and public CCCs orchestrated between two platforms.
A hybrid system gives greater flexibility and more data
deployment options [35]. The data is moved from the private
to public CCC when a new VM allocation is required to
improve task performance. The data locality and data move-
ment remain a challenge for accelerating iterative MR in HC
once iterative applications reuse invariant input data.
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Clement et al. [36] address iterative MapReduce issues in
Hybrid IaaS CCC environments. The authors argue that it is
essential to improve the ability to take advantage of the data
locality in a HC environment. The strategy aims to extend the
original fault-tolerance mechanism of HDFS and deploy data
replicas from an on-premise VM in a private CCC to another
VM. Also, the off-premise VM is allocated in a public CCC
as an external rack in the HDFS..

Rezgui et al. [37] implement CloudFinder a VCC, where
several Private Clouds would combine their resources to use
as a single Cloud. The computational resources are deployed
on top of GENI, an NSF-funded Cloud Federation. The
owners of Private Clouds donate computing resources in a
volunteer fashion. This proposal evaluates execution time,
physical hardware (disk, memory, and energy consumption)
to perform an optimal workload placement in an available
machine, through a weighted average. Finally, heterogeneity
evaluation and network latency are open issues.

Lambda Architecture [38] enables building Big Data sys-
tems as layers to satisfy properties such as internal code opti-
mization and iterative algorithms that allow them to achieve
immutability re-computation, as well as provide low latency
without impairing the robustness of the system and other
factors. The Apache Flink, previously called Stratosphere, is a
data analytic framework that follows the Lambda Architec-
ture and enables the extraction, analysis, and integration of
heterogeneous datasets [39]. Flink has a flexible pipeline that
enables several MR and extended functions like Map, Map-
Partion, Reduce, Aggregate, Join, and Iterative computing.
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All application programming interfaces are translated into
an intermediate representation of a compiled program via a
cost-based optimizer [5].

Cirus [40] is a framework for Ubilytics solutions that pro-
vides a type of Big Data analytics applied for IoT scenarios.
The deployment supports heterogeneous environments based
on brokers (IoT Edge), and the sensors are implemented as a
Platform as a Service (PaaS) for IoT real-time applications.
The reconfiguration management is implemented by Robo-
conf, which dynamically adjusts the infrastructure.

D. RELATED WORK DISCUSSION

Table 1 summarizes the state-of-the-art in Big Data analytics
for homogeneous, heterogeneous, and hybrid environments
such as CCC, Multi-Cloud, Desktop Grid systems, and HC.
Most studies (88,9%) investigated the batch workloads with
the MR framework. It occurs because the MR model repre-
sents the platform for a plurality of Big Data technologies and
solutions which have been used today, such as the Hadoop
MR, Storm, Spark, Flink, and so on. However, only few
solutions are close to VC, for instance BitDew-MR [24],
Cirus [40], MRA++ [16] and CloudFinder [37].

A sampling assessment indicates that 61% of authors pro-
pose solutions to CCC or Multi-Cloud implementations, and
only 27% propose geo-distributed approaches. The strate-
gies for data and task distribution in the context of HCBDP
are unexplored, being an opportunity for the design of new
solutions. Furthermore, few solutions evaluate strategies like
computational resources and deployment costs, in this sce-
nario, 55% of the studies are using one or another strategy,
but only 11% include both. In such a situation, there is gap
in a literature gap regarding Big Data analytics in hybrid
infrastructures. Nevertheless, some topics could be better
explored, for instance, data distribution models, resource
management strategies (CPU, memory, disk I/O, network and
energy), data placement, and so on. Therefore, this study
explores the hybrid infrastructures to find the alternatives
for various free-resource allocation in Big Data systems and,
also, to enable Big Data in Fog environments in the future.

Ill. THE ARCHITECTURE AND MIODEL FOR HCBDP

CCSP infrastructures have heterogeneous hardware with
varied specifications that require fair adjustments. Thus,
an incoherent configuration of Cloud services may lead
to overestimate or underestimate resource capacities [32].
In scenarios comprised of several heterogeneous CCC envi-
ronments, an orchestrator should be used to manage Big Data
pipelines for data analytics. Also, it must not be central-
ized to add interoperability for the data distribution in the
network [12].

Figure 1 presents the HCBDP and its data flow. The
HCBDP environment is comprised of five main compo-
nents: Users and their data sources, the Dispatcher receives
data and redistributes them to VDC and CCHE infras-
tructures and also provides infrastructure reallocation with
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tcher

Dispa

FIGURE 1. Data flow in a HCBDP.

