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Abstract 

 Skin tissue engineering represents an important tool in various fields such as cosmetic testing 

and regenerative medicine. The possibility of reproducing in vitro the fundamental properties of in 

vivo skin introduces new opportunities for creating knowledge. One of the techniques employed is 

the production of scaffolds to harbor cells, allowing for their proliferation and differentiation into 

functional tissues. These scaffolds must have certain characteristics, such as biocompatibility, 

biodegradability, appropriate physico-chemical and mechanical properties, ease of production and 

cost-effectiveness, all dependent on the material chosen. Thus, polyhydroxyalkanoates (PHAs) 

represent a potential scaffold material due to all of their relevant characteristics for biomedical 

applications. Also, the exopolysaccharide FucoPol can be incorporated with PHA as a blend or 

coating, possibly introducing bioactivity to the scaffolds. Therefore, the aim of this work was the 

production of scaffolds for reconstruction of human dermis, through the emulsion templating method, 

resulting in porous constructs that were tested with human dermal fibroblasts (HDFn). 

 The scaffolds obtained in this work were based on P(HBHVHHx), a PHA composed of 51 wt%  

3-hydroxybutyrate, 18 wt% 3-hydroxyvalerate and 31 wt% 3-hydroxyhexanoate, and had a porous 

structure with some interconnected pores. The scaffolds produced through emulsion with water had 

mechanical, thermal and physical properties comparable with the scaffolds produced through 

emulsion with FucoPol solution, both of them suitable for skin tissue engineering. 

 These scaffolds were tested with HDFn to assess their bioactivity. In both the cells were able to 

adhere, proliferate and differentiate, showing possible extracellular matrix (ECM) deposition. The 

eight-day assay revealed increased cellular growth and organized ECM deposition in the scaffolds 

with FucoPol compared to the ones without. The fourteen-day assay confirmed pore geometry as the 

limiting factor for the full invasion of the scaffolds. This work demonstrated the potential of naturally 

derived P(HBHVHHx)/FucoPol scaffolds for the reconstruction of human dermis. 

 

 

Keywords: skin tissue engineering; PHA-based scaffolds; short chain length-medium chain length 

polyhydroxyalkanoates (scl-mcl-PHAs); poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-

hydroxyhexanoate) (P(HBHVHHx)); FucoPol 

 

  



x 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



xi 
 

Resumo 

A engenharia de tecidos da pele representa uma ferramenta importante em várias áreas, como 

a cosmética e a medicina regenerativa. A possibilidade de reproduzir in vitro as propriedades 

fundamentais da pele in vivo, introduz oportunidades para criar conhecimento. Uma das técnicas 

aplicada é o desenvolvimento de scaffolds para cultura celular, permitindo a sua proliferação e 

diferenciação em tecidos funcionais. Estes scaffolds devem possuir certas características, tais como 

biocompatibilidade, biodegradibilidade, propriedades físico-químicas e mecânicas apropriadas, 

facilidade de produção e custo-eficácia, todas dependentes do material escolhido. Assim, os 

polihidroxialcanoatos (PHAs) representam um potencial material para este efeito, devido a todas as 

suas características relevantes para aplicações biomédicas. Adicionalmente, o exopolissacárido 

FucoPol pode ser incorporado como uma mistura ou revestimento do scaffold de PHA, possivelmente 

introduzindo bioatividade. O objetivo deste trabalho foi produzir scaffolds para reconstrução da 

derme humana, através da técnica de emulsão, resultando em estruturas porosas que foram 

testadas in vitro com fibroblastos humanos (HDFn). 

Os scaffolds de PHA produzidos, com composição monomérica 51 wt% 3-hidroxibutirato, 18 

wt% 3-hidroxivalerato e 31 wt% 3-hidroxihexanoato, resultaram numa estrutura porosa com alguns 

poros interconectados. A emulsão com água resultou em scaffolds com propriedades mecânicas, 

térmicas e físicas comparáveis aos obtidos através de emulsão com solução aquosa de FucoPol, 

sendo ambos adequados para a aplicação pretendida. 

Estes scaffolds foram testados com HDFn para avaliar a bioactividade. Em ambos as células 

conseguiram aderir, proliferar e diferenciar, com possível deposição de matriz extracelular (ECM). O 

ensaio de oito dias revelou um aumento no crescimento celular e deposição organizada de ECM nos 

scaffolds com FucoPol em detrimento dos scaffolds sem FucoPol. O ensaio de catorze dias 

confirmou a geometria dos poros como sendo o fator limitante para a invasão completa dos scaffolds. 

Este trabalho demonstrou o potencial de scaffolds P(HBHVHHx)/FucoPol para a reconstrução de 

derme humana. 

 

 

Palavras-chave: engenharia de tecidos da pele; scaffolds baseados em PHA; polihidroxialcanoatos 

de cadeia curta-cadeia média (scl-mcl-PHA); poli (3-hidroxibutirato-co-3-hidroxivalerato-co-3-

hidroxihexanoato) (P(HBHVHHx)); FucoPol 
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1.1 Introduction 

1.1.1 Three-Dimensional (3D) Human Skin Equivalents 

The search for a physiologically relevant in vitro three-dimensional (3D) Human Skin Equivalent 

(HSE) has been an endeavour of the past century. Since 2013, with new EU regulations (Regulation 

(EC) N° 1223/2009), cosmetic products (or any component in the formulation, ingredient combination 

and final product) that have been subjected to animal testing cannot be placed on the EU market 

(Derr et al., 2019). With these new restrictions, studies for in vitro HSEs have seen a relevant increase 

in the past decade. Adding to the cosmetic testing (e.g. safety and toxicity studies), pharmaceutical 

testing and tissue engineering (e.g. regenerative medicine) are also using in vitro human skin models. 

A full-thickness in vitro HSE can also be considered an important tool for the fundamental study of 

the biology and pathology of the human skin (Kinikoglu, 2017). 

Three-dimensional HSEs, when achieved by the classic tissue engineering approach, are 

constructed with a 3D scaffold analogue to the extracellular matrix (ECM), aiming to guide adhesion, 

growth and differentiation of the human skin seeded cells, resulting in a 3D construct that resembles 

in vivo tissue properties: structural, mechanical and functional (Kinikoglu, 2017; Randall, Jüngel, 

Rimann, & Wuertz-Kozak, 2018a). 

 Human Skin Structure 

Being the largest human organ, reaching 1.7 m2 of covering area and approximately 15 % of 

bodyweight, skin acts as the first protective barrier at the interface between the human body and the 

surrounding environment (Lanigan & Zaidi, 2010). Structurally it can be divided in three layers, from 

the most internal to the external facing: hypodermis, dermis and epidermis, as depicted in Figure 1.1. 

Hypodermis, also known as the subcutaneous layer, is comprised of tiers of fat-storing cells, called 

adipocytes, runned through by loose connective tissue, both being intersected by blood vessels and 

nerves, functioning as an insulator, shock absorbant and source of nourishment. Immediately above 

there is the dermis, a thick fibrous layer consisting of heterogenous cells (fibroblasts, dermal 

dendrocytes, mast cells and histiocytes), collagen and elastic fibers, ground substance 

(glycosaminoglycans – GAGs), blood and lymphatic vessels, nerves and appendages (hair follicles, 

sebaceous, apocrine and eccrine glands and nails). Approximately 75 % of the skin mass is attributed 

to collagen fibers that confer its elasticity, making the dermis the source for skin’s flexibility and tensile 

strength. Additionally, functions of the dermis include maintenance of hydration, mechanical and 

thermal protection, sensory signal propagation and immunologic defense (Lanigan & Zaidi, 2010; 

Randall, Jüngel, Rimann, & Wuertz-Kozak, 2018b).   
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The outermost layer of the skin is the epidermis, connected to the dermis by the dermo-

epidermal junction. Epidermis can be divided in separate strata, increasing in the keratinization 

(terminal differentiation) degree from the bottom to the surface: stratum germinatum (the only dividing 

cells in this layer), stratum spinosum (keratin producing cells), stratum granulosum (helps in the 

aggregation of keratin filaments), stratum lucidum (only present in the palms and soles, provides 

thickness) and stratum corneum (composed of anucleated, non-living, keratin filled, flattened 

corneocytes). About 95 % of the epidermal cells are keratinocytes, the remaining cells are 

melanocytes (located at the basal layer, providing ultra-violet (UV) protection through the production 

of melanin), merkel cells (also at the basal layer and responsible for the sense of touch) and 

Langerhans cells (present in the stratum spinosum, being immunologically competent cells) (Lanigan 

& Zaidi, 2010; Randall et al., 2018a; Suhail et al., 2019). 

 

  

Figure 1.1. Healthy Skin Structure. Retrieved with permission from (Randall et al., 2018) 
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 From 2D to 3D cell culture: overview 

 The epicenter for the knowledge necessary to generate reconstructed human skin models lies 

in the middle of the twentieth century, when the first attempts at separating human epidermis from 

dermis, isolation and cultivation of human keratinocytes were successful (Niehues et al., 2018). Also, 

in 1948, the cultivation of adult mammalian skin epithelium in vitro was accomplished (Medawar, 

1948). Later, throughout the next two decades, the development of long-term culture of epithelial-like 

cells was achieved, although the cells showed more similarities to HeLa cells than to keratinocytes 

(Wheeler, Canby, & Cawley, 1957). In 1960, the culture of isolated keratinocytes from adult guinea 

pig skin, with no underlying dermal support, were shown to be able to form colonies when seeded at 

high densities, however, when subcultured they would differentiate (Cruickshank, Cooper, & Hooper, 

1960). Rheinwald & Green, (1975) were able to develop cultures of human keratinocytes that 

originated from a single keratinocyte, by using a lethally irradiated 3T3 fibroblast layer as a feeder for 

the single epidermal cell seeded on top. After this, the culture of large quantities of keratinocytes for 

in vitro studies was made possible, making the monolayer culture of human keratinocytes a 

fundamental tool for the study of skin biology and pathophysiology in vitro. This two-dimensional (2D) 

method allowed for simple, reproductible and high-throughput studies, however, these advantages 

were outshined by the lack of physiological relevance of this model (Niehues et al., 2018). 

 The shift from 2D models, that remained the standard method for cell cultures for over a century 

and still are appealing to some laboratory studies (due to ease and cost-effectiveness), is motivated 

by the need of creating cellular models that mimick in vivo physiological conditions – representing the 

full-thickness and three-dimensional spatial arrangement of real tissues.  

These 2D models consist of a monolayer of cells seeded and grown on a solid flat surface (glass 

or polystyrene), fed by a medium that contains all the nutrients (amino acids, carbohydrates, vitamins 

and minerals), growth factors, hormones, pH and osmotic pressure needed, maintained with the right 

atmosphere (O2, CO2) and temperature. Despite of the fundamental role that these 2D cell cultures 

played in furthering the knowledge in cell behaviour and drug discovery, not all results and 

conclusions can be translated into in vivo physiology. Studies of cancer mechanism greatly evolved 

due to 2D cell culture, however, it also became clear that it is not the right model for drug development, 

demonstrating its flaws in predicting in vivo toxicity and drug efficacy. These models were 

unrepresentative of three-dimensional arrangements of cells in vivo, namely cell-cell, cell-matrix and 

cell-environment interactions, affecting cellular responses (morphology, migration, proliferation, 

differentiation, mechanical and biochemical signalling as well as gene and protein expression) 

(Antoni, Burckel, Josset, & Noel, 2015; Hoarau-Véchot, Rafii, Touboul, & Pasquier, 2018; Randall et 

al., 2018a).  
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For all these limitations, the development of 3D constructs became increasingly more relevant 

and in the late 1970’s the first HSE, using a collagen hydrogel, was described (Bell, Ivarsson, & 

Merrill, 1979). In the past three decades there have been a noticeable expansion in the literature 

regarding 3D cell cultures (Figure 1.2), with some studies demonstrating that the cellular response in 

3D cultures is more physiologically relevant when compared with 2D cultures (Hoarau-Véchot et al., 

2018). 

One of the advantages of 3D cell cultures is the fact that this method can be highly tunable and 

adaptable to suit the type of study performed. This allows a variety of applications, such as cancer 

research, drug discovery, stem cell research and physiological and disease models of tissues (Jensen 

& Teng, 2020). A comparison between 2D and 3D cell cultures is summarized in Table 1.1, explaining 

some of the advantages and disadvantages of both models. 

HSEs have developed and improved greatly over the past decades, bringing to light many 

advantages over the use of animal models, being less expensive, less time-consuming and more 

ethically correct. Additionally, the most frequently used animal model, mice, is not the best suited 

model to correlate with human skin, especially due to divergencies in its architecture, such as 

presenting a much thinner epidermis with more densely packed hair follicles, melanocytes located 

mainly in dermal hair follicles and an extra cutaneous muscle layer that is absent in human dermis. 

The one approach that can represent almost ideal in vivo conditions is the culture of human skin (gold 

standard) explants obtained from biopsies and donors, achieved by the culturing of the intact skin 

samples (containing all the resident skin cells). However, this method owes to its complexity, cost, 

ethical questions, lack of variability and availability, the reasons why it is not suited for most studies 

(Ali et al., 2015; Randall et al., 2018a).  
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Figure 1.2.Number of publications per year (1975-2020) on 3D cell cultures (data gathered  from PubMed). 
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By filling the gaps in both 2D and animal models, 3D cell culture appears to be the way forward. 

Giving the recent and constantly evolving advances in the field, as well as the ethical questions 

imposed by the use of animal and explant models, it is possible and justified to develop in vitro 3D 

models that can mimic physiological conditions and more accurately represent tissues in vivo. 

Table 1.1. Comparison between 2D and 3D cell cultures. Adapted with permission from (Jensen & Teng, 2020). 

Characteristics 2D cell culture 3D cell culture 

Cell shape 

o Cell shape is flat and elongated 

o Cells grow into a monolayer on the 

plate 

o Natural cell shape is maintained 

o Cells grow into aggregates/spheroids 

o Spheroids contain multiple layers 

Cell proliferation 
o Proliferation occurs at a unnaturally 

rapid pace 

o Proliferation rates are realistic and 

depend on the technique and types of 

cells being studied 

Cell differentiation o Differentiation is poor o Cells are well differentiated 

Cell junction 

o Cell junctions less frequent and 

unrepresentative of the real 

junctions 

o Cell junctions are common and allow for 

cell-cell communication 

o Communication through exchange of 

ions, small molecules and electrical 

currents 

Cell exposure to 

medium 

o All cells receive the same amount of 

nutrients and growth factors 

o More cells in the same stage of the 

cell cycle 

o Nutrients do not have to be equally 

divided for all cells but can be if needed 

Drug sensitivity 

o Cells have less resistance to drugs, 

making it look like the drugs 

administered were a successful 

treatment 

o Drugs are not well metabolized 

o Cells have better drug resistance 

o Drug metabolism is improved 

o More accurate representation of the 

drugs effect 

Response to 

stimuli 

o Inaccurate representation of 

response to mechanical stimuli 

o Cells are not subject to gravity since 

they are unable to expand three-

dimensionally 

o Accurate representation of response to 

mechanical stimuli 

o Cells can expand in 3D, giving a more 

accurate representation of in vivo 

Expression levels 
o Gene and protein expression levels 

are often very different from in vivo 

o Levels of gene and protein expression 

similar to the ones found in vivo 

Cost 
o It’s cheaper than 3D for large scale 

studies 

o Typically more expensive and time 

consuming than 2D studies 

o Reduces the difference between in vivo 

and in vitro drug screening, reducing the 

need to use animal models 

Usage and 

analysis 

o Highly reproducible and easy to 

interpret 

o Better for long-term cultures 

o More difficult to replicate experiments 

o More difficult to interpret results 
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 3D human skin constructs 

 3D constructs can be essentially divided in two main categories: scaffold-based and scaffold-

free. Scaffold-free systems can be defined as the self-assembly of one or more cell types into non-

adherent cell aggregates, producing a spheroid-like structure (hence being called spheroids), grown 

with no need for a physical support and able to grow their own ECM (Knight & Przyborski, 2014; 

Randall et al., 2018a). Some examples of these systems are hanging drop microplates, magnetic 

levitation and spheroid microplates with ultra-low attachment coating. The first is obtained by the force 

of gravity, when monodispersed cells aggregate due to being immersed in a hanging droplet of 

medium, adherent to a top plate and without contact to the humidified bottom plate, as pictured in 

Figure 1.3. When a microplate with ultra-low attachment coating is used to harbour these cell 

aggregates, the initial media volume is higher allowing the formation of bigger and more complex 

spheroids. Two of the most valuable applications of this technique are (i) construction of organ 

spheroids that resemble in vivo characteristics, like a cardiac spheroid obtained by co-culture of 

human primary cardiomyocytes, endothelial cells and fibroblasts that resulted in a 3D model where 

toxic effects on human heart tissue could be studied (Polonchuk et al., 2017); (ii) 3D models for cancer 

studies, due to the hypoxic conditions created in some spheroids (Knight & Przyborski, 2014). 

