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Abstract 

 

_____________________________________________________________________________ 

Cancer treatment is among the major medical challenges of this century. Sequential 

oligometastatic radio-ablation (SOMA) is a novel treatment method that aims at ablating 

reoccurring metastasis in a single session with a targeted high dose of radiation. To know if 

SOMA is the best possible treatment method for a patient, the benefits of each available therapy 

need to be understood and evaluated. 

The ability to model complex systems, such as cancer treatment, is the strength of machine 

learning techniques. These techniques have improved the understanding of numerous medical 

therapies already. In some cases, they can serve as medical support systems if they deliver 

reliable results that doctors can trust and understand. 

The results obtained from applying numerous machine learning techniques to the data of 

SOMA-treated patients show that there are favorable techniques in some cases.  It was observed 

that the Random Forest algorithm proved superior at different classification tasks. Additionally, 

regression problems opposed a great challenge, as the amount of data is very limited.  Finally, 

SHAP values - a novel machine learning interpretation technique – provided valuable insights 

into understanding the rationale of each algorithm. They proved that the machine learning 

algorithms could learn patterns aligned with the human intuition in the problems presented.   

SHAP values show great potential in bridging the gap between complex machine learning 

algorithms and their interpretability. They display how an algorithm learns from the data and 

derives results. This opens up exciting possibilities for applying machine learning algorithms in 

the real world.  

_____________________________________________________________________________ 
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1. Introduction 
 

In this chapter, after a brief introduction to the underlying topic, the problem statement 

and the research goal of this thesis are defined. This thesis was conducted as part of a joint 

project with the radiation oncology department of the Champaulimaud Foundation in Lisbon, 

Portugal. The data is derived from patients with oligometastatic cancer treated with a specific 

high-precision image-guided radiotherapy. 

Cancer treatment is among the most significant medical challenges of this century, as 

cancer is responsible for about 10 million deaths globally per year. Therefore, according to the 

WHO, it is the second leading cause of death. Radiotherapy is, next to chemotherapy and 

surgery, among the few treatments available. Selecting the best treatment to cure the patients 

is the doctor's task. However, while the cure is always the desired goal, other factors such as the 

patient's quality of life or prolonging the patient's life have to be considered by the doctors as 

well. With an increased amount of data collected from cancer patients in recent years, machine 

learning can potentially offer additional value to the decision process at various stages of the 

therapy.  

Radiomics is a rapidly emerging technique in radiology that has enabled new radiotherapy 

methods by extracting and modelling three-dimensional data from radiological images with 

artificial intelligence (Kumar et al., 2012). Furthermore, artificial intelligence is used to develop 

predictive or descriptive models from the data obtained. In Radiomics, it is believed that 

extracting information from medical images, often Positron-Emission Transmission Computer-

Tomography (PET-CT) images, provides additional diagnostic or predictive information that 

escapes the human eye and will complement the information available to the radiologist (Cook 

et al., 2014). Only the recent developments in technology, biomarkers, and computer-assisted-

detection systems (Jansen et al.) have enabled this method (Philippe Lambin et al., 2012). These 

recent developments have not only improved diagnoses and treatment but led to novel 

therapeutic approaches. 

Sequential oligometastatic radio-ablation (SOMA) therapy is a novel cancer treatment 

method applied by the radiation oncology department of the Champaulimaud Foundation, 

which is based on the same technology that enabled radiomics. It utilizes high doses of very 

targeted radiation in a single ablation session (SDRT) to kill sequentially arising cancer 

metastases. This therapy method requires a highly technical setup to successfully deliver the 

high doses of radiation to the desired destination. Whether machine learning methods can help 

improve the understanding and provide decision support for SOMA therapy is the rationale of 

this thesis. 
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1.1 Problem statement 
 
New medical treatment methods must be well researched, evaluated, and understood 

before addressing a broad base of patients. Mistakes are usually penalized with reduced 
patients' wellbeing. Implementing machine learning methods in a medical context can lead to 
better understanding and learn complex connections. However, especially in the context of a 
novel technique, such as SOMA, it brings different levels of complexity with it:  

 
Firstly, the data availability is low. With novel treatment methods, studies on just a few 

patients have to prove the benefits of the treatment method over the well-established methods. 
Furthermore, the technical facilities required for this treatment method are very advanced, 
restricting access to a small patient group. Additionally, in the field of radiomics, where 
measurements of the cancer cell are taken, the variability between different machines reduces 
the potential availability of consistent data. 

 
Secondly, the quality of the data is limited. The human organism is very complex and has 

been attempted to be fully understood for many centuries. Numerous factors affect cancer 
treatment success, such as the genome, the patients' medical history, and even nutrition. In a 
perfect machine learning setting, all influencing factors would be included in the data. However, 
this is not feasible, as some of these factors cannot be explained yet, are not available, or simply, 
doctors do not have the time to collect them. Additionally, the imbalanced nature of the data 
poses a problem for machine learning. Treatment is advancing, producing increasingly better 
results. This opposes the challenge that there is a decreasing amount of unsuccessful 
treatments. This is great from a medical standpoint, however, when classifying successful and 
unsuccessful treatments, this results in difficulties training machine learning models. 

 
Thirdly, data of patients' treatment history is often incomplete. In the case of long-lasting 

cancer treatment therapies, patient data is collected over several years. However, patients can 
change doctors, not attend follow-up examinations, move away or die without notice to the 
treating doctors. This is challenging as it might lead to noise, missing or incorrect data. 
Unfortunately this is impossible to detect in the data and requires better generalization ability 
of the model.  

 
Finally, doctors need to trust and derive insights from the machine learning methods to 

include this in their work with their patients. Most machine learning methods are novel, 
especially for medically trained people. The probability is high that they have never heard of 
them. The challenge is that the doctor in charge of treatment needs to trust the insights 
generated by machine learning enough to treat the patient based on this knowledge. This is 
especially difficult with "black box" algorithms that offer no insights on how they arrived at a 
particular conclusion.  
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1.2 Research goal 
 

The doctors who treated the patients with SOMA therapy as part of their cancer treatment 

process derived several variables for further analysis. The data was collected over the timespan 

of patients' treatments. They describe the patient's treatment process over a specific period. 

Generating insights into a specific treatment's immediate success or a better understanding of 

the patients' treatment path is desired.    

The research goal of this thesis is to identify whether machine learning methods can create 

value within the boundaries of the problems and the data outlined previously. At various points 

in time during a patient's treatment process, decisions have to be made with varying degrees of 

uncertainty. Supporting these decisions with analytically advanced methods potentially directly 

impacts the patients' quality of life. In this context, the motivation for applying machine learning 

algorithms is to potentially model complex relationships that escape univariate analysis. 

Providing a starting point on which machine learning methods perform well to solve the stated 

problems and whether they can create value in the treatment process is the goal of this thesis. 

A particular focus is set on various machine learning algorithms' performance and their 

interpretability through a novel concept of model interpretability. 

To achieve the research goal, six dependent variables are forecasted with the patients' 

treatment data. Two variables are associated with the cancer lesion and four specific to the 

individual patient. Algorithms will be compared to identify the algorithms delivering the best 

performance in the environment of the data. Furthermore, their interpretability potential is 

lifted by applying the concept of SHapley Additive exPlanations (Mokhtari, Higdon, & Başar, 

2019). This relatively new machine learning technique aims at increasing model interpretability 

through a game-theoretical approach (Lundberg & Lee, 2017). 
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2. Related Work 
 

 

This thesis attempts to evaluate to what degree machine learning methods can impact the 

decision-making process of treating patients with SOMA (sequential oligometastatic radio-

ablation therapy). Various supervised machine learning techniques are compared to each other 

and evaluated on different problems stated in SOMA therapy. This section provides a review of 

the current status of research conducted in this context. The three fields discussed in this thesis 

are radiomics, supervised machine learning, and SHAP values. 

 

2.1 Radiomics 
 

Cancer is a heterogeneous disease characterized by various subtypes, degrees of 

invasiveness, influencing factors, and location. This heterogeneity of the disease is equalled in 

diagnosis parameters and treatment methods. With increasingly more technical advances in 

cancer treatment methods in recent years, the data availability has increased (El Houby, 2018). 

This increasing amount of cancer data has raised the interest of data mining and machine 

learning researchers because of its high degree of complexity, data types, and variability. This 

resulted in the emergence of Bioinformatics, which combines the statistical and machine 

learning knowledge in a biomedical context, initially rooted in sequencing genes with 

computational power (Dayhoff & National Biomedical Research, 1969).  

Radiomics is one of the technical advances in Bioinformatics that has proven once more the 

value of machines in medical treatment processes (P. Lambin et al.). Especially in oncology 

radiomics are advanced, here the underlying hypothesis is that medical radiographic images 

contain detailed and valuable information about the nature of a cancer lesion (J. Wu, Tha, Xing, 

& Li). Extracting the information to the full extent and making it available to base decisions on is 

the nature of radiomics. The method of radiomics is extracting numerous features from medical 

radiographic images and utilizing pattern recognition abilities of algorithms to extract 

information (P. Lambin et al.). Among other attributes of a tumor, it was proven that radiomics 

could utilize radiographic data better than the radiologist's eye in determining the heterogeneity 

of a tumor (Gillies, Kinahan, & Hricak, 2016) (Cook et al., 2014).  

High single-dose radiotherapy (SDRT), where a high dose of radiation can be delivered 

accurately to the tumor in a single session was enabled by applying radiomics (Zelefsky et al.). 

Cancer lesions can be visualized graphically by extracting features of positron emission scans 

(PET /CT) (Grosu et al.). This allows the extraction of the necessary information for SDRT. Studies 

have found this superior over other therapy approaches in certain circumstances (Zelefsky et 

al.). Sequential oligometastatic radio ablation therapy (SOMA) is one of these circumstances, 

where the ablation of metastatic lesions with high radiation doses up to 24Gy (grey) is deemed 

beneficial (Greco et al., 2019). 

Recently, machine learning methods gained relevance in the field of biomedical research. 

The understanding of machine learning models is improved by additional machine learning 

methods, aiming at fostering confidence in “black-box” models. Hence, they can be used to 



5 
 

support decisions in a medical context (Jansen et al.).It was proven that through the application 

of radiomics, associations to various parameters of a tumor, such as the aggressiveness, could 

be modeled or forecasted (Vallières, Freeman Cr Fau - Skamene, Skamene Sr Fau - El Naqa, & El 

Naqa),(Liu et al.).  

 

 

2.2 Supervised Machine Learning 
 

Machine learning is defined as "the study of computer algorithms that improve 

automatically through experience" by Tom Mitchell (Mitchell & McGraw-Hill, 1997). Machine 

learning is considered a subdomain of artificial intelligence, defined as "machines gaining 

intelligence from data without being explicitly programmed" (Samuel, 1959). While these two 

terms are specific to the intelligence of a system, the term data mining describes the process of 

extracting knowledge from more significant amounts of data (Lovell, 1983).  

In their essence, these three domains overlap heavily. They are frequently applied 

conjunctively to obtain more information from data that may not be obtained by other analysis, 

statistical methods, or inspection of the human eye. Researchers are applying data mining and 

machine learning techniques in the biomedical context to gain more information about diseases, 

their treatment methods and make predictions to support their decision-making in the 

treatment process (Liao & Lee, 2002).  

In this thesis, supervised machine learning techniques are applied, as the data provides 

labels for the variables that are to be predicted. Data that does not provide labels requires 

unsupervised machine learning techniques (Mohri, Rostamizadeh, & Talwalkar, 2018). There are 

two types of supervised machine learning problems; classification, and regression. In 

classification problems, an algorithm attempts to predict the affiliation of samples to two or 

more classes. In regression problems, algorithms predict a numerical value.  

sThe "No Free Lunch Theorem" states that for all possible problems, all machine learning 

algorithms perform equally (Wolpert & Macready, 1996). However, this does not exclude the 

possibility of specific algorithms performing better than others in certain conditions. Numerous 

studies have been conducted comparing several machine learning algorithms in various 

contexts, including the medical (Vanneschi et al., 2011) (Uddin, Khan, Hossain, & Moni, 2019) 

(Tan & Gilbert, 2003). While some could observe specific favorable algorithms for the 

investigated problem (Vanneschi et al., 2011), others identified different algorithms in very 

similar but not identical settings (Ahmad, Eshlaghy, Poorebrahimi, Ebrahimi, & Razavi, 2013). 
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2.3 SHAP values 
 

SHapley Additive exPlanations – SHAP values – were first introduced in the field of  machine 

learning by Lundberg in 2017 (Lundberg & Lee, 2017).  They are based on a game-theoretical 

approach of Lloyd Shapely (Shapley, 1953). Lundberg proposed this as an alternative, unified 

approach to better understand and interpret the results of machine learning models.  This could 

mitigate the trust issue that “black-box” models can bring with them, preventing them from 

practical application.  