Orchestrator coordinating. Finally, an Aggregator enables
consistent results for the system.

The volunteer machines form groups according to their
computational capacity to compose a pool of volunteer
resources available to users. The selected volunteer resources
comprise a VDC, where the tasks are executed. Once the
user creates a VDC, none can occupy the same resource until
the owner releases this resource to the pool. Each volunteer
resource must have cloud storage (i.e., a service like AWS S3,
Google Drive, or Dropbox) where the data is stored. Further,
as data is previously replicated from the moment that a vol-
unteer resource setup has started it is necessary a data copy
to the attached cloud storage.

The dispatcher handles the task assignments and input data
from users or other input sources, for instance, a sensor in
a Fog scenario. In this module is deployed the HR_Alloc
Algorithm, which is detailed in Section III-A. The commu-
nication system uses a message queue in a publish/subscriber
communication model, i.e., the communication is uncoupled
in time and space. It is a centralized data-driven strategies that
manages remote data localization, and policies for the split-
ting and distribution of data, by the needs of each subsystem
of the hybrid environment.

The CCHE and VDC environments have their own Big
Data processing engine. In such a scenario, the data distribu-
tion model was designed to respect the computational capac-
ities of each volunteer machine individually. Thus, a hybrid
Big Data engine with two or more distributed file systems
must deal with low bandwidth for the data distribution. In the
particular case of the VDC environment, the user could assign
several sensors closer to computational resources. Following,
sensors send data, which will be pre-processed on Big Data
processing in these environments. Thus, this is where volun-
teer machines could compose a Fog environment to improve
data processing in the hybrid environment.

Finally, the data processed in each Big Data engine need
to be integrated as in a single computation. The aggregator
manages all outputs and combines them into a single result
using a local aggregation of the keys, for instance, to avoid
unnecessary data transfers. The key to this strategy is to
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provide an input data size for the resources to achieve a better
load balance. However, it is not a trivial task, considering
that the user might not have sufficient information for deci-
sion making regarding data distribution and computational
resources.

Thus, an algorithm such as the HR_Alloc Algorithm
becomes a requirement. The algorithm analyzes the data dis-
tribution and resource allocation. To confirm these hypothe-
ses, it was used a simulator called the BIGhybrid simulator
[18] with the HR_Alloc Algorithm built-in. BIGhybrid is an
analysis tool for Big Data in hybrid environments to enable
the deploying strategies for distribution and data placement,
which supports a controlled environment with consistent
evaluations.

TABLE 2. Notation adopted for the model description.

Symbol Description
RC Vector with all resources offers in a CCC.
ro An individual resource CCC allocated.
n The total possible resources in CCC.
k The total possible resources in VDC.
RVDC Vector with all resources in a VDC.

All available resources in the system.
TVDC An individual resource in VDC allocated.
S The selected resources.
T The number of simultaneous tasks in each worker.
B8 The input data in a particular system.
(%] The wave rate produced in a CCC.
PccHE The wave rate produced in a CCHE.
Pypc The wave rate produced in a VDC.
Cokosize Chunk size in CCC.
CCHE .k size Chunk size in CCHE.
VDCksize Chunk size in VDC.

We Workload in CCC.

WecHe Workload in CCHE.

Wvbpc Workload in VDC.

Sc The selected resource in CCC.
SccHE The selected resource in CCHE.
Svbpc The selected resource in VDC.

A. THE MODEL FOR DATA AND TASK DISTRIBUTION

The main idea of this model is to evaluate resource avail-
ability by establishing task distribution and load balancing
strategies for varied workloads as best as possible. The first
assumption is that the processing occurs in waves, when
the mean of tasks begin and finishes almost the same time,
as in the MapReduce execution model. It means that the
system fills all the available computational resources for task
execution. Thus, the tasks must begin and finish at the same
time until the job finishes as in execution waves.

This execution behavior in heterogeneous environments
can be achieved through to able several adjustments about
execution job and resource allocation algorithm. Table 2 sum-
marizes the notation used throughout this Section, which sets
out the model used in this HCBDP proposal.

A CCSP offers resources in the format of VM instances.
Thus, each VM represents a set of heterogeneous resources
comprised of CPU cores, memory, and storage. This model
should decide how to balance workload between two
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environments, for instance, a set of VMs of a CCC and VDC
machines for creating a HCBDP.