Magnetic levitation is achieved by loading cells with magnetic nanoparticles, immersing them in a low 

adhesion plate and forcing them to float at the air-liquid interface with the use of an external magnet. 

Despite their limitations, these methods can be relevant due to their simplicity, cost and high-

throughput (Langhans, 2018; Randall et al., 2018a). 

  

Figure 1.3. Hanging drop plate technique. Retrieved with permission from (Knight & Przyborski, 2014). 
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Scaffold-based methods can be generally defined as systems where cells are seeded in a 

support scaffold (hydrogel, fibrous or porous material) that allows for their migration, proliferation and 

differentiation, diverging from scaffold-free methods in their ability to generate a 3D model that 

mechanically, structurally and functionally resembles real tissues (Randall et al., 2018a). The material 

used to produce such scaffolds can be classified as natural (e.g. collagen, fibrin, alginate, hyaluronic 

acid) or synthetic (e.g. titanium, bioactive glass, polystyrene),  and the technique applied could result 

in a hydrogel or a solid scaffold. 

Hydrogels are hydrophilic polymeric structures, formed within a highly aqueous environment. 

They can either be naturally derived or synthetic, being that the polymerization of the chains allows 

for the production of hybrid hydrogels with different materials combined, resulting in novel physical 

and biological properties (Chai, Jiao, & Yu, 2017). Therefore, one of the main characteristics is the 

tunability of properties, permitting better physiological relevance and adaptation to the experiment 

performed. The process of gelation can occur by different methods, such as electrostatic forces, 

covalent chemical cross-linking and physical entanglement of polymer chains. When applied to tissue 

engineering or cell culture, the hydrogel can be designed for encapsulation of the cells or for migration 

of the cells from the surface to the interior of the gel. The high water content in these scaffolds allows 

cell-liquid interaction, added to the fact that the hydrogel enables the diffusion (limited to a certain 

extent) of cytokines and growth factors through the material, counting as some of the advantages of 

these 3D constructs (Jensen & Teng, 2020; Knight & Przyborski, 2014). However, some drawbacks 

can be related to their micro-structural complexity that can impair cell shape, mobility, proliferation 

and consequently matrix production, prolonged cultures in aqueous environment can lead to a 

structural weakening due to swelling, as well as the use of UV light or other possibly prejudicial 

components to the cells in the hydrogel production (Duval et al., 2017; Y. S. Zhang & 

Khademhosseini, 2017).  Additionally, conventional hydrogels have limited mechanical strength and 

their matrix can, under certain conditions, degrade at a faster rate than the formation of new tissue, 

which leads to a biochemical change and decrease in matrix elasticity (Duval et al., 2017).  

Regarding in vitro 3D cell cultures, specifically within skin studies, the most widely material used 

is collagen I, the main constituent of dermal ECM. Due to high water content, collagen I is susceptible 

to contraction induced by forces exerted by fibroblasts within the matrix (Moulin et al., 1996). 

Furthermore, enzymatic degradation by some collagenases and gelatinases impairs the long-term 

use of such scaffolds (Randall et al., 2018a). Some of these 3D scaffolds are commercially available, 

one of them being Matrigel® (Corning), a 3D culture hydrogel based in the extract of Engelbreth-Holm-

Swarm (EHS) mouse sarcoma cells, containing common ECM proteins (e.g. collagen, laminin, 

fibronectin and entactin) and growth factors. Nonetheless, this model has disadvantages, such as the 

fact that is derived from tumor cells, its batch-to-batch variability, alterations in cell morphology, 

migration, proliferation, cell cycle and gene expression patterns (Fontoura et al., 2019; Knight & 
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Przyborski, 2014). HSEs are 3D cell culture models developed to test pharmaceutical products in 

vitro, research and development studies and that can be used in regenerative medicine as artificial 

skin grafts. These constructs can represent only the epidermal layer of the skin, the dermal layer or 

both layers as a full-thickness skin equivalent (Teimouri, Yeung, & Agu, 2019). 

Solid scaffolds, as mentioned, can generally be synthesized as a porous matrix or fibrous mesh. 

The main advantage, when compared to other methods of 3D constructs, is the ability of these 

scaffolds to reproduce ECM structure, representing an important tool when it comes to study specific 

interactions, like cell-ECM (Jensen & Teng, 2020). 

 Reconstructed Human Dermis: Scaffold material 

 One of the most crucial components of HSEs is the scaffold itself that has to fulfill some 

requirements, in order to achieve a relevant reconstructed human dermis: i) mimick the natural ECM 

(controlled porosity and interconnectivity of the pores); ii) provide mechanical strength and shape to 

the reconstructed tissue (stiffness, elastic modulus, etc.); iii) biodegradation at a slow rate; iv) 

biocompatibility;  v) bioactivity required for cell adhesion, proliferation, differentiation and function. 

Other aspects ought to be considered, such as process of sterilization, availability, ease of production, 

storage and commercial viability (Kinikoglu, 2017; Nikolova & Chavali, 2019). 

As mentioned previously, most of  the current HSEs for clinical applications or in vitro cell culture 

studies still make use of collagen as main component. Some are currently commercially available, 

being the most common examples EpiSkin™(SkinEthic/L’Oreal, France), EpiDerm™(MatTek Corp., 

USA), and SkinEthic RHE™ (EPISKIN Laboratories, France), given that the latter two are constructed 

by seeding in a polycarbonate filter (Pellevoisin et al., 2018; Suhail et al., 2019). Naturally derived 

polymers, such as fibronectin, silk, alginate, fibrin, chitosan, elastin or GAGs, being non-cytotoxic and 

almost immunologically inactive in vivo, are considered ideal options for human cell culture. 

Nonetheless, these polymers are subjected to variability between batches, have weak mechanical 

properties (due to high water content in some of them) and are prone to enzymatic degradation 

(Randall et al., 2018a). 

For all the above mentioned reasons, attentions started to gravitate towards more tunable 

materials, that still maintained biocompatibility and biodegradability but granted more control over 

physicochemical properties and production cost could be reduced. These materials were synthetic 

polymers, including polyesters like poly(ε-caprolactone) (PCL), polylactic acid (PLA), polyglycolic acid 

(PGA), polylactic-co-glycolic acid (PLGA) and polyethers such as polyethylene glycol (PEG) and its 

co-polymers (Randall et al., 2018a). Additionally, synthetic plastics like polystyrene (PS) represent a 

big portion of the commercially available solid scaffolds for 3D cell culture (e.g. Alvetex®, ReproCell, 

Glasgow, Scotland), due to being chemically inert, stable and easily mass produced at low-cost, 

nevertheless the stiff nature and absence of biochemical activity found in soft tissues like the skin 
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make them less relevant for in vitro studies of such tissues (Knight, Murray, Carnachan, & Przyborski, 

2011; Knight & Przyborski, 2014). Moreover, PS is synthesized from non-renewable hydrocarbon 

sources, bearing a heavy impact in environment, health and economy (Muneer et al., 2020). However, 

synthetic polymers (e.g. PLGA) need an extra step of polymerization for their synthesis making the 

process elaborate and with the additional disadvantage of lacking bioactive sites that promote cell 

adhesion, often needing blending with natural polymers to overcome this default (Elmowafy et al., 

2019; Knight & Przyborski, 2014). Owing to all the limitations stated and as a sign of the current times, 

the search for alternative materials that can gather all the requirements for a 3D cell culture scaffold 

and which synthesis and processing could be achieved through a more sustainable way, led to the 

study of natural polymers such as polyhydroxyalkanoates (PHAs). 

1.1.2 Biopolymers  

 Over the years, biopolymers have been elected as one of the best options for scaffolds material, 

mainly due to their inherent properties, such as excellent biocompatibility and biodegradability 

(Ambekar & Kandasubramanian, 2019). In bone tissue engineering spectrum, Chen et al. (2016) 

fabricated poly (L-lactic acid) (PLLA) nanofibrous porous tubular scaffolds by combining thermally 

induced phase separation (TIPS) and particle leaching, that proved to be biocompatible, 

cytocompatible and bioactive, revealing the potential for long bone tissue regeneration. Remya et al.  

(2018), through blending PCL with water soluble polyethyleneoxide (PEO) by electrospinning, 

obtained a PCL scaffold with improved mechanical properties, hydrophilicity and tunable degradation 

profile, promising for bone tissue engineering applications. For cartilage tissue engineering, Neumann 

et al. (2016) developed a hydrolytically degradable PEG hydrogel that showed promising results for 

this application. Regarding cardiac tissue engineering, Constantinides et al. (2018) demonstrated the 

applicability of mcl-PHA/PCL porous blends, fabricated as thin films by solvent casting/particulate 

leaching method, for controlled delivery of cardiovascular progenitor cells (CPCs) and possibly for 

maximizing myocardial regeneration. Also, Liu et al. (2015) used PLLA to produce highly porous 

nanofibrous scaffolds through phase separation/freeze-drying/particulate leaching method that 

supported cardiac tissue formation by culturing CPCs. Within neural tissue engineering, Shafei et al. 

(2016) developed a polypyrrole-coated PCL nanofibrous scaffold fabricated by electrospinning 

followed by vapour phase polymerization, resulting in a promising conducting scaffold for neural 

tissue engineering applications. Another development was made by Wang et al. (2017), for creating 

a conductive porous scaffold composed of poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles 

on chitosan/gelatine porous hydrogel scaffold, that revealed good biocompatibility, controlled 

biodegradability and electrical conductivity with potential to be used in neural tissue engineering.  
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 For skin tissue engineering, a great number of studies have been made and published in the 

last two decades, with a heterogeneity of biomaterials. Han et al. (2014) developed a 

gelatine/chitosan porous scaffold by freeze-drying technique that revealed good fibroblast adhesion 

and proliferation, but poor regeneration. Later, Lu et al. (2016) improved the gelatine/chitosan porous 

scaffold by blending in ascorbic acid and crosslinking with tannin acid, resulting in a better 

regeneration capacity that was further improved by loading with platelet-rich plasma. Collagen has 

been continuously used for tissue engineering, despite some of its drawbacks like poor mechanical 

properties and fast degradation. Yu et al. (2017), developed a collagen hydrogel cross-linked with 

non-cytotoxic succinimidyl glutarate-PEG (PEG-SC) as the dermal layer, resulting in lower 

contraction and less enzymatic degradation of this hydrogel. Matsumine et al. (2019) obtained very 

promising results by applying basic fibroblast growth factor impregnated collagen/gelatine sponge 

(bFGF-CGS) in reconstructive surgery of acute full-thickness skin defects that resulted in wound 

closure after a short period of time. As mentioned, synthetic polymers commonly need some surface 

modification or bending with natural polymers in order to improve bioactivity. Accordingly, Gautam et 

al. (2014) modified nanofibrous PCL/gelatine scaffold by grafting with collagen type I after 

electrospinning of the fibers, resulting in enhanced proliferation of mouse fibroblast cells (L929). Also, 

Sharif et al. (2017) developed an electrospun PCL nanofibrous scaffold grafted with collagen and 

after seeding with endometrial stem cells (hEnSCs) concluded that this construct was able to 

stimulate angiogenesis, revealing its potential. A full-thickness scaffold was developed by Haldar et 

al. (2019) where the top layer (epidermis) was composed of PCL by casting method, the middle layer 

(dermis) of PCL nanofibers that were electrospun and the third layer (hypodermis) was a gelatine 

lyophilized hydrogel, revealing wound-healing efficacy after in vivo studies that resembled the 

structure of native skin. 

 PLGA is another commonly used biopolymer for skin tissue engineering. Yang et al. (2009) 

prepared a highly porous composite mat of PLGA and collagen obtained by electrospinning that 

revealed good adhesion, proliferation and ECM secretion of the cultured human dermal fibroblasts, 

dependent on the quantity of collagen on the composite. Later, Wang et al. (2013) fabricated a 

reinforced hybrid scaffold by integrating PLGA knitted mesh (PLGAm) with a collagen-chitosan (CCS) 

porous sponge. This PLGAm/CCS revealed improved mechanical properties and ability to induce 

angiogenesis and in situ tissue regeneration, unveiling the potential for skin tissue engineering. More 

recently, Sobhanian et al. (2019) developed an electrospun nanofibrous scaffold composed of poly 

(vinyl alcohol) (PVA), gelatin and alginate, that was modified by grafting with collagen, revealing better 

cell viability and proliferation of this scaffold upon comparation with non-modified nanofibrous 

scaffold. Other biopolymeric scaffolds for skin tissue engineering are listed in Table 1.2. 
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Table 1.2. Examples of biopolymeric scaffolds employed in skin tissue engineering 

Material Method Result/Properties Reference 

Poly(L-lactic acid)-co-

poly(ε-caprolactone) 

(PLACL)/gelatin 

Electrospinning; 

air plasma 

treatment 

Plasma-treated PLACL/gelatin 

nanofibrous scaffold showed 

better overall results, e.g. for 

proliferation, morphology and 

secretion of collagen of 

fibroblasts 

Chandrasekaran et 

al. (2011) 

Chitosan/PCL and PLLA 
Electrospinning 

and TIPS 

Bi-layer scaffold, upon co-culture 

of fibroblasts and keratinocytes, 

rendered a micro-environment 

similar to native skin 

Lou et al. (2014) 

PLACL/silk fibroin 

(SF)/tetracycline 

hydrochloride 

(TCH)/ascorbic acid (AA) 

Electrospinning 

PLACL/SF/TCH/AA scaffolds 

revealed better 

microenvironment conditions by 

collagen secretion, leading to 

tissue regeneration 

Sridhar et al. (2015) 

PLGAm/CCS and 

polyurethane (PU) 

TIPS and freeze-

drying 

Upon transplantation into full-

thickness skin defects, the PU-

PLGAm/CCS bi-layer dermal 

substitute revealed favourable 

regeneration capability 

Wang et al. (2016) 

Poly(ε- 

caprolactone)-

poly(ethylene glycol)-

poly(ε-caprolactone) 

(PCEC), iron oxide 

nanoparticles (Fe3O4 

NPs) 

Electrospinning 

Magnetic PCEC/Fe3O4 fibers 

showed increase in cell 

adhesion, viability and 

proliferation with the increase in 

Fe3O4 NPs concentration 

Zhang et al. (2017) 

Silk-collagen 
Cross-linking 

hydrogel 

The HSE described achieved 

better resistance to degradation 

and contraction than collagen-

only models 

Vidal et al. (2018) 

 PHAs 

As mentioned previously, the search for more sustainable alternatives to synthetic polymers, 

especially hydrocarbon sourced, has seen an exponential increase in the last decades. The advent 

of PHAs as promising biomaterials for tissue engineering is backed by their inherent properties, such 

as biocompatibility, biodegradability and non-toxicity. Additionally, these natural alternatives do not 

change their pH value during degradation, allowing for a better interaction with cells and immune 

system when compared to more commonly used polymers like PLGA, PCL, PGA and PLA. Moreover, 

the mechanical versatility of these biopolymers, going from thermoplastic to elastomeric, makes them 

a very promising alternative for tissue engineering, with a great variety of applications, either for hard 

or soft tissue (Rodriguez-Contreras, 2019).  
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Early published studies revealed that PHAs can be used to fabricate scaffolds for tissue 

engineering, being that some of the better known are polyhydroxybutyrate (PHB), 

polyhydroxyvalerate (PHV) and poly(hydroxybutyrate-co-hydroxyvalerate) (P(HBHV)) (Muneer et al., 

2020). Biodegradable PHAs (e.g. PHB and P(HBHV)) possess the ability to support adhesion and 

growth of cells in vitro, which was studied by Shishatskaya and Volova (2004), proposing these 

biomaterials as a good option for production of matrices for in vitro proliferous cells.  Zhao et al. (2003) 

developed films and scaffolds of the PHB/P(HBHHx) blend that revealed increase in mechanical 

properties (elongation at break) with the increase in P(HBHHx) content, as well as improved growth 

and proliferation of chondrocytes on the scaffolds, concluding that the constructs allow physiological 

function and cartilage repair. Santos et al. (2004) prepared various blends of PLLA/P(HBHV) and 

cultured Vero cells on them, obtaining promising results for the maintenance of cell proliferation and 

production of ECM in vitro. A P(HBHHx) conduit was constructed by particle leaching method and 

after one month of implantation in defective sciatic nerve of Sprague-Dawley rats, the disrupted 

nerves had functionally recovered, indicating a potential application of these conduits for nerve 

damage repair (Bian, Wang, Aibaidoula, Chen, & Wu, 2009). Recently, in her thesis, Esmail (2019) 

successfully produced porous/fibrous PHA-based scaffolds with promising results for fibroblast 

adhesion and proliferation, revealing potential for these 3D scaffolds in skin tissue reconstitution. 