Other approaches to interpreting specific machine models and model agnostic approaches 

have been presented previously (Ribeiro, Singh, & Guestrin, 2016; Shrikumar, Greenside, 

Shcherbina, & Kundaje, 2016). However, SHAP values have outperformed these other 

techniques when assessing the explanation of class differences and consistency with the human 

intuition (Lundberg & Lee, 2017).  

As SHAP values are model agnostic, they are applied in various backgrounds to interpret 

model predictions. Applications can be found in financial applications,  gene expression, and 

traffic security (Mokhtari et al., 2019) (Bi et al., 2020) (Parsa, Movahedi, Taghipour, Derrible, & 

Mohammadian, 2020). In essence, every predictive model would have the possibility to be 

interpreted applying SHAP values.  

SHAP values are already applied in gene expression and sequencing, cancer treatment, and 

psychology (Karim, Cochez, Beyan, Decker, & Lange, 2019; Toh & Brody, 2021). Especially in the 

analysis of one specific type of cancer, SHAP values have been found helpful as they can help to 

understand interaction effects in some instances (Behravan, Hartikainen, Tengström, Kosma, & 

Mannermaa, 2020). The study of Richard Du et al. found the application of SHAP values helpful 

in understanding the prediction of early progression of nonmetastatic nasopharyngeal 

carcinoma after intensity modulation therapy (Du et al., 2019). The success of their study in 

applying SHAP values successfully in the field of radiomics gives reason to believe this could also 

be beneficial for SOMA. However, as SOMA is applied to a very heterogeneous group of lesions, 

the complexity of the problem might be higher. 

Unfortunately, the relative novelty of applying SHAP values in a machine learning context 

does not allow for an extensive amount of research on them in the field of radiomics. However, 

further contributions are required to identify the full extent of the capabilities and limitations of 

SHAP values. 
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3. Materials  
 

The underlying data used in this thesis is collected from patients who have been treated at 

the Champaulimaud Institute in Lisbon, Portugal. In total, 634 lesions from 174 patients were 

treated with SOMA over nine years, starting in 2011. This results in two distinct sets of data. 

Firstly, aggregated on the patient level, second, one with each metastasis's treatment 

parameters.  

In this thesis, both data sets are treated separately, as they offer different opportunities to 

generate insights, despite their overlapping nature. Analysis on the patient's level potentially 

unveils how the treatment affects different types of cancer, cancer location, or patient 

parameters. This could generate insights into which patients are more susceptible to this specific 

treatment and which might not be. On the other hand, data on each lesion treatment could offer 

insights into how well the treatment performs on tumors in various locations, sizes, or 

metastatic behaviour.  

 

3.1 Data Description  
 

The six dependent variables predicted in this thesis are the following: 

Two of the dependent variables are on the lesion level. For this, only data until a post-

radiation-therapy measurement is taken into consideration. Local relapse of a lesion is 

forecasted as a binary classification problem. Furthermore, the local relapse-free survival in 

months (LRFS), so the time until a lesion reoccurred is forecasted as part of a regression problem. 

Four of the dependent variables are on the patient level. Aggregated data of the treatments 

and follow-up examinations are taken into account. Two regression and classification problems 

are examined for this dataset. The first dependent regression variable describes the time that a 

patient survived after the first treatment, in months. The second describes the time in months 

until the patient obtained polymetastatic status. This means a patient has five or more 

metastasis simultaneously, which means SOMA is no further applied as it requires 

oligometastatic status (four or less lesions). The two classification variables describe whether 

the patient developed more than ten lesions over the treatment period and whether the cancer 

became polymetastatic. 

The independent variables describe the patient, the tumor and metastasis in size, activity 

and location, the frequency and type of treatment methods, and radiation therapy-derived 

measurements. A complete list of variables and their description is appended. 

Difficulties in obtaining medical data like this are numerous. One of them is the limited 

number of patients treated with this treatment. Additionally, to have consistent data, the 

machines need to be the same and identically calibrated to derive the same measurements. This 

makes it practically impossible to aggregate data from several machines consistently. Finally, the 

data needs to be collected over many years, and constant follow-up checks need to be scheduled 

with the patients to obtain the most recent information from them. This proves to be a 

specifically vulnerable point in the procedure of collecting the data. If a treated patient decides 



8 
 

not to follow up anymore, his data becomes potentially incomplete or, in the worst-case, wrong. 

Furthermore, recently treated patients cannot be included, as not enough time passed to reason 

about the effectiveness of the treatment.  
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4. Methods 
 

This thesis aims to assess if machine learning methods can deliver decision support for 

SOMA therapy. On the one hand, this includes finding well-performing machine learning 

methods and evaluating them on their predictive power. On the other hand, the understanding 

of these methods needs to be fostered. The doctors, who ultimately have to treat a patient, 

should trust and embrace the information obtained from the machine learning methods. This 

requires an explanation about a model's functionality beyond prediction accuracy scores. To 

achieve this, the machine learning models are benchmarked against each other across various 

error metrics, and SHAP values are examined to investigate coherence with medical intuition 

and research. 

The following chapter will guide through the machine learning methods used to obtain the 

results of this thesis. After an overview, the underlying methods, their origin, strengths and 

weaknesses, and their technical implementations are described in detail. Afterwards, the 

experimental setup to apply the methods to the data is outlined.  

 

 4.1 Feature selection 
 

Generally, in radiomics, feature selection plays a significant role due to the numerous 

features (Parmar, Grossmann, Bussink, Lambin, & Aerts, 2015) derived from radiological images. 

In this study, the doctors provided a preselection of features for analysis. This already reduces 

the number of features significantly, and equally, the influence of more minor relevant features. 

Nevertheless, feature selection remains crucial to the algorithm's performance to prevent 

irrelevant or redundant data from influencing the algorithm's training and avoid overfitting.  

For feature selection, Recursive Feature Elimination (RFE), a wrapper-based method, was 

applied. As the scope of this thesis is instead to compare the performance of the algorithms and 

not to explore ideal machine learning pipelines, this method was deemed sufficient to serve the 

purpose of feature selection.  

Recursive Feature Elimination (RFE) was initially introduced by Kohavi (Kohavi & John, 

1997). A wrapper-based feature selector utilizes an induction algorithm to find a good subset of 

features as part of the evaluation function. Initially, RFE fits the entire data set and scores each 

feature according to the importance. The least important feature is then eliminated, and the 

remaining features are fitted again to the model. This process is repeated until the desired 

number of features remains. The model opted for in the context of this thesis is the Decision 

Tree Algorithm.  

A weakness of the algorithm is that the desired number of features needs to be determined 

beforehand. To mitigate this problem and provide every algorithm with the best possible options 

to perform well, the option to select the four, seven, or twelve most important features was 

provided.  These are not arbitrary numbers but follow a beforehand conducted exploration with 

different algorithms. However, with the proposed methodology, every additional option in 

features would double the computational effort. Hence, limitations had to be made. The python 
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implementation used to generate the results shown in this thesis is part of the scikit-learn 

library. 

 

4.2 Handling imbalanced data 
 

Class imbalance describes a problem in classification tasks when there are unequal numbers 

of samples for each class in the data. Class imbalance poses a great challenge for machine 

learning algorithms as it injects bias into the algorithm's learning if not accounted for. While 

altering and adjusting the classification algorithm itself is among the possible options, more 

commonly used is the resampling of the underlying data. Removing individual instances of the 

majority class is generally referred to as undersampling. Creating artificial instances close to the 

samples of the minority class is referred to as oversampling. A wide range of algorithms have 

been introduced for data resampling with different degrees of randomness or level of 

information to select instances to sample from. 

For the choice of an appropriate resampling method, the shape and the volume of the data 

should be considered. In cases of very few instances, undersampling would even further reduce 

the instances for the algorithm to learn from, hence make the problem potentially more 

challenging. On the other hand, if there is a sufficient amount of data in the minority class, 

oversampling would introduce unnecessarily artificial data. In this scenario, eliminating some 

instances of the majority class would not harm the algorithm's performance.  

The SMOTE (Synthetic Minority Over-sampling Technique) algorithm was introduced in the 

Journal of artificial intelligence in 2002 by Chawla et al. (Chawla, 2002). Chawla found that the 

SMOTE algorithm would perform better than random duplication of minority class instances by 

reducing the overfitting behavior (Chawla, 2002). It does so by creating an artificial instance in 

between two randomly selected minority class neighbors.  

 

The new instance( ⃗x)  is created as follows: An instance from the minority class( ⃗a) is 

selected randomly. Among k class neighbors, another instance (⃗b) is selected at random with 

(w), a random weight w ~ U[0,1]. The new instance is linearly interpolated as: 

⃗x = ⃗a + w × (⃗b −⃗a) 

Figure 1 - A two dimensional schema of the imputation of a sample by the SMOTE 
algorithm. In this examlple seven minority class samples are used to impute one 
sample. 
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While the SMOTE algorithm is elegantly simple, it has two disadvantages. Firstly, the 

algorithm is highly random in picking the samples and neighbors, ignoring possible structure 

within the data. In the worst case, this can lead to noise amplification within the data. As all 

samples of the minority class are picked with uniform probability, those minority samples similar 

to the majority class can introduce more noise into the data when selected (Bunkhumpornpat, 

2009).  

Secondly, the algorithm does not distinguish between instances in overlapping areas or 

instances in clearly separated areas of the classes. This leads to the potential introduction of 

additional noise from selecting or creating instances outside the optimal decision boundary. 

Hence, artificial instances can be created as instances similar to those from the majority class 

rather than those from the minority class (Prati, 2004).  

Despite its drawbacks, SMOTE remains one of the most well-known oversampling 

techniques due to its simplicity. Further adaptations were proposed following its introduction in 

2002 to address its weaknesses, and some will be discussed below. 

As a development of the original SMOTE algorithm (Han & Mao, 2005), Han et al. proposed 
the decision boundary enforcing algorithm Borderline-SMOTE. It aims to reduce noise by 
improving one of the weaknesses of the SMOTE algorithm by altering the random selection 
process. The Borderline-SMOTE algorithm selects instances at the class border or close to it, and 
the labels of the k-nearest neighbors are the decision criteria for whether it is identified as noise 
or not. Additionally, these labels are also the criteria for whether an instance is close enough to 
the border for interpolation or too far away and not selected for interpolation.  

As displayed in Figure 2, the Borderline-SMOTE algorithm selects samples from the given, 

unaltered data (left figure) from the minority class close to the class border and interpolates 

them (right figure). 

 

 

Figure 2 - A two dimensional schema of the Borderline-SMOTE  algorithm. The 
imputed samples are imputed between the points closest to the boundary between 
minority and majority class. 
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SMOTE-Tomek is another adaptation of the SMOTE algorithm that combines over- and 

undersampling. After oversampling with the basic SMOTE algorithm, as discussed above, Tomek 

links (Tomek, 1976) are used to create more distinct clusters. A Tomek link is present when two 

points from different classes have the smallest distance to each other than to any other point to 

either of them. If two instances create a Tomek link after the SMOTE algorithm was applied, 

then one of these two is discarded as noise, or both are discarded as borderline instances.   

 

A weakness of the SMOTE-Tomek adaptation is the possible removal of minority class 

instances to improve the decision boundary between the classes. Furthermore, as noise is 

removed as it is part of a Tomek link, information is lost. Nevertheless, SMOTE-Tomek has been 

proved to be effective in some cases to obtain better results compared to other over- and 

undersampling methods (Batista, 2004). 

 

 

 

 

 

  

Figure 3 - A two dimensional schema of SMOTE-Tomek. Majority samples within the space of the 
minority samples are filtered out after samples are imputed in this space. 
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4.3 Machine learning algorithms 
 

To effectively compare the performance of different models in the context of this thesis, 

models with various underlying mechanisms and theoretical concepts were chosen. However, 

when comparing Machine Learning models, one should keep in mind that the conclusions drawn 

from their comparison is depending on the underlying data and not globally applicable to all 

problems. This does mean that the "No Free Lunch Theorem for Search Algorithms" (Wolpert & 

Macready, 1996) does hold. It states that over all possible problems no algorithm is superior to 

any other algorithm. However, over one problem, some algorithms may perform better than 

others due to the shape of the underlying data (Dietterich). The difference in results is usually a 

function of noise, variance, and bias in the data, which leads to error that can not be mitigated 

with the algorithm's capabilities. 

In the following section, the different algorithms will be compared in their underlying 

function. 

 

Linear Models 
 

Lasso Regression 

 

Lasso regression (Lasso) is an extension of a linear regression model that can exclude 

variables through L1 Regularization. Lasso refers to the regularization and is an abbreviation for 

the Least Absolute Shrinkage and Selection Operator. Lasso Regression has been originally 

applied in the geophysics literature in 1986 (Santosa & Symes, 1986). However, it is based on 

decades of previous work in statistics. 