The @ relations, shown in Equations 1, 2 and 3, represent
how many execution rounds (waves) a job can have in a
workload when all computational resources are occupied. ®¢
relation (Equation 1) is the ratio of the total workload in CCC
(Wc¢) (equivalent to input data in chunk number) divided by
the selected resources in CCC (S¢). ®¢ is a particular case
where the job execution occurs only in the CCC without
VDC resources. In a batch workload, such as MapReduce,
for instance, the input data (called B) is split in chunks in
accordance with a chunk size (Csize) that determines the
workload.

WC n ﬁ
O = —, whereS¢c = Sc;*Tand We = ———
Sc Z Ceksize

i=1

ey

The job in the HCBDP model has two engines that work in
parallel and, therefore, a ® relation is defined to each envi-
ronment. Refers to Equation 2 for CCHE and Equation 3 for
VDC, Weene and Wypce are the workloads in CCHE and
VDC respectively.

d)CCHE _ CCHEck»size % WCCHE (2)
Cek-size Z?:l SCCHEi *T
VDC ki Wvbpc
RS - )
ck-size Zk:l Svbcy * T

To achieve a good load balancing between ®ccyg and ®vpc
relations, these relations must maintain a relationship with
the ® ¢ relation. Therefore, the HCBDP will achieve the best
load balancing if the bi-conditional statement in Equation 4 is
satisfied, as it will be demonstrated in Section I'V.

dccue < Oc = Pype < Pc¢ 4

B. HR_Alloc ALGORITHM

HR_Alloc Algorithm, in Algorithm 1, implements the data
distribution strategy about the dispatcher module to max-
imize the use of the VDC resources and minimizing the
CCHE resource allocation in a HCBDP. This adjustment
should not increase the execution time of the job when
compared with a CCC implementation. The premise is that
some volunteer resources are relatively stable in a hybrid
environment, i.e., not all computational resources have inter-
mittent availability. Another assumption is concerning secu-
rity. The VDC has a strong trust relationship in a hybrid
environment.

The data split considers the execution waves in the Big
Data engines to achieve this goal. The algorithm defines the
resource allocation in CCHE and VDC environments based
on the CCC execution. The workload for CCHE and VDC
depends on the input data size in the batch and streaming
workloads. The users must provide minimal information,
such as, total workload size and the vectors with the available
resources for CCHE and VDC.
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Algorithm 1 HR_Alloc Algorithm
iIlPlltI flataASize’ Cek-size » CCHE ¢ size , VDClrsize ,T
Data: R¢, Rypc

1 begin

2 read IAQC

3 while within computational budget do
4 Select a rc; resource from Rc

5 if budget < {rc, cost } then

6 Sc = Z:l:lSci*r

7 L budget = budget —{rcchg cost}
8 next rc;

9 & <« PhiCalc (S¢, Cek-size » B, T)
10 while (Occug > @) V (Pype < P¢) do

11 {Wccne, Wvpc} < Split the input data
12 VDC_Alloc (Wypc, Svbc, VDCe-size » @)
13 | CCHE_Alloc (WccHE, SccHE, HCck-size » Pc)
14 Function VDC_Alloc (Split,Svpc, ®c)
15 while ®ypc # O¢ do
16 Select a rypc resource from Rypc
17 Svpc = Z?:l Svpc; * T
18 dypc < PhiCalc
(Svpc, VDCsize » Wyvpc, T)
19 SccHE < remove an equivalent resource
B of rypc from S¢
20 B return Sypc
21 Function CCHE_Alloc (Split,Sccug, ®c)
22 while ®ccyg # ©¢ do
23 ®ccyre < PhiCalc
(SccHE, CCHE ¢ size , WccHE, T)
24 SccHE < adjusts resource from S¢
25 B return SccHg

26 Function PhiCalc

(Resources, Chunk-size, Workload, t)

27 Calculates @ relation in accordance with
Equation 1 or Equation 2 or Equation 3
28 return

Three functions in the HR_Alloc Algorithm will select the
adequate resources to maintain the @ relation stable from a
determine workload. & computation is key for each environ-
ment. The smaller number of CCHE resources compared to
the CCC represents a saving budget cost, and maximizing the
amount of VDC resources means not compromise workload
execution time performance. PhiCalc function calculates the
@ relation in CCC to provide an upper bound in terms
of selecting from resources considering the computational
budget of the user. The CCHE_Alloc function determines
the number of volatile machines that are selected in accor-
dance with the workload size to preserve the ® ccyg relation.
VDC_Alloc function selects the best VDC resources in the
Svpc set to perform the workload that matches with ®ypc.
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The computational budget (line 3) determines the set of
resources for CCC. However, only part of these resources
are selected effectively (line 22) to compose the resources of
CCHE. The effects of the computational budget is analyzed in
Section IV in comparison with the hybrid environment cost.

