
catalysts

Review

Electrocatalysis by Heme Enzymes—Applications in Biosensing

Lidia Zuccarello , Catarina Barbosa , Smilja Todorovic and Célia M. Silveira *

����������
�������

Citation: Zuccarello, L.; Barbosa, C.;

Todorovic, S.; Silveira, C.M.

Electrocatalysis by Heme

Enzymes—Applications in

Biosensing. Catalysts 2021, 11, 218.

https://doi.org/10.3390/

catal11020218

Academic Editor: Marius Horch

Received: 18 January 2021

Accepted: 3 February 2021

Published: 6 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, av. da República,
2780-157 Oeiras, Portugal; lidiazuccarello@itqb.unl.pt (L.Z.); catarina.barbosa@itqb.unl.pt (C.B.);
smilja@itqb.unl.pt (S.T.)
* Correspondence: celiasilveira@itqb.unl.pt; Tel.: +351-21-446-91-00

Abstract: Heme proteins take part in a number of fundamental biological processes, including oxygen
transport and storage, electron transfer, catalysis and signal transduction. The redox chemistry of
the heme iron and the biochemical diversity of heme proteins have led to the development of a
plethora of biotechnological applications. This work focuses on biosensing devices based on heme
proteins, in which they are electronically coupled to an electrode and their activity is determined
through the measurement of catalytic currents in the presence of substrate, i.e., the target analyte
of the biosensor. After an overview of the main concepts of amperometric biosensors, we address
transduction schemes, protein immobilization strategies, and the performance of devices that explore
reactions of heme biocatalysts, including peroxidase, cytochrome P450, catalase, nitrite reductase,
cytochrome c oxidase, cytochrome c and derived microperoxidases, hemoglobin, and myoglobin. We
further discuss how structural information about immobilized heme proteins can lead to rational
design of biosensing devices, ensuring insights into their efficiency and long-term stability.

Keywords: heme enzyme; amperometric biosensor; mediated electron transfer; direct electron
transfer; chemically modified electrodes; electrocatalytic activity; peroxidase

1. Introduction

Heme proteins perform a plethora of distinct cellular functions. The interactions of
heme (iron protoporphyrin IX) with the surrounding protein matrix fine-tune its reactivity
and the protein function. The heme moiety shuttles electrons between proteins in mito-
chondrial respiration, transports and stores O2 in hemoglobin and myoglobin, performs
enzymatic chemical transformation by incorporating oxygen atoms into organic substrates
in oxygenases, reduces O2 to water in oxygen reductases, and reduces H2O2 to water
with concomitant oxidation of a variety of structurally different molecules in peroxidases,
among other functions [1,2]. Due to unique electronic, magnetic, and thermodynamic
properties of the heme, spectroscopic and electrochemical methods can provide a wealth of
fine molecular details on heme proteins. The diversity of physiological roles, abundance
of heme among the naturally occurring cofactors in metalloproteins, and the facilitated
monitoring, isolation, and characterization, have furthermore placed heme proteins into
a spotlight for development of biotechnological applications. They are engineered and
optimized by Nature to sense and bind small diatomic molecules like O2, CO, and NO, as
well as H2O2, the detection of which is highly relevant in biomedical, environmental, food
safety, and water quality fields, among others. In biosensors, the heme enzyme plays a
role of biological recognition element that sensitively and selectively (and sometimes even
region- and stereo-specifically) detects substrates, which is subsequently communicated to
a signal transducer that provides a measurable response proportional to the concentration
of the analyte. The development of biosensors lies at interface of chemistry, biochemistry,
physics, biophysics, and nanotechnology.

In this review, we focus on the biophysical aspects of electrochemical, and in particular
amperometric biosensors, which owing to the high sensitivity, accuracy, and relatively
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low price, are currently among the most explored bioanalytical tools [3–5]. First, we
present an overview of the basic concepts of enzyme biosensing and define analytical and
kinetic parameters that are crucial for understanding and relative comparison of biosensor
performance (Section 2). Then we describe different transducing schemes and distinct
strategies for immobilization of heme enzymes on biocompatible electrode supports. The
latter is crucial for biosensor development, as the immobilization needs to ensure efficient
electrical communication between the enzyme and electrode and the preservation of the
enzyme native structure. A rational design of the devices offers obvious advantages over
empirical trial and error approaches, but it can be achieved only via in situ monitoring and
optimization of individual steps in the development of these devices; we describe several
specific biophysical methods that exclusively provide these insights. In Section 3, we explore
the universe of heme proteins in biosensing. Emphasis is given to heme enzymes, which
have been employed either in development of proof-of-concept biosensor or an actual
commercial device. Special attention is given to peroxidases that are the main protagonists
in the currently developed devices. We furthermore dwell on biosensors that employ
microperoxidases, cytochromes P450, oxygen, and nitrite reductases and other heme
proteins (cytochrome c [cyt c], hemoglobin and myoglobin), which can acquire catalytic
properties under specific conditions. We conclude with an outlook (Section 4) that describes
future perspectives and challenges to wider implementation of heme protein biosensors.

2. Amperometric Enzyme-Based Biosensors

A biosensor is an analytical device that detects a target analyte in complex matrices,
in situ and without sample preparation, by exploiting the high specificity of biological
recognition reactions. It is composed of a biological moiety capable of recognizing the
analyte (e.g., antibody, cell, DNA, enzyme, tissue), which is in direct contact with a physico-
chemical transducer (e.g., electrochemical, magnetic, optical, piezoelectric, thermal) that
converts the bio-recognition event into a detectable signal. Owing to the huge diversity of
potential targets, biosensors are highly sought after in a wide range of areas from research,
medicine, industry and agriculture to food quality, environment, and public health [3,6].

The combination of enzymes as bio-components and electrochemical transducers
constitutes the most common and widespread type of biosensors [4,5,7]. These devices
combine the advantages of electroanalytical methods, such as high sensitivity, simplic-
ity, low cost, potential for miniaturization, and portability, with the selectivity and high
turnover rates of biological catalysts. Electrochemical biosensors are classified according to
the physico-chemical signal that is generated by the bio-recognition reaction as (i) poten-
tiometric, which detect charge accumulation or cell potential; (ii) conductometric, which
monitor conductivity changes; (iii) impedimetric, which probe resistance and capacitance
variations; and (iv) amperometric, which measure current [4,5,7,8]. The amperometric
biosensors are the most explored option and the focus of this review.

The typical amperometric biosensor consists of a thin layer of enzyme immobilized
on the surface of a conductive material, such as gold, platinum, silver, or carbon, including
graphite, glassy carbon (GC), carbon nanotubes (CNTs), and boron-doped diamond, which
acts as working electrode [7]. The attachment of the enzyme to the electrode can be
achieved through a variety of immobilization methods (cf. Section 2.2). When placed in the
sample solution, the enzyme interacts with the target analyte, i.e., the enzymatic substrate,
and the ensuing catalytic reaction consumes or produces an electroactive species (e.g.,
(co-)substrate, product, redox mediator, or enzyme redox cofactor) that is detected by the
transducer. The catalytic reaction can also be monitored indirectly via enzyme inhibitors or
activators [7,9].

2.1. Electron Transfer in Enzyme Biosensors

Amperometric enzyme biosensors are divided into three classes based on the electron
transfer (ET) mode between the enzyme and the electrode. In first-generation biosensors,
the substrate or product of the enzymatic reaction is directly measured electrochemically;
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second-generation biosensors make use of a biological enzyme redox partner or an artificial
redox mediator, which is responsible for the interfacial ET and electrical communication
with the enzyme; and third-generation biosensors are based on direct electrochemical
reduction or oxidation of the redox center of the enzyme in the presence of substrate
(Figure 1) [10,11].
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Figure 1. Schematic representation of different electron transfer (ET) modes in amperometric enzyme
biosensors. The depicted examples show the reduction process of the enzyme. In first-generation
biosensors (yellow), the co-substrate (O2) or product (H2O2) of the enzymatic reaction are detected
directly at the electrode. In second-generation biosensors (green), the amperometric signal arises
from the reduction of the mediator following ET to the enzyme. Third-generation biosensors (blue)
measure the direct reduction of the enzyme redox center by the electrode. Med—mediator; Red—
reduced; Ox—oxidized; DET—direct ET.

Development of first-generation biosensors was led by the work of Clark and Lyons on
glucose oxidase (GOx) [12]. The enzyme was immobilized on a Pt electrode poised at a
negative working potential to promote O2 reduction at −0.4 V vs. NHE (henceforward
all potentials are quoted vs. normal hydrogen electrode, NHE, unless stated otherwise).
The decrease of the co-substrate concentration (O2) during the enzyme catalyzed glucose
oxidation (Equation (1)) was monitored at the electrode, and directly correlated to the
concentration of glucose in the sample [13,14].

β-D-glucose + O2 → δ-D-gluconolactone + H2O2 (1)

First-generation biosensors are mainly based on O2-dependent enzymes, in particular
oxygenases and oxidases. In the latter case, the H2O2 that is generated in the enzymatic
reaction, can also be used to monitor the response of the biosensor. Its direct oxidation
at electrode surfaces is typically measured at highly positive working potentials (e.g.,
+0.5 V) [14]. Although the detection mode in first-generation biosensors is quite simple,
these devices have several drawbacks, such as the need for abundant amount of O2 to
ensure that enzyme activity is not limited by the lack of the co-substrate or by its variation
in the sample. Since high operating potentials are employed, the oxidation of interfering
species present in the samples is also likely to occur, resulting in a low selectivity [13–15].
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In second-generation biosensors, the electrochemical response is based on mediated
electron transfer (MET). The use of mediators eliminates the difficulties that limit first-
generation devices, i.e., direct measurement of O2 and H2O2, expanding the list of possible
enzymes and target analytes. The electron shuttle molecules should have a facile and
reversible electrochemistry at the working electrode and react easily with the active site
of the enzyme, thus efficiently exchanging the electrons between the two; the generated
current is proportional to the concentration of analyte. Importantly, mediator molecules
should be oxidized/reduced at relatively low potentials (close to 0 V) to avoid the interfer-
ence of other electroactive species with the response of the biosensor (e.g., sample matrix
interferences) [5,7,10]. Artificial redox mediators include quinones derivatives, metal com-
plexes like ferrocene, ferricyanide, ruthenium, and osmium complexes and organic dyes,
such as methylene blue, methyl viologen and phenazines [16]. Low molecular weight
ET proteins, like cytochromes and azurines, can also be used as redox mediators [17].
When the mediator protein is the physiological partner of the enzyme, the selectivity of the
biosensor can be further increased due to the specific interaction between the two [18,19].
A common problem in second-generation/MET biosensors is the difficulty to secure the
redox mediators on the electrode surface, which due to leakage into the sample solution
limits the applications in continuous measurements and the re-usability of the devices.
This can be overcome by (i) using redox polymers that have ET groups attached to the
backbone (e.g., polypyrrole (PPY) viologen) [20,21], (ii) employing modified enzymes
with chemically attached mediating groups (e.g., ferrocene modified GOx) [22], or (iii)
reconstituting apoenzymes on cofactor-redox mediator functionalized electrodes (e.g., apo-
GOx reconstitution on a pyrroloquinoline quinone-flavinadenine dinucleotide, PQQ-FAD,
modified electrode) [23,24]. Although these approaches can reduce or even eliminate
mediator leakage, they can also lead to loss of enzyme activity due to structural changes or
unfavorable interactions with the redox matrices.