Like in linear regression, the goal of the Lasso is to fit a line that best describes the data by 

minizmizing the error between the predicted valies and the drue dependent variable values. 

Lasso regression includes a penalty term, the L1 regularization. This penalization enforces the 

L1-norm of the fitted weight coefficients to be low and is directed towards independent 

variables that do not significantly influence the dependent variable. Their influence on the 

model is reduced to zero. 

Furthermore, it utilizes a technique called shrinkage. Shrinkage is favorable in simple and 

sparse data models because values are being shrunk towards a central point, such as the mean. 

This should lead to a more significant decision boundary. 

The addition of regularization has one distinct advantage over the linear regression that it 

makes the model more robust to overfitting on the training data. While reducing the number of 

features makes the model more robust, it also makes it more interpretable from the values of 

its coefficients.  

The implementation of the Lasso Regression, which was used to generate the results of this 

thesis, is part of the scikit-learn library. The underlying optimization algorithm to fit the model 

to the data is coordinate descent (a method similar to gradient descent). The strength of the 

regularization can be determined in the hyperparameter settings and the convergence behavior 
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of the optimization algorithm, allowing for various degrees of randomness in the search for 

optimal solutions.  

 

Logistic Regression 

 

Despite the misleading name, Logistic Regression (Grosu et al.) is a classification model. In 

statistics, it is also referred to as the logit – or logistic model. The initial development as a 

statistical model in 1944 is ascribed to Joseph Cramer (Cramer, 2002) despite many others 

contributing to it as early as in the 19th century. In its basic form, the logistic regression is only 

able to model a binary dependent variable. 

Similar to linear regression, the logistic regression tries to fit a line to the underlying data. 
The shape of the line is 'S' shaped and called a sigmoid function. The sigmoid function follows 
the formula: 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 =
1

1 + 𝑒−𝑥
 

X is the weighted sum of all input features of one sample. The function returns a value 
between zero and one to classify data belonging into two different categories.  

 

Since LR poses a non-convex optimization problem, one needs to fit the sigmoid function 
iteratively using, e.g. Gradient Descent.  

Logistic regression is considered one of the simplest classifiers in machine learning. It is easy 
to interpret and provides the feature importance as its weighting coefficients by default. With 
its regularization ability, it provides a measure to counteract overfitting behavior by eliminating 
less essential features. However, the assumption of linear separability between the 
independent- and dependent variables and the inability to solve non-linear problems are 
significant limitations.  

The python implementation used to generate the results shown in this thesis is part of the 
scikit-learn library. The implementation comes with various optimization algorithm 
implementations, L1 and L2 regularization options to mitigate the influence of unimportant 
features, and the possibility of adapting to multiclass classification.  

Figure 4 - The logistic regression algorithm seperating samples 
according to the best fit of the sigmoid function 
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Non-linear Models 
 

Classification and regression trees (CART) 

 

Classification and regression trees, also called decision trees (DT / DTC/ DTR), are amongst 

the easiest to understand, best interpretable, and visually self-explanatory algorithms of 

supervised machine learning. While many researchers contributed to developing different tree-

based algorithms, among the most influential contributions in the machine learning community 

is the work on 'Classification and Regression trees' by Leo Breiman (L. e. a. Breiman, 1998). 

Especially in a non-machine learning or non-statistical context, decision trees can bridge the gap 

between a well-performing model and understanding of and trust in the model. 

A decision tree consists of branches, nodes, and leaves. Every branch consists of several 

nodes, splitting the data into two - not necessarily even – parts. The terminals of each branch 

are called leaves. The decision tree splits data at every node of the tree until a convergence 

criterion is met, or the data cannot be split any further. A variety of metrics determines the 

calculation of each splitting point on the data. In the case of classification, the Gini index or 

Entropy are common metrics. For regression trees, the residual or the mean squared error 

serves as the most common metrics (L. e. a. Breiman, 1998). 

 

The values obtained from each leaf of a regression tree are the average of the training 

sample observation residing in this node to obtain the predictions. In classification cases, the 

value obtained from each leaf is the mode (class) of the training sample observations residing in 

this node.  

The key advantages of decision trees are their inbuilt feature selection mechanism, 

straightforward interpretation, and visualization. Key disadvantages are their overfitting 

behavior, especially on small datasets, low variance data, and vulnerability to unbalanced data. 

Nevertheless, the tree can mitigate some of these challenges by limiting depth or the number 

of nodes (called pruning) or grouping many trees in an ensemble.  

The implementation of the decision tree algorithm used in this thesis to derive the 

presented results is part of the python library scikit-learn. The implementation allows for various 

parameters that influence the final structure of the tree, such as the number of terminal nodes, 

number of leaves, or the minimum number of samples within each leaf. Furthermore, it allows 

for various pruning parameters, as well as the above described split measures.  

Figure 5 - schema of a decision tree with two nodes and tree leaves 
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K-Nearest Neighbours 

 

The K-Nearest Neighbors algorithm (KNN) is a classification and regression algorithm. It was 

first developed by Evelyn Fix and Joseph Hodges in 1951(Fix & Hodges, 1951). The algorithm is 

based on the idea that a number (k) of closest samples to one object have predictive power over 

the object. 

The algorithm works slightly differently for regression and classification problems. In both 
cases, the algorithm first translates the data into vectors. Then it calculates the distance - usually 
the Euclidean distance - of each vector to the test data vectors. The Euclidean distance 'd' is 
calculated with the following formula, where 'p' and 'q' are the two points and 'n' the number 
of features or dimensionality of the vector. 

𝑑(𝑝, 𝑞) =  √∑(𝑞𝑖 − 𝑝𝑖)²

𝑛

𝑖=1

 

In a classification problem, the k closest neighbors majority class is the predicted class. In a 
regression problem, the average vector of the k nearest neighbors is the predicted value. 
Alterations of the original algorithm allow for different weights of each neighbor relative to their 
distance and different distance measures, such as the Minkowski distance or Manhattan 
distance.  

 

 

KNN is a non-parametric algorithm that assumes a spherical gaussian distribution of the 

data. Furthermore, the training process is straightforward and brief. However, finding the 

correct number of k is difficult. Grid-searches can mitigate this weakness. Additionally, data 

points located on a decision boundary are handled poorly by the algorithm.  

KNN is often used for identifying groups of data within a dataset. In the context of the 

thesis, this could be beneficial, as patients with a similar medical history might benefit from 

similar treatment. On the other hand, the complexity of understanding the medical implications 

of patients' data might be beyond the proximity of data, which would make it difficult for KNN 

to identify these.  

Figure 6 - schema of the KNN algorithmwith two 
numbers of (k) [2,5] leading to different 
classifications of the sample to be classified 
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The python implementation of this algorithm's regressor and classifier is part of the scikit-

learn library. It allows all previously mentioned parameters as hyper-parameters. Per default, it 

calculates the distance with the Minkowski distance, which is the sum of the absolute distance 

between two points. 

 

Gradient Descent 
 

Gradient Descent is a flexible optimization technique and not able to derive predictions by 

itself. Cauchy first suggested gradient Descent in 1847 (Lemaréchal, 2012). However, for non-

linear optimization problems, it was first studied by Haskell Curry in 1944 (Curry, 1944).  

 

Gradient Descent optimizes a model, e.g., logistic regression, by finding a (local) optimum 

to its loss function. Starting at a random point, the underlying idea of the algorithm is to step 

along the loss functions' gradient at the current point in the opposite direction until a 

convergence criterion is reached. The differentiable function is derived from the error of the 

underlying model. The learning rate regulates the size of each step taken along the gradient of 

the differentiable function, and the number of steps is finite. In this manner, the error is reduced 

until a minimum is reached, and the gradient is zero. This procedure is greedy, as it always 

follows the direction of the steepest descent. In non-convex loss landscapes, this might not lead 

to the global minimum, the optimal solution. 

 

 

Stochastic Gradient Descent 

 

Stochastic Gradient Decent (SGD) is a development of the gradient descent algorithm. 

Instead of evaluating the full gradient for each training data sample, it approximates the gradient 

using a random subset of the data. This stochastic approximation can be traced back to the 

Robbins-Monro algorithm (Robbins & Monro, 1951).  

The stochastic approximation allows the algorithm to perform on large datasets as it cuts 

the high computational load that would be otherwise associated with the gradient calculation. 

This leads to a faster conversion behavior of the algorithm. Smaller steps can converge slower 

with a lower learning rate, allowing for better approximation in most cases.  

The python implementation of the algorithm, which was used to generate the results of 

this thesis, is part of the scikit-learn library. It offers a classifier and regressor. Many different 

loss function approaches, such as SVMs, linear and logistic regressions, or neural networks, can 

be selected. Furthermore, they can be regularized by the L1 and L2 regularizers for feature 

selection. Furthermore, stopping criteria, learning rate, number of iterations, schedules for the 

learning rate, and other parameters can be customized. This makes this technique very versatile 

in its application and an exciting addition to this thesis.  

Ensemble Methods  
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Bagging  
 

Ensemble methods combine various base models to form a better predictive model than 

each base model would be on its own. The first to develop this method was Leo Breiman in 1996 

with the bootstrapping aggregating method, in short, Bagging (Leo 

           Breiman, 1996). In this method, bootstrap samples are generated by subsampling the 

data (uniformly subsampling with replacement). Individual models train on one bootstrap and 

their results are aggregated as a majority vote in classification or averaging in regression. This 

technique helps to reduce variance and overfitting of the model. 

Various algorithms were developed on this basic principle: Combine various individual 

models, trained on subsamples of the data, and aggregate their results. Some of these 

algorithms are now described as they were applied in the scope of this thesis 

 

Random Forest 
 

The Random Forest (RF) algorithm is one of the most frequently used algorithms of the 

ensemble methods family. Leo Breiman introduced random Forests in 2001 (Leo 

           Breiman, 2001). The underlying principle of this algorithm is that many uncorrelated 

trees trained on different subsamples of the data vote for the outcome of a prediction. Low 

correlation between the individual trees is essential to reap the benefits of the algorithm. Each 

error of an individual tree should be overruled by the ensemble as long as not all errors are 

similarly directed.  

Technically the algorithm combines several decision tree predictors to one ensemble 

model. Each of these trees is trained on a different subsample (with replacement) of the data 

and a randomly selected set of features (with replacement) of the training data. Predictions 

are formulated by the vote of each tree in a classification problem or the average of each tree 

in a regression problem.  

Figure 7 - schema of the random forest algorithms. three subsets of the data train individual trees, that conclude 
one final class vote 



19 
 

 

It is essential to make sure that the features in the training data need to have at least 

some predictive power over the prediction target. Features without predictive power will not 

be excluded by the algorithm and will introduce bias with wrong predicting trees. 

Furthermore, the number of subsamples and features that each tree is trained on will 

influence the uncorrelatedness of the trees. Trees trained on the same data will have a very 

high correlation. Hence, they will always come to similar or identical predictions.  

The python implementation of the random forest algorithm, which was used to generate 

the results of this thesis, is part of the scikit-learn library. The implementation is based on the 

work of (Leo 

           Breiman, 2001). Both the regressor and classifier offer a variety of parameters to 

optimize the performance. They range from the number of trees, the size of each tree, the 

various split criteria and limitations of the tree branches, the number of features to train every 

tree, and other parameters. 

 

Boosting  
 

Boosting is another machine learning technique developed by Leo Breiman (Leo Breiman, 

1997). The underlying principle of boosting is to have a series of predictors where each predictor 

learns from the previous predictor in the series. Various machine learning algorithms, such as 

tree-based models, gradient descent, or regressors, can be boosted. As boosted models learn 

from previously committed mistakes, it should take, in theory, less time to come to close to 

optimal solutions. However, the stopping criteria must be defined well not to stop before closing 

in on optimal solutions or overfitting the model. 

Adaptive Boosting  

 

Adaptive Boosting (Ada Boost) was first introduced in 1996 by Freund and Shapire (Freund 

& Schapire, 1996). It is considered well-performing without extensive hyperparameter 

optimization due to its properties (Kégl, 2013). Therefore, overfitting can be less problematic 

while training close to optimal models.  

The underlying principle of the algorithm is that several algorithms – so-called 'weak 

learners' - are combined and weighted to form the output of the model. A weak learner is a 

model that performs better than guessing but is far away from the optimal solution. The weak 

learners subsequently learn from the errors of the preceding weak learners. 

 To evaluate the performance of each weak learner, more weight is assigned to incorrectly 

classified samples in the case of classification or high error samples in the case of regression. 

This helps to foster iterative learning behavior. Every weak learner is also evaluated against the 

other weak learners to give better performing weak learners a more significant impact on the 

overall output.  
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The Ada Boost algorithm utilizes decision tree stumps as weak learners with one tree node 

that splits into two leaves. In combination with the weighting behavior of the algorithm 

explained above, the algorithm automatically selects the essential features by itself when being 

trained. However, the progressive learning behavior has a downside: it is susceptible to learning 

noise and outliers. 