Over the years, PHAs have been studied, as promising scaffold material, for a variety of applications 

such as bone tissue engineering (Degli Esposti, Chiellini, Bondioli, Morselli, & Fabbri, 2019), nerve 

tissue engineering (L. Wang et al., 2010) and skin tissue engineering (Ekaterina I. Shishatskaya, 

Nikolaeva, Vinogradova, & Volova, 2016; Y. W. Wang et al., 2005). 
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 Polysaccharides 

 Polysaccharides are one of the naturally occurring polymers (biopolymers) that can be 

synthetized by plants, animals, bacteria and fungi. These macromolecules are composed of 

monosaccharide residues that are coupled to each other by glycosidic bonds (Shi, 2016; F. G. Torres, 

Troncoso, Pisani, Gatto, & Bardi, 2019). Possessing excellent biocompatibility, polysaccharides have 

been reported to comprehend complex biological activities and a variety of functions, such as 

immunoregulatory, anti-tumor, anti-virus, antioxidation and hypoglycaemic activity (Yu et al., 2017). 

Ferreira et al. (2015) reviewed the polysaccharides reported with immunostimulatory activity. 

Additionally, Khan et al. (2019) recently reviewed the promising results of polysaccharides as 

anticancer agents. Some bacterial exopolysaccharides (EPSs), generally formed intracellularly and 

transported to the extracellular environment, were able to reach industrial production due to their 

significant market value (bacterial cellulose and xanthan gum). However, other important applications 

for these macromolecules include their use in cosmetics, pharmaceuticals and biomedicine, due to 

high purity and functional properties (Freitas et al., 2010). FucoPol is a newly reported EPS that holds 

great potential, possessing biological activity related to high fucose content (Freitas, Alves, & Reis, 

2011). 

 

 The structure of this work was divided in chapters, with an introduction in the beginning, followed 

by materials and methods, results and discussion and a brief conclusion for each chapter. 
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1.2 Motivation 

 The skin is the largest organ in humans, representing a barrier between the external 

environment and the organism and, among various critical functions, prevents the invasion of 

pathogens, protects against chemical and physical agressions and limits the loss of water and 

electrolytes (Ali et al., 2015). Skin tissue engineering is an emerging field that aims to provide efficient 

alternatives in regenerative medicine as well as in the reconstruction of human skin for drug testing. 

This reconstructed human skin, as in vitro models, could replace the experimentation with animals in 

vivo and at the same time provide a human model that would eliminate the species related differences 

found in drug testing (Hoarau-Véchot et al., 2018; Kinikoglu, 2017). One common approach to 

achieve this is based on the use of solid scaffolds that can be defined as 3D porous biomaterials able 

to guide seeded cells through adherence, proliferation, differentiation and deposition of ECM 

components, forming a functional and structural analogue of the human skin tissue (R. Hokmabad, 

Davaran, Ramazani, & Salehi, 2017). 

 Naturally-derived materials, such as PHAs and polysaccharides, have been studied for 

biomedical applications, due to their inherently advantageous properties, such as biocompatibility, 

biodegradability, non-cytotoxicity and bioactivity (Elmowafy et al., 2019; Yu et al., 2017).  

 In this work a P(HBHVHHx) terpolyester was used to produce porous scaffolds for dermis 

reconstruction, by the emulsion templating method. The exopolysaccharide FucoPol was 

incorporated as a possible emulsion stabilizer and its bioactive functions toward HDFn were studied.  

 Porous scaffolds were fabricated through water emulsion templating method, later a FucoPol 

aqueous solution was added as the dispersed phase of the emulsion and lastly a coating method with 

concentrated FucoPol solution was employed to the water emulsion templated scaffolds, resulting in 

three different porous scaffolds. These three scaffolds were used for the dermal construct assays 

with HDFn for eight and fourteen days, assessing their bioactivity. 

 The aim of this work was the production of porous scaffolds with appropriate properties for 

application in skin tissue engineering. With P(HBHVHHx) as a promising biomaterial due to the 

inherent advantageous properties that possesses and FucoPol an interesting addition with possible 

improvements in the scaffold production and bioactivity. A naturally-derived porous scaffold, with 

suitable physical and mechanical properties, that promotes bioactivity towards HDFn was the ultimate 

goal of the present work. 
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2 Chapter Two – Biopolymers for scaffolds development 
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2.1 Introduction 

2.1.1 PHAs  

 PHAs are a family of biodegradable biopolyesters accumulated intracellularly in prokaryotic 

organisms such as bacteria, in the form of water insoluble inclusions that mainly act as storage 

substances in cells subject to stress (Aljuraifani, Berekaa, & Ghazwani, 2018; Lee, 1995; Muneer et 

al., 2020; Sudesh, Abe, & Doi, 2000). These inclusions, besides acting as sources of carbon and 

energy for vegetative cells, comprehend complex biological functions, such as protection against 

intracellular ice formation, UV irradiation, high temperatures and osmotic imbalances (Sedlacek et 

al., 2018). In 1926, the first PHA was discovered in Bacillus megaterium by Lemoigne, reporting that 

the homopolymer polyhydroxybutyrate (PHB) accumulated intracellularly in this bacteria (Lemoigne, 

1926). For several decades PHB was thought to be the only constituent of this reserve polymer, until 

in 1974 other hydroxyalkanoates (HA) units were observed in chloroform extracts from activated 

sewage sludge, being this the first report of 3-hydroxyvalerate (3HV) and 3-hydroxyhexanoate (3HHx) 

units (Wallen & Rohwedder, 1974). PHAs accumulate as granular inclusions (Figure 2.1) in the cells 

cytoplasm with sizes ranging from 0.2 - 0.5 µm and the molecular weight falls between 2 × 105 and 3 

× 106 Da (Anjum et al., 2016; Khanna & Srivastava, 2005). To date, more than 150 monomers of PHA 

have been identified. These biopolyesters have different properties depending on the monomer 

composition, namely, homopolyesters are made up of only one type of monomer while copolyesters 

are composed of different monomer units (Grigore et al., 2019).  

PHAs are linear polymers composed of hydroxyalcanoate units connected by ester bonds 

(Figure 2.2) (Rodriguez-Contreras, 2019; Sudesh et al., 2000). The bacterial species and carbon 

source used for PHAs synthesis influence the type of polymer produced in the fermentation process, 

thus they can be classified as short-chain length PHA (scl-PHA) with 3-5 carbon units, medium-chain 

length PHA (mcl-PHA) containing 6-14 carbons per monomer and long-chain length PHA (lcl-PHA) 

with more than 14 carbons (Muneer et al., 2020).  

Figure 2.1. PHAs granular inclusions. Scale bar at 0.5 µm. Retrieved with permission from Sudesh et al., 2000. 
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Due to the differences in molecular composition and chain lengths, the physico-chemical, 

mechanical and thermal properties of PHAs vary greatly. Most of scl-PHAs, such as PHB, are 

characterized as rigid and brittle biothermoplastics, mainly because of its high crystallinity ranging 

from 60-80 %, while mcl-PHAs (e.g. poly (hydroxyhexanoate) (PHHx) or poly (hydroxyoctanoate) 

(PHO)) are considered more elastic and sometimes viscous materials, with lower crystallinity degree, 

melting and glass transition temperatures (Cruz et al., 2016; Muneer et al., 2020). 

PHB is the most comprehensively studied amongst PHA family. It is mainly characterized as 

being highly crystalline due to its stereo regularity, water insoluble and resistant to hydrolytic 

degradation to a certain degree. Also, has low O2 permeability, good thermoplastic properties but 

poor mechanical properties when compared to some petroleum-based polymers such as 

polypropylene (PP). This homopolymer is commonly used for bone tissue engineering, as mentioned 

previously, owing this to being piezoelectric, which helps in the process of osteogenesis (Anjum et 

al., 2016; Khanna & Srivastava, 2005). The incorporation of other HA monomers in the polymer chain, 

such as 3HV and 3HHx, improves material properties, including crystallinity, melting temperature, 

stiffness and toughness. One of this copolymers is P(HBHV) with improved characteristics, namely, 

relatively lower crystallinity (50-70 %), lower melting point, stiffness, higher flexibility (decrease in 

Young Modulus) and increased elongation at break, when compared to PHB. The fraction of HV in 

the copolymer influences the material properties, specifically, the increase in HV content is followed 

by a decrease in melting temperature and Young Modulus, a increase in elongation at break which 

makes the copolymer more flexible and thermally processable without thermal degradation (Khanna 

& Srivastava, 2005). In Table 2.1 a comparison between PHB, other PHAs and petroleum-based 

plastics is depicted.   

a) b) 

Figure 2.2. General structure of PHA polymer family (a); Structure of some common monomers of scl-PHA (HB 

and HV) and mcl-PHA (3-hydroxyhexanoate: 3HHx, 3-hydroxyoctanoate: 3HO, 3-hydroxydecanoate: 3HD, 3-

hydroxydodecanoate: 3HDD) (b). Adapted with permission from Rodriguez-Contreras et al., 2019. 
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Table 2.1. Thermo-mechanical properties of some PHAs and most common petroleum-based plastics. Adapted 

with permission from Khanna et al. (2005) and Anjum et al. (2016). (n.a – data not available) 

Polymer Composition 

Young 

Modulus 

(GPa) 

Tensile 

Strength 

(MPa) 

Elongation 

at Break 

(%) 

Melting 

temperature 

(ºC) 

Glass 

Transition 

Temperature 

(ºC) 

P(3HB)  3.5 - 4 40 3 - 8 173 - 180 5 – 9 

P(3HB-co-HV) 

(3 wt% 3HV) 2.9 38 n.a 170 n.a. 

(14 wt% 3HV) 1.5 35 n.a 150 n.a. 

(25 wt% 3HV) 0.7 30 n.a 137 n.a. 

P(3HB-co-3HHx) n.a. n.a. 20 850 52 -4 

PP  1.0 - 1.7 
29.3-

38.6 
400 - 900 170 - 176 -10 

PS  3.0 - 3.1 50 3 - 4 80 - 110 21 

LDPE  
0.05 - 

0.2 
10 - 78.6 150 - 620 88 - 130 (-30) – (-36) 

 P(HBHVHHx) 

Terpolyester P(HBHVHHx), composed of 3-hydroxybutyrate (HB), 3-hydroxyvalerate (HV) and 

3-hydroxyhexanoate (HHx) is a random copolyester synthetized by recombinant microorganisms, 

considered to be one of the most promising additions to PHAs family. Copolymers that have in their 

composition both scl-HAs and mcl-HAs generally have better material properties when compared to 

scl-PHAs or mcl-PHAs (W. Zhao & Chen, 2007). Adding to the improvement in thermo-mechanical 

properties (Ye, Wang, Wang, Chen, & Xu, 2010), P(HBHVHHx) has been also compared with other 

materials used for biomedical applications, including PLA, P(HBHV), P(HBHHx) and tissue culture 

plates (TCP), revealing better biocompatibility and potential for cell culture, being one of the few PHAs 

that achieved better results than TCP (plasma-treated PS - tissue culture plates) for cell growth (Hu, 

Wei, Zhao, Liu, & Chen, 2009). In one of this studies, P(HBHVHHx) revealed promising thermo-

mechanical properties for skin tissue engineering, demonstrating a superior ability for epidermal 

HaCaT cells growth (Y. Ji, Li, & Chen, 2008). Additionally, this terpolyester was also studied for its 

biocompatibility towards fibroblast cell line L929 and osteoblast cell line MC3T3, proving to be a better 

substrate for cell attachment and proliferation when compared with PLA, PHB, P(HBHV) and 

P(HBHHx) (Liang, Zhao, & Chen, 2008). Table 2.2 summarizes thermo-mechanical properties of 

P(HBHVHHx) found in the literature.  
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Table 2.2. Different P(HBHVHHx) thermo-mechanical properties in literature. (n.a – data not available) 

P(HBHVHHx) 

composition  

Young 

Modulus 

(MPa) 

Tensile 

Strength 

(MPa) 

Elongation 

at Break 

(%) 

Melting 

temperature 

(ºC) 

Glass 

Transition 

Temperature 

(ºC) 

Reference 

84 mol % HB,       

3 mol % HV,       

13 mol % HHx 

109.8 8 481.1 114 -2.2 

Zhao and 

Chen (2007) 

88 mol % HB,       

1 mol % HV,        

11 mol % HHx 

318.9 10.1 276.9 n.a n.a 

Zhao and 

Chen (2007) 

83 mol % HB,       

5 mol % HV,       

12 mol % HHx 

290.5 15.7 340.1 n.a n.a 

Zhao and 

Chen (2007) 

89 mol % HB 

3 mol % HV, 

 8 mol % HHx 

n.a n.a n.a 148 -1.2 

Zhao and 

Chen (2007) 

83 mol % HB 

4 mol % HV, 

13 mol % HHx 

284.6 5.1 263.7 113.2 n.a 

Hu et al. 

(2009) 

2.1.2 FucoPol  

 As previously referred, FucoPol is a new fucose-rich extracellular heteropolysaccharide 

synthetized by Enterobacter A47. It has a high molecular weight (4.19 × 106 – 5.8 × 106 Da) and its 

repeating unit (hexamer) is composed of two fucose, two galactose, one glucose and one glucuronic 

acid residues (Concórdio-Reis et al., 2020; A. R. V. Ferreira et al., 2014).  

Amongst various properties, FucoPol has demonstrated good flocculating capability (Freitas et 

al., 2011), film-forming (A. R. V. Ferreira et al., 2014, 2016) and emulsifying ability (Freitas et al., 

2013, 2011). Additionally, as with many polysaccharides, FucoPol’s hydrophilicity, non-toxicity and 

biodegradability translates its suitability for biomedical applications. Moreover, biological properties 

such as modulation of cell-cell and cell-matrix interactions, makes these polysaccharides interesting 

for various applications (Péterszegi, Fodil-Bourahla, Robert, & Robert, 2003; Yu et al., 2017). 