The data in the hybrid environment is split by the pro-
cessing capacities of resources for each Big Data engine
(line 11) and adjusted for achieving the relation of Equation 4.
The amount of input data is preserved, but it is redistributed
between the environments to provide the best load balance
possible.

Since one VDC resource is selected to form the Sypc set,
one equivalent resource can be removed from Sc, then the
algorithm provides adjustments on the SccHg set to preserve
®ccye relation. Observes that as the Sypc set can provide
some machines with lower computational capacities than the
SccHE resource set, the total number of devices on each set
can be different, but what is preserved is the ® relation among
them.

Further, in a VDC environment, the data is distributed
in accordance with the computational capacities of the
machines. Thus, the execution time in the heterogeneous
environment is optimized and the data copy is minimized.
This algorithm executes before each job execution to deter-
mine the optimal data distribution and resource allocations
by the workload kind.

IV. EVALUATION

The development of new software for hybrid infrastructures,
raises the following questions: (i) How effective strategies for
data splitting and distribution are for HCBDP? (ii) What are
the required resources? This section presents and evaluates
stratagems for the deployment of hybrid environments, par-
ticularly the dispatcher module.

A. METHODOLOGY

This section describes the fully methodology of experiments.
Thus, the experiments were evaluated through an analysis of
the workloads produced in the work of Yanpei ez al. [41]. This
work adopts the use of simulation on top of BIGhybrid sim-
ulator to establish a relation close to the following synthetic
workloads. These workloads had the outcomes obtained from
real-world executions of Big Data applications of companies
like Yahoo™ and Facebook™. The YH and FB clusters have
2,000 and 3,000 machines respectively. However, although
the type of jobs at Facebook changes significantly from one
year to another, the purpose of this scenario is to cover a
real-world environment. The number of experiments per-
formed was around 1,800 tests, each one hosted into a single
machine aiming to reduce the execution time required for the
evaluations.

Along these lines, every evaluation performed represents
discrete-event simulations performed on top of Grid’5000
[42] scenarios in varied sites (Sophia, Nancy, Rennes and
Grenoble). Each cluster has 50 hosts with 2 Intel Xeon E5520
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processors of 2.27 GHz, with 4 cores, 24 GB of RAM,
119 GB of local disk and 1 Gbps network.

The computational capacity of the processors in
the simulated experiments is equivalent to an Intel
Xeon E5506-2 Cores, 4M Cache, 2.13 GHz ~ 5 GFlops and
the computational capacity in a VDC environment represents
a distributed value between 4 to 6 GFlops, for all of the
experiments. This configuration is similar to what was found
in Yahoo and Facebook according to the evaluation made
by Yanpei [41]. For analytical purposes, the computational
consumption is defined by workloads of 64, 32, and 16 MB
chunk size. The network, workload and the machines num-
bers vary in each experiment. The number of Reduce tasks is
equal to twice the amount of machines. The experiments are
conducted with machines with low, medium, and high-scales.

B. EXPERIMENTS WITH LOW AND LARGE-SCALE IN
HCBDP

The first experiment is a sequence of two cases in low-
scale, with 128 machines in a HCBDP, where the aim is
to verify the impact of @ relation in the data distributing
and the amount machines for CCHE and VDC. Figure 2
shows these two cases. The first case, in Figure 2.(a), studies
the behavior where the number of resources available for
processing is higher than the number of tasks, and the second
case, in Figure 2.(b), studies the behavior where the number
of tasks is greater than available resources. Each machine pro-
cesses two tasks per core. The concurrent execution task in the
y-axis is measured in seconds, and the number of machines
for CCHE and VDC in the x-axis is measured in units. The
red line indicates the execution time in a CCC deployment,
with 128 machines. Different executions are expresses by A
to H letters.