The python implementation for the classifier and regressor of the Ada Boost algorithm, 

which was used to generate the results of this thesis, is part of the scikit-learn package. The 

implementation is based on Freund and Schapires' work (Freund & Schapire, 1997). The hyper-

parameters to optimize the algorithm are limited to the number of weak learners, the learning 

rate, the loss function in the case of regression, and the weighting algorithm option in the case 

of classification.  

 

Extreme Gradient Boosting 

 

Extreme Gradient Boost (XGBoost) is a relatively new machine learning method 

introduced in 2016 Chen and Guestrin (Chen & Guestrin, 2016).  The machine learning 

community considers it among the highest performing algorithm that has won numerous 

competitions and is still optimized by over 350 collaborators.  

XGBoost is part of the ensemble tree algorithm family, like the Ada Boost algorithm. 

However, contrary to the Ada Boost algorithm, it utilizes a different boosting strategy. XGBoost 

uses the Gradient Decent algorithm to minimize the errors to produce superior results with 

below-average computing resources. Hence, it is a development of the Gradient Boosting 

algorithm introduced by Friedman (Friedman, 2001).  

The Gradient Boosting algorithm, just as XGBoost and the Ada Boost algorithm, is an 

ensemble of weak learners, typically decision trees. In Gradient Boosting and XGBoost, a loss 

function is defined and optimized using gradient descent. Predictions are being updated utilizing 

a learning rate to find the optimal loss function error. The intuition of Gradient boosting is to 

detect patterns in the errors and subsequently eliminate these errors by modeling them in its' 

weak learners. 

Figure 8 - schema of three boosting stages 
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XGBoost has three additional capabilities : 

1. Awareness of data sparsity – sparse features, such as one-hot encoded categorical 

variables or missing data, by learning from the training loss. Therefore, it can handle different 

types of sparse patterns. 

2. Regularization of complex models – regularization penalizes the complexity of the 

model, thus preventing overfitting. Lasso (L1) and Ridge (L2) minimize or nullify the impact of 

low-importance features to reduce the complexity of the model.  

3. Weighted data set handling -  XGB utilizes the weighted Quantile Sketch algorithm 

(Chen & Guestrin, 2016). This results in better tree node splitting decisions in weighted datasets. 

The large amount of hyper-parameters available for XGBoost allows for extensive 

customization of the model to the underlying data. Tree depth and number of nodes, the 

learning rate, regularization, number of weak learners, to name a few, provide a large number 

of options to influence the outcome of the model positively. With extensive customizability 

comes the downside of possible overfitting behavior, which should be accounted for, potentially 

with regularization.  

The python implementation is based on the work of Chen and Guestrin. As it is a 

community-developed algorithm that is still being advanced, it is not part of the scikit-learn 

library but available in a public repository (https://github.com/dmlc/xgboost).  
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Support Vector Machines 
 

Support Vector Machines (SVMs) is a supervised machine learning method for classification 

and regression problems. Vapnik and Chervonenkis originally developed the model in 1963. 

Vapnik continued development until first publication in 1995 (Boser, Guyon, & Vapnik, 1992) 

(Cortes & Vapnik, 1995). The underlying VC Theory of Vapnik and Chervonenkis serves as its 

statistical framework. The VC Theory attempts to describe a statistical approach to how 

computational learning can be conducted.  

For classification problems, SVMs construct several maximum-margin-hyperplanes which 

linearly separate data points in a high or infinite-dimensional space. Maximum-margin-

hyperplanes try to maximize the distance between two data points of separate classes and 

splitting them with a hyperplane to serve as a decision boundary. The more distance the SVM 

can bridge with the hyperplane that separates the two classes, the better the generalization 

ability of the algorithm. In the first introduction of the algorithm, only linearly separable data 

could be successfully split. 

 

With the later introduced 'Kernel Trick' and application of 'Soft Margins', this limitation was 

mitigated. The Kernel trick projects the data into a higher, potentially infinite, dimensional space 

to assume linear separability statistically. This allows separating nonlinear separated data points 

to be separated linearly. Different kernels transform the data according to varying shapes. 

Hence, the shape of the initial data will influence how well different kernels can separate the 

data. 

Figure 9 - schema of the SVM. Three hyperplanes seperate the data differently, 
where H1 is favorable, as it has the largest distance to both classes 

Figure 10 - schema of the kernel trick, transforming the data 
into a higher dimensional space to ensure linear separability. 
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Applying 'Soft Margins' to the SVM allows the algorithm to tolerate misclassifications of the 

data. The degree of misclassification that will be tolerated can be specified through hyper-

parameters for any problem that is not linearly separable and for those who are not, even in a 

higher-dimensional space.  

For regression problems, an abbreviation of the classification algorithm was introduced in 

1997 (Drucker, Burges, Kaufman, Smola, & Vapnik, 1997).  To cope with a regression task's 

increased complexity, a different loss function is introduced with an insensitive loss term ε. The 

insensitive loss term constructs a virtual tube around the hyperplane with the radius of the loss 

term ε. All observed values within this tube are not penalized. However, values outside the tube 

are. Additionally, slack variables can be added to allow for additional errors and approximation. 

The technical python implementation, which was used to generate the results of this thesis, 

is part of the scikit-learn library. The regression and the classification algorithm are based on the 

work of LIBSVM by Chang (Chang & Lin, 2011). In addition to the hyper-parameters above, the 

scikit-learn library offers various other parameters to optimize the algorithms' performance.  
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Genetic Programming 
 

Genetic Programming is a branch of Genetic Algorithms with the same fundamental 

characteristics but a different representation of a solution. Genetic Algorithm (GA) is an 

evolution-based search and optimization algorithm derived from Charles Darwins' biological 

evolution theory (Goldberg, 1989). The essence of this algorithm is that a population (of possible 

solutions) will evolve (or improve) over time by selection and variation of the individuals.  

There are numerous variations of the Genetic Algorithm. However, they share the same 

elements: a population of potential solutions, a selection algorithm that selects individuals from 

the population based on a fitness score for each solution, and variation introduced into the 

population via crossover or mutation. While mutation alters an individual randomly, crossover 

utilizes the variation inside the population and exchanges information between individuals. 

Genetic Algorithms evolve in cycles to find the best possible solution. Each cycle begins with 

an initial population of solutions. The selection algorithm chooses the most suitable individual 

solutions that should evolve into the population's subsequent population. To find the individuals 

that the algorithm deems as most suitable, a 'fitness function' formulated in the search 

algorithm to evaluate each individuals fitness. The selected individuals are then altered by 

selecting numerous crossover and mutation methods before they complete the cycle and 

represent the subsequent population. This cycle is repeated until a predefined stopping criterion 

is met. While Genetic Algorithms represent a solution as a string of numbers, Genetic 

Programming solutions are computer programs in lisp or scheme computer languages as 

described by Koza (Koza, 1994).  

To optimize for the best configuration of the algorithm, specific parameters should be taken 

into account. First, larger population size and more evolution cycles increase the possibility for 

finding reasonable solutions at the risk of overfitting. Secondly, the selection algorithm has to 

balance between selecting the best individuals and maintaining various individuals in the 

population. More greedy selection criteria prefer reasonable solutions, thus, sacrificing variance 

in the population. This leads to faster conversion of the population around a specific solution, 

which is not necessarily the best possible solution. Thirdly, crossover and mutation inject 

variance into the population. While crossover utilizes the information of at least two individuals 

of the population to create new individuals, mutation alters one individual at a random rate. 

This implies that mutation is more invasive than a crossover, meaning that an individual is 

altered at a higher rate than its previous individual(s). A probability to crossover and mutation 

is assigned at which rate either method is applied to individuals of the population. 

Figure 11 - schema of the genetic algorithms' process 
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The python implementation used to obtain the results in this thesis is part of the GP-learn 

library. All parameters mentioned previously can be optimized for in this implementation. The 

high computational effort required the application of a smaller hyperparameter grid.  

 

Artificial Neural Networks 
 

As the name suggests, artificial neural networks try to artificially imitate the learning and 

decision process – in other words, the intelligence – of a network of neurons. In essence, the 

human brain. The rationale behind this technique is that a machine provided with the same 

capabilities and information as the human brain can imitate the human brain's learning process. 

However, machines have the advantage of processing data much faster and more accurately 

than the human brain, which should make them superior at specific tasks.  

There are three main architectures of neural networks, the Artificial Neural Network (ANN), 

the Convolutional Neural Network (Tomek, 1976), and the Recurring Neural Network (RNN). 

Each of them is serving a different purpose.  In the context of this thesis, an Artificial Neural 

Network is used, as it is the best suited for the research task. 

The first computational model for a neural network dates back to 1943 (McCulloch & Pitts, 

1943), while the research in understanding neural interaction started as early as the late 19th 

century. In 1949 Hebb (Hebb, 1949) introduced 'Neural Plasticity’, a concept that states that 

neural connections are non-static, inferring that strengthening neural connection is what 

learning means in an anatomical sense. Based on these principles Rosenblatt developed the 

single-layer perceptron (Rosenblatt, 1962), a cornerstone of the current understanding of neural 

networks. After the extension to multiple-layer perceptron networks (MLP), another 

cornerstone of the current understanding was formulated by Werbos in 1975 with the concept 

of backpropagation (Werbos, 1975). 

 An MLP neural network consists of several layers of neurons. An input layer, an output 

layer, and any number of so-called hidden layers in between.  

 

Figure 12 - simplified schema of an ANN with an input layer, one 
hidden layer and a output neuron 
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Every neuron of the network follows the same mathematical principle. It takes the sum-

product of input (the input data for the input layer or output of a previous layer) and weight for 

this specific input. In addition to the sum-product, a bias constant might be added before an 

activation function is applied. The activation function, often the sigmoid function, converts the 

value to a specific range, thus, all outputs fall into this range. In the case of the sigmoid function, 

the output is between zero and one.  

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 =
1

1 + 𝑒−𝑥
 

As all neurons are connected to every neuron of the previous and subsequent layer, the 

weights processing the inputs determine the neural network's performance. To improve the 

weights, for the neural network to model the input correctly, different optimization algorithms, 

such as gradient descent, can be applied. Alternatively, backpropagation can alter the weights, 

which influenced a faulty output in the previous training process.  

The most significant advantage of neural networks is that they can learn complex 

relationships in the data that escape the human eye or mind. This includes learning from non-

exhaustive data and having an error tolerance. Furthermore, the information is stored in the 

weights of the neural network. However, neural networks often require a large amount of data 

to adjust weights correctly.  Recent studies on very deep architectures, tools, and transfer 

learning on minimal data sets have shown potential. However, they come with much complexity 

(Pasini, 2015a) (Pasupa & Sunhem, 2016).  

The python implementation used to derive the results discussed in this thesis is part of the 

python library scikit-learn. It includes an MLP classifier and regressor without backpropagation. 

However, regularization options, the architecture, and different optimization algorithms and 

parameters provide numerous possibilities to optimize the model to the underlying data. 
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4.4 Error measures 
 

In this section, the measures on which the performance for the different problems is 

evaluated are discussed. When trying to evaluate the algorithms' performance, classification 

and regression different measures of success are required. Additionally, there is no single correct 

measure to evaluate the performance of an algorithm, but the correct measures must be 

selected in the work context. Especially in the medical context, when dealing with patient's data, 

the error measure should be profound. Furthermore, for classification problems, class 

imbalance must be considered, as it influences the importance of errors certain.  

In a classification, assessment metrics can be derived from the confusion matrix. The 

confusion matrix can be constructed from the predictions, categorizing them into true and false 

predictions for each of their classes (Nathalie Japkowicz). The absolute values of the confusion 

matrix give the full context of the classifier's performance. 
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Figure 13 - Confusion matrix 

In classification problems, the accuracy rate of the algorithm describes the percentage of 

correctly classified samples, divided by the total number of samples. On the one hand, this 

measure is straightforward to understand and unambiguous. On the other hand, it loses its 

meaningfulness in imbalanced datasets because it will always bias the majority class. Suppose 

one class is significantly underrepresented in the data. In that case, the algorithm might classify 

all instances as the majority class, and only those few of the minority class will be classified 

wrong. However, the accuracy will not represent the performance accurately. Therefore, further 

measures should be evaluated. 

Recall (also referred to as sensitivity or true positive rate) displays the accuracy within the 

positives. The specificity is the pendant for the negative class. The precision is the accuracy of 

the predicted positives. The F1-score combines recall and precision in a weighted average. 

Although less intuitive, the F1 score is generally the better error measure in class imbalance 

compared to the accuracy. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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In imbalanced classification problems, it is essential to evaluate the algorithm's 

performance on classifying the minority class samples combined with the accuracy rate. 