Third-generation biosensors have a simplified design that relies on direct electron transfer
(DET) between the enzyme and the electrochemical transducer. Redox mediators or co-
substrates are therefore not required [11,25], since the enzyme is in direct electrical contact
with the electrode transducer. These devices offer superior selectivity, particularly in
comparison with biosensors based on artificial mediators [11,15,25]. Furthermore, the
working potential (cf. Section 2.3.1) is close to the redox potential of the employed enzyme,
which in most of the cases falls within a physiological range that excludes extreme values
(usually ≥−0.5 V at pH 7, an extreme limit exemplified by some ferredoxins) [26,27], thus
decreasing the possibility for detection of interfering redox reactions. Still, establishing
DET is not always an easy task, since the redox centers can be buried into the protein
matrix, which can act like an isolation barrier hindering the ET process with the electrode.
Additionally, direct contact with the electrodes can disturb the enzyme conformation and
cause denaturation and activity loss [28]. Despite these concerns, several oxidoreductases
display efficient DET upon immobilization on electrode surfaces, including cytochromes,
laccases, peroxidases, and alcohol and cellobiose dehydrogenases [5,25,26,29]. The use
of these enzymes in third-generation/DET biosensors has been gaining momentum in
recent years [15,30]. This is in part due to the advances in protein engineering, which led
to the production of tailored biocatalysts with improved characteristics, and alongside in
materials sciences, which led to the development of new conductive nanomaterials that can
facilitate interfacial ET and provide high surface area on electrodes for enhanced loading
of enzymes [31–34].

2.2. Enzyme Immobilization

Enzyme attachment to the electrode surface is the most critical part of biosensor design.
The main types of immobilization account for adsorption, encapsulation, and chemical
binding, namely covalent coupling and cross-linking (Figure 2) [7,35,36]. The strategy of
choice often results from the combination of several of these methods [37–40]. In general
terms, enzyme immobilization should guarantee (i) biocompatibility, (ii) efficient electrical
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contact between enzyme and transducer that also ensures exposed substrate binding sites,
and (iii) preservation of catalytic activity [7,35,36,41]. For the chemical modification of
electrodes, we highlight the use of self-assembled monolayers (SAMs) of alkanethiols,
which represent one of the most common electrode coatings [42,43]. Due to the high
affinity of the thiol groups for metals, bifunctional SAMs form covalent bonds with metallic
electrodes, while the head groups (e.g., thiols, disulphides, amines, acids, and silanes)
offer a variety of possibilities and promote interactions that can anchor the enzymes to the
modified electrode [42,44]. The electrostatic interaction, for example, is driven by surface
charge distribution of the enzyme and the corresponding SAM.
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Figure 2. Enzyme immobilization methods. (a) Adsorption onto a multi-walled carbon nanotubes (MWCNTs)/thionine/Au
nanoparticles (NPs) composite film on glassy carbon (GC) [37]; (b) entrapment of chemically modified enzyme within a
positively charged redox hydrogel deposited on Au coated with a negatively charged self-assembled monolayer (SAM) [38];
(c) covalent binding onto functionalized MWCNTs deposited on GC [39]; (d) glutaraldehyde cross-linking of enzyme and
bovine serum albumin (BSA) on a silica-dextran nanocomposite sol-gel deposited on GC [40]. HRP—horseradish peroxidase.

Physical adsorption of the enzyme to a bare or modified electrode is one of the simplest
immobilization methods (Figure 2a). The enzyme solution is typically deposited onto the
electrode surface and allowed to incubate for a determined period of time; the weakly
adsorbed molecules are afterwards removed by washing. Adsorption is governed by
electrostatic and hydrophobic interactions and van der Waals forces, which are considered
to be less disruptive for enzyme structure and activity than e.g., covalent binding [35,36].
Nonetheless, the direct contact with bare metal or carbon electrodes can cause enzyme
denaturation [28]. Functionalization of the electrodes with biocompatible materials (e.g.,
SAMs) can overcome this issue [43]. Furthermore, due to the weak binding, enzyme
desorption can occur as a result of varying experimental conditions, such as temperature,
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pH and ionic strength [35]. Thus, biosensors based on adsorbed enzymes often have poor
operational and storage stability (cf. Section 2.3.1).

Encapsulation/entrapment into porous matrices (Figure 2b) fixes the protein molecules
on the electrode support, while allowing the access of substrate molecules [35,36]. Com-
monly used materials include carbon pastes, conducting and non-conducting polymers,
such as polyaniline (PANI), PPY, Nafion, and silica sol-gels [5]. Electrodes can be prepared
by simple co-deposition of the enzyme, mediators, and the encapsulation matrix or by
more complex processes, such as electropolymerization in the presence of the enzyme
and the monomers of the entrapment film [35]. In this manner, the stability and lifetime
of the biosensor can be increased due to reduced leakage of enzyme and prevention of
non-specific adsorption of fouling agents. In addition, the access of interfering species to
the enzyme layer can be selectively blocked by e.g., size exclusion and charge repulsion.
The main drawbacks of encapsulation/entrapment are (i) the potentially limited access
of substrate to the active site due to the diffusion barrier created by the matrix film, (ii)
the reduced enzyme loading capacity, and (iii) the possible alterations to the enzyme
structure [7,35,36].

Covalent binding enables the formation of stable complexes between the enzyme and
the electrode support (Figure 2c). The coupling involves surface functional groups of the
enzyme, such as amino (Lys), thiol (Cys), or carboxylic acid (Asp, Glu) side chains [35,45,46].
It is usually carried out after an initial activation of the immobilization surface using
glutaraldehyde or carbodiimides (e.g., 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide,
EDC, coupled to N-hydroxysuccinimide, NHS). This method can facilitate the control of
enzyme orientation on the interface, particularly if the enzyme possesses only one tethering
functional group [31,47]. Despite these advantages, covalent binding may cause alterations
of enzyme conformation and consequently decreased activity and stability. In addition,
electrode reproducibility is often poor and the process may involve several, sometimes
toxic reagents [35].

Enzyme immobilization by cross-linking relies on bifunctional agents (usually glu-
taraldehyde) to generate a three-dimensional enzyme network on the electrode surface
(Figure 2d) [35,46]. The enzyme molecules can be linked to each other or to a functionally
inert protein, such as bovine serum albumin (BSA) [9,48]. The immobilization is highly
stable and allows for increased enzyme loading in comparison to covalent binding. Still,
like covalent binding, it can lead to loss of activity due to the distortion of enzyme structure
and chemical alterations during the cross-linking reaction [35,46].

Taken together, each immobilization strategy has its advantages and drawbacks.
The most adequate approach is case dependent, since it must take into account enzyme
characteristics and envisioned application.

2.3. Biophysical Characterization of Amperometric Enzyme Biosensors
2.3.1. Biosensor Performance

Amperometric biosensors detect the substrate of the enzyme, the analyte, upon ap-
plying a potential that drives the redox reaction to the working electrode. Measurements
are performed by chrono-amperometry or potential scanning techniques including cyclic,
differential pulse and square-wave voltammetries [7,28]. Herein, we review the basic
concepts of amperometric methods for detection of biosensor responses and define the
main analytical and kinetic parameters that are used to evaluate its performance. Detailed
reviews of the subject can be found elsewhere [5,8,49].

The working potential of the biosensor is the value at which the enzyme activity is
determined as a current variation. It is related to the reduction potential of the electroactive
species that is monitored (e.g., (co-)substrate or product, redox mediator, and enzyme redox
cofactor in first-, second-, and third-generation biosensors, respectively). The working
potential is usually set at a higher value than the current peak for the oxidation of the
electroactive species (or at a lower value if the catalytic reaction is monitored via reduction
of the electroactive species). Note that by increasing the overpotential, i.e., deviation
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from the equilibrium potential, the rate of the ET reaction can be considerably increased,
and thus the response of the biosensor (Figure 3A). However, care must be taken not to
compromise the biosensor selectivity by applying too high (or too low) potentials at which
interfering species can also be oxidized (or reduced) (Figure 3B) [5].
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In chrono-amperometric detection, the electrode is poised at a constant potential (the
working potential of the biosensor) and the current is monitored over time. The current
change observed upon the injection of the analyte is proportional to its concentration in
solution. It is the most commonly used technique for practical applications owing to its
simplicity, low background signals and detection limits [7]. In voltammetric detection the
potential is scanned over a specific range while the current is measured as a function of
the applied potential. The catalytic current response is usually a peak or a plateau that is
proportional to the concentration of the analyte. These techniques, and cyclic voltammetry
(CV) in particular, are useful in development stages of the biosensor, e.g., for selecting
the working potential. If enzyme DET response is observed in the absence of analyte (i.e.,
non-catalytic signal) its reduction potential can also be determined. Noteworthily, the
reduction potential of the same enzyme immobilized on different modified electrodes can
vary significantly [51,52]. Furthermore, it can be different from the reduction potential
of the enzyme in solution, suggesting that the electrocatalytic response may arise from
denatured enzyme species. The reduction potential is thus a reliable indicator of possible
immobilization-induced alterations of the enzyme. Nonetheless, structural characterization
of the immobilized enzymes using sensitive spectroscopic methods (cf. Section 2.3.2)
enables a more accurate identification of non-native states.

After defining the operational conditions, i.e., the detection technique, working poten-
tial, and other experimental variables (e.g., pH, ionic strength, temperature) the calibration
of the biosensor is performed by measuring the current after adding a standard solution of
the analyte. The calibration plot is obtained by representing the steady-state current response
corrected for the background as a function of analyte concentration or its logarithm [8].

The performance of the biosensor is evaluated by a series of analytical parameters:
sensitivity, linear concentration range, limit of detection (LOD), reproducibility, selectiv-
ity/response to interferences, stability, and response time [8].

The sensitivity corresponds to the response of the biosensor per unit of analyte concen-
tration. It is determined from the slope of the linear calibration curve and is typically repre-
sented in units of current or current density per concentration (e.g., A M−1 or A M−1 cm−2,
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respectively). It is the most commonly used parameter to evaluate and compare biosensor
performance.

Linear range is the range of analyte concentrations for which the biosensor response
varies linearly. It is obtained from the linear section of the calibration curve for a set
of measurements with different concentrations of analyte and is usually represented as
I = m C, where I is the current response, m is the sensitivity of the biosensor, and C is the
concentration of the analyte. Ideally, the biosensor should have a wide linear working
range to avoid sample dilution or pre-concentration steps.

The limit of detection can be defined as the minimum analyte concentration that is de-
tected, but not necessarily quantified, by the biosensor. According to IUPAC definitions, the
LOD of an analytical method is related to the background signal and its fluctuations [53]. In
the case of biosensors, it is most commonly estimated from the calibration curve parameters,
typically as the analyte concentration at a signal-to-noise ratio of 3.

Reproducibility is the ability of a biosensor to generate the same response in repeated
experiments. It is generally determined as the relative standard deviation of the current
response at a specific analyte concentration (within the linear range) or of the sensitivity of
multiple biosensor preparations.

The selectivity is related to the ability of the biosensor to identify the target analyte in
a complex sample. It is usually expressed as the percentage of response variation upon
addition of a potential interfering species to the solution. The selectivity depends on both
the bio-recognition element and the transducer. Many enzymes used in biosensing are
highly specific for their substrates and the selectivity is usually high. Still, non-selective
enzymes can be useful for simultaneous monitoring of a group of analytes, such as phe-
nolic compounds or catecholamines that can be found in clinical, environmental, or food
samples [54–57].

Response time is the time required to reach 95% of the maximum current signal after
adding the analyte to solution. It depends on the diffusion rates of the compounds in-
volved in the detection reaction (e.g., analytes, products, and redox mediators) through the
biosensor film and can be affected by the speed at which the solution is homogenized. The
response time is usually proportional to the turnover rate of the enzyme, a fast turnover
resulting in short response times.

The stability is usually estimated from activity measurements for one analyte concen-
tration over time, in comparison with the initial value. The biosensors can also be calibrated
multiple times to monitor variations in sensitivity, linear range, and LOD, providing a
more complete description of their performance over time. The stability of the biosensor is
often evaluated in terms of operational lifetime (repeated measurements using the same
electrode) and storage stability or shelf-life (analysis of electrode batches at different times).