In the first case, the execution time is equivalent
to 503 seconds in Figure 2.(a) with 200 tasks. In the second
case, in Figure 2.(b) the red line indicates an execution time
equivalent to 1,232 seconds and 512 tasks. The network band-
width in both experiments is 1 Gbps for CCHE and 10 Mbps
for VDC.

From A to D, there is the best load balance for tasks and
data distribution in both environments. In the first case, the
number of waves is between 1.5 to 2; thus, if the ® relation
is not observed when the data is distributed as in E and F,
the job execution time increases in comparison with the CCC
deployment. The same phenomena occurs in the second case,
with the executions from E to H. If it is only evaluated the
chunk size and the input data from Figures 2 (a) and (b) is not
possible to reach any conclusion.

Table 3 shows that the @ ¢ relation in the CCC environment
is equal to 4 for two evaluations. Thus, when there is the same
value for ®ccpyg and ®ypc, the execution achieves the right
load balance. The & ¢ relation in comparison with the ®ccyg
and ®vypc relations demonstrate that the job execution time
is lower when the relationship ®ccyg < ¢ < Pvpc <
@ is verified. Thus, in this way, machine numbers can be
determined to achieve this relationship.
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FIGURE 2. Impact of & relation in low scale - 128 machines.

TABLE 3. The @ relationship for data distribution in hybrid environments.

Experiment ®c  ®ccug = Pvbpc

A 4 4 4
B 4 4 4
C 4 4 4
D 4 4 4
E 4 3.83 4.5
F 4 3.13 6.63
G 4 291 7.25
H 4 2 10

The second experiment represents job executions in a
large-scale scenario, with 2,000 machines and a workload
of 9,088 chunks, &~ a half Terabytes of input data. The
network bandwidth varies in each execution to determine if
the execution behavior follows the previous observations for
this scenario. Figure 3 shows 30 different experiments. The
objective is to seek the number of computers to achieve the
relationship ®ccyg < ¢ <= dvpc < Pc.

Figure 3.(a) shows the job executions. The red line repre-
sents the execution time for a CCC environment equivalent
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(b) Relation workload vs. number of machines

FIGURE 3. Simulation in large-scale.

to 901 seconds, with ®¢ = 4. Figure 3.(b) shows the number
of machines and workloads for this experiment. The different
jobs are represented with colors as indicated in the caption
of the figure, where each job shows its ® relation to CCHE /
VDC respectively. The chunk size is 64 MB for all executions.
The y-axis measures the parallel tasks in a VDC environment
in seconds for each execution and the x-axis measures the
bandwidth.

The experiment in large-scale operations shows that the
behavior is similar in comparison with low-scale ones. How-
ever, some differences can be explained by a large num-
ber of machines in the network and the administrative
overhead needed to manage the data transference on the
Internet, as with low bandwidth. For instance, in the case
with 300 Mbps bandwidth, more experiments are observed
with lower execution time than CCC, and the ® relationship
maintenance is preserved more easily.

The relation ®ccygg < P <= DPypc < P is also
verified according to the earlier estimate. In some cases, the
execution is possible from 10 Mpbs to 300 Mpbs bandwidth,
for instance, with VDC_job (4.03/2) where ®ypc = 2 and
there are 909 machines. Nevertheless, the best performance
occurs with 300 Mbps bandwidth. A thorough cost analysis
can determine other data distributions where the borderline
for the VDC execution may be exceeded without any loss of
quality in the solution.

In summary, this scenario demonstrates that a slight vari-
ation in workload can lead to behavioral changes in the
VDC environment. Nevertheless, the @ relationship can be
considered to be consistent, not only in low-scale but also
in large-scale operations, as it was demonstrated in these
experiments.
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FIGURE 4. Impact of volatility on performance - 10 Mbps.

C. VOLATILITY IMPACTS

The third experiment investigates the impact of volatility on
performance. The initial assumption is that in a 10 Mbps
bandwidth network, the volatility environments are hard
for fault recovering due to management overhead. Thus,
it is needed to investigate until how much machines can be
volatile in the environment to support Big Data applications
with acceptable costs.

Figure 4 shows the impact of volatility related to per-
formance. The execution profile is similar to Figure 2.(b)
with a network of 10 Mbps bandwidth. The red line in the
chart represents the execution time of 1,232 seconds in a
CCC job. The external value in the radar graph indicates
0% to 35% of volatile machines in the cluster. The con-
tinuous lines indicate the job execution time for MapRe-
duce. Dashed lines indicate Map and Reduce executions. The
chunk sizes for this scenario are from 16 MB to 128 MB.
The vertical values in the zero-point indicate the execu-
tion time in seconds. Data has three replicas for each
chunk.