Recently, Concórdio-Reis et al. (2020) demonstrated that FucoPol was not cytotoxic towards human 

skin keratinocytes and mouse fibroblasts, additionally it was found to promote in vitro migration of 

keratinocytes, revealing promising biocompatibility and possibly regenerative capacity. Additionally, 

Guerreiro et al. (2020) reported the non-cytotoxicity of FucoPol up to 0.25 % (w/v) and corresponding 

cryoprotective capability towards various cell lines. 
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2.2 Materials and Methods 

2.2.1 Biopolymers production and extraction  

PHA production was performed under the scope of the ResUrbis Project, at the pilot scale 

facilities of BIOENG (Faculdade de Ciências e Tecnologia – Universidade Nova de Lisboa). The 

biopolymer was produced by cultivation of a mixed microbial consortium in a three-stage bioprocess, 

as described by Albuquerque et al. (2010) using fruit waste as feedstock. The first stage, the 

acidogenic fermentation phase, was performed in a 100 L bioreactor, where the fruit waste was 

converted into a mixture of fermentation products (FP). The produced FP were used in the second 

stage of the bioprocess for the selection of a microbial population enriched in PHA-storing bacteria. 

This stage was performed in a 100 L bioreactor operated with an alternate feast and famine periods. 

Finally, in the PHA production stage, performed in a 60 L bioreactor, the selected microorganisms 

were fed with the FP produced in the acidogenic fermentation for PHA accumulation up to the 

culture’s maximum capacity. 

 The resulting cultivation broth recovered from the production bioreactor was centrifuged (8000 

rpm, 15 minutes at 4 º C) and the pellets obtained were lyophilized and weighted. PHA was obtained 

by Soxhlet extraction of the biomass using chloroform (250 mL) (Honeywell) at 80 º C for 48h. PHA 

was resolubilized in chloroform and precipitated in ice-cold ethanol (chloroform/ethanol 1:10 v/v) 

(Fisher Chemical), from which the precipitate was recovered in a previously weighted flask and left in 

a fume hood, at room temperature, for solvent evaporation. 

 FucoPol was supplied by BIOENG. It had been previously produced by cultivation of 

Enterobacter A47 (DSM 23139) in a 2 L bioreactor (BioStat B-plus, Sartorius, Germany) under a fed-

batch mode, using glycerol as the carbon source, as described by Torres et al. (2011), and extracted 

from the cultivation broth by diafiltration and ultrafiltration, as described by Ferreira et al., (2014). The 

extracted polymer was composed of fucose (35 wt%), glucose (31 wt%), galactose (24 wt%) and 

glucuronic acid (10 wt%), and with an additional content of acyl groups (pyruvyl, acetyl and succinyl 

residues) totalizing 12.3 wt% of the polymer’s dry mass (Concórdio-Reis et al., 2020). 
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2.2.2 Characterization of the PHA 

 Composition 

The polymer composition was determined by gas chromatography (GC), as described by Pereira 

et al. (2019). Briefly, a polymer sample (1.5 mg) was mixed with 2 mL benzoic acid (SIGMA-

ALDRICH) in chloroform (Honeywell)  (1 g/L) and 2 mL 20 % (v/v) sulphuric acid (Honeywell) in 

methanol (Fisher Chemical), and heated at 100 º C on a digestor (DryBlockHeater, OHAUS), for 4 h. 

After cooling, 1 mL of deionized water was added and after phase separation, the organic phase was 

recovered and analysed by GC (430-GC, Bruker) with a Restek column of 60m, 0.53 mmID, 1 μM df, 

Crossbond, Stabilwax. The injection volume was 2.0 µL, with a running time of 32 min, constant 

pressure of 14.50 psi and helium as carrier gas. The heating ramp followed  a 20 º C/min rate until 

100 º C, 3 º C/min until 155 º C and again 20 º C/min until 220 º C. The standards used for this analysis 

were P(HBHV) (SIGMA-ALDRICH) 86 wt% of 3HB and 14 wt% of 3HV, with concentrations ranging 

between 0.062 and 1.235 g/L and P(HHx) (SIGMA-ALDRICH) with concentrations between 0.05 and 

1.0 g/L. 

 Molecular Mass Distribution 

Size exclusion chromatography (SEC) was performed to determine the molar mass distribution 

of the PHA in this study. For this characterization, 15 mg of the polymer were weighted and dissolved 

in 3 mL of chloroform, for 18 h at room temperature. This solution was filtered using a glass fibre filter 

47 mm (PALL) and analysed in the SEC System (Waters Millenium) with SEC Support: PLgel 5 µm 

Guard (Polymer Laboratories), 50 x 7.5 mm; PLgel 5 µm 10 Å (Polymer Laboratories), 300 x 7.5 mm; 

PLgel 5 µm 500 Å (Polymer Laboratories), 300 x 7.5 mm. Temperature of equilibration at 30 ºC, flow 

rate of 1 mL/min, chloroform as the mobile phase and volume of the sample injected of 100 µL. For 

the detection of the polymer was used a RI detector (Waters 2410) with a collection duration of 25 

min and sensitivity of 512. 
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 X-Ray Diffraction 

 X-Ray Diffraction (XRD) was performed in a Benchtop X-Ray Diffractometer (RIGAKU, model 

MiniFlex II), with copper X-Ray tube (30 KV/15 mA). The 2θ scans were performed with a scanning 

range from 10º to 60º and a sampling width of 0.02º. The diffractograms were used to determine the 

crystallinity fraction (Xc) of the samples following the gaussian peak fitting with a linear background 

method, described elsewhere (Ahvenainen, Kontro, & Svedström, 2016). Briefly, the crystallinity 

fraction was determined by finding the area below the curve corresponding to the crystalline peaks 

and dividing the sum of the crystalline area with the total area below the curve, with an added 

baseline. 

 Thermal Properties 

Two analysis were performed to determine the thermal properties of this polymer – Differential 

Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA), as described by Zhao and Chen 

(2007) and Levine et al. (2016). 

DSC was performed in a DSC 25 (Discover Series, TA instruments, USA), with a Cooling System 

90 (TA instruments, USA), by placing the samples in aluminium hermetic pans and analysing them 

with a heating and cooling speed of 10 º C/min within a temperature range of -80 and 200 º C. To 

determine the melting (Tm) and glass transition (Tg) temperatures of this polymer, the endotherms of 

the DSC were analysed. 

Another DSC equipment was used for the last half of the samples. Those were performed in a 

DSC 131 (Setaram, France), by placing the samples in aluminium hermetic pans and analysing them 

with a heating and cooling speed of 10 º C/min within a temperature range of -130 and 400 º C. The 

melting (Tm) and glass transition (Tg) temperatures were also determined by analysing the 

endotherms of the DSC. 

TGA was performed in a Thermogravimetric Analyzer Setaram Labsys EVO with a weighing 

precision of +/- 0.01 %, using aluminium crucibles to place the samples (8.6 - 16.3 mg) and analysing 

them with a temperature range between 25 º C and 500 º C, at 10 º C/min, in Argon atmosphere. To 

determine the degradation temperature (Tdeg) the endotherm peak of the TGA was analysed. 
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2.3 Results and Discussion 

2.3.1 P(HBHVHHx) 

 Composition 

 To identify the monomeric composition of the PHA extracted, GC analysis was performed. 

Results revealed that this polymer is mainly composed of 3HB (51 wt%), 3HHx (31 wt%) and 3HV 

(18 wt%) (Table 2.3). Most of the P(HBHVHHx) polymers described in the literature have the same 

monomeric ponderation, with different proportions. This scl-mcl-PHA has an interesting monomeric 

percentual composition, where 3HB is still the major component but with a lower percentage, whereas 

3HV and 3HHx are present with a higher percentage than usually observed with this terpolyester. 

However, some studies revealed that similar P(HBHVHHx) compositions of those found in this study 

were achievable, e.g Zhang et al. (2009) produced this terpolyester with 3HV contents ranging from 

9 to 32 % and 3HHx percentage also flexible from 12 to 34 %, depending on the valerate 

concentration that was fed to wild-type and recombinants of Aeromonas hydrophila cultures. 

However, this was achieved by fermentation using a pure culture, whereas the scl-mcl-PHA extracted 

in this study was produced by a mixed microbial culture (MMC). 

Table 2.3. Composition (wt%), Molecular weight (MW), Molecular number (Mn) and polydispersity index (PDI) of 

P(HBHVHHx) used in this work with comparison to other terpoyesters found in the literature. (n.a – data not 

available) 

Composition (wt%) 

Type of production strain 
Mw (× 

104 Da) 

Mn (× 

104 Da) 
PDI Reference 

3HB 3HV 3HHx 

51 18 31 MMC 22 5.80 4.10 This study 

83 4 13 Aeromonas hydrophila 4AK4 30.3 16.7 1.81 
Hu et al. 

(2009) 

87 2 11 
Recombinant Aeromonas hydrophila 

4AK4 harboring genes phaAB 
87.4 n.a n.a 

Ji et al. 

(2008) 

85 3 12 
Recombinant Aeromonas hydrophila 

4AK4 harboring genes phaAB 
87.5 52.4 n.a 

Ji et al. 

(2009) 

85 5 10 
Recombinant Aeromonas hydrophila 

4AK4 harboring genes phaAB 
n.a n.a n.a 

Liang et al. 

(2008) 

82 7 11 
Recombinant Aeromonas hydrophila 

4AK4, with phaPCJ operon 
160 79.0 2.03 

Ye et al. 

(2010) 

71 18 11 
Recombinant Aeromonas hydrophila 

4AK4, with phaPCJ operon 
184 85.1 2.16 

Ye et 

al.(2010) 

57 20 23 
Recombinant Aeromonas hydrophila 

4AK4, with phaPCJ or phaAB 
75 40.9 2.09 

Zhang et al. 

(2009) 

48 24 28 
Recombinant Aeromonas hydrophila 

4AK4, with phaPCJ or phaAB 
94.2 45.1 1.71 

Zhang et al. 

(2009) 
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 Molecular Mass Distribution 

 SEC analysis (Figure A in appendices) of the extracted scl-mcl-PHA revealed an average 

molecular weight (Mw) of 22.08 × 104 Da and a polydispersity index (PDI) of 4.1 (Table 2.3). The Mw 

obtained in this work is amongst the range of average molecular weight for mcl-PHAs (6.0 – 41.2 × 

104 Da) (Rai, Keshavarz, Roether, Boccaccini, & Roy, 2011) and also for PHAs (2.0 – 5.0 × 105 Da). 

However, it is lower than those observed in the literature (30.3 – 184 × 104 Da) (Table 2.3). Similarly, 

with PDI value, that is included in the average range for mcl-PHAs (1.6 – 4.4) (Rai et al., 2011), but 

is higher than the values found in the literature for a similar terpolyester (1.71 – 2.16) (Table 2.3), 

suggesting non-uniformity of the scl-mcl-PHA. These differences in molecular weight and polymer 

dispersion between P(HBHVHHx) terpolyesters could be explained by numerous reasons, such as 

the synthesizing microorganism, the inoculum, medium composition, fermentation conditions, 

downstream processing methods and even the cell’s stage of growth upon harvesting  (Rai et al., 

2011; Sudesh et al., 2000). Additionally, the monomeric proportions in this PHA could also influence 

the resulting molecular weight (Zhila & Shishatskaya, 2018). 

 X-Ray Diffraction 

 In order to structurally characterize this polymer, XRD analysis was performed. The 

diffractogram (Figure 2.3) revealed peaks and humps superposed to those found for crystalline and 

amorphous polymers, at approximately 2θ = 14º and 17º and 2θ = 20º regions, respectively 

(Dufresne, Kellerhals, & Witholt, 1999). In addition, Ye et al. (2010) reported a similar diffractogram 

for P(HBHVHHx) (7 – 18 wt% of 3HV and 11 wt% of 3HHx). Analysis of the crystalline peaks resulted 

in a crystallinity fraction of around 26 % (Xc). The crystalline fraction (26 %) of this terpolyester renders 

a balance between semi-crystalline and amorphous behaviour, which can be further supported by the 

51 wt% of 3HB that imparts the crystalline peaks and the incorporation of 18 wt% of 3HV and 31 wt% 

of 3HHx that significantly reduces the degree of crystallinity of the terpolymer (Bhubalan et al., 2008). 

However, the semi-crystallinity observed, despite the high non-crystallizable 3HHx content (31 wt%), 

can be associated with the co-crystallization of 3HB and 3HV (Ye et al., 2010). 
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 Thermal Properties 

 TGA was used to study the thermal stability of the terpolyester (Figure B in appendices). The 

curve obtained revealed a fast one-step decomposition of this polymer. This curve was stable until 

240 º C, suffering a major weight loss (Δm ≈ 81 %) with maximum degradation rate at 290 º C and a 

char yield of approximately 17.9 % at 500 º C. The degradation rate at 5 % weight loss (Tdeg) was 

determined, revealing a higher value (267 º C) than those found in the literature (227 – 261 º C), thus 

this P(HBHVHHx) possesses a high thermal stability (Table 2.4). 

 To study the pre-melting behaviour, DSC analysis was performed. Cold crystallization was not 

detected during the cycle process of the DSC study, supporting the fact that this terpolyester is a 

random copolymer (H. Zhang et al., 2009). Tg of this P(HBHVHHx) revealed to be below room 

temperature (-2.6 º C), and lower than the values of other PHAs such as PHB, P(HBHV) and 

P(HBHHx) found in the literature (Table 2.4). The decrease in Tg values is associated with elastomeric 

behaviour at room temperature (W. Zhao & Chen, 2007). Tm value (145 º C) and especially enthalpy 

of melting (ΔHm) (4.3 J/g) of this terpolyester were lower than other similar P(HBHVHHx), PHB and 

P(HBHV) found in the literature, which could be associated with the higher content of 3HHx in the 

polymer, since the incorporation of this monomer with 3HB domains disturbs the possibility of 

crystallization processes associated with 3HB (W. Zhao & Chen, 2007). 

  

Figure 2.3. P(HBHVHHx) polymer (raw) diffractogram. 

 

 

Figure 2.3. P(HBHVHHx) polymer (raw) diffractogram. 

 

Figure 2.3. P(HBHVHHx) polymer (raw) diffractogram 



 

28 
 

Table 2.4. Thermal properties of the P(HBHVHHx) extracted in this study, compared to other PHAs found in the 

literature. (n.a – data not available; n.d – not detected) 

Composition (wt%) 

ΔHm (J/g) Tm (º C) Tg (º C) Tdeg (º C) Reference 

3HB 3HV 3HHx 

51 18 31 4.3 145 -2.6 267 This study 

83 4 13 28.4 113.2 -1.3 255 Hu et al. (2009) 

57 20 23 n.a n.d -12.5 258 
Zhang et al. (2009) 

 
48 24 28 n.a 54.2 -5.1 250 

84 3 13 29.8 114 -2.2 258 
Zhao and Chen (2007) 

 
89 3 8 33.2 148 -1.2 261 

95 5 0 n.a 170 2.3 232 
Zhang et al. (2009) 

 
88 0 12 n.a 96 -1.2 242 

75 25 0 26 176 n.a n.a Esmail (2019) 

100 0 0 97 162 -1.2 227 Zhao and Chen (2007) 

2.3.2 FucoPol 

 As previously mentioned, the fucose-rich EPS (FucoPol) used in this work was composed of 35 

wt% of fucose, 31 wt% of glucose, 24 wt% of galactose and 10 mol% of glucuronic acid. Additionally, 

the average molecular weight of the polymer was 4.4 × 106 Da, with a polydispersity index of 1.9 

(Concórdio-Reis et al., 2020). 
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2.4 Conclusions  

The P(HBHVHHx) extracted in this study was composed of an interesting monomeric proportion 

(51 wt% of 3HB, 18 wt% of HV and 31 wt% of HHx), with low crystallinity fraction (26 %), low melting 

temperature (145 º C) and enthalpy of fusion (4.3 J/g) and high degradation temperature (267 º C), 

making this semi-crystalline scl-mcl-PHAs thermally stable, with elastomeric potential. 

FucoPol, as a fucose-rich EPS, has some interesting properties that could improve emulsion 

stability and film forming ability. Also, as mentioned before, studies revealed other biological 

properties that would be advantageous in the context of this work, such as biocompatibility, 

hydrophilicity and capability for promoting cell migration and adhesion.  