The kinetic parameters of the biosensor can be estimated if the enzyme reaction at the
electrode surface follows a Michaelis-Menten type kinetic behavior [58]. The catalytic
currents are fitted by a modified Michaelis-Menten equation:

Icat =
Imax.C

Kapp
M +C

(2)

where Icat is the catalytic current, Imax is the maximum Icat observed at enzyme saturating
conditions, C is the analyte concentration, and Kapp

M is the apparent Michaelis-Menten
constant. The Kapp

M refers to the immobilized enzyme and frequently differs from the
solution value, sometimes over orders of magnitude. An increased Kapp

M indicates that there
is a significant analyte diffusion barrier between the sample and the biosensing layer [8]. It
may reflect restricted access of the analyte to the active site on the enzyme, due to e.g., a
low permeability of the biosensor film and/or unfavorable orientation of the enzyme on
the transducer surface. Furthermore, enzyme interaction with the immobilization matrix
can induce conformational changes that decrease the affinity for the substrate (increase of
Kapp

M ) or cause partial or total inactivation (decrease of Imax) [5].
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2.3.2. Structural Characterization of Immobilized Proteins

Structural features of the immobilized enzyme govern the analytic and kinetic perfor-
mance of the biosensor. Coupling of electrochemistry with microscopy and spectroscopy
can, in particular, provide information about enzyme amount, structure, and conforma-
tion upon immobilization, which cannot be assessed by electrochemical methods [59–62].
Ideally, the structural/morphologic characterization should be obtained simultaneously
with the electrochemical measurements. However, this is not always possible, and the
immobilized enzymes are often analyzed by spectroscopy and microscopy prior to (or
after) the electrochemical experiment and not necessarily on the working electrodes [59].

Atomic force (AFM) and scanning electron (SEM) microscopies are the most widely
used to characterize biosensor surface morphology, providing information on enzyme
distribution on the electrode and homogeneity of the films [59]. Spectroscopic techniques
reveal insights into the enzyme-electrode interfaces on a molecular level. In particular,
the structure, orientation, and cofactor redox states of the enzyme can be probed using
UV-Visible, fluorescence, circular dichroism (CD), Fourier-transform infrared spectroscopy
(FTIR), resonance Raman (RR), and in some cases surface-enhanced IR (SEIRA) and RR
(SERR) spectroscopies [60,61,63–66]. In the case of heme enzymes, UV-Visible, RR, and
SERR spectroscopy typically probe heme active site environment, whereas CD and FTIR
spectroscopies report on subtle changes of the protein secondary structure upon immobi-
lization (Figure 4) [67–70].

Owing to its simplicity and wide availability, UV-Visible spectroscopy is useful for
characterization of biosensors prepared on transparent conductive oxide electrodes, such
as indium tin oxide (ITO) films deposited on glass. The analysis can also be performed by
reproducing the enzyme films on glass and quartz slides or, alternatively, in solution, after
enzyme incubation with the composite materials that are used to prepare electrodes [71].
In these cases, identical experimental conditions cannot be guaranteed, such as enzyme
orientation on the electrode and effects of electric fields upon application of potential. The
Soret absorption band of the heme group, at around 410 nm, is typically monitored due to
the high extinction coefficient and the sensitivity to the redox state of the heme; the weaker
Q and charge-transfer (CT) bands, which can probe heme coordination state, are analyzed
less frequently [72]. Band shifting in comparison with the solution spectra is indicative of
possible denaturation of the immobilized enzyme [71,73,74] (Figure 3B).

The high frequency bands (1300–1700 cm−1) in RR and SERR spectra of heme proteins
obtained under Soret band excitation are sensitive to the redox and spin state and coordi-
nation pattern of the iron. SERR spectroscopy selectively enhances the signal of molecules
situated in close proximity to plasmonic metal surfaces, which can serve as working elec-
trodes [60,62,75]. In this manner, it can be coupled with electrochemical methods, enabling
in situ probing of the enzyme structure in the immobilized state under biosensor working
conditions. SERR spectroelectrochemistry is, nonetheless, limited mainly to nanostructured
Ag electrodes. On the other hand, RR can in principle be used to evaluate the immobilized
enzyme on any type of electrode, but the concentration must be much higher. The RR and
SERR spectra of the enzyme in the biosensor are usually compared to reference RR spectra
of the native enzyme in solution to evaluate the effects of immobilization on structural fea-
tures [67,70,76]. They can provide fine details on eventual exchange of heme ligands upon
immobilization, which can be correlated with the catalytic and thermodynamic properties
of the biosensor [70,77,78].



Catalysts 2021, 11, 218 10 of 43

1 
 

 
Figure 4. Comparison of (A) FTIR and (B) UV-Visible spectra of cytochrome c (b) in solution and (c) covalently attached onto
a carboxylated ionic liquid (triphenylphosphonium bis ((trifluoromethyl)sulfonyl) amide, TPP-HA[TFSI]). The spectroscopic
characterization of the ionic liquid (a) is also shown. Reprinted from Murphy et al. [66], Copyright (2019), with permission
from Elsevier.
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FTIR reveals detailed information about the secondary structure of enzymes in biosen-
sors [79–81]. Analysis is based on protein amide I and amide II bands at approximately
1650 and 1550 cm−1, respectively. The FTIR spectra of the native enzyme in solution and
immobilized state are compared [68,82] and eventual alterations of the relative intensities,
positions and shapes of the amide I and amide II bands indicate enzyme structural changes
upon immobilization (Figure 3A). In addition, the orientation of enzymes attached onto
Au electrodes can be probed by SEIRA spectroscopy [60,61,76].

Similarly, CD can probe structural properties of immobilized enzymes revealing
changes in the conformation of the peptide backbone and interactions with other
molecules [68,83].

Fluorescence spectroscopy can also be used to evaluate immobilized heme enzymes
in biosensors, since the intrinsic fluorescence of Trp residues, if present, is sensitive to the
polarity of its environment and to the vicinity of the heme group [64,65]. Its modulation is
a marker for the accessibility of the substrate to the heme and thus of the folding of the
immobilized enzyme [84,85].

3. Biosensors Based on Heme Proteins and Enzymes
3.1. Peroxidases

Peroxidases constitute a large group of enzymes that catalyze the oxidation of a broad
range of organic and inorganic substrates using H2O2 or organic hydroperoxides as electron
acceptors [86–88]. The typical oxidation reaction of aromatic amine and phenolic substrates
(RH) to free radicals (R◦) is represented by Equation (3).

2RH + H2O2 → 2R◦ + 2H2O (3)

The majority of known peroxidases contain a single heme b cofactor. The iron is coordi-
nated by a His residue on the proximal heme face, while the sixth axial site is either vacant
(penta-coordinated, 5c) or it carries a weakly bound water molecule (hexa-coordinated,
6c) to enable binding of the peroxide substrate [51,86]. The reduction potentials of the
Fe(III)/Fe(III) couple are generally negative, consistent with the stability of the Fe(III) state
that is required to initiate the catalytic reaction, and display a high variability (e.g., ca.
−0.160 V for soybean ascorbate peroxidase and −0.300 V for horseradish peroxidase-C,
HRP-C) [51].

Heme peroxidases share a common catalytic cycle involving the formation of high
valence oxy-ferryl heme intermediate species, compound I ([Fe(IV)=O]+•) and compound
II ([Fe(IV)=O]+), which are responsible for substrate oxidation (Figure 5, dashed line). The
reaction is initiated by the two-electron oxidation of the resting Fe(III) state enzyme by
H2O2, leading to the formation of compound I (Equation (4)), which contains the oxy-ferryl
center and an organic cation radical located on the heme (porphyrin π-cation radical) or, less
commonly, on a tryptophan or tyrosine residue [89]. The cation radical is reduced by the
first substrate molecule, generating compound II (Equation (5)), which reacts with a second
substrate molecule and regenerates the resting state peroxidase (Equation (6)) [51,87,88]. In
the case of immobilized peroxidases, the electrode can mimic the substrate molecules (RH)
providing electrons for H2O2 reduction (Figure 5, solid line).

Fe(III) + H2O2 → Compound I + H2O (4)

Compound I + RH→ Compound II + R◦ (5)

Compound II + RH→ Fe(III) + R◦ + H2O (6)
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3.1.1. Detection Modes in Peroxidase-Based Biosensors

Peroxidase modified electrodes can be used for the detection of H2O2 and organic
hydroperoxides (oxidizing substrates), enzyme reducing substrates, including numerous
phenolic compounds and aromatic amines, as well as non-typical substrates, such as
uric acid, trichloroacetic acid (TCA), and nitrite [55,56,90]. The main biosensor response
mechanisms are detailed bellow. Although they refer to heme peroxidases, the detection
modes are similar for other heme proteins. In most cases, the electrocatalytic activity is
monitored through MET or DET (in second- or third-generation biosensors, respectively)
via an increase of cathodic current, which is related to the concentration of the substrate
(i.e., the analyte) in solution [91].

In DET-based biosensors for detection of H2O2, the ferric [Fe(III)] resting state peroxidase
is first oxidized by H2O2, forming compound I (Figure 5, solid line). The intermediate
is then reduced to compound II and the ferric enzyme is restored, via heterogeneous ET
directly from the electrode. The catalytic currents are typically measured by amperometric
methods at working potentials between +0.15 and +0.5 V [37,92,93], owing to the high
reduction potentials of the catalytic redox couples Fe(III)/compound I and compound
I/compound II (e.g., HRP-C E0’

CI/CII +0.898 V) [51,87]. It is noteworthy that cathodic
currents are often observed at much lower potentials, consistent with the Fe(III)/Fe(II)
redox transition (e.g., −0.35 V for HRP immobilized on modified GC electrodes [94]).
In this case, it is likely that the H2O2 detection follows an alternative non-native route,
which proceeds via formation of the ferrous [Fe(II)] enzyme. This low potential redox
cycle of peroxidase electrocatalysis has been associated with non-native enzyme states and
transient formation of inactive catalytic intermediates (e.g., Fe(II)-O2), which can also be
generated in the presence of high concentrations of H2O2 [51,91,95,96]. Among the DET
mechanisms proposed to rationalize these experimental findings (cf. reference [96] for
details), we highlight the one that postulates that the alternative electrocatalytic reaction
follows a catalase-like mechanism, in which H2O2 acts as an oxidant and as a reductant.
Consequently, the generated compound I (Equation (4)) can be reduced by H2O2, returning
the peroxidase to the Fe(III) state and producing O2 (Equation (7)). After reduction of
the Fe(III) enzyme at the electrode (Equation (8)), O2 reacts with the ferrous peroxidase
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(Equation (9)) to form Fe(II)–O2 oxy-peroxidase, which in turn undergoes electrochemical
reduction at the electrode (Equation (10)), at the potential of the Fe(III)/Fe(II) reduction.

Compound I + H2O2 → Fe(III) + O2 + H2O (7)

Fe(III) + H+ + e− → Fe(II), at electrode (8)

Fe(II) + O2 → Fe(II)−O2 (9)

Fe(II)-O2 + 2H+ + 2e− → Fe(II) + H2O2, at electrode (10)

This reaction produces H2O2 and regenerates the Fe(II) enzyme for a new cycle
(Equations (8)–(10)) [73]. Due to the exceptionally efficient redox chemistry of the heme, it
is likely that this non-physiological process contributes to the electrocatalytic response of
different heme enzyme-based electrodes, including peroxidases, catalases, cyt c, globins,
and cytochrome P450 [68,94,97]. The extent of this contribution is likely to be related to the
rates of the chemical and electrochemical reactions and the relative stability of the catalytic
intermediates [98].

DET-based peroxidase biosensors for detection of non-classical peroxidase substrates, such
as nitrite, NO, and TCA have also been developed [81,99–101]. In these systems, the
peroxidase acts as a reductase, and the Fe(II) state is responsible for the direct reduction of
the substrates at negative working potentials.

Mediated peroxidase biosensors rely on the reduction of compound I and compound
II by a redox mediator or enzyme substrate (Figure 5). The oxidized mediator is then
reduced at the electrode surface generating the catalytic current. These biosensors operate
at the reduction potential of the mediator [91].