Especially in a medical context, this metric is essential as the minority class can often be of 

particular interest.  

In regression problems, the performance is evaluated based on four error metrics: the 

mean absolute error, the mean squared error, the root mean squared error, and the R², also 

called the coefficient of determination. The mean absolute error and mean squared error are 

the absolute or mean difference between the predicted and actual values. The mean squared 

error is the square root of the mean squared error. R² compares the models' performance with 

a constant baseline, the mean value of the observations. The scores are always smaller than one.  

𝑅2 = 1 − 
𝑀𝑆𝐸 (𝑚𝑜𝑑𝑒𝑙)

𝑀𝑆𝐸 (𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
 

The scores of these evaluation measures of each best model configuration are averaged 

over 30  different initiations (seeds) of the same model configuration. These 30 initiations are 

carried out to split the training and test data sets several times to observe the spread of results 

to find robust models, especially on small data sets.  

 

 

4.5 Statistical evaluation methods 
 

To objectively compare the performance of the machine learning algorithms, the Wilcoxon 

signed-rank test is used (Wilcoxon, 1945). It is a non-parametric statistical hypothesis test that 

compares two related samples on a statistically significant difference in mean ranks. The test 

does not have assumptions about the distribution of the samples. In the context of this thesis, 

it is the best suited statistical test because error scores of two algorithms from 30 different 

sample combinations of the test and training set are compared. The 30 different sample 

combinations are identical for both algorithms, hence, enables the comparison in pairs. 

The null hypothesis (de Hoon, 2004) and alternative hypothesis (H1) tested for are as 

follows: 

H0: the difference between the pairs follows a symmetric distribution around zero 
H1: the difference between the pairs does not follow a symmetric distribution around zero 
 

The resulting W statistics can be compared to critical values of a reference table. The two-

sided test rejects the null hypothesis if the absolute W statistic is larger than the critical W value. 

P-values are obtained to evaluate the statistical significance. 

 

 

 

 

https://en.wikipedia.org/wiki/Symmetric_distribution


29 
 

4.6 SHAP Values 
 

SHAP values, or SHapley Additive exPlanations, is a framework introduced in 2017 by 

Lundberg and Lee (Lundberg & Lee, 2017). It is a framework that aims at interpreting machine 

learning models of any nature (Lundberg & Lee, 2017). It is a method of additive feature 

importance, as every single sample contributes to the feature importance of each feature 

separately and additively. SHAP values are based on a game-theoretical approach from Lloyd 

Shapley from the 1950s (Shapley, 1953). It is one of his most influential theories contributing to 

the Nobel prize award in 2012 to Shapley.  

The game-theoretical setting of Shapley values is the problem of fairly distributing money 

between players who contributed to the outcome of a game. Fair in this setting has two 

properties:  

1. The amounts sum up to the amount to be distributed in total. 

2. They are consistent with each player's contribution that a player who contributed 

more always receives more money than a player who contributed less. 

The Shapley value for a player i is calculated for game f by an average of the marginal 

contribution of this player i for every possible subset of players S. The marginal contribution is 

calculated by the difference in the outcome of the games without and with the player of a 

specific subset that: 

𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆) 

The differences of each game are averaged for one player to obtain this player's Shapley 

values (Shapley, 1953). Furthermore, it was proven that Shapley values are the only theoretical 

method to distribute the money of the game within the constraints of a set of specific desirable 

properties, always resulting in a fair distribution of money. 

The contribution of Lundberg and Lee is to adapt this concept as a machine learning model 

explanation method where i is each feature contributing to a model prediction f where M are all 

features included in the model and S, a subset of the features M. Two problems of this  method 

arise in applying Shapley's concept to machine learning that Lundberg and Lee have addressed: 

1. A subset of features S will have missing features that have been used by the model 

that is supposed to be explained.  

2. Averaging marginal contribution across all subsets of features for every sample 

opposes a great computational effort. 

Lundberg and Lee applied different explanatory algorithm approaches to overcome these 

challenges, which can be model-specific or agnostic. Some of the model-specific so-called 

"explainers", such as the tree-explainer, explaining tree-based algorithms, manage to overcome 

the two problems stated above. As a missing feature of a tree model results in an undescribed 

split node in the tree, they interpolate the split from the weighted average of both branches. To 

overcome the computational effort required, they store some data in the memory to avoid 

repetitive calculations. The model agnostic algorithm presented by Lee and Lundberg only takes 

a sampled subset "S" of features into consideration to approximate the SHAP values. 

Furthermore, they fill missing values from a background data set that has to be defined by 

the user. This can make the approximation of the Shapely values less concise. In this thesis, only 
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these two explainers are used, while other explainers exist for different model types such as 

linear models or neural networks. 

After the Shapley values for each sample are calculated and aggregated, they are 

aggregated to the feature level and graphically plotted in several ways. Figure14X below 

illustrates the feature importance of a balanced binary classification problem. 

 

In Figure 15, every dot in a variable represents a sample and its influence on the SHAP 

values. The color notes the sample-specific value of the feature. The seven features displayed 

are in decreasing order of importance, where the exact importance of each feature could be 

obtained from the underlying aggregate of the SHAP values. This makes the influence of features 

and each sample on the model's output very visual and easy to understand. 

Other additive feature attribution methods try to explain the feature importance, such as 

LIME (Ribeiro, 2016 ) for local approximation using regression or DeepLIFT (Shrikumar, 

Greenside, & Kundaje, 2017) for explaining deep neural networks, have aimed at solving the 

same problem. However, SHAP values seem to outperform these methods in terms of 

computational efficiency, consistency with human intuition, and explaining class differences in 

the initial tests conducted (Lundberg & Lee, 2017).  

 

 

  

Figure 14 - exemplary display a model interpretation with SHAP values. Feature 
influence on the model predictive outcome is in decreasing order. Every point is one 
sample value for each feature. The value itself is displayed by the color. 
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5. Experimental setup 
 

 First, the data is cleaned and pre-processed to provide the algorithms the data in the shape 

they require while removing noisy or broken samples. After pre-processing, the data is split into 

a training set, on which a model is trained, and a test set. The test-set remains untouched until 

performance evaluation. Following the train/test split, the data is scaled. Scaling is necessary, as 

some algorithms overestimate the impact of features with high absolute values. By scaling the 

data, this bias can be removed. 

 Afterward, a feature selection algorithm selects a set of features that best describes the 

information the machine learning model is trying to learn. For classification tasks, oversampling 

methods level the classes with equal number of samples between classes. To identify the best 

practice model for each of the six problems investigated, various algorithms are applied and 

evaluated against each other. For evaluation, several error metrics are taken into consideration. 

Finally, the performance of the algorithms are statistically evaluated using the Wilcoxon signed 

ranked test. SHAP values taken from the best performing model attempt to understand the 

underlying features that influence the machine learning algorithm's decision.  

Each method comes with its complexity and underlying assumptions. To account for that, 

a flexible environment was provided for each algorithm. This environment allowed to choose 

between several methods with varying degrees of sophistication and provided each method 

with a set of four, seven or twelve selected features. For classification tasks, three different 

oversampling methods are provided to the algorithms. 

To find the optimal set of hyperparameters for each algorithm, a brute force approach 

trying all possible combinations of a set of hyperparameters to find the optimal set was applied. 

As the amount of data supplied to the algorithms is very limited, it was essential to use cross-

validated results to determine the best algorithm configurations. Cross-validation prevents over-

fitting of the algorithm to the training data, which leads to poor generalization performance.  

After the machine learning model configurations were optimized, the final results are 

obtained by running the best configurations over 30 seeds. These seeds initiate random 

parameters in the code differently, resulting in variation in the data split, oversampling methods, 

and some algorithms' initializations. The variation induced with this technique can be significant 

because of the datasets' small size. Changes in the samples belonging to the training or test set 

potentially significantly influence the algorithms' learning ability. Furthermore, 30 sets of results 

are generated for each algorithm, which allows for better statistical evaluation with the 

Wilcoxon signed ranked test. 

On the best algorithm, the concept of SHAP values was applied to understand how the 

model derived its predictions from the data. Importantly, SHAP values describe how the input 

features contribute to a model's conclusions, but they do not imply causality between input 

features and prediction. 

In the next part of this section, the methods applied, their respective strengths, 

prerequisites, and backgrounds are explained in more detail. 
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6. Description of results  
 

In the following chapter, the results obtained for the six dependent variables' predictions 

are described. For every dependent variable, the best result for every algorithm is compared by 

several evaluation measures. Finally, the SHAP values from the best model are being examined.  

 

Dependent variable: "≤10" 
 

The first variable evaluated is named "≤10" in the data. It is a binary variable, which 

describes whether a patient developed more than ten oligometastatic lesions throughout his 

timespan as a patient. The definition of this variable already opposes a difficulty, which is the 

completeness of the data provided.  The data can only display events recorded by the doctors. 

However, if a patient terminates the doctors' relationship, this data cannot further be obtained. 

Hence, it might inject noise into the data. 

Table 1 describes the performance and configurations of the best parameters of each 

algorithms' best configurations mean over 30 seeds: 

 

model sampler # of 
features 

accuracy 
training 

accuracy 
test 

F1 score precision recall 

LR  SMOTE 12 0.78 0.74 0.65 0.65 0.66 

SVM  SMOTE Borderl. 7 0.7 0.73 0.63 0.64 0.63 

SGD  SMOTE 12 0.77 0.73 0.63 0.64 0.66 

RF  SMOTE 12 0.9 0.73 0.65 0.64 0.68 

GA  SMOTE Tomek 7 0.67 0.73 0.48 0.8 0.35 

ADA Boost   SMOTE 12 0.88 0.71 0.61 0.61 0.64 

XGBoost  SMOTE 12 1 0.7 0.58 0.59 0.58 

MLP  SMOTE 12 0.94 0.7 0.61 0.6 0.64 

KNN  SMOTE Borderl. 12 1 0.68 0.56 0.57 0.56 

DT  SMOTE Tomek 12 0.81 0.67 0.58 0.56 0.63 
 

Table 1 - results table for the dependent variable "≤10" 

All averaged test accuracy scores of the different algorithms range from 74% to 67%. This 

accuracy score means that the best algorithm fails to predict every fourth patient correctly. The 

worst algorithm fails to predict every third patient correctly. For most algorithms, the precision 

and recall scores are very balanced with minor differences. It indicates that the algorithms can 

learn to distinguish between the two classes evenly, not leaning their prediction towards either 

of them. This balance is reflected in the F1-score. The most significant difference in the results 

is the training data accuracy and its' difference to the test data accuracy. The three best 

algorithms have very similar accuracy on the training and test data, indicating that the model is 

learning from the data and not remembering each case. Hence, indicating little over-or 

underfitting behavior, which would need to be further validated. For most other algorithms, 
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assertive overfitting behavior can be observed, up to perfect training accuracy scores of up to 

100%. The only exception is the genetic algorithm, as it underfits the data. 

Furthermore, the genetic algorithm can identify the negative samples much better than any 

of the other algorithms. However, it fails to distinguish the positive samples well. This 

observation is expressed by the high precision and low recall scores. The reasons for this 

behavior are manifold and will be discussed later.  

Most algorithms performed best, including 12 features, while only two performed better 

with only seven features. The relatively large number of features included indicates that many 

features influence the dependent variable. It also provides a possible explanation for why some 

algorithms encountered overfitting issues. Of the oversampling methods, SMOTE was six times 

favorable,  SMOTE Borderline and -Tomek two times each. As there are almost twice as many 

negative samples as positive samples, the oversampling method, in this case, could have a 

significant impact on the performance. However, the results do not show indications of 

preference for any algorithm-oversampler combination yet.   

While Table 1 shows the results of averages over 30 seeds, the Figure 15 shows the spread 

of the test data accuracy of the results presented. It gives further insight into the generalization 

ability of the algorithm in the shape of boxplot distributions. Optimally, there would be no 

difference in the results. However, as the data set is small, a different distribution of the samples 

within the training- and test sets of the data can be observed to make a difference to the 

algorithm's performance.  

 

The boxplots clearly show that there is frequently a spread of around 20 percentage points 

for almost all algorithms. Stochastic gradient descent is the exception, with a noticeably smaller 

spread compared to all other algorithms.   

The statistical evaluation with the Wilcoxon signed-rank test, tested for a difference in the 

median of the results at a 5% confidence level. The test reveals, that there is no statistical 

median difference between the test accuracy scores of the logistic regression and either of the 

Figure 15 - result spread of the 30 test accuracy scores for each algorithm for the dependent variable "≤10" 



34 
 

support vector machine (Wstat = 120, pvalue = 0.39), stochastic gradient descent(Wstat = 107, pvalue 

= 0.34), random forest (Wstat = 145, pvalue = 0.29) or genetic algorithm (Wstat = 156, pvalue = 0.28). 