The attained characterization of the extracted terpolyester P(HBHVHHx) revealed good physico-

chemical properties, suitable for scaffold production intended for skin tissue engineering, which will 

be explored in the next chapters.  
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3 Chapter Three – Production and characterization of 

biopolymer-based scaffolds 
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3.1 Introduction  

3.1.1 Scaffold-based techniques 

 Scaffold-based tissue engineering has emerged in the mid 1980’s, upon the idea of creating 

scaffolds that could support cells with compatible physical and chemical properties (Dutta, Dey, Dutta, 

& Basu, 2017). To design a reconstructed tissue, one of the most important aspects to consider is 

the porosity, that should properly mimick the in vivo counterpart (Jensen & Teng, 2020). Additionally, 

other factors such as the chemical composition of the material, mechanical and degradation 

properties and the addition of biological components that could improve the bioactivity of the scaffold, 

should be taken into consideration upon the process of designing a scaffold. Besides selection of the 

material, fabrication technique plays an important role in this process, since the material 

processability, ease of handling and complexity of the method are also crucial for the creation of the 

desired scaffold (Dutta et al., 2017). Several methods have been developed to produce porous 

scaffolds and amongst the most commonly used are solvent-casting particulate leaching (SCPL) 

(Esmail, 2019), freeze-drying, thermal-induced phase separation (TIPS), electrospinning (Esmail, 

2019) and 3D printing (Eltom, Zhong, & Muhammad, 2019; Jensen & Teng, 2020). 

 SCPL technique allows forming structures with high porosities (50 – 90 %), through mixing a 

polymer solution with water-soluble salt particles and casting into a scaffold mould. Then, the solvent 

is removed by evaporation and the salt particles are leached out of the matrix by submerging in water. 

This method allows control over the pore size, however the pore interconnectivity is limited (Eltom et 

al., 2019; Zhu & Che, 2013). Freeze-drying is another method, also known as lyophilization, based 

on the sublimation of the solvent. A polymer solution is obtained, by dissolving the polymer in 

appropriate solvent, then poured into a mould and cooled under freezing point, resulting in a solid 

solvent that later is subjected to sublimation. This results in a porous scaffold with numerous 

interconnected pores, however the mechanical integrity is limited (Ambekar & Kandasubramanian, 

2019; Eltom et al., 2019). TIPS is based in the quenching of the polymer solution under the freezing 

point of the solvent, resulting in a phase separation composed of a polymer-rich phase that solidifies 

and a polymer-poor phase that crystallizes, producing a porous structure when the solvent is removed 

by freeze-drying. This technique allows for tunable mechanical properties, however can only be 

applied to thermoplastic polymers (Eltom et al., 2019; R. Hokmabad et al., 2017).  
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Electrospinning is a printing method that is based in the use of an electric field for controlling the 

formation and deposition of polymer fibers onto a substrate. A high voltage is applied to the polymer 

solution, creating a charge imbalance that results in a stream of liquid polymer (Taylor cone) that 

travels to the target, evaporating the solvent in the process. The nanofibrous scaffold obtained has 

highly interconnected pores, however the thickness achievable is limited (Ambekar & 

Kandasubramanian, 2019; Jensen & Teng, 2020).  

Finally, a continuously evolving technique for the production of 3D tissue scaffolds that copiously 

mimick the target native structure – 3D printing, is based in the production of a 3D structure with the 

help of computer aid design (CAD) files. One of the methods used for this rapid prototyping 

technology is bioprinting, which consists in the layer-by-layer deposition of the selected constituents 

of a 3D object. This technology allows for nanoscale-controlled pore structure, however expensive 

(Ambekar & Kandasubramanian, 2019; R. Hokmabad et al., 2017). Table 3.1 includes a comparison 

between the mentioned methods, with their advantages and limitations. 

Table 3.1. Commonly used methods to produce porous scaffolds, with their advantages and limitations. Adapted 

with permission from Ambekar et al. (2019), Eltom et al. (2019) and Teng et al. (2020). 

Method Advantages Limitations 

SCPL 

o Simple method 

o Controlled porosity and pore size 

o Inexpensive 

o Possibility of residual 

leaching agent 

o Limited pore 

interconnectivity 

Freeze-drying 
o Highly interconnected pores 

o Controllable pore size  

o Small pore size 

o Limited mechanical integrity 

TIPS 
o Simple equipment 

o Tailorable mechanical properties 

o Only used for 

thermoplastics 

Electrospinning 

o Continuous process 

o Highly interconnected pores 

o Good surface area to volume ratio  

o Random and oriented fibers possible 

o Limited scaffold thickness 

o Complexity of different 

variables 

3D printing 

o Controlled quality 

o Controlled pore structure, shape 

accuracy and complexity 

o Expensive 

o Limited filament resolution 
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3.1.2 Emulsion Templating 

 Emulsion templating is a promising alternative for the fabrication of scaffolds with high porosities 

(up to 99 %) and high interconnected pores. This method is based in two steps: (i) the preparation of 

an emulsion, normally composed of two immiscible liquids, where the internal phase (dispersed 

phase) is dispersed in the continuous phase (external phase); (ii) the solidification of the external 

phase of the emulsion, where droplets of the internal phase behave like templates, leaving behind a 

highly porous structure upon their removal. Besides the high porosity and interconnectivity, another 

advantage of this method is the tailoring of the porosity by changing the internal phase volume. This 

method combines ease of production with simple equipment necessary and excellent results. 

However, when a surfactant is added to achieve high stability of the emulsion, this step can turn the 

technique quite expensive due to the surfactant cost and to the removal process necessary after the 

solidification (Aldemir Dikici & Claeyssens, 2020; T. Zhang, Sanguramath, Israel, & Silverstein, 2019). 

This method has been used to develop scaffolds for tissue engineering over the last decade. Ruiz et 

al. (2011) produced P(HBHV) 3D porous scaffolds by emulsion templating with surfactant, using the 

solvent evaporation method. Barbetta et al. (2005) successfully developed highly porous and 

interconnected gelatin-methacrylate (GMA) scaffolds, with the addition of NaCl and dimethyl sulfoxide 

(DMSO) in the emulsions in order to increase void and interconnectivity diameters. Luo et al. (2015) 

developed highly porous PVA hydrogels by surfactant-free CO2-in-water emulsion templating, that 

were tested with fibroblasts and revealed a good proliferation and penetration into the hydrogels. 

Table 3.2 comprises some examples of emulsion templated scaffolds for tissue engineering. 

 Additionally, Esmail (2019) recently developed scaffolds intended for skin tissue engineering, 

with mcl-PHA, PHB and P(HBHV), obtaining good results with emulsion templating method for the 

PHB and P(HBHV) scaffolds. Their mechanical properties were acceptable for the intended 

application, there was interconnectivity between the pores and water uptake ability. 
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Table 3.2. Examples of emulsion templated scaffolds. 

Material/Method Properties Reference 

P(HBHV), 

emulsion 

templating with 

solvent 

evaporation 

o Pore size between 3 – 7 µm 

o Suitable for applications that require flexibility of the scaffold 

o With surfactant 

Ruiz et al. 

(2011) 

GMA, emulsion 

templated 

o Addition of DMSO (toxic for cells) 

o Excellent pore size and interconnectivity 

o With surfactant 

Barbetta et al. 

(2005) 

PVA, CO2-in-

water emulsion 

templating 

o Pore size between 5 – 21 µm 

o Surfactant free 

Luo et al. 

(2015) 

PHB, emulsion 

templating with 

solvent 

evaporation 

o Maximum porosity approximately 52 % 

o With surfactant 

Bergstrand et 

al. (2012) 

PHB and 

P(HBHV), 

emulsion 

templating with 

solvent 

evaporation 

o Pore size between 1 – 7 µm 

o Interconnectivity, water uptake ability, acceptable mechanical 

properties 

o Surfactant free 

Esmail, (2019) 

 

As mentioned, most emulsion templating techniques with the purpose of developing highly 

porous and interconnected scaffolds use surfactants to stabilize the emulsion system, which is 

inherently unstable due to the contacts formed between continuous and dispersed phases, composed 

of two immiscible liquids. These surfactants stabilize the emulsion through formation of a film in the 

interface between both phases, that surrounds the droplets of the internal phase, decreasing the 

interfacial tension and increasing the interfacial viscosity (Akbari & Nour, 2018). Some of the most 

widely used surfactants in emulsion templating for porous polymers are triblock copolymers (such as 

polyethyleneoxide (PEO) and polypropyleneoxide (PPO)), high hydrophile-lipophile balance (HLB) 

number surfactants such as Triton X-405 and sorbitan monooleate (commercial name – Span 80) 

(Kimmins & Cameron, 2011). 

These surfactants are mainly synthetic and some of them have important disadvantages, 

carrying negative ambiental impacts, being non-biodegradable, with intrinsic toxicity and induction of 

irritant reactions on the human skin (Bouyer, Mekhloufi, Rosilio, Grossiord, & Agnely, 2012) 

Therefore, the introduction of natural molecules as surfactants for this purpose represents a 

significant breakthrough, especially for biomedical applications.  
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Polysaccharides are one example of natural molecules introduced as biosurfactants, taking 

advantage of emulsifying and stabilizing properties inherent to some of them. Carrier et al. (2011) 

suggested that the bacterial polysaccharide dextran could be used as a stabilizer in water-in-

chloroform emulsion, by hydrophobic modification that enabled a good solubility in organic solvents, 

however the resulting emulsions suffered Ostwald ripening and coalescence of the droplets in the 

internal phase due to ageing process. Anarjan and Tan (2013) also studied the application of two 

polysaccharides, gum Arabic and xanthan gum, as emulsifiers for chloroform-in-water emulsions, 

revealing weaker physical and chemical stability when compared to other emulsifiers. More recently, 

López-Ortega et al. (2019) studied the emulsifying ability of a novel EPS produced by the haloarchea 

Haloferax mucosum (DSM 27191) that has a protein content of 10 %, which revealed to be capable 

to stabilize water-in-chloroform emulsions as with other nonpolar solvents such as n-hexane. 

The incorporation of FucoPol in the method of emulsion templating can be associated with an 

expected improvement of some parameters, such as the stability of the emulsion prepared, the 

consequent interconnectivity obtained and additionally with a possible improvement in cell 

proliferation upon culture. All of this is due to FucoPol ability to stabilize emulsions and also act as an 

emulsifier (Freitas et al., 2013, 2011), with the added advantage of the biocompatibility and bioactivity 

(Concórdio-Reis et al., 2020) properties of this EPS. So, in this perspective, FucoPol could act 

simultaneously as a surfactant in an emulsion templating method and as a blend for improvement of 

bioactivity of the resulting scaffold intended for tissue engineering. 
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3.1.3 Desired scaffold specifications 

 Scaffolds designed for tissue engineering and cell culture applications should correspond to 

some important characteristics, either biological, chemical, physical or mechanical. 

 Biocompatibility is an important feature that need to be present whenever a living organism is 

concerned. A biomaterial that, together with the cells, constitute whole or part of a living structure 

should not induce any undesirable toxic reactions to the surrounding tissues/cells, either the material 

itself or degradation products (Dutta et al., 2017; Eltom et al., 2019). Additionally, some cellular events 

can only occur if the surrounding environment is appropriate, such as cell growth, replication and 

differentiation. With most of synthetic biomaterials, these events are dependent on the addition of 

some naturally-derived molecules (e.g. RGD sequence, composed of arginine, glycine and aspartate) 

that hold the capability of signalling to trigger them (Dutta et al., 2017). 

 Mechanical properties that match with the ECM of the tissue in question are a key parameter to 

be taken into account upon fabrication of the scaffold. These properties, such as mechanical strength, 

elasticity and stiffness, are related to the structure of the scaffold (porosity, interconnectivity, 

microstructure) as well as with the intrinsic material properties. Cells can have different behaviours 

depending on mechanical control mechanisms, for instance, in soft tissues the Young modulus 

(stiffness) falls between 0.4 and 350 MPa, being this the ideal range of values in scaffolds designed 

for soft tissue engineering/cell culture (Aldemir Dikici & Claeyssens, 2020; Dutta et al., 2017). 

 The arrangement of cells inside the scaffold and their interconnectivity with each other are 

dependent on the porosity and the interconnectivity between pores of the structure designed, allowing 

for cell mobility and communication, which in turn lead to the required cell density and physiological 

response associated (Dutta et al., 2017; Duval et al., 2017). Furthermore, the thickness of the scaffold 

is also crucial for exchange of gases, nutrients and production/degradation molecules. For this 

reason, approximately 200 µm are considered to be appropriate for the thickness of the scaffold 

(Knight et al., 2011). 
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3.2 Materials and Methods 

3.2.1 Scaffolds fabrication 

 Non-porous scaffolds 

Non-porous P(HBVHHx) (9.5 % (w/v)) scaffolds were prepared by dissolving the polymer in 

chloroform (Honeywell). The homogeneous solution was obtained by overnight oil bath, at 70 º C, 

with continuous stirring. The solution was transferred into a 10 cm diameter Petri dish and placed in 

a desiccator on a fume hood, at room temperature, until complete solvent evaporation. 

 Porous scaffolds by water emulsion 

 P(HBVHHx) porous scaffolds were obtained by preparing emulsions with the chloroform solution 

and deionized water. To obtain the P(HBVHHx)-CHCl3 solution, two methods were used: the same 

method described in 3.2.1.1. for some of the scaffolds and for the second method the polymer was 

dissolved and stirred using a heating plate. After cooling, 1 mL of deionized water was added to the 

solution and then shaken manually and with a magnetic stirrer until an emulsion formed, with no 

visible phase separation. The resulting emulsion was then transferred to 5 or 10 cm Petri dishes and 

left in the fume hood inside a desiccator, at room temperature, until complete solvent (water and 

chloroform) evaporation. The tested concentrations of the P(HBVHHx)-CHCl3 solution were: 3.33 % 

(w/v), 5 % (w/v), 6.67 % (w/v) and 9.5 % (w/v). 

 Porous scaffolds by aqueous FucoPol-solution emulsion 

 P(HBVHHx)-FucoPol scaffolds were obtained using the same method described in 3.2.1.2., 

adding FucoPol dissolved in deionized water on the emulsion step. The concentration of P(HBVHHx) 

used was 6.7 % (w/v), 8 % (w/v) and 9.5 % (w/v) and for the FucoPol aqueous solution three 

concentrations were tested: 0.1 % (w/v), 0.5 % (w/v) and 1 % (w/v).  

 Porous scaffolds by water emulsion and FucoPol coating 

 To obtain P(HBVHHx)-water emulsion scaffolds the same method presented in 3.2.1.2. was 

performed. After complete solvent evaporation, the scaffolds obtained were coated with a FucoPol 

solution, prepared with deionized water at two concentrations: 1.5 % (w/v) and 2 % (w/v). To 

homogeneously coat the scaffolds, they were immersed in the FucoPol solution in a Schott, and 

placed in the autoclave for 20 minutes, at 120 º C and 1 bar.  After cooling, the scaffolds were 

transferred to Petri dishes and left in the fume hood at room temperature until complete solvent 

evaporation.  
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3.2.2 Scaffolds characterization 

 Morphology 

 Macroscopic characteristics such as color, texture and homogeneity were assessed. The 

thickness of the scaffolds was measured using a micrometer (Elcometer, England). 

Scanning Electron Microscopy (SEM), to assess scaffolds structure, was performed in a bench 

scanning electron microscope (TM3030 Plus +Quantax 70, Hitachi, Japan) with an acceleration 

voltage of 15 kV. In order to prevent entrainment of the polymer structure, samples of the selected 

scaffolds were frozen with liquid nitrogen and broken to obtain smaller pieces with a representative 

cross section. For each sample, images of the surface, cross section and back (for some) of the 

scaffold were obtained. To analyse the images and obtain an estimate of the pore size, an image 

processing program (ImageJ) was used. 

 Thermal Properties and XRD 

 When applicable, the same methods described in 2.2.2.2. and 2.2.2.3. (Chapter Two), 

respectively, were performed. 