MET-based biosensors for detection of H2O2 have taken advantage of numerous redox
mediators, including aromatic amines and phenolic substrates, thionine, methylene blue,
methylene green, ferrocenes, hydroquinone, osmium, and ruthenium complexes, which can
be co-immobilized with the enzyme on the electrode or added to the solution [95,102–104].
Overall, MET is considered to be more efficient than DET, since it does not critically depend
on the enzyme orientation and since the small mediator molecules can have better access
to the heme active site. It has nevertheless been shown that in some cases, MET and DET
can occur simultaneously [11,105].

MET-based biosensors for detection of peroxidase reducing substrates have been developed
for phenol, cathecol, dopamine, norepinephrine, epinephrine, or serotonin, among oth-
ers [56,57,90,106]. In these cases, the enzyme oxidized product is reduced electrochemically,
enabling monitoring of the catalytic reaction. The generated cathodic current is propor-
tional to the concentration of the peroxidase substrate, provided that concentration of H2O2
is non-limiting. Importantly, no direct reduction of the substrate can occur at the electrode
surface in the absence of H2O2 [56,106].

While the reaction mechanism in MET is usually straightforward, this is not the
case for DET-based devices, particularly those employing heme proteins that at the same
time can act as peroxidases and reductases, including heme peroxidases, catalases, cyt c,
myoglobin, and hemoglobin. Note that a catalytic reduction current is typically observed
in all cases, but that the heme species involved in the respective reactions are different. The
Fe(II) heme state is present in catalytic reduction, while peroxidase activity involves high
valence oxy-ferryl intermediates and/or Fe(II)-O2 species (cf. the low potential redox cycle).

3.1.2. Plant Peroxidases

Plant peroxidases belong to class III of the plant, fungal and bacterial peroxidase family.
They typically display monomeric structures with a conserved helical fold and a high level
of glycosylation. Despite a low amino acid sequence identity between members of this
family, all peroxidases contain invariant amino acid residues in the heme b-containing
active site that are important for enzyme activity, including the conserved catalytic His
residue on the distal heme face [86–88]. These enzymes take part in fundamental processes
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in the plant life cycle, such as cell wall metabolism, defense against pathogens, lignification,
and reactive oxygen (ROS) and reactive nitrogen species (RNS) metabolism. Owing to
their catalytic versatility, plant peroxidases have a well-recognized potential for application
in bioremediation, paper and pulp industry, polymer synthesis, biosensor development,
and other fields [87,107]. In particular, tobacco peroxidase (TOP), barley peroxidase (BaP),
peanut peroxidase (PNP), guinea grass peroxidase (GGP), soybean peroxidase (SBP), and
HRP have been employed in biosensor development. In fact, HRP is one of the most
explored enzymes for development of amperometric biosensors due to (i) commercial
availability, (ii) low production costs, (iii) high stability under standard conditions, (iv)
activity towards H2O2, a broad range of phenolic compounds and aromatic amines, and (v)
the well understood catalytic and structural properties [88,106,108]. The main shortcomings
of HRP use in amperometric biosensors are the substrate inhibition (H2O2), and the high
level of surface glycosylation. The carbohydrate residues can constitute a considerable
fraction of the molecular weight of plant peroxidases (around 25% in HRP) and affect
binding and electronic wiring of the enzymes to electrodes, as well as DET [87,105,109].

Biosensors based on plant peroxidases have been developed for detection of H2O2,
phenolics and other classical peroxidase substrates [90,95,106], as well as nitrite, NO, uric
acid, and TCA, among others [81,99–101]. In the simplest configuration, the peroxidase is
directly adsorbed on the electrode interface and used for quantification of H2O2. Electrocat-
alytic activity has been observed in materials like graphite [105,106,109,110], graphene thick
films [111], and gold [112,113]. This strategy is, nonetheless, commonly associated with
slow ET rates because of (i) the deeply buried heme cofactor in the enzyme matrix; (ii) the
presence of a high percentage of non-active enzyme population, owing to poor orientation
and/or altered conformational structure; (iii) the high glycosylation levels [114]. Besides
forming an insulating barrier, the surface carbohydrates increase the distance between the
electrode and the heme site, hindering ET [105]. The use of recombinant non-glycosylated
HRP and TOP favors the adsorption and uniform orientation on the interface, improving
the ET rates and overall bioelectrode performance [105,109,112,113].

Electron exchange between plant peroxidases and electrodes can be facilitated em-
ploying conducting and non-conducting polymers, detergents, SAMs, ionic liquids (ILs),
and nanomaterials, among others [68,74,92,115,116]. We highlight immobilization on
polymeric films and nanostructured electrodes as the most common strategies. Plant
peroxidases have been physically entrapped [115] or chemically attached [95] to polymer
films, which can mimic the interactions in the physiological environment, thus promoting
the native conformation of the enzyme. Sun et al. described the incorporation of HRP
in a non-conducting silica sol-gel film of poly (N-isopropylacyamide-co-3-methacryloxy-
propyltrimethoxysilane) (PNM) deposited on a GC electrode [115]. The PNM film showed
good compatibility with HRP, which retained its native structure in the polymer, as demon-
strated by FTIR spectroscopy. The resulting biosensor was used for sensitive amperometric
detection of H2O2 in a limited range of concentrations, 0.19 to 1.35 µM, with high sensitivity
and low detection limit of 0.620 A M−1 cm−2 and 0.0475 µM, respectively (Table 1) [115].
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Table 1. Analytical parameters of heme protein-based biosensors. EW—Working potential; a/b—normalized using the electrode geometric/active area; c—estimated from electrochemical
data shown in the reference; n.d.—not determined.

Biosensor
Configuration/Electrode

Target
Analyte

Detection Mode
(Mediator)

Ew (V) vs.
NHE

Sensitivity
(A M−1 cm−2)

Linear Range
(µM)

Limit of
Detection

(µM)

Stability
(% Initial

Activity/Time)
[Ref]

HRP + PMN/GC

H2O2

DET Amp
−0.006 0.620 0.19–1.35 0.0475 92%/1 month [115]

HRP/PEGDGE/[Os(dmp)PVI]+/2+/G
MET

([Os(dmp)PVI]+/2)
Amp

+0.188 0.300 1–500 0.3 50%/1 month [95]

HRP/MWCNT/thionine/AuNP/GC DET Amp
+0.199 6.87 × 10−5 a 640–7000 0.1 n.d. [37]

HRP + HA + CdS-IL/CILE
DET CV

n.d. 0.040 a 10–170 3.30 95.6%/2 weeks
[81]

TCA DET CV
~−0.060 c 0.00208 a 1600–18,000 530 95.6%/2 weeks

TOP/PEGDGE/[Os(dmp)PVI]+/2+/G H2O2
MET

([Os(dmp)PVI]+/2)
Amp

+0.188 0.470 1–500 0.3 83%/1 month [95]

DyP/SAM/Ag H2O2 DET Amp
+0.100 1.31 1–200 3.60 85%/1 month [67]

P450-2C19/CS/CeNP/RGO/GC Omeprazole DET Amp
−0.276 1.440 a 2–50 0.42 n.d. [117]

P450-3A4/P450-1A2/GA/AuNP/CS/RGO
/GC Clopidogel DET CV

~−0.360 c 0.730 a 2–50 0.63 n.d. [118]

Cat + NiO/GC

H2O2

DET Amp
−0.059 0.478 a 1–10 0.60 93%/2 weeks [119]

[(Cat + NH2-IL)]7 + TiN NP/GC DET Amp
−0.150 0.380 1–2100 0.100 n.d. [120]

Cat/[BMIM]BF4-IL/NH2-MWCNT/GC DET Amp
−0.345 69.3 a 0.0086–0.140 0.0037 n.d. [121]

Cat/PLL/f -MWCNT/GC DET Amp
−0.250 0.392 0.001–3.6 0.008 89%/14 days [122]
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Table 1. Cont.

Biosensor
Configuration/Electrode

Target
Analyte

Detection Mode
(Mediator)

Ew (V) vs.
NHE

Sensitivity
(A M−1 cm−2)

Linear Range
(µM)

Limit of
Detection

(µM)

Stability
(% Initial

Activity/Time)
[Ref]

ccNiR/[ZnCr-AQS] LDH/GC

NO2
−

MET
(ZnCr-AQS)

Amp
−0.400 1.8 0.015–2.35 0.004 60%/32 days [123]

ccNiR/sol-gel/PG DET Amp
−0.700 0.430 0.25–50 0.120 >90%/2 weeks [124]

ccNiR + WO3NP/ITO DET CV
−0.600 2.143 5–50 5 n.d. [125]

CcO/DDAB/Au

Cyt c

DET SQW
~+0.550 c n.d. 0.2–4 0.2 n.d. [126]

CcO/DOPE-DOPC/Au DET Amp
+0.485 n.d. 0–10 0.1 n.d. [127]

Cyt c/l-Cys/P3MT/MWCNT/GC

H2O

DET Amp
+0.210 0.0178 a 0.7–400 0.23 n.d. [128]

Cyt c-BDND DET Amp
+0.149 0.0756 1–450 0.7 85%/6 weeks [129]

Nafion/Cyt c-MPA-AuNP-CS/SAM/Au NO DET Amp
−0.500 0.443 b 10–215 4.5 96.3%/1 month [130]

MP-11/PDADMAC-mpATO/ITO H2O2 DET Amp
+0.210 0.00387 10–750 n.d. n.d. [131]

MP-11 @ PCN-333 (Al)/3D-KSC H2O2 DET Amp
−0.056 0.168 0.4–1725 0.127 89.5%/1 month [132]

MP/Cat/SOD/MWCNT-
PTTCA/AuNP/GC NO DET Amp

−0.600 15.7 a 1.0–40 0.0043 97%/1 month [133]

Nafion/Hb/H-TiO2-rGOMS/GC

H2O2

DET Amp
−0.140 n.d. 0.1–145 0.01 95%/21 days [134]

Nafion/Hb+CS+bBi2S3/GC DET Amp
−0.203 14.1 a 0.4–4.8 0.096 95.7%/15 days [135]
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Table 1. Cont.

Biosensor
Configuration/Electrode

Target
Analyte

Detection Mode
(Mediator)

Ew (V) vs.
NHE

Sensitivity
(A M−1 cm−2)

Linear Range
(µM)

Limit of
Detection

(µM)

Stability
(% Initial

Activity/Time)
[Ref]

Hb/CNF/GC ART DET CV
~−0.200 c 4.70 a 0–200 n.d. n.d. [136]

Mb/AuNP-PTy-f-MWCNT/GC H2O2 DET Amp
−0.100 0.140 2–5000 0.01 n.d. [137]

Nafion/Mb/AuNP/Mg-MOF-74/CILE
NO2

− DET CV
−0.335 c 0.1157 AM−1 800–18,000 267 n.d.

[138]
TCA DET CV

−0.098 c
6.942 × 10−3

AM−1 1000–200,000 333 n.d.