However, the logistic regression test accuracy scores and the adaptive boosting algorithm show 

a statistical significance (Wstat = 91, pvalue = 0.018). Furthermore, the f1 scores of the logistic 

regression and the genetic algorithm show a statistically significant difference in median results 

with a Wstat = 27 and pvalue = 0.000023.  

The SHAP values displayed in Figure 16 are obtained using the tree explainer of the best 

performing logistic regression model. The SHAP values are in decreasing order of each features' 

importance. Each dot represents one sample in a color encoded for the value this samples value. 

The SHAP values show that the first five features influence the prediction. However, the age and 

primary tumor's influence are very limited or very specific to one sample and are not 

generalizable as the sample values have a SHAP value around zero . The SHAP values attribute 

breast tumor a very strong influence on the dependent variable. This can be interpreted as 

breast tumor having a high metastatic activity. If the lymph node is the first met organ site, the 

chance of developing more than ten lesions as a patient is lowered according to the SHAP values. 

Both these observations are in line with the medical understanding of the disease. The average 

burden and the cumulative burden increase the chance of developing more lesions with growing 

tumor size. This also holds for the SUV max of the first radiotherapy treatment.  

An additional benefit of SHAP values can be observed in the age variable. As all values are 

centered on the null line, it can be discussed why this variable is considered. While there is a 

tendency that higher age of a patient has a negative impact on the development of the number 

of lesions, and vice versa, the impact seems marginal. Furthermore, it can be logically explained 

that a higher age could lead to the development of fewer than ten lesions for several reasons. 

First, there is less time left to develop ten lesions until life expires for a patient. Secondly, the 

immune system will be less capable of coping with ten lesions than the immune system of a 

younger patient.  

A squamous cell carcinoma as the primary tumor has a negative impact on developing 

numerous lesions. However, one sample in the data is most likely not robust for this statement 

to be made. Hence, this variable also should be considered for exclusion or medical 

confirmation. 

Figure 16 - SHAP values model explanation for the dependent variable "≤10" 
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Dependent variable: “PMFS Oligo Status (≤5) maintained”: 
 

The variable "PMFS Oligo Status (≤5) maintained" describes whether a patient remained 

within the oligometastatic status with less than five simultaneous lesions throughout his 

timespan in treatment. Once a patient crosses the border to the polymetastatic state (defined 

with six or more lesions simultaneously), treatment of this patient becomes more complicated. 

The method of SOMA cannot be further applied, as it is directed towards oligometastatic lesions 

only. Hence, this variable gives insight into the invasiveness, treatability, and curability of a 

patient.  

Table 2 describes the performance and configurations of the best parameters of each 

algorithms' best configuration averaged over 30 seeds: 

 

 

Table 2 - results table for the dependent variable “PMFS Oligo Status (≤5) maintained” 

The mean accuracy scores on the test data are within a range of five percentage points, 

between 65% and 70%. This very balanced picture is extended over the precision, recall, and f1 

scores, where no significant differentiating observations can be made concerning the algorithms 

performance. All algorithms have a slightly better recall than precision, which means that they 

better identify those samples that did not maintain their oligometastatic status. A slight 

overfitting behavior is indicated for all algorithms in the difference between test and training 

accuracy. Figure 17 shows a large spread in results further indicating limited robustness of the 

models. However, further analysis would be necessary to evaluate the extend of overfitting 

behavior. 

Notable is that no algorithm worked best with the SMOTE oversampling method. Especially 

in this case, as the samples of the dependent variable are very balanced with 96 and 78 samples 

(of [0,1] respectively) in the entire dataset, the slight difference in the sample distribution should 

have only a minor influence the oversampling method. Most algorithms preferred the minimum 

amount of four features provided. 

model sampler # of 
features 

accuracy 
training 

accuracy 
test 

F1 
score 

precision recall 

GA SMOTE Borderl. 4 0.71 0.7 0.69 0.67 0.72 

RF SMOTETomek 4 0.82 0.69 0.69 0.67 0.73 

MLP SMOTE Borderl. 7 0.73 0.69 0.69 0.66 0.72 

LR SMOTE Borderl. 7 0.72 0.69 0.69 0.65 0.74 

ABC SMOTE Borderl. 4 0.75 0.68 0.67 0.65 0.7 

SVC SMOTE Tomek 4 0.72 0.67 0.69 0.62 0.77 

SGD SMOTE Tomek 4 0.72 0.67 0.69 0.62 0.78 

XGB SMOTETomek 7 0.76 0.66 0.65 0.64 0.68 

DTC SMOTETomek 4 0.74 0.66 0.67 0.61 0.75 

KNC SMOTE Tomek 4 1 0.65 0.63 0.64 0.65 
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The spread of the algorithms test-accuracy scores varies heavily, with spreads from 15% 

points to almost 30% points and scores as low as 50% accuracy. In combination with the results 

presented previously in the table, it indicates a high sensitivity towards the data in the test set. 

This indicates that the generalization ability of the algorithms falls below the desired degree. 

The Support Vector Machine and Stochastic Gradient Descent have the lowest spread of results.  

One possible explanation for this could be introduced noise in the data. This could be 

supported by the tendency of the high spread in results from the Adaptive Boosting and K-

Nearest Neighbor classifiers, as both tend to be sensitive to noise in the data (Bootkrajang & 

Kabán, 2013).  

The statistical evaluation with the Wilcoxon signed-rank test, tested for a difference in the 

median of the results at a 5% confidence level. The test reveals, that there is no statistical 

median difference between the test accuracy scores of the genetic algorithm and either of the 

random forest (Wstat = 96.5, pvalue = 0.32), multi-layer perceptron(Wstat = 166, pvalue = 0.39) or 

logistic regression (Wstat = 136, pvalue = 0.20). However, the logistic regression test accuracy scores 

and the adaptive boosting algorithm show a statistical significance (Wstat = 83.5, pvalue = 0.032).  

 

 

Figure 17 - result spread of the 30 test accuracy scores for each algorithm for the dependent variable 
" PMFS Oligo Status (≤5) maintained " 

Figure 18 - SHAP values for the dependent variable " PMFS Oligo Status (≤5) maintained " 
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The SHAP values displayed in Figure 18 are obtained using the tree explainer of the best 

performing random forest model. The RF was selected more suitable for SHAP values as there is 

no statistical difference to the GA performance. Furthermore, the kernel explainers 

approximating nature can be mitigated.  

The SHAP values indicate a significant influence of systemic therapy, a negative of a large 

maximum tumor burden and cumulative burden. This is very much in line with human intuition 

and current medical understanding. The disease-free months between treatments have an 

inverse impact on the dependent variable. However, it can be discussed whether this variable 

helps generate insights in this case. It does not help describe the progress of the treatment 

parameters but instead can be expected to correlate with the dependent variable. However, it 

seems that the algorithm is learning from the data sensibly. Further investigation of other 

variables influencing the dependent variable could generate additional insights into further 

interaction of variables. 

 

Dependent variable: “OS Months” 
 

The variable "OS months" explains the months of survival of a patient after the first 

examination as part of the program. Accurately forecasting the time of survival will increase the 

treatment options, maximizing the patient's life quality. In the context of SOMA-treated 

patients, especially the heterogeneity of the tumor and the small sample size opposes a 

significant challenge to accurate forecasts.  

Table 3 describes the performance of the best parameters for each algorithms' best 

configurations mean over 30 seeds: 

model # of 
features 

mean absolute 
error 

mean squared 
error 

root mean 
squared error 

R² 

RF 4 14 291.72 17.07981 0.25 

ABC 4 14.3 310.9 17.63236 0.2 

GA 4 14.52 404.93 20.12287 -0.05 

Lasso 7 15.68 339.72 18.43149 0.13 

DTR 4 15.69 394.58 19.86404 -0.02 

SVR 4 16.01 387.93 19.69594 0 

KNR 7 16.08 402.37 20.05916 -0.04 

XGB 4 35.56 1662.09 40.76874 -3.3 

MLP 7 35.6 1664.94 40.80368 -3.31 

 

Table 3 - results table for the dependent variable "OS months" 

Among the nine algorithms examined, the mean absolute errors are between 14 and 35.6 

months. However, seven of them are in the range between 14 and 16. This means that, on 

average, the prediction has an error of 14 months from the observed value. At an average 

survival of 36.4 months after the first treatment, this results in prediction being accurate to an 

average error of about 50%. The random forest algorithm generated the best results. 
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However, the root mean squared error might be the better error metric, as it increasingly 

penalizes larger errors. In the medical context, this translates to higher emphasis on a robust 

prediction. Compared to their mean absolute error, the support vector machine and the lasso 

regression have a relatively better root mean squared error. However, the random forest still 

performs best. This shows that they have fewer large errors, hence, a better generalization 

ability. It might be a result of the regularization ability of these two algorithms. 

The R² value of the random forest is the best among the algorithms with a value of 0.25. 

This translates to the random forest's ability to explain the variance in the data set 25% better 

than the mean of the dependent variable. In other words, it only accounts for 25% of the 

variance in the data. This results in a minimal understanding of the data by the machine learning 

model. Five of the nine algorithms fail to have a positive R² value, which indicates that algorithms 

have difficulties learning from the data. 

Figure 19 compares the root mean squared error of the models' best configurations results 

in over 30 seeds.  

 

While the two best-performing algorithms, the random forest and adaptive boosting, both 

have an average distribution of results obtained, the genetic algorithm performs very well on 

most of the samples. However, it lacks generalization ability on a few. The opposite can be 

observed by the lasso regression, which has the smallest spread of prediction errors. However, 

a few outliers, predominantly on the positive side. This might be a result of the regularization 

term embedded in the algorithm, as mentioned before. 

The statistical evaluation with the Wilcoxon signed-rank test, tested for a difference in the 

median of the results at a 5% confidence level. The test reveals a statistical median difference 

between the root mean squared error scores of the random forest and either of the adaptive 

boosting (Wstat = 45, pvalue = 0.0001) and genetic algorithm (Wstat = 89, pvalue = 0.003). The same 

holds for the difference in median R² scores of the random forest and the adaptive boosting 

algorithm (Wstat = 53, pvalue = 0.002). Therefore, it can be concluded that the random forest 

algorithm statistically significantly outperforms the other algorithms in this specific setting. 

Figure 19 - result spread of the 30 test accuracy scores for each algorithm for the dependent variable " OS Months“ 
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The SHAP values displayed in Figure 20 below are obtained using the tree explainer of the 

best performing random forest model. Unsurprisingly the disease-free survival between 

repeated ration therapy sessions and the number of radiotherapy sessions for patience have the 

highest predictive power over the dependent variable. The samples of these two variables are 

fairly even distributed according to their feature value. 

 

 

The tumor burden at the first radiotherapy does not provide helpful information, as the 

distribution of the samples as SHAP values is very scattered. Although a large tumor burden 

could be expected to have a negative impact on the survival of a patient, the data does not 

provide this insight. Reasons for this could be interaction effects with other variables that are 

not further explained here. Furthermore, the SHAP values indicate that a sizeable maximum 

burden negatively influences a patient's survival. However, this does not necessarily always need 

to be the case. 

In conclusion, the models feature importance, and insights generated with the SHAP values 

align with the medical intuition. This means that, despite the little predictive power of the 

model, it seems to understand some of the underlying patients' treatment mechanics. Further 

analysis might lead to detection of interaction effects. It should be discussed to exclude specific 

treatment process parameters for this analysis to derive more insights about the tumors 

heterogeneity impact on the dependent variable. This would exclude variables giving less insight 

about the disease despite relatedness. 

 

Dependent variable: “PMFS Time to endpoint” 
 

The variable "PMFS time to endpoint" explains the time in months a patient does not enter 

the polymetastatic status after the first examination. It addresses a similar need as the 

classification problem described previously, as polymetastatic cancer requires different 

treatment approaches, where SOMA is not applicable anymore. Knowing if, or when this 

timepoint could be reached potentially significantly impacts the treatment choices. 

Table 4 describes the performance of the best parameters for each algorithms' best 

configurations mean over 30 seeds: 

Figure 20 - SHAP values for the dependent variable " OS months" 
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model No 
features 

Mean absolute 
error 

root mean 
squared error 

R² 

GP 7 10.8 15.79 0.33 

RF 7 11.95 15.26 0.39 

AdaBoost 12 12.75 16.23 0.3 

DTR 12 12.89 17.69 0.18 

SVR 7 12.94 17.99 0.16 

Lasso 7 13.52 16.96 0.25 

KNN 7 13.82 19.01 0.04 

XGB 4 25.41 32.16 -1.73 

MLP 7 25.45 32.19 -1.73 
 

Table 4 - results table for the dependent variable " PMFS Time to endpoint " 

The mean absolute errors of the algorithms are between 10.8 and 25.45, with an average 

value of the samples of 26.46. The XGBoost and the multi-layer perceptron network have 

difficulties learning from the data, as their performance is significantly worse than those of the 

other algorithms. The genetic algorithm delivers the best results for measuring the mean 

absolute error, followed by the random forest. 