 Swelling in Water 

 Porous samples with 10 mm × 10 mm of the scaffolds were cut and immersed in 15 mL of 

deionized water at 30 º C overnight. The weight and thickness of these samples were measured 

before and after immersion in order to assess the swelling. Three replicates of each sample were 

tested. 

 Porosity 

 Porosity was determined by two distinct methods. The first was a gravimetrical method, by 

measuring the difference in density of a non-porous film and a porous scaffold. The densities of both 

were determined, with samples of the same dimensions, from a ratio of mass to volume. These values 

were used to calculate the porosity of the porous scaffolds, using equation (1) (Yadav, Pal, Nandan, 

& Srivastava, 2019). 

𝑃 (%) =  
(𝜌𝑁𝑃 −  𝜌𝑃)

𝜌𝑁𝑃

× 100          (1) 
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 The second method was experimental, based on the occupied volume of a non-solvent of the 

polymer, after immersion. Porous samples with 10 mm × 10 mm of the scaffolds were cut and 

immersed in 15 mL of absolute ethanol (Fisher Chemical) during 5 min at room temperature. The 

weight and thickness of these samples were measured before and immediately after immersion for 

assessment of porosity (P), using the equation (2). Parameters used: ρ (density) of absolute ethanol 

(0.789 g/cm3), W1 (weight of the scaffold before immersion), W2 (weight of the scaffold after 

immersion), V (volume of the scaffold) (Kumar, Lakshmanan, Biswas, Nair, & Jayakumar, 2012). 

 

𝑃 =  
𝑤2 − 𝑤1

ρ ×  V
          (2) 

 

 Mechanical Properties 

The P(HBVHHx) scaffolds were cut into rectangular-shaped test pieces (~50 × 15 mm). Tensile 

tests were performed using a texture analyser (Food Technology Corporation, England), operated 

with a tensile rate of 100 mm/min until break, using a load cell of 50 N, under ambient conditions, 

resulting in a stress-strain curve. Young Modulus (MPa) was determined as the initial slope of the 

curve, tensile strength (MPa) was taken at the highest point of the curve just before break and strain 

at break (%) as the ratio of the elongation of the test piece at rupture point by its initial length. For 

each P(HBVHHx) scaffold, four replicas were tested to obtain the determinations mentioned. 
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3.3 Results and Discussion 

3.3.1 Non-porous film by solvent evaporation 

 To achieve non-porous film of this polymer, the solution-casting/solvent evaporation method was 

applied, allowing for the study of  the behaviour and properties of the film. 

 Morphology 

 The non-porous film obtained (Figure 3.1, a) was white, opaque and macroscopically 

homogeneous. Also, it had approximately 208 µm of thickness and a flexible behaviour. 

 To further study the morphology, SEM analysis of the surface and cross-section of this 

P(HBHVHHx) film was performed, revealing a high surface roughness and some degree of porosity 

(Figure 3.1, b and c), which is consistent with other P(HBHVHHx) studies in the literature (Y. Ji et al., 

2008; L. Wang et al., 2010). However, for the cross section, the film suffered entrainment on the 

surface that was cut, becoming more difficult to assess the morphology. Nonetheless, the surface 

roughness and irregularity can also be seen on the micrograph of the cross-section. 

 

 Scaffold Surface Cross-section 
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Figure 3.1. Non-porous scaffold images; Macroscopic (a); Surface (b) and cross-section (c) obtained by SEM 

analysis, with amplification of 1000x. Blue arrow indicates the surface roughness; Orange arrow pointing to 

entrainment of the cross section. 
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 Thermal properties and XRD 

 The non-porous film was thermally and structurally studied in order to evaluate if the process of 

scaffold production affects the material properties (Table 3.3). 

 DSC analysis revealed two melting peaks for the non-porous film, a Tm1 of 144 º C and a Tm2 of 

159 º C, with corresponding melting enthalpy of 1.9 J/g (ΔHm1)  and 5.8 J/g (ΔHm2). The glass transition 

temperature for this film (-3.8 º C) showed little decrease when compared with the raw polymer (-2.6 

º C). The thermal stability of the casted film suffered a slight decrease, as can be concluded by the 

decrease in the degradation temperature (260 º C) when compared with the raw polymer (267 º C). 

XRD analysis showed a degree of crystallinity for the processed polymer (25 %) similar to the raw 

polymer (26 %). 

 The melting behaviour of this terpolyester can be associated with a process of partial melting-

lamellar thickening-remelting, due to chain sliding and reorganization before complete destruction of 

the crystal structure, which is also associated with a strong hydrogen bond between the monomers 

and neighbouring chains. This supports the appearance of the second melting peak and the decrease 

in the degradation temperature for the processed polymer into a thin film (Ye et al., 2010). This 

process allows for the high thermal stability observed for this polymer. Additionally, the degree of 

crystallinity decreased very slightly, but not significantly (from 26 % to 25 %). 

Table 3.3. Comparison of thermal properties and crystallinity between raw P(HBHVHHx) and the non-porous 

film produced with that polymer. (n.d – not detected) 

P(HBHVHHx) ΔHm1 (J/g) Tm1 (º C) ΔHm2 (J/g) Tm2 (º C) Tg (º C) Tdeg (º C) Xc (%) 

Raw 4.3 145 n.d n.d -2.6 267 26 

Non-porous film 1.9 144 5.8 159 -3.8 260 25 
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 Mechanical properties 

 In tissue engineering and 3D cell cultures, the appropriate mechanical properties of the scaffolds 

employed are of paramount importance. In order to have a baseline for this terpolyester, a texture 

analyser was used to perform a tensile test on the non-porous film, determining parameters such as 

Young Modulus, tensile strength at break and elongation at break from the stress-strain curve 

obtained (Table 3.4). 

 The attained results show the singular mechanical properties of this terpolyester, with a Young 

Modulus of 0.8 MPa, a tensile strength of 5 MPa and a elongation at break of 237 %. These findings 

mean that the P(HBHVHHx) non-porous film needs 5 MPa of applied tension to break, after 237 % 

of elongation from the original length, resulting in an elastic modulus of 0.8 MPa, which reflects the 

elasticity of this polymer. When compared with the non-porous film of P(HBHVHHx) produced by Hu 

et al. (2009), the latter has a much higher Young Modulus, which can be associated with less elasticity 

of the polymer, due to the monomeric composition with low contents of 3HV (4 wt%) and 3HHx (13 

wt%). Following this logic, the increase in 3HV and 3HHx content decreases the mechanical strength 

(decrease in tensile strength) and increases the flexibility of the resulting terpolymer, becoming more 

ductile (W. Zhao & Chen, 2007). This can be further supported by the comparison with the 

P(HBHVHHx) film (55 wt% of 3HB, 26 wt% of 3HV and 19 wt% of 3HHx) produced by Zhang et al. 

(2009), which reveals a decrease in Young Modulus (2 MPa) due to higher content of 3HV, but lower 

proportion of mcl-HA 3HHx impairs the elongation at break (133 %). 

 Additionally, according to Dikici et al. (2020) the Young modulus for soft tissues ranges between 

0.4 and 350 MPa, which includes the value obtained in this work for the non-porous film. 

Table 3.4. Comparison of mechanical properties between the non-porous film obtained in this work and others 

found in the literature. 

Film Sample 

Composition (wt%) Young 

Modulus 

(MPa) 

Tensile 

strength 

(MPa) 

Elongation 

at break 

(%) 

Reference 

3HB 3HV 3HHx 

P(HBHVHHx), 

non-porous 
51 18 31 0.8 5 237 This study 

P(HBHVHHx), 

non-porous 
89 3 8 285 5 264 

Hu et al. 

(2009) 

P(HBHVHHx), 

non-porous 
55 26 19 2 0.3 133 

Zhang et 

al. (2009) 
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3.3.2 Porous scaffolds by water emulsion templating 

 Porous scaffolds were achieved through the emulsion templating method, where the continuous 

phase had 9.5 % (w/v), 6.67 % (w/v), 5 % (w/v) and 3.33 % (w/v) of P(HBHVHHx) and the dispersed 

phase was composed of deionized water. 

 Morphology 

 For the first concentration (9.5 % (w/v)), the scaffold obtained had 10 cm of diameter, 

approximately 241 µm of thickness, was macroscopically compact and homogeneous, with some 

visible irregularities that later revealed to be macropores. Figure 3.2 a) illustrates a scaffold with 15 

mm of diameter obtained from the original one (10 cm). Furthermore, the flexible behaviour observed 

for the non-porous film was maintained. The SEM analysis revealed macropores that were 

macroscopically perceptible with a diameter of approximately 100 µm, and throughout the surface, 

there were micropores (Figure 3.2, b and f). Additionally, the pores seemed to be interconnected 

through tunnel-like structures. The cross-section was impaired by the entrainment of the polymer 

referred in the section 3.3.2.1. However, as depicted in Figure 3.2 f), there is an area of the cross-

section (in another plane of the micrograph) that did not suffer entrainment, allowing to see the porous 

structure of the scaffold. 

 For lower polymer concentrations, the scaffolds showed no porous structure (6.67 % (w/v) and 

3.33 % (w/v)) or presented a porous surface but with non-homogeneous cross-section (5 % (w/v)), 

as can be seen in Figure 3.2 (c – e, g – f). The SEM images of the surface of 6.67 % (w/v) and 3.33 

% (w/v) scaffolds actually revealed a similar morphology to the non-porous film (Section 3.3.1.1, 

Figure 3.1). These findings can be related to the instability of the emulsion during the solvent 

evaporation process that took up to 72h. Additionally, the thickness of the scaffolds ranged from 

approximately 162 to 400 µm, which could influence their properties, such as lower mechanical 

strength for the thinner one and impairment of the exchange of gases, nutrients and other degradation 

molecules for the thicker one. 

 The scaffold chosen to be further characterized was the one with 9.5 % (w/v) of P(HBHVHHx), 

due to morphologic features discussed above. 
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 Scaffold Surface Cross-section 
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Figure 3.2. Images of porous scaffold by water emulsion templating; Macroscopic (a); Surface (b,c,d and e) and 

cross-section (f,g,h and i) obtained by SEM analysis, with amplification of 500x. Yellow arrow indicates area of 

the cross-section that did not suffer entrainment. 
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 Thermal properties and XRD 

 Similarly to the previous section, the structural and thermal properties of this porous scaffold 

were evaluated in order to assess if the different processing methods of the polymer would affect 

them (Table 3.5). DSC revealed two melting peaks, in accordance with the non-porous film, and their 

values (Tm1 of 145 º C and Tm2 of 160 º C) were very similar to the ones found for the non-porous (Tm1 

of 144 º C and Tm2 of 159 º C). However, the melting enthalpy decreased for both  ΔHm1 (from 1.9 to 

0.93 J/g) and ΔHm2 (from 5.8 to 2.53 J/g) when compared to the non-porous film. Interestingly, the 

opposite occurred for the glass transition temperature (-12.7 º C), degradation temperature (274 º C) 

and degree of crystallinity (27 %), all showing an increase in their values. These findings can be 

related to the previously discussed process of partial melting-lamellar thickening-remelting that 

occurs upon heating of this terpolyester, with the addition of water-emulsion processing that possibly 

could affect the size and organization of the crystalline structure (Ye et al., 2010). The Tg, however, 

suffered a considerable increase, which could be related to the fact that different equipment were 

used to determine this parameter: one for the raw sample and non-porous film of P(HBHVHHx), and 

other for the water emulsion templated scaffold (as described in section 2.2.2.4). 

Table 3.5. Comparison of thermal properties and crystallinity between raw P(HBHVHHx), non-porous film and 

water emulsion templated porous scaffold produced with that polymer. (n.d – not detected) 

P(HBHVHHx) ΔHm1 (J/g) Tm1 (º C) ΔHm2 (J/g) Tm2 (º C) Tg (º C) Tdeg (º C) Xc (%) 

Raw 4.3 145 n.d n.d -2.6 267 26 

Non-porous 1.9 144 5.8 159 -3.8 260 25 

Water emulsion 

templated 
0.93 145 2.53 160 -12.7 274 27 

 Porosity 

 The gravimetical assessment of this porous scaffold, revealed a rather low percentual porosity 

of about 17 %. This value is drastically low when compared to the value obtained through the 

experimental method, which revealed a porosity of approximately 92 %. The results from both of 

these methods could have suffered from a high error, the first due to very low weight of the samples 

and the second due to the immediate weighting of the samples after immersion in ethanol, that could 

have resulted in weighting droplets of ethanol on the surface of the samples, increasing the porosity 

value. Therefore, this results are inconclusive and should be further validated/confirmed. 
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 Swelling in water 

 Swelling in water determined for the water emulsion templated scaffold revealed a water uptake 

of approximately 14 %. This value shows that the porous scaffold has some capacity for swelling in 

water, however, the hydrophobic nature of P(HBHVHHx) does not allow for the higher water uptake 

observed in other scaffolds produced for 3D cell culture found in the literature and discussed below 

(section 3.3.3.4).  

 Mechanical properties 

 The water emulsion templated scaffold with 9.5 % (w/v) of P(HBHVHHx) was also subjected to 

mechanical characterization, evaluating the Young Modulus, tensile strength and elongation at break 

(Table 3.6). The interpretation of the stress-strain curve revealed a decrease in mechanical properties 

in general for the water emulsion templated porous scaffold, which reinforces the fact that polymer 

processing affects the final properties of the scaffolds. Upon comparison of the non-porous film and 

the water emulsion porous scaffold, the Young Modulus decreased from 0.8 to 0.6 MPa, the tensile 

strength also decreased from 5 to 3.6 MPa and the elongation at break suffered a steep decrease 

from 237 to 56 %. The most significant alteration, for the intended application of this scaffold, is the 

elongation at break, which reflects the loss of  flexibility associated with the porous structure. 

Table 3.6. Comparison of mechanical properties between the non-porous film and water emulsion templated 

porous scaffold obtained in this work. 

Scaffold 
Young Modulus 

(MPa) 

Tensile strength 

(MPa) 

Elongation at 

break (%) 
Reference 

P(HBHVHHx), non-porous 0.8 5 237 This study 

P(HBHVHHx), porous by 

water emulsion 
0.6 3.6 56 This study 
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3.3.3 Porous scaffolds by FucoPol-water emulsion templating 

 For this method, porous scaffolds were achieved through the emulsion templating method. 

Three concentrations of the P(HBHVHHx) solution were tested (6.67, 8.0 and 9.5 % (w/v)), with 0.1 

% (w/v) of the FucoPol solution, in order to determine which continuous phase concentration would 

result in a more stable emulsion. The three emulsions were left at room temperature for 72h and the 

emulsion that revealed to be more stable (less phase separation) was the one with 6.67 % (w/v) of 

P(HBHVHHx). Therefore, the porous scaffolds were developed through the emulsion templating 

method where the continuous phase had 6.67 % (w/v) of P(HBHVHHx) and several aqueous FucoPol 

solutions (0.1, 0.5 and 1 % (w/v)) were tested as the dispersed phase. 

 Morphology 

 Macroscopically, the scaffolds presented distinct characteristics. For the lowest concentration of 

FucoPol (0.1 % (w/v)), the surface was compact, homogeneous, white and opaque, with the same 

flexibility observed earlier and thickness of approximately 159 µm. The scaffold with 0.5 % (w/v) of 

FucoPol was much thinner (117 µm), presented macroscopically visible holes on the surface, 

revealing to be non-homogeneous, however the white colour and flexibility were maintained. With 1 

% (w/v) of FucoPol, the scaffold had an intermediate thickness (145 µm), was compact, 

homogeneous, white and opaque, similarly maintaining the flexible behaviour (Figure 3.3; a, b and 

c). SEM analysis further supported the macroscopic findings. The scaffold with 0.1 % (w/v) of FucoPol 

presented a porous surface and cross-section, with some interconnected pores (Figure 3.3, d and g). 

However, the diameter of the pores was not homogeneous, decreasing in size along the thickness of 

the scaffold, which could also be related to the stability of the emulsion during the solvent evaporation 

step. The increase in concentration of FucoPol lead to an evident decrease in porosity and pore 

volume, depicted in the images of cross-section (Figure 3.3, h and i).  