3D-KSC—three-dimensional kenaf stem-derived porous carbon; Amp—amperometry; AQS—anthraquinone disulfonate; ART—artemisinin; AuNP—gold nanoparticle; bBi2S3—broccoli-like bismuth sulfide;
BDND—boron-doped nanocrystalline diamond; [BMIM]BF4-IL—1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid; Cat—catalase; Cyt c—cytochrome c; ccNiR—cytochrome c nitrite reductase;
CcO—cytochrome c oxidase; CdS-IL—cadmium sulfide ionic liquid; CeNP—ceria nanoparticle; CILE—carbon ionic liquid electrode; CNF—carbon nanofiber; CS—chitosan; CV—cyclic voltammetry; DDAB—
didodecyldimethylammonium bromide; DET—direct electron transfer; DOPC—dioleoyl phosphatidylcholine; DOPE—dioleoyl phosphatidylethanolamine; DyP—dye-decolorizing peroxidase; G—graphite rod;
GA—glutaraldehyde; GC—glassy carbon; HA—hyaluronic acid; Hb—hemoglobin; HRP—horseradish peroxidase; ITO—indium tin oxide; LDH—layered double hydroxide; Mb—myoglobin; MET—mediated
electron transfer; Mg-MOF-74—magnesium metal-organic framework; MP—microperoxidase; MPA—3-mercaptopropionic acid; mpATO—mesoporous antimony doped tin oxide thin film; MWCNT—multi-
walled carbon nanotube; NH2-IL—amine terminated ionic liquid, 1-(3-Aminopropyl)-3-methylimidazolium bromide; NHE—normal hydrogen electrode; NiO—nickel oxide film; [Os(dmp)PVI]+/2+—osmium
redox polymer; P3MT—poly-(3-methylthiophene); P450—cytochrome P450; PCN-333 (Al)—porous coordination Al-based network; PDADMAC—polydiallyldimethylammonium chloride; PEGDGE—
poly(ethyleneglycol) diglycidyl ether; PG—pyrolytic graphite; PLL/f-MWCNT—poly-L-lysine/multi-walled carbon nanotube; PNM—N-isopropylacyamide-co-3-methacryloxy-propyltrimethoxysilane;
PTTCA—poly-5,2:5,2-terthiophene-3-carboxylic acid; Pty—poly tyramine; RGO—reduced graphene oxide; rGOMs—reduced graphene oxide microspheres; SAM—self-assembled monolayer; SOD—super oxide
dismutase; SQW—square wave voltammetry; TCA—trichloroacetic acid; TiN NP—titanium nitride nanoparticle; TOP—tobacco peroxidase; WO3NP—tungsten oxide nanoparticle.



Catalysts 2021, 11, 218 18 of 43

Incorporation of plant peroxidases into redox polymer matrices has a twofold role,
as it physically and electrically connects the enzyme to the electrode [38,95,110,139]. Both
single polymeric materials [140] and composite matrices that incorporate CNTs or redox
mediators (e.g., osmium doped polymers) have been explored, demonstrating that favor-
able electrostatic interactions between the enzymes and the polymer films are important
for the performance of the biosensor [38,92,95,110,139]. Comparison of the electrocatalytic
behavior of the cationic HRP and the anionic TOP upon immobilization on a cationic
osmium polymer revealed improved catalytic response towards H2O2, sensitivity, and
long-term stability for TOP (cf. Table 1), which was attributed to the electrostatic attraction
between the polymer matrix and the enzyme that increases coupling between the two [95].

Immobilization of plant peroxidases on electrodes modified with nanomaterials is a
particularly common strategy in the design of third-generation biosensors. A vast number
of nanostructures, including Au nanoparticles (NPs) [71,74,93,141], multi-walled CNTs
(MWCNTs) [39,79,83], graphene [82,142], Co3O2, and MoS2 nanosheets [99,143] has been
tested. Owing to the small size of the nanomaterials and high surface area/volume ratio,
the resulting biosensors typically show increased enzyme surface coverage and sensitiv-
ity. Nanomaterials like CNTs and AuNPs can also form tailored scaffolds that provide
favorable orientation of the enzymes, which is determinant for enhanced electrochemical
response [94]. Wang and co-workers described a H2O2 biosensor based on the incorpora-
tion of HRP into a composite MWCNT/thionine/AuNP film, via electrostatic interactions
between the enzyme and the negatively charged NPs (Figure 2a). The synergistic effect
of the three components played a key role in accelerating the ET between the heme active
site and the GC electrode, resulting in the reversible electrochemical response of HRP
and high electrocatalytic currents in the presence of H2O2 [37]. In another example, HRP
was covalently attached to γ-aminobutyric acid (GABA) functionalized MWCNTs, drop-
casted on a GC electrode, and used for the direct electrochemical quantification of H2O2.
Docking and molecular dynamics calculations suggested that GABA interacts with the Lys
residues of HRP, inducing a specific and uniform enzyme orientation on the nanostruc-
tured interface [39]. The importance of enzyme arrangement on the electrode surface was
further demonstrated employing HRP attachment on AuNPs/4-aminothiophenol polymer
(Figure 6). The electrochemical response of randomly deposited AuNPs was poorer, despite
the higher enzyme loading, than in the case of well-dispersed deposits. SEM images of the
modified electrodes revealed that the latter configuration provided larger spacing between
AuNPs and between the attached HRP molecules, which contributed to the preservation of
enzyme folding, diminished steric hindrance, and improved substrate accessibility [94].
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Figure 6. Immobilization of horseradish peroxidase (HRP) on gold nanoparticle (GNP) deposits
modified with 4-aminothiophenol (4-ATP). Two different GNP arrangements on the glassy carbon
(GC) electrode are represented: (a) random and (b) well-dispersed GNP electrodeposits. Reprinted
from Huerta-Miranda et al. [94], Copyright (2018), with permission from Elsevier.
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3.1.3. Dye-Decolorizing Peroxidases

Dye-decolorizing peroxidases (DyPs) constitute a relatively recently discovered family
of heme peroxidases that are mostly found in fungi and bacteria [144–147]. Although
they have been associated with a range of processes, including lignin degradation and
deferrochelation, thus far their physiological role remains to be identified [146]. DyPs
have unique properties that set them apart from other heme peroxidases, notably: (i) a
broad catalytic versatility, which includes poor peroxidase substrates, such as carotenoids
and anthraquinone-based and azo dyes, and (ii) distinct structural and consequently
mechanistic properties [145–148]. These enzymes have a ferredoxin-like fold, composed of
α-helices and β-sheets, instead of the α-helix rich arrangement found in other peroxidases.
Furthermore, DyPs lack the highly conserved catalytic distal His residue. In turn, the distal
side of the heme pocket typically contains an Asp (or Glu) and an Arg, which are thought
to be involved in the catalytic reaction, although their exact roles are not well understood
yet [145–147,149].

DyPs have a widely recognized biotechnological potential, particularly for lignin
degradation and valorization, and dye decolorization of wastewater [145,146,148]. Nev-
ertheless, only one biosensing application has been reported so far. A DET-based H2O2
biosensor was prepared by attaching a bacterial DyP onto biocompatible SAM coated Ag
electrodes [67]. SERR spectroscopy demonstrated that the enzyme maintained its native
structure upon adsorption, in the absence and presence of H2O2 [67,150]. The biosensor
exhibited high sensitivity (1.31 A M−1 cm−2) and a linear response range of 1–200 µM
H2O2 (Table 1, Figure 7). Optimization of the device was attempted employing enzyme
variants obtained by directed evolution, which displayed increased resistance to H2O2
inactivation in solution [151]. The biosensor based on a variant harboring mutations at the
second shell of the heme cavity showed an improved storage stability in comparison with
the wild-type enzyme (Figure 7b) [67].
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Figure 7. Catalytic response and stability of a dye-decolorizing peroxidase (DyP)/SAM/Ag biosensor used for H2O2

quantification. (a) Amperometric response of wild-type (wt) and variant DyP-based biosensors to increasing H2O2. Inset:
Calibration plots showing the linear dependence of the catalytic current on H2O2 concentration. (b) Relative catalytic
current response to 50 µM H2O2 during storage for one month, measured on a batch of electrodes prepared on the same
day (shelf-life). Reprinted from Barbosa et al. [67], Copyright (2020), with permission from Elsevier.

Development of DyP-based biosensors is likely to increase in the future, particu-
larly considering that the bacterial enzymes are devoid of glycosylation and can be easily
genetically modified to attain variant forms with improved catalytic and stability proper-
ties [151], which is highly advantageous in comparison to the more commonly explored
plant peroxidases.
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3.1.4. Cytochrome c Peroxidases

Cytochrome c peroxidases (CcPs) take part in peroxide stress management in prokary-
otic and eukaryotic organisms and are possibly involved in bacterial H2O2 respiration
in anoxic environments [89,152]. The enzymes from prokaryotes and eukaryotes display
different structures and catalytic mechanisms; the former CcPs contain two (or three)
covalently bound c-type hemes, while the latter have a single heme b [86,87,89,152].

The electrochemical response of CcPs has been demonstrated at pyrolytic graphite
(PG) and Au surfaces, using DET and MET [153–156]. In the latter case, physiological
redox partners, including c-type cytochromes and small blue copper proteins, typically
act as mediators [155–158]. However, the applications of CcPs in biosensor construction
are very limited. In one report, CcP was co-immobilized with horse heart cyt c in a gelatin
B-based matrix deposited on a SAM modified Au electrode and tested as a biosensor for
H2O2 monitoring [158]. The catalytic response towards H2O2 was linear up to 300 µM and
the LOD was 10 µM. The hydrophilic nature of the gelatin was proposed to contribute to
the biocompatibility of the encapsulation matrix and maintenance of catalytic activity [158].
CcPs, and in particular bacterial ones, are less sought after for biosensing applications
owing to the complex activation mechanisms and the limited substrate range in comparison
with other peroxidases.

3.2. Cytochromes P450

Cytochromes P450 (P450s) constitute a large family of heme b-containing monooxy-
genases that can be found in all living organisms. P450s are involved in a wide variety of
biosynthetic processes, such as the production of fatty acids and endogenous steroids, as
well as in the metabolism of xenobiotics, including drugs, pesticides, and carcinogens [159].
They catalyze diverse types of reactions, including hydroxylations, sulfoxidations, epoxida-
tions, deaminations, and N-oxide reduction [159]. In the typical monooxygenase reaction
(Equation (11)), P450s use O2, electrons, and protons to oxidize organic substrates (RH) in
a stereo- and region-selective manner [159,160]. The electrons derive from NAD(P)H via
iron-sulfur- and/or flavin-containing redox partners, i.e., P450 reductases, depending on
the type of organism or the cellular compartment [161].

RH + O2 + NAD(P)H + H+ → ROH + H2O + NAD(P)+ (11)

P450s display monomeric structures with a similar overall fold [1,162]. The ferric
heme is coordinated by a proximal Cys residue and a distal water molecule, giving origin
to a 6c resting state. Upon initiating the reaction, binding of the organic substrate molecule
in the vicinity of the active site displaces the axial water and converts the heme iron into a
5c state. Similarly to heme peroxidases, the reduction potentials of P450s fall into a negative
window (ca. −0.220 to −0.370 V) and vary among different enzymes [163–166].

The reaction cycle starts with binding of the organic molecule, as described above,
followed by enzyme reduction to the Fe(II) state, enabling binding of O2. Subsequent re-
duction and protonation steps generate heme iron-oxo intermediates including compound
I (cf. Section 3.1). This species then readily oxygenates the bound substrate molecule (RH)
to ROH [1,159,162,167–169]. Interestingly, some P450s can use H2O2 and other peroxides to
generate compound I, thus bypassing the electron delivery by redox partners and leading
to product formation (peroxide shunt pathway) [159,168,169]. This peroxide-dependent
catalysis is also observed in P450 peroxygenases, a subgroup of the P450s family that has
been identified in some microorganisms [169].

Owing to the broad substrate range, P450s are highly sought after for biocatalysis,
bioremediation and drug development [170,171]. In biosensing, P450s have been employed
for the quantification of metabolites, e.g., testosterone, progesterone; drugs, e.g., codeine,
omeprazole, paracetamol; and pesticides [172]. Despite the great interest in exploring
P450s in the construction of amperometric biosensors, so far the success has been lim-
ited [173,174]. This is mainly due to (i) the inherent instability of the enzyme, as it is
particularly prone to be converted to the inactive P420 state, which is characterized by an
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altered heme ligation pattern and redox potential, and is easily induced by immobiliza-
tion and (ii) uncoupling (branching) reactions in which the heme iron-oxo intermediates
lead to the formation of superoxide anion, H2O2 or water, thereby consuming electrons
and generating a current response that is not related to substrate conversion [170,174].
For these reasons, identification of the reaction product is often required to confirm if
the substrate was consumed in the electrochemical reaction [172]. SERR and UV-Visible
spectroscopies can provide fine details about the active site structure upon enzyme immo-
bilization in biosensor devices, including formation of the catalytically inactive P420 state
(Figure 8) [70,175]. Shifts in the reduction potential may also point out to structural changes
caused by immobilization, however this criterion alone is not sufficient to distinguishing
between P450 and P420 [70].
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Figure 8. Comparison of the surface-enhanced resonance Raman (SERR) (b and c) and RR (a and
d) spectra of cytochrome P450 adsorbed on a self-assembled monolayer (SAM) coated Ag electrode
and in solution, respectively. (a) RR of dithionite reduced form; (b) SERR of reduced form at −0.40 V
poised potential; (c) SERR of oxidized form at 0.34 V poised potential; (d) RR of oxidized form.
Reprinted from Todorovic et al. [70], Copyright (2005), with permission from Springer.