As already outlined previously, the root mean squared error is the better error measure in 

this context. Relative to this measure, the random forest algorithm performs best, with an error 

of 15.3 months. The random forest is also able to explain the most variance compared to the 

other algorithms. With an R² error of 0.39, the random forest can reduce the variance by 39% 

compared to the mean.  

 

Figure 21 - result spread of the 30 test accuracy scores for each algorithm for the dependent 
variable “PMFS Time to endpoint” 
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Figure 21 shows the distribution of root mean squared errors from each algorithm's best 

configuration over 30 seeds. The genetic algorithm has one outlier and a slightly higher error 

distribution than the random forest, despite showing the smallest error distribution. 

Furthermore, the lasso regression proves its generalization ability with a low variance in errors.  

The support vector machine does not perform as well as the lasso regression despite the same 

regularization ability.  

The statistical evaluation with the Wilcoxon signed-rank test, tested for a difference in the 

median of the results at a 5% confidence level.  The test reveals no statistical median difference 

between the root mean squared error scores of the random forest and the genetic algorithm 

(Wstat = 203, pvalue = 0.54). However, there is a statistical median difference between the random 

forest and adaptive boosting (Wstat = 59, pvalue = 0003). The same holds for the difference in 

median R² scores (Wstat = 194, pvalue = 0.42 and Wstat = 53, pvalue = 0.0002 respectively). Therefore, 

it can be concluded that the random forest algorithm statistically significantly outperforms the 

other algorithms in this specific setting. 

The SHAP values displayed in Figure 22 are obtained using the tree explainer of the best 

performing random forest model. The random forest model was chosen because of the best 

root mean squared error and R² score. The SHAP values indicate that the disease-free months 

between repeated radiotherapy have the highest predictive power. This follows the medical 

understanding of the disease as many disease-free months result from successful treatment or 

tumor inactivity.  

The SHAP values also suggest that a high average burden leads to reduced polymetastasis 

free survival. A large number of radiotherapy sessions (Repeat TX) seem to prolong the 

polymetastasis free survival. In the case of the SOMA therapy method, this could indicate 

success in applying this method. The “Patient with LF with rescue” SHAP values express that 

patients who had to undergo rescue surgery have extended polymetastasis free survival. This 

observation could be biased as typically surgery is conducted when a high chance of cure is 

expected or as a last possible treatment measure.  

In conclusion, the SHAP values follow the human intuition that the model seems to describe 

well. However, the lack of a high predictive power indicates that other variables need to be taken 

into account to forecast the dependent variable more accurately. The models cannot explain the 

data to a full extent.  

 

Figure 22 – SHAP values for the dependent variable " PMFS Time to endpoint” 
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Dependent variable: “Local Relapse” 
 

The variable "Local Relapse Y=1 N=0" describes whether a lesion did relapse or not. For the 

prediction of this variable, only data until directly after the treatment of each lesion was used 

to increase the use of the prediction for the doctors. Knowledge about the relapse of a lesion 

directly after the radiotherapy treatment could provide great usefulness to the patient and the 

doctor in assuring the best treatment. One limitation of the data is the potential incompleteness 

of information. It cannot be known whether a lesion reoccurred after the most recent follow-up 

examination of one patient. 

Furthermore the data is heavily imbalanced. Among the 605 lesions in the cleaned dataset, 

only 88 locally relapsed within the observation period. As good as this tremendous treatment 

success is for the patients, it poses a challenge from a machine learning perspective. The 

algorithms will tend to overfit in the case of multiple oversampled samples of each relapsed 

lesion, which is necessary to achieve a balanced training dataset.  

Table 5 describes the performance of the best parameters for each algorithms' best 

configuration averaged over 30 seeds: 

 

Table 5 - results table for the dependent variable " Local Relapse " 

The accuracy on the test dataset of all algorithms is in the range between 79% and 32%. For 

most algorithms, this result is obtained with an overfitting behavior of the model as the training 

set accuracy is better in most cases. In the circumstances of this particular dependent variable, 

special attention should be paid to recall, as it describes the ability of a model to detect the 

relapse of a lesion. Furthermore, as the data is highly imbalanced and relapsed lesions are 

scarce, the accuracy alone will skew the model's performance evaluation. The recall scores range 

from 0.28 to 0.77. The lowest recall score is obtained by the model with the best overall test 

accuracy. This concludes that the model well describes lesions that do not relapse but fails to 

identify lesions that relapse. The opposite can be stated from the multi-layer perceptron, which 

has the highest recall but lowest test accuracy, hence, forecasting most lesions to relapse. To 

balance the two scores, the f1 score should be considered to identify the best performing 

algorithm. For this measure, the random forest and adaptive boosting algorithm present the 

best performance.  

model sampler 
# of 

features 
accuracy 
training 

accuracy 
test 

F1 
score 

precision recall 

SVC SMOTE Borderl. 12 0.93 0.79 0.27 0.27 0.28 

XGB SMOTE 12 1 0.76 0.34 0.29 0.44 

KNC SMOTE Borderl. 12 1 0.75 0.34 0.27 0.46 

RF SMOTE 12 0.95 0.73 0.35 0.28 0.51 

ABC SMOTE 12 0.95 0.69 0.34 0.26 0.57 

GA SMOTE 12 0.63 0.67 0.22 0.2 0.34 

SGD SMOTE 12 0.51 0.6 0.15 0.15 0.39 

LR SMOTE 12 0.72 0.59 0.32 0.21 0.68 

DTC SMOTE Tomek 12 0.77 0.59 0.28 0.19 0.56 

MLP SMOTE Borderl. 7 0.52 0.32 0.23 0.17 0.77 
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The overfitting behavior could be expected because of the high imbalance of the dataset. 

This leads to the necessity to oversample the samples of the minority class multiple times to 

balance the training data set, leading to various similar samples. Very similar samples increase 

the difficulty of learning as algorithms tend to memorize the training data, as low variance leads 

to lower generalization ability of the model. 

Figure 23 displays the spread of f1 scores over 30 seeds of the best performing 

configuration of each model. It can be observed that there is a wide variation in performance 

and variation within the scores between the different models. Because of the challenges this 

problem poses, a more tailored methodology to obtain more consistent results for each model 

might be required. 

The adaptive boosting algorithm has the smallest spread of results and the best f1 score. 

The stochastic gradient descent algorithm has the most extensive spread of results within the 

configuration, indicating poor generalization ability in this scenario.   

The statistical evaluation with the Wilcoxon signed-rank test, tested for a difference in the 

median of the results at a 5% confidence level. The test reveals, that there is no statistical 

median difference between the F1-scores of the random forest and either of the Adaptive 

Boosting (Wstat = 220, pvalue = 0.79), K-Nearest Neighbor algorithm (Wstat = 203, pvalue = 0.54) or 

XGBoost algorithm (Wstat = 196, pvalue = 0.45. However, there is a statistical median difference 

between the Adaptive Boosting and Logistic Regression (Wstat = 95, pvalue = 0.004).  

The random forest model was selected to explain the models' performance, as it showed 

the best f1 score. The SHAP values explain that the random forest model gives the highest 

priority the mean grey (radiation) dose delivered to the lesion has the most substantial 

Figure 23 - result spread of the 30 test accuracy scores for each algorithm for the 
dependent variable “Local Relapse” 
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influence. Additionally, the mean dose delivered to 95% of the lesion (PTV_D95%) is considered. 

The deviation in SUV from the baseline is considered as the second most important feature. 

Surprisingly, not explicitly expressed in the research by Grecko et al. (Greco et al., 2019) on this 

variable, the systemic therapy before the treatment has undeniably impacted the model. Finally, 

the tumor size and age are taken into account by the random forest.  

In this case, further analysis of the samples SHAP values in detail could reveal more insights, 

as the two radiation measurements and systemic therapy values could have interactivity, as the 

features are not linearly distributed by feature value. However, great alignment of the SHAP 

values with the human intuition and understanding of lesion relapse can be observed.  

 

 

 

 

 

Dependent Variable: “LRFS Months” 
 

The "LFRS Months" variable describes the local relapse-free months on a lesion level after 

radiation treatment of one specific lesion. It is an extension to the binary local relapse problem. 

Knowing, whether a lesion will relapse (reappear) is very helpful, as the lesion can be kept under 

close observation. Knowledge about the relapse of a lesion in the following months or years 

allows drawing further implications. Furthermore, it may be possible to pinpoint reasons for late 

or an early relapse of lesions.  

 The following table describes the performance of the best parameters for each algorithms' 

best configuration averaged over 30 seeds: 

 

Figure 24 - SHAP values for the dependent variable “Local Relapse” 
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model No 
features 

Mean 
absolute error 

Root 
mean 

squared 
error  

R² 

RF 7 13 17.00 0.07 

SVR 12 13.1 17.62 0 

DTR 12 13.39 18.54 -0.11 

GA 7 13.45 18.90 -0.16 

Lasso 12 14.09 17.64 -0.01 

KNR 12 14.59 19.37 -0.22 

ABC 12 15.69 18.31 -0.09 

MLP 7 22.11 28.27 -1.59 

XGB 7 24.01 29.78 -1.87 
 

Table 6 - results table for the dependent variable “LFRS months” 

The mean absolute error of the obtained results for all algorithms ranges between 13 and 

24 months. With an average of all samples of the dependent variable of 24.35 relapse-free 

months, these results have little predictive power. The best performing algorithms were the 

random forest, the support vector machines, and the decision tree algorithm. The root mean 

squared error should be the measure to assess the algorithm's performance for the same 

reasons as outlined before. Considering this, the lasso regression has a relatively better 

performance than in the comparison of the mean absolute error. However, it does not provide 

better results than the random forest. The multi-layer perceptron and the XGBoost algorithms 

have noticeably lower performance compared to the other algorithms. 

Except for the random forest algorithm, the R² error for all algorithms is below or at zero. 

The random forest algorithm only explains 7% of the variance in the dataset compared to the 

mean. This concludes that the models poorly fit the data and do not explain the variance well. 

All algorithms perform best with seven or 12 features. None of the algorithms achieved 

better results with only four features. This indicates that there is additional information to be 

obtained in the data. However, as the algorithms poorly explain the variance, the information 

required to forecast the dependent variable accurately might not be fully available. Much noise 

in the data might further increase the difficulty for the algorithms to learn. On the other hand, 

it might be the case that a higher degree of sophistication of the models is required to forecast 

the time until relapse accurately. 

Figure 25 below shows the distribution of root mean squared errors.  The observed errors 

are all within the range of about five error points for most algorithms. The adaptive boosting 

algorithm shows the lowest variance of errors within the range between 17 and 20. The decision 

tree, however, shows the most extensive spread in results. The genetic algorithm has one 

outlier, which could be an indication of a lack of robustness. On the other hand, the lasso 

regression once more improved relative to the evaluation comparison from the mean average 

error with a spread in results as small as most other algorithms. 



46 
 

 

 

 The statistical evaluation with the Wilcoxon signed-rank test, tested for a difference in the 

median of the results at a 5% confidence level. The test reveals a statistical median difference 

between the root mean squared error scores of the random forest and either of the support 

vector machine  (Wstat = 14, pvalue = 0.00007) and lasso regression (Wstat = 9, pvalue = 0.000004). 

The same holds for the difference in median R² scores of the random forest and the support 

vector machine  (Wstat = 14, pvalue = 0.002). Therefore, it can be concluded that the random forest 

algorithm statistically significantly outperforms the other algorithms in this specific setting. 

The SHAP values displayed in Figure 26 are obtained using the tree explainer of the best 

performing random forest model. The SHAP values indicate that cancer in the breast as the 

primary tumor or in the lymph nodes as the lesion organ site does increase the time of relapse-

free survival.  

Figure 25 - result spread of the 30 test accuracy scores for each algorithm for the 
dependent variable “LFRS months” 

Figure 26 - SHAP values for the dependent variable “LFRS months” 
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Contrary, a high CTV cc or PET/SUV I decrease the time for local relapse, indicating that 

larger or more active tumors are more prone to relapse. A few samples can be observed that do 

not follow this trend and could be suspect to noise or inability of the model to understand the 

data completely. Furthermore, the delta SUV from baseline I and the systemic therapy pre-

radiation features have a very scattered distribution of samples. This makes it difficult to 

interpret these features. However, it is likely, that this can be a product of the poor predictive 

power of the model. On the other hand, interaction with other features could have led to this 

and could be explored further. 
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7. Discussion 
 

The research goal of this thesis is to evaluate whether machine learning methods can 

deliver decision support for sequential single-dose radiation therapy to cure oligometastatic 

cancer lesions. Despite the constraints opposed by the data in terms of size, imbalance, and 

potential incompleteness, the results of this thesis show that machine learning algorithms can 

undoubtedly contribute to understanding patients' disease progress. In some scenarios, even a 

degree of predictive power could potentially be applied in practice, having the potential to 

evolve as a decision support system.  However, in other scenarios, very poor predictive power 

does not offer the possibility to derive predictions from the algorithms. Likely, the decision 

support to unveiling more information about the disease progress will be limited in those cases. 