The performance impact is higher in the Reduce phase
when there is more data movement and because the scheduler
needs first to relaunch Map tasks for another machine with the
data replica to the task re-execution in the failure case. On the
other hand, the Map phase can benefit from data replication
to minimize these initial overhead. When the intermediate
data must be copied over the network to execute the reduction
function again, there is a low-cost rate between 5% to 25% of
unstable machines, in contrast with a high-cost rate from 26%
to 35% unstable machines. Therefore, the experiments sug-
gest there is operational flexibility in volatile environments
when 5% to 25% of machines have a shutdown without any
serious degradation of performance. The volatility from 26%
to 35% depending on monetary costs to turns feasible to use
in Big Data, but this can be questionable due to imposed
administrative overhead. The chart demonstrates that chunk
size seems to have a low influence on the results, or at least it
is unnoticed.
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FIGURE 5. Cost analysis vs time execution.

Indeed, losing more than 1/4 of the machines in VDC
could produce a high latency in very slow links on the Inter-
net. The VDC environments can remain relatively stable in
some scenarios but do not have a behavior that is easily pre-
dictable. In a volatile environment, the machines may have an
overhead with a data copy to rebuild replicas, since they might
experience long timeout periods. Thus, the fault-tolerance
mechanisms (FTM) could achieve false-negatives in the fail-
ure detection execution. The FTM was detailed in previous
work [18].

D. COST EVALUATION

This evaluation considers a hypothetical traditional compu-
tational budget for a CCC operation. Thus, the evaluation
compares the volatile behavior with the overhead of data
copy to rebuild replicas and analyses the number of volatile
machines present in the experiment.

Figure 5 shows this cost analysis of the HCBDP in con-
trast with the number of volatile machines and execution
time. Figure 5.(a) compares the cost with traditional budget
for a CCC operation, related to chunk size and the number
of volatile machines. The first measure, the dark blue box,
represents the cost without volatile machines where there
are only stable machines. The x-axis presents the chunk
size, and the y-axis measures the cost percentage related
to CCC cost. Figure 5.(b) shows the execution time related
to this cost analysis. The x-axis shows the percentage of
volatile machines and y-axis measures the execution time in
seconds.
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The cost analysis adds an administrative penalty of 30%
for each unstable machine added to the volatile environment.
The penalty is related to data replication and overhead with
relaunching tasks. The execution time has a similar profile
with 5% and 25% of volatile machines and with a cost 60%
lower in comparison with CCC. The costs with 64MB chunk
size are slightly higher than others due to network latency.
On the other hand, it can have lower administrative overhead
to the management of fewer tasks, mainly in high-scale envi-
ronments, as seen in Figure 3.

The use of 30% to 35% of unstable machines in VDC
environments represents a cost decrease close to 20% in
comparison with a CCC allocation. In contrast, the execution
time is 23% higher in comparison with CCC, as Figure 5.(b)
demonstrates. Nevertheless, the lower cost with environments
composed of between 26% and 35% of volatile machines,
as demonstrated in Figure 5.(b), might not be reasonable to
some Big Data applications due to an increase 23% execution
time in comparison with CCC. Thus, the execution time
analysis also indicates that the HCBDP is feasible with up
to 25% of volatile machines for Big Data environment.

E. BANDWIDTH IMPACT IN DATA DISTRIBUTION VERSUS
& RELATION

The next experiment is executed in medium-scale. The aim is
to analyze the effectiveness of data distribution relations and
determine the impact of bandwidth on the whole environment
of the HCBDP in comparison with adoption of & relation.

The experiment is composed of two charts in Figure 6.
These charts represent the analyses about experiments that
process 4,608 chunks of 64 MB with 512 machines. The
job execution time in CCC is 1,618 seconds, assented in the
red line. The bandwidth ranges from 10 Mbps, S0 Mbps,
100 Mbps, 150 Mbps, 300 Mbps and 1 Gbps with latencies
captured from the real-world environment. It should be noted
that at this stage, a 1 Gbps bandwidth for volatile machines is
possible with Optic Fiber links or in the 5G networks in Fog
environments.