Several methods have been employed for detection of P450 electrocatalytic activity in
biosensors, including consumption of the electron donor NAD(P)H or of the co-substrate
O2 [167,172,176], which correspond to first-generation biosensing strategies. Likewise, if
substrate conversion is driven by H2O2, a decrease of its concentration can be correlated
with P450 catalytic activity. In MET approaches (second-generation biosensors), the re-
duction of the electron shuttles, like viologens, cobalt sepulchrate, and phenosafranine,
have been used to activate P450s [172,176,177]. In turn, the DET driven devices (third-
generation) can be prepared with the P450 enzyme alone, via co-immobilization with a
natural redox partner or with genetically engineered multi-domain systems in which the
P450 is fused to the redox partner [170,178]. The interpretation of electrochemical signals
in DET biosensors is complex because the reduction of the ferric P450 requires a potential
at which the co-substrate O2 is also reduced. It is generally accepted that the current for
the O2 catalytic reduction is further increased in the presence of P450 substrates [179].
However, this increase may simply be due to a variation of O2 concentration upon addition
of the organic substrate. The difficulties in separating O2 reduction currents from the
monooxygenase reaction highlight the importance of monitoring formation of the product
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in P450 electrochemical systems. Alternatively, biosensor performance can be assessed by
measuring enzyme activity in presence of known P450 inhibitors [170,176].

P450s used in biosensor development are mainly of human origin, due to their com-
mercial availability and the capacity to metabolize around 95% of known drugs [180].
P450s have been encapsulated into polymers and lipid membranes or attached to SAM,
surfactant, and nanomaterial coated electrodes [52]. To that end, P450-1A2 in complex
with its redox partners (i.e., P450 reductase and cytochrome b5) was adsorbed on graphite
screen-printed electrodes (SPEs) coated with MWCNTs and used for quantification of the
anti-inflammatory drug naproxen [181]. A similar P450-3A4/P450 reductase complex was
adsorbed on 3D-nanoporous graphene foams (NCFs) and employed in detection of testos-
terone, estrone, and progesterone [182]. The highest activity and thermal stability of the
device was achieved when the dimensions of the foam pore matched the size of the enzyme.
Several biosensors for prescription drugs have been developed via chemical binding of
the enzyme to functionalized surfaces using EDC/NHS [48], glutaraldehyde [117,118], or
NN-carbonylimidazole [118]. Omeprazole was detected on GC electrodes modified with a
nanocomposite made of chitosan, reduced graphene, and ceria NPs onto which P450-2C19
was cross-linked in the presence of glutaraldehyde [117]. The intrinsic capability of the ceria
NPs to accommodate O2, required for P450s catalytic activity, resulted in a biosensor capa-
ble of detecting omeprazole concentrations in a 2 to 50 µM range (Table 1). A multi-enzyme
complex of P450-1A2 and P450-3A4 was assembled on top of a nanocomposite of AuNPs,
chitosan, and graphene oxide nanosheets by covalent binding using glutaraldehyde and
NN-carbonylimidazole. The two enzymes had a coupled action, allowing detection of clopi-
dogrel with a good sensitivity and a low limit of detection (Table 1) [118]. Asturia-Arribas
et al. developed a biosensor for codeine, based on P450-2D6 immobilized on a carbon SPE.
From the three explored strategies (simple adsorption, cross-linking with glutaraldehyde
and BSA, and covalent binding using EDC/NHS) covalent immobilization resulted in the
best amperometric response towards codeine. The biosensor showed extended linear range
and was functional up to three weeks [48].

Reports on P450 peroxygenase-based biosensors are scarcer, owing to more recent dis-
covery of these enzymes. They include devices for quantification of e.g., 4-nitrophenol [183],
naphthalene [184], aniline, and paracetamol [185], constructed employing AuNPs and chi-
tosan nanocomposites deposited on GC electrodes. The devices succeeded in detecting
substrate concentrations as low as 0.1 µM.

It is noteworthy that despite of promising examples, real applications of P450s and
related enzymes still do not match their potential. Due to their inherent instability, interac-
tions with a vast majority of electrode supports results in structural changes at the level
of the active site that alter catalytic properties of these enzymes in the immobilized state
impeding their broader utilization (Figure 8).

3.3. Catalases

Catalases are ubiquitous enzymes that are found in nearly all aerobic organisms. They
are involved in ROS detoxification and catalyze the decomposition of H2O2 into water and
O2, Equation (12) [89,186,187].

2H2O2 → 2H2O + O2 (12)

The mono-functional catalases have been identified in fungi, bacteria and archae-
bacteria and display significant peroxidase activity in addition to the H2O2 dismutation
reaction. They are phylogenetically related to the superfamily of plant, fungal and bacterial
peroxidases. The mono-functional catalase family is the largest and most widespread
(from bacteria to eukaryotic organisms) [89,187] and the most explored in biosensor de-
velopment, in particular the commercially available bovine liver catalase [187–189]. They
are tetrameric proteins containing one 5c heme b or heme d in each of the four identical
subunits [186,187]. Like peroxidases and P450s, catalase reduction potentials are typically
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negative (e.g.,−0.260 V for the heme b-containing bovine liver catalase), which is consistent
with a stable Fe(III) resting state [190].

The catalytic dismutation reaction occurs in two steps and requires two molecules of
H2O2. In the first step, the resting Fe(III) enzyme is oxidized by H2O2, forming compound
I and water (Section 3.1, Equation (4)). The catalytic intermediate is reduced by the second
H2O2 molecule in the second step, regenerating the resting state enzyme and releasing a
water molecule and O2 (Section 3.1.1, Equation (7)).

Catalases are, in general, highly thermo-stable, robust enzymes; they also have one of
the highest turnover rates among known enzymes, which together with their wide avail-
ability, have prompted a variety of applications, including amperometric biosensors [188].
A limitation to catalase use in comparison to peroxidases is the narrower substrate range.
Catalase biosensors are mostly used in H2O2 detection, although some devices have been
employed for quantification of e.g., nitrite [119] and for indirect measurement of activators
and inhibitors of enzyme activity, such as calcium [191] and mercury [9].

Both first- and third-generation biosensing schemes have been exploited in catalase
devices. In the former, detection is based on direct measurements of the electroactive
substrate (H2O2) or product (O2). In the latter, DET between catalase and the electrode
in the presence of H2O2 gives origin to the increase of cathodic currents resulting from
reduction of compound I at the electrode surface, as described for peroxidase biosensors
(cf. Section 3.1.1) [91,106]. However, it has been proposed that this reaction may not be
the main contributor to the catalytic current [98]. The observed catalytic reduction peak
for H2O2 is usually close to the reduction potential of the Fe(III)/Fe(II) redox pair, which
indicates that an alternative reaction involving direct reduction of Fe(II)-O2 species at
the electrode, equivalent to the low potential redox cycle described for peroxidases (cf.
Section 3.1.1) probably takes place [96]. Further evidence for this hypothesis is the catalytic
response to O2, observed at similar potential values [98].

Catalase-based amperometric biosensors employ a variety of materials, including
cross-linking agents, polymers, sol-gels, lipid films, surfactants, and diverse nanomaterials,
and most commonly carbon electrodes (GC, graphite, carbon paste) as transducing surfaces.
An inhibition biosensor for quantification of Hg2+ was prepared by cross-linking catalase
with glutaraldehyde and BSA on a GC surface. The inhibitory effects on the enzyme reaction
induced a decrease of the current response, which was dependent on Hg2+ concentration.
The device displayed high selectivity for Hg2+ in the presence of other heavy metal ions
and organic pesticides [9]. Combination of catalase cross-linking with gelatin encapsulation
was explored for the development of a first-generation biosensor for detection of Ca2+ in
milk and water samples, taking advantage of the increased enzyme activity in the presence
of the cation. A dissolved O2 electrode was used to measure the concentration of the
reaction product in the presence of constant amount of H2O2 [191]. A first-generation
biosensor employing catalase adsorbed on Pt electrodes coated with Nafion and poly-
o-phenylenediamine (PPD) layers and subsequently cross-linked with glutaraldehyde
was used for following the direct oxidation of H2O2. The current was simultaneously
measured at an enzyme-modified and a control electrode without catalase. The dual
electrode device performed well in the presence of interfering species, since background
currents were subtracted using the control electrode. The biosensor was envisioned for
in vivo monitoring of H2O2 [192].

For the last 10 to 15 years, nanostructured electrodes have been recurrently used in
the construction of third-generation catalase biosensors. This is in line with development
of electrochemical biosensor in general and is justified by the advantages that carbon and
metal nanomaterials provide in terms of biocompatibility, high conductivity, and large
surface area [119,120,122,193–195]. Quantification of H2O2 and nitrite has been achieved
with a catalase/NiO NPs biosensor prepared by electrodeposition of enzyme and the NPs
on GC and ITO electrodes. UV-Visible studies of the latter showed no apparent enzyme
denaturation upon interactions with the NiO nanostructures [119]. Composite materials
based on surfactants, polymers, and ILs are often used to facilitate the dispersion of the
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nanomaterials, improve enzyme retention on the electrode, and help preserve the native
conformation of the catalyst. To that end, catalase has been (i) adsorbed on GC surfaces
modified with poly-L-lysine/MWCNT and 1-butyl-3-methylimidazolium tetrafluoroborate
([BMIM]BF4)-IL/MWCNT-NH2 films [121,122], (ii) co-deposited with mixtures of dode-
cyltrimethyl ammonium bromide (DTAB)/MWCNT [195], Nafion/MWCNT-COOH [196],
or chitosan/SnO2 nanofibers/PANI on GC electrodes [194], and (iii) incorporated into
multilayered assemblies with amine terminated IL (NH2-IL) prepared on titanium nitride
(TiN) modified GC electrodes [120]. FTIR and UV-Visible spectra of the catalase/poly-L-
lysine/MWCNT and catalase/NH2-IL/TiN films indicated that the enzyme was intact
upon immobilization, suggesting suitable microenvironments for catalase activity [120,122].
The electrocatalytic response of catalase towards H2O2 reduction was improved on the
nanocomposite electrodes. In particular, the IL/MWCNT-NH2 bioelectrode displayed
one of the lowest reported LODs (3.7 × 10−3 µM) in a limited linear concentration range
(8.6 × 10−3–0.140 µM) [121]. The poly-L-lysine/MWCNT and the NH2-IL/TiN biosensors
had much broader dynamic ranges, up to 2.1 mM H2O2 in the latter (cf. Table 1) [120,122].

3.4. Nitrite Reductases

Nitrite reductases (NiRs) constitute a structurally diverse group of enzymes that are
responsible for nitrite reduction in bacteria [197]. The heme containing cytochrome cd1
NiRs (cd1NiRs) and cytochrome c NiRs (ccNiRs) have been explored for the construction of
electrochemical biosensors [198]. cd1NiRs reduce nitrite to NO in a one-electron reaction
(Equation (13)), as part of the bacterial denitrification pathway, an anaerobic respiratory
process in which nitrate is reduced to N2 for energy production. cd1NiRs have homod-
imeric structures with a heme d1 in the active site and an electron acceptor heme c per
subunit [197,199,200]. The reduction potentials of the heme groups have been reported
in the +0.2 to +0.3 V range [201–203]. Upon reduction of the enzyme, the catalytic heme
d1 adopts a 5c configuration capable of binding the nitrite substrate [204,205]. ccNiRs
catalyze the six-electron reduction of nitrite to ammonium (Equation (14)). They are
periplasmic multi-heme complexes, composed of ET (NrfB or NrfH) and catalytic subunits
(NrfA), involved in dissimilatory nitrate reduction that provides reduced nitrogen for cell
growth [197,200]. The active site is a 5c heme c with an unusual Lys residue as the proximal
ligand [200,206,207]. The ET heme groups have reduction potentials between +0.15 and
−0.48 V, while the value for the catalytic heme has been reported between −0.05 and
−0.2 V [208–210].