Furthermore, the viscosity and adhesive property of FucoPol seemed to influence the emulsion 

stability. This lead to a coalescence of the internal phase for a concentration of 0.5 % (w/v), resulting 

in macroscopic holes and bigger pores on the surface (Figure 3.3; b, e and h), and to an almost total 

loss of porosity on the surface for a concentration of 1 % (w/v) (Figure 3.3; f and i). Additionally, these 

images appeared to have a blurred effect on the limits of the pores, which could also be associated 

with the FucoPol. Nonetheless, the presence of FucoPol in this emulsion can be associated with an 

improvement on the porosity and interconnection of the pores when compared to the scaffolds 

produced by water emulsion, supporting the possibility of emulsion stabilization provided by this 

exopolysaccharide at low concentrations. The scaffold chosen to be further characterized was the 

one with 0.1 % (w/v) of FucoPol, due to morphologic features discussed above. 
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Figure 3.3. Images of porous scaffold by FucoPol-water emulsion templating; Macroscopic (a,b,c); Surface 

(d,e,f) and cross-section (g,h,i) obtained by SEM analysis, with amplification of 1000x. Blue arrows indicate the 

surface of the scaffold. 
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e)
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 Thermal properties and XRD 

 The porous scaffold produced by emulsion templating with 0.1 % (w/v) of FucoPol was structural 

and thermally characterized to assess possible processing influence on these properties (Table 3.7). 

 Thermal properties and degree of crystallinity of this scaffold revealed to be very similar to those 

found for the water emulsion templated one. Tm1 (149 º C) and Tm2 (162 º C) revealed a very slight 

increase, whereas ΔHm1 (1.33 J/g) and ΔHm2 (1.91 J/g) showed very little deviation in their values. 

Degree of crystallinity (26 %) was the same of the raw polymer and had a non-significant variation 

when compared with the other scaffolds. Both Tg (-10 º C) and Tdeg (270 º C) presented lower values 

that again could be related with the thermal behaviour of this terpolyester upon processing. However, 

the decrease in Tg value compared to the one obtained for the water emulsion scaffold (-12.7 º C) 

could also be related to the thickness (159 µm) of this scaffold, revealing that Tg  value decreases 

with the decrease in thickness of the sample analysed (Keddie, Jones, & Cory, 1994). 

Table 3.7. Comparison of thermal properties and crystallinity between raw P(HBHVHHx), non-porous film, water 

emulsion templated and FucoPol-water emulsion templated porous scaffolds produced with that polymer. (n.d – 

not detected) 

P(HBHVHHx) ΔHm1 (J/g) Tm1 (º C) ΔHm2 (J/g) Tm2 (º C) Tg (º C) Tdeg (º C) Xc (%) 

Raw 4.3 145 n.d. n.d. -2.6 267 26 

Non-porous 1.9 144 5.8 159 -3.8 260 25 

Water emulsion 

templated 
0.93 145 2.53 160 -12.7 274 27 

FucoPol 0.1 % (w/v) 

emulsion templated 
1.33 149 1.91 162 -10 270 26 
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 Porosity 

 For the FucoPol-water emulsion templated porous scaffold the gravimetrical method resulted in 

a porosity of 24 % and the experimental method proved again to be discordant, with a porosity value 

of 94 %. When compared to the water emulsion templated scaffold (section 3.3.2.1), this one has 

demonstrated a superior porosity upon SEM analysis of the cross-sections. These findings are in 

agreement with the relative porosity found, being this value higher for the FucoPol-water emulsion 

templated scaffold with both methods used for this determination. Therefore, the incorporation of 

FucoPol in the aqueous phase of the emulsion resulted in an improvement of the porosity for this 

scaffold, when compared to the one without. However, this porosity and interconnection of the pores 

could be much improved. This could be done by increasing the viscosity of the continuous phase of 

the emulsion, or by increasing the volume of the internal phase (Aldemir Dikici & Claeyssens, 2020), 

without compromising the mechanical properties achieved with these scaffolds and that will be further 

discussed below. 

 Swelling in water 

 The swelling in water of FucoPol-water emulsion templated scaffold (13 %) revealed to be similar 

to the water emulsion templated one (14 %). Despite the incorporation of the EPS in the P(HBHVHHx) 

porous scaffold composition, there were no significant changes in the water uptake capacity, although 

there were improvements in the morphology and mechanical properties. 

As mentioned earlier, the capacity of water uptake attained for these emulsion templated 

scaffolds (with and without the incorporation of FucoPol) were lower than the values found in the 

literature for porous/fibrous scaffolds produced for skin tissue engineering. Bergstrand et al. (2012) 

reported up to 75 % of water uptake for emulsion templated PHB scaffolds with lithium sulphate in 

their composition. Lei et al. (2014) produced P(HBHV)/SF (50:50 (w/w)) nanofibrous porous scaffolds 

that revealed a water uptake of approximately 42 %. These differences can be correlated to the 

porosity, interconnectivity of the pores and hydrophilicity of the different scaffold material and, 

additionally, the introduction of electrolytes can increase the water uptake capacity, as seen with the 

PHB/Li2SO4 scaffolds. 

  



 

52 
 

 Mechanical properties 

 FucoPol-water emulsion templated scaffold, with 0.1 % (w/v) of FucoPol solution, was subjected 

to mechanical test, revealing a stress-strain curve similar to the obtained for the water emulsion 

porous scaffold. The Young Modulus attained for this scaffold (0.85 MPa) was slightly higher than the 

values for the non-porous (0.8 MPa) and for the porous by water emulsion (0.6 MPa), which can 

correlate to a decrease in elasticity (52 % of elongation at break) but an increase in mechanical 

strength (tensile strength of 4.4 MPa), when compared to the porous by water emulsion. This is 

especially relevant considering that this scaffold was thinner (159 µm) and with a higher porosity as 

seen in the SEM micrographs depicted above. Therefore, the FucoPol incorporation in the 

P(HBHVHHx) scaffold can be associated with an improvement in mechanical strength. Furthermore, 

mechanical strength of the scaffold is a fundamental property when cell culture is intended, supporting 

the cell ingrowth, mobility and functionalization by maintaining the shape and microstructure of the 

scaffold (X. Wang et al., 2012). Considering the tensile strength reported for native human dermis 

(1.03 to 3.10 MPa) (Gennisson et al., 2004), the slightly higher value obtained for this scaffold possibly 

allow the support of the cell activities without contraction. When compared to other porous scaffolds 

produced through emulsion templating for tissue engineering applications found in the literature 

(Table 3.8), the Young Modulus obtained in this study (0.6 – 0.8 MPa) was lower than the one 

determined for fibrin and collagen/fibrin porous scaffolds (1 – 2 MPa) (Lim, Potter, Cui, & Dye, 2018), 

but higher than the values of silk fibroin porous scaffolds (0.23 – 0.36 MPa) (Wen, Yao, Chen, & 

Shao, 2018). 

Table 3.8. Comparison of mechanical properties between the non-porous film, water emulsion templated and 

FucoPol-water emulsion templated porous scaffolds obtained in this work and others found in the literature;  

(n.a – data not available) 

 

Scaffold 

Young 

Modulus 

(MPa) 

Tensile 

strength 

(MPa) 

Elongation 

at break 

(%) 

Reference 

P(HBHVHHx), non-porous 0.8 5 237 This study 

P(HBHVHHx), porous by water emulsion 0.6 3.6 56 This study 

P(HBHVHHx)/FucoPol, porous by FucoPol-water 

emulsion 
0.85 4.4 52 This study 

Collagen/Fibrin, porous by oil-in-water emulsion 1 - 2 12 - 16 n.a Lim et 

al.(2018) 

 Fibrin, porous by oil-in-water emulsion 1 - 2 4 - 5 n.a 

Silk fibroin, porous by oil-in-water emulsion/freezing 
0.23 – 

0.36 
n.a n.a 

Wen et al. 

(2018) 
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3.3.4 Porous scaffolds by water emulsion templating and FucoPol coating 

 The coating of the water-emulsion templated scaffolds (with 9.5 % (w/v) of P(HBHVHHx)) was 

tested for 1.5 and 2 % (w/v) of FucoPol solutions, in order to assess their morphology and later test 

their performance on cell culture with HDFn. The concentration of P(HBHVHHx) (9.5 % (w/v)) chosen 

for the water emulsion templated scaffold was based on the results discussed in section 3.3.2. The 

higher concentrations (1.5 and 2 % (w/v)) of the FucoPol solution were chosen in order to assess if 

an increase in FucoPol concentration would affect the cell response upon culturing, such as 

adherence, proliferation and differentiation. 

 Morphology 

Macroscopically, these scaffolds were compact, smooth, white, opaque and after solvent 

evaporation they adhered to the surface of the Petri dish, probably due to the adhesive properties of 

FucoPol. The flexibility decreased and the thickness increased slightly with the high concentration of 

FucoPol, the one with 1.5 % (w/v) had 253 µm and the other with 2 % (w/v) had 256 µm, being this 

relevant when compared to the water-emulsion templated scaffold (section 3.3.2.1), since it was the 

same scaffold that was used for these coatings.  

  

Figure 3.4. Images of porous scaffolds by water emulsion templating and FucoPol coating; Surface (a, b) and 

cross-section (c, d) obtained by SEM analysis, with amplification of 500x. 
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The SEM analysis revealed that the superficial porosity was kept (Figure 3.4, a-b), although at 

a smaller degree. The cross-section showed that the porosity was present up to half the thickness of 

the scaffold for the 1.5 % (w/v) (Figure 3.4, c) and up to one third for the 2 % (w/v) (Figure 3.4, d) of 

FucoPol coating. These findings can be related to the high concentrations of FucoPol, considering 

that the same scaffold was used for both coatings, the reduction in porosity for the latter possibly is 

associated with the filling of the pores with FucoPol. 
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3.4 Conclusions 

All the scaffolds obtained have in their composition P(HBHVHHx) as the main constituent of their 

structure. Deionized water was only used for emulsification with the polymer solution, being 

evaporated afterwards. Subsequently, FucoPol was dissolved in deionized water to form a more 

viscous solution for the emulsification with P(HBHVHHx), being this exopolysaccharide incorporated 

in the structure of the scaffold obtained after solvent evaporation. The method of coating the porous 

scaffold with a concentrated FucoPol solution resulted in the filling of the pores with this EPS, which 

could be advantageous for cell adherence but revealed to be detrimental for the porosity of the 

scaffold. 

Overall, P(HBHVHHx) non-porous film showed very promising mechanical properties, such as 

Young Modulus, tensile strength and elongation at break with values of 0.8 MPa, 5 MPa and 237 %, 

respectively. The porous scaffolds, as would be expected, showed a steep reduction in elasticity 

(elongation at break of 56 % for the water emulsion scaffold and 52 % for the FucoPol-water emulsion 

templated scaffold), due to the introduction of porosity. However, the mechanical strength (tensile 

strength) and ductility (low Young Modulus) were kept at acceptable values for the intended 

application, especially the scaffold with 0.1% of FucoPol (4.4 and 0.85 MPa, respectively). 

Additionally, the high thermal stability of the polymer was maintained after polymer processing, as 

well as the pre-melting behaviour and crystallinity fraction, revealing that the processing of the 

polymer into porous scaffolds does not alter significantly the thermal and physical properties of the 

resulting structure. Moreover, the attained porosity and inferred low interconnectivity, due to 

insufficient water uptake capacity, of the porous scaffolds were sub-optimal. Nonetheless, both 

porous scaffolds were further studied in order to assess their bioactivity with HDFn. 
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4 Chapter Four – Biopolymer-based scaffolds for 

reconstructed human dermis 
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4.1 Introduction 

 Tissue engineering and 3D cell culturing for reconstitution of tissues require certain 

characteristics of the biomaterial chosen for the development of the construct. PHAs have 

increasingly gathered interest in this field due to their biodegradability, biocompatibility, non-

cytotoxicity, tunable physico-chemical and mechanical properties, as well as reported bioactive 

functions. The natural occurrence of HA oligomers, such as 3HB, in the blood stream of humans and 

animals further comproves the biocompatibility and non-cytotoxicity of these biopolyesters, making 

them promising candidates for biotechnological applications (Koller, 2018; Muneer et al., 2020). 

Additionally, one of these PHAs achieved a major landmark in the medical field upon approval by 

Food and Drug Administration (FDA) of P(3HB) as a biomaterial for use in resorbable sutures (Grigore 

et al., 2019). Another PHA terpolyester – P(HBHVHHx), has received attention in this field, due to its 

improved thermal stability, mechanical properties and biocompatibility (Hu et al., 2009; Ye et al., 

2010).  Moreover, this terpolyester has been associated to skin-tissue engineering, being a promising 

biomaterial to this application (Y. Ji et al., 2008). Therefore, the application of P(HBHVHHx) porous 

scaffolds for reconstruction of human dermis seems to be a promising development for skin tissue 

engineering as well for 3D cell culturing in vitro. 

4.1.1 Desired Dermal Construct Specifications 

 Upon seeding of HDFn on the scaffold intended for dermal reconstitution, a sequence of events 

normally occurs in order to achieve a viable dermis-analogue. This sequence of events starts with 

the seeding of the cells in a scaffold that had previously been embedded with HDFn medium, 

promoting the adhesion of these cells to the surface of the scaffold. Next, additional medium is 

supplied in order to immerse the construct, allowing the cells to receive the required nutrients and 

oxygen. The following expected steps recapitulate the order of events that would proceed in a neo-

tissue formation scenario. If the biological, physical, chemical and mechanical properties of the 

scaffold are appropriate, along with the diffusion of nutrients to the cells, they should be able to 

proliferate and migrate throughout the structure, producing and organizing ECM components 

homogeneously, forming a viable neo-dermis (Ng, Khor, & Hutmacher, 2004). 

  



 

60 
 

4.2 Materials and Methods 

4.2.1 Dermal Construct 

 Fibroblasts Defrosting and Subculture 

 A cryovial of neonatal human dermal fibroblasts (HDFn) (GibcoTM, #COO45C) with a volume of 

1.5 mL and an average concentration of 105 cells/mL, was transferred from liquid nitrogen to a 37 º 

C water bath. To neutralize the freezing solution containing dimethyl sulfoxide (DMSO) (SIGMA-

ALDRICH, #D2650), 500 µL of warmed HDFn culture medium (IMDM, Glutamax TM, Thermofisher, 

#31980030) 10 % Fetal Bovine Serum (FBS S, Life Technologies, #A3160802), 1 % PenStrep 

(Penicilin-Streptomycin, 10.000 U/mL, GibcoTM, #15140-122) and 500 µL of cell suspension were 

added alternately to a 15 mL falcon, until all the cell suspension was in the falcon. This cell suspension 

was inoculated by distribution in a T-75 culture flask and incubated at 37 º C with a 5 % CO2/95 % 

air, humidified cell culture incubator. The culture medium was changed once a week. 

To perform a subculture, the T-75 flask was examined by microscopy in order to check for 

possible contaminations. Then the culture medium was discarded from the flask and 5 mL of PBS 1× 

was added, mixed and removed to wash the remnant of culture medium. 5 mL of trypsin-EDTA 

solution was added, rocked to ensure coverage of all the cells and incubated at 37 º C for 2 min, 

optimizing the action of trypsin and releasing at least 90 % of the cells from the flask. To block the 

action of the trypsin, 10 mL of HDFn culture medium was added, transferring the resulting cell 

suspension to a 50 mL falcon. This suspension was then centrifuged (5 min, 2500 rpm), the 

supernatant discarded and the pellet ressuspended with 400 µL of culture medium. To determine the 

concentration, 5 µL of the cell suspension were diluted in 95 µL of Tripan Blue and this dilution was 

used to count the cells in a haemocytometer. After this determination, the concentration was adjusted 

by diluting with cell culture medium, seeding a new culture vessel with a concentration of 4.0 × 103 

cells/cm2 and incubating at 37 º C with a 5 % CO2/95 % air atmosphere, humidified cell incubator. 