In the first experiment, in Figure 6.(a), the number of
machines is divided by half, 256 machines for CCHE,
and 256 machines for VDC. The total number of tasks is also
equally divided into half 2,304 for the CCHE, and VDC. The
blue, green, and yellow colors represent the job executions
time in VDC with a chunk size of 64 MB, 32 MB, and 16 MB
respectively. The other y-axis, on the right, measures the
VDC workload in the chunk number for each execution with
a different size for each executes sequence. The workload
consists of 2,304, 4,608 and 9,216 chunks and has a chunk
size of 64 MB, 32 MB, and 16 MB respectively. The x-axis
measures the bandwidth.

The goal is to check if only a data division with the
increased bandwidth will be sufficient to achieve load balance
for the data split without using the HR_Alloc Algorithm, i.e.
without the ® relation. As can be seen, all the executions over-
come the minimum expected time (1,618 seconds - in the red
line). The performance is worse than an implementation in
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FIGURE 6. Bandwidth impact in data distribution vs. ¢ relation.

CCC with all the hosts. Thus, dividing the data and machines
in half and increase the bandwidth is not a good strategy
for distribution data in a HCBDP, regardless of bandwidth.
Moreover, the experiment demonstrates that splitting the
input into chunk sizes lower than 64 MB, such as 16 MB,
can result in a poor performance in this scenario.

The sharp increase in the job execution time, rather than the
reduction, is based on the false assumption that the division
of machines and data by half (distributed in CCHE and VDC)
could represent a reduction of half the time needed in hybrid
environments. In fact, this likelihood is incorrect because, in a
HCBDP, factors such as heterogeneity and volatility must
also be taken into account. However, this scenario can be
evaluated in another manner for an understanding of what
in fact occurs with chunk sizes in relation to variations in
bandwidth.

The subsequent analysis, in Figure 6.(b), is similar to the
experiment of Figure 6.(a), however, with 64 MB and 32 MB
chunk sizes and where is evaluated the use of HR_Alloc
Algorithm. The purpose of this experiment is to consolidate
the previous observations and to demonstrate that the use of
the @ relation is a feasible strategy for the setup of machines
and data distribution in HCBDPs. The CCC job has a runtime
of 1,618 seconds assented in red line. The x-axis measures the
bandwidth. The application processes a workload of 2304 and
4608 chunks with 64 MB and 32 MB chunk sizes, respec-
tively. The y-axis measures the concurrent tasks in a VDC
environment in seconds for each execution with different
chunk size.
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Figure 6.(b) shows the execution time for a job in an
HCBDP with two distinct analyses, above the red line there
are job executions without the use of the HR_Alloc Algorithm
and below it the job executions with its use. In the first
analysis, above the red line, the impact is linear and has a
slope close to 10% in the execution time, while the bandwidth
increases from 10 Mbps to 150 Mbps (15 times). The range
from 10 Mbps to 300 Mbps (an increase of 30 times in
bandwidth) has similar behavior with a reduction from 15%
to 30% for a chunk size of 64 and 32 MB, respectively.
Unfortunately, this is not sufficient to promote a load balance
between the CCHE and VDC environments.

The second case, below the red line, shows that the @
relation has a beneficial effect by reducing the data trans-
fers between machines from 39.1% to 57.14% in the worst
and best-case scenarios, respectively. These gains are ~ 2
to 3 times higher, in comparison with the bandwidth results,
due to the effect of ® relation use than without it. This reduc-
tion in data transfers added to the impact of the bandwidth
produces the result needed to provide a proper load balancing
and make the use of an HCBDP feasible. These results pro-
vide evidence that the VDC executes a larger number of local
tasks with the ® relation than without it and, thus, reduces the
data transfers in the whole system.

F. DISCUSSION

This section examines the deployment of the HCBDP for
Big Data analytics through synthetic applications from Yahoo
Cluster with the use of a dispatcher module. The scenario
represents Big Data applications in geographically distributed
environments.

The studies of Jayalath et al. [27] and Tudoran et al.
[29] are scenarios of CCC-to-CCC deployments; both pro-
vide support for data transfers in decreasing execution time
for MapReduce jobs. The former focuses on the cost of
performance while the latter observes I/O throughput and
the computational environment capacity. In contrast, our
work proposes a solution which can be used in a hybrid
approach for real-time and batch applications. Moreover, our
study implements mechanisms to avoid unnecessary data
movement.