NO2
− + 2H+ + e− → NO + H2O (13)

NO2
− + 8H+ + 6e− → NH4

+ + 2H2O (14)

cd1NiRs and ccNiRs have been employed in amperometric biosensors for detection
of nitrite, which is a relevant analyte for the medical research, clinical diagnosis, and
environmental fields [211–213]. Both enzymes have been used in devices relying on
MET, while only ccNiR has been explored in DET-based designs [19,124,198,214]. In the
former, a reduced mediator converts the enzyme to the Fe(II) catalytically active state,
which reduces nitrite. The oxidized mediator is then re-reduced at the electrode surface
generating the electrocatalytic current and subsequently reducing the enzyme back to the
Fe(II) state [19,214]. In DET-based biosensors, the current signal derives from the direct
regeneration of the reduced enzyme cofactors (i.e., Fe(III)→Fe(II)), following the reduction
of nitrite [215].

In ccNiR biosensors, the enzyme has been incorporated into polyacrylamide, Nafion and
poly(carbamoyl sulfonate) non-conducting layers and into redox active [ZnCr-AQS] layered
double hydroxides (LDHs) containing anthraquinone disulfonate (AQS), and PPY films pre-
pared on graphite or GC electrodes. Enzyme activity could be detected via MET using methyl
viologen, phenosafranine, AQS, and viologen functionalized PPY [20,123,198,214]. The analyt-
ical performance of the resulting devices included some of the highest and lowest LODs
reported to date (60 µM vs. 4.0× 10−3 µM, for Nafion- and [ZnCr-AQS] LDH-based biosen-



Catalysts 2021, 11, 218 25 of 43

sors, respectively) [123,214]. Electrodes prepared with non-conducting polymers generally
displayed relatively low sensitivities (e.g., 0.445 A M−1 cm−2 for the Nafion biosensor)
and broad linear ranges. The redox active matrices provide improved the electrical wiring
of the enzyme to the electrode, resulting in higher sensitivities (1.7–1.8 A M−1 cm−2), low
detections limits, but more limited dynamic ranges (0.015–2.35 µM for the [ZnCr-AQS]
LDH biosensor, Table 1) [20,123].

The ability of ccNiRs to directly exchange electrons with electrode interfaces [209,216,217]
has prompted the development of third-generation nitrite biosensors employing mostly PG
and carbon ink/paste electrodes [124,215,218]. ccNiR electrocatalytic activity has also been
observed upon deposition onto ITO [125] and encapsulation into non-conducting materials,
such as a sol-gel matrix based on an alkoxysilane precursor [124]. The protective sol-gel film
ensured catalytic activity up to six months. Characterization of the ccNiR/sol-gel films by
UV-Visible and RR spectroscopies revealed no indications of denaturation or conformational
changes of the heme groups upon enzyme encapsulation [124].

Further improvement of DET-based electrocatalysis by ccNiR was achieved with the
introduction of nanomaterials for electrode modification [125,215,219]. The highest current
response to nitrite so far, has been obtained with ccNiR adsorbed on multilayered single-
walled CNT (SWCNT) deposits (sensitivity 2.4 A M−1 cm−2) [215]. Likewise, WO3NPs
enhanced DET between ccNiR and ITO electrodes (Figure 9). The RR spectra demon-
strated that the native state of the ccNiR was preserved in the construct. Confocal Raman
spectroscopy measurements of the enzyme/NP construct revealed that the WO3NPs un-
derneath the deposited ccNiR film were also not affected by the presence of the enzyme.
The biosensor had a high sensitivity (2.1 A M−1 cm−2) and a relatively narrow linear range
(Table 1) [125].

Thus far, cd1NiRs have had limited application in biosensing in comparison to ccNiRs.
This is mainly due to the necessity to activate cd1NiRs. The mechanism includes reduction
of the hemes, conformational rearrangement, and heme ligand exchange, processes that
are triggered by specific interactions with electron donor partners and cannot be easily
mimicked at electrode surfaces [220,221]. SERR spectroelectrochemical studies of cd1NiR
attached to SAM coated Ag electrodes showed that about half of the immobilized enzyme
retained redox activity and native structure at the level of the heme c, but no electrochemical
catalysis was observed in the presence of nitrite via DET [201]. MET-based approaches
include early trials in which cd1NiR was retained by dialysis membranes on the surface of
graphite electrodes, while the mediating species were added to solution [222,223]. These
were followed by the development of a functional biosensor based on the co-immobilization
of cd1NiR and a putative electron donor, cytochrome c552, on carbon SPEs, employing a
cross-linked poly(vinyl alcohol) matrix. The resulting biosensor was able to detect nitrite
within a 10 to 200 µM range [19].
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Figure 9. Electrochemical and spectroscopic characterization of a cytochrome c nitrite reductase
(ccNiR)/WO3 nanoparticles (NPs)/indium tin oxide (ITO) biosensor. (a) Schematic representation of
the enzyme/electrode construct showing the catalytic conversion of nitrite into ammonium; (b) scan-
ning electron microscopy (SEM) images of three different hydrothermally synthesized WO3NP
samples (W1, W2, and W3); (c) cyclic voltammetry response obtained upon addition of increasing
nitrite concentration; (d) Raman spectra of WO3NPs samples; (e) resonance Raman (RR) spectra of
ccNiR immobilized on the WO3NPs/ITO electrodes. Reprinted from Santos et al. [125], Copyright
(2016), with permission from Elsevier.
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3.5. Cytochrome c Oxidases

Cytochrome c oxidase (CcO) is a cytochrome c: oxygen oxidoreductase that cat-
alyzes the four-electron reduction of O2 to water. The catalytic subunit of CcO houses
a 6c ET heme and a binuclear 5c heme a3-CuB catalytic center. Although it could theo-
retically be explored for construction of both O2 biosensors and cyt c immunosensors,
applications of CcO are still limited, due to its hydrophobic nature and a complex multi-
subunit structure prone to degradation. To that end, the few existing reports have mainly
focused on detection of cyt c in biological samples, since its presence in blood can be
indicative of several pathologies related to damaged mitochondria, such as apoptotic cell
death, myocardial infarctions, and a number of neurological diseases [224]. The reported
cyt c sensing applications include those that rely on (i) immobilization of CcO onto Au
electrode-supported lipid bilayer membranes; the oxidase-modified electrode operates as
an amperometric biosensor capable of detection of reduced cyt c with detection limit of
0.1 µM [127], (ii) casting of CcO-didodecyldimethylammonium bromide (DDAB) vesicle
films onto Au electrodes for detection of ferric cyt c in human blood serum [126], and
(iii) CcO deposited over Au electrodes modified with NiONPs, CNTs and a conducting
PANI polymer (NiONPs/cMWCNT/PANI hybrid) [225]. The amperometric biosensors
for cyt c based on these hybrid films were investigated by CV, electrochemical impedance
spectroscopy (EIS), SEM, and FTIR [225], revealing a linear range between 1 × 10−6 and
0.1 µM, a superior detection limit in different serum samples (5 × 10−6 µM) and sensitivity
of 3.7 × 106 A M−1 cm−2 [225]. Bioelectrocatalytic reduction of O2, employing cyt c func-
tionalized SAM coated surfaces, in which the CcO complex was stabilized by cross-linking
with glutaraldehyde, was studied in an attempt to develop a biofuel cell in which CcO
plays the role of a cathode [226].

3.6. Cytochrome c and Microperoxidases

Cytochrome c is a small heme c-containing protein that, under normal physiological
conditions, shuttles electrons from Complex III to Complex IV of the respiratory chain in
bacteria and in the mitochondria of eukaryotic organisms. Nowadays, it is fully recognized
that upon changes of the active site configuration, cyt c acquires peroxidase activity and
becomes involved in the early stages of apoptosis [227]. The peroxidase activity of cyt c is
induced by a transition of the heme iron from the native 6c conformation, with Met and His
as axial iron ligands, to a 5c state [228,229]. The conformational exchange occurs via the
detachment of the distal Met and is accompanied by a remarkable lowering of the reduction
potential from +0.250 to −0.090 V [230,231]. The plastic nature of the heme coordination
in cyt c is therefore very important for its exploitation in biosensors. Frequently, cyt c
immobilization on electrode surfaces leads to partially unfolded configurations that display
catalytic activity towards H2O2 and O2 [232]. For instance, non-native cyt c states can be
generated upon adsorption on metal electrodes coated with SAMs [78]. In this context,
SERRs and SEIRA spectroscopies have played a particularly important role in providing
structural details about the immobilized cyt c and the parameters that control its structure
and function [233,234]. In the absence of structural information, the reduction potential
has also been used to evaluate the nature (native vs. non-native) of the immobilized cyt
c species. As alternative to non-native protein states, the easy design and production of
engineered variants can offer another broad range of possibilities for development of cyt c
biosensors with more efficient catalytic activity. For example, variants that favor 5c species
often display enhanced peroxidase activity [235–237], some of which lead to enhanced
formation of compound I [237,238].

Biosensors based on cyt c are frequently employed in H2O2 monitoring and follow DET
detection schemes similar to those described for plant peroxidases (cf. Section 3.1.1) [239].
Other cyt c biosensors have been designed for detection of nitrite [128], NO [130], and
rebaudioside A [240], among others. Device construction has relied on diverse immobilization
strategies, such as adsorption, entrapment in polymeric matrices, layer-by-layer assemblies,
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and others [239]. Herein, we highlight recent works focusing on covalent immobilization and
nanomaterial modified electrodes.

Detection of H2O2 has been achieved with cyt c adsorbed or entrapped on different
nanostructured electrodes, including (i) Au/Fe2O3/N-doped CNT composites [241]), (ii)
three-dimensional graphene aerogels in the presence of AuNPs [242], (iii) mixtures of
MWCNTs and conductive polymers, namely PANI [239] or PPY [243], and (iv) AuNPs
grown on electrochemically reduced graphene oxide/Nafion composites [244]. In a re-
cent work, cyt c was adsorbed on a l-cysteine layer deposited onto a hybrid conducting
polymer/MWCNT modified GC electrode [128]. The protein had a reduction potential of
+0.275 V in the construct, pointing out that its native structure was preserved. The device
had a low sensitivity (0.0178 A M−1 cm−2) in a broad linear range (Table 1) [128]. In the
absence of polymers, the sensitivity was increased up to 0.043 A M–1 cm−2 [245]. However,
in this case, the interaction of cyt c with the immobilization components induced a red-shift
of the Soret band and a lower formal potential (−0.128 V), which indicated the presence of
a non-native state [245].

Cyt c contains two positively charged Lys patches on the surface that govern its
binding to negatively charged surfaces and enable immobilization via covalent attachment
using EDC/NHS (cf. Section 2.2). The possibility to introduce carboxylic functions in a
broad variety of support materials has driven to a remarkable diversity of cyt c biosensors
that explore this type of covalent attachment [129,130,246]. One example explores covalent
binding of the protein onto AuNPs, and subsequent entrapment with chitosan, for the
development of a NO biosensor [130]. UV-Visible spectroscopy indicated that the native
structure of cyt c was preserved in the construct. The NO biosensor had a good sensitivity
and a linear range from 10 to 215 µM (Table 1). In another approach, carboxylated boron-
doped diamond and ILs covalently bound to cyt c resulted in a H2O2 biosensor with a
broad linear range (1–450 µM) but low sensitivity (cf. Table 1) [129]. Alternatively, cyt c was
chemically modified with carboxylated alkanethiols before adsorption onto Au electrodes
(Figure 10).