 Cell Seeding and Dermal Construct 

 To perform the dermal constructs, porous P(HBHVHHx) scaffolds obtained by water emulsion, 

FucoPol-water emulsion/P(HBHVHHx) and P(HBHVHHx) porous by water emulsion/FucoPol coating 

were cut into circles with 15 mm in diameter, fitted in commercial inserts placed in a 6-well plate and 

sterilized under a 22-watt UV lamp for 15 min. To impregnate the scaffolds with cell culture medium 

each well was filled with 9 mL of IMDM and incubated at 37 º C until needed. 
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After subculture and with a confluency of ~90 %, the cells (HDFn) are ready for seeding. The 

medium was discarded and the same procedure of subculture was performed until the cell counting. 

The final volume of the cell suspension was determined in order to allow for 100 µL of this suspension 

for seeding each scaffold with a concentration of 10×106 cells/mL. After seeding the scaffolds were 

incubated at 37 º C with 5 % CO2/95 % air, in a humidified cell culture incubator for 1h and 30 min 

allowing for the cells to infiltrate through the thickness of the scaffold. 9 mL of IMDM supplemented 

with ascorbic acid (100 µg/mL) were added to each well, submerging the scaffolds, and incubated for 

8 days at 37 º C with the same atmosphere mentioned earlier. The dermal culture medium (IMDM 

Glutamax, 10 % Fetal Bovine Serum (FBS), 1 % PenStrep, 0.01 % ascorbic acid)  was changed every 

48 h. For the fourteen-day long assay, the same procedure described above was performed. 

4.2.2 Histological Processing 

 Paraffin embedded sections 

 The dermal constructs obtained from the eight-day assays were preserved with 10 % formalin 

for 24h and sent to IGC (Instituto Gulbenkian de Ciência) for histological processing. Each dermal 

construct was embedded in liquid paraffin, after the paraffin solidification the result are paraffin blocks 

that can be sectioned. From this sectioning (3 µm of thickness) the histological slides were obtained. 

For better morphological evaluation, these slides were stained with haematoxylin and eosin, allowing 

microscopic observation. 

 Cryo-sections 

 The dermal constructs obtained from the fourteen-day assays were preserved with 10 % 

formalin for 24h and immersed in a cryoprotective aqueous solution of 30 % sucrose before they were 

sent to IGC for histological processing. Each dermal construct was embedded in O.C.T.TM compound 

(Tissue Tek, Sakura), frozen in liquid nitrogen and sectioned (8 µm of thickness). The slides obtained 

were stained with haematoxylin and eosin for morphological assessment. 

4.2.3 Microscopic evaluation 

 In order to assess the cells morphology in the dermal constructs, these histological slides were  

observed in a Zeiss Axio Imager 2. 
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4.3 Results and Discussion 

 After sectioning and staining, the slides were microscopically assessed with a magnification of 

400×. The images are presented in a scale of greys due to the nature of the microscope used.  

4.3.1 Eight-day assays 

 The fragmentation or detachment of the scaffold were a common finding throughout all the 

sections observed. This phenomena could be explained by the plasticization of the scaffold after the 

histological processing, that could be related to the utilization of xylene for prolonged intervals, since 

this aromatic hydrocarbon has been associated to this effect on other polymers (Stuart, 1997). The 

entrainment of this terpolymer has already been observed in this work when samples were cut for 

SEM analysis, therefore, this could have happened during sectioning with the microtome (slice 

thickness of 3 µm). 

 Non-porous film and porous scaffold by water emulsion templating  

 The non-porous film, after histological processing, was not detectable in the slides. This may 

have happened due to difficulties in histological processing of samples, since the scaffold proved to 

be challenging to section, especially because in this assay the sections were made with only 3 µm of 

thickness, as this was the normal protocol for similar samples in IGC.  

 

  

a) b) 

Figure 4.1. Microscopic images of the eight-day dermal constructs with porous scaffolds by water emulsion 

templating. Amplification of 400x. Blue arrows indicate the scaffold. Orange arrow indicate interconnected 

pores. White arrow indicates spindle-like shape of fibroblasts. 



 

63 
 

For the porous water emulsioned scaffold the sections were clearly visible, some of them 

showing pieces of the fragmented scaffold (Figure 4.1, a; blue arrows). Throughout all the sections a 

layer of fibroblasts (FBs) on the surface of the scaffold was observed, being thinner on areas where 

pores were available for infiltration (Figure 4.1, a). In some areas the presence of interconnected 

pores (Figure 4.1, b; orange arrows) could be inferred, since there was no connection between those 

cells in the middle of the section and the cells on the surface layer, meaning that they reached that 

area through interconnected pores. The morphology of the FBs after eight days of culture is consistent 

with an active and proliferating state of these cells. The  flattened shape (spindle-like shape) with 

pseudopods extending lengthwise (Figure 4.1, b; white arrows), responsible for their motility and 

differentiation, is a characteristic response to microenvironmental cues such as ECM stiffness (H. Liu 

et al., 2020). 

 FucoPol-water emulsion templating porous scaffolds 

 For this dermal construct assay, the chosen concentrations of the FucoPol solution to produce 

the FucoPol-water emulsion templated scaffolds were 0.1 and 0.25 % (w/v). This choice was made 

considering that the best morphological features were observed for the first concentration, and the 

0.25 % (w/v) was the chosen value between 0.1 and 0.5 % (w/v) in order to see if a slightly higher 

concentration would have positive effects on cell growth without compromising the structural and 

morphological aspects of the scaffold.  

 For both these scaffolds there were improvements in cell density within the available pores of 

the constructs (Figure 4.2), which could be associated to the presence of FucoPol. The spindle-like 

shape of FBs is again observed (Figure 4.2, white arrows), indicating that they were active and 

proliferating within this microenvironment. Additionally, for both concentrations, there were signs of 

possible ECM deposition by the proliferating FBs, as can be seen in images b) and c) of Figure 4.2 

(black arrows). Throughout the sections observed the migration of FBs was scarse, due to low 

interconnectivity of the pores in these scaffolds. 
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a) b)

c) d)

Figure 4.2. Microscopic images of the eight-day dermal constructs with porous scaffolds by FucoPol-

water emulsion templating; a), b) 0.1 % (w/v) of FucoPol; c), d) 0.25 % (w/v) of FucoPol. Amplification of 

400x. White arrow indicates spindle-like shape of FBs. Black arrows indicate possible inclusions and/or 

ECM deposition. 
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 FucoPol-coated water emulsion templated scaffolds 

For this FucoPol coated (2 % (w/v)) scaffold the increment on cell density is clearly visible, 

especially in images b) and c) of Figure 4.3. The FBs were able to migrate through the available 

interconnected pores (Figure 4.3, b; orange arrows), their spindle-like shape (Figure 4.3; a, b and c; 

white arrows) is again present, so as the possibly ECM secretions (Figure 4.3; a, c; black arrows). 

The fragmented scaffold pieces can be seen in Figure 4.3, image a) (blue arrow). Despite the 

increased cell density, the lack of sufficient pores and interconnectivity of this scaffold impairs the 

FBs migration, leading to a layered accumulation of round-shaped FBs (Figure 4.3; b, c; vertical white 

arrows) on the surface of the scaffold. 

  

a) b) 

c) 

Figure 4.3. Microscopic images of the eight-day dermal constructs with porous scaffolds by water emulsion 

templating with 2 % (w/v) FucoPol coating; Amplification of 400x. White arrow indicates spindle-like shape, or 

round shape FBs. Black arrows indicate possible inclusions and/or ECM deposition. Blue arrow shows 

fragmented scaffold. Orange arrow indicating interconnected pores. 
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Similarly, the cell density observed for the 1.5 % (w/v) FucoPol-coated porous scaffold (Figure 

4.4; a,c and d) was greater than for the water emulsion templated, and even greater than the 2 % 

(w/v) FucoPol-coated construct. The possible ECM production and secretion by the active FBs can 

also be identified as filament-like and/or dotted, light-grey depositions (Figure 4.4; black arrows) 

between cells. Moreover, the extent of infiltration revealed to be superior, with more FB migration 

through the thickness of the scaffold (Figure 4.3). This also correlates with less round-shaped FBs 

on the surface and a prevalence of spindle-like FBs (Figure 4.4; white arrows), due to increased 

interconnected pores available (Figure 4.4; a, c; orange arrows), despite the presence of some visible 

closed pores (Figure 4.4; c; red arrows). These findings are consistent with the morphological features 

discussed previously (chapter two – section 3.3.4). 

  

c) 

a) b) 

d) 

Figure 4.4. Microscopic images of the eight-day dermal constructs with porous scaffolds by water emulsion 

templating with 1.5 % (w/v) FucoPol coating; Amplification of 400x. White arrow indicates spindle-like shape, or 

round shape FBs. Black arrows indicate possible inclusions and/or ECM deposition. Blue arrow shows 

fragmented scaffold. Orange arrow indicate interconnected pores. Red arrows indicate non-interconnected pores. 
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4.3.2 Fourteen-day assay 

 For this extended period of dermal construct assay, the histological processing protocol was 

changed in an attempt to surpass the difficulties observed with the latter protocol, namely the 

detachment and/or the fragmentation of the scaffold during sectioning of the embedded constructs. 

The sectioning was performed with a higher thickness (8 µm), which allowed for the observation of 

the whole construct (Figure 4.6; a,b; blue arrows), however, the fragmentation of the scaffold still 

occurred (Figure 4.5; blue arrows). Additionally, in spite of the cryoprotective sucrose solution in which 

the constructs were immersed, the liquid nitrogen affected the viability and consequently the 

morphology of the FBs, thereby cellular debris has been observed throughout all sections. 

 Water emulsion templated and FucoPol-water emulsion templated porous 

scaffolds 

 The fourteen-day long dermal constructs obtained were processed with a different protocol, as 

mentioned above, resulting in distinct morphological aspects. The cell density observed in the 

sections (Figure 4.5 and 4.6) proved to be difficult to assess, due to the scattered cellular debris 

(Figure 4.5 and 4.6; green arrows) present in both scaffolds. However, in some areas the spindle-like 

shape of the FBs (Figure 4.6, c; white arrow) was still perceptible. This indicated that the cells were 

eventually active and proliferating during culture, in addition, there were visible depositions of 

expressed ECM components (Figure 4.5 and 4.6, black arrows) in all sections.  

 Both scaffolds still suffered fragmentation, which can be seen in Figure 4.5, images a) and b) 

(blue arrows). Nonetheless, the major finding in these sections can be seen in Figure 4.6, images a) 

and b) (blue arrows) and represents the whole cross-section of the construct. This indicates that the 

thickness (8 µm) chosen for this histological processing allowed for the preservation of the whole 

scaffold, at least in that section. Additionally, the observation of these sections showed that the 

detachment and fragmentation of the scaffold might have carried cells that were lodged inside (Figure 

4.6, b; orange arrows). In these same sections there were some interconnected pores (Figure 4.6; a, 

b; orange arrows) that allowed the migration of the FBs trough some extent of the scaffold thickness. 

However, the presence of closed pores (Figure 4.6; a, b; red arrows) - or with a small diameter - did 

not allow for the migration of cells across the entire scaffold. 
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a) b) 

c) 

Figure 4.5. Microscopic images of the fourteen-day dermal constructs with porous scaffolds by water emulsion 

templating. Amplification of 400x. Black arrows indicate possible inclusions and/or ECM deposition. Blue arrow 

shows fragmented scaffold. Green arrows indicate cellular debris. 
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a) b) 

c) d) 

Figure 4.6. Microscopic images of the fourteen-day dermal constructs with porous scaffolds by FucoPol-water 

emulsion templating (0.1 % (w/v) of FucoPol). Amplification of 400x. Black arrows indicate possible inclusions 

and/or ECM deposition. Blue arrow shows whole scaffold. Green arrows indicate cellular debris. Orange arrows 

indicate interconnected pores and cells lodged inside. Red arrows indicate non-interconnected pores. 
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4.4 Conclusions 

 Dermal construct assays were performed with HDFn in order to assess if the P(HBHVHHx) 

porous scaffolds would stimulate biological responses in these cells, promoting neo-dermis formation.  

All porous scaffolds tested revealed FBs adherence and proliferation. The extent of proliferation 

and migration proved to be dependent on pore size and availability, as well as on their 

interconnectivity. The addition of increased FucoPol concentration improved the biological responses, 

especially the organized neo-tissue formation. 

Therefore, the produced P(HBHVHHx) porous scaffolds have demonstrated to be suitable for 

dermis reconstitution, with an improvement seen on the scaffolds with incorporated FucoPol, proving 

not to be cytotoxic by allowing the adherence and proliferation of cells, with the limiting factor being 

the geometry of the pores that did not allow full invasion of the scaffold. 
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5 Chapter Five – Conclusions and Future Perspectives 
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5.1 Conclusions and Future Perspectives 

 In this work, the P(HBHVHHx) extracted from a MMC biomass revealed to be composed of an 

interesting monomeric proportion when compared to similar terpolyesters in the literature. The 

characterization of this P(HBHVHHx) showed its high thermal stability and elastomeric potential, 

being a semi-crystalline scl-mcl-PHA. In addition, with the promising properties of FucoPol, namely 

emulsion stabilizing ability and biological activity, these biomaterials gathered the potential to produce 

a naturally-derived porous scaffold for skin tissue engineering. 

 A non-porous film of this terpolyester was produced, and its elastomeric nature was 

demonstrated, achieving very promising mechanical properties, with good mechanical strength and 

stiffness, but especially impressing elongation at break. The first approach to develop the porous 

scaffold, with water emulsion templating, revealed to be effective in introducing porosity to the 

otherwise densily packed structure of the non-porous film. This porosity decreased the elasticity of 

the scaffold, which was expected. Similarly, the FucoPol-water (0.1 % (w/v)) emulsion templated 

scaffold showed decreased elasticity, however, the achieved porosity was higher and the mechanical 

strength and stiffness were kept at adequate values for skin tissue engineering. Nevertheless, the 

coating method with high concentration of FucoPol revealed to be detrimental for the morphology of 

the scaffold, decreasing the porosity. Additionally, the porosity and interconnectivity obtained were 

not optimal, indicating that the emulsions were not stable for long enough, which could be addressed 

by various approaches, namely increasing the internal phase volume, increasing the viscosity of the 

external phase, accelerate the solvent evaporation period, or a combination of these. The increase 

in the porosity tends to impair the mechanical properties, therefore this adjustment should be well 

balanced. 

 The dermal constructs developed with these porous scaffolds demonstrated their suitability for 

skin tissue engineering, especially the culturing of FBs. All the scaffolds supported cell adherence 

and proliferation, with a clear improvement in cell density and organized deposition of ECM 

components for the scaffolds with FucoPol incorporated. However, the full invasion of the cells 

through the scaffold was limited by the pore geometry, which further supports the need to adjust the 

porosity and interconnectivity mentioned above. In addition, the biological response of the FBs is 

greatly influenced by microenvironmental cues within the scaffold, namely the scaffold stiffness, which 

revealed to be adequate in the scaffolds tested. Therefore, the improvement of the scaffold porosity 

should be performed without significantly impairing the mechanical properties. Besides the 

optimization of the emulsion method, another technique that could be studied with this combination 

of P(HBHVHHx)/FucoPol is electrospinning, with the possibility to improve or maintain the mechanical 

properties and achieve a higher porosity.  
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Upon achievement of a fully proliferated neo-dermis, immunohistochemical studies should be 

performed in order to evaluate the expression of ECM components, assessing if the results 

recapitulate the expression levels found in its natural counterpart. Additionally, tests that evaluate the 

matrix contraction over time should also be performed to ensure that the porous scaffold can 

effectively support the mechanical forces inherent to neo-dermis formation. Afterwards, human 

keratinocytes should be cultured on this neo-dermis at air-liquid interface, achieving a 3D human skin 

model. 
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Figure A. SEC analysis of the extracted P(HBHVHHx). 
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Figure B. TGA curve of the extracted P(HBHVHHx). 