A recommendation set for VDC deployment can help in
the setup of HCBDP used in geographically distributed envi-
ronments. The evaluations, in subsections IV-C and IV-D,
indicate that the relations between volatility impacts and cost
analysis can determine the VDC resource level accepted in
HCBDP use. The @ relation establishes a method for deter-
mining resource allocation to CCHE and VDC in HCBDP.
Also, it can produce load balancing when the data dis-
tribution is related to the number of CCHE and VDC
resources.

The results suggest that HCBDP confers an operational
continuity in an environment with up to 25% of unstable
machines in the best-case scenario without a loss of perfor-
mance and low-cost with three replicas for each chunk. Also,
depending of cost evaluations can achieve 35% with volatile
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machines in worst-case. In contrast, the work of Lin ez al. [22]
argues that a machine with an unavailability rate of 40%, must
have eleven replicas to achieve an availability rate of 99.99%
for a single data block in HDFS. Therefore, our solution can
still preserve storage resources.

The ®ccyg and ®ypc parameters used to find CCHE and
VDC resources, establish a suitable number of machines to
achieve an acceptable performance and good approximation.
These settings also help inexperienced users to locate the
number of CCHE and VDC machines without the need for
previous knowledge of the CCSP infrastructure, which can
be considered to be one of the benefits of this study.

Several authors like Tudoran et al. [29], Balaji et al. [31]
and Clement er al. [36] argue that the users tend to choose
resources based on their workload peak, and the systems
must find the optimal chunk placement that correspond to the
user needs. In contrast, the ® relation between CCHE and
VDC can help users to find the resources adapted to their
workloads. In addition, the recommendation of a chunk size
in a communication channel can help prevent excessive data
movements in Big Data applications in hybrid infrastructures.

The correlation among the workload, number of machines,
and load balancing in the ® relation are behind the perfor-
mance improvement to provide the best data load balanc-
ing possible and reducing the data transfers between nodes
from 39.1% to 57.14% in the worst and best-case scenarios,
respectively. These values are compatible with the work of
Tudoran et al. [29], which achieved a reduction of 50% with
a relative error of 10% to 15%.

V. CONCLUSION

Cloud has changed the way applications are developed and
ported in geographically distributed infrastructures. HCBDP
can offer services providing new features as well as being a
suitable scenario for building Big Data applications and their
range of components. However, it can be hard to maintain
these systems if the users do not manage their application
resources appropriately, which can lead to issues of cost-
effectiveness.

This work provides Big Data analytics in a hybrid infras-
tructure called HCBDP. In contrast with other frameworks,
this environment uses CCHE and VDC as its basic infrastruc-
ture for Big Data processing. The deployment approach uses
a geographically distributed system;

The evaluations found behavioral patterns which enable
their deployment in HCBDP (in low, medium and large-scale)
and established the relationship among workload, number
of machines, and load balancing through the relationship ®
between CCHE and VDC.

The HR_Alloc Algorithm for HCBDP establishes an oper-
ational continuity in an environment with up to 25% of
unstable machines in the best-case scenario without a loss
of performance, maintaining three replicas data and with
a cost 60% lower than in comparison with CCC. The
®pyc and Pyc parameters designed to find CCHE and
VDC resources established that there were a number of
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suitable machines that could achieve an acceptable per-
formance. Thus, the & relationship between CCHE and
VDC minimizes network latency and data movement. Also,
it can help users to find quickly resources adapted to their
workloads.

Thus, the proposed model demonstrated to be viable for the
decrease in computing expenditures due to the use of VDC in
the hybrid processing paradigm.

Furthermore, the recommendation of chunk sizes in the
communication channel can mitigate an excessive data move-
ment in Big Data applications within hybrid infrastructures.
The relationship between the workload, number of machines,
and load balancing can be regarded as a significant con-
tribution to improve data load balancing and reducing data
transfers between machines from 39.1% to 57.14% in the
worst and best case scenario, respectively. These values are
compatible with those found in the literature.

In the future, this hybrid environment can enable the use
of Fog in Big Data applications. It also reduces data transfers
between IoT devices and CCC, with the use of VDC for
pre-processing of Big Data in the Fog environment composed
of these volunteer machines.

Other future works are needed to build a platform in a
real-world environment. In particular, one possible strategy
to the dispatcher module that could give priority to execution
and thus avoiding the delay in the task flow. Moreover, the
storage mechanism could be evaluated to include I/O inter-
ference and evaluation of container techniques, or to examine
the use of accelerators (such as virtual GPGPUs as rCUDA
or GVirtuS) and shared FPGAs added to HCBDP.
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