The redox activity of the protein was determined as a function of the orientation and
distance from the interface, which were governed by the length of the alkanethiol chain. in
situ generated AuNPs were shown to greatly improve the ET efficiency (Figure 10). The
optimized device was able to detect H2O2 overproduced in vitro by living cells, despite a
very low sensitivity (2.00 × 10−4 A M−1 cm−2) [246].

Other c-type cytochromes have shown catalytic activity under specific conditions,
similarly to what is observed with cyt c [229,247]. A detailed CV, RR, and SERR spectro-
scopic characterization of cytochrome PccH, immobilized on SAM-modified Au and Ag
electrodes, revealed that the protein had residual peroxidase activity. Cytochrome PccH
derived microperoxidase displayed an increased activity toward H2O2 [229]. Likewise,
CytD, showed peroxidase activity upon immobilization on Au-SAM surfaces, which was
attributed to a minor 5c population generated upon protein adsorption [247].

Microperoxidases (MPs) are heme-peptide fragments obtained by the proteolytic diges-
tion of horse heart cyt c. They contain the CXXCH structural motif and 8 or 11 amino acid
residues (MP8-11). MPs have lower reduction potential than cyt c, i.e., −0.160 V [248], and
retain only the proximal axial His ligand that gives origin to a 5c heme state. MPs efficiently
reduce H2O2 via compound I formation. They also exhibit typical P450 activities [249] and
can catalyze specific reactions of organic chemistry, such as aniline p-hydroxylation [250],
S-oxidation [251], O- and N- dealkylation, or nitration [252]. The heme is highly exposed
to the solvent, which leads to instability in solution and easy auto-aggregation [253,254].

Biosensors based on MPs have been developed for similar target analytes as cyt c
devices. A H2O2 biosensor was prepared by immobilization of MP11 on mesoporous anti-
mony doped ITO electrodes, coated with the polycation poly-diallyldimethylammonium
chloride (PDADMAC) [131]. The presence of PDADMAC improved biosensor perfor-
mance due to increased protein surface coverage and slower desorption of MP11 from
the electrode. UV-Visible spectroelectrochemistry revealed that the direct reduction of
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H2O2 proceeded via a compound I-type intermediate, as deduced by the high potential at
which H2O2 reduction was detected (>+0.660 V). Despite the low affinity to H2O2 (Kapp

M =
1.8 µM), probably due to decreased access to the active site, the biosensor had a wide linear
range of 10 to 750 µM, although a quite low sensitivity (3.87 × 10−3 A M−1 cm−2) [131]. A
biosensor with similar linear range but almost an order of magnitude higher sensitivity
was obtained by adsorption of MP11 onto a PG electrode in the presence of ZnONPs, thus
demonstrating the advantages of using nanostructured electrodes [255]. High sensitivi-
ties were also observed for the encapsulation of MP11 on mesoporous SnO2 electrodes
coated with poly-L-lysine [256] and within metal-organic frameworks (MOF) of porous
coordination Al-based network, PCN-333 (Al), grown on three-dimensional kenaf stem-
derived porous carbon (3D-KSC), Table 1 [132]. The latter device also showed an extended
linear range of 0.4 to 1725 µM [132]. Recently, a MP11-based biosensor was developed
for detection of the antimalaria drug artemisinin [257]. The protein was adsorbed onto
DDAB and further entrapped into mesoporous SnO2NPs. The ITO electrode employed as
primary support allowed the spectroelectrochemical investigation of MP11/artemisinin
interaction, revealing a shift of the Soret band of MP11 and possible structural alterations
in the presence of artemisinin.
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Figure 10. Schematic representation and electrochemical response of native and chemically modified
cytochrome c (cyt c) adsorbed on Au electrodes. Cyclic voltammograms obtained with (A) native,
(B) mercapto-propionic acid (MPA) modified, and (C) mercapto-undecanoic acid (MUA) modified
cyt c in the (1) absence or (2) presence of AuNPs. MPA and MUA anchors are represented in purple;
AuNPs are shown as yellow spheres; black arrows represent the ET between heme group and
electrode. Reprinted from Suárez et al. [246], Copyright (2013), with permission from Elsevier.
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In the last decades, the tendency in employing MPs in biosensing devices shifted
towards their coupling with other enzymes. To that end, MPs have been employed
as mediators in glucose sensing [258–260] and together with catalase and superoxide
dismutase to increase the sensitivity towards NO detection [133].

Similar to semisynthetic MPs, other artificial systems like mimochromes [261–264],
synthetic porphyrins, or hemin [265–269], showed reactivity toward H2O2 and have been
used as biological component in DET-based biosensors.

3.7. Globins

Hemoglobin (Hb) and myoglobin (Mb) are the most well-known members of the globins
superfamily; they are responsible for carrying/storing O2 in living organisms. Both house a
5c heme b as prosthetic group with His as the proximal ligand. Hb and Mb have reduction
potentials of ca. 0.050 and 0.150 V, respectively [270]. The ferric states of both proteins, i.e.,
methemoglobin (metHb) and metmyoglobin (metMb), are physiologically inactive for O2
transport and storage, however their redox chemistry can lead to pathologic conditions due
to free-radical production and/or oxidation of fatty acids [271]. In this context, MetHb and
metMb show peroxidase-like catalytic activity, which involves the formation of high valence
oxy-ferryl heme intermediates, such as compound I [272–274]. MetHb and metMb can also
be reactive toward other compounds, including NO and sulfide [271].

Mb and Hb are readily available and therefore have often been explored in biosensing.
Besides typical analytes, such as H2O2, nitrite, and TCA, globin biosensors have been de-
veloped for detection of artemisinin [136], nitromethane [275], and chloropropandiol [276].
Recently, Mb-based nitrite and TCA biosensors, relying on DET transduction schemes,
have been characterized in acidic pH conditions [138,277,278]. A Mg-based MOF/AuNPs
biosensor employing Mb was able to detect up to 18 mM nitrite (Table 1) [138]. A broad
linear range has also been reported for Hb adsorbed on a composite of reduced graphene
oxide and TiO2 nanosheets [134]. In both cases, entrapment of the proteins inside Nafion
polymer improved the biosensor performance. A similar approach, based on Hb encapsu-
lated onto TiO2 hollow microspheres, led to a H2O2 biosensor with increased affinity (Kapp

M
141.4 µM vs. 81 µM) and a good sensitivity (0.417 A M−1 cm−2) [99]. Much higher sensitiv-
ity (14.1 A M−1 cm−2) was attained using a broccoli-like Bi2S3 and chitosan nanocomposite
(Table 1) [135]. A very low LOD (7 × 10−3 µM) was obtained by entrapment of Hb inside a
nanocomposite of Nafion and Mn3(PO4)2 nanoflowers [65]. The good performance of the
device was rationalized in terms of partial unfolding of Hb interacting with the inorganic
matrix, as indicated by fluorescence spectroscopy. Enhanced catalytic activity was also
observed for urea treated partially unfolded Hb adsorbed on a DDAB film deposited on
GC electrodes. The device was used for H2O2 and nitrite biosensing, revealing improved
sensitivities in comparison to the immobilized native protein [64].

4. Outlook

Heme proteins and enzymes have been widely exploited in the development of
amperometric biosensors. Among different applications reported herein, H2O2 monitoring
noticeably stands out, as it can be carried out by diverse heme proteins like peroxidases,
catalases, cyt c, hemoglobin, and myoglobin. Biosensors for other relevant analytes, such
as nitrite, NO, phenolic compounds, as well as several drugs, hormones, and pesticides
have also been constructed. Notably, the possibility to develop simple and highly selective
third-generation biosensors for various analytes is an advantage over e.g., glucose oxidases
and dehydrogenases, which often rely on mediator-based transduction schemes.

Taken together, we witness a continuous growth of developed heme enzyme-based
biosensing devices, some of which display very good performance, including in the analysis
of real samples [95,195,218,225,246]. In parallel, the theoretical knowledge of the processes
occurring at the electrode interface, and in particular the mechanisms of heterogeneous ET
between electrodes and heme enzymes, together with general aspects of efficient DET have
been well understood.
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Still, transferring laboratory developed methodologies into practical applications
remains challenging and the majority of biosensor reports do not go beyond the proof-of-
concept stage. Perhaps the main current problems are the short lifetime of the devices (cf.
Table 1), which is related to the stability of the heme biocatalyst, and the low efficiency
of the heterogeneous ET reactions, due to e.g., unfavorable immobilization and/or poor
orientation of the heme redox centers towards the electrode and the substrate. Use of
nanomaterials represents a promising solution to tackle these issues, however, it has
become evident that simple adsorption of the enzymes onto nanostructured electrodes is
not sufficient. Instead, trends have been shifting towards construction of multicomponent
architectures with carefully controlled deposition and immobilization chemistry, usually
employing tailored made, functionalized nanomaterials. In parallel, rational modification
of the enzymes through genetic engineering has also been explored to improve the efficiency
and control the electrocatalytic properties of heme enzymes. This includes changes on
the surface of the molecules to facilitate anchoring to functionalized electrodes, as well
as development of variants with enhanced catalytic and stability properties, which are
crucial for the overall performance of the biosensors. We highlight the potential of directed
evolution approaches, which constitute the fastest and most efficient methods for tailoring
enzymes for desired properties, such as a higher thermal stability, better substrate specificity,
or lower inhibition by substrate/product [151,279,280]. The production of artificial heme-
inspired catalysts, such as mimochromes and synthetic porphyrins, displaying increased
robustness and activity, is also likely to gain more protagonism. However, care must be
taken to ensure that resulting devices can deliver improved sensitivity and selectivity in
comparison with those based on biological heme catalysts. Another important factor is the
availability of sophisticated biophysical methods for in situ monitoring of the immobilized
biocatalyst, which sensitively report on potential structural alterations or desorption from
the electrode. We emphasize the role of SERR and SEIRA spectroscopies in providing
molecular details of the immobilized heme enzymes that can guide biosensor construction,
which therefore no longer depends on empirical trial and error approaches.

The final barriers to the implementation of biosensors are market interest and efficient
passage to production on a large industrial scale. On the first aspect, heme enzyme
biosensors can have an impact, since they have a broad substrate range that includes
analytes that are relevant for the healthcare field, which offers the largest opportunities
for commercialization [3,4]. As for the scaling-up of proof-of-concept devices, stability
and reproducibility issues can be technically solved, although this often entails time
and resource consuming development processes. Therefore, the future efforts towards
development of heme enzyme biosensors need to ensure that the emerging advancements
in electronics, material sciences and protein engineering are efficiently combined to produce
functional and robust systems in a cost effective manner.
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Abbreviations

5c penta-coordinated
6c hexa-coordinated
AFM atomic force microscopy
AQS anthraquinone disulfonate
BSA bovine serum albumin
ccNiR cytochrome c nitrite reductase
CcO cytochrome c oxidase
CcP cytochrome c peroxidase
CD circular dichroism
cd1NiR cytochrome cd1 nitrite reductase
CNT carbon nanotube
CT charge-transfer
CV cyclic voltammetry
cyt c cytochrome c
DDAB didodecyldimethylammonium bromide
DET direct electron transfer
DyP dye-decolorizing peroxidase
EDC 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
ET electron transfer
FTIR Fourier-transform infrared
GC glassy carbon
GOx glucose oxidase
Hb hemoglobin
HRP horseradish peroxidase
IL ionic liquid
ITO indium tin oxide
LDH layered double hydroxide
LOD limit of detection
Mb myoglobin
MET mediated electron transfer
MP microperoxidase
MWCNTs multi-walled carbon nanotubes
NHS N-hydroxysuccinimide
NiR nitrite reductase
NPs nanoparticles
P420 cytochrome P420
P450 cytochrome P450
PANI polyaniline
PG pyrolytic graphite
PPY polypyrrole
ROS reactive oxygen species
RR resonance Raman
SAM self-assembled monolayer
SEIRA surface-enhanced infrared absorption
SEM scanning electron microscopy
SERR surface-enhanced resonance Raman
SPEs screen-printed electrodes
SWCNTs single-walled carbon nanotubes
TCA trichloroacetic acid
TOP tobacco peroxidase
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