Most importantly, however, SHAP values seem to be a valuable addition in all scenarios 

researched in this thesis. Despite the poor performance, the algorithms identified relationships 

in the data aligned with human intuition. 

On the one hand, SHAP values offer accurate insights into the decision-making process of a 

machine learning algorithm. They can potentially reveal interaction effects between variables 

that complex machine learning algorithms discover, which escape commonly applied univariate 

analysis in the medical field. This was already shown in a similar study on nonmetastatic 

nasopharyngeal carcinoma Du, Lee, et al. (Du et al., 2019). An in-depth analysis of the SHAP 

variables on a bi-variate level could make these relationships visible for SOMA. Furthermore, 

SHAP offers the possibility to include more complex machine learning models in practical 

medical applications. They bridge the gap between complex “black-box” machine learning 

models and the critical understanding of a machine learning model's functionality by doctors 

successfully. 

Comparing the machine learning algorithms' performance over the six investigated 

problems shows that the random forest algorithm outperforms (or is insignificantly worse than 

the best alternative) the other algorithms in 5 out of 6 cases. This result is in line with previous 

research, as the random forest has the advantage of efficiently dealing with high dimensional 

data through incorporated feature selection, overfitting limitations through its low tree depth, 

and complex data structures by utilizing ensemble votes (Qi, 2012), (Y. Wu et al., 2020). 

However, other research found other algorithms, such as genetic programming or Support 

Vector Machines, favorable in similar problem settings (Vanneschi et al., 2011) (Ahmad et al., 

2013). This concludes that the Random Forest provides a good starting point for analysis in the 

context of SOMA as it deals successfully with the problems outlined in the problem statement. 

Surprisingly XGBoost did not perform well in comparison to other algorithms. Although it 

has shown good performance in other cases in similar problem settings on small cancer-related 

datasets (Koyasu, Nishio, Isoda, Nakamoto, & Togashi, 2020), (Nishio et al., 2018), it did not 

perform well on most problems presented. This is surprising, as the XGBoost algorithm is very 

similar to the random forest algorithm as it is an advanced implementation of gradient boosted 

decision trees. However, it is possible that no favorable hyper-parameter configuration was 

provided that the algorithm trains well on.  

Furthermore, the multi-layer perceptron algorithm did not perform well on any of the 

provided problems. Although neural networks can analyze cause- and effect relationships 

especially well in complex systems, such as health, it is known that small datasets require a 



49 
 

different approach to train the model (Pasini, 2015b). Transfer learning, few-shot learning, or 

deep neural network architectures can provide approaches to mitigate this problem. However, 

they are not in the scope of this thesis research. This could be especially interesting in the 

context of SHAP values, which could display the potentially learned interaction effects of 

variables.  

The comparison of the performance of the algorithm allows for one more conclusion to be 

made. For solving regression problems, algorithms with regularization ability had a smaller 

spread of results — the limited number of samples to learn from increase the impact of every 

individual sample. Hence, high dimensionality and potentially more noise from an increasing 

amount of features will make it increasingly difficult for an algorithm to develop robust 

predictions.   

There are several limitations to the results presented in this thesis. These limitations apply 

to the underlying data, the methodology, and the interpretation of the results. One limitation 

that has already been mentioned is the potential incompleteness of data. Patients who do not 

have a complete data record in follow-up examinations will introduce noise to the data of 

unknown degrees. Among others, this is one possible explanation for the limited ability of the 

algorithms to obtain predictive power in the regression problems presented.  

Furthermore, it limits the meaningfulness of specific results displayed. For example, the 

local relapse of the lesion was determined on data points collected up to 36 months after 

treatment, as the data does not allow for a larger timespan. Arguments can be made that the 

appropriate timespan to evaluate relapse of a lesion is two to ten years (AMLING et al., 2000). 

Furthermore, the treatment of outliers in the data could have led to different results. 

However, first explorations revealed that this would have unreasonably reduced the samples 

further. 

The limitations of the methodology presented in this thesis are numerous. The 

performance comparison of the machine learning methods presented is not extensive. 

Numerous machine learning techniques can be applied to improve performance in data pre-

processing, outlier removal, feature selection, and algorithm optimization. However, to have a 

reasonable setting for comparing the algorithms, the presented methodology provides several 

options for each algorithm to obtain data favorable for the algorithm. The results should 

provide criteria to evaluate how machine learning scenarios can add value to doctors' 

decisions. Furthermore, they can indicate techniques that are favorable for the underlying 

data. 

In the future, the process of feature selection should be more aligned with the desired 

explanatory goal of the prediction. While some variables will correlate with others, it does not 

necessarily mean that they offer additional insights or benefit to the algorithm if included. 

Additionally, the feature selection method applied is a wrapper function, eliminating features 

not considered. Other techniques, such as Principle Component Analysis, reduce dimensionality 

while retaining variance in the data. In the context of small datasets trying to solve complex 

problems, this can be beneficial, as it enables to include all important information while reducing 

dimensionality as presented by Oikonomou (Oikonomou et al.). 

One specific limitation of the interpretability of SHAP values must be clarified. SHAP 

values are only able to explain the patterns learned by the machine learning algorithm. They 

are not able to explain the underlying sample characteristics (Du et al., 2019). Hence, they 
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might deliver objectively wrong reasoning even in the case of perfect accuracy if the data 

allows for this. Additionally, in case of poor fit of the model, the SHAP values are only 

displaying the patterns learned by the machine learning model without making assumptions 

about the truthfulness of these patterns. 

Nevertheless, human intuition can be a good indication. Especially as a decision support 

system in the medical field, this will not oppose real world a challenge. Eventually, it is not the 

data scientist taking medical decisions, but rather the doctor obtaining knowledge from the 

machine learning techniques applied.  

The results of this thesis allow for two conclusions to be made. First, in most cases, machine 

learning methods can identify the relationship between observed treatment- and patient 

parameters and the desired dependent variable for SOMA radiotherapy treated patients or 

lesions. Furthermore, the SHAP values model explanations are generally in line with human 

intuition of the expected result and with the insights provided by univariate analysis of the 

features by Greco, et al. (Greco et al., 2019). However, the degree of accuracy and robustness 

of a model varies depending on the machine learning techniques applied.  

Second, SHAP values offer great insights into understanding the mechanics of a machine 

learning model in medical applications. It has the potential to bridge the gap between 

theoretical “Black Box” models and the application of those in practice.  Especially in the medical 

application where complex decisions have to be made taking various variables into account, 

SHAP values can extend machine learning methods. Rather than evaluating the decision support 

of a model from an accuracy-derived quality measure, it can explain how the decision was made 

for each patient. Furthermore, it could reveal complex interaction effects that more 

sophisticated machine learning models find but escape unimodal statistical analysis. 
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8. Future Research 
 

Outside the scope of this thesis, the dependent variable of a lesion's local relapse was 

further explored and optimized with a different methodology. This dependent variable is already 

extensively analyzed by Greco et al. (Greco et al., 2019). The utilization of decision trees, pruned 

against assertive overfitting behavior and extensive feature selection, could improve the 

predictive power from the results displayed in this thesis. Additionally, an additional perspective 

with valuable insights about the features and their importance could be provided. This approach 

could be extended to the other dependent variables. The approach of this thesis methodology 

in obtaining a comparison of algorithms performance does not fully utilize the machine learning 

capabilities to the full extend, and many more insights are likely to be generated if applied.  

The considerably lower predictive power of the XGBoost and the neural network can be 

further researched and certainly optimized. As the XGBoost is a development of the random 

forest algorithm, it should be possible to obtain the same results as the random forest model. 

Furthermore, deep neural networks have not been explored in this thesis but have offered 

promising results in similar contexts in other studies(Daoud & Mayo, 2019; N. Wu et al., 2019).   

The application of SHAP values has not been utilized to the full possible extend. As Shapley 

values are calculated for every single sample, a bi-variate analysis could deliver valuable insights 

into the model's intuition of the data. The usefulness of this bivariate analysis was already 

proven in the study by Du, Lee et al. (Du et al., 2019). 
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9. Appendix 
 

Description of variables in the Dataset: 

Variable Name Variable Description 

Local Relapse Y(1) /N(0) 
Did the treated metastasis reoccur in follow-up 
examinations? (binary) 

LRFS Months Relapse free time of single lesion in months  

OS months Time lived after the first treatment in months 

PMFS Oligo Status (≤5) 
maintained until  last FU 
0=Y 

Did the patient at any point in time develop more than 
five metastatic lesions? 

PMFS Time to endpoint  
PM or no PM 

Time in months before developing more than five 
metastatic lesions, death, or last examination 

≤10 
Did the patient develop more than ten metastatic 
lesions over the treatment timespan? 

DoB Birthdate 

Gender Gender 

Primary Tumor Location of primary Tumor 

First Met Organ Site Location of the first metastasis 

CTV cc Clinical target volume in cm³ 

SUVmax Baseline PET-
CT 

Standardized Uptake Value quantifies the amount of 
tracer material uptake by the tumor tissue 

Progression Elsewhere 
(Y:1/N:0) Did a new metastasis occur after treatment? 

Same organ (0:Y 1:N 
2:Both) 

Did a new metastasis occur after treatment affect the 
same organ, another, or both? 

Systemic Tx (0 =no or 
pre, 1= combination 
with during or post) 

Did the patient receive other treatment such as 
chemotherapy before, during, or after the first 
treatment? 

First lesion(s) SDRT Only 
(1=Y) 

Did the patient receive only Single-Dose Radiation 
Therapy for the treatment of the first lesion? 

SOMA 1=Y 0=N 
Did the patient receive sequential oligometastatic 
ablation therapy (SOMA)? 

Number of targets at 
1st Tx Number of metastatic lesions at first treatment 

Overall Regimen 
Number of different therapy methods applied to the 
patient 

Repeat TX Number of overall radiation therapy session 

Total number of targets 
Total number of lesions in patients history since the 
first treatment 

Total SOMA lesions 
Total number of lesions treated with SOMA since the 
first treatment 

N LRR Number of locoregional recurrences 
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Patient with LF with 
rescue Binary, if a lesion surgery of a patient was conducted 

Tumor Burden 1st Tx cc Sum of CTV cm³ of all metastasis at first treatment 

Tumor burden I SOMA 
Sum of CTV cm³ of all metastasis at first SOMA 
treatment 

N of targets I SOMA Number of metastasis at first SOMA treatment 

Interval between 
ablations Time in months between first and second treatment 

Δ Tumor burden 
Reduction in tumor mass in cm³ between the first 
treatment and first SOMA treatment 

Min Burden 
Smallest tumor mass in cm³ treated in one therapy 
session 

Max Burden 
Largest tumor mass in cm³ treated in one therapy 
session 

Average burden Average tumor mass treated in one therapy session 

Min %Δ Tumor burden 
The smallest tumor mass delta in between two therapy 
sessions 

Max %Δ Tumor burden 
The largest tumor mass delta in between two therapy 
sessions 

Mean %Δ Tumor 
burden 

The average tumor mass delta in between two therapy 
sessions 

Min N 
The smallest number of lesions treated in one therapy 
session 

Max N 
The largest number of lesions treated in one therapy 
session 

Min SOMA interval 
The smallest interval in between two therapy sessions 
in months 

Max SOMA Interval 
The largest interval in between two therapy sessions in 
months 

Average SOMA Interval 
The average interval in between two therapy sessions 
in months 

Cumulative Tumor 
burden 

The total tumor mass in cm³ for one patient over 
therapy timespan 

Largest single SOMA 
burden 

The largest tumor mass in cm³ for one SOMA 
treatment 

Largest single OM 
burden 

The largest cumulative  tumor mass in cm³ at one point 
in time in oligometastatic-status 

SOMA > 1st OM  0=N 
1=Y 

Was the tumor burden of a SOMA treatment larger 
than at the first treatment? 

DFS months between 
repeat Tx 

Disease free survival months until relapse or elsewhere 
progression of tumor 

Highest SUVmax at 1st 
Tx 

The highest Standarized Uptake Value of one 
metastasis at first treatment 

Highest SUVmax ever 
The highest Standarized Uptake Value of one 
metastasis over theramy timespan 
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N. of  target organs at 
1st Tx 

The number of matastasis affected organs at first 
treatment 

PTV_ Dmean Average dose delivered to lesion in Gray 

PTV_ D95% Dosis delivered to 95% of the lesion in Grey  
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